WorldWideScience

Sample records for k562 chronic myeloid

  1. Anticancer activity of Pupalia lappacea on chronic myeloid leukemia K562 cells.

    Science.gov (United States)

    Ravi, Alvala; Alvala, Mallika; Sama, Venkatesh; Kalle, Arunasree M; Irlapati, Vamshi K; Reddy, B Madhava

    2012-12-05

    Cancer is one of the most prominent human diseases which has enthused scientific and commercial interest in the discovery of newer anticancer agents from natural sources. Here we demonstrated the anticancer activity of ethanolic extract of aerial parts of Pupalia lappacea (L) Juss (Amaranthaceae) (EAPL) on Chronic Myeloid Leukemia K562 cells. Antiproliferative activity of EAPL was determined by MTT assay using carvacrol as a positive control. Induction of apoptosis was studied by annexin V, mitochondrial membrane potential, caspase activation and cell cycle analysis using flow cytometer and modulation in protein levels of p53, PCNA, Bax and Bcl2 ratio, cytochrome c and cleavage of PARP were studied by Western blot analysis. The standardization of the extract was performed through reverse phase-HPLC using Rutin as biomarker. The results showed dose dependent decrease in growth of K562 cells with an IC50 of 40 ± 0.01 μg/ml by EAPL. Induction of apoptosis by EAPL was dose dependent with the activation of p53, inhibition of PCNA, decrease in Bcl2/Bax ratio, decrease in the mitochondrial membrane potential resulting in release of cytochrome c, activation of multicaspase and cleavage of PARP. Further HPLC standardization of EAPL showed presence 0.024% of Rutin. Present study significantly demonstrates anticancer activity of EAPL on Chronic Myeloid Leukemia (K562) cells which can lead to potential therapeutic agent in treating cancer. Rutin, a known anti cancer compound is being reported and quantified for the first time from EAPL.

  2. [Effects of Aptamer-siRNA Nucleic Acid Compound on Growth and Apoptosis in Myeloid Leukemia Cell Line K562].

    Science.gov (United States)

    Ping, Juan; Shen, Zhi-Hui; Wang, Bao-Quan; Zhao, Na; Li, Rui; Li, Mian; Pang, Xiao-Bin; Chen, Chuan-Bo

    2015-04-01

    To explore the effects of aptamer-siRNA nucleic acid compound on growth and apoptosis in myeloid leukemia cell line K562. the changes of cellular morphology and structure were observed by using fluorescence microscope, laser confocal microscope, JEM-4000EX transmission electron microscopy; MTT assay were performed to evaluate the sensibility of K562 cells to aptamer-siRNA compound, the apoptosis was detected by DNA gel electro-phoresis. The remarkably changes of morphology and structure of K562 cells treated with 200 µmol/L aptamer-siRNA were observed under fluorescence microscopy and electromicroscopy. As compared with control, the aptamer-siRNA compound showed more inhibitory effect on K562 cells and there was significant difference (Pcompound for K562 cells was 150 µmol/L. According to agarose gel electrophoresis observation, when the aptamer-siRNA compound showed effect on K562 cells, the typical DNA lader could be observed. The aptamer-siRNA compound can significantly induce K562 cell apoptosis, and provide reference for gene therapy of patients with chronic myelocytic lenkemia.

  3. PaDef defensin from avocado (Persea americana var. drymifolia) is cytotoxic to K562 chronic myeloid leukemia cells through extrinsic apoptosis.

    Science.gov (United States)

    Flores-Alvarez, Luis José; Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2018-06-01

    Plant defensins, a group of antimicrobial peptides, show selective cytotoxicity toward cancer cells. However, their mechanisms of action remain poorly understood. Here, we evaluated the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on K562 chronic myeloid leukemia cells and analyzed the pathway involved in the induction of cell death. The defensin PaDef was not cytotoxic against human PBMCs; however, it was cytotoxic for K562 cell line (IC 50  = 97.3 μg/ml) activating apoptosis at 12 h. PaDef did not affect the mitochondrial membrane potential (ΔΨm), neither the transmembranal potential or the release of intracellular calcium. Also, PaDef induced gene expression of caspase 8 (∼2 fold), TNF-α (∼4 fold) and TNFR1 (∼10 fold). In addition, the activation of caspase 8 was detected at 24 h, whereas caspase 9 activity was not modified, suggesting that the extrinsic apoptosis pathway could be activated. In conclusion, PaDef induces apoptosis on K562 cells, which is related to the activation of caspase 8 and involves the participation of TNF-α, which is a novel property for a plant defensin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Luteoloside Inhibits Proliferation of Human Chronic Myeloid ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of luteoloside on the proliferation of human chronic myeloid leukemia K562 cells and whether luteoloside induces cell cycle arrest and apoptosis in K562 cells. Methods: Luteoloside's cytotoxicity was assessed using a cell counting kit. Cell cycle distribution was analysed by flow cytometry ...

  5. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases.

    Science.gov (United States)

    Wang, Yating; Wei, Sixi; Wang, Jishi; Fang, Qin; Chai, Qixiang

    2014-07-01

    Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation.

  6. Characterization of miRNomes in Acute and Chronic Myeloid

    Directory of Open Access Journals (Sweden)

    Qian Xiong

    2014-04-01

    Full Text Available Myeloid leukemias are highly diverse diseases and have been shown to be associated with microRNA (miRNA expression aberrations. The present study involved an in-depth miRNome analysis of two human acute myeloid leukemia (AML cell lines, HL-60 and THP-1, and one human chronic myeloid leukemia (CML cell line, K562, via massively parallel signature sequencing. mRNA expression profiles of these cell lines that were established previously in our lab facilitated an integrative analysis of miRNA and mRNA expression patterns. miRNA expression profiling followed by differential expression analysis and target prediction suggested numerous miRNA signatures in AML and CML cell lines. Some miRNAs may act as either tumor suppressors or oncomiRs in AML and CML by targeting key genes in AML and CML pathways. Expression patterns of cell type-specific miRNAs could partially reflect the characteristics of K562, HL-60 and THP-1 cell lines, such as actin filament-based processes, responsiveness to stimulus and phagocytic activity. miRNAs may also regulate myeloid differentiation, since they usually suppress differentiation regulators. Our study provides a resource to further investigate the employment of miRNAs in human leukemia subtyping, leukemogenesis and myeloid development. In addition, the distinctive miRNA signatures may be potential candidates for the clinical diagnosis, prognosis and treatment of myeloid leukemias.

  7. Time-series analysis in imatinib-resistant chronic myeloid leukemia K562-cells under different drug treatments.

    Science.gov (United States)

    Zhao, Yan-Hong; Zhang, Xue-Fang; Zhao, Yan-Qiu; Bai, Fan; Qin, Fan; Sun, Jing; Dong, Ying

    2017-08-01

    Chronic myeloid leukemia (CML) is characterized by the accumulation of active BCR-ABL protein. Imatinib is the first-line treatment of CML; however, many patients are resistant to this drug. In this study, we aimed to compare the differences in expression patterns and functions of time-series genes in imatinib-resistant CML cells under different drug treatments. GSE24946 was downloaded from the GEO database, which included 17 samples of K562-r cells with (n=12) or without drug administration (n=5). Three drug treatment groups were considered for this study: arsenic trioxide (ATO), AMN107, and ATO+AMN107. Each group had one sample at each time point (3, 12, 24, and 48 h). Time-series genes with a ratio of standard deviation/average (coefficient of variation) >0.15 were screened, and their expression patterns were revealed based on Short Time-series Expression Miner (STEM). Then, the functional enrichment analysis of time-series genes in each group was performed using DAVID, and the genes enriched in the top ten functional categories were extracted to detect their expression patterns. Different time-series genes were identified in the three groups, and most of them were enriched in the ribosome and oxidative phosphorylation pathways. Time-series genes in the three treatment groups had different expression patterns and functions. Time-series genes in the ATO group (e.g. CCNA2 and DAB2) were significantly associated with cell adhesion, those in the AMN107 group were related to cellular carbohydrate metabolic process, while those in the ATO+AMN107 group (e.g. AP2M1) were significantly related to cell proliferation and antigen processing. In imatinib-resistant CML cells, ATO could influence genes related to cell adhesion, AMN107 might affect genes involved in cellular carbohydrate metabolism, and the combination therapy might regulate genes involved in cell proliferation.

  8. Inhibition of Siah2 Ubiquitin Ligase by Vitamin K3 Attenuates Chronic Myeloid Leukemia Chemo-Resistance in Hypoxic Microenvironment.

    Science.gov (United States)

    Huang, Jixian; Lu, Ziyuan; Xiao, Yajuan; He, Bolin; Pan, Chengyun; Zhou, Xuan; Xu, Na; Liu, Xiaoli

    2018-02-05

    BACKGROUND A hypoxic microenvironment is associated with resistance to tyrosine kinase inhibitors (TKIs) and a poor prognosis in chronic myeloid leukemia (CML). The E3 ubiquitin ligase Siah2 plays a vital role in the regulation of hypoxia response, as well as in leukemogenesis. However, the role of Siah2 in CML resistance is unclear, and it is unknown whether vitaminK3 (a Siah2 inhibitor) can improve the chemo-sensitivity of CML cells in a hypoxic microenvironment. MATERIAL AND METHODS The expression of Siah2 was detected in CML patients (CML-CP and CML-BC), K562 cells, and K562-imatinib-resistant cells (K562-R cells). We measured the expression of PHD3, HIF-1α, and VEGF in both cell lines under normoxia and hypoxic conditions, and the degree of leukemic sensitivity to imatinib and VitaminK3 were evaluated. RESULTS Siah2 was overexpressed in CML-BC patients (n=9) as compared to CML-CP patients (n=13). Similarly, K562-imatinib-resistant cells (K562-R cells) showed a significantly higher expression of Siah2 as compared to K562 cells in a hypoxic microenvironment. Compared to normoxia, under hypoxic conditions, both cell lines had lower PHD3, higher HIF-1α, and higher VEGF expression. Additionally, Vitamin K3 (an inhibitor of Siah2) reversed these changes and promoted a higher degree of leukemic sensitivity to imatinib. CONCLUSIONS Our findings indicate that the Siah2-PHD3- HIF-1α-VEGF axis is an important hypoxic signaling pathway in a leukemic microenvironment. An inhibitor of Siah2, combined with TKIs, might be a promising therapy for relapsing and refractory CML patients.

  9. Regulation of hTERT by BCR-ABL at multiple levels in K562 cells

    International Nuclear Information System (INIS)

    Chai, Juin Hsien; Zhang, Yong; Tan, Wei Han; Chng, Wee Joo; Li, Baojie; Wang, Xueying

    2011-01-01

    The cytogenetic characteristic of Chronic Myeloid Leukemia (CML) is the formation of the Philadelphia chromosome gene product, BCR-ABL. Given that BCR-ABL is the specific target of Gleevec in CML treatment, we investigated the regulation of the catalytic component of telomerase, hTERT, by BCR-ABL at multiple levels in K562 cells. Molecular techniques such as over expression, knockdown, real-time PCR, immunoprecipitation, western blotting, reporter assay, confocal microscopy, telomerase assays and microarray were used to suggest that hTERT expression and activity is modulated by BCR-ABL at multiple levels. Our results suggest that BCR-ABL plays an important role in regulating hTERT in K562 (BCR-ABL positive human leukemia) cells. When Gleevec inhibited the tyrosine kinase activity of BCR-ABL, phosphorylation of hTERT was downregulated, therefore suggesting a positive correlation between BCR-ABL and hTERT. Gleevec treatment inhibited hTERT at mRNA level and significantly reduced telomerase activity (TA) in K562 cells, but not in HL60 or Jurkat cells (BCR-ABL negative cells). We also demonstrated that the transcription factor STAT5a plays a critical role in hTERT gene regulation in K562 cells. Knockdown of STAT5a, but not STAT5b, resulted in a marked downregulation of hTERT mRNA level, TA and hTERT protein level in K562 cells. Furthermore, translocation of hTERT from nucleoli to nucleoplasm was observed in K562 cells induced by Gleevec. Our data reveal that BCR-ABL can regulate TA at multiple levels, including transcription, post-translational level, and proper localization. Thus, suppression of cell growth and induction of apoptosis by Gleevec treatment may be partially due to TA inhibition. Additionally, we have identified STAT5a as critical mediator of the hTERT gene expression in BCR-ABL positive CML cells, suggesting that targeting STAT5a may be a promising therapeutic strategy for BCR-ABL positive CML patients

  10. Overexpression of Hiwi Inhibits the Growth and Migration of Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Wang, Yalin; Jiang, Yan; Ma, Ning; Sang, Bailu; Hu, Xiaolin; Cong, Xiaofeng; Liu, Ziling

    2015-09-01

    Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by dysregulated growth and proliferation of hematopoietic stem/progenitor cells in bone marrow and excessive expansion of hematopoietic compartments in peripheral blood. Expression deletion of Hiwi, a human Piwi homolog, has been reported to be implicated in leukemogenesis. We here explored Hiwi's role in CML pathogenesis by determining how and whether its forced overexpression could affect CML cell growth and migration. The present results showed that lentivirus-mediated overexpression of Hiwi significantly suppressed cell proliferation and induced obvious apoptosis in K562 cells, a CML line cell line. Tumors in BALB/c nude mice generated by the K562 cells expressing Hiwi were much smaller than those formed by the control cells. Like in vitro, Hiwi upregulation induced cell apoptosis in the tumor tissues in vivo. Additionally, Hiwi elevation suppressed K562 cell migration and inhibited the activity and expression of matrix metalloproteinase-2 and -9. In summary, our study demonstrates that Hiwi overexpression inhibits CML cell growth and migration, providing insights into its role in CML pathogenesis.

  11. Apoptosis induction in MV4-11 and K562 human leukemic cells by Pereskia sacharosa (Cactaceae) leaf crude extract.

    Science.gov (United States)

    Asmaa, Mat Jusoh Siti; Al-Jamal, Hamid Ali Nagi; Ang, Cheng Yong; Asan, Jamaruddin Mat; Seeni, Azman; Johan, Muhammad Farid

    2014-01-01

    Pereskia sacharosa is a genus of cacti widely used in folk medicine for cancer-related treatment. Anti-proliferative effects have been studied in recent years against colon, breast, cervical and lung cancer cell lines, with promising results. We here extended study of anti-proliferative effects to a blood malignancy, leukemia. Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. IC50 concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting. P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells. These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.

  12. [Effect of Recombinant Adenovirus AdE-SH2-Caspase 8 on the Apoptosis of Imatinib-resistant K562/G01 Cell Line].

    Science.gov (United States)

    Wang, Lin; Fei, Chang; Huang, Zheng-Lan; Li, Hui; Liu, Zhang-Lin; Feng, Wen-Li

    2015-08-01

    To investigate the effect of SH2-Caspase 8 fusion protein expressed by recombinant adenovirus AdE-SH2-Caspase8-HA-GFP (SC) on the apoptosis of K562/G01 cell line, which is a BCR/ABL positive chronic myeloid leukemia cell line and resistant to imatinib. The K562/G01 cell line was infected with AdE-SH2-Caspase 8-HA-GFP adenovirus (SC), then the cells were divided into 3 groups: AdE-SH2m-Caspase 8-HA-GFP (SmC) group, AdE-GFP (CMV) group and PBS group as control. The infection efficiency was observed under fluorescent microscopy and by flow cytometry. The expression of fusion protein SH2-Caspase 8-HA was measured by Western blot. The morphology of the cells detected by Wright's staining. The apoptosis of the cells were detected by flow cytometry and DNA ladder. The expression of Caspase 3 and PARP were detected by Western blot. The infection efficiency of SC on K562/G01 cells was high which was confirmed by fluorescent microscopy and FCM. SH2-Caspase 8-HA fusion protein were expressed correctly in K562/G01 cells. After treatment with SC the apoptosis of K562/G01 cells could be observed by microscopy. The result of FCM showed that early apoptosis of K562/G01 cells increased significantly as compared with control groups (P SH2-Caspase 8 fusion protein can induces the apoptosis of K562/G01 cells.

  13. Distinct Dasatinib-Induced Mechanisms of Apoptotic Response and Exosome Release in Imatinib-Resistant Human Chronic Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Juan Liu

    2016-04-01

    Full Text Available Although dasatinib is effective in most imatinib mesylate (IMT-resistant chronic myeloid leukemia (CML patients, the underlying mechanism of its effectiveness in eliminating imatinib-resistant cells is only partially understood. This study investigated the effects of dasatinib on signaling mechanisms driving-resistance in imatinib-resistant CML cell line K562 (K562RIMT. Compared with K562 control cells, exsomal release, the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt/ mammalian target of rapamycin (mTOR signaling and autophagic activity were increased significantly in K562RIMT cells and mTOR-independent beclin-1/Vps34 signaling was shown to be involved in exosomal release in these cells. We found that Notch1 activation-mediated reduction of phosphatase and tensin homolog (PTEN was responsible for the increased Akt/mTOR activities in K562RIMT cells and treatment with Notch1 γ-secretase inhibitor prevented activation of Akt/mTOR. In addition, suppression of mTOR activity by rapamycin decreased the level of activity of p70S6K, induced upregulation of p53 and caspase 3, and led to increase of apoptosis in K562RIMT cells. Inhibition of autophagy by spautin-1 or beclin-1 knockdown decreased exosomal release, but did not affect apoptosis in K562RIMT cells. In summary, in K562RIMT cells dasatinib promoted apoptosis through downregulation of Akt/mTOR activities, while preventing exosomal release and inhibiting autophagy by downregulating expression of beclin-1 and Vps34. Our findings reveal distinct dasatinib-induced mechanisms of apoptotic response and exosomal release in imatinib-resistant CML cells.

  14. Potent antitumor activities of recombinant human PDCD5 protein in combination with chemotherapy drugs in K562 cells

    International Nuclear Information System (INIS)

    Shi, Lin; Song, Quansheng; Zhang, Yingmei; Lou, Yaxin; Wang, Yanfang; Tian, Linjie; Zheng, Yi; Ma, Dalong; Ke, Xiaoyan; Wang, Ying

    2010-01-01

    Conventional chemotherapy is still frequently used. Programmed cell death 5 (PDCD5) enhances apoptosis of various tumor cells triggered by certain stimuli and is lowly expressed in leukemic cells from chronic myelogenous leukemia patients. Here, we describe for the first time that recombinant human PDCD5 protein (rhPDCD5) in combination with chemotherapy drugs has potent antitumor effects on chronic myelogenous leukemia K562 cells in vitro and in vivo. The antitumor efficacy of rhPDCD5 protein with chemotherapy drugs, idarubicin (IDR) or cytarabine (Ara-C), was examined in K562 cells in vitro and K562 xenograft tumor models in vivo. rhPDCD5 protein markedly increased the apoptosis rates and decreased the colony-forming capability of K562 cells after the combined treatment with IDR or Ara-C. rhPDCD5 protein by intraperitoneal administration dramatically improved the antitumor effects of IDR treatment in the K562 xenograft model. The tumor sizes and cell proliferation were significantly decreased; and TUNEL positive cells were significantly increased in the combined group with rhPDCD5 protein and IDR treatment compared with single IDR treatment groups. rhPDCD5 protein, in combination with IDR, has potent antitumor effects on chronic myelogenous leukemia K562 cells and may be a novel and promising agent for the treatment of chronic myelogenous leukemia.

  15. Effects of the antitumoural dequalinium on NB4 and K562 human leukemia cell lines. Mitochondrial implication in cell death.

    Science.gov (United States)

    Galeano, Eva; Nieto, Elena; García-Pérez, Ana Isabel; Delgado, M Dolores; Pinilla, Montserrat; Sancho, Pilar

    2005-10-01

    Dequalinium (DQA) is a delocalized lipophylic cation that selectively targets the mitochondria of carcinoma cells. However, the underlying mechanisms of DQA action are not yet well understood. We have studied the effects of DQA on two different leukemia cell lines: NB4, derived from acute promyelocytic leukemia, and K562, derived from chronic myeloid leukemia. We found that DQA displays differential cytotoxic activity in these cell lines. In NB4 cells, a low DQA concentration (2microM) induces a mixture of apoptosis and necrosis, whereas a high DQA concentration (20microM) induces mainly necrosis. However, K562 cell death was always by necrosis as the cells showed a resistance to apoptosis at all time-periods and DQA concentrations assayed. In both cell lines, the cell death seems to be mediated by alterations of mitochondrial function as evidenced by loss of mitochondrial transmembrane potential, O2*- accumulation and ATP depletion. The current study improves the knowledge on DQA as a novel anticancer agent with a potential application in human acute promyelocytic leukemia chemotherapy.

  16. Low expression of miR-196b enhances the expression of BCR-ABL1 and HOXA9 oncogenes in chronic myeloid leukemogenesis.

    Directory of Open Access Journals (Sweden)

    Yue Liu

    Full Text Available MicroRNAs (miRNAs can function as tumor suppressors or oncogene promoters during tumor development. In this study, low levels of expression of miR-196b were detected in patients with chronic myeloid leukemia. Bisulfite genomic sequencing PCR and methylation-specific PCR were used to examine the methylation status of the CpG islands in the miR-196b promoter in K562 cells, patients with leukemia and healthy individuals. The CpG islands showed more methylation in patients with chronic myeloid leukemia compared with healthy individuals (P<0.05, which indicated that low expression of miR-196b may be associated with an increase in the methylation of CpG islands. The dual-luciferase reporter assay system demonstrated that BCR-ABL1 and HOXA9 are the target genes of miR-196b, which was consistent with predictions from bioinformatics software analyses. Further examination of cell function indicated that miR-196b acts to reduce BCR-ABL1 and HOXA9 protein levels, decrease cell proliferation rate and retard the cell cycle. A low level of expression of miR-196b can cause up-regulation of BCR-ABL1 and HOXA9 expression, which leads to the development of chronic myeloid leukemia. MiR-196b may represent an effective target for chronic myeloid leukemia therapy.

  17. Putative tyrosine kinases expressed in K-562 human leukemia cells

    International Nuclear Information System (INIS)

    Partanen, J.; Maekelae, T.P.; Lehvaeslaiho, H.; Alitalo, K.; Alitalo, R.

    1990-01-01

    Tyrosine phosphorylation is important in the transmission of growth and differentiation signals; known tyrosine kinases include several oncoproteins and growth factor receptors. Interestingly, some differentiated cell types, such as erythrocytes and platelets contain high amounts of phosphotyrosine. The authors analyzed tyrosine kinases expressed in the K-562 chronic myelogenous leukemia cell line, which has a bipotential erythroid and megakaryoblastoid differentiation capacity. Analysis of 359 polymerase chain reaction-amplified cDNA clones led to the identification of 14 different tyrosine kinase-related sequences (JTK1-14). Two of the clones (JTK2 and JTK4) represent unusual members of the fibroblast growth factor receptor gene family, and the clones JTK5, JTK11, and JTK14 may also belong to the family of receptor tyrosine kinases but lack a close relationship to any known tyrosine kinase. Each of these different genes has its own characteristic expression pattern in K-562 cells and several other human tumor cell lines. In addition, the JTK11 and JTK14 mRNAs are induced during the megakaryoblastoid differentiation of K-562 cells. These tyrosine kinases may have a role in the differentiation of megakaryoblasts or in the physiology of platelets

  18. EM23, a natural sesquiterpene lactone from Elephantopus mollis H.B.K., induces apoptosis in human myeloid leukemia cells through thioredoxin- and reactive oxygen species-mediated signaling pathways

    Directory of Open Access Journals (Sweden)

    Hongyu eLi

    2016-03-01

    Full Text Available Elephantopus mollis H.B.K. (EM is a traditional herbal medicine with multiple pharmacological activities. However, the efficacy of EM in treating human leukemia is currently unknown. In the current study, we report that EM23, a natural sesquiterpene lactone isolated from EM, inhibits the proliferation of human chronic myeloid leukemia K562 cells and acute myeloid leukemia HL-60 cells by inducing apoptosis. Translocation of membrane-associated phospholipid phosphatidylserines, changes in cell morphology, activation of caspases and cleavage of PARP were concomitant with this inhibition. The involvement of the mitochondrial pathway in EM23-mediated apoptosis was suggested by observed disruptions in mitochondrial membrane potential (MMP. Mechanistic studies indicated that EM23 caused a marked increase in the level of reactive oxygen species (ROS. Pretreatment with N-acetyl-L-cysteine (NAC, a ROS scavenger, almost fully reversed EM23-mediated apoptosis. In EM23-treated cells, the expression levels of thioredoxin (Trx and thioredoxinreductase (TrxR, two components of the Trx system involved in maintaining cellular redox homeostasis, were significantly down-regulated. Concomitantly, Trx regulated the activation of apoptosis signal-regulating kinase 1 (ASK1 and its downstream regulatory targets, the p38, JNK, and ERK MAPKs. EM23-mediated activation of ASK1/MAPKs was significantly inhibited in the presence of NAC. Furthermore, tumor necrosis factor alpha (TNF-α-mediated activation of nuclear factor-κB (NF-κB was suppressed by EM23, as suggested by the observed blockage of p65 nuclear translocation, phosphorylation and reversion of IκBα degradation following EM23 treatment. Taken together, these results provide important insights into the anticancer activities of the EM component EM23 against human chronic myeloid leukemia K562 cells and acute myeloid leukemia HL-60 cells.

  19. Small Molecule TH-39 Potentially Targets Hec1/Nek2 Interaction and Exhibits Antitumor Efficacy in K562 Cells via G0/G1 Cell Cycle Arrest and Apoptosis Induction.

    Science.gov (United States)

    Zhu, Yongxia; Wei, Wei; Ye, Tinghong; Liu, Zhihao; Liu, Li; Luo, Yong; Zhang, Lidan; Gao, Chao; Wang, Ningyu; Yu, Luoting

    2016-01-01

    Cancer is still a major public health issue worldwide, and new therapeutics with anti-tumor activity are still urgently needed. The anti-tumor activity of TH-39, which shows potent anti-proliferative activity against K562 cells with an IC50 of 0.78 µM, was investigated using immunoblot, co-immunoprecipitation, the MTT assay, and flow cytometry. Mechanistically, TH-39 may disrupt the interaction between Hec1 and Nek2 in K562 cells. Moreover, TH-39 inhibited cell proliferation in a concentration- and time-dependent manner by influencing the morphology of K562 cells and inducing G0/G1 phase arrest. G0/G1 phase arrest was associated with down-regulation of CDK2-cyclin E complex and CDK4/6-cyclin D complex activities. Furthermore, TH-39 also induced cell apoptosis, which was associated with activation of caspase-3, down-regulation of Bcl-2 expression and up-regulation of Bax. TH-39 could also decrease mitochondrial membrane potential (Δψm) and increase reactive oxygen species (ROS) accumulation in K562 cells. The results indicated that TH-39 might induce apoptosis via the ROS-mitochondrial apoptotic pathway. This study highlights the potential therapeutic efficacy of the anti-cancer compound TH-39 in treatment-resistant chronic myeloid leukemia. © 2016 The Author(s) Published by S. Karger AG, Basel.

  20. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells

    Directory of Open Access Journals (Sweden)

    Shi D

    2016-11-01

    Full Text Available Dan Shi,1,* Yan Liu,1,* Ronggang Xi,1 Wei Zou,2 Lijun Wu,3 Zhiran Zhang,1 Zhongyang Liu,1 Chao Qu,1 Baoli Xu,1 Xiaobo Wang1 1Department of Pharmacy, The 210th Hospital of People’s Liberation Army, 2College of Life Science, Liaoning Normal University, Dalian, Liaoning, 3Department of Pharmaceutics, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China *These authors contributed equally to this work Abstract: Chronic myelogenous leukemia (CML is characterized by the t(9;22 (q34;q11-associated Bcr-Abl fusion gene, which is an essential element of clinical diagnosis. As a traditional Chinese medicine, realgar has been widely used for the treatment of various diseases for >1,500 years. Inspired by nano-drug, realgar nanoparticles (NPs have been prepared with an average particle size of <100 nm in a previous work. Compared with coarse realgar, the realgar NPs have higher bioavailability. As a principal constituent protein of caveolae, caveolin-1 (Cav-1 participates in regulating various cellular physiological and pathological processes including tumorigenesis and tumor development. In previous studies, it was found that realgar NPs can inhibit several types of tumor cell proliferation. However, the therapeutic effect of realgar NPs on CML has not been fully elucidated. In the present paper, it was demonstrated that realgar NPs can inhibit the proliferation of K562 cells and degrade Bcr-Abl fusion protein effectively. Both apoptosis and autophagy were activated in a dose-dependent manner in realgar NPs treated cells, and the induction of autophagy was associated with class I phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway. Morphological analysis indicated that realgar NPs induced differentiation effectively in CML cells. Furthermore, it was identified that Cav-1 might play a crucial role in realgar NP therapy. In order to study the effects of Cav-1 on K562 cells during

  1. A Subpopulation of the K562 Cells Are Killed by Curcumin Treatment after G2/M Arrest and Mitotic Catastrophe.

    Directory of Open Access Journals (Sweden)

    Macario Martinez-Castillo

    Full Text Available Curcumin is extensively investigated as a good chemo-preventive agent in the development of many cancers and particularly in leukemia, including treatment of chronic myelogenous leukemia and it has been proposed as an adjuvant for leukemia therapies. Human chronic myeloid leukemia cells (K562, were treated with 20 μM of curcumin, and we found that a subpopulation of these cells were arrested and accumulate in the G2/M phase of the cell cycle. Characterization of this cell subpopulation showed that the arrested cells presented nuclear morphology changes resembling those described for mitotic catastrophe. Mitotic cells displayed abnormal chromatin organization, collapse of the mitotic spindle and abnormal chromosome segregation. Then, these cells died in an apoptosis dependent manner and showed diminution in the protein levels of BCL-2 and XIAP. Moreover, our results shown that a transient activation of the nuclear factor κB (NFκB occurred early in these cells, but decreased after 6 h of the treatment, explaining in part the diminution of the anti-apoptotic proteins. Additionally, P73 was translocated to the cell nuclei, because the expression of the C/EBPα, a cognate repressor of the P73 gene, was decreased, suggesting that apoptosis is trigger by elevation of P73 protein levels acting in concert with the diminution of the two anti-apoptotic molecules. In summary, curcumin treatment might produce a P73-dependent apoptotic cell death in chronic myelogenous leukemia cells (K562, which was triggered by mitotic catastrophe, due to sustained BAX and survivin expression and impairment of the anti-apoptotic proteins BCL-2 and XIAP.

  2. How Is Chronic Myeloid Leukemia Diagnosed?

    Science.gov (United States)

    ... Myeloid Leukemia? More In Chronic Myeloid Leukemia About Chronic Myeloid Leukemia Causes, Risk Factors, and Prevention Early Detection, Diagnosis, and Staging Treatment After Treatment Back To Top Imagine a world ...

  3. Overcoming imatinib resistance using Src inhibitor CGP76030, Abl inhibitor nilotinib and Abl/Lyn inhibitor INNO-406 in newly established K562 variants with BCR-ABL gene amplification.

    Science.gov (United States)

    Morinaga, Koji; Yamauchi, Takahiro; Kimura, Shinya; Maekawa, Taira; Ueda, Takanori

    2008-06-01

    Because imatinib (IM) resistance in chronic myeloid leukemia is primarily caused by the re-establishment of Abl kinase, new inhibitors may be efficacious. We evaluated 3 new agents against 2 new K562 variants, IM-R1 and IM-R2 cells, which were developed having 7- and 27-fold greater IM resistance, respectively, than the parental K562 cells. Both variants possessed BCR-ABL gene amplification along with elevated levels of its transcript and protein. Greater BCR-ABL gene amplification was observed in IM-R2 cells than in IM-R1 cells, which was consistent with the higher mRNA and protein levels of Bcr-Abl, and ultimately correlated with the greater IM resistance in IM-R2 cells. No mutation in the Abl kinase domain was detected in either variant. Despite the absence of Lyn overexpression, the Src kinase inhibitor CGP76030 showed positive cooperability with IM in inhibiting cell growth of not only K562 cells but also these 2 variants. This might be because of the augmented inhibition of Erk1/2 phosphorylation. The new Abl kinase inhibitor nilotinib was 10-fold more potent than IM in inhibiting the growth of K562 cells. Nilotinib inhibited the growth of IM-R1 and IM-R2 cells as potently as K562 cells. The combination of nilotinib with CGP76030 showed little additivity, because the potency of nilotinib masked the efficacy of CGP76030. The new dual Abl/Lyn inhibitor INNO-406 (formerly NS-187) was slightly more potent than nilotinib in inhibiting the growth of all 3 cell lines. Because BCR-ABL gene amplification occurs in blast crisis, these inhibitors might overcome IM resistance in such patients' leukemia. (c) 2008 Wiley-Liss, Inc.

  4. Use of zinc-finger nucleases to knock out the WAS gene in K562 cells: a human cellular model for Wiskott-Aldrich syndrome

    Directory of Open Access Journals (Sweden)

    Miguel G. Toscano

    2013-03-01

    Mutations in the WAS gene cause Wiskott-Aldrich syndrome (WAS, which is characterized by eczema, immunodeficiency and microthrombocytopenia. Although the role of WASP in lymphocytes and myeloid cells is well characterized, its role on megakaryocyte (MK development is poorly understood. In order to develop a human cellular model that mimics the megakaryocytic-derived defects observed in WAS patients we used K562 cells, a well-known model for study of megakaryocytic development. We knocked out the WAS gene in K562 cells using a zinc-finger nuclease (ZFN pair targeting the WAS intron 1 and a homologous donor DNA that disrupted WASP expression. Knockout of WASP on K562 cells (K562WASKO cells resulted in several megakaryocytic-related defects such as morphological alterations, lower expression of CD41ɑ, lower increments in F-actin polymerization upon stimulation, reduced CD43 expression and increased phosphatidylserine exposure. All these defects have been previously described either in WAS-knockout mice or in WAS patients, validating K562WASKO as a cell model for WAS. However, K562WASPKO cells showed also increased basal F-actin and adhesion, increased expression of CD61 and reduced expression of TGFβ and Factor VIII, defects that have never been described before for WAS-deficient cells. Interestingly, these phenotypic alterations correlate with different roles for WASP in megakaryocytic differentiation. All phenotypic alterations observed in K562WASKO cells were alleviated upon expression of WAS following lentiviral transduction, confirming the role of WASP in these phenotypes. In summary, in this work we have validated a human cellular model, K562WASPKO, that mimics the megakaryocytic-related defects found in WAS-knockout mice and have found evidences for a role of WASP as regulator of megakaryocytic differentiation. We propose the use of K562WASPKO cells as a tool to study the molecular mechanisms involved in the megakaryocytic-related defects observed in WAS

  5. Celecoxib sensitizes imatinib-resistant K562 cells to imatinib by inhibiting MRP1-5, ABCA2 and ABCG2 transporters via Wnt and Ras signaling pathways.

    Science.gov (United States)

    Dharmapuri, Gangappa; Doneti, Ravinder; Philip, Gundala Harold; Kalle, Arunasree M

    2015-07-01

    Imatinib mesylate, a tyrosine kinase inhibitor, is very effective in the treatment of chronic myeloid leukemia (CML). However, development of resistance to imatinib therapy is also a very common mechanism observed with long-term administration of the drug. Our previous studies have highlighted the role of cyclooxygenase-2 (COX-2) in regulating the expression of multidrug resistant protein-1 (MDR1), P-gp, in imatinib-resistant K562 cells (IR-K562) via PGE2-cAMP-PKC-NF-κB pathway and inhibition of COX-2 by celecoxib, a COX-2 specific inhibitor, inhibits this pathway and reverses the drug resistance. Studies have identified that not only MDR1 but other ATP-binding cassette transport proteins (ABC transporters) are involved in the development of imatinib resistance. Here, we tried to study the role of COX-2 in the regulation of other ABC transporters such as MRP1, MRP2, MRP3, ABCA2 and ABCG2 that have been already implicated in imatinib resistance development. The results of the study clearly indicated that overexpression of COX-2 lead to upregulation of MRP family proteins in IR-K562 cells and celecoxib down-regulated the ABC transporters through Wnt and MEK signaling pathways. The study signifies that celecoxib in combination with the imatinib can be a good alternate treatment strategy for the reversal of imatinib resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Musashi2 modulates K562 leukemic cell proliferation and apoptosis involving the MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijuan; Tan, Shi; Wang, Juan; Chen, Shana; Quan, Jing; Xian, Jingrong; Zhang, Shuai shuai; He, Jingang; Zhang, Ling, E-mail: lingzhang@cqmu.edu.cn

    2014-01-01

    The RNA-binding protein Musashi2 (Msi2) has been identified as a master regulator within a variety of stem cell populations via the regulation of translational gene expression. A recent study has suggested that Msi2 is strongly expressed in leukemic cells of acute myeloid leukemia patients, and elevated Msi2 is associated with poor prognosis. However, the potential role of Msi2 in leukemogenesis is still not well understood. Here, we investigated the effect of Msi2 knockdown on the biological properties of leukemic cells. High expression of Msi2 was found in K562 and KG-1a leukemic cell lines, and low expression was observed in the U937 cell line. We transduced K562 cells with two independent adenoviral shRNA vectors targeting Msi2 and confirmed knockdown of Msi2 at the mRNA and protein levels. Msi2 silencing inhibited cell growth and caused cell cycle arrest by increasing the expression of p21 and decreasing the expression of cyclin D1 and cdk2. In addition, knockdown of Msi2 promoted cellular apoptosis via the upregulation of Bax and downregulation of Bcl-2 expression. Furthermore, Msi2 knockdown resulted in the inactivation of the ERK/MAPK and p38/MAPK pathways, but no remarkable change in p-AKT was observed. These data provide evidence that Msi2 plays an important role in leukemogenesis involving the MAPK signaling pathway, which indicates that Msi2 may be a novel target for leukemia treatment. - Highlights: • Knockdown of Msi2 inhibited K562 cell growth and arrested cell cycle progression. • Knockdown of Msi2 induced K562 cell apoptosis via the regulation of Bax and Bcl-2. • The MAPK pathway was involved in the process of Msi2-mediated leukemogenesis. • Our data indicate that Msi2 is a potential new target for leukemia treatment.

  7. Omacetaxine Mepesuccinate for Chronic Myeloid Leukemia.

    Science.gov (United States)

    Rosshandler, Yasmin; Shen, Ann Q; Cortes, Jorge; Khoury, Hanna Jean

    2016-05-01

    Omacetaxine mepesuccinate is approved by the Food and Drug Administration in the United States for the treatment of chronic myeloid leukemia in chronic or accelerated phase resistant to two or more tyrosine kinase inhibitors. This review summarizes the mode of action, pharmacokinetics, efficacy and safety of omacetaxine mepesuccinate. Omacetaxine mepesuccinate has activity in chronic myeloid leukemia, especially in the chronic phase, regardless of the presence of ABL1 kinase domain mutations. Omacetaxine mepesuccinate has distinct but manageable adverse events profile. Omacetaxine mepesuccinate is a treatment option for a subset of patients with refractory chronic myeloid leukemia.

  8. Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl+ K562 and Jak2(V617F)+ HEL Leukemia Cells

    International Nuclear Information System (INIS)

    Weber, Axel; Borghouts, Corina; Brendel, Christian; Moriggl, Richard; Delis, Natalia; Brill, Boris; Vafaizadeh, Vida; Groner, Bernd

    2015-01-01

    Signal transducers and activators of transcription (Stats) play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML) and Jak2(V617F) in other myeloproliferative diseases (MPD). We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F) positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD) of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F)-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl + K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL cells, Stat5

  9. Genetics Home Reference: chronic myeloid leukemia

    Science.gov (United States)

    ... Central Quintás-Cardama A, Cortes JE. Chronic myeloid leukemia: diagnosis and treatment. Mayo Clin Proc. 2006 Jul;81(7):973-88. Review. Citation on PubMed Skorski T. Genetic mechanisms of chronic myeloid leukemia blastic transformation. Curr Hematol Malig Rep. 2012 Jun; ...

  10. Neurological Complications Of Chronic Myeloid Leukaemia: Any ...

    African Journals Online (AJOL)

    , of the neurological deficits complicating chronic myeloid leukaemia. Method: Using patients\\' case folders and haematological malignancy register all cases of chronic myeloid leukaemia seen in Jos University Teaching Hospital between July ...

  11. Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl{sup +} K562 and Jak2(V617F){sup +} HEL Leukemia Cells

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Axel [Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main 60596 (Germany); Borghouts, Corina [Ganymed Pharmaceuticals AG, Mainz 55131 (Germany); Brendel, Christian [Boston Children’s Hospital, Division of Hematology/Oncology, Boston, MA 02115 (United States); Moriggl, Richard [Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna 1090 (Austria); Delis, Natalia; Brill, Boris; Vafaizadeh, Vida; Groner, Bernd, E-mail: Groner@em.uni-frankfurt.de [Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main 60596 (Germany)

    2015-03-19

    Signal transducers and activators of transcription (Stats) play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML) and Jak2(V617F) in other myeloproliferative diseases (MPD). We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F) positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD) of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F)-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl{sup +} K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL cells

  12. 5-(2-Carboxyethenyl) isatin derivative induces G2/M cell cycle arrest and apoptosis in human leukemia K562 cells

    International Nuclear Information System (INIS)

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin; Yang, Yao; Song, Bin-Bin; Guo, Qian-Nan; Fan, Zhen-Chuan; Zhang, Yong-Min; Teng, Yu-Ou; Yu, Peng

    2014-01-01

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G 2 /M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC 50 ) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562 cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G 2 /M phase and accumulated subsequently in the sub-G 1 phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G 2 /M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation

  13. Inhibitiory properties of cytoplasmic extract of Lactobacilli isolated from common carp intestine on human chronic myelocytic leukemia K562 cell line: an in vitro study

    Directory of Open Access Journals (Sweden)

    Kabiri F

    2011-03-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 st1":*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Lactobacillus species are genetically diverse groups of Lactic Acid Bacteria (LAB that have been introduced as probiotics, because of some characteristics such as their anti-tumor properties, helping the intestinal flora balance, production of antibiotics, stimulation of host immune response, etc. The aim of this study was to investigate the effects of cytoplasmic extraction and cell wall of Lactobacillus species isolated from the intestine of common carp on human chronic myelocytic leukemia or K562 cancer cell lines."n"nMethods: The intestinal contents of 115 common carp captured from the natural resources of West Azerbaijan province in Iran were examined for LAB. After isolation, the identification of Lactobacilli was done according to traditional and molecular bacteriological tests. Subsequently, a suspension of each bacterium was prepared and the protein content of the cytoplasm was extracted. Cell wall disintegration was done by cell lysis buffer and sonication. The effects of cytoplasmic extraction and cell wall on K562 cell line proliferation were investigated by MTT assays."n"nResults: The cytoplasmic extraction of the isolated Lactobacilli had significant (p<0.05 anti

  14. In vitro testing of drug combinations employing nilotinib and alkylating agents with regard to pretransplant conditioning treatment of advanced-phase chronic myeloid leukemia.

    Science.gov (United States)

    Radujkovic, Aleksandar; Luft, Thomas; Dreger, Peter; Ho, Anthony D; Jens Zeller, W; Fruehauf, Stefan; Topaly, Julian

    2014-08-01

    The prognosis of patients with advanced-phase chronic myeloid leukemia (CML) remains dismal despite the availability of targeted therapies and allogeneic stem cell transplantation (allo-SCT). Increasing the antileukemic efficacy of the pretransplant conditioning regimen may be a strategy to increase remission rates and duration. We therefore investigated the antiproliferative effects of nilotinib in combination with drugs that are usually used for conditioning: the alkylating agents mafosfamide, treosulfan, and busulfan. Drug combinations were tested in vitro in different imatinib-sensitive and imatinib-resistant BCR-ABL-positive cell lines. A tetrazolium-based MTT assay was used for the assessment and quantification of growth inhibition after exposure to alkylating agents alone or to combinations with nilotinib. Drug interaction was analyzed using the median-effect method of Chou and Talalay, and combination index (CI) values were calculated according to the classic isobologram equation. Treatment of imatinib-sensitive, BCR-ABL-positive K562 and LAMA84 cells with nilotinib in combination with mafosfamide, treosulfan, or busulfan resulted in synergistic (CI 1) effects, respectively. In imatinib-resistant K562-R and LAMA84-R cells, all applied drug combinations were synergistic (CI conditioning regimens for allo-SCT in advanced-phase CML.

  15. 5-(2-Carboxyethenyl) isatin derivative induces G{sub 2}/M cell cycle arrest and apoptosis in human leukemia K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin; Yang, Yao; Song, Bin-Bin; Guo, Qian-Nan [Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Fan, Zhen-Chuan [Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457 (China); Obesita and Algaegen LLC, College Station, TX 77845 (United States); Zhang, Yong-Min [Université Pierre et Marie Curie-Paris 6, Institut Parisien de Chimie Moléculaire UMR CNRS 8232, 4 Place Jussieu, 75005 Paris (France); Teng, Yu-Ou, E-mail: tyo201485@tust.edu.cn [Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Yu, Peng, E-mail: yupeng@tust.edu.cn [Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2014-08-08

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G{sub 2}/M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC{sub 50}) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562 cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G{sub 2}/M phase and accumulated subsequently in the sub-G{sub 1} phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G{sub 2}/M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation.

  16. Do We Know What Causes Chronic Myeloid Leukemia?

    Science.gov (United States)

    ... Be Prevented? More In Chronic Myeloid Leukemia About Chronic Myeloid Leukemia Causes, Risk Factors, and Prevention Early Detection, Diagnosis, and Staging Treatment After Treatment Back To Top Imagine a world ...

  17. Knockdown of HOXA10 reverses the multidrug resistance of human chronic mylogenous leukemia K562/ADM cells by downregulating P-gp and MRP-1.

    Science.gov (United States)

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Li, You-Jie; Wang, Hong; Xie, Shu-Yang

    2016-05-01

    Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.

  18. Wnt/β-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Castelo-Branco, Morgana TL; Pizzatti, Luciana; Abdelhay, Eliana

    2012-01-01

    The advanced phases of chronic myeloid leukemia (CML) are known to be more resistant to therapy. This resistance has been associated with the overexpression of ABCB1, which gives rise to the multidrug resistance (MDR) phenomenon. MDR is characterized by resistance to nonrelated drugs, and P-glycoprotein (encoded by ABCB1) has been implicated as the major cause of its emergence. Wnt signaling has been demonstrated to be important in several aspects of CML. Recently, Wnt signaling was linked to ABCB1 regulation through its canonical pathway, which is mediated by β-catenin, in other types of cancer. In this study, we investigated the involvement of the Wnt/β-catenin pathway in the regulation of ABCB1 transcription in CML, as the basal promoter of ABCB1 has several β-catenin binding sites. β-catenin is the mediator of canonical Wnt signaling, which is important for CML progression. In this work we used the K562 cell line and its derived MDR-resistant cell line Lucena (K562/VCR) as CML study models. Real time PCR (RT-qPCR), electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), flow cytometry (FACS), western blot, immunofluorescence, RNA knockdown (siRNA) and Luciferase reporter approaches were used. β-catenin was present in the protein complex on the basal promoter of ABCB1 in both cell lines in vitro, but its binding was more pronounced in the resistant cell line in vivo. Lucena cells also exhibited higher β-catenin levels compared to its parental cell line. Wnt1 and β-catenin depletion and overexpression of nuclear β-catenin, together with TCF binding sites activation demonstrated that ABCB1 is positively regulated by the canonical pathway of Wnt signaling. These results suggest, for the first time, that the Wnt/β-catenin pathway regulates ABCB1 in CML

  19. Circumvention of acquired resistance to doxorubicin in K562 human leukemia cells by oxatomide.

    Science.gov (United States)

    Ishikawa, M; Fujita, R; Furusawa, S; Takayanagi, M; Sasaki, K; Satoh, S

    2001-10-01

    We studied the effect of oxatomide, an antiallergic drug, on the resistance of K562 cells to doxorubicin. Oxatomide synergistically potentiated the cytotoxicity of doxorubicin in doxorubicin-resistant K562 cells (K562/DXR) at a concentration of 1-10 microM, but had hardly any synergistic effect on the parental cell line (K562) at the same concentration. Oxatomide inhibit P-glycoprotein pump-efflux activity and the binding of [3H]-azidopine to the cell-surface protein P-glycoprotein, in a dose-related manner. These results indicate that oxatomide reverses the multidrug-resistance phenotype through direct interaction with P-glycoprotein.

  20. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells.

    Science.gov (United States)

    Suriguga; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. © 2013.

  1. Effects of P-Glycoprotein and Its Inhibitors on Apoptosis in K562 Cells

    Directory of Open Access Journals (Sweden)

    Yaqiong Zu

    2014-08-01

    Full Text Available P-glycoprotein (P-gp is a major factor in multidrug resistance (MDR which is a serious obstacle in chemotherapy. P-gp has also been implicated in causing apoptosis of tumor cells, which was shown to be another important mechanism of MDR recently. To study the influence of P-gp in tumor cell apoptosis, K562/A cells (P-gp+ and K562/S cells (P-gp− were subjected to doxorubicin (Dox, serum withdrawal, or independent co-incubation with multiple P-gp inhibitors, including valspodar (PSC833, verapamil (Ver and H108 to induce apoptosis. Apoptosis was simultaneously detected by apoptotic rate, cell cycle by flow cytometry and cysteine aspartic acid-specific protease 3 (caspase 3 activity by immunoassay. Cytotoxicity and apoptosis induced by PSC833 were evaluated through an MTT method and apoptosis rate, and cell cycle combined with caspase 3 activity, respectively. The results show that K562/A cells are more resistant to apoptosis and cell cycle arrest than K562/S cells after treatment with Dox or serum deprivation. The apoptosis of K562/A cells increased after co-incubation with each of the inhibitors of P-gp. P-gp inhibitors also enhanced cell cycle arrest in K562/A cell. PSC833 most strikingly decreased viability and led to apoptosis and S phase arrest of cell cycle in K562/A cells. Our study demonstrates that P-gp inhibits the apoptosis of tumor cells in addition to participating in the efflux of intracellular chemotherapy drugs. The results of the caspase 3 activity assay also suggest that the role of P-gp in apoptosis avoidance is caspase-related.

  2. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Suriguga,; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun, E-mail: yizc@buaa.edu.cn

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation.

  3. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    International Nuclear Information System (INIS)

    Suriguga,; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-01-01

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation

  4. Anti-Proliferative and Apoptotic Effects of Beta-Ionone in Human Leukemia Cell Line K562

    Directory of Open Access Journals (Sweden)

    Zohreh Faezizadeh

    2016-06-01

    Full Text Available Background Beta-ionone is an aroma compound found in the Rosaceae family. Some evidence supported that beta-ionone has a great potential for cancer prevention. To date, the anti-proliferative and apoptotic effects of beta-ionone in human leukemia cell line K562 were not studied. Objectives Hence, we investigated whether beta-ionone could inhibit cell growth and induce apoptosis in the K562 cells. Materials and Methods In this experimental study, human leukemia cell line K562 was cultured and anti-proliferation effect of beta-ionone with different doses (25 - 400 µm at different times (24 - 96 hours on treated cells was evaluated by the MTT assay. To determine apoptosis rate, the Hoechst 33342 staining and flow cytometry was performed. Results The MTT assay showed that beta-ionone inhibited proliferation of K562 cells in a dose-dependent manner significantly (P = 0.0008. Moreover, the increased apoptotic rate was found after incubation of K562 cells with 200 µm beta-ionone. The Hoechst staining and flow cytometry analysis indicated that beta-ionone could increase apoptosis of K562 cells in a dose-dependent manner. Conclusions The results demonstrated that beta-ionone has anti-proliferative and apoptotic effects on K562 cells, and in the future may be used in the treatment of some leukemia sub-types.

  5. Bcr-Abl-independent mechanism of resistance to imatinib in K562 cells: Induction of cyclooxygenase-2 (COX-2) by histone deacetylases (HDACs).

    Science.gov (United States)

    Kalle, Arunasree M; Sachchidanand, Sachchidanand; Pallu, Reddanna

    2010-09-01

    Our previous studies have shown that overexpression of MDR1 and cyclooygenase-2 (COX-2) resulted in resistance development to imatinib in chronic myelogenous leukemia (CML) K562 (IR-K562) cells. In the present study, the regulatory mechanism of MDR1 induction by COX-2 was investigated. A gradual overexpression of MDR1 and COX-2 during the process of development was observed. Furthermore, down regulation of MDR1 upon COX-2 knockdown by siRNA showed a decrease in the PKC levels and activation of PKC by addition of PGE(2) to K562 cells, suggesting a role for PKC in the COX-2 mediated induction of MDR1. The present study demonstrates COX-2 induction by HDACs and MDR1 induction by COX-2 via PGE(2)-cAMP-PKC-mediated pathway. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Chronic myeloid leukemia: reminiscences and dreams

    Science.gov (United States)

    Mughal, Tariq I.; Radich, Jerald P.; Deininger, Michael W.; Apperley, Jane F.; Hughes, Timothy P.; Harrison, Christine J.; Gambacorti-Passerini, Carlo; Saglio, Giuseppe; Cortes, Jorge; Daley, George Q.

    2016-01-01

    With the deaths of Janet Rowley and John Goldman in December 2013, the world lost two pioneers in the field of chronic myeloid leukemia. In 1973, Janet Rowley, unraveled the cytogenetic anatomy of the Philadelphia chromosome, which subsequently led to the identification of the BCR-ABL1 fusion gene and its principal pathogenetic role in the development of chronic myeloid leukemia. This work was also of major importance to support the idea that cytogenetic changes were drivers of leukemogenesis. John Goldman originally made seminal contributions to the use of autologous and allogeneic stem cell transplantation from the late 1970s onwards. Then, in collaboration with Brian Druker, he led efforts to develop ABL1 tyrosine kinase inhibitors for the treatment of patients with chronic myeloid leukemia in the late 1990s. He also led the global efforts to develop and harmonize methodology for molecular monitoring, and was an indefatigable organizer of international conferences. These conferences brought together clinicians and scientists, and accelerated the adoption of new therapies. The abundance of praise, tributes and testimonies expressed by many serve to illustrate the indelible impressions these two passionate and affable scholars made on so many people’s lives. This tribute provides an outline of the remarkable story of chronic myeloid leukemia, and in writing it, it is clear that the historical triumph of biomedical science over this leukemia cannot be considered without appreciating the work of both Janet Rowley and John Goldman. PMID:27132280

  7. Inhibitory effect of PTD-OD-HA fusion protein on Bcr-Abl in K562 cells

    Directory of Open Access Journals (Sweden)

    Miao GAO

    2012-10-01

    Full Text Available Objective To study the transduction dynamics, location of PTD-OD-HA fusion protein and its interaction with Bcr-Abl oncoprotein in K562 cell lines, and explore the influence of PTD-OD-HA fusion protein on oligomerization and tyrosine kinase activity of Bcr-Abl. Methods PTD-OD-HA fusion protein was labeled with FITC and co-cultured with K562 cells. The transduction efficiency of labeled PTD-OD-HA at different doses and time intervals was observed under fluorescence microscope. The location of labeled PTD-OD-HA fusion protein in K562 cells was detected by confocal microscopy. The interaction of PTD-OD-HA fusion protein with Bcr-Abl oncoprotein was confirmed by coimmunoprecipitation. The phosphorylation of Bcr-Abl oncoprotein was detected by Western blotting. Results PTD-OD-HA fusion protein labeled with FITC was transduced into K562 cells in a dose- and time-dependent manner. PTD-OD-HA fusion protein was located in the cytoplasm of K562 cells and was consistent with the location of Bcr-Abl oncoprotein. The interaction of PTD-OD-HA fusion protein with Bcr-Abl oncoprotein was proved in K562 cells. This interaction could interrupt the homologous oligomerization of Bcr-Abl oncoprotein and reduce the phosphorylation of Bcr-Abl oncoprotein. Conclusion PTD-OD-HA fusion protein could be transduced into K562 cells efficiently, inhibit the oligomerization and reduce the phosphorylation of Bcr-Abl oncoprotein.

  8. Antileukemic Effect of Tualang Honey on Acute and Chronic Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Nik Muhd Khuzaimi Nik Man

    2015-01-01

    Full Text Available Complementary medicine using natural product as antitumor is on the rise. Much research has been performed on Tualang Honey and it was shown to have therapeutic potential in wound healing, and antimicrobial activity and be antiproliferative against several cancer models such as human osteosarcoma (HOS, human breast (MCF-7 and MDA-MB-231, and cervical (HeLa cancer cell lines. To date, there was limited study on antileukemic properties of Tualang (Koompassia excelsa Honey. The aim of this study was to evaluate the antileukemic effect of Tualang Honey on acute and chronic leukemia cell lines. Leukemia cell lines (K562 and MV4-11 and human mononuclear cell isolated from peripheral blood were grown in RPM1 1640 culture medium. The cells were incubated with increasing concentrations of Tualang Honey. After incubation, the evaluation of viability and apoptosis was performed. The morphological changes of leukemia cells were the presence of cytoplasmic blebs followed by apoptotic bodies and round shape of cells. IC50 against K562 and MV4-11 was determined. Tualang Honey gave 53.9% and 50.6% apoptosis activity on K562 and MV4-11, respectively, while on human mononuclear cell it was 37.4%. Tualang Honey has the apoptosis-inducing ability for acute and chronic myeloid leukemia (K562 and MV4-11 cell lines.

  9. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells

    International Nuclear Information System (INIS)

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming; Wang, Yan; Wang, Jie; Li, Yang; Suriguga,; Zhang, Guang-Yao; Yi, Zong-Chun

    2012-01-01

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ► Catechol enhanced hemin-induced hemoglobin accumulation. ► Exposure to catechol resulted in up-regulated expression of erythroid genes. ► Catechol reduced methylation levels at some CpG sites in erythroid genes.

  10. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming; Wang, Yan; Wang, Jie; Li, Yang; Suriguga,; Zhang, Guang-Yao; Yi, Zong-Chun, E-mail: yizc@buaa.edu.cn

    2012-11-15

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ► Catechol enhanced hemin-induced hemoglobin accumulation. ► Exposure to catechol resulted in up-regulated expression of erythroid genes. ► Catechol reduced methylation levels at some CpG sites in erythroid genes.

  11. H-ferritin-regulated microRNAs modulate gene expression in K562 cells.

    Directory of Open Access Journals (Sweden)

    Flavia Biamonte

    Full Text Available In a previous study, we showed that the silencing of the heavy subunit (FHC offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC comparing it with K562 transduced with scrambled RNA (K562shRNA. Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, "Cell Death and Survival, Hematological System Development and Function, Hematopoiesis", is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs.

  12. Vorinostat enhances chemosensitivity to arsenic trioxide in K562 cell line

    Directory of Open Access Journals (Sweden)

    Nainong Li

    2015-05-01

    Full Text Available Objective. This study aimed to investigate the chemosensitive augmentation effect and mechanism of HDAC inhibitor Vorinostat (SAHA in combination with arsenic trioxide (ATO on proliferation and apoptosis of K562 cells.Methods. The CCK-8 assay was used to compare proliferation of the cells. Annexin-V and PI staining by flow cytometry and acridine orange/ethidium bromide stains were used to detect and quantify apoptosis. Western blot was used to detect expression of p21, Akt, pAkt, p210, Acetyl-Histone H3, and Acetyl-Histone H4 proteins.Results. SAHA and ATO inhibited proliferation of K562 cells in an additive and time- and dose-dependent manner. SAHA in combination with ATO showed significant apoptosis of K562 cells in comparison to the single drugs alone (p < 0.01. Both SAHA and ATO alone and in combination showed lower levels of p210 expression. SAHA and SAHA and ATO combined treatment showed increased levels of Acetyl-Histone H3 and Acetyl-Histone H4 protein expression. SAHA alone showed increased expression of p21, while ATO alone and in combination with SAHA showed no significant change. SAHA and ATO combined therapy showed lower levels of Akt and pAkt protein expression than SAHA or ATO alone.Conclusion. SAHA and ATO combined treatment inhibited proliferation, induced apoptosis, and showed a chemosensitive augmentation effect on K562 cells. The mechanism might be associated with increasing histone acetylation levels as well as regulating the Akt signaling pathway.

  13. Chaetominine reduces MRP1-mediated drug resistance via inhibiting PI3K/Akt/Nrf2 signaling pathway in K562/Adr human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingyun; Wei, Xing [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai (China); Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai (China); Lu, Yanhua, E-mail: luyanhua@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai (China); Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai (China)

    2016-05-13

    Drug resistance limits leukemia treatment and chaetominine, a cytotoxic alkaloid that promotes apoptosis in a K562 human leukemia cell line via the mitochondrial pathway was studied with respect to chemoresistance in a K562/Adr human resistant leukemia cell line. Cytotoxicity assays indicated that K562/Adr resistance to adriamycin (ADR) did not occur in the presence of chaetominine and that chaetominine increased chemosensitivity of K562/Adr to ADR. Data show that chaetominine enhanced ADR-induced apoptosis and intracellular ADR accumulation in K562/Adr cells. Accordingly, chaetominine induced apoptosis by upregulating ROS, pro-apoptotic Bax and downregulating anti-apoptotic Bcl-2. RT-PCR and western-blot confirmed that chaetominine suppressed highly expressed MRP1 at mRNA and protein levels. But little obvious alternation of another drug transporter MDR1 mRNA was observed. Furthermore, inhibition of MRP1 by chaetominine relied on inhibiting Akt phosphorylation and nuclear Nrf2. In summary, chaetominine strongly reverses drug resistance by interfering with the PI3K/Akt/Nrf2 signaling, resulting in reduction of MRP1-mediated drug efflux and induction of Bax/Bcl-2-dependent apoptosis in an ADR-resistant K562/Adr leukemia cell line. - Highlights: • Chaetominine enhanced chemosensitivity of ADR against K562/Adr cells. • Chaetominine increased intracellular ADR levels via inhibiting MRP1. • Chaetominine induced apoptosis of K562/Adr cells through upregulation of ROS and modulation of Bax/Bcl-2. • Inhibition of MRP1 and Nrf2 by chaetominine treatment was correlative with blockade of PI3K/Akt signaling.

  14. Expression of human gamma-globin genes in human erythroleukemia (K562) cells.

    Science.gov (United States)

    Donovan-Peluso, M; Acuto, S; Swanson, M; Dobkin, C; Bank, A

    1987-12-15

    K562 cells express embryonic (epsilon) and fetal (gamma) globins and hemoglobins but not adult (beta) globin. To define the cis acting regulatory elements involved in the discrimination between gamma and beta genes, we have constructed chimeric genes composed of portions of gamma and beta and evaluated their expression in stable K562 transfectants. A gamma beta fusion gene containing gamma 5' sequences to the EcoRI site in exon 3 and beta sequences 3' is expressed at 10-40% that of the endogenous gamma level. In 50% of the lines, this fusion gene appropriately increases its expression in response to hemin, an inducer of endogenous globin gene expression in K562 cells. In contrast, a beta gamma fusion gene, containing beta sequences 5' to the EcoRI site in exon 3 and gamma sequences 3', is neither expressed nor correctly initiated. A beta gene containing gamma-intervening sequence (IVS) 2 accumulates an mRNA transcript when analyzed with a 3' beta probe. However, no correctly initiated beta mRNA is observed. A gamma gene with beta-IVS 2 is only inducible in one of six expressing clones. All the results are consistent with the presence of stage-specific trans acting factors in K562 cells that stimulate expression of gamma genes and suggest a significant role for gamma-IVS 2 in gamma gene expression.

  15. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia

    DEFF Research Database (Denmark)

    Saglio, Giuseppe; Kim, Dong-Wook; Issaragrisil, Surapol

    2010-01-01

    Nilotinib has been shown to be a more potent inhibitor of BCR-ABL than imatinib. We evaluated the efficacy and safety of nilotinib, as compared with imatinib, in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia (CML) in the chronic phase.......Nilotinib has been shown to be a more potent inhibitor of BCR-ABL than imatinib. We evaluated the efficacy and safety of nilotinib, as compared with imatinib, in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia (CML) in the chronic phase....

  16. Identifying and validating a combined mRNA and microRNA signature in response to imatinib treatment in a chronic myeloid leukemia cell line.

    Directory of Open Access Journals (Sweden)

    Steven Bhutra

    Full Text Available Imatinib, a targeted tyrosine kinase inhibitor, is the gold standard for managing chronic myeloid leukemia (CML. Despite its wide application, imatinib resistance occurs in 20-30% of individuals with CML. Multiple potential biomarkers have been identified to predict imatinib response; however, the majority of them remain externally uncorroborated. In this study, we set out to systematically identify gene/microRNA (miRNA whose expression changes are related to imatinib response. Through a Gene Expression Omnibus search, we identified two genome-wide expression datasets that contain expression changes in response to imatinib treatment in a CML cell line (K562: one for mRNA and the other for miRNA. Significantly differentially expressed transcripts/miRNAs post imatinib treatment were identified from both datasets. Three additional filtering criteria were applied 1 miRbase/miRanda predictive algorithm; 2 opposite direction of imatinib effect for genes and miRNAs; and 3 literature support. These criteria narrowed our candidate gene-miRNA to a single pair: IL8 and miR-493-5p. Using PCR we confirmed the significant up-regulation and down-regulation of miR-493-5p and IL8 by imatinib treatment, respectively in K562 cells. In addition, IL8 expression was significantly down-regulated in K562 cells 24 hours after miR-493-5p mimic transfection (p = 0.002. Furthermore, we demonstrated significant cellular growth inhibition after IL8 inhibition through either gene silencing or by over-expression of miR-493-5p (p = 0.0005 and p = 0.001 respectively. The IL8 inhibition also further sensitized K562 cells to imatinib cytotoxicity (p < 0.0001. Our study combined expression changes in transcriptome and miRNA after imatinib exposure to identify a potential gene-miRNA pair that is a critical target in imatinib response. Experimental validation supports the relationships between IL8 and miR-493-5p and between this gene-miRNA pair and imatinib sensitivity in a CML cell

  17. Expression profile of CREB knockdown in myeloid leukemia cells

    International Nuclear Information System (INIS)

    Pellegrini, Matteo; Cheng, Jerry C; Voutila, Jon; Judelson, Dejah; Taylor, Julie; Nelson, Stanley F; Sakamoto, Kathleen M

    2008-01-01

    The cAMP Response Element Binding Protein, CREB, is a transcription factor that regulates cell proliferation, differentiation, and survival in several model systems, including neuronal and hematopoietic cells. We demonstrated that CREB is overexpressed in acute myeloid and leukemia cells compared to normal hematopoietic stem cells. CREB knockdown inhibits leukemic cell proliferation in vitro and in vivo, but does not affect long-term hematopoietic reconstitution. To understand downstream pathways regulating CREB, we performed expression profiling with RNA from the K562 myeloid leukemia cell line transduced with CREB shRNA. By combining our expression data from CREB knockdown cells with prior ChIP data on CREB binding we were able to identify a list of putative CREB regulated genes. We performed extensive analyses on the top genes in this list as high confidence CREB targets. We found that this list is enriched for genes involved in cancer, and unexpectedly, highly enriched for histone genes. Furthermore, histone genes regulated by CREB were more likely to be specifically expressed in hematopoietic lineages. Decreased expression of specific histone genes was validated in K562, TF-1, and primary AML cells transduced with CREB shRNA. We have identified a high confidence list of CREB targets in K562 cells. These genes allow us to begin to understand the mechanisms by which CREB contributes to acute leukemia. We speculate that regulation of histone genes may play an important role by possibly altering the regulation of DNA replication during the cell cycle

  18. Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol

    International Nuclear Information System (INIS)

    Arora, Annu; Seth, Kavita; Kalra, Neetu; Shukla, Yogeshwer

    2005-01-01

    Resistance to chemotherapeutic drugs is one of the major problems in the treatment of cancer. P-glycoprotein (P-gp) encoded by the mdr gene is a highly conserved protein, acts as a multidrug transporter, and has a major role in multiple drug resistance (MDR). Targeting of P-gp by naturally occurring compounds is an effective strategy to overcome MDR. Indole-3-carbinol (I3C), a glucosinolates present in cruciferous vegetables, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic, and antiestrogenic properties in experimental studies. In the present investigation, the potential of I3C to modulate P-gp expression was evaluated in vinblastine (VBL)-resistant K562 human leukemic cells. The resistant K562 cells (K562/R10) were found to be cross-resistant to vincristine (VCR), doxorubicin (DXR), and other antineoplastic agents. I3C at a nontoxic dose (10 x 10 -3 M) enhanced the cytotoxic effects of VBL time dependently in VBL-resistant human leukemia (K562/R10) cells but had no effect on parent-sensitive cells (K562/S). The Western blot analysis of K 562/R 10 cells showed that I3C downregulates the induced levels of P-gp in resistant cells near to normal levels. The quantitation of immunocytochemically stained K562/R10 cells showed 24%, 48%, and 80% decrease in the levels of P-gp by I3C for 24, 48, and 72 h of incubation. The above features thus indicate that I3C could be used as a novel modulator of P-gp-mediated multidrug resistance in vitro and may be effective as a dietary adjuvant in the treatment of MDR cancers

  19. The effect of β-ionone on telomerase activity in the human leukemia cell line K562

    Directory of Open Access Journals (Sweden)

    Zohreh Faezizadeh

    2015-06-01

    Full Text Available Background: Telomerase is highly activated in most human cancer cells, therefore, its inhibition has been proposed as a novel and promising strategy for cancer therapy. Many plant-derived anticancer agents act through inhibition of telomerase activity and induction of apoptosis. β-ionone, a carotenoid compound isolated from Roseaceae, has been reported to possess anticancer properties. The present study was undertaken to examine the mechanism of β-ionone-induced apoptosis in human leukemia cell line K562 with special emphasis on its role in telomerase inhibition. Method: In this study the anti-proliferation effect of β-ionone on K562 cells was evaluated by MTT assay. Apoptosis rate was detected by Hoechst staining and flow cytometry analysis. Telomerase activity was measured by (TRAP ELISA assay. Results: Exposure of K562 cells to β-ionone caused a dose-dependent decrease in proliferation. Flow cytometry analysis and Hoechst staining showed that percentage of apoptotic cells markedly increased with an increase in β-ionone concentration. Compared to control cells, treatment of K562 cells with β-ionone resulted in a significant decrease of telomerase activity. Moreover, a positive correlation was detected between telomerase inhibition and apoptosis induction in the treated K562 cells. Conclusion: Based on these results, β-ionone is an appropriate candidate for inhibiting telomerase activity in K562 cells. Therefore, it may be utilized as a novel drug against some leukemia cell lines.

  20. Radiation-induced apoptosis in differentially modulated by PTK inhibitora in K562 cells

    International Nuclear Information System (INIS)

    Lee, Hyung Sik; Moon, Chang Woo; Hur, Won Joo; Jeong, Su Jin; Jeong Min Ho; Lee, Jeong Hyeon; Lim, Young Jin; Park, Heon Joo

    2000-01-01

    The effect of PTK inhibitors (herbimycin A and genistein) on the induction of radiation-induced apoptosis in Ph-positive K562 leukemia cell line was investigated. K562 cells in exponential growth phase were irradiated with a linear accelerator at room temperature. For 6 MV X-ray irradiation and drug treatment, cultures were initiated at 2x10 6 cells/ml. The cells were irradiated with 10Gy. Stock solutions of herbimycin A and genistein were prepared in dimethyl sulphoxide (DMSO). After incubation at 37 .deg. for 0-48 h, the extent of apoptosis was determined using agarose gel electrophoresis and TUNEL assay. The progression of cells through the cell cycle after irradiation and drug treatment was also determined with flow cytometry. Western blot analysis was used to monitor bcl-2, bcl-X-L and bax protein levels. Treatment with 10 Gy X-irradiation did not result in the induction of apoptosis. The HMA alone (500 nM) also failed to induce apoptosis. By contrast, incubation of K562 cells with HMA after irradiation resulted in a substantial induction of nuclear condensation and fragmentation by agarose gel electrophoresis and TUNEL assay. Genistein failed to enhance the ability of X-irradiation to induce DNA fragmentation. Enhancement of apoptosis by HMA was not attributable to downregulation of the bcl-2 or bcl-X-L anti-apoptotic proteins. When the cells were irradiated and maintained with HMA, the percentage of cells in G2/M phase decreased to 30-40% at 48 h. On the other hand, cells exposed to 10 Gy X-irradiation alone or maintained with genistein did not show marked cell cycle redistribution. We have shown that nanomolar concentrations of the PTK inhibitor HMA synergize with X-irradiation in inducing the apoptosis in Ph (+) K562 leukemia cell line. While, genistein, a PTK inhibitor which is not selective for p210 bcr/abl failed to enhance the radiation induced apoptosis in K562 cells. It is unlikely that the ability of HMA to enhance apoptosis in K562 cells is

  1. The Danish National Chronic Myeloid Neoplasia Registry

    Directory of Open Access Journals (Sweden)

    Bak M

    2016-10-01

    Full Text Available Marie Bak,1 Else Helene Ibfelt,2 Thomas Stauffer Larsen,3 Dorthe Rønnov-Jessen,4 Niels Pallisgaard,5 Ann Madelung,6 Lene Udby,1 Hans Carl Hasselbalch,1 Ole Weis Bjerrum,7 Christen Lykkegaard Andersen1,7 1Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, 2Research Centre for Prevention and Health, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, 3Department of Hematology, Odense University Hospital, Odense, 4Department of Hematology, Vejle Hospital, Vejle, 5Department of Surgical Pathology, Zealand University Hospital, University of Copenhagen, Roskilde, 6Department of Surgical Pathology, Zealand University Hospital, University of Copenhagen, Næstved, 7Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark Aim: The Danish National Chronic Myeloid Neoplasia Registry (DCMR is a population-based clinical quality database, introduced to evaluate diagnosis and treatment of patients with chronic myeloid malignancies. The aim is to monitor the clinical quality at the national, regional, and hospital departmental levels and serve as a platform for research. Study population: The DCMR has nationwide coverage and contains information on patients diagnosed at hematology departments from January 2010 onward, including patients with essential thrombocythemia, polycythemia vera, myelofibrosis, unclassifiable myeloproliferative neoplasms, chronic myelomonocytic leukemia, and chronic myeloid leukemia. Main variables: Data are collected using standardized registration forms (so far up to four forms per patient, which are consecutively filled out online at time of diagnosis, after 2-year and 5-year follow-ups, and at end of follow-up. The forms include variables that describe clinical/paraclinical assessments, treatment, disease progression, and survival – disease-specific variables – as well as variables that are identical for all chronic myeloid malignancies. Descriptive

  2. Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bao-Qin; Gao, Yan-Yan; Niu, Xiao-Fang [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China); Xie, Ji-Sheng [Youjiang Medical College for Nationalities, Guangxi 533000 (China); Meng, Xin; Guan, Yifu [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China); Wang, Hua-Qin, E-mail: wanghq_doctor@hotmail.com [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China)

    2010-01-01

    Resveratrol (RES), a natural plant polyphenol, is an effective inducer of cell cycle arrest and apoptosis in a variety of carcinoma cell types. In addition, RES has been reported to inhibit tumorigenesis in several animal models suggesting that it functions as a chemopreventive and anti-tumor agent in vivo. The chemopreventive and chemotherapeutic properties associated with resveratrol offer promise for the design of new chemotherapeutic agents. However, the mechanisms by which RES mediates its effects are not yet fully understood. In this study, we showed that RES caused cell cycle arrest and proliferation inhibition via induction of unfolded protein response (UPR) in human leukemia K562 cell line. Treatment of K562 cells with RES induced a number of signature UPR markers, including transcriptional induction of GRP78 and CHOP, phosphorylation of eukaryotic initiation factor 2{alpha} (eIF2{alpha}), ER stress-specific XBP-1 splicing, suggesting the induction of UPR by RES. RES inhibited proliferation of K562 in a concentration-dependent manner. Flow cytometric analyses revealed that K562 cells were arrested in G1 phase upon RES treatment. Salubrinal, an eIF2{alpha} inhibitor, or overexpression of dominant negative mutants of PERK or eIF2{alpha}, effectively restored RES-induced cell cycle arrest, underscoring the important role of PERK/eIF2{alpha} branch of UPR in RES-induced inhibition of cell proliferation.

  3. Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation

    International Nuclear Information System (INIS)

    Liu, Bao-Qin; Gao, Yan-Yan; Niu, Xiao-Fang; Xie, Ji-Sheng; Meng, Xin; Guan, Yifu; Wang, Hua-Qin

    2010-01-01

    Resveratrol (RES), a natural plant polyphenol, is an effective inducer of cell cycle arrest and apoptosis in a variety of carcinoma cell types. In addition, RES has been reported to inhibit tumorigenesis in several animal models suggesting that it functions as a chemopreventive and anti-tumor agent in vivo. The chemopreventive and chemotherapeutic properties associated with resveratrol offer promise for the design of new chemotherapeutic agents. However, the mechanisms by which RES mediates its effects are not yet fully understood. In this study, we showed that RES caused cell cycle arrest and proliferation inhibition via induction of unfolded protein response (UPR) in human leukemia K562 cell line. Treatment of K562 cells with RES induced a number of signature UPR markers, including transcriptional induction of GRP78 and CHOP, phosphorylation of eukaryotic initiation factor 2α (eIF2α), ER stress-specific XBP-1 splicing, suggesting the induction of UPR by RES. RES inhibited proliferation of K562 in a concentration-dependent manner. Flow cytometric analyses revealed that K562 cells were arrested in G1 phase upon RES treatment. Salubrinal, an eIF2α inhibitor, or overexpression of dominant negative mutants of PERK or eIF2α, effectively restored RES-induced cell cycle arrest, underscoring the important role of PERK/eIF2α branch of UPR in RES-induced inhibition of cell proliferation.

  4. Delayed K562 cell apoptosis promoted by cleaved LyGDI after 60Co γ-rays irradiation

    International Nuclear Information System (INIS)

    Sun Huali; Duan Weiming; Shao Yanyan; Xiao Hainan; Zhou Xinwen

    2010-01-01

    Objective: To elucidate the function and regulatory mechanism of LyGDI involved delayed cell death in the human K562 cells and HL-60 cells induced by 60 Co γ-rays. Methods: Erythrosine B cells staining was used to count the apoptosis rate. PI staining and flow cytometry were applied to check the cell cycle. The expression of LYGDI and Rac1 was resolved by Western blot by using monoclonal antibody of LyGDI and Rac1. The distribution of Rac1 protein in cells was observed with immunofluorescence by using the confocal microscope. Results: The K562 cells showed G 2 /M phase arrest and the percent age was 71.3%. The apoptosis rate was very low at early post-irradiation stage in the K562 cells. The apoptosis rate was 14% in the K562 cells at 24 h post-irradiation with 8 Gy of γ-rays, and delayed cell apoptosis was present. LyGDI was cleaved in the K562 cells irradiated by 4 Gy 60 Co γ-rays after 24 hours post-irradiation. The expression of Rac1 protein was not altered at all, but the distribution was changed in the irradiated cells while the Rac1 protein moved to cell membrane and a little in cell nucleus. The Rac1 was activated with the losing the binding affinity with the LyGDI. Conclusion: LyGDI could promote the delayed cell apoptosis, which is through the activation of the Rac1. (authors)

  5. Prevention of Resistance in Chronic Myeloid Leukemia: the role of combination therapy

    NARCIS (Netherlands)

    W. Deenik (Wendy)

    2010-01-01

    textabstractChronic myeloid leukemia (CML) is a rare disease with a worldwide incidence of approximately 1-2 cases per 100,000 individuals. Chronic myeloid leukemia occurs slightly more frequently in men than in women. The median age at diagnosis is approximately 60 years, and although the incidence

  6. BCR-ABL1 tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia.

    Science.gov (United States)

    Cuellar, Sandra; Vozniak, Michael; Rhodes, Jill; Forcello, Nicholas; Olszta, Daniel

    2017-01-01

    The management of chronic myeloid leukemia with BCR-ABL1 tyrosine kinase inhibitors has evolved chronic myeloid leukemia into a chronic, manageable disease. A patient-centered approach is important for the appropriate management of chronic myeloid leukemia and optimization of long-term treatment outcomes. The pharmacist plays a key role in treatment selection, monitoring drug-drug interactions, identification and management of adverse events, and educating patients on adherence. The combination of tyrosine kinase inhibitors with unique safety profiles and individual patients with unique medical histories can make managing treatment difficult. This review will provide up-to-date information regarding tyrosine kinase inhibitor-based treatment of patients with chronic myeloid leukemia. Management strategies for adverse events and considerations for drug-drug interactions will not only vary among patients but also across tyrosine kinase inhibitors. Drug-drug interactions can be mild to severe. In instances where co-administration of concomitant medications cannot be avoided, it is critical to understand how drug levels are impacted and how subsequent dose modifications ensure therapeutic drug levels are maintained. An important component of patient-centered management of chronic myeloid leukemia also includes educating patients on the significance of early and regular monitoring of therapeutic milestones, emphasizing the importance of adhering to treatment in achieving these targets, and appropriately modifying treatment if these clinical goals are not being met. Overall, staying apprised of current research, utilizing the close pharmacist-patient relationship, and having regular interactions with patients, will help achieve successful long-term treatment of chronic myeloid leukemia in the age of BCR-ABL1 tyrosine kinase inhibitors.

  7. Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice.

    Science.gov (United States)

    Verrax, Julien; Stockis, Julie; Tison, Aurélie; Taper, Henryk S; Calderon, Pedro Buc

    2006-09-14

    The effect of oxidative stress induced by the ascorbate/menadione-redox association was examined in K562 cells, a human erythromyeloid leukaemia cell line. Our results show that ascorbate enhances menadione redox cycling, leading to the formation of intracellular reactive oxygen species (as shown by dihydrorhodamine 123 oxidation). The incubation of cells in the presence of both ascorbate/menadione and aminotriazole, a catalase inhibitor, resulted in a strong decrease of cell survival, reinforcing the role of H(2)O(2) as the main oxidizing agent killing K562 cells. This cell death was not caspase-3-dependent. Indeed, neither procaspase-3 and PARP were processed and only a weak cytochrome c release was observed. Moreover, we observed only 23% of cells with depolarized mitochondria. In ascorbate/menadione-treated cells, DNA fragmentation was observed without any sign of chromatin condensation (DAPI and TUNEL tests). The cell demise by ascorbate/menadione is consistent with a necrosis-like cell death confirmed by both cytometric profile of annexin-V/propidium iodide labeled cells and by light microscopy examination. Finally, we showed that a single i.p. administration of the association of ascorbate and menadione is able to inhibit the growth of K562 cells by about 60% (in both tumour size and volume) in an immune-deficient mice model. Taken together, these results reinforced our previous claims about a potential application of the ascorbate/menadione association in cancer therapy.

  8. Post-transplant outcome in chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Raza, S.; Ullah, K.; Ahmed, P.; Kamal, M.K.

    2008-01-01

    To determine post-transplant survival in chronic myeloid leukaemia patients undergoing allogeneic stem cell transplant. All patients of chronic myeloid leukaemia in chronic phase having HLA identical donor and age under 55 years, normal hepatic, renal and cardiac functions with good performance status were selected. Patients in accelerated phase or blast crisis, poor performance status, impaired hepatic, renal, cardiac functions or pregnancy were excluded. Survival was calculated from the date of transplant to death or last follow-up according to Kaplan-Meier and Cox (proportional hazard) regression analysis methods. Thirty seven patients with chronic myeloid leukaemia underwent allogeneic stem cell transplant from HLA identical sibling donors. Thirty two patients were male and five were females. Median age of patients was 28 years. All patients and donors were CMV positive. Post-transplant complications encountered were acute GvHD (Grade II-IV) (n=13, 35.1%), chronic GvHD in 18.9% (n=7), Veno Occlusive Disease (VOD) in 5.4% (n=2), acute renal failure in 2.7% (n=1), haemorrhagic cystitis in 2.7% (n=1), bacterial infections in 40.5% (n=15), fungal infections in 16.2% (n=6), CMV infection in 5.4% (n=2), tuberculosis in 5.4% (n=2), Herpes Zoster infection 2.7% (n=1) and relapse in 2.7% (n=1). Mortality was observed in 27% (n=10). Major causes of mortality were GvHD, VOD, septicemia, CMV infection and disseminated Aspergillosis. Overall Disease Free Survival (DFS) was 73% with a median duration of follow-up of 47.4 + 12 months. DFS was 81% in standard risk and 54.5% in high-risk group. Results of allogeneic stem cell transplant in standard risk group CML patients were good and comparable with other international centres, however, results in high-risk CML patients need further improvement, although, number of patients in this group is small. (author)

  9. Effect of JTV1 gene on the proliferation and apoptosis of K562 cells and its mechanism

    Directory of Open Access Journals (Sweden)

    Yan WU

    2011-05-01

    Full Text Available Objective To investigate the effect of tumor-suppressing gene JTV1 on proliferation and apoptosis of leukemic K562 cells,and the changes in apoptosis factors Bcl-2,C-myc and Bax genes.Methods The recombinate vector pcDNA3.1-JTV1,and the empty vector pcDNA3.1 were transfected into K562 cells as control.The cell proliferation of K562 cells was evaluated by colony formation assay;the cell cycle and apoptosis rate were assessed by flow cytometry(FCM;the mRNA levels of apoptosis related genes Bax,Bcl-2 and C-myc were determined by RT-PCR;the protein levels of Bax,Bcl-2 and C-myc were assayed by Western Blotting.Results The colony formation assay showed that the proliferation of K562 cells decreased when the expression of JTV1 gene was up-regulated.FCM assay showed that the G phase cells in pcDNA3.1-JTV1 positive transfection group increased compared with that of the control group and the pcDNA3.1 empty vector transfected group,and the differences were statistically significant(P < 0.05.Compared with the control group and the empty vector group,the mRNA transcription level and the protein translation level of Bax gene increased significantly,and the mRNA transcription level and the protein translation level of Bcl-2 and C-myc gene were reduced significantly(P < 0.05.Conclusions The expressions of Bcl-2 and C-myc gene are inhibited when the gene JTV1 is up-regulated,leading to an increase in Bax gene expression,inhibition of K562 cell proliferation,and promotion of tumor cells apoptosis.Over expression of JTV1 gene can inhibit the proliferation of K562 cells and promote cell apoptosis by inhibiting Bcl-2 and C-myc expression and up-regulating that of Bax.

  10. Peroxisome Proliferator-Activated Receptor Ligands and Their Role in Chronic Myeloid Leukemia: Therapeutic Strategies.

    Science.gov (United States)

    Yousefi, Bahman; Samadi, Nasser; Baradaran, Behzad; Shafiei-Irannejad, Vahid; Zarghami, Nosratollah

    2016-07-01

    Imatinib therapy remains the gold standard for treatment of chronic myeloid leukemia; however, the acquired resistance to this therapeutic agent in patients has urged the scientists to devise modalities for overcoming this chemoresistance. For this purpose, initially therapeutic agents with higher tyrosine kinase activity were introduced, which had the potential for inhibiting even mutant forms of Bcr-Abl. Furthermore, coupling imatinib with peroxisome proliferator-activated receptor ligands also showed beneficial effects in chronic myeloid leukemia cell proliferation. These combination protocols inhibited cell growth and induced apoptosis as well as differentiation in chronic myeloid leukemia cell lines. In addition, peroxisome proliferator-activated receptors ligands increased imatinib uptake by upregulating the expression of human organic cation transporter 1. Taken together, peroxisome proliferator-activated receptors ligands are currently being considered as novel promising therapeutic candidates for chronic myeloid leukemia treatment, because they can synergistically enhance the efficacy of imatinib. In this article, we reviewed the potential of peroxisome proliferator-activated receptors ligands for use in chronic myeloid leukemia treatment. The mechanism of action of these therapeutics modalities are also presented in detail. © 2016 John Wiley & Sons A/S.

  11. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Hwang, Pyoung-Han [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Yi, Ho-Keun [Department of Biochemistry, School of Dentistry, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Nam, Sang-Yun [Department of Alternative Therapy, School of Alternative Medicine and Health Science, Jeonju University, Jeonju 561-712 (Korea, Republic of); Lee, Dae-Yeol, E-mail: leedy@chonbuk.ac.kr [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of)

    2009-07-17

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  12. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    International Nuclear Information System (INIS)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh; Hwang, Pyoung-Han; Yi, Ho-Keun; Nam, Sang-Yun; Lee, Dae-Yeol

    2009-01-01

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  13. Firstline treatment for chronic phase chronic myeloid leukemia patients should be based on a holistic approach.

    Science.gov (United States)

    Breccia, Massimo; Alimena, Giuliana

    2015-02-01

    New selective and more potent drugs for the cure of chronic phase chronic myeloid leukemia patients are now available: physicians in some countries must decide the best option, selecting one of the drugs available. What the main prognostic factors are in order to make this selection remains a matter of discussion. Introducing a 'holistic approach' for the first time in chronic myeloid leukemia, as practiced in other diseases, and looking at the patient in a complete picture, considering several variables, such as comorbidities, age, concomitant drugs, lifestyle and patient expectations, may be of help to understand, patient by patient, the best therapeutic strategy.

  14. Granulocytic sarcoma in a patient with chronic myeloid leukaemia in complete haematological, cytogenetic and molecular remission.

    Science.gov (United States)

    Kittai, Adam; Yu, Eun-Mi; Tabbara, Imad

    2014-12-23

    Granulocytic sarcoma, also known as myeloid sarcoma, is an extramedullary tumour composed of immature myeloid cells. Granulocytic sarcoma is typically found in patients with acute myeloid leukaemia, accelerated phase or blast crisis of chronic myeloid leukaemia, myelodysplastic syndrome, or as an isolated event without bone marrow involvement. We present a case of granulocytic sarcoma in a patient with chronic myeloid leukaemia in the setting of complete haematological, molecular and cytogenetic remission. Our patient was first treated with imatinib for chronic-phase chronic myeloid leukaemia. After maintaining remission for 42 months, he developed a granulocytic sarcoma in his spine. In this case report, we describe our case, along with the three other cases reported in the literature. In addition to being a rare diagnosis, this case demonstrates the importance of being vigilant in diagnosing the cause of back pain and atypical symptoms in patients with a history of leukaemia. 2014 BMJ Publishing Group Ltd.

  15. Retinoic acid receptor gamma impacts cellular adhesion, Alpha5Beta1 integrin expression and proliferation in K562 cells.

    Science.gov (United States)

    Kelley, Melissa D; Phomakay, Raynin; Lee, Madison; Niedzwiedz, Victoria; Mayo, Rachel

    2017-01-01

    The interplay between cellular adhesion and proliferation is complex; however, integrins, particularly the α5β1 subset, play a pivotal role in orchestrating critical cellular signals that culminate in cellular adhesion and growth. Retinoids modify the expression of a variety of adhesive/proliferative signaling proteins including α5β1 integrins; however, the role of specific retinoic acid receptors involved in these processes has not been elucidated. In this study, the effect of all-trans-retinoic acid receptor (RAR) agonists on K562 cellular adhesion, proliferation, and α5β1 integrin cell surface expression was investigated. RARγ agonist exposure increased K562 cellular adhesion to RGD containing extracellular matrix proteins fibronectin and FN-120 in a time- and concentration dependent manner, while RARα or RARβ agonist treatment had no effect on cellular adhesion. Due to the novel RARγ- dependent cellular adhesion response exhibited by K562 cells, we examined α5 and β1 integrin subunit expression when K562 cells were exposed to retinoid agonists or vehicle for 24, 48, 72 or 96 hours. Our data demonstrates no differences in K562 cell surface expression of the α5 integrin subunit when cells were exposed to RARα, RARβ, or RARγ agonists for all time points tested. In contrast, RARγ agonist exposure resulted in an increase in cell surface β1 integrin subunit expression within 48 hours that was sustained at 72 and 96 hours. Finally, we demonstrate that while exposure to RARα or RARβ agonists have no effect on K562 cellular proliferation, the RARγ agonist significantly dampens K562 cellular proliferation levels in a time- and concentration- dependent manner. Our study is the first to report that treatment with a RARγ specific agonist augments cellular adhesion to α5β1 integrin substrates, increases cell surface levels of the β1 integrin subunit, and dampens cellular proliferation in a time and concentration dependent manner in a human

  16. The Effects of Royal Jelly on In-Vitro Cytotoxicity of K562 Cells and Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    SE Hosseini

    2014-02-01

    Full Text Available Abstract Background & aim: Royal jelly, secreted by worker bees, has different biological activities on cells and tissues. The aim of this study was to evaluate the effects of royal jelly on peripheral blood mononuclear cells and on the tumor category of K562 cell line. Methods: In the present experimental study, three subjects were selected separately with three repetitions. K562 (104 cells and PBMC (105 cells with different concentrations of royal jelly (5, 10, 25, 50 and 100 mg/ml were cultured under standard conditions for 48 and 72 h separately. The fatality rate on PBMC cells and K562 cancer cells was evaluated by using MTT (Tetrazolium Dye-Reduction Assay. The number of viable cells in PBMC that were exposed for 48 hours with Royal Jelly was evaluated by trypan blue staining. Data were analyzed by ANOVA. Results: The royal jelly had no cytotoxicity effect on PBMC cells but at concentration of 50 and 100 mg/mL the cytotoxicity effect were observed on k562 cells whereas, at 10 and 25 mg/ml the number of PBMC viable cells increased. Conclusion: Due to the lack of lethality of royal jelly on PBMC cells and PBMC cell viability and an increase in the fatality rate of cancer cells in the future, royal jelly can be used as a potential candidate for treatment of leukemia. Keywords: Royal jelly, K562, peripheral blood mononuclear cell

  17. CLEC4M慢病毒载体的构建及其在K562细胞中的表达

    Directory of Open Access Journals (Sweden)

    WANG Yuanyuan

    2014-06-01

    Full Text Available ObjectiveTo construct the lentiviral vector encoding CLEC4M and prepare K-562 cells with stable overexpression of CLEC4M. MethodsThe gene sequence of normal CLEC4M was cloned by RT-PCR and then inserted into GV166 vector to construct GV166-CLEC4M lentiviral expression vector, and then lentiviral packaging was performed by transfection of 293T cells. The obtained lentiviral liquid was used to infect human leukemia cell line K-562. Real-time PCR and Western blot were used to detect the overexpression of CLEC4M in K-562 cells. ResultsSequencing showed that the recombinant lentiviral expression plasmid GV166-CLEC4M was successfully constructed. Lentiviruses could efficiently infect K-562 cells, according to real-time PCR. CLEC4M was successfully over-expressed in K-562 cells at mRNA and protein levels. ConclusionThe construction of lentiviral vector encoding CLEC4M lays a foundation for further study of CLEC4M gene involved in HCV entry into host cells.

  18. Peripheral retinal nonperfusion associated with chronic myeloid leukemia.

    NARCIS (Netherlands)

    Nobacht, S.; Vandoninck, K.F.; Deutman, A.F.; Klevering, B.J.

    2003-01-01

    PURPOSE: To report a case of peripheral retinal nonperfusion and chronic myeloid leukemia in a 23-year-old woman. DESIGN: Observational case report. METHODS: A complete ophthalmic and systemic evaluation was performed. RESULTS: Ophthalmic examination revealed peripheral retinal nonperfusion with

  19. 9-cis-retinoic Acid and troglitazone impacts cellular adhesion, proliferation, and integrin expression in K562 cells.

    Science.gov (United States)

    Hanson, Amanda M; Gambill, Jessica; Phomakay, Venusa; Staten, C Tyler; Kelley, Melissa D

    2014-01-01

    Retinoids are established pleiotropic regulators of both adaptive and innate immune responses. Recently, troglitazone, a PPAR gamma agonist, has been demonstrated to have anti-inflammatory effects. Separately, retinoids and troglitazone are implicated in immune related processes; however, their combinatory role in cellular adhesion and proliferation has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) and troglitazone on K562 cellular adhesion and proliferation was investigated. Troglitazone exposure decreased K562 cellular adhesion to RGD containing extracellular matrix proteins fibronectin, FN-120, and vitronectin in a concentration and time-dependent manner. In the presence of troglitazone, 9-cis-retinoic acid restores cellular adhesion to levels comparable to vehicle treatment alone on fibronectin, FN-120, and vitronectin substrates within 72 hours. Due to the prominent role of integrins in attachment to extracellular matrix proteins, we evaluated the level of integrin α5 subunit expression. Troglitazone treatment results in decrease in α5 subunit expression on the cell surface. In the presence of both agonists, cell surface α5 subunit expression was restored to levels comparable to vehicle treatment alone. Additionally, troglitazone and 9-cis-RA mediated cell adhesion was decreased in the presence of a function blocking integrin alpha 5 inhibitor. Further, through retinoid metabolic profiling and HPLC analysis, our study demonstrates that troglitazone augments retinoid availability in K562 cells. Finally, we demonstrate that troglitazone and 9-cis-retinoic acid synergistically dampen cellular proliferation in K562 cells. Our study is the first to report that the combination of troglitazone and 9-cis-retinoic acid restores cellular adhesion, alters retinoid availability, impacts integrin expression, and dampens cellular proliferation in K562 cells.

  20. Bone marrow transplantation for patients with chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Goldman, J.M.; Apperley, J.F.; Jones, L.

    1986-01-01

    Between February 1981 and December 1984 we treated 52 patients with chronic myeloid leukemia in the chronic phase and 18 patients with more advanced disease by high-dose chemoradiotherapy followed by allogeneic bone marrow transplantation using marrow cells from HLA-identical sibling donors. In addition, the 40 patients who had not previously undergone splenectomy received radiotherapy to the spleen. To prevent graft versus host disease, cyclosporine was given either alone or in conjunction with donor marrow depleted of T cells. Of the 52 patients treated in the chronic phase, 38 are alive after a median follow-up of 25 months (range, 7 to 50); the actuarial survival at two years was 72%, and the actuarial risk of relapse was 7%. Of the 18 patients with more advanced disease, 4 have survived; the actuarial two-year survival was 18%, and the actuarial risk of relapse was 42%. We conclude that the probability of cure is highest if transplantation is performed while the patient remains in the chronic phase of chronic myeloid leukemia. T-cell depletion may have reduced the incidence and severity of graft versus host disease. The value of irradiation to the spleen before transplantation has not been established

  1. Interferon alpha for treatment of chronic myeloid leukemia

    DEFF Research Database (Denmark)

    Simonsson, Bengt; Hjorth-Hansen, Henrik; Bjerrum, Ole Weis

    2011-01-01

    Treatment of chronic myeloid leukemia (CML) with interferon-alpha (IFN-a) was introduced in the early 1980s. Several clinical trials showed a survival advantage for patients treated with IFN-a compared to conventional chemotherapy. Some patients achieved longstanding complete cytogenetic remissions...

  2. The proteomic study of sodium butyrate antiproliferative/cytodifferentiation effects on K562 cells

    Czech Academy of Sciences Publication Activity Database

    Grebeňová, D.; Kuželová, K.; Pluskalová, M.; Pešlová, G.; Halada, Petr; Hrkal, Z.

    2006-01-01

    Roč. 37, - (2006), s. 210-217 ISSN 1079-9796 R&D Projects: GA MZd NL7681 Institutional research plan: CEZ:AV0Z50200510 Keywords : k562 * cell cycle * hemoglobin synthesis Subject RIV: EE - Microbiology, Virology Impact factor: 2.678, year: 2006

  3. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells

    Directory of Open Access Journals (Sweden)

    Giuseppe Fiume

    2016-11-01

    Full Text Available The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03% of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7% and 698 downregulated (54.3% RNAs. In K562 cells, 1959 (3.1% of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7% and 906 downregulated (46.3%. Only 137 transcripts (0.22% were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  4. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells.

    Science.gov (United States)

    Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana

    2016-11-07

    The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK -shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK -shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3'- and 5'-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  5. Differential contribution of complement receptor C5aR in myeloid and non-myeloid cells in chronic ethanol-induced liver injury in mice.

    Science.gov (United States)

    McCullough, Rebecca L; McMullen, Megan R; Das, Dola; Roychowdhury, Sanjoy; Strainic, Michael G; Medof, M Edward; Nagy, Laura E

    2016-07-01

    Complement is implicated in the development of alcoholic liver disease. C3 and C5 contribute to ethanol-induced liver injury; however, the role of C5a receptor (C5aR) on myeloid and non-myeloid cells to progression of injury is not known. C57BL/6 (WT), global C5aR-/-, myeloid-specific C5aR-/-, and non-myeloid-specific C5aR-/- mice were fed a Lieber-DeCarli diet (32%kcal EtOH) for 25 days. Cultured hepatocytes were challenged with ethanol, TNFα, and C5a. Chronic ethanol feeding increased expression of pro-inflammatory mediators in livers of WT mice; this response was completely blunted in C5aR-/- mice. However, C5aR-/- mice were not protected from other measures of hepatocellular damage, including ethanol-induced increases in hepatic triglycerides, plasma alanine aminotransferase and hepatocyte apoptosis. CYP2E1 and 4-hydroxynonenal protein adducts were induced in WT and C5aR-/- mice. Myeloid-specific C5aR-/- mice were protected from ethanol-induced increases in hepatic TNFα, whereas non-myeloid-specific C5aR-/- displayed increased hepatocyte apoptosis and inflammation after chronic ethanol feeding. In cultured hepatocytes, cytotoxicity induced by challenge with ethanol and TNFα was completely eliminated by treatment with C5a in cells from WT, but not C5aR-/- mice. Further, treatment with C5a enhanced activation of pro-survival signal AKT in hepatocytes challenged with ethanol and TNFα. Taken together, these data reveal a differential role for C5aR during ethanol-induced liver inflammation and injury, with C5aR on myeloid cells contributing to ethanol-induced inflammatory cytokine expression, while non-myeloid C5aR protects hepatocytes from death after chronic ethanol feeding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Dasatinib for the treatment of chronic myeloid leukemia: patient selection and special considerations.

    Science.gov (United States)

    Keskin, Dilek; Sadri, Sevil; Eskazan, Ahmet Emre

    2016-01-01

    Dasatinib is one of the second-generation tyrosine kinase inhibitors used in imatinib resistance and/or intolerance, as well as in the frontline setting in patients with chronic myeloid leukemia-chronic phase, and also in patients with advanced disease. It is also utilized in Philadelphia chromosome-positive acute lymphocytic leukemia. While choosing the appropriate tyrosine kinase inhibitor (ie, dasatinib) for each individual patient, comorbidities and BCR-ABL1 kinase domain mutations should always be taken into consideration, among other things. This review mainly focuses on patient selection prior to dasatinib administration in the treatment of chronic myeloid leukemia.

  7. Splenic irradiation in chronic myeloid leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Hukku, S.; Baboo, H.A.; Venkataratnam, S.; Vidyasagar, M.S.; Patel, N.L. (Department of Radiation Therapy, Gujarat Cancer Research Institute, Ahmedabad, India)

    1983-01-01

    Results of splenic irradiation as the initial and only method of treatment are reported in 25 patients with chronic myeloid leukemia. Peripheral remission was induced in all the patients. Induction was achieved after a short period of 11 to 30 days in the majority of the patients, the longest period being 40 days. Several patients were in remission 9 months after treatment. The results are compared with those obtained by chemotherapy. Some advantages of splenic irradiation over chemotherapy are emphasized.

  8. MPT0B169, a New Antitubulin Agent, Inhibits Bcr-Abl Expression and Induces Mitochondrion-Mediated Apoptosis in Nonresistant and Imatinib-Resistant Chronic Myeloid Leukemia Cells.

    Directory of Open Access Journals (Sweden)

    Shuit-Mun Wong

    Full Text Available Chronic myeloid leukemia (CML is a clonal disorder of hematopoietic stem/progenitor cells that is caused by the Bcr-Abl oncoprotein. Clinical resistance to the Bcr-Abl inhibitor imatinib is a critical problem in treating CML. This study investigated the antitumor effect and mechanism of MPT0B169, a new antitubulin agent, in K562 CML cells and their derived imatinib-resistant cells, IMR2 and IMR3. IMR2 and IMR3 cells showed complete resistance to imatinib-induced growth inhibition and apoptosis. Resistance involved ERK1/2 overactivation and MDR1 overexpression. MPT0B169 inhibited the growth of K562, IMR2, and IMR3 cells in a dose- and time-dependent manner. MPT0B169 substantially inhibited the mRNA and protein levels of Bcr-Abl, followed by its downstream pathways including Akt, ERK1/2, and STAT3 in these cells. MPT0B169 treatment resulted in a decrease in the polymer form of tubulin according to Western blot analysis. It triggered cell cycle arrest at the G2/M phase before apoptosis, which was related to the upregulation of the mitotic marker MPM2 and the cyclin B1 level, and a change in the phosphorylation of Cdk1. MPT0B169 induced apoptosis in nonresistant and imatinib-resistant cells via a mitochondrion-mediated caspase pathway. Further study showed that the agent led to a decrease in the antiapoptotic proteins Bcl-2, Bcl-xL, and Mcl-1 and an increase in the apoptotic protein Bax. Taken together, our results suggest that MPT0B169 might be a promising agent for overcoming imatinib resistance in CML cells.

  9. Unravelling pathways downstream Sox6 induction in K562 erythroid cells by proteomic analysis

    KAUST Repository

    Barbarani, Gloria; Ronchi, Antonella; Ruoppolo, Margherita; Santorelli, Lucia; Steinfelder, Robert; Elangovan, Sudharshan; Fugazza, Cristina; Caterino, Marianna

    2017-01-01

    are accompanied with a reduced survival of Sox6-/- red blood cells, resulting in a compensated anemia. Sox6-overexpression in K562 cells and in human primary ex vivo erythroid cultures enhances erythroid differentiation and leads to hemoglobinization, the hallmark

  10. Aqueous extract of Crataegus azarolus protects against DNA damage in human lymphoblast Cell K562 and enhances antioxidant activity.

    Science.gov (United States)

    Mustapha, Nadia; Bouhlel, Inès; Chaabane, Fadwa; Bzéouich, Imèn Mokdad; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2014-02-01

    The present study was carried out to characterize the cellular antioxidant effect of the aqueous extract of Crataegus azarolus and its antigenotoxic potential using human myelogenous cells, K562. The antioxidant capacity of this extract was evaluated by determining its cellular antioxidant activity (CAA) in K562 cells. Also, preceding antigenotoxicity assessment, its eventual genotoxicity property was investigated by evaluating its capacity to induce the DNA degradation of treated cell nuclei. As no genotoxicity was detected at different exposure times, its ability to protect cell DNA against H2O2 oxidative effect was investigated, using the "comet assay." It appears that 800 μg/mL of extract inhibited the genotoxicity induced by H2O2 with a rate of 41.30 %, after 4 h of incubation. In addition, this extract revealed a significant cellular antioxidant capacity against the reactive oxygen species in K562 cells.

  11. Discontinuation of tyrosine kinase inhibitors in chronic myeloid leukemia: Recommendations for clinical practice from the French Chronic Myeloid Leukemia Study Group.

    Science.gov (United States)

    Rea, Delphine; Ame, Shanti; Berger, Marc; Cayuela, Jean-Michel; Charbonnier, Aude; Coiteux, Valérie; Cony-Makhoul, Pascale; Dubruille, Viviane; Dulucq, Stéphanie; Etienne, Gabriel; Legros, Laurence; Nicolini, Franck; Roche-Lestienne, Catherine; Escoffre-Barbe, Martine; Gardembas, Martine; Guerci-Bresler, Agnès; Johnson-Ansah, Hyacinthe; Rigal-Huguet, Françoise; Rousselot, Philippe; Mahon, François-Xavier

    2018-05-03

    The ultimate goal of chronic myeloid leukemia management in the tyrosine kinase inhibitor (TKI) era for patients who obtain deep molecular responses is maintaining a durable off-treatment response after treatment discontinuation; this situation is called treatment-free remission (TFR). Knowledge accumulated during the last 10 years justifies moving TFR strategies from research to clinical practice. Twenty experts from the French Chronic Myeloid Leukemia Study Group (France Intergroupe des Leucémies Myéloïdes Chroniques), including 17 hematologists, 2 molecular biologists, and 1 cytogeneticist, critically reviewed published data with the goal of developing evidence-based recommendations for TKI discontinuation in clinical practice. Clinically relevant questions were addressed, including the selection of candidate patients (with known prognostic factors for outcomes taken into account), detailed monitoring procedures during the treatment-free phase, a definition of relapse requiring therapy resumption, and monitoring after treatment reintroduction. This work presents consensus statements with the aim of guiding physicians and biologists by means of pragmatic recommendations for safe TKI discontinuation in daily practice. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  12. Chronic myeloid leukemia in a child with IgA nephropathy.

    Science.gov (United States)

    Udani, Amish; Vijayakumar, Mahalingam; Prahlad, Nageswaran; Ekambaram, Sudha

    2012-08-01

    We report an 11 year old boy with IgA nephropathy developing chronic myeloid leukemia on follow-up. This association suggests that a B cell defect might be involved in the pathogenesis of these two conditions.

  13. Anti-leishmanial and Anti-cancer Activities of a Pentacyclic ...

    African Journals Online (AJOL)

    Erah

    against promastigotes of Leishmania donovani, and anti-cancer activity on K562 leukaemic cell line. Results: A .... crisis of chronic myeloid leukemia was used for this test. The cells ... containing 1×106 cells/ml, 2 mM L-glutamine and 50 µg/ml ...

  14. Coexistence of chronic myeloid leukemia and diffuse large B-cell lymphoma with antecedent chronic lymphocytic leukemia: a case report and review of the literature.

    Science.gov (United States)

    Abuelgasim, Khadega A; Rehan, Hinna; Alsubaie, Maha; Al Atwi, Nasser; Al Balwi, Mohammed; Alshieban, Saeed; Almughairi, Areej

    2018-03-11

    Chronic lymphocytic leukemia and chronic myeloid leukemia are the most common types of adult leukemia. However, it is rare for the same patient to suffer from both. Richter's transformation to diffuse large B-cell lymphoma is frequently observed in chronic lymphocytic leukemia. Purine analog therapy and the presence of trisomy 12, and CCND1 gene rearrangement have been linked to increased risk of Richter's transformation. The coexistence of chronic myeloid leukemia and diffuse large B-cell lymphoma in the same patient is extremely rare, with only nine reported cases. Here, we describe the first reported case of concurrent chronic myeloid leukemia and diffuse large B-cell lymphoma in a background of chronic lymphocytic leukemia. A 60-year-old Saudi man known to have diabetes, hypertension, and chronic active hepatitis B was diagnosed as having Rai stage II chronic lymphocytic leukemia, with trisomy 12 and rearrangement of the CCND1 gene in December 2012. He required no therapy until January 2016 when he developed significant anemia, thrombocytopenia, and constitutional symptoms. He received six cycles of fludarabine, cyclophosphamide, and rituximab, after which he achieved complete remission. One month later, he presented with progressive leukocytosis (mostly neutrophilia) and splenomegaly. Fluorescence in situ hybridization from bone marrow aspirate was positive for translocation (9;22) and reverse transcription polymerase chain reaction detected BCR-ABL fusion gene consistent with chronic myeloid leukemia. He had no morphologic or immunophenotypic evidence of chronic lymphocytic leukemia at the time. Imatinib, a first-line tyrosine kinase inhibitor, was started. Eight months later, a screening imaging revealed new liver lesions, which were confirmed to be diffuse large B-cell lymphoma. In chronic lymphocytic leukemia, progressive leukocytosis and splenomegaly caused by emerging chronic myeloid leukemia can be easily overlooked. It is unlikely that chronic myeloid

  15. Clinical features in accelerated phase of chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Naqi, N.; Ayub, M.

    2001-01-01

    Objective: To identify the clinical indicators of accelerated phase in chronic myeloid leukemia (CML) diagnosed on hematological findings. Design: An observational and prospective study. Place and Duration of Study: The study was conducted at Oncology department of Combined Military Hospital, Rawalpindi and Armed Forces Institute of Pathology from April 1998 to April 1999. Subjects and Methods: The study on 51 patients of Philadelphia positive CML in chronic phase and on hydroxyurea therapy were carried out. Clinical features and hematological parameters in the peripheral blood examination were recorded and statistical analysis carried out to document reliable clinically indicators of accelerated phase of CML in reference to those reported in the literature. Results: Clinical, presence of unexplained fever, re-enlargement of spleen after successful regression with hydroxyurea therapy, and bleeding diathesis were found to be statistically significant pointers of progression into accelerated phase of CML. In the hematological features, with the exception of peripheral basophilia, the findings in the peripheral blood were consistent with those reported in the literature. Conclusion: It is concluded that the occurrences of the clinical features in the follow-up of chronic myeloid leukemia patients herald the accelerated phase of the disease. (author)

  16. Blockade of Y177 and Nuclear Translocation of Bcr-Abl Inhibits Proliferation and Promotes Apoptosis in Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Li, Qianyin; Huang, Zhenglan; Gao, Miao; Cao, Weixi; Xiao, Qin; Luo, Hongwei; Feng, Wenli

    2017-03-02

    The gradual emerging of resistance to imatinib urgently calls for the development of new therapy for chronic myeloid leukemia (CML). The fusion protein Bcr-Abl, which promotes the malignant transformation of CML cells, is mainly located in the cytoplasm, while the c-Abl protein which is expressed in the nucleus can induce apoptosis. Based on the hetero-dimerization of FKBP (the 12-kDa FK506- and rapamycin-binding protein) and FRB (the FKBP-rapamycin binding domain of the protein kinase, mTOR) mediated by AP21967, we constructed a nuclear transport system to induce cytoplasmic Bcr-Abl into nuclear. In this study, we reported the construction of the nuclear transport system, and we demonstrated that FN3R (three nuclear localization signals were fused to FRBT2098L with a FLAG tag), HF2S (two FKBP domains were in tandem and fused to the SH2 domain of Grb2 with an HA tag) and Bcr-Abl form a complexus upon AP21967. Bcr-Abl was imported into the nucleus successfully by the nuclear transport system. The nuclear transport system inhibited CML cell proliferation through mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 5 (STAT5) pathways mainly by HF2S. It was proven that nuclear located Bcr-Abl induced CML cell (including imatinib-resistant K562G01 cells) apoptosis by activation of p73 and its downstream molecules. In summary, our study provides a new targeted therapy for the CML patients even with Tyrosine Kinase Inhibitor (TKI)-resistance.

  17. Blockade of Y177 and Nuclear Translocation of Bcr-Abl Inhibits Proliferation and Promotes Apoptosis in Chronic Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Qianyin Li

    2017-03-01

    Full Text Available The gradual emerging of resistance to imatinib urgently calls for the development of new therapy for chronic myeloid leukemia (CML. The fusion protein Bcr-Abl, which promotes the malignant transformation of CML cells, is mainly located in the cytoplasm, while the c-Abl protein which is expressed in the nucleus can induce apoptosis. Based on the hetero-dimerization of FKBP (the 12-kDa FK506- and rapamycin-binding protein and FRB (the FKBP-rapamycin binding domain of the protein kinase, mTOR mediated by AP21967, we constructed a nuclear transport system to induce cytoplasmic Bcr-Abl into nuclear. In this study, we reported the construction of the nuclear transport system, and we demonstrated that FN3R (three nuclear localization signals were fused to FRBT2098L with a FLAG tag, HF2S (two FKBP domains were in tandem and fused to the SH2 domain of Grb2 with an HA tag and Bcr-Abl form a complexus upon AP21967. Bcr-Abl was imported into the nucleus successfully by the nuclear transport system. The nuclear transport system inhibited CML cell proliferation through mitogen-activated protein kinase (MAPK and signal transducer and activator of transcription 5 (STAT5 pathways mainly by HF2S. It was proven that nuclear located Bcr-Abl induced CML cell (including imatinib-resistant K562G01 cells apoptosis by activation of p73 and its downstream molecules. In summary, our study provides a new targeted therapy for the CML patients even with Tyrosine Kinase Inhibitor (TKI-resistance.

  18. Chronic Myeloid Leukemia with Variant Chromosomal Translocations: Results of Treatment with Imatinib Mesylate

    Directory of Open Access Journals (Sweden)

    Rohan Bhise

    2013-01-01

    Full Text Available Objective: To evaluate the efficacy of imatinib in chronic myeloid leukemia patients with variant translocations. Methods: Forty eight chronic myeloid leukemia patients carrying variant translocations and treated with imatinib at our institute were considered for the study. Survival and response rates were evaluated. Results: The median follow up was 48 months(m. Forty three (89.58% patients achieved complete hematologic response. Thirty one (64.58% patients achieved complete cytogenetic response and 19(39.58% achieved major molecular response anytime during their follow up period. Only 18.75% of the patients achieved complete cytogenetic response and major molecular response within the stipulated time frames.The estimated overall survival at 48 m median follow up was 81.2%.The progression free survival was also 81.2% and the event free survival was 79.1%.There was no significant survival difference between low vs intermediate and high risk sokal group. Conclusion: We report suboptimal responses to imatinib in chronic myeloid leukemia with variant translocations. Further studies with imatinib and the newer more active drugs dasatinib and nilotinib are justified.

  19. Involvement of CD147 on multidrug resistance through the regulation of P-glycoprotein expression in K562/ADR leukemic cell line

    Directory of Open Access Journals (Sweden)

    Aoranit Somno

    2016-01-01

    Full Text Available The relationship between P-gp and CD147 in the regulation of MDR in leukemic cells has not been reported. This study aimed to investigate the correlation between CD147 and P-gp in the regulation of drug resistance in the K562/ADR leukemic cell line. The results showed that drug-resistant K562/ADR cells expressed significantly higher P-gp and CD147 levels than drug-free K562/ADR cells. To determine the regulatory effect of CD147 on P-gp expression, anti-CD147 antibody MEM-M6/6 significantly decreased P-gp and CD147 mRNA and protein levels. This is the first report to show that CD147 mediates MDR in leukemia through the regulation of P-gp expression.

  20. Apoptosis of leukemia K562 and Molt-4 cells induced by emamectin benzoate involving mitochondrial membrane potential loss and intracellular Ca2+ modulation.

    Science.gov (United States)

    Yun, Xinming; Rao, Wenbing; Xiao, Ciying; Huang, Qingchun

    2017-06-01

    Leukemia threatens millions of people's health and lives, and the pesticide-induced leukemia has been increasingly concerned because of the etiologic exposure. In this paper, cytotoxic effect of emamectin benzoate (EMB), an excellent natural-product insecticide, was evaluated through monitoring cell viability, cell apoptosis, mitochondrial membrane potential and intracellular Ca 2+ concentration ([Ca 2+ ] i ) in leukemia K562 and Molt-4 cells. Following the exposure to EMB, cell viability was decreased and positive apoptosis of K562 and Molt-4 cells was increased in a concentration- and time- dependent fashion. In the treatment of 10μM EMB, apoptotic cells accounted for 93.0% to K562 cells and 98.9% to Molt-4 cells based on the control, meanwhile, 63.47% of K562 cells and 81.15% of Molt-4 cells exhibited late apoptotic and necrotic features with damaged cytoplasmic membrane. 48h exposure to 10μM EMB increased significantly the great number of cells with mitochondrial membrane potential (MMP) loss, and the elevation of [Ca 2+ ] i level was peaked and persisted within 70s in K562 cells whilst 50s in Molt-4 cells. Moreover, a stronger cytotoxicity of EMB was further observed than that of imatinib. The results authenticate the efficacious effect of EMB as a potential anti-leukemia agent and an inconsistency with regard to insecticide-induced leukemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Changes in the expression of FGFR3 in patients with chronic myeloid leukaemia receiving transplants of allogeneic peripheral blood stem cells

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, D.; Krejčí, P.; Mayer, J.; Fajkus, Jiří; Hampl, Aleš; Dvořák, Petr

    2001-01-01

    Roč. 113, č. 3 (2001), s. 832-835 ISSN 0007-1048 R&D Projects: GA ČR GA312/97/0393; GA MŠk ME 198 Institutional research plan: CEZ:AV0Z5045916 Keywords : fibroblast growth factor receptor 3 * chronic myeloid leukaemia * stem cell transplantation Subject RIV: BO - Biophysics Impact factor: 2.815, year: 2001

  2. Monocytic myeloid-derived suppressor cells as prognostic factor in chronic myeloid leukaemia patients treated with dasatinib.

    Science.gov (United States)

    Giallongo, Cesarina; Parrinello, Nunziatina L; La Cava, Piera; Camiolo, Giuseppina; Romano, Alessandra; Scalia, Marina; Stagno, Fabio; Palumbo, Giuseppe A; Avola, Roberto; Li Volti, Giovanni; Tibullo, Daniele; Di Raimondo, Francesco

    2018-02-01

    Myeloid suppressor cells are a heterogeneous group of myeloid cells that are increased in patients with chronic myeloid leukaemia (CML) inducing T cell tolerance. In this study, we found that therapy with tyrosine kinase inhibitors (TKI) decreased the percentage of granulocytic MDSC, but only patients treated with dasatinib showed a significant reduction in the monocytic subset (M-MDSC). Moreover, a positive correlation was observed between number of persistent M-MDSC and the value of major molecular response in dasatinib-treated patients. Serum and exosomes from patients with CML induced conversion of monocytes from healthy volunteers into immunosuppressive M-MDSC, suggesting a bidirectional crosstalk between CML cells and MDSC. Overall, we identified M-MDSC as prognostic factors in patients treated with dasatinib. It might be of interest to understand whether MDSC may be a candidate predictive markers of relapse risk following TKI discontinuation, suggesting their potential significance as practice of precision medicine. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Silencing of BCR/ABL Chimeric Gene in Human Chronic Myelogenous Leukemia Cell Line K562 by siRNA-Nuclear Export Signal Peptide Conjugates.

    Science.gov (United States)

    Shinkai, Yasuhiro; Kashihara, Shinichi; Minematsu, Go; Fujii, Hirofumi; Naemura, Madoka; Kotake, Yojiro; Morita, Yasutaka; Ohnuki, Koichiro; Fokina, Alesya A; Stetsenko, Dmitry A; Filichev, Vyacheslav V; Fujii, Masayuki

    2017-06-01

    Herein we described the synthesis of siRNA-NES (nuclear export signal) peptide conjugates by solid phase fragment coupling and the application of them to silencing of bcr/abl chimeric gene in human chronic myelogenous leukemia cell line K562. Two types of siRNA-NES conjugates were prepared, and both sense strands at 5' ends were covalently linked to a NES peptide derived from TFIIIA and HIV-1 REV, respectively. Significant enhancement of silencing efficiency was observed for both of them. siRNA-TFIIIA NES conjugate suppressed the expression of BCR/ABL gene to 8.3% at 200 nM and 11.6% at 50 nM, and siRNA-HIV-1REV NES conjugate suppressed to 4.0% at 200 nM and 6.3% at 50 nM, whereas native siRNA suppressed to 36.3% at 200 nM and 30.2% at 50 nM. We could also show complex of siRNA-NES conjugate and designed amphiphilic peptide peptideβ7 could be taken up into cells with no cytotoxicity and showed excellent silencing efficiency. We believe that the complex siRNA-NES conjugate and peptideβ7 is a promising candidate for in vivo use and therapeutic applications.

  4. [Molecular characterization of atypical chronic myeloid leukemia and chronic neutrophilic leukemia].

    Science.gov (United States)

    Senín, Alicia; Arenillas, Leonor; Martínez-Avilés, Luz; Fernández-Rodríguez, Concepción; Bellosillo, Beatriz; Florensa, Lourdes; Besses, Carles; Álvarez-Larrán, Alberto

    2015-06-08

    Atypical chronic myeloid leukemia (aCML) and chronic neutrophilic leukemia (CNL) display similar clinical and hematological characteristics. The objective of the present study was to determine the mutational status of SETBP1 and CSF3R in these diseases. The mutational status of SETBP1 and CSF3R was studied in 7 patients with aCML (n = 3), CNL (n = 1) and unclassifiable myeloproliferative neoplasms (MPN-u) (n = 3). Additionally, mutations in ASXL1, SRSF2, IDH1/2, DNMT3A, and RUNX1 were also analyzed. SETBP1 mutations (G870S and G872R) were detected in 2 patients with MPN-u, and one of them also presented mutations in SRSF2 (P95H) and ASXL1 (E635fs). The CNL case showed mutations in CSFR3 (T618I), SETBP1 (G870S) and SRSF2 (P95H). No patient classified as aCML had mutations in SETBP1 or CSF3R. One of the patients with mutations evolved to acute myeloid leukemia, while the other 2 had disease progression without transformation to overt leukemia. The knowledge of the molecular alterations involved in these rare diseases is useful in the diagnosis and may have an impact on both prognosis and therapy. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  5. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    Science.gov (United States)

    2017-03-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  6. Analysis of the Effects of δ-Tocopherol on RAW264.7 and K562 Cells Based on 1H NMR Metabonomics.

    Science.gov (United States)

    Lu, Yang; Li, Hui; Geng, Yue

    2018-01-31

    δ-Tocopherol (δ-TOH) is a form of vitamin E with higher bioactivity. In this study, we studied the bioactivity of δ-TOH using the IC 50 of δ-TOH on RAW264.7 (80 μM) and K562 (110 μM) cells. We compared the differential metabolites from the cell lines with and without δ-TOH treatment by 1 H NMR metabonomics analysis. It was found that δ-TOH affected the protein biosynthesis, betaine metabolism, and urea cycle in various ways in both cell lines. Metabolic levels of the cell lines were changed after treatment with δ-TOH as differential metabolites were produced. The betaine level in RAW264.7 cells was reduced significantly, while the l-lactic acid level in K562 cells was significantly enhanced. The metabolic changes might contribute to the switch of the respiration pattern from aerobic respiration to anaerobic respiration in K562 cells. These results are helpful in further understanding the subtoxicity of δ-TOH.

  7. Regulation of HtrA2 on WT1 gene expression under imatinib stimulation and its effects on the cell biology of K562 cells.

    Science.gov (United States)

    Zhang, Lixia; Li, Yan; Li, Xiaoyan; Zhang, Qing; Qiu, Shaowei; Zhang, Qi; Wang, Min; Xing, Haiyan; Rao, Qing; Tian, Zheng; Tang, Kejing; Wang, Jianxiang; Mi, Yingchang

    2017-09-01

    The aim of the present study was to investigate the regulation of Wilms Tumor 1 (WT1) by serine protease high-temperature requirement protein A2 (HtrA2), a member of the Htr family, in K562 cells. In addition, the study aimed to observe the effect of this regulation on cell biological functions and its associated mechanisms. Expression of WT1 and HtrA2 mRNA, and proteins following imatinib and the HtrA2 inhibitor 5-[5-(2-nitrophenyl) furfuryl iodine]-1, 3-diphenyl-2-thiobarbituric acid (UCF-101) treatment was detected with reverse transcription-quantitative polymerase chain reaction and western blot analysis. Subsequent to treatment with drugs and UCF-101, the proliferative function of K562 cells was detected using MTT assays, and the rate of apoptosis was detected using Annexin V with propidium iodide flow cytometry in K562 cells. The protein levels in the signaling pathway were analyzed using western blotting following treatment with imatinib and UCF-101. In K562 cells, imatinib treatment activated HtrA2 gene at a transcription level, while the WT1 gene was simultaneously downregulated. Following HtrA2 inhibitor (UCF-101) treatment, the downregulation of WT1 increased gradually. At the protein level, imatinib induced the increase in HtrA2 protein level and concomitantly downregulated WT1 protein level. Subsequent to HtrA2 inhibition by UCF-101, the WT1 protein level decreased temporarily, but eventually increased. Imatinib induced apoptosis in K562 cells, but this effect was attenuated by the HtrA2 inhibitor UCF-101, resulting in the upregulation of the WT1 protein level. However; UCF-101 did not markedly change the proliferation inhibition caused by imatinib. Imatinib activated the p38 mitogen activated protein kinase (p38 MAPK) signaling pathway in K562 cells, and UCF-101 affected the activation of imatinib in the p38 MAPK signaling pathway. Imatinib inhibited the extracellular signal-related kinase (ERK1/2) pathway markedly and persistently, but UCF-101

  8. Appearance and Disappearance of Chronic Myeloid Leukemia (CML) in Patient with Chronic Lymphocytic Leukemia (CLL)

    OpenAIRE

    Payandeh, Mehrdad; Sadeghi, Edris; Khodarahmi, Reza; Sadeghi, Masoud

    2014-01-01

    Chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) are the most common leukemias of the elderly (>43 year). However, the sequential occurrence of CML followed by CLL in the same patient is extremely rare. In our report, a 52-year-old female was diagnosed with CLL (type of bone marrow (BM) infiltration was nodular and interstitial) and was treated with chlorambucil. 64 months after the diagnosis of CLL, she developed CML. She was treated with imatinib (400mg/day). After a fe...

  9. Aberrant expression of CKLF-like MARVEL transmembrane member 5 (CMTM5) by promoter methylation in myeloid leukemia.

    Science.gov (United States)

    Niu, Jihong; Li, Henan; Zhang, Yao; Li, Jinlan; Xie, Min; Li, Lingdi; Qin, Xiaoying; Qin, Yazhen; Guo, Xiaohuan; Jiang, Qian; Liu, Yanrong; Chen, Shanshan; Huang, Xiaojun; Han, Wenling; Ruan, Guorui

    2011-06-01

    CMTM5 has been shown to exhibit tumor suppressor activities, however, its role in leukemia is unclear. Herein we firstly reported the expression and function of CMTM5 in myeloid leukemia. CMTM5 was down-regulated, or undetectable, in leukemia cell lines and bone marrow cells from leukemia patients with promoter methylation. Ectopic expression of CMTM5-v1 strongly inhibited the proliferation of K562 and MEG-01 cells. In addition, significant negative correlations were observed between CMTM5 and three leukemia-specific fusion genes (AML1-ETO, PML-RARα and BCR/ABL1). CMTM5 expression was up-regulated in patients who had undergone treatment. Therefore, CMTM5 may be involved in the pathomechanism of myeloid leukemias. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Prognostic discrimination based on the EUTOS long-term survival score within the International Registry for Chronic Myeloid Leukemia in children and adolescents

    DEFF Research Database (Denmark)

    Millot, Frédéric; Guilhot, Joëlle; Suttorp, Meinolf

    2017-01-01

    The EUTOS Long-Term Survival score was tested in 350 children with chronic myeloid leukemia in first chronic phase treated with imatinib and registered in the International Registry for Childhood Chronic Myeloid Leukemia. With a median follow up of 3 years (range, 1 month to 6 years) progression ...

  11. Prognostic discrimination based on the EUTOS long-term survival score within the International Registry for Chronic Myeloid Leukemia in children and adolescents

    NARCIS (Netherlands)

    Millot, Frederic; Guilhot, Joelle; Suttorp, Meinolf; Gunes, Adalet Meral; Sedlacek, Petr; De Bont, Eveline; Li, Chi Kong; Kalwak, Krzysztof; Lausen, Birgitte; Culic, Srdjana; Dworzak, Michael; Kaiserova, Emilia; De Moerloose, Barbara; Roula, Farah; Biondi, Andrea; Baruchel, Andre

    2017-01-01

    The EUTOS Long-Term Survival score was tested in 350 children with chronic myeloid leukemia in first chronic phase treated with imatinib and registered in the International Registry for Childhood Chronic Myeloid Leukemia. With a median follow up of 3 years (range, 1 month to 6 years) progression

  12. ATM facilitates mouse gammaherpesvirus reactivation from myeloid cells during chronic infection.

    Science.gov (United States)

    Kulinski, Joseph M; Darrah, Eric J; Broniowska, Katarzyna A; Mboko, Wadzanai P; Mounce, Bryan C; Malherbe, Laurent P; Corbett, John A; Gauld, Stephen B; Tarakanova, Vera L

    2015-09-01

    Gammaherpesviruses are cancer-associated pathogens that establish life-long infection in most adults. Insufficiency of Ataxia-Telangiectasia mutated (ATM) kinase leads to a poor control of chronic gammaherpesvirus infection via an unknown mechanism that likely involves a suboptimal antiviral response. In contrast to the phenotype in the intact host, ATM facilitates gammaherpesvirus reactivation and replication in vitro. We hypothesized that ATM mediates both pro- and antiviral activities to regulate chronic gammaherpesvirus infection in an immunocompetent host. To test the proposed proviral activity of ATM in vivo, we generated mice with ATM deficiency limited to myeloid cells. Myeloid-specific ATM deficiency attenuated gammaherpesvirus infection during the establishment of viral latency. The results of our study uncover a proviral role of ATM in the context of gammaherpesvirus infection in vivo and support a model where ATM combines pro- and antiviral functions to facilitate both gammaherpesvirus-specific T cell immune response and viral reactivation in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Co-ordinate expression of activin A and its type I receptor mRNAs during phorbol ester-induced differentiation of human K562 erythroleukemia cells.

    Science.gov (United States)

    Hildén, K; Tuuri, T; Erämaa, M; Ritvos, O

    1999-07-20

    Activins were originally isolated based on their ability to stimulate follicle-stimulating hormone secretion but later they have been shown to regulate a number of different cellular functions such as nerve cell survival, mesoderm induction during early embryogenesis as well as hematopoiesis. We studied the regulation of activin A, a homodimer of betaA-subunits, mRNA and protein in K562 erythroleukemia cells, which are known to be induced toward the erythroid lineage in response to activin or TGF-beta or toward the megakaryocytic lineage by the phorbol ester protein kinase C activator 12-O-tetradecanoylphorbol-13-acetate (TPA). Here we show by Northern blot analysis as well as by Western and ligand blotting that TPA strongly promotes activin betaA-subunit mRNA and activin A protein expression in K562 cells in time- and concentration dependent manner. In contrast, neither activin A nor TGF-beta induced betaA-subunit mRNA expression during erythroid differentiation in K562 cells. Interestingly, whereas activin type II receptors are not regulated during K562 cell differentiation (Hilden et al. (1994) Blood 83, 2163-2170), we now show that the activin type I and IB receptor mRNAs are clearly induced by TPA but not by activin or TGF-beta. We also show that the inducing effect of TPA on expression of activin betaA-subunit mRNA is potentiated by the protein kinase A activator 8-bromo-cAMP. We conclude that activin A and its type I receptors appear to be co-ordinately up-regulated during megakaryocytic differentiation of K562 cells.

  14. Synergistic effect of hydrogen peroxide on polyploidization during the megakaryocytic differentiation of K562 leukemia cells by PMA.

    Science.gov (United States)

    Ojima, Yoshihiro; Duncan, Mark Thompson; Nurhayati, Retno Wahyu; Taya, Masahito; Miller, William Martin

    2013-08-15

    The human myelogenous cell line, K562 has been extensively used as a model for the study of megakaryocytic (MK) differentiation, which could be achieved by exposure to phorbol 12-myristate 13-acetate (PMA). In this study, real-time PCR analysis revealed that the expression of catalase (cat) was significantly repressed during MK differentiation of K562 cells induced by PMA. In addition, PMA increased the intracellular reactive oxygen species (ROS) concentration, suggesting that ROS was a key factor for PMA-induced differentiation. PMA-differentiated K562 cells were exposed to hydrogen peroxide (H2O2) to clarify the function of ROS during MK differentiation. Interestingly, the percentage of high-ploidy (DNA content >4N) cells with H2O2 was 34.8±2.3% at day 9, and was 70% larger than that without H2O2 (21.5±0.8%). Further, H2O2 addition during the first 3 days of PMA-induced MK differentiation had the greatest effect on polyploidization. In an effort to elucidate the mechanisms of enhanced polyploidization by H2O2, the BrdU assay clearly indicated that H2O2 suppressed the division of 4N cells into 2N cells, followed by the increased polyploidization of K562 cells. These findings suggest that the enhancement in polyploidization mediated by H2O2 is due to synergistic inhibition of cytokinesis with PMA. Although H2O2 did not increase ploidy during the MK differentiation of primary cells, we clearly observed that cat expression was repressed in both immature and mature primary MK cells, and that treatment with the antioxidant N-acetylcysteine effectively blocked and/or delayed the polyploidization of immature MK cells. Together, these findings suggest that MK cells are more sensitive to ROS levels during earlier stages of maturation. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Management of chronic myeloid leukemia in blast crisis.

    Science.gov (United States)

    Saußele, S; Silver, Richard T

    2015-04-01

    Due to the high efficacy of BCR-ABL tyrosine kinase inhibition (TKI) in chronic phase (CP) chronic myeloid leukemia (CML), the frequency of blast crisis (BC) is greatly reduced compared to the pre-TKI era. However, TKI treatment of BC has only marginally improved the number of favorable responses, including remissions, which for the most part have only been transitory. Occasionally, they provide a therapeutic window to perform an allogeneic stem cell transplantation (allo-SCT). The challenge remains to improve management of BC with the limited options available. We review and summarize articles pertaining to the treatment of BC CML published after 2002. Additionally, we will discuss whether there is a need for a new definition of BC and/or treatment failure.

  16. Chronic myeloid leukaemia following radioiodine therapy for carcinoma thyroid

    Energy Technology Data Exchange (ETDEWEB)

    Bundi, R S; Scott, J S; Halnan, K E [Institute of Radiotherapeutics, Glasgow (UK)

    1977-01-01

    The majority of cases reported in the literature of leukemia following treatment of thyroid disease (thyrotoxicosis and carcinoma) are of acute variety. A description is given of the development of chronic myeloid leukemia in a case of carcinoma of the thyroid treated with radioiodine and megavoltage X-ray therapy. The case history contains details of radioiodine and X-ray doses administered over the years 1961 to 1972 to a male patient, on whom a right hemithyroidectomy was carried out in 1960. The results of blood counts are also recorded for the period up to 1973. The patient died, at 57, in 1974. A total of 860 mCi of /sup 131/I was administered and the first abnormal blood count was noted two months after the last therapeutic dose. Estimates have been made of blood and thyroid doses from /sup 131/I. There has been only one other report in the literature of the development of chronic myeloid leukemia following radioiodine therapy for carcinoma of the thyroid, and although the leukemogenic hazard of /sup 131/I cannot be ruled out for this patient, it is possible that the development of leukemia was coincidental rather than due to the radioiodine therapy.

  17. Nilotinib induced avascular necrosis of femoral head in an adult chronic myeloid leukemia patient.

    Science.gov (United States)

    Thekkudan, Shinto Francis; Nityanand, Soniya

    2018-06-01

    We report a rare case of avascular necrosis of femoral head (AVNFH) in an adult chronic myeloid leukemia - chronic phase (CML-CP) patient during due course of therapy with second line Tyrosine Kinase Inhibitor (TKI), Nilotinib. A high index of clinical suspicion should be kept in any symptomatic CML patient on TKI's.

  18. Additional cytogenetic abnormalities and variant t(9;22) at the diagnosis of childhood chronic myeloid leukemia : The experience of the International Registry for Chronic Myeloid Leukemia in Children and Adolescents

    NARCIS (Netherlands)

    Millot, Frederic; Dupraz, Christelle; Guilhot, Joelle; Suttorp, Meinolf; Brizard, Francoise; Leblanc, Thierry; Gunes, Adalet Meral; Sedlacek, Petr; De Bont, Evelyne; Li, Chi Kong; Kalwak, Krzysztof; Lausen, Birgitte; Culic, Srdjana; Dworzak, Michael; Kaiserova, Emilia; De Moerloose, Barbara; Roula, Farah; Biondi, Andrea; Baruchel, Andre; Guilhot, Francois

    2017-01-01

    BACKGROUND: In the adult population with newly diagnosed chronic myeloid leukemia (CML), variant translocations are usually not considered to be impairing the prognosis, whereas some additional cytogenetic abnormalities (ACAs) are associated with a negative impact on survival. Because of the rarity

  19. SATB1 regulates SPARC expression in K562 cell line through binding to a specific sequence in the third intron

    International Nuclear Information System (INIS)

    Li, K.; Cai, R.; Dai, B.B.; Zhang, X.Q.; Wang, H.J.; Ge, S.F.; Xu, W.R.; Lu, J.

    2007-01-01

    Special AT-rich binding protein 1 (SATB1), a cell type-specific nuclear matrix attachment region (MAR) DNA-binding protein, tethers to a specific DNA sequence and regulates gene expression through chromatin remodeling and HDAC (histone deacetylase complex) recruitment. In this study, a SATB1 eukaryotic expression plasmid was transfected into the human erythroleukemia K562 cell line and individual clones that stably over-expressed the SATB1 protein were isolated. Microarray analysis revealed that hundreds of genes were either up- or down-regulated in the SATB1 over-expressing K562 cell lines. One of these was the extra-cellular matrix glycoprotein, SPARC (human secreted protein acidic and rich in cysteine). siRNA knock-down of SATB1 also reduced SPARC expression, which was consistent with elevated SPARC levels in the SATB1 over-expressing cell line. Bioinformatics software Mat-inspector showed that a 17 bp DNA sequence in the third intron of SPARC possessed a high potential for SATB1 binding; a finding confirmed by Chromatin immunoprecipitation (ChIP) with anti-SATB1 antibody. Our results show for the first time that forced-expression of SATB1 in K562 cells triggers SPARC up-regulation by binding to a 17 bp DNA sequence in the third intron

  20. Radotinib and its clinical potential in chronic-phase chronic myeloid leukemia patients: an update.

    Science.gov (United States)

    Eskazan, Ahmet Emre; Keskin, Dilek

    2017-09-01

    Although imatinib has dramatically improved major outcomes in patients with chronic myeloid leukemia (CML), there are newer tyrosine kinase inhibitors (TKIs) approved worldwide for the treatment of resistant cases, and two second-generation TKIs (dasatinib, nilotinib) are approved in some nations for treating patients in the upfront setting. Radotinib (IY5511HCL, Supect® ) is a novel and selective second-generation BCR-ABL1 TKI, which is currently approved in Korea for the treatment of patients with CML both in the upfront and salvage settings. This review mainly focuses on the clinical potential of radotinib in patients with CML in chronic phase in terms of efficacy and safety.

  1. BCR-ABL1- positive chronic myeloid leukemia with erythrocytosis presenting as polycythemia vera: a case report.

    Science.gov (United States)

    Cornea, Mihaela I Precup; Levrat, Emmanuel; Pugin, Paul; Betticher, Daniel C

    2015-04-08

    The World Health Organization classification of chronic myeloproliferative disease encompasses eight entities of bone marrow neoplasms, among them Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1-positive chronic myeloid leukemia and polycythemia vera. Polycythemia vera requires, in the majority of cases (95%), the negativity of Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 rearrangement and the presence of the Janus kinase 2 mutation. We report a case of erythrocytosis as the primary manifestation of a chronic myeloid leukemia, with the presence of the Philadelphia chromosome and the Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 fusion gene, and in the absence of any Janus kinase 2 mutation. A 68-year-old Caucasian woman, with a history of cigarette consumption and obstructive sleep apnoea syndrome (undergoing continuous positive airway pressure treatment) had presented to our institution with fatigue and a hemoglobin level of 18.6g/L, with slight leukocytosis at 16G/L, and no other anomalies on her complete blood cell count. Examination of her arterial blood gases found only a slight hypoxemia; erythropoietin and ferritin levels were very low and could not explain a secondary erythrocytosis. Further analyses revealed the absence of any Janus kinase 2 mutation, thus excluding polycythemia vera. Taken together with a high vitamin B12 level, we conducted a Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 gene analysis and bone marrow cytogenetic analysis, both of which returned positive, leading to the diagnosis of chronic myeloid leukemia. To date, this case is the first description of a Breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1-positive chronic myeloid leukemia, presenting with erythrocytosis as the initial manifestation, and mimicking a Janus kinase 2 V617F-negative polycythemia vera. Her impressive response to imatinib

  2. Incidence of second primary malignancies and related mortality in patients with imatinib-treated chronic myeloid leukemia.

    Science.gov (United States)

    Gugliotta, Gabriele; Castagnetti, Fausto; Breccia, Massimo; Albano, Francesco; Iurlo, Alessandra; Intermesoli, Tamara; Abruzzese, Elisabetta; Levato, Luciano; D'Adda, Mariella; Pregno, Patrizia; Cavazzini, Francesco; Stagno, Fabio; Martino, Bruno; La Barba, Gaetano; Sorà, Federica; Tiribelli, Mario; Bigazzi, Catia; Binotto, Gianni; Bonifacio, Massimiliano; Caracciolo, Clementina; Soverini, Simona; Foà, Robin; Cavo, Michele; Martinelli, Giovanni; Pane, Fabrizio; Saglio, Giuseppe; Baccarani, Michele; Rosti, Gianantonio

    2017-09-01

    The majority of patients with chronic myeloid leukemia are successfully managed with life-long treatment with tyrosine kinase inhibitors. In patients in chronic phase, other malignancies are among the most common causes of death, raising concerns on the relationship between these deaths and the off-target effects of tyrosine kinase inhibitors. We analyzed the incidence of second primary malignancies, and related mortality, in 514 chronic myeloid leukemia patients enrolled in clinical trials in which imatinib was given as first-line treatment. We then compared the observed incidence and mortality with those expected in the age- and sex-matched Italian general population, calculating standardized incidence and standardized mortality ratios. After a median follow-up of 74 months, 5.8% patients developed second primary malignancies. The median time from chronic myeloid leukemia to diagnosis of the second primary malignancies was 34 months. We did not find a higher incidence of second primary malignancies compared to that in the age- and sex-matched Italian general population, with standardized incidence ratios of 1.06 (95% CI: 0.57-1.54) and 1.61 (95% CI: 0.92-2.31) in males and females, respectively. Overall, 3.1% patients died of second primary malignancies. The death rate in patients with second primary malignancies was 53% (median overall survival: 18 months). Among females, the observed cancer-related mortality was superior to that expected in the age- and sex-matched Italian population, with a standardized mortality ratio of 2.41 (95% CI: 1.26 - 3.56). In conclusion, our analysis of patients with imatinib-treated chronic myeloid leukemia did not reveal a higher incidence of second primary malignancies; however, the outcome of second primary malignancies in such patients was worse than expected. Clinicaltrials.gov: NCT00514488, NCT00510926. Copyright© 2017 Ferrata Storti Foundation.

  3. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia : 2-year follow-up from a randomized phase 3 trial (DASISION)

    NARCIS (Netherlands)

    Kantarjian, Hagop M.; Shah, Neil P.; Cortes, Jorge E.; Baccarani, Michele; Agarwal, Mohan B.; Soledad Undurraga, Maria; Wang, Jianxiang; Kassack Ipina, Juan Julio; Kim, Dong-Wook; Ogura, Michinori; Pavlovsky, Carolina; Junghanss, Christian; Milone, Jorge H.; Nicolini, Franck E.; Robak, Tadeusz; Van Droogenbroeck, Jan; Vellenga, Edo; Bradley-Garelik, M. Brigid; Zhu, Chao; Hochhaus, Andreas

    2012-01-01

    Dasatinib is a highly potent BCR-ABL inhibitor with established efficacy and safety in imatinib-resistant/-intolerant patients with chronic myeloid leukemia (CML). In the phase 3 DASISION trial, patients with newly diagnosed chronic-phase (CP) CML were randomized to receive dasatinib 100 mg (n =

  4. Appearance and Disappearance of Chronic Myeloid Leukemia (CML) in Patient with Chronic Lymphocytic Leukemia (CLL).

    Science.gov (United States)

    Payandeh, Mehrdad; Sadeghi, Edris; Khodarahmi, Reza; Sadeghi, Masoud

    2014-10-01

    Chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) are the most common leukemias of the elderly (>43 year). However, the sequential occurrence of CML followed by CLL in the same patient is extremely rare. In our report, a 52-year-old female was diagnosed with CLL (type of bone marrow (BM) infiltration was nodular and interstitial) and was treated with chlorambucil. 64 months after the diagnosis of CLL, she developed CML. She was treated with imatinib (400mg/day). After a few months, signs of CML were disappeared and CLL became dominant. This is first reported case.

  5. Nuclear topography of beta-like globin gene cluster in IL-3-stimulated human leukemic K-562 cells

    Czech Academy of Sciences Publication Activity Database

    Galiová-Šustáčková, Gabriela; Bártová, Eva; Kozubek, Stanislav

    2004-01-01

    Roč. 33, č. 1 (2004), s. 4-14 ISSN 1079-9796 R&D Projects: GA ČR GA301/01/0186; GA AV ČR KSK5052113; GA AV ČR IAA5004306; GA ČR GA202/04/0907; GA MŠk ME 565 Institutional research plan: CEZ:AV0Z5004920 Keywords : beta-like globin gene cluster * K-562 cells * nuclear topography Subject RIV: BO - Biophysics Impact factor: 2.549, year: 2004

  6. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    International Nuclear Information System (INIS)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui; Cheng, Tian-Lu; Lin, Shinne-Ren; Chang, Long-Sen

    2015-01-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressed c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression

  7. Second generation tyrosine kinase inhibitors prevent disease progression in high-risk (high CIP2A) chronic myeloid leukaemia patients.

    Science.gov (United States)

    Lucas, C M; Harris, R J; Holcroft, A K; Scott, L J; Carmell, N; McDonald, E; Polydoros, F; Clark, R E

    2015-07-01

    High cancerous inhibitor of PP2A (CIP2A) protein levels at diagnosis of chronic myeloid leukaemia (CML) are predictive of disease progression in imatinib-treated patients. It is not known whether this is true in patients treated with second generation tyrosine kinase inhibitors (2G TKI) from diagnosis, and whether 2G TKIs modulate the CIP2A pathway. Here, we show that patients with high diagnostic CIP2A levels who receive a 2G TKI do not progress, unlike those treated with imatinib (P=<0.0001). 2G TKIs induce more potent suppression of CIP2A and c-Myc than imatinib. The transcription factor E2F1 is elevated in high CIP2A patients and following 1 month of in vivo treatment 2G TKIs suppress E2F1 and reduce CIP2A; these effects are not seen with imatinib. Silencing of CIP2A, c-Myc or E2F1 in K562 cells or CML CD34+ cells reactivates PP2A leading to BCR-ABL suppression. CIP2A increases proliferation and this is only reduced by 2G TKIs. Patients with high CIP2A levels should be offered 2G TKI treatment in preference to imatinib. 2G TKIs disrupt the CIP2A/c-Myc/E2F1 positive feedback loop, leading to lower disease progression risk. The data supports the view that CIP2A inhibits PP2Ac, stabilising E2F1, creating a CIP2A/c-Myc/E2F1 positive feedback loop, which imatinib cannot overcome.

  8. Unravelling pathways downstream Sox6 induction in K562 erythroid cells by proteomic analysis

    KAUST Repository

    Barbarani, Gloria

    2017-10-20

    The Sox6 transcription factor is crucial for terminal maturation of definitive red blood cells. Sox6-null mouse fetuses present misshapen and nucleated erythrocytes, due to impaired actin assembly and cytoskeleton stability. These defects are accompanied with a reduced survival of Sox6-/- red blood cells, resulting in a compensated anemia. Sox6-overexpression in K562 cells and in human primary ex vivo erythroid cultures enhances erythroid differentiation and leads to hemoglobinization, the hallmark of erythroid maturation. To obtain an overview on processes downstream to Sox6 expression, we performed a differential proteomic analysis on human erythroid K562 cells overexpressing Sox6. Sox6-overexpression induces dysregulation of 64 proteins, involved in cytoskeleton remodeling and in protein synthesis, folding and trafficking, key processes for erythroid maturation. Moreover, 43 out of 64 genes encoding for differentially expressed proteins contain within their proximal regulatory regions sites that are bound by SOX6 according to ENCODE ChIP-seq datasets and are possible direct SOX6 targets. SAR1B, one of the most induced proteins upon Sox6 overexpression, shares a conserved regulatory module, composed by a double SOX6 binding site and a GATA1 consensus, with the adjacent SEC24 A gene. Since both genes encode for COPII components, this element could concur to the coordinated expression of these proteins during erythropoiesis.

  9. Comparative Study of Different Nano-Formulations of Curcumin for Reversal of Doxorubicin Resistance in K562R Cells.

    Science.gov (United States)

    Dash, Tapan K; Konkimalla, V Badireenath

    2017-02-01

    Curcumin is very well established as a chemo-therapeutic, chemo-preventive and chemo-sensitizing agent in diverse disease conditions. As the isolated pure form has poor solubility and pharmacokinetic problems, therefore it is encapsulated in to several nano-formulations to improve its bioavailability. Here in the current study, we aim to compare different nano-formulations of curcumin for their chemo-sensitizing activity in doxorubicin (DOX) resistant K562 cells. Four different curcumin formulations were prepared namely DMSO assisted curcumin nano-dispersion (CurD, 260 nm), liposomal curcumin (CurL, 165 nm), MPEG-PCL micellar curcumin (CurM, 18 nm) and cyclodextrin encapsulated curcumin (CurN, 37 nm). The formulations were subjected to particle characterizations (size, zeta potential, release studies), followed by biological assays such as cellular uptake, P-gp inhibitory activity and reversal of DOX resistance by co-treatment with DOX. Curcumin uptake in K562N and K562R cells was mildly reduced when treated with CurL and CurM, while for CurD and CurN the uptake remained equivalent. However, CurL retained P-gp inhibitory activity of curcumin and with a considerable chemo-sensitizing effect but CurM showed no P-gp inhibitory activity. CurN retained above biological activities, but requires a secondary carrier under in vivo conditions. From the results, CurM was found to be most suitable for solubilization of curcumin where as CurL can be considered as most suitable nano-formulation for reversal of DOX resistance.

  10. PDGFRα promoter polymorphisms and expression patterns influence risk of development of imatinib-induced thrombocytopenia in chronic myeloid leukemia: A study from India.

    Science.gov (United States)

    Guru, Sameer Ahmad; Mir, Rashid; Bhat, Musadiq; Najar, Imtiyaz; Zuberi, Mariyam; Sumi, Mamta; Masroor, Mirza; Gupta, Naresh; Saxena, Alpana

    2017-10-01

    Platelet-derived growth factor receptor has been implicated in many malignant and non-malignant diseases. Platelet-derived growth factor receptor-α is a tyrosine kinase and a side target for imatinib, a revolutionary drug for the treatment of chronic myeloid leukemia that has dramatically improved the survival of chronic myeloid leukemia patients. Given the importance of platelet-derived growth factor receptor in platelet development and its inhibition by imatinib, it was intriguing to analyze the role of platelet-derived growth factor receptor-α in relation to imatinib treatment in the development of imatinib-induced thrombocytopenia in chronic myeloid leukemia patients. We hypothesized that two known functional polymorphisms, +68GA insertion/deletion and -909C/A, in the promoter region of the platelet-derived growth factor receptor-α gene may affect the susceptibility of chronic myeloid leukemia patients receiving imatinib treatment to the development of thrombocytopenia. A case-control study was conducted among a cohort of chronic myeloid leukemia patients admitted to the Lok Nayak Hospital, New Delhi, India. A set of 100 patients of chronic myeloid leukemia in chronic phase and 100 age- and sex-matched healthy controls were studied. After initiation of imatinib treatment, the hematological response of chronic myeloid leukemia patients was monitored regularly for 2 years, in which the development of thrombocytopenia was the primary end point. Platelet-derived growth factor receptor-α promoter polymorphisms +68GA ins/del and -909C/A were studied by allele-specific polymerase chain reaction. Platelet-derived growth factor receptor-α messenger RNA expression was evaluated by quantitative real-time polymerase chain reaction. The messenger RNA expression results were expressed as 2 -Δct ± standard deviation. The distribution of +68GA ins/del promoter polymorphism genotypes differed significantly between the thrombocytopenic and non-thrombocytopenic chronic

  11. Serum concentrations of nitrite and malondialdehyde as markers of oxidative stress in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Maria Juracy Petrola

    2012-01-01

    Full Text Available BACKGROUND: Chronic myeloid leukemia is a neoplasm characterized by clonal expansion of hematopoietic progenitor cells resulting from the (9:22(q34,11 translocation. The tyrosine kinase abl fusion protein,the initial leukemogenic event in chronic myeloid leukemia, is constitutively activated thus inducing the production of reactive oxygen species. Of particular relevance is the fact that an increase in reactive oxygen species can facilitate genomic instability and may contribute to disease progression. OBJETIVE: To evaluate oxidative stress by determining the levels of malondialdehyde and nitrite in chronic myeloid leukemia patients under treatment with 1st and 2nd generation tyrosine kinase inhibitors monitored at a referral hospital in Fortaleza, Ceará. METHODS: A cross-sectional study was performed of 64 male and female adults. Patients were stratified according to treatment. The levels of malondialdehyde and nitrite were determined by spectrophotometry. Statistical differences between groups were observed using the Student t-test and Fisher's exact test. The results are expressed as mean ± standard error of mean. The significance level was set for a p-value < 0.05 in all analyses. RESULTS: The results show significantly higher mean concentrations of nitrite and malondialdehyde in chronic myeloid leukemia patients using second-generation tyrosine kinase inhibitors compared to patients on imatinib. Conclusion: It follows that chronic myeloid leukemia patients present higher oxidative activity and that the increases in oxidative damage markers can indicate resistance to 1st generation tyrosine kinase inhibitors.

  12. Tyrosine Kinase Inhibitor Treatment for Newly Diagnosed Chronic Myeloid Leukemia.

    Science.gov (United States)

    Radich, Jerald P; Mauro, Michael J

    2017-08-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder that accounts for approximately 10% of new cases of leukemia. The introduction of tyrosine kinase inhibitors has led to a reduction in mortalities. Thus, the estimated prevalence of CML is increasing. The National Comprehensive Cancer Network and the European Leukemia Net guidelines incorporate frequent molecular monitoring of the fusion BCR-ABL transcript to ensure that patients reach and keep treatment milestones. Most patients with CML are diagnosed in the chronic phase, and approximately 10% to 30% of these patients will at some time in their course meet definition criteria of resistance to imatinib. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Interferon in chronic myeloid leukaemia: past and future.

    Science.gov (United States)

    Guilhot, François; Roy, Lydia; Saulnier, Pierre-Jean; Guilhot, Joëlle

    2009-09-01

    Imatinib has revolutionized the therapy of chronic myeloid leukaemia. However the complete eradication of leukaemic stem cells is still a matter of discussion. Interferon (IFN) has been used in the past with success. However the proportion of patients who achieved sustained complete cytogenetic response was small. Recently, in addition to its direct antineoplastic effect and immunomodulatory activity, IFN has been shown to stimulate the quiescent leukaemic stem cells. Thus there is now a rational for combining Imatinib and IFN. Large prospective phase III trials are in good progress to demonstrate in humans the usefullness of a combination therapy using Imatinib and IFN.

  14. Tyrosine kinase inhibition: A therapeutic target for the management of chronic-phase chronic myeloid leukemia

    Science.gov (United States)

    Jabbour, Elias J; Cortes, Jorge E; Kantarjian, Hagop M

    2014-01-01

    Chronic myeloid leukemia (CML) is a hematologic neoplasm with a progressive, ultimately terminal, disease course. In most cases, CML arises owing to the aberrant formation of a chimeric gene for a constitutively active tyrosine kinase. Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target transforming the prognosis of patients with CML. New tyrosine kinase inhibitors (TKIs) continue to improve the management of CML, offering alternative options for those resistant to or intolerant of standard TKIs. Here we review the pathobiology of CML and explore emerging strategies to optimize the management of chronic-phase CML, particularly first-line treatment. PMID:24236822

  15. Dual Functions of the C5a Receptor as a Connector for the K562 Erythroblast-Like Cell-THP-1 Macrophage-Like Cell Island and as a Sensor for the Differentiation of the K562 Erythroblast-Like Cell during Haemin-Induced Erythropoiesis

    Directory of Open Access Journals (Sweden)

    Hiroshi Nishiura

    2012-01-01

    Full Text Available The transcriptional nuclear factor binding to the Y box of human leukocyte antigen genes (NF-Y for the C5a receptor (C5aR gene is active in erythroblasts. However, the roles of the C5aR in erythropoiesis are unclear. We have previously demonstrated that apoptotic cell-derived ribosomal protein S19 (RP S19 oligomers exhibit extraribosomal functions in promoting monocyte chemotaxis and proapoptosis via the C5aR without receptor internalisation. In contrast to the extraribosomal functions of the RP S19, a proapoptotic signal in pro-EBs, which is caused by mutations in the RP S19 gene, is associated with the inherited erythroblastopenia, Diamond-Blackfan anaemia. In this study, we detected C5aR expression and RP S19 oligomer generation in human erythroleukemia K562 cells during haemin-induced erythropoiesis. Under monocell culture conditions, the differentiation into K562 erythrocyte-like cells was enhanced following the overexpression of Wild-type RP S19. Conversely, the differentiation was repressed following the overexpression of mutant RP S19. An RP S19 oligomer inhibitor and a C5aR inhibitor blocked the association of the K562 basophilic EB-like cells and the THP-1 macrophage-like cells under coculture conditions. When bound to RP S19 oligomers, the C5aR may exhibit dual functions as a connector for the EB-macrophage island and as a sensor for EB differentiation in the bone marrow.

  16. Analysis of the role of COP9 Signalosome (CSN subunits in K562; the first link between CSN and autophagy

    Directory of Open Access Journals (Sweden)

    Bunce Christopher M

    2009-04-01

    Full Text Available Abstract Background The COP9/signalosome (CSN is a highly conserved eight subunit complex that, by deneddylating cullins in cullin-based E3 ubiquitin ligases, regulates protein degradation. Although studied in model human cell lines such as HeLa, very little is known about the role of the CSN in haemopoietic cells. Results Greater than 95% knockdown of the non-catalytic subunit CSN2 and the deneddylating subunit CSN5 of the CSN was achieved in the human myeloid progenitor cell line K562. CSN2 knockdown led to a reduction of both CSN5 protein and mRNA whilst CSN5 knockdown had little effect on CSN2. Both knockdowns inhibited CSN deneddylase function as demonstrated by accumulation of neddylated Cul1. Furthermore, both knockdowns resulted in the sequential loss of Skp2, Cdc4 and β-TrCP F-box proteins. These proteins were rescued by the proteasome inhibitor MG132, indicating the autocatalytic degradation of F-box proteins upon loss of CSN2 or CSN5. Interestingly, altered F-box protein gene expression was also observed in CSN2 and CSN5 knockdowns, suggesting a potential role of the CSN in regulating F-box protein transcription. Loss of either CSN subunit dramatically reduced cell growth but resulted in distinct patterns of cell death. CSN5 knockdown caused mitotic defects, G2/M arrest and apoptotic cell death. CSN2 knockdown resulted in non-apoptotic cell death associated with accumulation of both the autophagy marker LC3-II and autophagic vacuoles. Treatment of vector control K562 cells with the autophagy inhibitors 3-methyladenine and bafilomycin A1 recapitulated the growth kinetics, vacuolar morphology and LC3-II accumulation of CSN2 knockdown cells indicating that the cellular phenotype of CSN2 cells arises from autophagy inhibition. Finally, loss of CSN2 was associated with the formation of a CSN5 containing subcomplex. Conclusion We conclude that CSN2 is required for CSN integrity and the stability of individual CSN subunits, and postulate

  17. Induced apoptosis by mild hyperthermia occurs via telomerase inhibition on the three human myeloid leukemia cell lines: TF-1, K562, and HL-60.

    Science.gov (United States)

    Deezagi, Abdolkhaleg; Manteghi, Sanaz; Khosravani, Pardis; Vaseli-Hagh, Neda; Soheili, Zahra-Soheila

    2009-09-01

    The purpose of this research was to understand the effect of hyperthermia on the telomerase activity in human leukemic cell lines (HL-60, K562, and TF-1). The cells were treated by hyperthermia at the range of 41-44 degrees C for 120 min and incubated for 96 h. Then telomerase activity, cell proliferation, and apoptosis were assessed. The results indicated that hyperthermia significantly induced apoptosis on the cells. The cells exhibited pre-apoptotic pattern at 41 and 42 degrees C at 60-120 min and apoptotic pattern at 43 and 44 degrees C over 30 min after hyperthermia. Telomerase activity (that was assayed immediately after hyperthermia) was stable at 41-42 degrees C for 60 min but decreased to 35-40% at 120 min. However, at severe hyperthermia (43-44 degrees C) telomerase activity was decreased in a time- and dose-dependent manner. Following hyperthermia (41-44 degrees C up to 120 min), the cells were incubated for 96 h. In these conditions, the telomerase activity was decreased by about 60-80% in comparison with that untreated control cells.

  18. Dasatinib in the treatment of imatinib refractory chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Ramchandren

    2009-05-01

    Full Text Available Radhakrishnan Ramchandren, Charles A SchifferDivision of Hematology/Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USAAbstract: The development of imatinib for the treatment of chronic myeloid leukemia (CML has proven to be an example of medical success in the era of targeted therapy. However, imatinib resistance or intolerance occurs in a substantial number of patients. Additionally, patients who have progressed beyond the chronic phase of CML do relatively poorly with imatinib therapy. Mechanisms of imatinib resistance include BCR-ABL point mutations resulting in decreased imatinib binding, as well as mutation-independent causes of resistance such as SRC family kinase dysregulation, BCR-ABL gene amplification, drug influx/efflux mechanisms and other poorly understood processes. The options for therapy in these patients include stem cell transplantation, imatinib dose escalation as well as the use of second-generation tyrosine kinase inhibitors. Dasatinib is a second-generation multi-kinase inhibitor with several theoretical and mechanistic advantages over imatinib. Moreover, several studies have evaluated dasatinib in patients who have progressed on imatinib therapy with encouraging results. Other novel agents such as mTOR inhibitors, bosutinib and INNO 406 have also shown promise in this setting. Although treatment options have increased, the choice of second-line therapy in patients with CML is influenced by concerns surrounding the duration of response as well as toxicity. Consequently, there is no agreed upon optimal second-line agent. This paper reviews the current data and attempts to address these issues. Keywords: chronic myeloid leukemia (CML, dasatinib, imatinib, resistance (imatinib resistance, nilotinib, tyrosine kinase inhibitor

  19. Chronic myeloid leukemia and interferon-alpha : a study of complete cytogenetic responders

    NARCIS (Netherlands)

    Bonifazi, F; de Vivo, A; Rosti, G; Guilhot, F; Guilhot, J; Trabacchi, E; Hehlmann, R; Hochhaus, A; Shepherd, PCA; Steegmann, JL; Kluin-Nelemans, HC; Thaler, J; Simonsson, B; Louwagie, A; Reiffers, J; Mahon, FX; Montefusco, E; Alimena, G; Hasford, J; Richards, S; Saglio, G; Testoni, N; Martinelli, G; Tura, S; Baccarani, M

    2001-01-01

    Achieving a complete cytogenetic response (CCgR) is a major target in the treatment of chronic myeloid leukemia (CIVIL) with interferon-alpha (IFN-alpha), but CCgRs are rare. The mean CCgR rate is 13%, in a range of 5% to 33%. A collaborative study of 9 European Union countries has led to the

  20. Additional cytogenetic abnormalities and variant t(9;22) at the diagnosis of childhood chronic myeloid leukemia

    DEFF Research Database (Denmark)

    Millot, Frédéric; Dupraz, Christelle; Guilhot, Joelle

    2017-01-01

    for Chronic Myeloid Leukemia in Children and Adolescents. RESULTS: Overall, 19 children (6.3%) presented with additional cytogenetic findings at diagnosis: 5 children (1.7%) had a variant t(9;22) translocation, 13 children (4.3%) had ACAs, and 1 had both. At 3 years, for children with a classic translocation......BACKGROUND: In the adult population with newly diagnosed chronic myeloid leukemia (CML), variant translocations are usually not considered to be impairing the prognosis, whereas some additional cytogenetic abnormalities (ACAs) are associated with a negative impact on survival. Because of the rarity...... of CML in the pediatric population, such abnormalities have not been investigated in a large group of children with CML. METHODS: The prognostic relevance of variant t(9;22) and ACAs at diagnosis was assessed in 301 children with CML in the chronic phase who were enrolled in the International Registry...

  1. Contribution of Protein Tyrosine Phosphateses to the Ontogeny and Progression of Chronic Myeloid Leukemia

    National Research Council Canada - National Science Library

    Tremblay, Michel

    2006-01-01

    ...). Inappropriate STAT1 and STAT5 activation have been observed in the Philadelphia chromosome-positive CML cell lines K562 and BV17, yet low levels of JAK1 tyrosine phosphorylation were observed...

  2. The best time of cytotoxicity for extracted cell wall from Lactobacillus casei and paracasei in K562 cell line

    Directory of Open Access Journals (Sweden)

    Riki M

    2013-02-01

    Full Text Available Background: The aim of this study was to evaluate the effect of extracted cell walls from Lactobacillus casei and Lactobacillus paracasei as probiotic bacteria (isolated from common carp intestine on K562 and the role of cell concentration on the results of MTT [3-(4,5-Dimethylthiazol-2-yl2,5- Diphenyl tetrazolium Bromide] test.Methods: For this purpose, bacteria were cultured in specific medium (MRS broth at anaerobic condition for 24-48 hour. After incubation period culture medium was centri-fuged, then the cells were washed twice with PBS buffer to remove additional medium. Finally, collected bacterial cell disrupted by Sonication and cell walls were separated from other components by centrifugation. After that, different concentrations of cell walls (500, 1000, 2000 and 4000 µg/ml were prepared in RPMI medium for each bacteria, separately. Then anticancer properties of the cell walls were determined in vitro at 12, 24, 48 and 72 h, also the effect of K562 concentration was assayed with MTT technique.Results: The results showed extracted cell wall from both probiotic statistically (P=0.098 have anti turmeric properties in K562 and their properties will arise in relation with concentration. As well as, we found that the number of cell had not any affect on the result of MTT assay.Conclusion: We conclude that the cytotoxicity property of extracted cell wall is related in the type of bacteria, but this anticancer property would warrant further study on the clinical application of extracted cell wall.

  3. 'Real-life' study of imatinib therapy in chronic phase-chronic myeloid leukemia: A novel retrospective observational longitudinal analysis.

    Science.gov (United States)

    Merante, Serena; Ferretti, Virginia; Elena, Chiara; Calvello, Celeste; Rocca, Barbara; Zappatore, Rita; Cavigliano, Paola; Orlandi, Ester

    2017-01-01

    Imatinib is a cornerstone of treatment of chronic myeloid leukemia. It remains unclear whether transient treatment discontinuation or dose changes affect outcome and this approach has not yet been approved for use outside clinical trials. We conducted a retrospective single-institution observational study to evaluate factors affecting response in 'real-life' clinical practice in 138 chronic myeloid leukemia patients in chronic phase treated with imatinib. We used a novel longitudinal data analytical model, with a generalized estimating equation model, to study BCR-ABL variation according to continuous standard dose, change in dose or discontinuation; BCR-ABL transcript levels were recorded. Treatment history was subdivided into time periods for which treatment was given at constant dosage (total 483 time periods). Molecular and cytogenetic complete response was observed after 154 (32%) and 358 (74%) time periods, respectively. After adjusting for length of time period, no association between dose and cytogenetic complete response rate was observed. There was a significantly lower molecular complete response rate after time periods at a high imatinib dosage. This statistical approach can identify individual patient variation in longitudinal data collected over time and suggests that changes in dose or discontinuation of therapy could be considered in patients with appropriate biological characteristics.

  4. Imatinib-induced fulminant liver failure in chronic myeloid leukemia: role of liver transplant and second-generation tyrosine kinase inhibitors: a case report.

    Science.gov (United States)

    Nacif, Lucas Souto; Waisberg, Daniel R; Pinheiro, Rafael Soares; Lima, Fabiana Roberto; Rocha-Santos, Vinicius; Andraus, Wellington; D'Albuquerque, Luiz Carneiro

    2018-03-10

    There is a worldwide problem of acute liver failure and mortality associated with remaining on the waiting for a liver transplant. In this study, we highlight results published in recent years by leading transplant centers in evaluating imatinib-induced acute liver failure in chronic myeloid leukemia and follow-up in liver transplantation. A 36-year-old brown-skinned woman (mixed Brazilian race) diagnosed 1 year earlier with chronic myeloid leukemia was started after delivery of a baby and continued for 6 months with imatinib mesylate (selective inhibitor of Bcr-Abl tyrosine kinase), which induced liver failure. We conducted a literature review using the PubMed database for articles published through September 2017, and we demonstrate a role of liver transplant in this situation for imatinib-induced liver failure. We report previously published results and a successful liver transplant after acute liver failure due to imatinib-induced in chronic myeloid leukemia treatment. We report a case of a successful liver transplant after acute liver failure resulting from imatinib-induced chronic myeloid leukemia treatment. The literature reveals the importance of prompt acute liver failure diagnosis and treatment with liver transplant in selected cases.

  5. Intravitreal Bevacizumab and Triamcinolone for Treatment of Cystoid Macular Oedema Associated with Chronic Myeloid Leukaemia and Imatinib Therapy

    Directory of Open Access Journals (Sweden)

    Eric K. Newcott

    2015-01-01

    Full Text Available Purpose. To evaluate the efficacy of intravitreal bevacizumab and triamcinolone in the treatment of cystoid macular oedema in a case with chronic myeloid leukaemia on imatinib treatment. Methods. We treated a 78-year-old man with bilateral cystoid macular oedema with intravitreal triamcinolone and subsequent bevacizumab in one eye and intravitreal bevacizumab, alone, in the fellow eye. Results. Serial intravitreal bevacizumab with and without triamcinolone treated cystoid macular oedema in both eyes and improved the vision. Conclusion. Intravitreal bevacizumab and triamcinolone could be viable options to treat cystoid macular oedema due to chronic myeloid leukaemia and imatinib therapy.

  6. Diagnosis of chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Demitrovicova, L.; Mikuskova, E.; Copakova, L.; Leitnerova, M.

    2012-01-01

    Chronic myeloid leukemia (CML) was the first cancer associated with the specific chromosomal aberration. Philadelphia chromosome due to translocation (9, 22) is present in 95% cases, fusion gene BCR/ABL is present in 100% cases at the time of diagnosis. Disease has its own characteristics detectable by physical examination, by the examination of blood count and differential and by cytomorhologic examination of bone marrow, however the diagnosis of CML is determined by cytogenetics and molecular genetics. If the diagnosis of Ph+ BCR/ABL positive CML is confirmed, the disease is treated by tyrosine kinase inhibitors (TKI). TKI don´t affect formation of leukemic gene BCR/ABL, but they can stop the action of this gene. The target therapy of tyrosine kinase inhibitors markedly improved the survival of patients with CML by inhibition the proliferation of leukemic clone on the clinically safety level of minimal disease, although probably this treatment cannot cure the CML. Cytogenetics and molecular genetics are very important at the monitoring of residual disease with sensitivity 10"-"6. (author)

  7. Conditional survival in patients with chronic myeloid leukemia in chronic phase in the era of tyrosine kinase inhibitors.

    Science.gov (United States)

    Sasaki, Koji; Kantarjian, Hagop M; Jain, Preetesh; Jabbour, Elias J; Ravandi, Farhad; Konopleva, Marina; Borthakur, Gautam; Takahashi, Koichi; Pemmaraju, Naveen; Daver, Naval; Pierce, Sherry A; O'Brien, Susan M; Cortes, Jorge E

    2016-01-15

    Tyrosine kinase inhibitors (TKIs) significantly improve survival in patients with chronic myeloid leukemia in chronic phase (CML-CP). Conditional probability provides survival information in patients who have already survived for a specific period of time after treatment. Cumulative response and survival data from 6 consecutive frontline TKI clinical trials were analyzed. Conditional probability was calculated for failure-free survival (FFS), transformation-free survival (TFS), event-free survival (EFS), and overall survival (OS) according to depth of response within 1 year of the initiation of TKIs, including complete cytogenetic response, major molecular response, and molecular response with a 4-log or 4.5-log reduction. A total of 483 patients with a median follow-up of 99.4 months from the initiation of treatment with TKIs were analyzed. Conditional probabilities of FFS, TFS, EFS, and OS for 1 additional year for patients alive after 12 months of therapy ranged from 92.0% to 99.1%, 98.5% to 100%, 96.2% to 99.6%, and 96.8% to 99.7%, respectively. Conditional FFS for 1 additional year did not improve with a deeper response each year. Conditional probabilities of TFS, EFS, and OS for 1 additional year were maintained at >95% during the period. In the era of TKIs, patients with chronic myeloid leukemia in chronic phase who survived for a certain number of years maintained excellent clinical outcomes in each age group. Cancer 2016;122:238-248. © 2015 American Cancer Society. © 2015 American Cancer Society.

  8. Current trends in molecular diagnostics of chronic myeloid leukemia.

    Science.gov (United States)

    Vinhas, Raquel; Cordeiro, Milton; Pedrosa, Pedro; Fernandes, Alexandra R; Baptista, Pedro V

    2017-08-01

    Nearly 1.5 million people worldwide suffer from chronic myeloid leukemia (CML), characterized by the genetic translocation t(9;22)(q34;q11.2), involving the fusion of the Abelson oncogene (ABL1) with the breakpoint cluster region (BCR) gene. Early onset diagnosis coupled to current therapeutics allow for a treatment success rate of 90, which has focused research on the development of novel diagnostics approaches. In this review, we present a critical perspective on current strategies for CML diagnostics, comparing to gold standard methodologies and with an eye on the future trends on nanotheranostics.

  9. Effects of light irradiation upon photodynamic therapy based on 5-aminolevulinic acid–gold nanoparticle conjugates in K562 cells via singlet oxygen generation

    Directory of Open Access Journals (Sweden)

    Xu H

    2012-09-01

    Full Text Available Hao Xu, Chen Liu, Jiansheng Mei, Cuiping Yao, Sijia Wang, Jing Wang, Zheng Li, Zhenxi ZhangKey Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shannxi, People’s Republic of ChinaPurpose: As a precursor of the potent photosensitizer protoporphyrin IX (PpIX, 5-aminolevulinic acid (5-ALA, was conjugated onto cationic gold nanoparticles (GNPs to improve the efficacy of photodynamic therapy (PDT.Methods: Cationic GNPs reduced by branched polyethyleneimine and 5-ALA were conjugated onto the cationic GNPs by creating an electrostatic interaction at physiological pH. The efficacy of ALA-GNP conjugates in PDT was investigated under irradiation with a mercury lamp (central wavelength of 395 nm and three types of light-emitting diode arrays (central wavelengths of 399, 502, and 621 nm, respectively. The impacts of GNPs on PDT were then analyzed by measuring the intracellular PpIX levels in K562 cells and the singlet oxygen yield of PpIX under irradiation.Results: The 2 mM ALA-GNP conjugates showed greater cytotoxicity against K562 cells than ALA alone. Light-emitting diode (505 nm irradiation of the conjugates caused a level of K562 cell destruction similar to that with irradiation by a mercury lamp, although it had no adverse effects on drug-free control cells. These results may be attributed to the singlet oxygen yield of PpIX, which can be enhanced by GNPs.Conclusion: Under irradiation with a suitable light source, ALA-GNP conjugates can effectively destroy K562 cells. The technique offers a new strategy of PDT.Keywords: nonradiative energy transfer, photodamage, protoporphyrin IX, selective destruction, singlet oxygen sensor green reagent, surface plasmon resonance

  10. Platelet Dysfunction in Patients with Chronic Myeloid Leukemia: Does Imatinib Mesylate Improve It?

    Directory of Open Access Journals (Sweden)

    Olga Meltem Akay

    2016-05-01

    Full Text Available Objective: The aim of this study was to investigate the effects of imatinib mesylate on platelet aggregation and adenosine triphosphate (ATP release in chronic myeloid leukemia patients. Materials and Methods: Platelet aggregation and ATP release induced by 5.0 mM adenosine diphosphate, 0.5 mM arachidonic acid, 1.0 mg/ mL ristocetin, and 2 µg/mL collagen were studied by whole blood platelet lumi-aggregometer in 20 newly diagnosed chronic myeloid leukemia patients before and after imatinib mesylate treatment. Results: At the time of diagnosis, 17/20 patients had abnormal platelet aggregation results; 8 (40% had hypoactivity, 6 (30% had hyperactivity, and 3 (15% had mixed hypo- and hyperactivity. Repeat platelet aggregation studies were performed after a mean of 19 months (min: 5 months-max: 35 months in all patients who received imatinib mesylate during this period. After therapy, 18/20 (90% patients had abnormal laboratory results; 12 (60% had hypoactive platelets, 4 (20% had mixed hypo- and hyperactive platelets, and 2 (10% had hyperactive platelets. Three of the 8 patients with initial hypoactivity remained hypoactive, while 2 developed a mixed picture, 2 became hyperactive, and 1 normalized. Of the 6 patients with initial hyperactivity, 4 became hypoactive and 2 developed a mixed pattern. All of the 3 patients with initial hypo- and hyperactivity became hypoactive. Finally, 2 of the 3 patients with initial normal platelets became hypoactive while 1 remained normal. There was a significant decrease in ristocetin-induced platelet aggregation after therapy (p0.05. Conclusion: These findings indicate that a significant proportion of chronic myeloid leukemia patients have different patterns of platelet function abnormalities and imatinib mesylate has no effect on these abnormalities, with a significant impairment in ristocetin-induced platelet aggregation.

  11. [Cytotoxic effect of physalis peruviana in cell culture of colorectal and prostate cancer and chronic myeloid leukemia].

    Science.gov (United States)

    Quispe-Mauricio, Angel; Callacondo, David; Rojas, José; Zavala, David; Posso, Margarita; Vaisberg, Abraham

    2009-01-01

    The plants have been used as drugs for centuries. However, limited research has been done on its great potential as sources of new therapeutic agents. The purpose of this study was to evaluate Physalis peruviana cytotoxic activity on cell lines HT-29, PC-3, K-562 and VERO. The HT-29 cell lines, PC-3, K-562 and VERO, were exposed to four concentrations of P. peruviana ethanolic leave and stem extracts, also at different concentrations of cisplatin and 5-fluorouracil (5-FU), which were used as positive controls. We found rates of growth within 48 hours, then we determined the inhibitory concentration 50 (IC50) using linear regression analysis and the index of selectivity of each sample. The P. peruviana ethanolic leave and stem extracts showed cytotoxic activity. The IC50 in g/mL in leaves and stems were, 0.35 (r =-0.95 p peruviana leaves and steams ethanolic extracts were more cytotoxic than cisplatin and 5 FU, on the lines HT-29, PC-3 and K562. Furthermore the P. peruviana cytotoxic effects were less than cisplatin and 5-FU for VERO control cells lines.

  12. Involvement of p38 MAPK- and JNK-modulated expression of Bcl-2 and Bax in Naja nigricollis CMS-9-induced apoptosis of human leukemia K562 cells.

    Science.gov (United States)

    Chen, Ying-Jung; Liu, Wen-Hsin; Kao, Pei-Hsiu; Wang, Jeh-Jeng; Chang, Long-Sen

    2010-06-15

    CMS-9, a phospholipase A(2) (PLA(2)) isolated from Naja nigricollis venom, induced apoptosis of human leukemia K562 cells, characterized by mitochondrial depolarization, modulation of Bcl-2 family members, cytochrome c release and activation of caspases 9 and 3. Moreover, an increase in intracellular Ca2+ concentration and the production of reactive oxygen species (ROS) was noted. Pretreatment with BAPTA-AM (Ca2+ chelator) and N-acetylcysteine (NAC, ROS scavenger) proved that Ca2+ was an upstream event in inducing ROS generation. Upon exposure to CMS-9, activation of p38 MAPK and JNK was observed in K562 cells. BAPTA-AM or NAC abrogated CMS-9-elicited p38 MAPK and JNK activation, and rescued viability of CMS-9-treated K562 cells. SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor) suppressed CMS-9-induced dissipation of mitochondrial membrane potential, Bcl-2 down-regulation, Bax up-regulation and increased mitochondrial translocation of Bax. Inactivation of PLA(2) activity reduced drastically the cytotoxicity of CMS-9, and a combination of lysophosphatidylcholine and stearic acid mimicked the cytotoxic effects of CMS-9. Taken together, our data suggest that CMS-9-induced apoptosis of K562 cells is catalytic activity-dependent and is mediated through mitochondria-mediated death pathway triggered by Ca2+/ROS-evoked p38 MAPK and JNK activation. 2010 Elsevier Ltd. All rights reserved.

  13. Treatments for chronic myeloid leukemia: a qualitative systematic review

    Directory of Open Access Journals (Sweden)

    Ferdin

    2012-08-01

    Full Text Available Roxanne Ferdinand,1 Stephen A Mitchell,2 Sarah Batson,2 Indra Tumur11Pfizer, Tadworth, UK; 2Abacus International, Bicester, UKBackground: Chronic myeloid leukemia (CML is a myeloproliferative disorder of blood stem cells. The tyrosine kinase inhibitor (TKI imatinib was the first targeted therapy licensed for patients with chronic-phase CML, and its introduction was associated with substantial improvements in response and survival compared with previous therapies. Clinical trial data are now available for the second-generation TKIs (nilotinib, dasatinib, and bosutinib in the first-, second-, and third-line settings. A qualitative systematic review was conducted to qualitatively compare the clinical effectiveness, safety, and effect on quality of life of TKIs for the management of chronic-, accelerated-, or blast-phase CML patients.Methods: Included studies were identified through a search of electronic databases in September 2011, relevant conference proceedings and the grey literature.Results: In the first-line setting, the long-term efficacy (up to 8 years of imatinib has been confirmed in a single randomized controlled trial (International Randomized Study of Interferon [IRIS]. All second-generation TKIs reported lower rates of transformation, and comparable or superior complete cytogenetic response (CCyR, major molecular response (MMR, and complete molecular response rates compared with imatinib by 2-year follow-up. Each of the second-generation TKIs was associated with a distinct adverse-event profile. Bosutinib was the only second-generation TKI to report quality-of-life data (no significant difference compared with imatinib treatment. Data in the second- and third-line setting confirmed the efficacy of the second-generation TKIs in either imatinib-resistant or -intolerant patients, as measured by CCyR and MMR rates.Conclusion: Data from first-line randomized controlled trials reporting up to 2-year follow-up indicate superior response

  14. Deep molecular responses for treatment-free remission in chronic myeloid leukemia.

    Science.gov (United States)

    Dulucq, Stéphanie; Mahon, Francois-Xavier

    2016-09-01

    Several clinical trials have demonstrated that some patients with chronic myeloid leukemia in chronic phase (CML-CP) who achieve sustained deep molecular responses on tyrosine kinase inhibitor (TKI) therapy can safely suspend therapy and attempt treatment-free remission (TFR). Many TFR studies to date have enrolled imatinib-treated patients; however, the feasibility of TFR following nilotinib or dasatinib has also been demonstrated. In this review, we discuss available data from TFR trials and what these data reveal about the molecular biology of TFR. With an increasing number of ongoing TFR clinical trials, TFR may become an achievable goal for patients with CML-CP. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  15. LONG-TERM RESULTS OF TARGET THERAPY WITH FIRST AND * SECOND-LINE TYROSINE KINASE INHIBITORS IN PATIENTS WITH CHRONIC MYELOID LEUKEMIA

    Directory of Open Access Journals (Sweden)

    L. L. Vysotskaya

    2015-01-01

    Full Text Available Aim: To assess long-term efficacy of firstand second-line tyrosine kinase inhibitors in non-selected patients with chronic myeloid leukemia in a real-life clinical setting.Materials and methods: The assessment is based on long-term results of a prospective single center comparative clinical trial that was based on non-selected groups of 116 patients with various stages of chronic myeloid leukemia being treated with a first generation tyrosine kinase inhibitor imatinib, and of 44 patients being treated with a second generation tyrosine kinase inhibitor nilotinib. We analyzed all-cause mortality, progression-free survival from April 2005 to April 2013, with a median of the follow-up of 128 months.Results: In 116 patients with chronic myeloid leukemia treated with imatinib, the Kaplan-Meier survival estimate was 120 months. In 44 patients at an early chronic phase, 5-year overall survival and progression-free survival was 93.2% and 8-year overall and progression-free survival was 79.5%. In 44 patients at a late chronic stage, 5-year overall and progression-free survival was 95.5%, 8-year overall and progression-free survival, 72.7%. In 28 patients at acceleration phase, 5-years overall survival was 78.6% and 8-year overall survival, 46%. Median of overall survival in patients treated with nilotinib was not reached. During 78.6 months of combination treatment with cytotoxic agents, tyrosine kinase inhibitors of the first (imatinib and second line (nilotinib, overall survival was 100%.Conclusion: In clinical practice, inclusion of patients with chronic myeloid leukemia and imatinib resistance (disease relapse or imatinib intolerance into the treatment program with frontline therapy with general cytotoxic agents and thereafter with firstand second-line tyrosine kinase inhibitors significantly improves overall survival.

  16. Tyrosine kinase inhibitors induced immune thrombocytopenia in chronic myeloid leukemia?

    Directory of Open Access Journals (Sweden)

    Avital F. Barak

    2011-12-01

    Full Text Available The outcome and quality of life of chronic myeloid leukemia (CML patients has remarkably changed with the treatment of tyrosine kinase inhibitors (TKIs. Currently, hematopoietic stem cell transplantation (HSCT is considered mainly as a third line salvage therapy in cases of TKIs resistance or intolerance. Here we describe a patient with chronic phase CML who developed both resistance and late occurrence of s severe thrombocytopenia on first and second generation TKIs and eventually underwent HSCT. Although the mechanism of the myelosuppression is not fully understood, we showed for the first time the development of dose dependent platelet antibodies in the presence of TKIs, suggesting the possibility of TKIs induced thrombocytopenia. Our case emphasizes that late development of severe myelosuppression during imatinib treatment is probably an important indication for consideration of early HSCT.

  17. Efficacy of escalated imatinib combined with cytarabine in newly diagnosed patients with chronic myeloid leukemia

    NARCIS (Netherlands)

    Deenik, Wendy; Janssen, Jeroen J. W. M.; van der Holt, Bronno; Verhoef, Gregor E. G.; Smit, Willem M.; Kersten, Marie José; Daenen, Simon M. G. J.; Verdonck, Leo F.; Ferrant, Augustin; Schattenberg, Anton V. M. B.; Sonneveld, Pieter; van Marwijk Kooy, Marinus; Wittebol, Shulamit; Willemze, Roelof; Wijermans, Pierre W.; Beverloo, H. Berna; Löwenberg, Bob; Valk, Peter J. M.; Ossenkoppele, Gert J.; Cornelissen, Jan J.

    2010-01-01

    In order to improve the molecular response rate and prevent resistance to treatment, combination therapy with different dosages of imatinib and cytarabine was studied in newly diagnosed patients with chronic myeloid leukemia in the HOVON-51 study. Having reported feasibility previously, we hereby

  18. Efficacy of escalated imatinib combined with cytarabine in newly diagnosed patients with chronic myeloid leukemia

    NARCIS (Netherlands)

    Deenik, W.; Janssen, J.J.W.M.; van der Holt, B.; Verhoef, G.E.G.; Smit, W.M.; Kersten, M.J.; Daenen, S.M.G.J.; Verdouck, L.F.; Ferrant, A.; Schattenberg, A.V.M.B.; Sonneveld, P.; Kooy, M.V.M.; Wittebol, S.; Willemze, R.; Wijermans, P.W.; Beverloo, H.B.; Lowenberg, B.; Valk, P.J.M.; Ossenkoppele, G.J.; Cornelissen, J.J.

    2010-01-01

    Background In order to improve the molecular response rate and prevent resistance to treatment, combination therapy with different dosages of imatinib and cytarabine was studied in newly diagnosed patients with chronic myeloid leukemia in the HOVON-51 study. Design and Methods Having reported

  19. Efficacy of escalated imatinib combined with cytarabine in newly diagnosed patients with chronic myeloid leukemia

    NARCIS (Netherlands)

    Deenik, Wendy; Janssen, Jeroen J. W. M.; van der Holt, Bronno; Verhoef, Gregor E. G.; Smit, Willem M.; Kersten, Marie Jose; Daenen, Simon M. G. J.; Verdouck, Leo F.; Ferrant, Augustin; Schattenberg, Anton V. M. B.; Sonneveld, Pieter; Kooy, Marinus van Marwijk; Wittebol, Shulamit; Willemze, Roelof; Wijermans, Pierre W.; Beverloo, H. Berna; Lowenberg, Bob; Valk, Peter J. M.; Ossenkoppele, Gert J.; Cornelissen, Jan J.

    Background In order to improve the molecular response rate and prevent resistance to treatment, combination therapy with different dosages of imatinib and cytarabine was studied in newly diagnosed patients with chronic myeloid leukemia in the HOVON-51 study. Design and Methods Having reported

  20. Bosutinib efficacy and safety in chronic phase chronic myeloid leukemia after imatinib resistance or intolerance : Minimum 24-month follow-up

    NARCIS (Netherlands)

    Gambacorti-Passerini, Carlo; Brümmendorf, Tim H; Kim, Dong-Wook; Turkina, Anna G; Masszi, Tamas; Assouline, Sarit; Durrant, Simon; Kantarjian, Hagop M; Khoury, H Jean; Zaritskey, Andrey; Shen, Zhi-Xiang; Jin, Jie; Vellenga, Edo; Pasquini, Ricardo; Mathews, Vikram; Cervantes, Francisco; Besson, Nadine; Turnbull, Kathleen; Leip, Eric; Kelly, Virginia; Cortes, Jorge E

    Bosutinib is an orally active, dual Src/Abl tyrosine kinase inhibitor for treatment of chronic myeloid leukemia (CML) following resistance/intolerance to prior therapy. Here, we report the data from the 2-year follow-up of a phase 1/2 open-label study evaluating the efficacy and safety of bosutinib

  1. PENGARUH EKSTRAK JAMU TERHADAP AKTIVITAS SEL NATURAL KILLER DALAM MELISIS ALUR SEL LEUKIMIA (K-562 SECARA IN VITRO [The Effects of Commercial “Jamu” Extracts on Natural Killer Cell Activity in Lysing Leukemic Cell Line (K-562 in vitro

    Directory of Open Access Journals (Sweden)

    Elisa Veronica D.C. 2

    2002-04-01

    Full Text Available Natural killer (NK cell consitutes white blood cells which specifically functions in lysing tumor and virus invected cells. In this research, a commercial “Jamu” was tested to observe its effect on NK cells activity against leukemic cell lines (K562 in vitro. Jamu was extracted with hot water, diluted and added into cell cultures consisted of a mixture of human peripheric limphocyte cells, as the source of the effector NK cells, and K562 cell line i.e., the target cells which were cell line derived from human leukemia and had been labelled with H3-thymidine. The mixture of the cells were made by culturing the two cells at the ratio of 50:1 and 100 : 1, respectively. The results showed that lysing activity of NK cells in the presence of “Jamu” water extract measured as lysing percentage and lysing index increased only slightly, which were not statiscally significant. It should be considered that the test used in this research represents only a part of the lysing mechanism by NK cells against the target cells. An in vivo test for a period of time will be recessary to elucidate ffurther this NK cell activity.

  2. The significance of major and stable molecular responses in chronic myeloid leukemia in the tyrosine kinase inhibitor era

    Directory of Open Access Journals (Sweden)

    Ilana Zalcberg Renault

    2011-12-01

    Full Text Available Tyrosine kinase inhibitors have changed the management and outcomes of chronic myeloid leukemia patients. Quantitative polymerase chain reaction is used to monitor molecular responses to tyrosine kinase inhibitors. Molecular monitoring represents the most sensitive tool to judge chronic myeloid leukemia disease course and allows early detection of relapse. Evidence of achieving molecular response is important for several reasons: 1. early molecular response is associated with major molecular response rates at 18-24 months; 2. patients achieving major molecular response are less likely to lose their complete cytogenetic response; 3. a durable, stable major molecular response is associated with increased progression-free survival. However, standardization of molecular techniques is still challenging.

  3. The significance of major and stable molecular responses in chronic myeloid leukemia in the tyrosine kinase inhibitor era

    Science.gov (United States)

    Renault, Ilana Zalcberg; Scholl, Vanesa; Hassan, Rocio; Capelleti, Paola; de Lima, Marcos; Cortes, Jorge

    2011-01-01

    Tyrosine kinase inhibitors have changed the management and outcomes of chronic myeloid leukemia patients. Quantitative polymerase chain reaction is used to monitor molecular responses to tyrosine kinase inhibitors. Molecular monitoring represents the most sensitive tool to judge chronic myeloid leukemia disease course and allows early detection of relapse. Evidence of achieving molecular response is important for several reasons: 1. early molecular response is associated with major molecular response rates at 18-24 months; 2. patients achieving major molecular response are less likely to lose their complete cytogenetic response; 3. a durable, stable major molecular response is associated with increased progression-free survival. However, standardization of molecular techniques is still challenging. PMID:23049363

  4. The risk of chronic myeloid leukemia: Can the dose-response curve be U-shaped?

    Czech Academy of Sciences Publication Activity Database

    Radivoyevitch, T.; Kozubek, Stanislav; Sachs, R. K.

    2002-01-01

    Roč. 157, č. 1 (2002), s. 106-109 ISSN 0033-7587 R&D Projects: GA ČR GA202/01/0197; GA ČR GA301/01/0186; GA AV ČR IBS5004010 Keywords : radiation risk * chronic myeloid leukemia * chromosome translocation Subject RIV: BO - Biophysics Impact factor: 2.768, year: 2002

  5. Therapy for chronic myeloid leukemia: Past, present and future

    International Nuclear Information System (INIS)

    Tothova, E.

    2012-01-01

    Although chronic myeloid leukemia (CML) was probably first described in the early nineteenth century, there was little progress in understanding its biology until the discovery of the Philadelphia (Ph) chromosome in 1960. Subsequent important landmarks were the recognition that the Ph chromosome results from a t(9;22) translocation and subsequently of BCR-ABL fusion gene. Between 1980 and 2000, allo grafting, despite the risks of morbidity and mortality, was the recommended initial treatment for younger patients with HLA-matched donors. Therapy has now been „revolutionized“ by the introduction on imatinib mesylate (IM), the original Abl tyrosine kinase inhibitor (TKI) which was used first in the clinic in 1998. This paper will attempt to define approaches to management of the newly diagnosed patient with CML in chronic phase that are favored in 2012, but it is most probable these recommendations will need to be updated as further experience in gained with the use of TKI. (author)

  6. MiR-27a Promotes Hemin-Induced Erythroid Differentiation of K562 Cells by Targeting CDC25B

    Directory of Open Access Journals (Sweden)

    Dongsheng Wang

    2018-03-01

    Full Text Available Background/Aims: MicroRNAs (miRNAs play a crucial role in erythropoiesis. MiR-23a∼27a∼24-2 clusters have been proven to take part in erythropoiesis via some proteins. CDC25B (cell division control Cdc2 phosphostase B is also the target of mir-27a; whether it regulates erythropoiesis and its mechanism are unknown. Methods: To evaluate the potential role of miR-27a during erythroid differentiation, we performed miR-27a gain- and loss-of-function experiments on hemin-induced K562 cells. We detected miR-27a expression after hemin stimulation at different time points. At the same time, the γ-globin gene also was measured via real-time PCR. According to the results of the chips, we screened the target protein of miR-27a through a dual-luciferase reporter assay and identified it via Western blot analyses. To evaluate the function of CDC25B, benzidine staining and flow cytometry were employed to detect the cell differentiation and cell cycle. Results: We found that miR-27a promotes hemin-induced erythroid differentiation of human K562 cells by targeting cell division cycle 25 B (CDC25B. Overexpression of miR-27a promotes the differentiation of hemin-induced K562 cells, as demonstrated by γ-globin overexpression. The inhibition of miR-27a expression suppresses erythroid differentiation, thus leading to a reduction in the γ-globin gene. CDC25B was identified as a new target of miR-27a during erythroid differentiation. Overexpression of miR-27a led to decreased CDC25B expression after hemin treatment, and CDC25B was up-regulated when miR-27a expression was inhibited. Moreover, the inhibition of CDC25B affected erythroid differentiation, as assessed by γ-globin expression. Conclusion: This study is the first report of the interaction between miR-27a and CDC25B, and it improves the understanding of miRNA functions during erythroid differentiation.

  7. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro

    International Nuclear Information System (INIS)

    Kawasaki, E.S.; Clark, S.S.; Coyne, M.Y.; Smith, S.D.; Champlin, R.; Witte, O.N.; McCormick, F.P.

    1988-01-01

    The Philadelphia chromosome is present in more than 95% of chronic myeloid leukemia patients and 13% of acute lymphocytic leukemia patients. The Philadelphia translocation, t(9;22), fuses the BCR and ABL genes resulting in the expression of leukemia-specific, chimeric BCR-ABL messenger RNAs. To facilitate diagnosis of these leukemias, the authors have developed a method of amplifying and detecting only the unique mRNA sequences, using an extension of the polymerase chain reaction technique. Diagnosis of chronic myeloid and acute lymphocytic leukemias by this procedure is rapid, much more sensitive than existing protocols, and independent of the presence or absence of an identifiable Philadelphia chromosome

  8. Imatinib mesylate in chronic myeloid leukemia: frontline treatment and long-term outcomes.

    Science.gov (United States)

    Stagno, Fabio; Stella, Stefania; Spitaleri, Antonio; Pennisi, Maria Stella; Di Raimondo, Francesco; Vigneri, Paolo

    2016-01-01

    The tyrosine kinase inhibitor Imatinib Mesylate has dramatically improved the clinical outcome of chronic myeloid leukemia (CML) patients in the chronic phase of the disease, generating unprecedented rates of complete hematologic and cytogenetic responses and sustained reductions in BCR-ABL transcripts. Here, we present an overview on the efficacy and safety of Imatinib and describe the most important clinical studies employing this drug for the frontline treatment of chronic phase CML. We also discuss recent reports describing the long-term outcome of patients receiving Imatinib for their disease. The imminent availability of generic forms of Imatinib coupled with the approval of expensive second-generation tyrosine kinase inhibitors underlines an unmet need for early molecular parameters that may distinguish CML patients likely to benefit from the drug from those that should receive alternative forms of treatment.

  9. Modeling of Chronic Myeloid Leukemia : An Overview of In Vivo Murine and Human Xenograft Models

    NARCIS (Netherlands)

    Sontakke, Pallavi; Jaques, Jenny; Vellenga, Edo; Schuringa, Jan Jacob

    2016-01-01

    Over the past years, a wide variety of in vivo mouse models have been generated in order to unravel the molecular pathology of Chronic Myeloid Leukemia (CML) and to develop and improve therapeutic approaches. These models range from (conditional) transgenic models, knock-in models, and murine bone

  10. Macrophage inflammatory protein-3α influences growth of K562 leukemia cells in co-culture with anticancer drug-pretreated HS-5 stromal cells

    International Nuclear Information System (INIS)

    Lee, Y.C.; Chiou, T.-J.; Tzeng, W.-F.; Chu, S.T.

    2008-01-01

    Stromal cell monolayers have been an important means of studying the regulation of hematopoiesis, because they produce cytokines. Cytosine arabinoside, vincristine, daunorubicin, and doxorubicin are common drugs for hematological cancer therapy, and they may have some effects on bone marrow stroma during chemotherapy. The aim of this study was to elucidate interactions between the bone marrow stromal microenvironment and leukemic cells after drug treatment. We tested the hypothesis that human HS-5 stromal cells, pretreated with anticancer drugs, affected the growth of leukemic K562 cells by changing the cytokines in the culture microenvironment. Thereafter, proliferation of K562 cells increased nearly 2.5-fold compared the co-cultivation with drugs-pretreated HS-5 stromal cells and drugs-untreated HS-5 stromal cells. The results indicated that co-cultivation with HS-5 stromal cells pretreated with drugs caused significant K562 cell proliferation. Cytokines in the microenvironment were detected via the RayBio Human Cytokine Antibody Array Membrane. The levels of the cytokines CKβ, IL-12, IL-13, IGFBP-2, MCP-1, MCP-3, MCP-4, MDC, MIP-1β and MIP-1δ were decreased, with a particularly marked decrease in MIP-3α. In co-culture medium, there was a 20-fold decrease in MIP-3α in daunorubicin-pretreated HS-5 cells and at least a 3-fold decrease in Ara-C-pretreated cells. This indicated a significant effect of anticancer drugs on the stromal cell line. Using phosphorylated Erk and pRb proteins as cell proliferation markers, we found that phosphorylation of these markers in K562 cells was inhibited during co-cultivation with drug-pretreated stromal cells in MIP-3α-supplemented medium and restored by MIP-3α antibody supplement. In conclusion, anticancer drug pretreatment suppresses the negative control exerted by HS-5 cells on leukemic cell proliferation, via modulation of cytokines in the microenvironment, especially at the level of MIP-3α

  11. Potential mechanisms of disease progression and management of advanced-phase chronic myeloid leukemia

    Science.gov (United States)

    Jabbour, Elias J.; Hughes, Timothy P.; Cortés, Jorge E.; Kantarjian, Hagop M.; Hochhaus, Andreas

    2014-01-01

    Despite vast improvements in treatment of Philadelphia chromosome–positive chronic myeloid leukemia (CML) in chronic phase (CP), advanced stages of CML, accelerated phase or blast crisis, remain notoriously difficult to treat. Treatments that are highly effective against CML-CP produce disappointing results against advanced disease. Therefore, a primary goal of therapy should be to maintain patients in CP for as long as possible, by (1) striving for deep, early molecular response to treatment; (2) using tyrosine kinase inhibitors that lower risk of disease progression; and (3) more closely observing patients who demonstrate cytogenetic risk factors at diagnosis or during treatment. PMID:24050507

  12. RhoA: A therapeutic target for chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Molli Poonam R

    2012-03-01

    Full Text Available Abstract Background Chronic Myeloid Leukemia (CML is a malignant pluripotent stem cells disorder of myeloid cells. In CML patients, polymorphonuclear leukocytes (PMNL the terminally differentiated cells of myeloid series exhibit defects in several actin dependent functions such as adhesion, motility, chemotaxis, agglutination, phagocytosis and microbicidal activities. A definite and global abnormality was observed in stimulation of actin polymerization in CML PMNL. Signalling molecules ras and rhoGTPases regulate spatial and temporal polymerization of actin and thus, a broad range of physiological processes. Therefore, status of these GTPases as well as actin was studied in resting and fMLP stimulated normal and CML PMNL. Methods To study expression of GTPases and actin, Western blotting and flow cytometry analysis were done, while spatial expression and colocalization of these proteins were studied by using laser confocal microscopy. To study effect of inhibitors on cell proliferation CCK-8 assay was done. Significance of differences in expression of proteins within the samples and between normal and CML was tested by using Wilcoxon signed rank test and Mann-Whitney test, respectively. Bivariate and partial correlation analyses were done to study relationship between all the parameters. Results In CML PMNL, actin expression and its architecture were altered and stimulation of actin polymerization was absent. Differences were also observed in expression, organization or stimulation of all the three GTPases in normal and CML PMNL. In normal PMNL, ras was the critical GTPase regulating expression of rhoGTPases and actin and actin polymerization. But in CML PMNL, rhoA took a central place. In accordance with these, treatment with rho/ROCK pathway inhibitors resulted in specific growth inhibition of CML cell lines. Conclusions RhoA has emerged as the key molecule responsible for functional defects in CML PMNL and therefore can be used as a

  13. Mesenchymal Stem Cells (MSC Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC in Chronic Myeloid Leukemia Patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available It is well known that mesenchymal stem cells (MSC have a role in promotion of tumor growth, survival and drug-resistance in chronic myeloid leukemia (CML. Recent reports indicated that a subpopulation of myeloid cells, defined as granulocyte-like myeloid-derived suppressor cells (G-MDSC is increased in these patients. So far, the role of MSC in MDSC expansion and activation into the BM microenvironment remains unexplored. To address this question, here we use a specific experimental model in vitro, co-culturing MSC with peripheral blood mononucleated cells (PBMC from normal individuals, in order to generate MSC-educated G-MDSC. Although MSC of healthy donors (HD and CML patients were able to generate the same amount of MDSC, only CML-MSC-educated G-MDSC exhibited suppressive ability on autologous T lymphocytes. In addition, compared with HD-MSC, CML-MSC over-expressed some immunomodulatory factors including TGFβ, IL6 and IL10, that could be involved in MDSC activation. CML-MSC-educated G-MDSC expressed higher levels of ARG1, TNFα, IL1β, COX2 and IL6 than G-MDSC isolated from co-culture with HD-MSC. Our data provide evidence that CML-MSC may play a critical role in tumor microenvironment by orchestrating G-MDSC activation and regulating T lymphocytes-mediated leukemia surveillance, thus contributing to CML immune escape.

  14. Mesenchymal Stem Cells (MSC) Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC) in Chronic Myeloid Leukemia Patients.

    Science.gov (United States)

    Giallongo, Cesarina; Romano, Alessandra; Parrinello, Nunziatina Laura; La Cava, Piera; Brundo, Maria Violetta; Bramanti, Vincenzo; Stagno, Fabio; Vigneri, Paolo; Chiarenza, Annalisa; Palumbo, Giuseppe Alberto; Tibullo, Daniele; Di Raimondo, Francesco

    2016-01-01

    It is well known that mesenchymal stem cells (MSC) have a role in promotion of tumor growth, survival and drug-resistance in chronic myeloid leukemia (CML). Recent reports indicated that a subpopulation of myeloid cells, defined as granulocyte-like myeloid-derived suppressor cells (G-MDSC) is increased in these patients. So far, the role of MSC in MDSC expansion and activation into the BM microenvironment remains unexplored. To address this question, here we use a specific experimental model in vitro, co-culturing MSC with peripheral blood mononucleated cells (PBMC) from normal individuals, in order to generate MSC-educated G-MDSC. Although MSC of healthy donors (HD) and CML patients were able to generate the same amount of MDSC, only CML-MSC-educated G-MDSC exhibited suppressive ability on autologous T lymphocytes. In addition, compared with HD-MSC, CML-MSC over-expressed some immunomodulatory factors including TGFβ, IL6 and IL10, that could be involved in MDSC activation. CML-MSC-educated G-MDSC expressed higher levels of ARG1, TNFα, IL1β, COX2 and IL6 than G-MDSC isolated from co-culture with HD-MSC. Our data provide evidence that CML-MSC may play a critical role in tumor microenvironment by orchestrating G-MDSC activation and regulating T lymphocytes-mediated leukemia surveillance, thus contributing to CML immune escape.

  15. Additional chromosome abnormalities in chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Hui-Hua Hsiao

    2011-02-01

    Full Text Available The Philadelphia (Ph chromosome and/or Breakpoint cluster region-Abelson leukemia virus oncogene transcript are unique markers for chronic myeloid leukemia (CML. However, CML demonstrates heterogeneous presentations and outcomes. We analyzed the cytogenetic and molecular results of CML patients to evaluate their correlation with clinical presentations and outcome. A total of 84 newly diagnosed CML patients were enrolled in the study. Patients were treated according to disease status. Bone marrow samples were obtained to perform cytogenetic and molecular studies. Clinical presentations, treatment courses, and survival were reviewed retrospectively. Among 84 patients, 72 had chronic phase and 12 had accelerated phase CML. Cytogenetic study showed 69 (82.1% with the classic Ph chromosome, 6 (7.2% with a variant Ph chromosome, and 9 (10.7% with additional chromosome abnormalities. Fifty-four (64.3% cases harbored b3a2 transcripts, 29 (34.5% had b2a2 transcript, and 1 had e19a2 transcript. There was no difference in clinical presentations between different cytogenetic and molecular groups; however, additional chromosome abnormalities were significantly associated with the accelerated phase. Imatinib therapy was an effective treatment, as measured by cytogenetic response, when administered as first- and second-line therapy in chronic phase patients. Survival analysis showed that old age, additional chromosome abnormalities, high Sokal score, and no cytogenetic response in second-line therapy had a significant poor impact (p<0.05. In conclusion, we presented the cytogenetic and molecular pattern of CML patients and demonstrated that the additional chromosome abnormality was associated with poor outcome.

  16. Statistical Analysis of Competing Risks: Overall Survival in a Group of Chronic Myeloid Leukemia Patients

    Czech Academy of Sciences Publication Activity Database

    Fürstová, Jana; Valenta, Zdeněk

    2011-01-01

    Roč. 7, č. 1 (2011), s. 2-10 ISSN 1801-5603 Institutional research plan: CEZ:AV0Z10300504 Keywords : competing risks * chronic myeloid leukemia (CML) * overall survival * cause-specific hazard * cumulative incidence function Subject RIV: IN - Informatics, Computer Science http://www.ejbi.eu/images/2011-1/Furstova_en.pdf

  17. Photodynamic treatment (ALA-PDT) suppresses the expression of the oncogenic Bcr-Abl kinase and affects the cytoskeleton organization in K562 cells

    Czech Academy of Sciences Publication Activity Database

    Pluskalová, M.; Pešlová, G.; Grebeňová, D.; Halada, Petr; Hrkal, Z.

    2006-01-01

    Roč. 83, - (2006), s. 205-212 ISSN 1011-1344 R&D Projects: GA MZd NL7681 Institutional research plan: CEZ:AV0Z50200510 Keywords : k562 * bcr -abl * photodynamic treatment Subject RIV: EE - Microbiology, Virology Impact factor: 1.909, year: 2006

  18. 6′-Hydroxy Justicidin B Triggers a Critical Imbalance in Ca2+ Homeostasis and Mitochondrion-Dependent Cell Death in Human Leukemia K562 Cells

    Directory of Open Access Journals (Sweden)

    Jiaoyang Luo

    2018-06-01

    Full Text Available Justicia procumbens (J. procumbens is a traditional Chinese herbal medicine which was used for the treatment of fever, pain, and cancer. A compound 6′-hydroxy justicidin B (HJB isolated from J. procumbens exhibits promising biological properties. However, the mechanism of action and the in vivo behavior of HJB remain to be elucidated. In this study, we investigated the mechanism of action of HJB on human leukemia K562 cells and its pharmacokinetic properties in rats. The results demonstrated that HJB significantly inhibited the proliferation of K562 cells and promoted apoptosis. Besides, HJB resulted in decreased mitochondrial membrane potential deltaPSIm, increased the level of the calcium homeostasis regulator protein TRPC6 and cytosolic calcium. The activity of caspase-8, caspase-9 and the expression of p53 were significantly increased after treatment with HJB. Additionally, HJB has rapid absorption rate and relative long elimination t1/2, indicating a longer residence time in vivo. The results indicate that HJB inhibited the proliferation of K562 cells and induced apoptosis by affecting the function of mitochondria and calcium homeostasis to activate the p53 signaling pathway. The pharmacokinetic study of HJB suggested it is absorbed well and has moderate metabolism in vivo. These results present HJB as a potential novel alternative to standard human leukemia therapies.

  19. Dasatinib-Induced Rhabdomyolysis in a 33-Year-Old Patient with Chronic Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Andrew Stevenson Joel Chandranesan

    2018-01-01

    Full Text Available Rhabdomyolysis is a life-threatening syndrome due to breakdown of the skeletal muscle. It can be caused by massive trauma and crush injuries or occur as a side effect of medications. Here, we describe a case of a 33-year-old male with human immunodeficiency virus (HIV and newly diagnosed chronic myeloid leukemia (CML with severe life-threatening rhabdomyolysis due to a rare offending agent.

  20. Recombinant EphB4-HSA Fusion Protein and Azacitidine or Decitabine for Relapsed or Refractory Myelodysplastic Syndrome, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia Patients Previously Treated With a Hypomethylating Agent

    Science.gov (United States)

    2017-08-18

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Recurrent Adult Acute Myeloid Leukemia

  1. Burkholderia cenocepacia K56-2 trimeric autotransporter adhesin BcaA binds TNFR1 and contributes to induce airway inflammation.

    Science.gov (United States)

    Mil-Homens, Dalila; Pinto, Sandra N; Matos, Rute G; Arraiano, Cecília; Fialho, Arsenio M

    2017-04-01

    Chronic lung disease caused by persistent bacterial infections is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). CF pathogens acquire antibiotic resistance, overcome host defenses, and impose uncontrolled inflammation that ultimately may cause permanent damage of lungs' airways. Among the multiple CF-associated pathogens, Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria have become prominent contributors of disease progression. Here, we demonstrate that BcaA, a trimeric autotransporter adhesin (TAA) from the epidemic strain B. cenocepacia K56-2, is a tumor necrosis factor receptor 1-interacting protein able to regulate components of the tumor necrosis factor signaling pathway and ultimately leading to a significant production of the proinflammatory cytokine IL-8. Notably, this study is the first to demonstrate that a protein belonging to the TAA family is involved in the induction of the inflammatory response during B. cenocepacia infections, contributing to the success of the pathogen. Moreover, our results reinforce the relevance of the TAA BcaA as a multifunctional protein with a major role in B. cenocepacia virulence. © 2016 John Wiley & Sons Ltd.

  2. Chronic Myeloid Leukemia In a Pregnant Woman: A Case Report

    Directory of Open Access Journals (Sweden)

    Aytekin Tokmak

    2015-12-01

    Full Text Available Chronic myeloid leukemia (CML is a rare disease in pregnancy. Our aim is to present a 37 weeks of pregnant woman with chronic myelogenous leukemia. A 27 Years in multigravi (gravida 5, parity: 4, at 37 weeks gestation was admitted with the diagnosis of painful pregnancy and CML. Physical examination findings were normal, complete blood count and peripheral blood smear results were consistent with CML. The patient was diagnosed CML in the 30th week of pregnancy and were treated with hydroxyurea and interferon. Treatment depends on the mother and the fetus did not develop any side effects. Our patient with CML is interesting due to lack of perinatal effects and take the diagnosis at an early age. CML diagnosed during pregnancy requires a multidisciplinary approach and hydroxyurea and interferon treatment on the mother and fetus are at low risk of inducing adverse effects. [Cukurova Med J 2015; 40(4.000: 811-813

  3. Emerging Therapeutic Strategies for Targeting Chronic Myeloid Leukemia Stem Cells

    Directory of Open Access Journals (Sweden)

    Ahmad Hamad

    2013-01-01

    Full Text Available Chronic myeloid leukemia (CML is a clonal myeloproliferative disorder. Current targeted therapies designed to inhibit the tyrosine kinase activity of the BCR-ABL oncoprotein have made a significant breakthrough in the treatment of CML patients. However, CML remains a chronic disease that a patient must manage for life. Although tyrosine kinase inhibitors (TKI therapy has completely transformed the prognosis of CML, it has made the therapeutic management more complex. The interruption of TKI treatment results in early disease progression because it does not eliminate quiescent CML stem cells which remain a potential reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML to achieve a permanent cure, and to allow TKI interruption. This review summarizes recent research done on alternative targeted therapies with a particular focus on some important signaling pathways (such as Alox5, Hedgehog, Wnt/b-catenin, autophagy, and PML that have the potential to target CML stem cells and potentially provide cure for CML.

  4. Comparison of different methods for erythroid differentiation in the K562 cell line.

    Science.gov (United States)

    Shariati, Laleh; Modaress, Mehran; Khanahmad, Hossein; Hejazi, Zahra; Tabatabaiefar, Mohammad Amin; Salehi, Mansoor; Modarressi, Mohammad Hossein

    2016-08-01

    To compare methods for erythroid differentiation of K562 cells that will be promising in the treatment of beta-thalassemia by inducing γ-globin synthesis. Cells were treated separately with: RPMI 1640 medium without glutamine, RPMI 1640 medium without glutamine supplemented with 1 mM sodium butyrate, RPMI 1640 medium supplemented with 1 mM sodium butyrate, 25 µg cisplatin/ml, 0.1 µg cytosine arabinoside/ml. The highest differentiation (84 %) with minimum toxicity was obtained with cisplatin at 15 µg /ml. Real-time RT-PCR showed that expression of the γ-globin gene was significantly higher in the cells differentiated with cisplatin compared to undifferentiated cells (P < 0.001). Cisplatin is useful in the experimental therapy of ß-globin gene defects and can be considered for examining the basic mechanism of γ-reactivation.

  5. Natural and semi-synthetic clerodanes of Croton cajucara and their cytotoxic effects against ehrlich carcinoma and human K562 leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, Maria Aparecida M. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil). Dept. de Quimica; Martins, Jenilce R.; Pinto, Angelo C.; Kaiser, Carlos R. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Esteves-Souza, Andressa; Echevarria, Aurea [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica]. E-mail: echevarr@ufrrj.br

    2007-03-15

    The clerodane-type diterpene, trans-dehydrocrotonin (1) the major component of Croton cajucara has shown striking correlation with its therapeutic use in traditional folk medicine. Phytochemical investigations led to the isolation of the metabolites 1, cajucarinolide (6), isocajucarinolide (7), trans-crotonin (2), trans-cajucarin B (3), cis-cajucarin B (4), trans-cajucarin A (5), N-methyltyrosine, vanillic acid and 4-hydroxy-benzoic acid. 6 and 7 were synthesized in good yield by regiospecific oxidation of 1 using singlet-oxygen. All clerodanes were studied for their cytotoxic effects against human K562 leukemia and Ehrlich carcinoma cells. Ehrlich carcinoma assays with IC{sub 50} = 166 {mu}M (1), 164 {mu}M (2), 65 {mu}M (6) and 10 {mu}M (7) related to cell growth inhibitory effects were dose dependent. Furthermore, moderate cytotoxic activity against K562 leukemia cells was observed with IC{sub 50} = 38 {mu}M (3), 33 {mu}M (5), 36 {mu}M (6) and 43 {mu}M (7). The semi-synthetic 2, 6 and 7 showed similar results when compared to the corresponding natural clerodanes. (author)

  6. Natural and semi-synthetic clerodanes of Croton cajucara and their cytotoxic effects against ehrlich carcinoma and human K562 leukemia cells

    International Nuclear Information System (INIS)

    Maciel, Maria Aparecida M.; Martins, Jenilce R.; Pinto, Angelo C.; Kaiser, Carlos R.; Esteves-Souza, Andressa; Echevarria, Aurea

    2007-01-01

    The clerodane-type diterpene, trans-dehydrocrotonin (1) the major component of Croton cajucara has shown striking correlation with its therapeutic use in traditional folk medicine. Phytochemical investigations led to the isolation of the metabolites 1, cajucarinolide (6), isocajucarinolide (7), trans-crotonin (2), trans-cajucarin B (3), cis-cajucarin B (4), trans-cajucarin A (5), N-methyltyrosine, vanillic acid and 4-hydroxy-benzoic acid. 6 and 7 were synthesized in good yield by regiospecific oxidation of 1 using singlet-oxygen. All clerodanes were studied for their cytotoxic effects against human K562 leukemia and Ehrlich carcinoma cells. Ehrlich carcinoma assays with IC 50 = 166 μM (1), 164 μM (2), 65 μM (6) and 10 μM (7) related to cell growth inhibitory effects were dose dependent. Furthermore, moderate cytotoxic activity against K562 leukemia cells was observed with IC 50 = 38 μM (3), 33 μM (5), 36 μM (6) and 43 μM (7). The semi-synthetic 2, 6 and 7 showed similar results when compared to the corresponding natural clerodanes. (author)

  7. JAK2V617F mutation in chronic myeloid leukemia predicts early disease progression

    International Nuclear Information System (INIS)

    Pahore, Z.A.A.; Shamsi, T.S.; Taj, M.; Farzana, T.; Ansari, S.H.; Nadeem, M.; Ahmad, M.; Naz, A.

    2011-01-01

    Objective: To determine the association of JAK2V617F mutation along with BCR-ABL translocation or Philadelphia chromosome in chronic myeloid leukemia with early disease progression to advanced stages (accelerated phase or blast crisis) and poor outcome. Study Design: Case series. Place and Duration of Study: National Institute of Blood Diseases and Bone Marrow Transplantation, Karachi, from February 2008 to August 2009. Methodology: All the newly diagnosed cases of BCR-ABL or Philadelphia positive CML were tested for JAK2V617F mutation by Nested PCR. Demographic data, spleen size, hemoglobin levels, white blood cell and platelet counts were recorded. Independent sample t-test was used for age, haemoglobin level and spleen size. Fisher's exact test was applied to compare disease progression in JAK2V617F mutation positive and negative cases. Results: Out of 45 newly diagnosed cases of CML, 40 were in chronic phase, 01 in accelerated phase and 04 in blast crisis. JAK2V617F mutation was detected in 12 (26.7%) patients; 09 (22.5%) in chronic phase, none in accelerated phase and 03 (75%) in blast crisis. During a mean follow-up of 8 months, 03 patients in chronic phase transformed in blast crisis and 02 into accelerated phase. Overall 08 out of 11 (73%) JAK2V617F positive patients either had advanced disease or showed disease progression. Only 2 of 20 (10%) available patients, negative for the mutation, showed disease progression by transforming into blast crisis (p < 0.001). No statistically significant difference was seen in the age, spleen size, haemoglobin levels, white blood cells and platelets counts in JAK2V617F positive patients. Conclusion: JAK2V617F mutation was detected in 26.7% cases of chronic myeloid leukemia. A significant proportion of them showed early disease progression. (author)

  8. Profile of bosutinib and its clinical potential in the treatment of chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Keller-von Amsberg G

    2013-03-01

    Full Text Available Gunhild Keller-von Amsberg,1 Steffen Koschmieder21Department of Hematology and Oncology, University Cancer Center Hamburg, University Hospital Hamburg Eppendorf, 2Department of Medicine (Hematology, Oncology, and Stem Cell Transplantation, University Medical Center of Aachen and RWTH Aachen University, Aachen, GermanyAbstract: Bosutinib (SKI-606 is an orally available, once-daily, dual Src and Abl kinase inhibitor with promising clinical potential in first-, second-, and third-line treatment of chronic myeloid leukemia (CML. Bosutinib effectively inhibits wild-type BCR-ABL and most imatinib-resistant BCR-ABL mutations except for V299L and T315I. Low hematologic toxicity is a remarkable characteristic of this novel second-generation tyrosine kinase inhibitor, and this has been ascribed to its minimal activity against the platelet-derived growth factor receptor and KIT. Low-grade, typically self-limiting diarrhea, which usually appears within the first few weeks after treatment initiation, represents the predominant toxicity of bosutinib. Other treatment-associated adverse events are mostly mild to moderate. Bosutinib has been approved by the US Food and Drug Administration for the treatment of chronic, accelerated, or blast phase Philadelphia chromosome-positive CML in adult patients with resistance or intolerance to prior therapy. This review summarizes the main properties of bosutinib and the currently available data on its clinical potential in the treatment of CML.Keywords: bosutinib, chronic myeloid leukemia, BCR-ABL, Src/Abl kinase inhibitor, point mutation, imatinib resistance

  9. Successful treatment with chemotherapy and subsequent allogeneic bone marrow transplantation for myeloid blastic crisis of chronic myelogenous leukemia following advanced Hodgkin's disease

    NARCIS (Netherlands)

    Punt, C. J.; Rozenberg-Arska, M.; Verdonck, L. F.

    1987-01-01

    A 33-year-old man was treated with intensive chemotherapy for myeloid blastic crisis of chronic myelogenous leukemia (CML), which developed after radiotherapy and chemotherapy for Hodgkin's disease. After achieving a second chronic phase, he underwent allogeneic bone marrow transplantation (BMT).

  10. Expression of bovine non-classical major histocompatibility complex class I proteins in mouse P815 and human K562 cells.

    Science.gov (United States)

    Parasar, Parveen; Wilhelm, Amanda; Rutigliano, Heloisa M; Thomas, Aaron J; Teng, Lihong; Shi, Bi; Davis, William C; Suarez, Carlos E; New, Daniel D; White, Kenneth L; Davies, Christopher J

    2016-08-01

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Myeloid malignancies: mutations, models and management

    International Nuclear Information System (INIS)

    Murati, Anne; Brecqueville, Mandy; Devillier, Raynier; Mozziconacci, Marie-Joelle; Gelsi-Boyer, Véronique; Birnbaum, Daniel

    2012-01-01

    Myeloid malignant diseases comprise chronic (including myelodysplastic syndromes, myeloproliferative neoplasms and chronic myelomonocytic leukemia) and acute (acute myeloid leukemia) stages. They are clonal diseases arising in hematopoietic stem or progenitor cells. Mutations responsible for these diseases occur in several genes whose encoded proteins belong principally to five classes: signaling pathways proteins (e.g. CBL, FLT3, JAK2, RAS), transcription factors (e.g. CEBPA, ETV6, RUNX1), epigenetic regulators (e.g. ASXL1, DNMT3A, EZH2, IDH1, IDH2, SUZ12, TET2, UTX), tumor suppressors (e.g. TP53), and components of the spliceosome (e.g. SF3B1, SRSF2). Large-scale sequencing efforts will soon lead to the establishment of a comprehensive repertoire of these mutations, allowing for a better definition and classification of myeloid malignancies, the identification of new prognostic markers and therapeutic targets, and the development of novel therapies. Given the importance of epigenetic deregulation in myeloid diseases, the use of drugs targeting epigenetic regulators appears as a most promising therapeutic approach

  12. Childhood Acute Myeloid Leukemia Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    Acute myeloid leukemia (AML), juvenile myelomonocytic leukemia (JMML), acute promyelocytic leukemia (APL) and chronic myeloid leukemia (CML) account for about 20% of childhood myeloid leukemias. Other myeloid malignancies include transient abnormal myelopoiesis and myelodysplastic syndrome. Get detailed information about the classification, clinical presentation, diagnostic and molecular evaluation, prognosis, and treatment of newly diagnosed and recurrent disease in this summary for clinicians.

  13. Circulating endothelial cells are increased in chronic myeloid leukemia blast crisis

    Directory of Open Access Journals (Sweden)

    C.R.T. Godoy

    2015-06-01

    Full Text Available We measured circulating endothelial precursor cells (EPCs, activated circulating endothelial cells (aCECs, and mature circulating endothelial cells (mCECs using four-color multiparametric flow cytometry in the peripheral blood of 84 chronic myeloid leukemia (CML patients and 65 healthy controls; and vascular endothelial growth factor (VEGF by quantitative real-time PCR in 50 CML patients and 32 healthy controls. Because of an increase in mCECs, the median percentage of CECs in CML blast crisis (0.0146% was significantly higher than in healthy subjects (0.0059%, P0.05. In addition, VEGF gene expression was significantly higher in all phases of CML: 0.245 in blast crisis, 0.320 in the active phase, and 0.330 in chronic phase patients than it was in healthy subjects (0.145. In conclusion, CML in blast crisis had increased levels of CECs and VEGF gene expression, which may serve as markers of disease progression and may become targets for the management of CML.

  14. Combination of pegylated IFN-α2b with imatinib increases molecular response rates in patients with low- or intermediate-risk chronic myeloid leukemia

    DEFF Research Database (Denmark)

    Simonsson, Bengt; Gedde-Dahl, Tobias; Markevärn, Berit

    2011-01-01

    Biologic and clinical observations suggest that combining imatinib with IFN-α may improve treatment outcome in chronic myeloid leukemia (CML). We randomized newly diagnosed chronic-phase CML patients with a low or intermediate Sokal risk score and in imatinib-induced complete hematologic remissio...

  15. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia

    DEFF Research Database (Denmark)

    Cross, N. C. P.; White, H. E.; Colomer, D.

    2015-01-01

    Treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors has advanced to a stage where many patients achieve very low or undetectable levels of disease. Remarkably, some of these patients remain in sustained remission when treatment is withdrawn, suggesting that they may be at ...... of sensitivity. Here we present detailed laboratory recommendations, developed as part of the European Treatment and Outcome Study for CML (EUTOS), to enable testing laboratories to score MR in a reproducible manner for CML patients expressing the most common BCR-ABL1 variants....

  16. Current approach to the treatment of chronic myeloid leukaemia.

    Science.gov (United States)

    Pasic, Ivan; Lipton, Jeffrey H

    2017-04-01

    Of all the cancers, chronic myeloid leukaemia (CML) has witnessed the most rapid evolution of the therapeutic milieu in recent decades. The introduction of tyrosine kinase inhibitors (TKIs) as a therapeutic option has profoundly changed patient experience and outcome. The availability of multiple new highly effective therapies has increasingly underscored the importance of a good understanding of the underlying pathophysiological basis in CML, as well as patient-specific factors in choosing the right treatment for every individual. The treatment of CML has migrated in many jurisdictions from the office of a highly specialized malignant hematologist to the general hematologist or even a general practitioner. The goal of this review is to offer an overview of the modern approach to the treatment of CML, with an emphasis on chronic phase (CP) CML, including both TKI-based therapies such as imatinib, dasatinib, nilotinib, bosutinib and ponatinib, and non-TKI medications, such as omacetaxine. We discuss evidence behind each drug, most common and material adverse reactions and outline how this information can be used in selecting the right drug for the right patient. We also discuss evidence as it relates to other therapies, including stem cell transplant (SCT), and patients in accelerated (AP) and blastic phase (BP). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Myeloid derived suppressor cells (MDSCs are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs in chronic myeloid leukemia patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available Tumor immune tolerance can derive from the recruitment of suppressor cell population, including myeloid derived suppressor cells (MDSCs, able to inhibit T cells activity. We identified a significantly expanded MDSCs population in chronic myeloid leukemia (CML patients at diagnosis that decreased to normal levels after imatinib therapy. In addition, expression of arginase 1 (Arg1 that depletes microenvironment of arginine, an essential aminoacid for T cell function, resulted in an increase in patients at diagnosis. Purified CML CD11b+CD33+CD14-HLADR- cells markedly suppressed normal donor T cell proliferation in vitro. Comparing CML Gr-MDSCs to autologous polymorphonuclear leukocytes (PMNs we observed a higher Arg1 expression and activity in PMNs, together with an inhibitory effect on T cells in vitro. Our data indicate that CML cells create an immuno-tolerant environment associated to MDSCs expansion with immunosuppressive capacity mediated by Arg1. In addition, we demonstrated for the first time also an immunosuppressive activity of CML PMNs, suggesting a strong potential immune escape mechanism created by CML cells, which control the anti-tumor reactive T cells. MDSCs should be monitored in imatinib discontinuation trials to understand their importance in relapsing patients.

  18. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  19. The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL.

    Science.gov (United States)

    Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia

    2016-06-22

    Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML.

  20. Accelerated phase chronic myeloid leukemia: evaluation of clinical criteria as predictors of survival, major cytogenetic response and progression to blast phase

    Directory of Open Access Journals (Sweden)

    Vanessa Fiorini Furtado

    2015-10-01

    Full Text Available BACKGROUND: Published criteria defining the accelerated phase in chronic myeloid leukemia are heterogeneous and little is known about predictors of poor outcome.METHODS: This is a retrospective study of 139 subjects in the accelerated phase of chronic myeloid leukemia treated with imatinib at a single center in Brazil. The objective was to identify risk factors for survival, major cytogenetic response and progression to blast phase in this population. The factors analyzed were: blasts 10-29%, basophils ≥ 20%, platelets > 1 × 106/µL or 1 × 105/µL in the peripheral blood, as well as clonal evolution, splenomegaly, hemoglobin 12 months (p-value = 0.030.CONCLUSION: These data indicate that patients with the above risk factors have a worse prognosis. This information can guide the therapy to be used.

  1. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial.

    Science.gov (United States)

    Lipton, Jeffrey H; Chuah, Charles; Guerci-Bresler, Agnès; Rosti, Gianantonio; Simpson, David; Assouline, Sarit; Etienne, Gabriel; Nicolini, Franck E; le Coutre, Philipp; Clark, Richard E; Stenke, Leif; Andorsky, David; Oehler, Vivian; Lustgarten, Stephanie; Rivera, Victor M; Clackson, Timothy; Haluska, Frank G; Baccarani, Michele; Cortes, Jorge E; Guilhot, François; Hochhaus, Andreas; Hughes, Timothy; Kantarjian, Hagop M; Shah, Neil P; Talpaz, Moshe; Deininger, Michael W

    2016-05-01

    Ponatinib has shown potent activity against chronic myeloid leukaemia that is resistant to available treatment, although it is associated with arterial occlusion. We investigated whether this activity and safety profile would result in superior outcomes compared with imatinib in previously untreated patients with chronic myeloid leukaemia. The Evaluation of Ponatinib versus Imatinib in Chronic Myeloid Leukemia (EPIC) study was a randomised, open-label, phase 3 trial designed to assess the efficacy and safety of ponatinib, compared with imatinib, in newly diagnosed patients with chronic-phase chronic myeloid leukaemia. Patients from 106 centres in 21 countries were randomly assigned (1:1, with stratification by Sokal score at diagnosis) using an interactive voice and web response system to receive oral ponatinib (45 mg) or imatinib (400 mg) once daily until progression, unacceptable toxicity, or other criteria for withdrawal were met. Eligible patients were at least 18 years of age, within 6 months of diagnosis, and Philadelphia chromosome-positive by cytogenetic assessment, with Eastern Cooperative Oncology Group performance status of 0-2, and had not previously been treated with tyrosine kinase inhibitors. The primary endpoint was major molecular response at 12 months. Patients who remained on study and had molecular assessments at specified timepoints were studied at those timepoints. Safety analyses included all treated patients, as per study protocol. This trial is registered with ClinicalTrials.gov, number NCT01650805. Between Aug 14, 2012, and Oct 9, 2013, 307 patients were randomly assigned to receive ponatinib (n=155) or imatinib (n=152). The trial was terminated early, on Oct 17, 2013, following concerns about vascular adverse events observed in patients given ponatinib in other trials. Trial termination limited assessment of the primary endpoint of major molecular response at 12 months, as only 13 patients in the imatinib group and ten patients in the

  2. Chronic myeloid leukemia: an overview of the determinants of effectiveness and therapeutic response in the first decade of treatment with imatinib mesylate in a Brazilian hospital

    Directory of Open Access Journals (Sweden)

    Danielle Maria Camelo Cid

    2013-01-01

    Full Text Available Background: In the last decade, there has been a revolution in chronic myeloid leukemia treatment with the introduction of tyrosine kinase inhibitors with imatinib mesylate becoming the frontline therapy. Objective: To evaluate the therapeutic efficacy of imatinib mesylate in treating chronic myeloid leukemia patients and to identify factors related to therapeutic efficacy. Methods: This retrospective study was based on information obtained from patients'records in the Hematology Service of Hospital Universitário Walter Cantídio of the Universidade Federal do Ceará (HUWC / UFC. All patients diagnosed with chronic myeloid leukemia that took imatinib mesylate for a minimum of 12 months in the period from January 2001 to January 2011 were included. From a population of 160 patients, 100 were eligible for analysis. Results: The study population consisted of 100 patients who were mostly male (51% with ages rangingbetween 21 and 40 years (42%, from the countryside (59%, in the chronic phase (95%, with high-riskprognostic factors (40%; the prognosis of high risk was not associated with complete hematologic responseor complete cytogenetic response, but correlated to complete molecular response or major molecularresponse. Reticulin condensation was associated with complete hematologic response and completecytogenetic response. It was found that 53% of patients had greater than 90% adherence to treatment. Thehigh adherence was correlated to attaining complete cytogenetic response in less than 12 months. Moreover,20% of patients had good response. Conclusion: Significant changes are indispensable in the monitoring of patients with chronic myeloid leukemia. Thus, the multidisciplinary team is important as it provides access to the full treatment and not just to medications.

  3. Chronic Subdural Hematoma development in Accelerated phase of Chronic Myeloid Leukaemia presenting with seizure and rapid progression course with fatal outcome

    Directory of Open Access Journals (Sweden)

    Raheja Amol

    2015-06-01

    Full Text Available Occurrence of chronic subdural hematoma (CSDH in leukemia is rare, and most reported cases occurred in relation with acute myeloid leukaemia; however, occurrence is extremely rare in accelerated phase of chronic myelogenous leukaemia (CML. Seizure as presentation of SDH development in CML cases is not reported in literature. Authors report an elderly male, who was diagnosed as CML, accelerated phase of developing SDH. Initially presented to local physician with seizure; urgent CT scan head was advised, but ignored and sensorium rapidly worsened over next day and reported to our emergency department in deeply comatose state, where imaging revealed chronic subdural hematoma with hypoxic brain injury with fatal outcome. Seizure, progressive worsening of headache, vomiting and papilloedema are harbinger of intracranial space occupying lesion and requires CT head in emergency medical department for exclusion, who are receiving treatment of haematological malignancy

  4. Randomized study on hydroxyurea alone versus hydroxyurea combined with low-dose interferon-alpha 2b for chronic myeloid leukemia

    NARCIS (Netherlands)

    Kluin-Nelemans, JC; Delannoy, A; Louwagie, A; Le Cessie, S; Hermans, J; van der Burgh, JF; Hagemeijer, AM; Van den Berghe, H

    1998-01-01

    Interferon-alpha (IFN-alpha) is considered the standard therapy for chronic myeloid leukemia (CML) patients not suitable for allogeneic stem cell transplantation. From 1987 through 1992, 195 patients in the Benelux with recent untreated CML were randomized between low-dose IFN-alpha 2b (3 MIU, 5

  5. Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia

    Science.gov (United States)

    Brehme, Marc; Koschmieder, Steffen; Montazeri, Maryam; Copland, Mhairi; Oehler, Vivian G.; Radich, Jerald P.; Brümmendorf, Tim H.; Schuppert, Andreas

    2016-04-01

    Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dynamic modelling and CML patient biopsy genomic analysis enables patient stratification at unprecedented resolution. Linking CD34+ similarity as a disease progression marker to patient-derived gene expression entropy separated established CML progression stages and uncovered additional heterogeneity within disease stages. Importantly, our patient data informed model enables quantitative approximation of individual patients’ disease history within chronic phase (CP) and significantly separates “early” from “late” CP. Our findings provide a novel rationale for personalized and genome-informed disease progression risk assessment that is independent and complementary to conventional measures of CML disease burden and prognosis.

  6. Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells

    International Nuclear Information System (INIS)

    Askmyr, M; Ågerstam, H; Lilljebjörn, H; Hansen, N; Karlsson, C; Palffy, S von; Landberg, N; Högberg, C; Lassen, C; Rissler, M; Richter, J; Ehinger, M; Järås, M; Fioretos, T

    2014-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that, if not treated, will progress into blast crisis (BC) of either myeloid or B lymphoid phenotype. The BCR-ABL1 fusion gene, encoding a constitutively active tyrosine kinase, is thought to be sufficient to cause chronic phase (CP) CML, whereas additional genetic lesions are needed for progression into CML BC. To generate a humanized CML model, we retrovirally expressed BCR-ABL1 in the cord blood CD34 + cells and transplanted these into NOD-SCID (non-obese diabetic/severe-combined immunodeficient) interleukin-2-receptor γ-deficient mice. In primary mice, BCR-ABL1 expression induced an inflammatory-like state in the bone marrow and spleen, and mast cells were the only myeloid lineage specifically expanded by BCR-ABL1. Upon secondary transplantation, the pronounced inflammatory phenotype was lost and mainly human mast cells and macrophages were found in the bone marrow. Moreover, a striking block at the pre-B-cell stage was observed in primary mice, resulting in an accumulation of pre-B cells. A similar block in B-cell differentiation could be confirmed in primary cells from CML patients. Hence, this humanized mouse model of CML reveals previously unexplored features of CP CML and should be useful for further studies to understand the disease pathogenesis of CML

  7. Rationale and motivating factors for treatment-free remission in chronic myeloid leukemia.

    Science.gov (United States)

    Caldemeyer, Lauren; Akard, Luke P

    2016-12-01

    With BCR-ABL1 tyrosine kinase inhibitors (TKIs), such as imatinib, nilotinib, dasatinib, bosutinib, and ponatinib, many patients with chronic myeloid leukemia in chronic phase (CML-CP) can expect to live near-normal life spans. Current treatment recommendations of the National Comprehensive Cancer Network and the European LeukemiaNet state that patients with CML-CP should remain on TKI therapy indefinitely. However, there is increasing evidence from clinical trials that some patients with sustained deep molecular responses may be able to achieve treatment-free remission (TFR), whereby they can suspend TKI therapy without losing previously achieved responses. With many patients achieving deep molecular responses to TKI therapy, there is growing interest in whether such patients can achieve TFR. In addition, adverse events (AEs) with long-term TKI therapy, including both the potential for later-emerging AEs and chronic, low-grade AEs, represent a major motivator for oncologists and their patients to investigate the feasibility of TFR. In this review, we provide an overview of data from TFR clinical trials, discuss the importance of achieving a deep molecular response to TKI treatment, and consider potential reasons for investigating TFR following TKI therapy.

  8. Omitting cytogenetic assessment from routine treatment response monitoring in chronic myeloid leukemia is safe.

    Science.gov (United States)

    Geelen, Inge G P; Thielen, Noortje; Janssen, Jeroen J W M; Hoogendoorn, Mels; Roosma, Tanja J A; Valk, Peter J M; Visser, Otto; Cornelissen, Jan J; Westerweel, Peter E

    2018-04-01

    The monitoring of response in chronic myeloid leukemia (CML) is of great importance to identify patients failing their treatment in order to adjust TKI choice and thereby prevent progression to advanced stage disease. Cytogenetic monitoring has a lower sensitivity, is expensive, and requires invasive bone marrow sampling. Nevertheless, chronic myeloid leukemia guidelines continue to recommend performing routine cytogenetic response assessments, even when adequate molecular diagnostics are available. In a population-based registry of newly diagnosed CML patients in the Netherlands, all simultaneous cytogenetic and molecular assessments performed at 3, 6, and 12 months were identified and response of these matched assessments was classified according to European Leukemia Net (ELN) recommendations. The impact of discrepant cytogenetic and molecular response classifications and course of patients with additional chromosomal abnormalities were evaluated. The overall agreement of 200 matched assessments was 78%. In case of discordant responses, response at 24 months was consistently better predicted by the molecular outcome. Cytogenetic response assessments provided relevant additional clinical information only in some cases of molecular "warning." The development of additional cytogenetic abnormalities was always accompanied with molecular failure. We conclude that it is safe to omit routine cytogenetics for response assessment during treatment and to only use molecular monitoring, in order to prevent ambiguous classifications, reduce costs, and reduce the need for invasive bone marrow sampling. Cytogenetic re-assessment should still be performed when molecular response is suboptimal. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Targeted Therapies in Hematology and Their Impact on Patient Care: Chronic and Acute Myeloid Leukemia

    Science.gov (United States)

    Cortes, Elias Jabbour Jorge; Ravandi, Farhad; O’Brien, Susan; Kantarjian, Hagop

    2014-01-01

    Advances in the genetic and molecular characterizations of leukemias have enhanced our capabilities to develop targeted therapies. The most dramatic examples of targeted therapy in cancer to date are the use of targeted BCR-ABL protein tyrosine kinase inhibitors (TKI) which has revolutionized the treatment of chronic myeloid leukemia (CML). Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target, transforming the prognosis of patients with CML. In contrast, acute myeloid leukemia (AML) is an extremely heterogeneous disease with outcomes that vary widely according to subtype of the disease. Targeted therapy with monoclonal antibodies and small molecule kinase inhibitors are promising strategies to help improve the cure rates in AML. In this review, we will highlight the results of recent clinical trials in which outcomes of CML and AML have been influenced significantly. Also, novel approaches to sequencing and combining available therapies will be covered. PMID:24246694

  10. Occurrence of chronic lymphocytic leukemia in patients with chronic myelogenous leukemia

    Directory of Open Access Journals (Sweden)

    Pritish K Bhattacharyya

    2013-01-01

    Full Text Available Chronic lymphocytic leukemia (CLL is the most common leukemia of adults in the western world and constitutes about 33% of all leukemia′s. The incidence of CLL increases with age and are more common in older population. Chronic myeloid leukemia (CML on the contrary occurs in both young adults and elderly and is a chronic myeloproliferative disease that originates from abnormal pluripotent stem cells and results in involvement of multiple hematopoietic lineages, but predominantly myeloid and less commonly lymphoid. Association between CLL and myeloid malignancies (CML, acute myeloid leukemia and MDS, myelodysplastic syndrome is rare. In literature documenting CLL and CML in same patients, occur either simultaneously or CML is preceded by CLL.

  11. 31 CFR 56.2 - Sales price.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Sales price. 56.2 Section 56.2 Money and Finance: Treasury Regulations Relating to Money and Finance DOMESTIC GOLD AND SILVER OPERATIONS SALE OF SILVER § 56.2 Sales price. Sales of silver will be at prices offered through the competitive...

  12. Optimized Treatment Schedules for Chronic Myeloid Leukemia.

    Directory of Open Access Journals (Sweden)

    Qie He

    2016-10-01

    Full Text Available Over the past decade, several targeted therapies (e.g. imatinib, dasatinib, nilotinib have been developed to treat Chronic Myeloid Leukemia (CML. Despite an initial response to therapy, drug resistance remains a problem for some CML patients. Recent studies have shown that resistance mutations that preexist treatment can be detected in a substantial number of patients, and that this may be associated with eventual treatment failure. One proposed method to extend treatment efficacy is to use a combination of multiple targeted therapies. However, the design of such combination therapies (timing, sequence, etc. remains an open challenge. In this work we mathematically model the dynamics of CML response to combination therapy and analyze the impact of combination treatment schedules on treatment efficacy in patients with preexisting resistance. We then propose an optimization problem to find the best schedule of multiple therapies based on the evolution of CML according to our ordinary differential equation model. This resulting optimization problem is nontrivial due to the presence of ordinary different equation constraints and integer variables. Our model also incorporates drug toxicity constraints by tracking the dynamics of patient neutrophil counts in response to therapy. We determine optimal combination strategies that maximize time until treatment failure on hypothetical patients, using parameters estimated from clinical data in the literature.

  13. Mixed phenotype (T/B/myeloid) extramedullary blast crisis as an initial presentation of chronic myelogenous leukemia.

    Science.gov (United States)

    Qing, Xin; Qing, Annie; Ji, Ping; French, Samuel W; Mason, Holli

    2018-04-01

    Chronic myelogenous leukemia (CML) is a myeloproliferative disorder characterized by the Philadelphia (Ph) chromosome generated by the reciprocal translocation t(9,22)(q34;q11). The natural progression of the disease follows a biphasic or triphasic course. Most cases of CML are diagnosed in the chronic phase. Extramedullary blast crisis rarely occurs during the course of CML, and is extremely rare as the initial presentation of CML. Here, we report the case of a 32-year-old female with enlarged neck lymph nodes and fatigue. She was diagnosed with B-lymphoblastic leukemia/lymphoma with possible mixed phenotype (B/myeloid) by right neck lymph node biopsy at an outside hospital. However, review of her peripheral blood smear and her bone marrow aspirate and biopsy showed features consistent with CML, which was confirmed by PCR and karyotyping. An ultrasound-guided right cervical lymph node core biopsy showed a diffuse infiltrate of blasts, near totally replacing the normal lymph node tissue, admixed with some hematopoietic cells including megakaryocytes, erythroid precursors and maturing myeloid cells. By flow cytometry and immunohistochemistry, the blasts expressed CD2, cytoplasmic CD3, CD5, CD7, CD56, TdT, CD10 (weak, subset), CD19 (subset), CD79a, PAX-5 (subset), CD34, CD38, CD117 (subset), HLA-DR (subset), CD11b, CD13 (subset), CD33 (subset), and weak cytoplasmic myeloperoxidase, without co-expression of surface CD3, CD4, CD8, CD20, CD22, CD14, CD15, CD16 and CD64, consistent with blasts with mixed phenotype (T/B/myeloid). A diagnosis of extramedullary blast crisis of CML was made. Chromosomal analysis performed on the lymph node biopsy tissue revealed multiple numerical and structural abnormalities including the Ph chromosome (46-49,XX,add(1)(p34),add(3)(p25),add(5)(q13),-6,t(9;22)(q34;q11.2),+10,-15,add(17)(p11.2),+19, +der(22)t(9;22),+mar[cp8]). After completion of one cycle of combined chemotherapy plus dasatinib treatment, she was transferred to City of Hope

  14. Holotoxin A1 Induces Apoptosis by Activating Acid Sphingomyelinase and Neutral Sphingomyelinase in K562 and Human Primary Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Seong-Hoon Yun

    2018-04-01

    Full Text Available Marine triterpene glycosides are attractive candidates for the development of anticancer agents. Holotoxin A1 is a triterpene glycoside found in the edible sea cucumber, Apostichopus (Stichopus japonicus. We previously showed that cladoloside C2, the 25(26-dihydro derivative of holotoxin A1, induced apoptosis in human leukemia cells by activating ceramide synthase 6. Thus, we hypothesized that holotoxin A1, which is structurally similar to cladoloside C2, might induce apoptosis in human leukemia cells through the same molecular mechanism. In this paper, we compared holotoxin A1 and cladoloside C2 for killing potency and mechanism of action. We found that holotoxin A1 induced apoptosis more potently than cladoloside C2. Moreover, holotoxin A1 induced apoptosis in K562 cells by activating caspase-8 and caspase-3, but not by activating caspase-9. During holotoxin A1-induced apoptosis, acid sphingomyelinase (SMase and neutral SMase were activated in both K562 cells and human primary leukemia cells. Specifically inhibiting acid SMase and neutral SMаse with chemical inhibitors or siRNAs significantly inhibited holotoxin A1–induced apoptosis. These results indicated that holotoxin A1 might induce apoptosis by activating acid SMase and neutral SMase. In conclusion, holotoxin A1 represents a potential anticancer agent for treating leukemia. Moreover, the aglycone structure of marine triterpene glycosides might affect the mechanism involved in inducing apoptosis.

  15. Nilotinib-Induced Acute Pancreatitis in a Patient with Chronic Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Vihang Patel

    2017-05-01

    Full Text Available Nilotinib, a second-generation tyrosine kinase inhibitor, is used for treatment of chronic myeloid leukemia (CML; it has been widely used especially for imatinib-resistant CML. Despite being a novel drug in this therapeutic class, it has the potential to be harmful. We present the case of an elderly woman who developed life-threatening acute pancreatitis as an adverse event after having started the drug. There is only one reported case in the literature of nilotinib-induced acute pancreatitis. The purpose of this case report is to educate physicians who prescribe this medication to be aware of potential life-threatening adverse events. As more and more therapies are available, physicians should be aware of potential effects of cancer treatment that could be life-threatening to patients.

  16. p53 Gene (NY-CO-13 Levels in Patients with Chronic Myeloid Leukemia: The Role of Imatinib and Nilotinib

    Directory of Open Access Journals (Sweden)

    Hayder M. Al-kuraishy

    2018-01-01

    Full Text Available The p53 gene is also known as tumor suppressor p53. The main functions of the p53 gene are an anticancer effect and cellular genomic stability via various pathways including activation of DNA repair, induction of apoptosis, and arresting of cell growth at the G1/S phase. Normally, the p53 gene is inactivated by mouse double minute 2 proteins (mdm2, but it is activated in chronic myeloid leukemia (CML. Tyrosine kinase inhibitors are effective chemotherapeutic agents in the management of CML. The purpose of the present study was to evaluate the differential effect of imatinib and nilotinib on p53 gene serum levels in patients with CML. A total number of 60 patients with chronic myeloid leukemia with ages ranging from 47 to 59 years were recruited from the Iraqi Hematology Center. They started with tyrosine kinase inhibitors as first-line chemotherapy. They were divided into two groups—Group A, 29 patients treated with imatinib and Group B, 31 patients treated with nilotinib—and compared with 28 healthy subjects for evaluation p53 serum levels regarding the selective effect of either imatinib or nilotinib. There were significantly (p < 0.01 high p53 gene serum levels in patients with CML (2.135 ± 1.44 ng/mL compared to the control (0.142 ± 0.11 ng/mL. Patients with CML that were treated with either imatinib or nilotinib showed insignificant differences in most of the hematological profile (p > 0.05 whereas, p53 serum levels were high (3.22 ± 1.99 ng/mL in nilotinib-treated patients and relatively low (1.18 ± 0.19 ng/mL in imatinib-treated patients (p = 0.0001. Conclusions: Nilotinib is more effective than imatinib in raising p53 serum levels in patients with chronic myeloid leukemia.

  17. Cumulative clinical experience from a decade of use: imatinib as first-line treatment of chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Baran Y

    2012-11-01

    Full Text Available Yusuf Baran,1 Guray Saydam21Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey; 2Department of Hematology, School of Medicine, Ege University, Izmir, TurkeyAbstract: Chronic myeloid leukemia (CML is a malignant disease that originates in the bone marrow and is designated by the presence of the Philadelphia (Ph+ chromosome, a translocation between chromosomes 9 and 22. Targeted therapy against CML commenced with the development of small-molecule tyrosine kinase inhibitors (TKIs exerting their effect against the oncogenic breakpoint cluster region (BCR-ABL fusion protein. Imatinib emerged as the first successful example of a TKI used for the treatment of chronic-phase CML patients and resulted in significant improvements in response rate and overall survival compared with previous treatments. However, a significant portion of patients failed to respond to the therapy and developed resistance against imatinib. Second-generation TKIs nilotinib and dasatinib were to have higher efficiency in clinical trials in imatinib- resistant or intolerant CML patients compared with imatinib. Identification of novel strategies such as dose escalation, drug combination therapy, and use of novel BCR-ABL inhibitors may eventually overcome resistance against BCR-ABL TKIs. This article reviews the history of CML, including the treatment strategies used prediscovery of TKIs and the preclinical and clinical data obtained after the use of imatinib, and the second-generation TKIs developed for the treatment of CML.Keywords: drug resistance, tyrosine kinase inhibitors, chronic myeloid leukemia, imatinib, BCR/ABL

  18. Treating the chronic-phase chronic myeloid leukemia patient: which TKI, when to switch and when to stop?

    Science.gov (United States)

    Patel, Ami B; Wilds, Brandon W; Deininger, Michael W

    2017-07-01

    With the discovery of imatinib mesylate nearly 20 years ago, tyrosine kinase inhibitors (TKIs) were found to be effective in chronic myeloid leukemia (CML). TKI therapy has since revolutionized the treatment of CML and has served as a paradigm of success for targeted drug therapy in cancer. Several new TKIs for CML have been approved over the last two decades that exhibit improved potency over imatinib and have different off-target profiles, providing options for individualized therapy selection. Areas covered: Current management of chronic phase CML, including guidance on the sequential use of imatinib and newer-generation TKIs and evolving treatment strategies such as TKI discontinuation. Relevant literature was identified by searching biomedical databases (i.e. PubMed) for primary research material. Expert commentary: Although survival outcomes have drastically improved for CML patients, treatment for CML has grown more complex with the introduction of next-generation TKIs and the advent of treatment-free remissions (TFR). Goals of therapy have shifted accordingly, with increased focus on improving quality of life, managing patient expectations and optimizing patient adherence.

  19. Adherence to treatment with imatinib in chronic myeloid leukemia: a study of the first decade of responses obtained at a Brazilian hospital

    Directory of Open Access Journals (Sweden)

    Samuel Roosevelt Campos dos Reis

    2013-06-01

    Full Text Available Objetive: The aim of this study was to identify the reasons for failure in adherence to imatinib mesylate treatment in chronic myeloid leukemia. Methods: A retrospective review was performed of 100 non-electronic records of patients with Ph+ chronic myeloid leukemia treated with imatinib mesylate. The study period was from January 2001 to January2011. Data were analyzed by Chi-Square and Correspondence analysis using the Statistical Analysis System software package. Results: At the beginning of treatment 41% of patients were in advanced stages of the disease. The unavailability of the drug (44.8% and myelotoxicity (25.7% were the most frequent reasons for interruption. The adherence rate was 95% induced complete cytogenetic response, major cytogenetic response and major molecular response. Conclusion: The population of this study obtained lower-than-expected therapeutic responses compared to other studies.

  20. DNA-binding, DNA cleavage and cytotoxicity studies of two anthraquinone derivatives.

    Science.gov (United States)

    Gholivand, M B; Kashanian, S; Peyman, H

    2012-02-15

    The interaction of native calf thymus DNA (CT-DNA) with two anthraquinones including quinizarin (1,4-dihydroxy anthraquinone) and danthron (1,8-dihydroxy anthraquinone) in a mixture of 0.04M Brittone-Robinson buffer and 50% of ethanol were studied at physiological pH by spectrofluorometric and cyclic voltammetry techniques. The former technique was used to calculate the binding constants of anthraquinones-DNA complexes at different temperatures. Thermodynamic study indicated that the reactions of both anthraquinone-DNA systems are predominantly entropically driven. Furthermore, the binding mechanisms on the reaction of the two anthraquinones with DNA and the effect of ionic strength on the fluorescence property of the system have also been investigated. The results of the experiments indicated that the binding modes of quinizarin and danthron with DNA were evaluated to be groove binding. Moreover, the cytotoxic activity of both compounds against human chronic myelogenous leukemia K562 cell line and DNA cleavage were investigated. The results indicated that these compounds slightly cleavage pUC18 plasmid DNA and showed minor antitumor activity against K562 (human chronic myeloid leukemia) cell line. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. The role of peptide and DNA vaccines in myeloid leukemia immunotherapy

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2013-02-01

    Full Text Available Abstract While chemotherapy and targeted therapy are successful in inducing the remission of myeloid leukemia as acute myeloid leukemia (AML and chronic myeloid leukemia (CML, the disease remains largely incurable. This observation is likely due to the drug resistance of leukemic cells, which are responsible for disease relapse. Myeloid leukemia vaccines may most likely be beneficial for eradicating minimal residual disease after treatment with chemotherapy or targeted therapy. Several targeted immunotherapies using leukemia vaccines have been heavily investigated in clinical and preclinical trials. This review will focus on peptides and DNA vaccines in the context of myeloid leukemias, and optimal strategies for enhancing the efficacy of vaccines based on myeloid leukemia immunization are also summarized.

  2. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients.

    Science.gov (United States)

    Pardanani, Animesh D; Levine, Ross L; Lasho, Terra; Pikman, Yana; Mesa, Ruben A; Wadleigh, Martha; Steensma, David P; Elliott, Michelle A; Wolanskyj, Alexandra P; Hogan, William J; McClure, Rebecca F; Litzow, Mark R; Gilliland, D Gary; Tefferi, Ayalew

    2006-11-15

    Recently, a gain-of-function MPL mutation, MPLW515L, was described in patients with JAK2V617F-negative myelofibrosis with myeloid metaplasia (MMM). To gain more information on mutational frequency, disease specificity, and clinical correlates, genomic DNA from 1182 patients with myeloproliferative and other myeloid disorders and 64 healthy controls was screened for MPL515 mutations, regardless of JAK2V617F mutational status: 290 with MMM, 242 with polycythemia vera, 318 with essential thrombocythemia (ET), 88 with myelodysplastic syndrome, 118 with chronic myelomonocytic leukemia, and 126 with acute myeloid leukemia (AML). MPL515 mutations, either MPLW515L (n = 17) or a previously undescribed MPLW515K (n = 5), were detected in 20 patients. The diagnosis of patients with mutant MPL alleles at the time of molecular testing was de novo MMM in 12 patients, ET in 4, post-ET MMM in 1, and MMM in blast crisis in 3. Six patients carried the MPLW515L and JAK2V617F alleles concurrently. We conclude that MPLW515L or MPLW515K mutations are present in patients with MMM or ET at a frequency of approximately 5% and 1%, respectively, but are not observed in patients with polycythemia vera (PV) or other myeloid disorders. Furthermore, MPL mutations may occur concurrently with the JAK2V617F mutation, suggesting that these alleles may have functional complementation in myeloproliferative disease.

  3. RAC3 nuclear receptor co-activator has a protective role in the apoptosis induced by different stimuli

    International Nuclear Information System (INIS)

    Colo, Georgina P.; Rubio, Maria F.; Alvarado, Cecilia V.; Costas, Monica A.

    2007-01-01

    RAC3 belongs to the family of p160 nuclear receptors co activators and it is over-expressed in several tumors. We have previously shown that RAC3 is a NF-κB co activator. In this paper, we investigated the role of RAC3 in cell-sensitivity to apoptosis, using H 2 O 2 in the human embryonic kidney cell line (HEK293), and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) in a human chronic myeloid leukemia cell line (K562) naturally resistant to TRAIL. We observed that the tumoral K562 cells have high levels of RAC3 if compared with the non-tumoral HEK293 cells. The normal or transfected co activator over-expression inhibits apoptosis through a diminished caspase activity and AIF nuclear translocation, increased NF--κB, AKT and p38, and decreased ERK activities. In contrast, inhibition of RAC3 by siRNA induced sensitivity of K562 to TRAIL-induced apoptosis. Such results suggest that over-expression of RAC3 contributes to tumor development through molecular mechanisms that do not depend strictly on acetylation and/or steroid hormones, which control cell death. This could be a possible target for future tumor therapies. (author) [es

  4. 40 CFR 721.562 - Substituted alkylamine salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkylamine salt. 721.562 Section 721.562 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.562 Substituted alkylamine salt...

  5. 32 CFR 562.3 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Definitions. 562.3 Section 562.3 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY ORGANIZED RESERVES RESERVE OFFICERS' TRAINING CORPS... area. Region commanders are located at: (1) US Army First ROTC Region, Fort Bragg, NC 28307. (2) US...

  6. The concept of treatment-free remission in chronic myeloid leukemia

    Science.gov (United States)

    Saußele, S; Richter, J; Hochhaus, A; Mahon, F-X

    2016-01-01

    The advent of tyrosine kinase inhibitors (TKI) into the management of patients with chronic myeloid leukemia (CML) has profoundly improved prognosis. Survival of responders is approaching that of the general population but lifelong treatment is still recommended. In several trials, TKI treatment has been stopped successfully in approximately half of the patients with deep molecular response. This has prompted the development of a new concept in the evaluation of CML patients known as ‘treatment-free remission'. The future in CML treatment will be to define criteria for the safe and most promising discontinuation of TKI on one hand, and, on the other, to increase the number of patients available for such an attempt. Until safe criteria have been defined, discontinuation of therapy is still experimental and should be restricted to clinical trials or registries. This review will provide an overview of current knowledge as well as an outlook on future challenges. PMID:27133824

  7. Cellular uptake, nuclear localization and cytotoxicity of 125I-labelled DNA minor groove binding ligands in K562, human erythroleukaemia cells

    International Nuclear Information System (INIS)

    Karagiannis, T.C.; Lobachevsky, P.N.; Martin, R.F.

    2000-01-01

    Full text: Iodine-125 decays by orbital electron capture and internal conversion resulting in the emission of numerous Auger electrons which produce a highly localised radiochemical damage in the immediate vicinity of the site of decay. Given the requirement to deliver 125 I to the nuclear DNA, a minor groove binding bibenzimidazole, 125 I-iodoHoechst 33258 was investigated. It has been noted that this analogue may be prone to de-iodination in vitro and in vivo, given the presence of an orthoiodophenol moiety which is analogous to that in thyroxins. Therefore, an 125 I -iodoHoechst analogue without the hydroxyl group was also studied. The 125 I -iodoHoechst 33258 analogue was prepared by direct iodination of Hoechst 33258 and 125 I iodoHoechst was prepared by demetallation of a trimethylstannyl precursor. DNA binding studies indicated that both iodo-analogues bind to calf thymus DNA, K D = 89 ± 30nM, n = 0.018 bp - 1 for iodoHoechst 33258 and K D = 121 ± 31nM, n = 0.024 bp -1 for iodoHoechst. Similarly, nuclear localization following incubation with 5μM of either ligand at 37 deg C was observed in K562 cells by fluorescence microscopy. Flow cytometry was used to investigate the kinetics of drug uptake and efflux in K562 cells. The results indicated that when 10 6 cells were incubated with 5μM ligand at 37 deg C, the uptake reached a plateau at approximately 43 minutes for iodoHoechst 33258 and approximately 52 minutes for iodoHoechst. Ligand efflux results indicated two-phase kinetics. The initial phase which involves 50-60% of drug was characterised by a half-life time (t 1/2 ) of 55.4 minutes for efflux of iodoHoechst 33258 and a t 1/2 of 10.3 minutes for efflux of iodoHoechst, at 37 deg C. Furthermore, the results suggested that the DNA binding sites in a 10 6 cell/ml suspension were saturated by incubation with 3μM iodoHoechst 33258 and 5μM iodoHoechst. In the initial cytotoxicity experiments using 125 I-iodoHoechst 33258, K562 cells were incubated for 1

  8. High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia.

    Science.gov (United States)

    Pasquet, Marlène; Bellanné-Chantelot, Christine; Tavitian, Suzanne; Prade, Naïs; Beaupain, Blandine; Larochelle, Olivier; Petit, Arnaud; Rohrlich, Pierre; Ferrand, Christophe; Van Den Neste, Eric; Poirel, Hélène A; Lamy, Thierry; Ouachée-Chardin, Marie; Mansat-De Mas, Véronique; Corre, Jill; Récher, Christian; Plat, Geneviève; Bachelerie, Françoise; Donadieu, Jean; Delabesse, Eric

    2013-01-31

    Congenital neutropenia is a group of genetic disorders that involve chronic neutropenia and susceptibility to infections. These neutropenias may be isolated or associated with immunologic defects or extra-hematopoietic manifestations. Complications may occur as infectious diseases, but also less frequently as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Recently, the transcription factor GATA2 has been identified as a new predisposing gene for familial AML/MDS. In the present study, we describe the initial identification by exome sequencing of a GATA2 R396Q mutation in a family with a history of chronic mild neutropenia evolving to AML and/or MDS. The subsequent analysis of the French Severe Chronic Neutropenia Registry allowed the identification of 6 additional pedigrees and 10 patients with 6 different and not previously reportedGATA2 mutations (R204X, E224X, R330X, A372T, M388V, and a complete deletion of the GATA2 locus). The frequent evolution to MDS and AML in these patients reveals the importance of screening GATA2 in chronic neutropenia associated with monocytopenia because of the frequent hematopoietic transformation, variable clinical expression at onset, and the need for aggressive therapy in patients with poor clinical outcome. Mutations of key transcription factor in myeloid malignancies.

  9. Biodegradable charged polyester-based vectors (BCPVs) as an efficient non-viral transfection nanoagent for gene knockdown of the BCR-ABL hybrid oncogene in a human chronic myeloid leukemia cell line

    Science.gov (United States)

    Yang, Chengbin; Panwar, Nishtha; Wang, Yucheng; Zhang, Butian; Liu, Maixian; Toh, Huiting; Yoon, Ho Sup; Tjin, Swee Chuan; Chong, Peter Han Joo; Law, Wing-Cheung; Chen, Chih-Kuang; Yong, Ken-Tye

    2016-04-01

    First-line therapy of chronic myelogenous leukemia (CML) has always involved the use of BCR-ABL tyrosine-kinase inhibitors which is associated with an abnormal chromosome called Philadelphia chromosome. Although the overall survival rate has been improved by the current therapeutic regime, the presence of resistance has resulted in limited efficacy. In this study, an RNA interference (RNAi)-based therapeutic regime is proposed with the aim to knockdown the BCR-ABL hybrid oncogene using small interfering RNA (siRNA). The siRNA transfection rates have usually been limited due to the declining contact probability among polyplexes and the non-adherent nature of leukemic cells. Our work aims at addressing this limitation by using a biodegradable charged polyester-based vector (BCPV) as a nanocarrier for the delivery of BCR-ABL-specific siRNA to the suspension culture of a K562 CML cell line. BCR-ABL siRNAs were encapsulated in the BCPVs by electrostatic force. Cell internalization was facilitated by the BCPV and assessed by confocal microscopy and flow cytometry. The regulation of the BCR-ABL level in K562 cells as a result of RNAi was analyzed by real-time polymerase chain reaction (RT-PCR). We observed that BCPV was able to form stable nanoplexes with siRNA molecules, even in the presence of fetal bovine serum (FBS), and successfully assisted in vitro siRNA transfection in the non-adherent K562 cells. As a consequence of downregulation of BCR-ABL, BCPV-siRNA nanoplexes inhibited cell proliferation and promoted cell apoptosis. All results were compared with a commercial transfection reagent, Lipofectamine2000™, which served as a positive control. More importantly, this class of non-viral vector exhibits biodegradable features and negligible cytotoxicity, thus providing a versatile platform to deliver siRNA to non-adherent leukemia cells with high transfection efficiency by effectively overcoming extra- and intra-cellular barriers. Due to the excellent in vitro

  10. Lymphocytosis after treatment with dasatinib in chronic myeloid leukemia: Effects on response and toxicity.

    Science.gov (United States)

    Schiffer, Charles A; Cortes, Jorge E; Hochhaus, Andreas; Saglio, Giuseppe; le Coutre, Philipp; Porkka, Kimmo; Mustjoki, Satu; Mohamed, Hesham; Shah, Neil P

    2016-05-01

    The proliferation of clonal cytotoxic T-cells or natural killer cells has been observed after dasatinib treatment in small studies of patients with chronic myeloid leukemia (CML). The incidence of lymphocytosis and its association with response, survival, and side effects were assessed in patients from 3 large clinical trials. Overall, 1402 dasatinib-treated patients with newly diagnosed CML in chronic phase (CML-CP), CML-CP refractory/intolerant to imatinib, or with CML in accelerated or myeloid-blast phase were analyzed. Lymphocytosis developed in 32% to 35% of patients and persisted for >12 months. This was not observed in the patients who received treatment with imatinib. Dasatinib-treated patients in all stages of CML who developed lymphocytosis were more likely to achieve a complete cytogenetic response, and patients who had CML-CP with lymphocytosis were more likely to achieve major and deep molecular responses. Progression-free and overall survival rates were significantly longer in patients with CML-CP who were refractory to or intolerant of imatinib and had lymphocytosis. Pleural effusions developed more commonly in patients with lymphocytosis. Overall, lymphocytosis occurred and persisted in many dasatinib-treated patients in all phases of CML. Its presence was associated with higher response rates, significantly longer response durations, and increased overall survival, suggesting an immunomodulatory effect. Prospective studies are warranted to characterize the functional activity of these cells and to assess whether an immunologic effect against CML is detectable. Cancer 2016;122:1398-1407. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.

  11. Chronic myeloid leukemia may be associated with several bcr-abl transcripts including the acute lymphoid leukemia-type 7 kb transcript

    NARCIS (Netherlands)

    Selleri, L.; von Lindern, M.; Hermans, A.; Meijer, D.; Torelli, G.; Grosveld, G.

    1990-01-01

    In the majority of Philadelphia (Ph)-positive chronic myeloid leukemia (CML) patients, the c-abl gene is fused to the bcr gene, resulting in the transcription of an 8.5 kb chimeric bcr-abl mRNA, which is translated into a p210bcr-abl fusion protein. In about 50% of the Ph-positive acute lymphoid

  12. [Cardiovascular management of patients with chronic myeloid leukemia from a multidisciplinary perspective, and proposing action protocol by consensus meeting].

    Science.gov (United States)

    García-Gutiérrez, Valentín; Jiménez-Velasco, Antonio; Gómez-Casares, M Teresa; Sánchez-Guijo, Fermín; López-Sendón, Jose Luis; Steegmann Olmedillas, Juan Luis

    2016-06-17

    The second generation tyrosine kinase inhibitors (TKI, dasatinib and nilotinib) used in chronic myeloid leukemia (CML) treatment have shown a benefit compared to imatinib in responses achieved and disease progression. However, both have been related to some cardiovascular toxicity, being more frequent in patients with cardiovascular risk factors (CVRFs). Nowadays, due to the lack of recommendations for CML patients, CVRF management is carried out heterogeneously. The aim of this work is to develop recommendations on the prevention and monitoring of cardiovascular events (CVD) in patients with CML treated with TKIs. Experts from the Spanish Group of Chronic Myeloid Leukemia together with experts in cardiovascular risk have elaborated, after a consensus meeting, recommendations for the prevention and follow-up of CVE in patients with CML treated with TKI. Recommendations regarding the necessary information to be collected on clinical history, treatment decisions, as well as treatment and monitoring of CVRFs are shown in this document. TKI treatment requires comprehensive patient management from a multidisciplinary approach, in which both the prevention and management of CVRFs are essential. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  13. Variants forms of Philadelphia translocation in two patients with chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Valent, A.; Zamecnikova, A.; Krizan, P.; Karlic, H.; Nowotny, H.

    1996-01-01

    During a 4-year period (December 1990-December 1994), among other diagnoses hundred cases of chronic myeloid leukemia (CML) were analyzed in our departments. We focused our attention on two cases with a variant form of Philadelphia translocation. Cytogenetic and molecular genetic studies were performed to resolve the status of BCR and ABL in the bone marrow or peripheral blood cells of the two CML patients with complex translocations involving chromosomes, 3, 9, 22 and 9, 12, 22 respectively. In the first case the presence of Ph chromosome was detected cytogenetically, BCR-ABL translocation was detected by Southern hybridization. In the second phase, only the PCR method showed BCR-ABL rearrangement. The second case, with a random variant form of Ph translocation, could be detected using different methods of clinical molecular genetics. (author)

  14. Planned Pregnancy in a Chronic Myeloid Leukemia Patient in Molecular Remission

    Science.gov (United States)

    Pavlovsky, Carolina; Giere, Isabel; Van Thillo, Germán

    2012-01-01

    Excellent response rates and a good quality of life have been observed since the introduction of tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) treatment. Consequently, some challenges began to appear in CML women in child-bearing age wishing to become pregnant. Currently, many women around the world are in stable major/complete molecular response MMR/CMR (MMR: <0.1% BCR-ABL/ABL and CMR: undetectable BCR-ABL mRNA by RQ-PCR transcript levels on the international scale). The condition of stable MMR/CMR is linked to a long-term virtual absence of progression to the accelerated and blastic phase and to the possibility of stopping the TKI treatment with the maintenance of a condition of CMR in a proportion of cases. Imatinib teratogenic and prescribing information prohibits the use of it during pregnancy. We describe the case of a 36-year-old female patient with CML in chronic phase who stopped imatinib after 2 years in major molecular response (MMR) to plan a pregnancy. Molecular monitoring by RQ-PCR was performed quarterly. She achieved a safe pregnancy and delivery maintaining an optimal molecular response throughout the pregnancy. Isolated literature reports have been described, but no formal advice has been described at present time. PMID:22928126

  15. Pleural effusion as the initial manifestation of chronic myeloid leukemia: Report of a case with clinical and cytologic correlation

    Directory of Open Access Journals (Sweden)

    Paras Nuwal

    2012-01-01

    Full Text Available Pleural effusion in patients with chronic myeloid leukemia (CML is very rare and poorly understood. We report here a 26-year-old male patient having CML and presenting with pleural effusion as the first clinical sign. The possible mechanism of pleural effusion in CML, the cytological interpretive problem and the clinical significance of finding immature leucocytes in pleural fluid are also briefly discussed.

  16. Turkish Chronic Myeloid Leukemia Study: Retrospective Sectional Analysis of CML Patients

    Directory of Open Access Journals (Sweden)

    Fahri Şahin

    2013-12-01

    Full Text Available OBJECTIVE: here have been tremendous changes in treatment and follow-up of patients with chronic myeloid leukemia (CML in the last decade. Especially, regular publication and updating of NCCN and ELN guidelines have provided enermous rationale and base for close monitorization of patients with CML. But, it is stil needed to have registry results retrospectively to evaluate daily CML practices. METHODS: In this article, we have evaluated 1133 patients’ results with CML in terms of demographical features, disease status, response, resistance and use of second-generation TKIs. RESULTS: The response rate has been found relatively high in comparison with previously published articles, and we detected that there was a lack of appropriate and adequate molecular response assessment. CONCLUSION: We concluded that we need to improve registry systems and increase the availability of molecular response assessment to provide high-quality patient care.

  17. Prognostic value of regulatory T cells in newly diagnosed chronic myeloid leukemia patients.

    Science.gov (United States)

    Zahran, Asmaa M; Badrawy, Hosny; Ibrahim, Abeer

    2014-08-01

    Chronic myeloid leukemia (CML) is a clonal disease, characterized by a reciprocal t(9, 22) that results in a chimeric BCR/ABL fusion gene. Regulatory T cells (Tregs) constitute the main cell population that enables cancer cells to evade immune surveillance. The purpose of our study was to investigate the level of Tregs in newly diagnosed CML patients and to correlate it with the patients' clinical, laboratory and molecular data. We also aimed to assess the effect of treatment using tyrosine kinase inhibitor (TKI) on Treg levels. Tregs were characterized and quantified by flow cytometry in 63 newly diagnosed CML patients and 40 healthy controls. TKI was used in 45 patients with chronic phase CML, and the response to therapy was correlated with baseline Treg levels. The percentages of Tregs were significantly increased in CML patients compared to the controls. Treg numbers were significantly lower in patients with chronic phase CML versus the accelerated and blast phases, and were significantly lower in patients with complete molecular remission (CMR) compared to those patients without CMR. Tregs may play a role in the maintenance of CML. Moreover, the decrease of their levels in patients with CMR suggests that Tregs might have a clinical value in evaluating the effects of therapy.

  18. Therapeutic options for chronic myeloid leukemia: focus on imatinib (Glivec®, Gleevec™

    Directory of Open Access Journals (Sweden)

    Martin Henkes

    2008-03-01

    Full Text Available 1Martin Henkes, 2Heiko van der Kuip, 1Walter E Aulitzky12nd Department of Internal Medicine, Oncology and Hematology, Robert Bosch Hospital, Auerbachstr. 110, Stuttgart, Germany; 2Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, Stuttgart, and University of Tuebingen, GermanyAbstract: Treatment options for chronic myeloid leukemia (CML have changed dramatically during the last decades. Interferon-α treatment and stem cell transplantation (SCT clearly improved survival over conventional chemotherapy and offered the possibility of complete and durable responses. With the advent of the small molecule inhibitor imatinib mesylate (Glivec®, GleevecTM targeting the causative Bcr-Abl oncoprotein, the era of molecular cancer therapy began with remarkable success especially in chronic phase patients. Today, imatinib is the first-line treatment for CML. However, imatinib does not appear to be capable to eliminate all leukemia cells in the patients and pre-existing as well as acquired resistance to the drug has been increasingly recognized. To overcome these problems, several strategies involving dose escalation, combinations with other agents, and novel Bcr-Abl inhibitors have been developed.Keywords: CML therapy, imatinib, SCT, novel kinase inhibitors

  19. 16 CFR 5.62 - Hearing rights of respondent.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Hearing rights of respondent. 5.62 Section 5.62 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE STANDARDS OF CONDUCT Disciplinary Actions Concerning Postemployment Conflict of Interest § 5.62 Hearing...

  20. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia

    Science.gov (United States)

    Piazza, Rocco; Valletta, Simona; Winkelmann, Nils; Redaelli, Sara; Spinelli, Roberta; Pirola, Alessandra; Antolini, Laura; Mologni, Luca; Donadoni, Carla; Papaemmanuil, Elli; Schnittger, Susanne; Kim, Dong-Wook; Boultwood, Jacqueline; Rossi, Fabio; Gaipa, Giuseppe; De Martini, Greta P; di Celle, Paola Francia; Jang, Hyun Gyung; Fantin, Valeria; Bignell, Graham R; Magistroni, Vera; Haferlach, Torsten; Pogliani, Enrico Maria; Campbell, Peter J; Chase, Andrew J; Tapper, William J; Cross, Nicholas C P; Gambacorti-Passerini, Carlo

    2013-01-01

    Atypical chronic myeloid leukemia (aCML) shares clinical and laboratory features with CML, but it lacks the BCR-ABL1 fusion. We performed exome sequencing of eight aCMLs and identified somatic alterations of SETBP1 (encoding a p.Gly870Ser alteration) in two cases. Targeted resequencing of 70 aCMLs, 574 diverse hematological malignancies and 344 cancer cell lines identified SETBP1 mutations in 24 cases, including 17 of 70 aCMLs (24.3%; 95% confidence interval (CI) = 16–35%). Most mutations (92%) were located between codons 858 and 871 and were identical to changes seen in individuals with Schinzel-Giedion syndrome. Individuals with mutations had higher white blood cell counts (P = 0.008) and worse prognosis (P = 0.01). The p.Gly870Ser alteration abrogated a site for ubiquitination, and cells exogenously expressing this mutant exhibited higher amounts of SETBP1 and SET protein, lower PP2A activity and higher proliferation rates relative to those expressing the wild-type protein. In summary, mutated SETBP1 represents a newly discovered oncogene present in aCML and closely related diseases. PMID:23222956

  1. Atypical chronic myeloid leukaemia: A case of an orphan disease-A multicenter report by the Polish Adult Leukemia Group.

    Science.gov (United States)

    Drozd-Sokołowska, Joanna; Mądry, Krzysztof; Waszczuk-Gajda, Anna; Biecek, Przemysław; Szwedyk, Paweł; Budziszewska, Katarzyna; Raźny, Magdalena; Dutka, Magdalena; Obara, Agata; Wasilewska, Ewa; Lewandowski, Krzysztof; Piekarska, Agnieszka; Bober, Grażyna; Krzemień, Helena; Stella-Hołowiecka, Beata; Kapelko-Słowik, Katarzyna; Sawicki, Waldemar; Paszkowska-Kowalewska, Małgorzata; Machowicz, Rafał; Dwilewicz-Trojaczek, Jadwiga

    2018-03-07

    Atypical chronic myeloid leukaemia (aCML) belongs to myelodysplastic/myeloproliferative neoplasms. Because of its rarity and changing diagnostic criteria throughout subsequent classifications, data on aCML are very scarce. Therefore, we at the Polish Adult Leukemia Group performed a nationwide survey on aCML. Eleven biggest Polish centres participated in the study. Altogether, 45 patients were reported, among whom only 18 patients (40%) fulfilled diagnostic criteria. Among misdiagnosed patients, myelodysplastic/myeloproliferative syndrome unclassifiable and chronic myelomonocytic leukaemia were the most frequent diagnoses. Thirteen patients were male, median age 64.6 years (range 40.4-80.9). The median parameters at diagnosis were as follows: white blood cell count 97 × 10 9 /L (23.8-342) with immature progenitors amounting at 27.5% (12-72), haemoglobin 8.6 g/dL (3.9-14.9), and platelet count 66 × 10 9 /L (34-833). Cytoreductive treatment was used in all patients, and 2 patients underwent allogeneic hematopoietic stem cell transplantation. The median overall survival was 14.1 months (95% CI, 7.2), with median acute myeloid leukaemia-free survival of 13.3 months (95% CI, 3.6-22.6). Cumulative incidence of acute myeloid leukaemia transformation after 1 year in aCML group was 12.5% (95% CI, 0%-29.6%). To conclude, aCML harbours a poor prognosis. Treatment options are limited, with allogeneic hematopoietic stem cell transplantation being the only curative method at present, although only a minority of patients are transplant eligible. Educational measures are needed to improve the quality of diagnoses. Copyright © 2018 John Wiley & Sons, Ltd.

  2. [Management of the cardiovascular disease risk during nilotinib treatment in chronic myeloid leukemia: 2015 recommendations from the France Intergroupe des Leucémies Myéloïdes Chroniques].

    Science.gov (United States)

    Rea, Delphine; Ame, Shanti; Charbonnier, Aude; Coiteux, Valérie; Cony-Makhoul, Pascale; Escoffre-Barbe, Martine; Etienne, Gabriel; Gardembas, Martine; Guerci-Bresler, Agnès; Legros, Laurence; Nicolini, Franck; Tulliez, Michel; Hermet, Eric; Huguet, Françoise; Johnson-Ansah, Hyacinthe; Lapusan, Simona; Quittet, Philippe; Rousselot, Philippe; Mahon, François-Xavier; Messas, Emmanuel

    2016-02-01

    Tyrosine kinase inhibitors targeting the BCR-ABL oncoprotein represent an outstanding progress in chronic myeloid leukemia and long-term progression-free survival has become a reality for a majority of patients. However, tyrosine kinase inhibitors may at best chronicize rather than cure the disease thus current recommendation is to pursue treatment indefinitely. As a consequence, high quality treatment and care must integrate optimal disease control and treatment tolerability. Tyrosine kinase inhibitors have an overall favorable safety profile in clinical practice since most adverse events are mild to moderate in intensity. However, recent evidence has emerged that new generation tyrosine kinase inhibitors may sometimes damage vital organs and if not adequately managed, morbidity and mortality may increase. The 2nd generation tyrosine kinase inhibitor nilotinib is licensed for the treatment of chronic myeloid leukemia with resistance or intolerance to imatinib and newly diagnosed chronic phase-chronic myeloid leukemia. Nilotinib represents an important therapeutic option but it is associated with an increased risk of cardiovascular events. The purpose of this article by the France Intergroupe des Leucémies Myéloïdes Chroniques is to provide an overview of nilotinib efficacy and cardiovascular safety profile and to propose practical recommendations with the goal to minimize the risk and severity of cardiovascular events in nilotinib-treated patients. Copyright © 2015 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  3. International development of an EORTC questionnaire for assessing health-related quality of life in chronic myeloid leukemia patients : The EORTC QLQ-CML24

    NARCIS (Netherlands)

    Efficace, Fabio; Baccarani, Michele; Breccia, Massimo; Saussele, Susanne; Abel, Gregory; Caocci, Giovanni; Guilhot, Francois; Cocks, Kim; Naeem, Adel; Sprangers, Mirjam; Oerlemans, Simone; Chie, Weichu; Castagnetti, Fausto; Bombaci, Felice; Sharf, Giora; Cardoni, Annarita; Noens, Lucien; Pallua, Stephan; Salvucci, Marzia; Nicolatou-Galitis, Ourania; Rosti, Gianantonio; Mandelli, Franco

    Background Health-related quality of life (HRQOL) is a key aspect for chronic myeloid leukemia (CML) patients. The aim of this study was to develop a disease-specific HRQOL questionnaire for patients with CML to supplement the European Organization for Research and Treatment of Cancer (EORTC)-QLQ

  4. International development of an EORTC questionnaire for assessing health-related quality of life in chronic myeloid leukemia patients: the EORTC QLQ-CML24

    NARCIS (Netherlands)

    Efficace, Fabio; Baccarani, Michele; Breccia, Massimo; Saussele, Susanne; Abel, Gregory; Caocci, Giovanni; Guilhot, Francois; Cocks, Kim; Naeem, Adel; Sprangers, Mirjam; Oerlemans, Simone; Chie, Weichu; Castagnetti, Fausto; Bombaci, Felice; Sharf, Giora; Cardoni, Annarita; Noens, Lucien; Pallua, Stephan; Salvucci, Marzia; Nicolatou-Galitis, Ourania; Rosti, Gianantonio; Mandelli, Franco

    2014-01-01

    Background Health-related quality of life (HRQOL) is a key aspect for chronic myeloid leukemia (CML) patients. The aim of this study was to develop a disease-specific HRQOL questionnaire for patients with CML to supplement the European Organization for Research and Treatment of Cancer (EORTC)-QLQ

  5. 46 CFR 154.562 - Cargo hose: Hydrostatic test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo hose: Hydrostatic test. 154.562 Section 154.562 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Hose § 154.562 Cargo hose: Hydrostatic test. Each cargo hose must pass a hydrostatic pressure test at...

  6. [Molecular genetics in chronic myeloid leukemia with variant Ph translocation].

    Science.gov (United States)

    Wu, Wei; Li, Jian-yong; Zhu, Yu; Qiu, Hai-rong; Pan, Jin-lan; Xu, Wei; Chen, Li-juan; Shen, Yun-feng; Xue, Yong-quan

    2007-08-01

    To explore the value of fluorescence in situ hybridization (FISH) and multiplex fluorescence in situ hybridization (M-FISH) techniques in the detection of genetic changes in chronic myeloid leukemia (CML) with variant Philadelphia translocation (vPh). Cytogenetic preparations from 10 CML patients with vPh confirmed by R banding were assayed with dual color dual fusion FISH technique. If only one fusion signal was detected in interphase cells, metaphase cells were observed to determine if there were derivative chromosome 9[der (9)] deletions. Meanwhile, the same cytogenetic preparations were assayed with M-FISH technique. Of the 10 CML patients with vPh, 5 were detected with der (9) deletions by FISH technique. M-FISH technique revealed that besides the chromosome 22, chromosomes 1, 3, 5, 6, 8, 10, 11 and 17 were also involved in the vPh. M-FISH technique also detected the abnormalities which were not found with conventional cytogenetics (CC), including two never reported abnormalities. The combination of CC, FISH and M-FISH technique could refine the genetic diagnosis of CML with vPh.

  7. SUMOylation of sPRDM16 promotes the progression of acute myeloid leukemia

    International Nuclear Information System (INIS)

    Dong, Song; Chen, Jieping

    2015-01-01

    In addition to genetic and epigenetic alteration, post-translational modification of proteins plays a critical role in the initiation, progression and maturation of acute myeloid leukemia (AML). The SUMOylation site of sPRDM16 at K568 was mutated to arginine by site-directed mutagenesis. THP-1 acute myeloid leukemia cells were transduced with a lentivirus containing wild type or K568 mutant sPRDM16. Proliferation, self-renewal and differentiation of transduced THP-1 cells were analyzed both in vitro cell culture and in mouse xenografts. Gene expression profiles were analyzed by RNA-seq. Overexpression of sPRDM16 promoted proliferation, enhanced self-renewal capacity, but inhibited differentiation of THP-1 acute myeloid leukemia cells. We further confirmed that K568 is a bona fide SUMOylation site on sPRDM16. Mutation of the sPRDM16 SUMOylation site at K568 partially abolished the capacity of sPRDM16 to promote proliferation and inhibit differentiation of acute myeloid leukemia cells both in vitro and in mouse xenografts. Furthermore, THP-1 cells overexpressing sPRDM16-K568R mutant exhibited a distinct gene expression profile from wild type sPRDM16 following incubation with PMA. Our results suggest that K568 SUMOylation of sPRDM16 plays an important role in the progression of acute myeloid leukemia

  8. [Myeloid sarcoma of the small bowel with inversion of chromosome 16: a description of 3 clinical cases].

    Science.gov (United States)

    Gavrilina, O A; Bariakh, E A; Parovichnikova, E N; Troitskaia, V V; Zvonkov, E E; Kravchenko, S K; Sinitsyna, M N; Obukhova, T N; Gitis, M K; Savchenko, V G

    2014-01-01

    Myeloid sarcoma (MS) is a rare malignant solid tumor presented with myeloid blast cells showing varying degrees of maturation. MS may have an extramedullary site, precede, or develop simultaneously with the clinical manifestations of acute myeloid leukemia (AML); it may also occur as an AML relapse. Besides AML, MS may be a manifestation of chronic myeloid leukemia or other chronic myeloproliferative diseases. Due to the fact that this disease is rare, the bulk of the literature on MS is presented with single descriptions of retrospective studies and clinical cases. The paper describes 3 cases of MS with inversion of chromosome 16 and small bowel lesion.

  9. Epidemiologic study on survival of chronic myeloid leukemia and Ph(+) acute lymphoblastic leukemia patients with BCR-ABL T315I mutation

    DEFF Research Database (Denmark)

    Nicolini, Franck E; Mauro, Michael J; Martinelli, Giovanni

    2009-01-01

    The BCR-ABL T315I mutation represents a major mechanism of resistance to tyrosine kinase inhibitors (TKIs). The objectives of this retrospective observational study were to estimate overall and progression-free survival for chronic myeloid leukemia in chronic-phase (CP), accelerated-phase (AP......), or blastic-phase (BP) and Philadelphia chromosome-positive (Ph)(+) acute lymphoblastic leukemia (ALL) patients with T315I mutation. Medical records of 222 patients from 9 countries were reviewed; data were analyzed using log-rank tests and Cox proportional hazard models. Median age at T315I mutation...

  10. Nilotinib: optimal therapy for patients with chronic myeloid leukemia and resistance or intolerance to imatinib

    Directory of Open Access Journals (Sweden)

    Ronan Swords

    2009-03-01

    Full Text Available Ronan Swords, Devalingam Mahalingam, Swaminathan Padmanabhan, Jennifer Carew, Francis GilesInstitute for Drug Development, Cancer Therapy and Research Centre, University of Texas Health Science Centre at San Antonio, USAAbstract: Chronic myeloid leukemia (CML is the consequence of a single balanced translocation that produces the BCR-ABL fusion oncogene which is detectable in over 90% of patients at presentation. The BCR-ABL inhibitor imatinib mesylate (IM has improved survival in all phases of CML and is the standard of care for newly diagnosed patients in chronic phase. Despite the very significant therapeutic benefits of IM, a small minority of patients with early stage disease do not benefit optimally while IM therapy in patients with advanced disease is of modest benefit in many. Diverse mechanisms may be responsible for IM failures, with point mutations within the Bcr-Abl kinase domain being amongst the most common resistance mechanisms described in patients with advanced CML. The development of novel agents designed to overcome IM resistance, while still primarily targeted on BCR-ABL, led to the creation of the high affinity aminopyrimidine inhibitor, nilotinib. Nilotinib is much more potent as a BCR-ABL inhibitor than IM and inhibits both wild type and IM-resistant BCR-ABL with significant clinical activity across the entire spectrum of BCR-ABL mutants with the exception of T315I. The selection of a second generation tyrosine kinase inhibitor to rescue patients with imatinib failure will be based on several factors including age, co-morbid medical problems and ABL kinase mutational profile. It should be noted that while the use of targeted BCR-ABL kinase inhibitors in CML represents a paradigm shift in CML management these agents are not likely to have activity against the quiescent CML stem cell pool. The purpose of this review is to summarize the pre-clinical and clinical data on nilotinib in patients with CML who have failed prior

  11. Bilateral Proliferative Retinopathy as the Initial Presentation of Chronic Myeloid Leukemia

    Science.gov (United States)

    Macedo, Mafalda S. F.; Figueiredo, Ana R. M.; Ferreira, Natália N.; Barbosa, Irene M. A.; Furtado, Maria João F. B. S.; Correia, Nuno F. C. B. A.; Gomes, Miguel P.; Lume, Miguel R. B.; Menéres, Maria João S.; Santos, Marinho M. N.; Meireles S., M. Angelina C.

    2013-01-01

    The authors report a rare case of a 48-year-old male with chronic myeloid leukemia (CML) who initially presented with a bilateral proliferative retinopathy. The patient complained of recent visual loss and floaters in both eyes (BE). Ophthalmologic evaluation revealed a best corrected visual acuity (BCVA) of 20/50 in the right eye and 20/200 in the left eye (LE). Fundoscopy showed the presence of bilateral peripheral capillary dropout with multiple retinal sea fan neovascularisations, which were confirmed on fluorescein angiography. Full blood count revealed hyperleukocytosis, thrombocytosis, anemia, and hyperuricemia. Bone marrow aspiration and biopsy showed the reciprocal chromosomal translocation t (9;22), diagnostic of CML. The patient was started on hydroxyurea, allopurinol and imatinib mesylate. He received bilateral panretinal laser photocoagulation and a vitrectomy was performed in the LE. The patient has been in complete hematologic, cytogenetic, and major molecular remission while on imatinib and his BCVA is 20/25 in BE. PMID:24339689

  12. Hoxa9 and Hoxa10 induce CML myeloid blast crisis development through activation of Myb expression.

    Science.gov (United States)

    Negi, Vijay; Vishwakarma, Bandana A; Chu, Su; Oakley, Kevin; Han, Yufen; Bhatia, Ravi; Du, Yang

    2017-11-17

    Mechanisms underlying the progression of Chronic Myeloid Leukemia (CML) from chronic phase to myeloid blast crisis are poorly understood. Our previous studies have suggested that overexpression of SETBP1 can drive this progression by conferring unlimited self-renewal capability to granulocyte macrophage progenitors (GMPs). Here we show that overexpression of Hoxa9 or Hoxa10 , both transcriptional targets of Setbp1 , is also sufficient to induce self-renewal of primary myeloid progenitors, causing their immortalization in culture. More importantly, both are able to cooperate with BCR/ABL to consistently induce transformation of mouse GMPs and development of aggressive leukemias resembling CML myeloid blast crisis, suggesting that either gene can drive CML progression by promoting the self-renewal of GMPs. We further identify Myb as a common critical target for Hoxa9 and Hoxa10 in inducing self-renewal of myeloid progenitors as Myb knockdown significantly reduced colony-forming potential of myeloid progenitors immortalized by the expression of either gene. Interestingly, Myb is also capable of immortalizing primary myeloid progenitors in culture and cooperating with BCR/ABL to induce leukemic transformation of mouse GMPs. Significantly increased levels of MYB transcript also were detected in all human CML blast crisis samples examined over chronic phase samples, further suggesting the possibility that MYB overexpression may play a prevalent role in driving human CML myeloid blast crisis development. In summary, our results identify overexpression of HOXA9 , HOXA10 , and MYB as critical drivers of CML progression, and suggest MYB as a key therapeutic target for inhibiting the self-renewal of leukemia-initiating cells in CML myeloid blast crisis patients.

  13. Considering baseline factors and early response rates to optimize therapy for chronic myeloid leukemia in chronic phase.

    Science.gov (United States)

    Akard, Luke P; Bixby, Dale

    2016-05-01

    Multiple BCR-ABL tyrosine kinase inhibitors (TKIs) are available for the treatment of chronic myeloid leukemia in chronic phase (CML-CP), and several baseline and on-treatment predictive factors have been identified that can be used to help guide TKI selection for individual patients. In particular, early molecular response (EMR; BCR-ABL ≤10% on the International Scale at 3 months) has become an accepted benchmark for evaluating whether patients with CML-CP are responding optimally to frontline TKI therapy. Failure to achieve EMR is considered an inadequate initial response according to the National Comprehensive Cancer Network guidelines and a warning response according to the European LeukemiaNet recommendations. Here we review data supporting the importance of achieving EMR for improving patients' long-term outcomes and discuss key considerations for selecting a frontline TKI in light of these data. Because a higher proportion of patients achieve EMR with second-generation TKIs such as nilotinib and dasatinib than with imatinib, these TKIs may be preferable for many patients, particularly those with known negative prognostic factors at baseline. We also discuss other considerations for frontline TKI choice, including toxicities, cost-effectiveness, and the emerging goals of deep molecular response and treatment-free remission.

  14. Recombinant adeno-associated virus mediates a high level of gene transfer but less efficient integration in the K562 human hematopoietic cell line.

    Science.gov (United States)

    Malik, P; McQuiston, S A; Yu, X J; Pepper, K A; Krall, W J; Podsakoff, G M; Kurtzman, G J; Kohn, D B

    1997-03-01

    We tested the ability of a recombinant adeno-associated virus (rAAV) vector to express and integrate exogenous DNA into human hematopoietic cells in the absence of selection. We developed an rAAV vector, AAV-tNGFR, carrying a truncated rat nerve growth factor receptor (tNGFR) cDNA as a cell surface reporter under the control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat. An analogous MoMuLV-based retroviral vector (L-tNGFR) was used in parallel, and gene transfer and expression in human hematopoietic cells were assessed by flow cytometry and DNA analyses. Following gene transfer into K562 cells with AAV-tNGFR at a multiplicity of infection (MOI) of 13 infectious units (IU), 26 to 38% of cells expressed tNGFR on the surface early after transduction, but the proportion of tNGFR expressing cells steadily declined to 3.0 to 3.5% over 1 month of culture. At an MOI of 130 IU, nearly all cells expressed tNGFR immediately posttransduction, but the proportion of cells expressing tNGFR declined to 62% over 2 months of culture. The decline in the proportion of AAV-tNGFR-expressing cells was associated with ongoing losses of vector genomes. In contrast, K562 cells transduced with the retroviral vector L-tNGFR expressed tNGFR in a constant fraction. Integration analyses on clones showed that integration occurred at different sites. Integration frequencies were estimated at about 49% at an MOI of 130 and 2% at an MOI of 1.3. Transduction of primary human CD34+ progenitor cells by AAV-tNGFR was less efficient than with K562 cells and showed a declining percentage of cells expressing tNGFR over 2 weeks of culture. Thus, purified rAAV caused very high gene transfer and expression in human hematopoietic cells early after transduction, which steadily declined during cell passage in the absence of selection. Although the efficiency of integration was low, overall integration was markedly improved at a high MOI. While prolonged episomal persistence may be adequate

  15. Energetics of DNA repair: effects of temperature on DNA repair in UV-irradiated peripheral blood leucocytes from chronic myeloid leukemic patients

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.; Sharma, R.; Jain, V.K.

    1988-05-01

    The effects of different temperatures (34-43/sup 0/C) were studied on the repair of UV-induced (254-nm) DNA damage and its energetics in peripheral blood leucocytes of chronic myeloid leukaemic patients. DNA repair was measured by the unscheduled DNA synthesis (UDS) technique. Cellular energy supply was modulated by inhibitors of oxidative phosphorylation (antimycin-A) and glycolysis (2-deoxy-D-glucose). It was observed that there is an increase in the amount of DNA repair with increasing temperatures up to 40/sup 0/C and a fall thereafter. Longer periods of heat treatment (4 h) beyond 40/sup 0/C were observed to further decrease the DNA repair. Increasing temperatures were observed to have no significant effect on the parameters of energy metabolism. Further, the activation energy of DNA repair was calculated as 92 +- 46 kJ/mol (22 +- 11 kcal/mol), which did not alter significantly even in the presence of inhibitors of energy metabolism.

  16. Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells

    DEFF Research Database (Denmark)

    Kirstetter, Peggy; Schuster, Mikkel B; Bereshchenko, Oksana

    2008-01-01

    Mutations in the CEBPA gene are present in 7%-10% of human patients with acute myeloid leukemia (AML). However, no genetic models exist that demonstrate their etiological relevance. To mimic the most common mutations affecting CEBPA-that is, those leading to loss of the 42 kDa C/EBPalpha isoform (p...... penetrance. p42-deficient leukemia could be transferred by a Mac1+c-Kit+ population that gave rise only to myeloid cells in recipient mice. Expression profiling of this population against normal Mac1+c-Kit+ progenitors revealed a signature shared with MLL-AF9-transformed AML.......42) while retaining the 30kDa isoform (p30)-we modified the mouse Cebpa locus to express only p30. p30 supported the formation of granulocyte-macrophage progenitors. However, p42 was required for control of myeloid progenitor proliferation, and p42-deficient mice developed AML with complete...

  17. Expression of interferon regulatory factor 4 in chronic myeloid leukemia: correlation with response to interferon alfa therapy.

    Science.gov (United States)

    Schmidt, M; Hochhaus, A; König-Merediz, S A; Brendel, C; Proba, J; Hoppe, G J; Wittig, B; Ehninger, G; Hehlmann, R; Neubauer, A

    2000-10-01

    Mice experiments have established an important role for interferon regulatory factor (IRF) family members in hematopoiesis. We wanted to study the expression of interferon regulatory factor 4 (IRF4) in various hematologic disorders, especially chronic myeloid leukemia (CML), and its association with response to interferon alfa (IFN-alpha) treatment in CML. Blood samples from various hematopoietic cell lines, different leukemia patients (70 CML, 29 acute myeloid leukemia [AML], 10 chronic myelomonocytic leukemia [CMMoL], 10 acute lymphoblastic leukemia, and 10 chronic lymphoid leukemia patients), and 33 healthy volunteers were monitored for IRF4 expression by reverse transcriptase polymerase chain reaction. Then, with a focus on CML, the IRF4 level was determined in sorted cell subpopulations from CML patients and healthy volunteers and in in vitro-stimulated CML cells. Furthermore, IRF4 expression was compared in the CML samples taken before IFN-alpha therapy and in 47 additional CML samples taken during IFN-alpha therapy. IRF4 expression was then correlated with cytogenetic response to IFN-alpha. IRF4 expression was significantly impaired in CML, AML, and CMMoL samples. The downregulation of IRF4 in CML samples was predominantly found in T cells. In CML patients during IFN-alpha therapy, a significant increase in IRF4 levels was detected, and this was also observed in sorted T cells from CML patients. The increase seen during IFN-alpha therapy was not due to different blood counts. In regard to the cytogenetic response with IFN-alpha, a good response was associated with high IRF4 expression. IRF4 expression is downregulated in T cells of CML patients, and its increase is associated with a good response to IFN-alpha therapy. These data suggest IRF4 expression as a useful marker to monitor, if not predict, response to IFN-alpha in CML.

  18. A nanocomplex of Cu(II) with theophylline drug; synthesis, characterization, and anticancer activity against K562 cell line

    Science.gov (United States)

    Sahlabadi, Maryam; Daryanavard, Marzieh; Hadadzadeh, Hassan; Amirghofran, Zahra

    2018-03-01

    A new mononuclear of copper (II), [Cu(theophylline)2(H2O)3]·2H2O, has been synthesized by reaction of theophylline (1,3-dimethyl-7H-purine-2,6-dione) with copper (II) nitrate in water. Further, its nanocomplex has been prepared through the three different methods including sonication, grinding, and a combination thereof, sonication-grinding. The prepared nanocomplex was characterized using different techniques including FT-IR, UV-Vis, X-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy (FE-SEM). Moreover, the anticancer activity of the precursor complex, nanocomplex, free theophylline ligand, and the starting copper salt (Cu(NO3)2·3H2O) was investigated against the K562 cell line. The results show that the nanocomplex is an effective nano metal-based anticancer agent with IC50 = 11.7 μM.

  19. Molecular techniques for the personalised management of patients with chronic myeloid leukaemia.

    Science.gov (United States)

    Alikian, Mary; Gale, Robert Peter; Apperley, Jane F; Foroni, Letizia

    2017-03-01

    Chronic myeloid leukemia (CML) is the paradigm for targeted cancer therapy. RT-qPCR is the gold standard for monitoring response to tyrosine kinase-inhibitor (TKI) therapy based on the reduction of blood or bone marrow BCR-ABL1 . Some patients with CML and very low or undetectable levels of BCR-ABL1 transcripts can stop TKI-therapy without CML recurrence. However, about 60 percent of patients discontinuing TKI-therapy have rapid leukaemia recurrence. This has increased the need for more sensitive and specific techniques to measure residual CML cells. The clinical challenge is to determine when it is safe to stop TKI-therapy. In this review we describe and critically evaluate the current state of CML clinical management, different technologies used to monitor measurable residual disease (MRD) focus on comparingRT-qPCR and new methods entering clinical practice. We discuss advantages and disadvantages of new methods.

  20. Treatment of chronic myeloid leukemia: assessing risk, monitoring response, and optimizing outcome.

    Science.gov (United States)

    Shanmuganathan, Naranie; Hiwase, Devendra Keshaorao; Ross, David Morrall

    2017-12-01

    Over the past two decades, tyrosine kinase inhibitors have become the foundation of chronic myeloid leukemia (CML) treatment. The choice between imatinib and newer tyrosine kinase inhibitors (TKIs) needs to be balanced against the known toxicity and efficacy data for each drug, the therapeutic goal being to maximize molecular response assessed by BCR-ABL RQ-PCR assay. There is accumulating evidence that the early achievement of molecular targets is a strong predictor of superior long-term outcomes. Early response assessment provides the opportunity to intervene early with the aim of ensuring an optimal response. Failure to achieve milestones or loss of response can have diverse causes. We describe how clinical and laboratory monitoring can be used to ensure that each patient is achieving an optimal response and, in patients who do not reach optimal response milestones, how the monitoring results can be used to detect resistance and understand its origins.

  1. Acadesine kills chronic myelogenous leukemia (CML cells through PKC-dependent induction of autophagic cell death.

    Directory of Open Access Journals (Sweden)

    Guillaume Robert

    Full Text Available CML is an hematopoietic stem cell disease characterized by the t(9;22 (q34;q11 translocation encoding the oncoprotein p210BCR-ABL. The effect of acadesine (AICAR, 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside a compound with known antileukemic effect on B cell chronic lymphoblastic leukemia (B-CLL was investigated in different CML cell lines. Acadesine triggered loss of cell metabolism in K562, LAMA-84 and JURL-MK1 and was also effective in killing imatinib-resistant K562 cells and Ba/F3 cells carrying the T315I-BCR-ABL mutation. The anti-leukemic effect of acadesine did not involve apoptosis but required rather induction of autophagic cell death. AMPK knock-down by Sh-RNA failed to prevent the effect of acadesine, indicating an AMPK-independent mechanism. The effect of acadesine was abrogated by GF109203X and Ro-32-0432, both inhibitor of classical and new PKCs and accordingly, acadesine triggered relocation and activation of several PKC isoforms in K562 cells. In addition, this compound exhibited a potent anti-leukemic effect in clonogenic assays of CML cells in methyl cellulose and in a xenograft model of K562 cells in nude mice. In conclusion, our work identifies an original and unexpected mechanism by which acadesine triggers autophagic cell death through PKC activation. Therefore, in addition to its promising effects in B-CLL, acadesine might also be beneficial for Imatinib-resistant CML patients.

  2. Translocation of BCR to chromosome 9: A new cytogenetic variant detected by FISH in two Ph-negative, BCR-positive patients with chronic myeloid leukemia

    NARCIS (Netherlands)

    A. Hagemeijer (Anne); A. Buijs (Arjan); E.M.E. Smit (Elisabeth); L.A.J. Janssen (Bart); G.J.M. Creemers (Geert-Jan); D. van der Plas (D.); G.C. Grosveld (Gerard)

    1993-01-01

    textabstractLeukemic cells from two patients with Philadelphia-negative chronic myeloid leukemia (CML) were investigated: I) Cytogenetics showed a normal 46.XY karyotype in both cases, 2) molecular studies revealed rearrangement of the M-BCR region and formation of BCR-ABL fusion mRNA with b2a2

  3. H ferritin silencing induces protein misfolding in K562 cells: A Raman analysis

    KAUST Repository

    Zolea, Fabiana

    2015-10-09

    The redox state of the cell is involved in the regulation of many physiological functions as well as in the pathogenesis of several diseases, and is strictly dependent on the amount of iron in its catalytically active state. Alterations of iron homeostasis determine increased steady-state concentrations of Reactive Oxygen Species (ROS) that cause lipid peroxidation, DNA damage and altered protein folding. Ferritin keeps the intracellular iron in a non-toxic and readily available form and consequently plays a central role in iron and redox homeostasis. The protein is composed by 24 subunits of the H- and L-type, coded by two different genes, with structural and functional differences. The aim of this study was to shed light on the role of the single H ferritin subunit (FHC) in keeping the native correct protein three-dimensional structure. To this, we performed Raman spectroscopy on protein extracts from K562 cells subjected to FHC silencing. The results show a significant increase in the percentage of disordered structures content at a level comparable to that induced by H2O2 treatment in control cells. ROS inhibitor and iron chelator were able to revert protein misfolding. This integrated approach, involving Raman spectroscopy and targeted-gene silencing, indicates that an imbalance of the heavy-to-light chain ratio in the ferritin composition is able to induce severe but still reversible modifications in protein folding and uncovers new potential pathogenetic mechanisms associated to intracellular iron perturbation.

  4. H ferritin silencing induces protein misfolding in K562 cells: A Raman analysis

    KAUST Repository

    Zolea, Fabiana; Biamonte, Flavia; Candeloro, Patrizio; Di Sanzo, Maddalena; Cozzi, Anna; Di Vito, Anna; Quaresima, Barbara; Lobello, Nadia; Trecroci, Francesca; Di Fabrizio, Enzo M.; Levi, Sonia; Cuda, Giovanni; Costanzo, Francesco

    2015-01-01

    The redox state of the cell is involved in the regulation of many physiological functions as well as in the pathogenesis of several diseases, and is strictly dependent on the amount of iron in its catalytically active state. Alterations of iron homeostasis determine increased steady-state concentrations of Reactive Oxygen Species (ROS) that cause lipid peroxidation, DNA damage and altered protein folding. Ferritin keeps the intracellular iron in a non-toxic and readily available form and consequently plays a central role in iron and redox homeostasis. The protein is composed by 24 subunits of the H- and L-type, coded by two different genes, with structural and functional differences. The aim of this study was to shed light on the role of the single H ferritin subunit (FHC) in keeping the native correct protein three-dimensional structure. To this, we performed Raman spectroscopy on protein extracts from K562 cells subjected to FHC silencing. The results show a significant increase in the percentage of disordered structures content at a level comparable to that induced by H2O2 treatment in control cells. ROS inhibitor and iron chelator were able to revert protein misfolding. This integrated approach, involving Raman spectroscopy and targeted-gene silencing, indicates that an imbalance of the heavy-to-light chain ratio in the ferritin composition is able to induce severe but still reversible modifications in protein folding and uncovers new potential pathogenetic mechanisms associated to intracellular iron perturbation.

  5. [Compound K suppresses myeloid-derived suppressor cells in a mouse model bearing CT26 colorectal cancer xenograft].

    Science.gov (United States)

    Wang, Rong; Li, Yalin; Wang, Wuzhou; Zhou, Meijuan; Cao, Zhaohui

    2015-05-01

    To investigate the effect of ginseng-derived compound K (C-K) on apoptosis, immunosuppressive activity, and pro-inflammatory cytokine production of myeloid-derived suppressor cells (MDSCs) from mice bearing colorectal cancer xenograft. Flow-sorted bone marrow MDSCs from Balb/c mice bearing CT26 tumor xenograft were treated with either C-K or PBS for 96 h and examined for apoptosis with Annexin V/7-AAD, Cox-2 and Arg-1 expressions using qRT-PCR, and supernatant IL-1β, IL-6, and IL-17 levels with ELISA. C-K- or PBS-treated MDSCs were subcutaneously implanted along with CT26 tumor cells in WT Balb/c mice, and the tumor size and morphology were evaluated 21 days later. C-K treatment significantly increased the percentages of early and late apoptotic MDSCs in vitro (Pimmunosuppresive effect of MDSCs to inhibit tumor cell proliferation in mice, which suggests a new strategy of tumor therapy by targeting MDSCs.

  6. Total lymphoid irradiation preceding bone marrow transplantation for chronic myeloid leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    James, N D; Apperley, J F; Kam, K C; Mackinnon, S; Goldman, J M; Goolden, A W.G.; Sikora, K [Royal Postgraduate Medical School, London (UK)

    1989-03-01

    Between August 1985 and October 1987 35 patients with chronic myeloid leukaemia (CML) were treated by high dose chemotherapy, total body irradiation (TBI) (1000 or 1200 cGy, n=31) and total lymphoid irradiation (TLI) (800 or 600 cGy, n=35) preceding allogeneic bone marrow transplantation (BMT). Both TBI and TLI were given at 200 cGy/fraction. Twenty-three patients had HLA-identical sibling donors, nine patients had HLA-matched but unrelated donors, and three partially HLA-mismatched donors. Twenty-two patients received T-cell depleted marrow. TLI did not add greatly to the toxicity. Four patients had recurrent leukaemia before engraftment was evaluable. The other 31 patients engrafted and no graft failed. Twenty-two patients survive at a median time from transplant of 305 days (range 81-586 days). Fourteen have no evidence of disease; eight have or had only cytogenetic evidence of leukaemia. It is concluded that addition of TLI to pretransplant immunosuppression increases the probability of reliable engraftment in patients receiving T-cell depleted marrow. This is not associated with significantly increased toxicity. (author).

  7. Total lymphoid irradiation preceding bone marrow transplantation for chronic myeloid leukaemia

    International Nuclear Information System (INIS)

    James, N.D.; Apperley, J.F.; Kam, K.C.; Mackinnon, S.; Goldman, J.M.; Goolden, A.W.G.; Sikora, K.

    1989-01-01

    Between August 1985 and October 1987 35 patients with chronic myeloid leukaemia (CML) were treated by high dose chemotherapy, total body irradiation (TBI) (1000 or 1200 cGy, n=31) and total lymphoid irradiation (TLI) (800 or 600 cGy, n=35) preceding allogeneic bone marrow transplantation (BMT). Both TBI and TLI were given at 200 cGy/fraction. Twenty-three patients had HLA-identical sibling donors, nine patients had HLA-matched but unrelated donors, and three partially HLA-mismatched donors. Twenty-two patients received T-cell depleted marrow. TLI did not add greatly to the toxicity. Four patients had recurrent leukaemia before engraftment was evaluable. The other 31 patients engrafted and no graft failed. Twenty-two patients survive at a median time from transplant of 305 days (range 81-586 days). Fourteen have no evidence of disease; eight have or had only cytogenetic evidence of leukaemia. It is concluded that addition of TLI to pretransplant immunosuppression increases the probability of reliable engraftment in patients receiving T-cell depleted marrow. This is not associated with significantly increased toxicity. (author)

  8. Chronic myelogenous leukemia (CML)

    Science.gov (United States)

    CML; Chronic myeloid leukemia; Chronic granulocytic leukemia; Leukemia - chronic granulocytic ... nuclear disaster. It takes many years to develop leukemia from radiation exposure. Most people treated for cancer ...

  9. Imatinib mesylate in chronic myelogenous leukemia: a Congolese ...

    African Journals Online (AJOL)

    Major cytogenetic response was noticed in 87.18%. After a median follow up of 12 months, chronic myeloid leukemia had not progressed to the accelerated or blastic phase in an estimated 91.8% of patients and 86.6% were alive. Conclusion: Imatinib is effective in newly chronic phase chronic myeloid leukemia patient ...

  10. (/sup 3/H)ouabain binding to leukaemic cells and intralymphocytic sodium content in chronic lymphocytic leukaemia; no evidence for alterations of the Na/sup +//K/sup +/-pump

    Energy Technology Data Exchange (ETDEWEB)

    Berntorp, E; Berntorp, K

    1987-01-01

    The number of specific (/sup 3/H)ouabain binding sites and dissociation constants (K/sub d/) were determined by Scatchard analysis of values for leucocytes from patients with B-cell chronic lymphocytic leukaemia (CCL), chronic myeloid leukaemia (CML), acute blastic leukaemia (AL) and healthy subjects. CCL lymphocytes and normal B-cells bound significantly less (/sup 3/H)ouabain than did normal T-lymphocytes. CML granulocytes showed the same binding characteristics as normal granulocytes, while blast cells from AL patients bound significantly more (/sup 3/H)ouabain than did normal granulocytes or B-cells. The increased binding capacity in blast cells might, at least partly, reflect their larger cell size. A decrease in K/sub d/ values was only found in CLL lymphocytes, as compared with normal B-cells. Intralymphocytic sodium content in CLL lymphocytes was significantly increased, as sompared with that in T-cell-enriched normal lymphocytes. (/sup 3/H)ouabain binding did not show any relationship to different prognostic variables in CLL. The present data mainly argue against altered Na/sup +//K/sup +/-ATPase enzyme activity as an indicator of malignancy.

  11. Clinical relevance of the breakpoint sites within the M-BCR in 50 patients from Argentina with chronic myeloid leukemia.

    Science.gov (United States)

    Giere, I A; Larripa, I B

    1996-08-01

    Fifty patients from Argentina with chronic myeloid leukemia (CML) were studied in order to characterize the breakpoint site within the major breakpoint cluster region (M-BCR) and its relationship with the duration of the chronic phase (CP). The DNA digestion with the restriction enzymes: Bgl II, BAM HI and Hind III and hybridization with the 1.2Kb Hind III-Bgl II bcr probe showed that 56% of cases had the breakpoint in 5'M-bcr region and the remaining 44% in 3'M-bcr region. The duration of chronic phase from diagnosis to the onset of the blast crisis (BC) was correlated with the location of the breakpoint within the M-bcr and no statistical differences were observed between the 5' and the 3' groups. These data indicate that the breakpoint site within the bcr gene is not a prognostic indicator of the duration of CP of the disease.

  12. Splenic irradiation before bone marrow transplantation for chronic myeloid leukaemia

    International Nuclear Information System (INIS)

    Gratwohl, A.; Hermans, J.; Biezen, A.V.

    1996-01-01

    A total of 229 patients with chronic myeloid leukaemia (CML) in chronic phase were randomized between 1986 and 1990 to receive or not receive additional splenic irradiation as part of their conditioning prior to bone marrow transplantation (BMT). Both groups, 115 patients with and 114 patients without splenic irradiation, were very similar regarding distribution of age, sex, donor/recipient sex combination, conditioning, graft-versus-host disease (GvHD) prevention method and blood counts at diagnosis or prior to transplant. 135 patients (59%) are alive as of October 1995 with a minimum follow-up of 5 years. 52 patients have relapsed (23%), 26 patients in the irradiated, 26 patients in the non-irradiated group (n.s.) with a relapse incident at 6 years of 28%. The main risk factor for relapse was T-cell depletion as the method for GvHD prevention, and an elevated basophil count in the peripheral blood prior to transplant. Relapse incidence between patients with or without splenic irradiation was no different in patients at high risk for relapse, e.g. patients transplanted with T-cell-depleted marrows (P = n.s.) and in patients with low risk for relapse, e.g. patients transplanted with non-T-cell-depleted transplants and basophil counts 3% basophils in peripheral blood). In this patient group, relapse incidence was 11% at 6 years with splenic irradiation but 32% in the non-irradiated group (P = 0.05). Transplant-related mortality was similar whether patients received splenic irradiation or not. This study suggests an advantage in splenic irradiation prior to transplantation for CML in this subgroup of patients and illustrates the need for tailored therapy. (Author)

  13. Aberrant DNA Methylation in Chronic Myeloid Leukemia: Cell Fate Control, Prognosis, and Therapeutic Response.

    Science.gov (United States)

    Behzad, Masumeh Maleki; Shahrabi, Saeid; Jaseb, Kaveh; Bertacchini, Jessika; Ketabchi, Neda; Saki, Najmaldin

    2018-01-31

    Chronic myeloid leukemia (CML) is a hematopoietic stem cell malignancy characterized by the expression of the BCR-ABL1 fusion gene with different chimeric transcripts. Despite the crucial impact of constitutively active tyrosine kinase in CML pathogenesis, aberrant DNA methylation of certain genes plays an important role in disease progression and the development of drug resistance. This article reviews recent findings relevant to the effect of DNA methylation pattern of regulatory genes on various cellular activities such as cell proliferation and survival, as well as cell-signaling molecules in CML. These data might contribute to defining the role of aberrant DNA methylation in disease initiation and progression. However, further studies are needed on the validation of specific aberrant methylation markers regarding the prognosis and prediction of response among the CML patients.

  14. Managing chronic myeloid leukemia: a coordinated team care perspective.

    Science.gov (United States)

    Holloway, Stacie; Lord, Katharine; Bethelmie-Bryan, Beverly; Shepard, Marian W; Neely, Jessica; McLemore, Morgan; Reddy, Satyanarayan K; Montero, Aldemar; Jonas, William S; Gladney, Sara Pierson; Khanwani, Shyam L; Reddy, Silpa C; Lahiry, Anup K; Heffner, Leonard T; Winton, Elliott; Arellano, Martha; Khoury, Hanna Jean

    2012-04-01

    Treatment of chronic myeloid leukemia (CML) has seen dramatic progress in recent years with the development of tyrosine kinase inhibitors (TKIs). To take maximum advantage of therapy with TKIs, compliance and good understanding of monitoring response to therapy are essential. We established a team that included a hematologist, a physician assistant (PA), and a nurse who work closely with a social worker, a pharmacist, and a research coordinator to assist patients throughout their journey with CML. The patient and the referring community oncologist were incorporated into this team. This coordinated team care approach takes advantage of each member's specific skills to provide patients with education about CML, encourage patients' strong involvement in tracking/monitoring results/response to therapy, and support patients with issues that arise throughout the long course of the disease. A low rate of noncompliance with clinic visits (3%) was an indirect measure of the impact of this approach. The inclusion of the referring oncologist in the team extended the tracking of monitoring results to the community practice. We conclude that a coordinated team care approach is feasible in the management of patients with CML. This approach provided patients with education and a good understanding of response to therapy and improved relations with the health care team. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Influence of different metal ions on the ultrastructure, biochemical properties, and protein localization of the K562 cell nuclear matrix.

    Science.gov (United States)

    Neri, L M; Bortul, R; Zweyer, M; Tabellini, G; Borgatti, P; Marchisio, M; Bareggi, R; Capitani, S; Martelli, A M

    1999-06-01

    The higher order of chromatin organization is thought to be determined by the nuclear matrix, a mainly proteinaceous structure that would act as a nucleoskeleton. The matrix is obtained from isolated nuclei by a series of extraction steps involving the use of high salt and nonspecific nucleases, which remove chromatin and other loosely bound components. It is currently under debate whether these structures, isolated in vitro by unphysiological extraction buffers, correspond to a nucleoskeleton existing in vivo. In most cell types investigated, the nuclear matrix does not spontaneously resist these extractions steps; rather, it must be stabilized before the application of extracting agents. In this study nuclei, isolated from K562 human erythroleukemia cells, were stabilized by incubation with different metal ions (Ca2+, Cu2+, Zn2+, Cd2+), and the matrix was obtained by extraction with 2 M NaCl. By means of ultrastructural analysis of the resulting structures, we determined that, except for Ca2+, all the other metals induced a stabilization of the matrix, which retained the inner fibrogranular network and residual nucleoli. The biochemical composition, analyzed by two-dimensional gel electrophoresis separation, exhibited a distinct matrix polypeptide pattern, characteristic of each type of stabilizing ion employed. We also investigated to what extent metal ions could maintain in the final structures the original distribution of three inner matrix components, i.e. NuMA, topoisomerase IIalpha, and RNP. Confocal microscopy analysis showed that only NuMa, and, to a lesser extent, topoisomerase IIalpha, were unaffected by stabilization with divalent ions. On the contrary, the fluorescent RNP patterns detected in the resulting matrices were always disarranged, irrespective of the stabilization procedure. These results indicate that several metal ions are powerful stabilizing agents of the nuclear matrix prepared from K562 erythroleukemia cells and also strengthen the

  16. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, Paulo Emilio [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil); Jacques, Amanda Virtuoso [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin [Federal University of Paraná, Department of Biochemistry and Molecular Biology (Brazil); Santos-Silva, Maria Claudia dos [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Sayer, Claudia; Araújo, Pedro H. Hermes de, E-mail: pedro.h.araujo@ufsc.br [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil)

    2016-04-15

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  17. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    International Nuclear Information System (INIS)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; Santos-Silva, Maria Claudia dos; Sayer, Claudia; Araújo, Pedro H. Hermes de

    2016-01-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  18. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Science.gov (United States)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  19. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

    Directory of Open Access Journals (Sweden)

    Agnes S. M. Yong

    2017-04-01

    Full Text Available Chronic myeloid leukemia (CML is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01% in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR, which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important

  20. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

    Science.gov (United States)

    Hughes, Amy; Yong, Agnes S. M.

    2017-01-01

    Chronic myeloid leukemia (CML) is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22)], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs) represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01%) in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR), which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK) cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important in mediating

  1. Effects of antioxidants on apoptosis induced by dasatinib and nilotinib in K562 cells.

    Science.gov (United States)

    Damiano, Sara; Montagnaro, Serena; Puzio, Maria V; Severino, Lorella; Pagnini, Ugo; Barbarino, Marcella; Cesari, Daniele; Giordano, Antonio; Florio, Salvatore; Ciarcia, Roberto

    2018-06-01

    In clinical practice for the treatment of chronic myeloid leukemia, second generation of tyrosine kinase inhibitors such as Nilotinib (NIL) specific and potent inhibitor of the BCR/ABL kinase and Dasatinib (DAS) a inhibitor of BCR/ABL and Src family kinase were developed to clinically overcome imatinib resistance. In this study, we wanted to test the ability of some antioxidants such Resveratrol (RES) or a new recombinant mitochondrial manganese containing superoxide dismutase (rMnSOD) or δ-tocotrienol (δ-TOCO) to interact with DAS and NIL on viability, reactive oxygen species (ROS) production, lipid peroxidation, and apoptosis. To test the possible mechanisms of action of such antioxidants, we utilized N-acetyl-L-cysteine (NAC) a specific inhibitor ROS production or PP1 a specific Src tyrosine kinase inhibitor or BAPTA a specific chelator of intracellular calcium. Our data demonstrated: 1) RES, rMnSOD, δ-TOCO, and NAC, at dose used, significantly reduced the intracellular levels of MDA induced by DAS or NIL; 2) RES, rMnSOD, and δ-TOCO increased the intracellular ROS levels; 3) The increase ROS levels is related to higher levels of oligonucleosomesi induced by DAS and NIL and that NAC significantly reduced this activity. Interestingly, our data showed that apoptotic activity of DAS and NIL have significantly increased the production of oligonucleosomes by triggering excessive ROS generation as well as functionality of SERCA receptors. © 2018 Wiley Periodicals, Inc.

  2. Comparison of imatinib 400 mg and 800 mg daily in the front-line treatment of high-risk, Philadelphia-positive chronic myeloid leukemia: a European LeukemiaNet Study

    DEFF Research Database (Denmark)

    Baccarani, Michele; Rosti, Gianantonio; Castagnetti, Fausto

    2009-01-01

    Imatinib mesylate (IM), 400 mg daily, is the standard treatment of Philadelphia-positive (Ph(+)) chronic myeloid leukemia (CML). Preclinical data and results of single-arm studies raised the suggestion that better results could be achieved with a higher dose. To investigate whether the systematic...

  3. Low educational level but not low income impairs the achievement of cytogenetic remission in chronic myeloid leukemia patients treated with imatinib in Brazil

    Directory of Open Access Journals (Sweden)

    Monica Napoleão Fortes Rego

    2015-05-01

    Full Text Available OBJECTIVES: In Brazil, imatinib mesylate is supplied as the first-line therapy for chronic myeloid leukemia in the chronic phase through the public universal healthcare program, Sistema Único de Saúde (SUS. We studied the socio-demographic factors that influenced therapy success in a population in the northeast region of Brazil. METHODS: Patients with chronic myeloid leukemia from the state of Piauí were treated in only one reference center. Diagnosis was based on WHO 2008 criteria. Risk was assessed by Sokal, Hasford and EUTOS scores. Patients received 400 mg imatinib daily. We studied the influence of the following factors on the achievement of complete cytogenetic response within one year of treatment: age, clinical risk category, time interval between diagnosis and the start of imatinib treatment, geographic distance from the patient's home to the hospital, years of formal education and monthly income. RESULTS: Among 103 patients studied, the median age was 42 years; 65% of the patients had 2-9 years of formal education, and the median monthly income was approximately 100 US$. Imatinib was started in the first year after diagnosis (early chronic phase in 69 patients. After 12 months of treatment, 68 patients had a complete cytogenetic response. The Hasford score, delay to start imatinib and years of formal education influenced the attainment of a complete cytogenetic response, whereas income and the distance from the home to the healthcare facility did not. CONCLUSION: Patients require additional healthcare information to better understand the importance of long-term oral anticancer treatment and to improve their compliance with the treatment.

  4. Achieving deeper molecular response is associated with a better clinical outcome in chronic myeloid leukemia patients on imatinib front-line therapy

    Science.gov (United States)

    Etienne, Gabriel; Dulucq, Stéphanie; Nicolini, Franck-Emmanuel; Morisset, Stéphane; Fort, Marie-Pierre; Schmitt, Anna; Etienne, Madeleine; Hayette, Sandrine; Lippert, Eric; Bureau, Caroline; Tigaud, Isabelle; Adiko, Didier; Marit, Gérald; Reiffers, Josy; Mahon, François-Xavier

    2014-01-01

    Sustained imatinib treatment in chronic myeloid leukemia patients can result in complete molecular response allowing discontinuation without relapse. We set out to evaluate the frequency of complete molecular response in imatinib de novo chronic phase chronic myeloid leukemia patients, to identify base-line and under-treatment predictive factors of complete molecular response in patients achieving complete cytogenetic response, and to assess if complete molecular response is associated with a better outcome. A random selection of patients on front-line imatinib therapy (n=266) were considered for inclusion. Complete molecular response was confirmed and defined as MR 4.5 with undetectable BCR-ABL transcript levels. Median follow up was 4.43 years (range 0.79–10.8 years). Sixty-five patients (24%) achieved complete molecular response within a median time of 32.7 months. Absence of spleen enlargement at diagnosis, achieving complete cytogenetic response before 12 months of therapy, and major molecular response during the year following complete cytogenetic response was predictive of achieving further complete molecular response. Patients who achieved complete molecular response had better event-free and failure-free survivals than those with complete cytogenetic response irrespective of major molecular response status (95.2% vs. 64.7% vs. 27.7%, P=0.00124; 98.4% vs. 82.3% vs. 56%, P=0.0335), respectively. Overall survival was identical in the 3 groups. In addition to complete cytogenetic response and major molecular response, further deeper molecular response is associated with better event-free and failure-free survivals, and complete molecular response confers the best outcome. PMID:24362549

  5. Complex Variant t(9;22 Chromosome Translocations in Five Cases of Chronic Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Ana Valencia

    2009-01-01

    Full Text Available The Philadelphia (Ph1 chromosome arising from the reciprocal t(9;22 translocation is found in more than 90% of chronic myeloid leukemia (CML patients and results in the formation of the chimeric fusion gene BCR-ABL. However, a small proportion of patients with CML have simple or complex variants of this translocation, involving various breakpoints in addition to 9q34 and 22q11. We report five CML cases carrying variant Ph translocations involving both chromosomes 9 and 22 as well as chromosomes 3, 5, 7, 8, or 10. G-banding showed a reciprocal three-way translocation involving 3q21, 5q31, 7q32, 8q24, and 10q22 bands. BCR-ABL fusion signal on der(22 was found in all of the cases by FISH.

  6. [Modern therapy of chronic myeloid leukemia: an example for paradigma shift in hemato-oncology].

    Science.gov (United States)

    Leitner, A A; Hehlmann, R

    2011-02-01

    Chronic myeloid leukemia (CML) is exceptional amongst neoplasias since its underlying pathomechanism has been elucidated, and potent well tolerated targeted drugs, the tyrosine kinase inhibitors (TKI), are available for treatment. They convincingly improve prognosis while retaining good quality of life. Aims of therapy are complete remissions as well as prolongation of life and cure. Imatinib 400 mg per day is current standard therapy. There are hints for a better outcome with a higher initial imatinib dose or with combination therapy. Even after achievement of complete molecular response continuous therapy might be necessary in most cases. In case of imatinib intolerance or failure, the second generation TKI dasatinib and nilotinib and allogeneic stem cell transplantation are available. The use of second generation TKI as first line treatment might further improve prognosis. The therapeutic response should be regularly monitored according to international recommendations.

  7. New Complex Chromosomal Translocation in Chronic Myeloid Leukaemia: t(9;18;22(q34;p11;q11

    Directory of Open Access Journals (Sweden)

    Abdeljabar El Andaloussi

    2007-01-01

    Full Text Available A Chronic myeloid leukaemia (CML case with a new complex t(9;18;22(q34;p11;q11 of a 29-year-old man is being reported. For the first time, this translocation has been characterized by karyotype complemented with fluorescence in situ hybridization (FISH. In CML, the complex and standard translocations have the same prognosis. The patient was treated with standard initial therapy based on hydroxyurea before he died due to heart failure four months later. Our finding indicates the importance of combined cytogenetic analysis for diagnosis and guidance of treatment in clinical diagnosis of CML.

  8. Multidrug resistance in tumour cells: characterisation of the multidrug resistant cell line K562-Lucena 1

    Directory of Open Access Journals (Sweden)

    VIVIAN M. RUMJANEK

    2001-03-01

    Full Text Available Multidrug resistance to chemotherapy is a major obstacle in the treatment of cancer patients. The best characterised mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein. However, the resistance process is multifactorial. Studies of multidrug resistance mechanisms have relied on the analysis of cancer cell lines that have been selected and present cross-reactivity to a broad range of anticancer agents. This work characterises a multidrug resistant cell line, originally selected for resistance to the Vinca alkaloid vincristine and derived from the human erythroleukaemia cell K562. This cell line, named Lucena 1, overexpresses P-glycoprotein and have its resistance reversed by the chemosensitisers verapamil, trifluoperazine and cyclosporins A, D and G. Furthermore, we demonstrated that methylene blue was capable of partially reversing the resistance in this cell line. On the contrary, the use of 5-fluorouracil increased the resistance of Lucena 1. In addition to chemotherapics, Lucena 1 cells were resistant to ultraviolet A radiation and hydrogen peroxide and failed to mobilise intracellular calcium when thapsigargin was used. Changes in the cytoskeleton of this cell line were also observed.A resistência a múltiplos fármacos é o principal obstáculo no tratamento de pacientes com câncer. O mecanismo responsável pela resistência múltipla mais bem caracterizado envolve a expressão do produto do gene MDR-1, a glicoproteína P. Entretanto, o processo de resistência tem fatores múltiplos. Estudos de mecanismos de resistência m��ltipla a fármacos têm dependido da análise de linhagens celulares tumorais que foram selecionadas e apresentam reatividade cruzada a uma ampla faixa de agentes anti-tumorais. Este trabalho caracteriza uma linhagem celular com múltipla resistência a fármacos, selecionada originalmente pela resistência ao alcalóide de Vinca vincristina e derivado

  9. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids

    Energy Technology Data Exchange (ETDEWEB)

    Amos, T.A.S.; Lewis, J.L.; Grand, F.H.; Gooding, R.P.; Goldman, J.M.; Gordon, M.Y. [Royal Postgraduate Medical School, London (United Kingdom)

    1995-10-01

    Inhibition of apoptosis (genetically programmed active cell death) by p210 BCR-ABL expression is a mechanism that might contribute to clonal expansion in chronic myeloid leukaemia (CML). Since cell death following exposure to ionizing radiation and many chemotherapeutic agents can occur by the apoptotic pathway, inhibition of apoptosis would be expected to confer a relative resistance to these treatments. Similarly, cells deprived of growth factors in vitro die by apoptosis, and inhibition of apoptosis would therefore be expected to allow cells to survive better in growth factor-deprived conditions. We found that the survival of normal and CML myeloid progenitors was the same after in vitro incubation in deprived conditions and after treatment with X-irradiation or glucocorticoids. We also found that mature cells in colonies produced by CML progenitors (CFU-GM) did not survive better than those produced by normal progenitor cells. Flow cytometric analysis of propidium iodide-stained cells provided a direct indication that the degree of apoptosis may correspond to the degree of deprivation. These results suggest that inhibition of apoptosis may not be the primary mechanism whereby BCR-ABL influences the expansion of the malignant clone in CML. (Author).

  10. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids

    International Nuclear Information System (INIS)

    Amos, T.A.S.; Lewis, J.L.; Grand, F.H.; Gooding, R.P.; Goldman, J.M.; Gordon, M.Y.

    1995-01-01

    Inhibition of apoptosis (genetically programmed active cell death) by p210 BCR-ABL expression is a mechanism that might contribute to clonal expansion in chronic myeloid leukaemia (CML). Since cell death following exposure to ionizing radiation and many chemotherapeutic agents can occur by the apoptotic pathway, inhibition of apoptosis would be expected to confer a relative resistance to these treatments. Similarly, cells deprived of growth factors in vitro die by apoptosis, and inhibition of apoptosis would therefore be expected to allow cells to survive better in growth factor-deprived conditions. We found that the survival of normal and CML myeloid progenitors was the same after in vitro incubation in deprived conditions and after treatment with X-irradiation or glucocorticoids. We also found that mature cells in colonies produced by CML progenitors (CFU-GM) did not survive better than those produced by normal progenitor cells. Flow cytometric analysis of propidium iodide-stained cells provided a direct indication that the degree of apoptosis may correspond to the degree of deprivation. These results suggest that inhibition of apoptosis may not be the primary mechanism whereby BCR-ABL influences the expansion of the malignant clone in CML. (Author)

  11. BCR translocation to derivative chromosome 2, a new case of chronic myeloid leukemia with complex variant translocation and Philadelphia chromosome

    International Nuclear Information System (INIS)

    Al-Achkar, W.; Wafa, A.; Al-Medani, S.

    2011-01-01

    The well-known typical fusion gene BCR/ABL can be observed in connection with a complex translocation event in only 5-8% of cases with chronic myeloid leukemia (CML). Herein we report an exceptional CML case with complex chromosomal aberrations not observed before, translocated BCR to the derivative chromosome 2 [der(2)], additional to involving a four chromosomes translocation implying chromosomal regions such as 1p32 and 2q21 besides 9q34 and 22q11.2. Which were characterized by molecular cytogenetics. (author)

  12. Expression, prognostic significance and mutational analysis of protein tyrosine phosphatase SHP-1 in chronic myeloid leukemia.

    Science.gov (United States)

    Papadopoulou, Vasiliki; Kontandreopoulou, Elina; Panayiotidis, Panayiotis; Roumelioti, Maria; Angelopoulou, Maria; Kyriazopoulou, Lydia; Diamantopoulos, Panagiotis T; Vaiopoulos, George; Variami, Eleni; Kotsianidis, Ioannis; Athina Viniou, Nora

    2016-05-01

    The protein tyrosine phosphatase SHP-1 dephosphorylates BCR-ABL1, thereby serving as a potential control mechanism of BCR-ABL1 kinase activity. Pathways regulating SHP-1 expression, which could be exploited in the therapeutics of TKI-resistant chronic myeloid leukemia (CML), remain unknown. Moreover, the questions of whether there is any kind of SHP-1 deregulation in CML, contributing to disease initiation or evolution, as well as the question of prognostic significance of SHP-1, have not been definitively answered. This study shows moderately lower SHP-1 mRNA expression in chronic phase CML patients in comparison to healthy individuals and no change in SHP-1 mRNA levels after successful TKI treatment. Mutational analysis of the aminoterminal and phosphatase domains of SHP-1 in patients did not reveal genetic lesions. This study also found no correlation of SHP-1 expression at diagnosis with response to treatment, although a trend for lower SHP-1 expression was noted in the very small non-responders' group of the 3-month therapeutic milestone.

  13. Na+-K+ pump in chronic renal failure

    International Nuclear Information System (INIS)

    Deepak, K.; Kahn, T.

    1987-01-01

    This review summarizes the evidence for the defect in Na + -K + pump in chronic renal failure, considers the role of various factors in causing this defect, and discusses the clinical implications thereof. Intracellular Na is elevated in erythrocytes, leukocytes, and muscle cells from some patients with chronic renal failure (CRF). Recent evidence suggest that this elevation of cell Na may be, in large part, a consequence of decreased number of Na + -K + pump units per cell. Maintenance dialysis over a period of weeks ameliorates the defect in intracellular Na + , and this improvement is contemporaneous with an increase in the number of Na + -K + pump sites per cell. In erythrocytes with normal cell Na + , acute hemodialysis increases the rate of 22 Na + and 42 K + transport. Many factors such as the presence of retained toxic metabolite or circulating inhibitor in the uremic plasma, or biochemical changes produced by acute hemodialysis, may explain this finding. In cells with high cell Na + , the pump-mediated 42 K + transport is normalized at the expense of a raised cell Na + . The decreased muscle membrane potential in uremic subjects has been attributed to a decreased activity of Na + -K + pump. The authors discuss the role of hormonal abnormalities and circulating inhibitors, which may cause an acute inhibition of the pump and of other factors such as K + depletion, which may cause more chronic alterations. The implications of alteration of Na + and K + pump transport and raised cell Na + on other non-pump-mediated transport pathways are discussed. Raised cell Na + may be a marker for the adequacy of maintenance dialysis in patients with end-stage renal failure

  14. B-Cell Chronic Lymphocytic Leukemia with 11q22.3 Rearrangement in Patient with Chronic Myeloid Leukemia Treated with Imatinib

    Directory of Open Access Journals (Sweden)

    Krzysztof Lewandowski

    2016-01-01

    Full Text Available The coexistence of two diseases chronic myeloid leukemia (CML and B-cell chronic lymphocytic leukemia (B-CLL is a rare phenomenon. Both neoplastic disorders have several common epidemiological denominators (they occur more often in men over 50 years of age but different origin and long term prognosis. In this paper we described the clinical and pathological findings in patient with CML in major molecular response who developed B-CLL with 11q22.3 rearrangement and Coombs positive hemolytic anemia during the imatinib treatment. Due to the presence of the symptoms of autoimmune hemolytic anemia and optimal CML response to the imatinib treatment, the decision about combined therapy with prednisone and imatinib was made. During the follow-up, the normalization of complete blood count and resolution of peripheral lymphadenopathy were noted. The hematologic response of B-CLL was diagnosed. The repeated FISH analysis of cultured peripheral blood lymphocytes showed 2% of cells carrying 11q22.3 rearrangement. At the same time, molecular monitoring confirmed the deep molecular response of CML. The effectiveness of such combination in the described case raises the question about the best therapeutic option in such situation, especially in patients with good imatinib tolerance and optimal response.

  15. BCR-ABL1 mutation development during first-line treatment with dasatinib or imatinib for chronic myeloid leukemia in chronic phase.

    Science.gov (United States)

    Hughes, T P; Saglio, G; Quintás-Cardama, A; Mauro, M J; Kim, D-W; Lipton, J H; Bradley-Garelik, M B; Ukropec, J; Hochhaus, A

    2015-09-01

    BCR-ABL1 mutations are a common, well-characterized mechanism of resistance to imatinib as first-line treatment of chronic myeloid leukemia in chronic phase (CML-CP). Less is known about mutation development during first-line treatment with dasatinib and nilotinib, despite increased use because of higher response rates compared with imatinib. Retrospective analyses were conducted to characterize mutation development in patients with newly diagnosed CML-CP treated with dasatinib (n=259) or imatinib (n=260) in DASISION (Dasatinib versus Imatinib Study in Treatment-Naive CML-CP), with 3-year minimum follow-up. Mutation screening, including patients who discontinued treatment and patients who had a clinically relevant on-treatment event (no confirmed complete cytogenetic response (cCCyR) and no major molecular response (MMR) within 12 months; fivefold increase in BCR-ABL1 with loss of MMR; loss of CCyR), yielded a small number of patients with mutations (dasatinib, n=17; imatinib, n=18). Dasatinib patients had a narrower spectrum of mutations (4 vs 12 sites for dasatinib vs imatinib), fewer phosphate-binding loop mutations (1 vs 9 mutations), fewer multiple mutations (1 vs 6 patients) and greater occurrence of T315I (11 vs 0 patients). This trial was registered at www.clinicaltrials.gov as NCT00481247.

  16. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia.

    Science.gov (United States)

    Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J

    2017-06-01

    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.

  17. Cooperation of imipramine blue and tyrosine kinase blockade demonstrates activity against chronic myeloid leukemia

    Science.gov (United States)

    Laidlaw, Kamilla M.E.; Berhan, Samuel; Liu, Suhu; Silvestri, Giovannino; Holyoake, Tessa L.; Frank, David A.; Aggarwal, Bharat; Bonner, Michael Y.; Perrotti, Danilo

    2016-01-01

    The use of tyrosine kinase inhibitors (TKI), including nilotinib, has revolutionized the treatment of chronic myeloid leukemia (CML). However current unmet clinical needs include combating activation of additional survival signaling pathways in persistent leukemia stem cells after long-term TKI therapy. A ubiquitous signaling alteration in cancer, including CML, is activation of reactive oxygen species (ROS) signaling, which may potentiate stem cell activity and mediate resistance to both conventional chemotherapy and targeted inhibitors. We have developed a novel nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, imipramine blue (IB) that targets ROS generation. ROS levels are known to be elevated in CML with respect to normal hematopoietic stem/progenitor cells and not corrected by TKI. We demonstrate that IB has additive benefit with nilotinib in inhibiting proliferation, viability, and clonogenic function of TKI-insensitive quiescent CD34+ CML chronic phase (CP) cells while normal CD34+ cells retained their clonogenic capacity in response to this combination therapy in vitro. Mechanistically, the pro-apoptotic activity of IB likely resides in part through its dual ability to block NF-κB and re-activate the tumor suppressor protein phosphatase 2A (PP2A). Combining BCR-ABL1 kinase inhibition with NADPH oxidase blockade may be beneficial in eradication of CML and worthy of further investigation. PMID:27438151

  18. Insights into the management of chronic myeloid leukemia in resource-poor settings: a Mexican perspective.

    Science.gov (United States)

    Gomez-de-León, Andrés; Gómez-Almaguer, David; Ruiz-Delgado, Guillermo J; Ruiz-Arguelles, Guillermo J

    2017-09-01

    The arrival of targeted therapy for chronic myeloid leukemia (CML) was revolutionary. However, due to the high cost of tyrosine kinase inhibitors, access to this highly effective therapy with strict monitoring strategies is limited in low to middle-income countries. In this context, following standard recommendations proposed by experts in developed countries is difficult. Areas covered: This review aims to provide an insight into the management of patients with CML living in a resource-limited setting. It addresses several issues: diagnosis, initial treatment, disease monitoring, and additional treatment alternatives including allogeneic hematopoietic stem cell transplantation. Expert commentary: Imatinib is probably the most cost-effective TKI for initial treatment in developing and underdeveloped countries. Generic imatinib preparations should be evaluated before considering their widespread use. Adherence to treatment should be emphasized. Adequate monitoring can be performed through several methods successfully and is important for predicting outcomes, particularly early in the first year, and if treatment suspension is being considered. Access to further therapeutic alternatives should define our actions after failure or intolerance to imatinib, preferring additional TKIs if possible. Allogeneic transplantation in chronic phase is a viable option in this context.

  19. Dose Dependent Survival Response in Chronic Myeloid Leukemia under Continuous and Pulsed Targeted Therapy

    International Nuclear Information System (INIS)

    Pizzolato, N.; Valenti, D.; Spagnolo, B.; Persano Adorno, D.

    2010-01-01

    A simulative study of cancer growth dynamics in patients affected by Chronic Myeloid Leukemia (CML), under the effect of a targeted dose dependent continuous or pulsed therapy, is presented. We have developed a model for the dynamics of CML in which the stochastic evolution of white blood cell populations are simulated by adopting a Monte Carlo approach. Several scenarios in the evolutionary dynamics of white blood cells, as a consequence of the efficacy of the different modelled therapies, pulsed or continuous, are described. The best results, in terms of a permanent disappearance of the leukemic phenotype, are achieved with a continuous therapy and higher dosage. However, our findings demonstrate that an intermittent therapy could represent a valid choice in patients with high risk of toxicity, when a long-term therapy is considered. A suitably tuned pulsed therapy can enhance the treatment efficacy and reduce the percentage of patients developing resistance. (authors)

  20. Monoclonal Antibody Therapy in Treating Patients With Ovarian Epithelial Cancer, Melanoma, Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Non-Small Cell Lung Cancer

    Science.gov (United States)

    2013-01-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer

  1. Heme-binding plasma membrane proteins of K562 erythroleukemia cells: Adsorption to heme-microbeads, isolation with affinity chromatography

    International Nuclear Information System (INIS)

    Majuri, R.

    1989-01-01

    Heme-microbeads attached themselves to the surface of viable K562 cells in a manner inhibitable by free hemin, indicating heme-recptor interaction. The microbeads were at first evenly distributed, but after prolonged incubation at 37 deg. C they formed a cap on one pole of the cells indicating clustering of the membrane heme receptors. Membrane proteins were labeled by culturing the cells in the presence of 35 S-methionine and were then solubilized with Triton X-114. The hydrophobic proteins contained about 20% of the total bound label. The solubilized membrane proteins were subsequently adsorbed to a heme-Sepharose affinity gel. According to SDS-electrophorsis and subsequent autoradiography, the immobilized heme captures two proteins or a protein with two polypeptides of 20 000 and 32 000 daltons. The larger of these was only wekly labeled with 35 S. The same two bands were observed if the cell surface proteins were labeled with 125 I by the lactoperoxidase method and the subsequently solubilized membrane proteins were isolated with heme-Sepharose. (author)

  2. Vorinostat and Decitabine in Treating Patients With Advanced Solid Tumors or Relapsed or Refractory Non-Hodgkin's Lymphoma, Acute Myeloid Leukemia, Acute Lymphocytic Leukemia, or Chronic Myelogenous Leukemia

    Science.gov (United States)

    2014-08-26

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Secondary Acute Myeloid Leukemia; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma

  3. Diagnosis and Treatment of Chronic Myeloid Leukemia (CML) in 2015

    Science.gov (United States)

    Thompson, Philip A; Kantarjian, Hagop; Cortes, Jorge E

    2017-01-01

    Few neoplastic diseases have undergone a transformation in a relatively short period of time like chronic myeloid leukemia (CML) has in the last few years. In 1960, CML was the first cancer where a unique chromosomal abnormality, “a minute chromosome”,1 was identified and a pathophysiologic correlation suggested. Landmark work followed, recognizing the underlying translocation between chromosomes 9 and 22 that gave rise to this abnormality2 and shortly afterward, the specific genes involved3,4 and the pathophysiologic implications of this novel rearrangement.5–7 Fast-forward a few years, this knowledge has given us the most remarkable example of a specific therapy targeting the dysregulated kinase activity represented by this molecular change. The broad use of tyrosine kinase inhibitors has resulted in an improvement in the overall survival to the point where the life expectancy of patients today is nearly equal to that of the general population.8 Still, there are challenges and unanswered questions that define the reasons why the progress still escapes many patients, and the details that separate patients from ultimate “cure”. In this manuscript we review our current understanding of CML in 2015, present recommendations for optimal management, and discuss the unanswered questions and what could be done to answer them in the near future. PMID:26434969

  4. Chronic myeloid leukemia with variation of translocation at (Ph) [ins (22;9) (q11;q21q34)]: a case report.

    Science.gov (United States)

    Wang, Zhiqiong; Zen, Wen; Meng, Fankai; Xin, Xing; Luo, Li; Sun, Hanying; Zhou, Jianfeng; Huang, Lifang

    2015-01-01

    Chronic myeloid leukemia (CML) is most frequently observed in middle-aged individuals. In most patients, normal marrow cells are replaced by cells with an abnormal G-group chromosome, the Philadelphia (Ph) chromosome. The Ph chromosome that is characterized by the translocation (9;22) (q34;q11) is noted in 90-95% of patients diagnosed with CML. Studies have also shown that CML can be associated with various other cytogenetic abnormalities, with 5-10% of these cases showing complex translocation involving another chromosome in addition to the Ph chromosome. Here, we report the case of a Ph(+) CML patient with an inserted karyotype who presented clinically in the chronic phase but with atypical features. This case highlights the significance of cytogenetic abnormalities on the prognosis in CML.

  5. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein

    DEFF Research Database (Denmark)

    Järås, Marcus; Johnels, Petra; Hansen, Nils Gunder

    2010-01-01

    Chronic myeloid leukemia (CML) is genetically characterized by the Philadelphia (Ph) chromosome, formed through a reciprocal translocation between chromosomes 9 and 22 and giving rise to the constitutively active tyrosine kinase P210 BCR/ABL1. Therapeutic strategies aiming for a cure of CML...... will require full eradication of Ph chromosome-positive (Ph(+)) CML stem cells. Here we used gene-expression profiling to identify IL-1 receptor accessory protein (IL1RAP) as up-regulated in CML CD34(+) cells and also in cord blood CD34(+) cells as a consequence of retroviral BCR/ABL1 expression. To test...

  6. Selecting the Best Frontline Treatment in Chronic Myeloid Leukemia

    Science.gov (United States)

    Yilmaz, Musa; Abaza, Yasmin; Jabbour, Elias

    2017-01-01

    With the discovery of Philadelphia chromosome, understanding of chronic myeloid leukemia (CML) pathobiology has tremendously increased. Development of tyrosine kinase inhibitors (TKI) targeting the BCR/ABL1 oncoprotein has changed the landscape of the disease. Today, the expected survival of CML patients, if properly managed, is likely to be similar to the general population. Imatinib is the first approved TKI in CML treatment, and for several years, it was the only option in the frontline setting. Four years ago, second generation TKIs (nilotinib and dasatinib) were approved as alternative frontline options. Now, clinicians are faced the challenge of making decision for which TKI to chose upfront. Second generation TKIs have been demonstrated to induce deeper and faster responses compared to imatinib, however, none of 3 TKIs have been shown to have a clear survival advantage, they all are reasonable options. In contrast, when considering therapy in individual patients, the case may be stronger for a specific TKI. Co-morbidities of the patient and side effect profile of the TKI of interest should be an important consideration in decision making. At present, the cost nilotinib or dasatinib is not remarkably different from imatinib. However, patent for imatinib is expected to expire soon, and it will be available as a generic. Clinicians, then, need to weigh the advantages some patients gain with nilotinib or dasatinib in the frontline setting against the difference in cost. Whatever TKI is chosen as frontline, intolerance, non-compliance or treatment failure should be recognized early as a prompt intervention increases the chance of achieving best possible response. PMID:25921387

  7. An economic analysis of high-dose imatinib, dasatinib, and nilotinib for imatinib-resistant chronic phase chronic myeloid leukemia in China: A CHEERS-compliant article.

    Science.gov (United States)

    Wu, Bin; Liu, Maobai; Li, Te; Lin, Houwen; Zhong, Hua

    2017-07-01

    The aim of the study was to test the cost-effectiveness of dasatinib compared to high-dose imatinib and nilotinib in Chinese patients who were diagnosed with imatinib-resistant chronic myeloid leukemia in the chronic phase (CML-CP). A Markov model combined with clinical effectiveness, utility, and cost data was used. The sensitivity analyses were conducted to determine the robustness of the model outcomes. The impact of patient assistance programs (PAPs) was assessed. Treatment with dasatinib is expected to produce 3.65, 0.59, and 0.15 more quality-adjusted life years (QALYs) in comparison with high-dose imatinib (600 and 800 mg) and nilotinib, respectively. When a PAP was available, dasatinib yielded an incremental cost of $16,417 per QALY compared to imatinib (600 mg) and was cost-saving compared to imatinib (800 mg) and nilotinib. When PAP is available in the Chinese setting, dasatinib is likely to be a cost-effective strategy for patients with CML-CP standard-dose imatinib resistance. The results should be carefully explained due to the assumptions and limitations used in the study.

  8. Telomere length shortening is associated with treatment-free remission in chronic myeloid leukemia patients

    Directory of Open Access Journals (Sweden)

    Giovanni Caocci

    2016-07-01

    Full Text Available Abstract We studied telomere length in 32 CML patients who discontinued imatinib after achieving complete molecular remission and 32 age-sex-matched controls. The relative telomere length (RTL was determined by q-PCR as the telomere to single copy gene (36B4 ratio normalized to a reference sample (K-562 DNA. Age-corrected RTL (acRTL was also obtained. The 36-month probability of treatment-free remission (TFR was 59.4 %. TFR patients showed shorter acRTL compared to relapsed (mean ± SD = 0.01 ± 0.14 vs 0.20 ± 0.21; p = 0.01. TFR was significantly higher in CML patients with acRTL ≤0.09 (78.9 vs 30.8 %, p = 0.002. CML stem cells harboring longer telomeres possibly maintain a proliferative potential after treatment discontinuation.

  9. Expression of p89c-Mybex9b, an alternatively spliced form of c-Myb, is required for proliferation and survival of p210BCR/ABL-expressing cells

    International Nuclear Information System (INIS)

    Manzotti, G; Mariani, S A; Corradini, F; Bussolari, R; Cesi, V; Vergalli, J; Ferrari-Amorotti, G; Fragliasso, V; Soliera, A R; Cattelani, S; Raschellà, G; Holyoake, T L; Calabretta, B

    2012-01-01

    The c-Myb gene encodes the p75 c-Myb isoform and less-abundant proteins generated by alternatively spliced transcripts. Among these, the best known is p c-Mybex9b , which contains 121 additional amino acids between exon 9 and 10, in a domain involved in protein–protein interactions and negative regulation. In hematopoietic cells, expression of p c-Mybex9b accounts for 10–15% of total c-Myb; these levels may be biologically relevant because modest changes in c-Myb expression affects proliferation and survival of leukemic cells and lineage choice and frequency of normal hematopoietic progenitors. In this study, we assessed biochemical activities of p c-Mybex9b and the consequences of perturbing its expression in K562 and primary chronic myeloid leukemia (CML) progenitor cells. Compared with p75 c-Myb , p c-Mybex9b is more stable and more effective in transactivating Myb-regulated promoters. Ectopic expression of p c-Mybex9b enhanced proliferation and colony formation and reduced imatinib (IM) sensitivity of K562 cells; conversely, specific downregulation of p c-Mybex9b reduced proliferation and colony formation, enhanced IM sensitivity of K562 cells and markedly suppressed colony formation of CML CD34 + cells, without affecting the levels of p75 c-Myb . Together, these studies indicate that expression of the low-abundance p c-Mybex9b isoform has an important role for the overall biological effects of c-Myb in BCR/ABL-transformed cells

  10. Do endothelial cells belong to the primitive stem leukemic clone in CML? Role of extracellular vesicles.

    Science.gov (United States)

    Ramos, Teresa L; Sánchez-Abarca, Luis Ignacio; López-Ruano, Guillermo; Muntión, Sandra; Preciado, Silvia; Hernández-Ruano, Montserrat; Rosado, Belén; de las Heras, Natalia; Chillón, M Carmen; Hernández-Hernández, Ángel; González, Marcos; Sánchez-Guijo, Fermín; Del Cañizo, Consuelo

    2015-08-01

    The expression of BCR-ABL in hematopoietic stem cells is a well-defined primary event in chronic myeloid leukemia (CML). Some reports have described the presence of BCR-ABL on endothelial cells from CML patients, suggesting the origin of the disease in a primitive hemangioblastic cell. On the other hand, extracellular vesicles (EVs) released by CML leukemic cells are involved in the angiogenesis modulation process. In the current work we hypothesized that EVs released from BCR-ABL(+) cells may carry inside the oncogene that can be transferred to endothelial cells leading to the expression of both BCR-ABL transcript and the oncoprotein. EVs from K562 cells and plasma of newly diagnosed CML patients were isolated by ultracentrifugation. RT-PCR analysis detected the presence of BCR-ABL RNA in the EVs isolated from both K562 cells and plasma of CML patients. The incorporation of these EVs into endothelial cells was demonstrated by flow cytometry and fluorescence microscopy showed that after 24h of incubation most EVs were incorporated. BCR-ABL transcripts were detected in all experiments on endothelial cells incubated with EVs from both sources. The presence of BCR-ABL on endothelial cells incubated with Philadelphia(+) EVs was also confirmed by Western blot assays. In summary, endothelial cells acquire BCR-ABL RNA and the oncoprotein after incubation with EVs released from Ph(+) positive cells (either from K562 cells or from plasma of newly diagnosed CML patients). This results challenge the hypothesis that endothelial cells may be part of the Philadelphia(+) clone in CML. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with imatinib mesylate against chronic myelogenous leukemia cell lines

    Directory of Open Access Journals (Sweden)

    Xin P

    2017-04-01

    Full Text Available Pengliang Xin, Chuntuan Li, Yan Zheng, Qunyi Peng, Huifang Xiao, Yuanling Huang, Xiongpeng Zhu Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China Background: Phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR pathway is a therapy target of cancer. We aimed to confirm the effect of dual PI3K/mTOR inhibitor NVP-BEZ235 on proliferation, apoptosis, and autophagy of chronic myelogenous leukemia (CML cells and sensitivity of tyrosine kinase inhibitor in vitro.Methods: Two human CML cell lines, K562 and KBM7R (T315I mutant strain, were used. The proliferation of CML cells was detected by MTS (Owen’s reagent assay. Cell cycle and apoptosis assay were examined by flow cytometric analysis. The phosphorylation levels and the expression levels were both evaluated by Western blot analysis. NVP-BEZ235 in combination with imatinib was also used to reveal the effect on proliferation and apoptosis.Results: NVP-BEZ235 significantly inhibited the proliferation in a time- and dose-dependent manner, and the half-maximal inhibitory concentration values of NVP-BEZ235 inhibiting the proliferation of K562 and KBM7R were 0.37±0.21 and 0.43±0.27 µmol/L, respectively, after 48 h. Cell apoptosis assay showed that NVP-BEZ235 significantly increased the late apoptotic cells. Cell cycle analysis indicated that the cells were mostly arrested in G1/G0 phase after treatment by NVP-BEZ235. In addition, results also found that, after treatment by NVP-BEZ235, phosphorylation levels of Akt kinase and S6K kinase significantly reduced, and the expression levels of cleaved caspase-3 significantly increased; meanwhile, the expression levels of caspase-3, B-cell lymphoma-2, cyclin D1, and cyclin D2 significantly decreased, and the ratio of LC3II/LC3I was significantly increased with increased LC3II expression level. Moreover, imatinib in combination with NVP-BEZ235

  12. Re-emergence of interferon-α in the treatment of chronic myeloid leukemia

    Science.gov (United States)

    Talpaz, M; Hehlmann, R; Quintás-Cardama, A; Mercer, J; Cortes, J

    2013-01-01

    Treatment for chronic myeloid leukemia (CML) has evolved from chemotherapy (busulfan, hydroxyurea) to interferon-α (IFNα), and finally to tyrosine kinase inhibitors such as imatinib. Although imatinib has profoundly improved outcomes for patients with CML, it has limitations. Most significantly, imatinib cannot eradicate CML primitive progenitors, which likely accounts for the high relapse rate when imatinib is discontinued. IFNα, unlike imatinib, preferentially targets CML stem cells. Early studies with IFNα in CML demonstrated its ability to induce cytogenetic remission. Moreover, a small percentage of patients treated with IFNα were able to sustain durable remissions after discontinuing therapy and were probably cured. The mechanisms by which IFNα exerts its antitumor activity in CML are not well understood; however, activation of leukemia-specific immunity may have a role. Some clinical studies have demonstrated that the combination of imatinib and IFNα is superior to either therapy alone, perhaps because of their different mechanisms of action. Nonetheless, the side effects of IFNα often impede its administration, especially in combination therapy. Here, we review the role of IFNα in CML treatment and the recent developments that have renewed interest in this once standard therapy for patients with CML. PMID:23238589

  13. Pharmacogenetics of tyrosine kinase inhibitors in gastrointestinal stromal tumor and chronic myeloid leukemia.

    Science.gov (United States)

    Ravegnini, Gloria; Sammarini, Giulia; Angelini, Sabrina; Hrelia, Patrizia

    2016-07-01

    Gastrointestinal stromal tumors (GIST) and chronic myeloid leukemia (CML) are two tumor types deeply different from each other. Despite the differences, these disorders share treatment with tyrosine kinase inhibitor imatinib. Despite the success of imatinib, the response rates vary among different individuals and pharmacogenetics may play an important role in the final clinical outcome. In this review, the authors provide an overview of the pharmacogenetic literature analyzing the role of polymorphisms in both GIST and CML treatment efficacy and toxicity. So far, several polymorphisms influencing the pharmacokinetic determinants of imatinib have been identified. However, the data are not yet conclusive enough to translate pharmacogenetic tests in clinical practice. In this context, the major obstacles to pharmacogenetic test validation are represented by the small sample size of most studies, ethnicity and population admixture as confounding source, and uncertainty related to genetic variants analyzed. In conclusion, a combination of different theoretical approaches, experimental model systems and statistical methods is clearly needed, in order to appreciate pharmacogenetics applied to clinical practice in the near future.

  14. Treatment-free remission following frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the ENESTfreedom study.

    Science.gov (United States)

    Hochhaus, A; Masszi, T; Giles, F J; Radich, J P; Ross, D M; Gómez Casares, M T; Hellmann, A; Stentoft, J; Conneally, E; García-Gutiérrez, V; Gattermann, N; Wiktor-Jedrzejczak, W; le Coutre, P D; Martino, B; Saussele, S; Menssen, H D; Deng, W; Krunic, N; Bedoucha, V; Saglio, G

    2017-07-01

    The single-arm, phase 2 ENESTfreedom trial assessed the potential for treatment-free remission (TFR; i.e., the ability to maintain a molecular response after stopping therapy) following frontline nilotinib treatment. Patients with Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase with MR 4.5 (BCR-ABL1⩽0.0032% on the International Scale (BCR-ABL1 IS )) and ⩾2 years of frontline nilotinib therapy were enrolled. Patients with sustained deep molecular response during the 1-year nilotinib consolidation phase were eligible to stop treatment and enter the TFR phase. Patients with loss of major molecular response (MMR; BCR-ABL1 IS ⩽0.1%) during the TFR phase reinitiated nilotinib. In total, 215 patients entered the consolidation phase, of whom 190 entered the TFR phase. The median duration of nilotinib before stopping treatment was 43.5 months. At 48 weeks after stopping nilotinib, 98 patients (51.6%; 95% confidence interval, 44.2-58.9%) remained in MMR or better (primary end point). Of the 86 patients who restarted nilotinib in the treatment reinitiation phase after loss of MMR, 98.8% and 88.4%, respectively, regained MMR and MR 4.5 by the data cutoff date. Consistent with prior reports of imatinib-treated patients, musculoskeletal pain-related events were reported in 24.7% of patients in the TFR phase (consolidation phase, 16.3%).

  15. Role of glycolysis inhibition and poly(ADP-ribose) polymerase activation in necrotic-like cell death caused by ascorbate/menadione-induced oxidative stress in K562 human chronic myelogenous leukemic cells.

    Science.gov (United States)

    Verrax, Julien; Vanbever, Stéphanie; Stockis, Julie; Taper, Henryk; Calderon, Pedro Buc

    2007-03-15

    Among different features of cancer cells, two of them have retained our interest: their nearly universal glycolytic phenotype and their sensitivity towards an oxidative stress. Therefore, we took advantage of these features to develop an experimental approach by selectively exposing cancer cells to an oxidant insult induced by the combination of menadione (vitamin K(3)) and ascorbate (vitamin C). Ascorbate enhances the menadione redox cycling, increases the formation of reactive oxygen species and kills K562 cells as shown by more than 65% of LDH leakage after 24 hr of incubation. Since both lactate formation and ATP content are depressed by about 80% following ascorbate/menadione exposure, we suggest that the major intracellular event involved in such a cytotoxicity is related to the impairment of glycolysis. Indeed, NAD(+) is rapidly and severely depleted, a fact most probably related to a strong Poly(ADP-ribose) polymerase (PARP) activation, as shown by the high amount of poly-ADP-ribosylated proteins. The addition of N-acetylcysteine (NAC) restores most of the ATP content and the production of lactate as well. The PARP inhibitor dihydroxyisoquinoline (DiQ) was able to partially restore both parameters as well as cell death induced by ascorbate/menadione. These results suggest that the PARP activation induced by the oxidative stress is a major but not the only intracellular event involved in cell death by ascorbate/menadione. Due to the high energetic dependence of cancer cells on glycolysis, the impairment of such an essential pathway may explain the effectiveness of this combination to kill cancer cells. (c) 2006 Wiley-Liss, Inc.

  16. Persistence of chromosomal abnormalities additional to the Philadelphia chromosome after Philadelphia chromosome disappearance during imatinib therapy for chronic myeloid leukemia.

    Science.gov (United States)

    Zaccaria, Alfonso; Valenti, Anna Maria; Donti, Emilio; Gozzetti, Alessandro; Ronconi, Sonia; Spedicato, Francesco

    2007-04-01

    Five Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML) patients with additional chromosome abnormalities at diagnosis have been followed during Imatinib therapy. In all, the Ph chromosome disappeared, while the 5 cases, additional abnormalities [dup(1); del(5), +8 (2 patients) and +14] persisted in the subsequent studies, performed over a period of 11 to 49 months, either alone or together with a karyotypically normal cell population. This finding is consistent with a secondary origin of the Ph chromosome in these patients. It is still to early to evaluate the possible prognostic value of these additional abnormalities.

  17. Identification of de Novo Fanconi Anemia in Younger Patients With Newly Diagnosed Acute Myeloid Leukemia

    Science.gov (United States)

    2016-05-13

    Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Fanconi Anemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  18. Report of chronic myeloid leukemia SMS Medical College Hospital, Jaipur.

    Science.gov (United States)

    Malhotra, Hemant; Sharma, Rajesh; Singh, Yogender; Chaturvedi, Hemant

    2013-07-01

    This is a retrospective analysis of patients of chronic myeloid leukemia (CML) registered and under treatment at the Leukemia Lymphoma Clinic at the Birla Cancer Center, SMS Medical College Hospital, Jaipur. Approximately, two-thirds of the patients are getting imatinib mesylate (IM) through the Glivec International Patient Assistance Program while the rest are on generic IM. In addition to comparison of hematological and molecular responses in the Glivec versus the genetic group, in this analysis, an attempt is also made to assess the socio-economic (SE) status of the patients and its effect on the response rates. Of the 213 patients studied, most (28.6%) are in the age group between 30 years and 40 years and the mean age of the patients in 39 years, a good decade younger that in the west. There is a suggestion that patients in lower SE class present with higher Sokal scores and with more disease burden. Possibly hematological responses are similar with both Glivec and generic IM. No comment can be made with regards to molecular response between the two groups as a significant number of patients in the Glivec arm (42%) do not have molecular assessment because of economic reasons. CML is a common and challenging disease in the developing world with patients presenting at an earlier age with more advanced disease. SE factors play a significant role in therapy and disease monitoring decision making and may impact on response rates and prognosis.

  19. Experiment list: SRX150451 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available is=Leukemia Chronic Myelogenous 39880346,54.9,7.2,2209 GSM935371: Harvard ChipSeq K562 SIRT6 std source_name...=K562 || biomaterial_provider=ATCC || lab=Harvard || lab description=Struhl - Harvard University || datatype

  20. Experiment list: SRX150472 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available is=Leukemia Chronic Myelogenous 38544300,59.2,11.1,1031 GSM935392: Harvard ChipSeq K562 NELFe std source_nam...e=K562 || biomaterial_provider=ATCC || lab=Harvard || lab description=Struhl - Harvard University || datatyp

  1. Effect of taurine on expressions of MMP-2 in K562 leukemia cell line exposed to γ-rays

    International Nuclear Information System (INIS)

    Fan Yan; Wu Shiliang; Xu Lan; Chou Hao; Zhou Yinghui

    2003-01-01

    Objective: To study the effect of γ-irradiation on expressions of MMP-2 in leukaemia cells and the suppressive effect of taurine(Tau) on irradiated tumour cells in terms of cellular level. Methods: The cells in the control group and Tau (50 mg/L, 100 mg/L, 200 mg/L) groups were irradiated with 15 Gy γ-rays. The expressions of MMP-2 were examined through Western-blotting after handled with gel-loading buffer within 12 h. Results: The expressions of MMP-2 were enhanced evidently in the positive control group, while they were less in the negative control group. In the Tau(50 mg/L, 100 mg/L, 200 mg/L) groups, the expressions of MMP-2 were diminished in turns, and they were almost identical between the negative control group and the Tau 200 mg/L group. Conclusion: Irradiation with γ-rays at a dose of 15 Gy can significantly stimulate the expressions of MMP-2 in K562 cells; Tau can inhibit the expressions of MMP-2 and its effect depends on to its dosage; Tau can inhabit the invasiveness and migration of irradiated tumour cells, so it has the biologic protective and therapeutic effects

  2. Experiment list: SRX150623 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available is=Leukemia Chronic Myelogenous 34396876,78.6,11.1,16076 GSM935544: Harvard ChipSeq K562 HMGN3 std source_na...me=K562 || biomaterial_provider=ATCC || lab=Harvard || lab description=Struhl - Harvard University || dataty

  3. Experiment list: SRX150471 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available s=Leukemia Chronic Myelogenous 34337514,69.2,8.6,1665 GSM935391: Harvard ChipSeq K562 ATF3 std source_name=K...562 || biomaterial_provider=ATCC || lab=Harvard || lab description=Struhl - Harvard University || datatype=C

  4. Experiment list: SRX150423 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available sis=Leukemia Chronic Myelogenous 19694334,54.9,12.8,4256 GSM935343: Harvard ChipSeq K562 TFIIIC-110 std sour...ce_name=K562 || biomaterial_provider=ATCC || lab=Harvard || lab description=Struhl - Harvard University || d

  5. Experiment list: SRX150474 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available is=Leukemia Chronic Myelogenous 16833014,69.7,4.8,2339 GSM935394: Harvard ChipSeq K562 GTF2B std source_name...=K562 || biomaterial_provider=ATCC || lab=Harvard || lab description=Struhl - Harvard University || datatype

  6. Experiment list: SRX150452 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available s=Leukemia Chronic Myelogenous 17157530,93.1,18.0,2344 GSM935372: Harvard ChipSeq K562 RPC155 std source_nam...e=K562 || biomaterial_provider=ATCC || lab=Harvard || lab description=Struhl - Harvard University || datatyp

  7. Vitamin K status in chronic kidney disease.

    Science.gov (United States)

    McCabe, Kristin M; Adams, Michael A; Holden, Rachel M

    2013-11-07

    The purpose of this review is to summarize the research to date on vitamin K status in chronic kidney disease (CKD). This review includes a summary of the data available on vitamin K status in patients across the spectrum of CKD as well as the link between vitamin K deficiency in CKD and bone dynamics, including mineralization and demineralization, as well as ectopic mineralization. It also describes two current clinical trials that are underway evaluating vitamin K treatment in CKD patients. These data may inform future clinical practice in this population.

  8. Experiment list: SRX150674 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available s=Leukemia Chronic Myelogenous 18469470,89.4,7.1,725 GSM935595: Harvard ChipSeq K562 BRF1 std source_name=K5...62 || biomaterial_provider=ATCC || lab=Harvard || lab description=Struhl - Harvard University || datatype=Ch

  9. Experiment list: SRX150569 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available s=Leukemia Chronic Myelogenous 51487836,63.2,7.7,861 GSM935490: Harvard ChipSeq K562 BRF2 std source_name=K5...62 || biomaterial_provider=ATCC || lab=Harvard || lab description=Struhl - Harvard University || datatype=Ch

  10. Heme oxygenase-1: A new druggable target in the management of chronic and acute myeloid leukemia.

    Science.gov (United States)

    Salerno, Loredana; Romeo, Giuseppe; Modica, Maria N; Amata, Emanuele; Sorrenti, Valeria; Barbagallo, Ignazio; Pittalà, Valeria

    2017-12-15

    Heme oxygenase-1 (HO-1) is the enzyme catalyzing the rate-limiting oxidative degradation of cellular heme into free iron, carbon monoxide (CO), and biliverdin, which is then rapidly converted into bilirubin. By means of these catabolic end-products and by removal of pro-oxidant heme, HO-1 exerts antioxidant, antiapoptotic, and immune-modulating effects, leading to overall cytoprotective and beneficial functions in mammalian cells. Therefore, HO-1 is considered a survival molecule in various stress-related conditions. By contrast, growing evidence suggests that HO-1 is a survival-enhancing molecule also in various solid and blood cancers, such as various types of leukemia, promoting carcinogenesis, tumor progression, and chemo-resistance. Among leukemias, chronic myeloid leukemia (CML) is currently therapeutically well treated with tyrosine kinase inhibitors (TKIs) such as Imatinib (IM) and its congeners; nevertheless, resistance to all kinds of current drugs persist in a number of patients. Moreover, treatment outcomes for acute myeloid leukemia (AML) remain unsatisfactory, despite progress in chemotherapy and hematopoietic stem cell transplantation. Therefore, identification of new eligible targets that may improve leukemias therapy is of general interest. Several recent papers prove that inhibition of HO-1 through HO-1 inhibitors as well as modulation of other pathways involving HO-1 by a number of different new or known molecules, are critical for leukemia treatment. This review summarizes the current understanding of the pro-tumorigenic role of HO-1 and its potential as a molecular target for the treatment of leukemias. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Women Administered Standard Dose Imatinib for Chronic Myeloid Leukemia Have Higher Dose-Adjusted Plasma Imatinib and Norimatinib Concentrations Than Men.

    Science.gov (United States)

    Belsey, Sarah L; Ireland, Robin; Lang, Kathryn; Kizilors, Aytug; Ho, Aloysius; Mufti, Ghulam J; Bisquera, Alessandra; De Lavallade, Hugues; Flanagan, Robert J

    2017-10-01

    The standard dose of imatinib for the treatment of chronic-phase chronic myeloid leukemia (CML) is 400 mg·d. A predose plasma imatinib concentration of >1 mg·L is associated with improved clinical response. This study aimed to assess the plasma imatinib and norimatinib concentrations attained in patients with chronic myeloid leukemia administered standard doses of imatinib adjusted for dose, age, sex, body weight, and response. We evaluated data from a cohort of patients treated between 2008 and 2014 with respect to dose, age, sex, body weight, and response. The study comprised 438 samples from 93 patients (54 male, 39 female). The median imatinib dose was 400 mg·d in men and in women. The plasma imatinib concentration ranged 0.1-5.0 mg·L and was below 1 mg·L in 20% and 16% of samples from men and women, respectively. The mean dose normalized plasma imatinib and norimatinib concentrations were significantly higher in women in comparison with men. This was partially related to body weight. Mixed effects ordinal logistic regression showed no evidence of an association between sex and plasma imatinib (P = 0.13). However, there was evidence of an association between sex and plasma norimatinib, with higher norimatinib concentrations more likely in women than in men (P = 0.02). Imatinib therapeutic drug monitoring only provides information on dosage adequacy and on short-term adherence; longer-term adherence cannot be assessed. However, this analysis revealed that approximately 1 in 5 samples had a plasma imatinib concentration <1 mg·L, which was suggestive of inadequate dosage and/or poor adherence and posed a risk of treatment failure. Higher imatinib exposure in women may be a factor in the increased rate of long-term, stable, deep molecular response (undetectable breakpoint cluster-Abelson (BCR-ABL) transcript levels with a PCR sensitivity of 4.5 log, MR4.5) reported in women.

  12. Minimal cross-intolerance with nilotinib in patients with chronic myeloid leukemia in chronic or accelerated phase who are intolerant to imatinib

    Science.gov (United States)

    Hochhaus, Andreas; le Coutre, Philipp D.; Rosti, Gianantonio; Pinilla-Ibarz, Javier; Jabbour, Elias; Gillis, Kathryn; Woodman, Richard C.; Blakesley, Rick E.; Giles, Francis J.; Kantarjian, Hagop M.; Baccarani, Michele

    2011-01-01

    Nilotinib has significant efficacy in patients with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) and in patients with CML-CP or CML in accelerated phase (CML-AP) after imatinib failure. We investigated the occurrence of cross-intolerance to nilotinib in imatinib-intolerant patients with CML. Only 1/75 (1%) patients with nonhematologic imatinib intolerance experienced a similar grade 3/4 adverse event (AE), and 3/75 (4%) experienced a similar persistent grade 2 nonhematologic AE on nilotinib. Only 7/40 (18%) patients with hematologic imatinib intolerance discontinued nilotinib, all because of grade 3/4 thrombocytopenia. Ninety percent of imatinib-intolerant patients with CML-CP who did not have complete hematologic response (CHR) at baseline (n = 52) achieved CHR on nilotinib. Nilotinib induced a major cytogenetic response in 66% and 41% of patients with imatinib-intolerant CML-CP and CML-AP (complete cytogenetic response in 51% and 30%), respectively. Minimal cross-intolerance was confirmed in patients with imatinib-intolerant CML. The favorable tolerability of nilotinib in patients with imatinib intolerance leads to alleviation of AE-related symptoms and significant and durable responses. In addition to its established clinical benefit in patients with newly diagnosed CML and those resistant to imatinib, nilotinib is effective and well-tolerated for long-term use in patients with imatinib intolerance. This study is registered at http://www.clinicaltrials.gov as NCT00471497 PMID:21467546

  13. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms.

    Directory of Open Access Journals (Sweden)

    Gabriela Silva

    Full Text Available BACKGROUND: Aberrant epigenetic patterns are central in the pathogenesis of haematopoietic diseases such as myelodysplastic syndromes (MDS and acute myeloid leukaemia (AML. Vorinostat is a HDACi which has produced responses in these disorders. The purpose of this study was to address the functional effects of vorinostat in leukemic cell lines and primary AML and MDS myeloid cells and to dissect the genetic and molecular mechanisms by which it exerts its action. METHODOLOGY/PRINCIPAL FINDINGS: Functional assays showed vorinostat promoted cell cycle arrest, inhibited growth, and induced apoptosis and differentiation of K562, HL60 and THP-1 and of CD33(+ cells from AML and MDS patients. To explore the genetic mechanism for these effects, we quantified gene expression modulation by vorinostat in these cells. Vorinostat increased expression of genes down-regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3 and suppressed expression of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1 and modulated cell cycle and apoptosis genes in a manner which would favor cell cycle arrest, differentiation, and apoptosis of neoplastic cells, consistent with the functional assays. Reporter assays showed transcriptional effect of vorinostat on some of these genes was mediated by proximal promoter elements in GC-rich regions. Vorinostat-modulated expression of some genes was potentiated by mithramycin A, a compound that interferes with SP1 binding to GC-rich DNA sequences, and siRNA-mediated SP1 reduction. ChIP assays revealed vorinostat inhibited DNA binding of SP1 to the proximal promoter regions of these genes. These results suggest vorinostat transcriptional action in some genes is regulated by proximal promoter GC-rich DNA sequences and by SP1. CONCLUSION: This study sheds light on the effects of vorinostat in AML and MDS and supports the implementation of clinical trials to explore the use of vorinostat in the treatment of these diseases.

  14. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms.

    Science.gov (United States)

    Silva, Gabriela; Cardoso, Bruno A; Belo, Hélio; Almeida, António Medina

    2013-01-01

    Aberrant epigenetic patterns are central in the pathogenesis of haematopoietic diseases such as myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). Vorinostat is a HDACi which has produced responses in these disorders. The purpose of this study was to address the functional effects of vorinostat in leukemic cell lines and primary AML and MDS myeloid cells and to dissect the genetic and molecular mechanisms by which it exerts its action. Functional assays showed vorinostat promoted cell cycle arrest, inhibited growth, and induced apoptosis and differentiation of K562, HL60 and THP-1 and of CD33(+) cells from AML and MDS patients. To explore the genetic mechanism for these effects, we quantified gene expression modulation by vorinostat in these cells. Vorinostat increased expression of genes down-regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3) and suppressed expression of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1) and modulated cell cycle and apoptosis genes in a manner which would favor cell cycle arrest, differentiation, and apoptosis of neoplastic cells, consistent with the functional assays. Reporter assays showed transcriptional effect of vorinostat on some of these genes was mediated by proximal promoter elements in GC-rich regions. Vorinostat-modulated expression of some genes was potentiated by mithramycin A, a compound that interferes with SP1 binding to GC-rich DNA sequences, and siRNA-mediated SP1 reduction. ChIP assays revealed vorinostat inhibited DNA binding of SP1 to the proximal promoter regions of these genes. These results suggest vorinostat transcriptional action in some genes is regulated by proximal promoter GC-rich DNA sequences and by SP1. This study sheds light on the effects of vorinostat in AML and MDS and supports the implementation of clinical trials to explore the use of vorinostat in the treatment of these diseases.

  15. Dasatinib in Pediatric Patients With Chronic Myeloid Leukemia in Chronic Phase: Results From a Phase II Trial.

    Science.gov (United States)

    Gore, Lia; Kearns, Pamela R; de Martino, Maria Lucia; Lee; De Souza, Carmino Antonio; Bertrand, Yves; Hijiya, Nobuko; Stork, Linda C; Chung, Nack-Gyun; Cardos, Rocio Cardenas; Saikia, Tapan; Fagioli, Franca; Seo, Jong Jin; Landman-Parker, Judith; Lancaster, Donna; Place, Andrew E; Rabin, Karen R; Sacchi, Mariana; Swanink, Rene; Zwaan, C Michel

    2018-05-01

    Purpose Safe, effective treatments are needed for pediatric patients with chronic myeloid leukemia in chronic phase (CML-CP). Dasatinib is approved for treatment of adults and children with CML-CP. A phase I study determined suitable dosing for children with Philadelphia chromosome-positive (Ph+) leukemias. Methods CA180-226/NCT00777036 is a phase II, open-label, nonrandomized prospective trial of patients 30% for imatinib-resistant/intolerant patients and complete cytogenetic response (CCyR) > 55% for newly diagnosed patients were of clinical interest. Results Of 113 patients with CML-CP, 14 (48%) who were imatinib-resistant/intolerant and 61 (73%) who were newly diagnosed remained on treatment at time of analysis. Major cytogenetic response > 30% was reached by 3 months in the imatinib-resistant/intolerant group and CCyR > 55% was reached by 6 months in the newly diagnosed CML-CP group. CCyR and major molecular response by 12 months, respectively, were 76% and 41% in the imatinib-resistant/intolerant group and 92% and 52% in newly diagnosed CML-CP group. Progression-free survival by 48 months was 78% and 93% in the imatinib-resistant/intolerant and newly diagnosed CML-CP groups, respectively. No dasatinib-related pleural or pericardial effusion, pulmonary edema, or pulmonary arterial hypertension were reported. Bone growth and development events were reported in 4% of patients. Conclusion In the largest prospective trial to date in children with CML-CP, we demonstrate that dasatinib is a safe, effective treatment of pediatric CML-CP. Target responses to first- or second-line dasatinib were met early, and deep molecular responses were observed. Safety of dasatinib in pediatric patients was similar to that observed in adults; however, no cases of pleural or pericardial effusion or pulmonary arterial hypertension were reported.

  16. Experiment list: SRX100563 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available s=Leukemia Chronic Myelogenous 39078535,86.0,20.8,1302 GSM803518: HudsonAlpha ChipSeq K562 BCL3 PCR1x source..._name=K562 || biomaterial_provider=ATCC || lab=HudsonAlpha || lab description=Myers - Hudson Alpha Institute

  17. Experiment list: SRX100430 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available s=Leukemia Chronic Myelogenous 47818475,79.5,9.7,26072 GSM803385: HudsonAlpha ChipSeq K562 HEY1 PCR1x source..._name=K562 || biomaterial_provider=ATCC || lab=HudsonAlpha || lab description=Myers - Hudson Alpha Institute

  18. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013

    Science.gov (United States)

    Deininger, Michael W.; Rosti, Gianantonio; Hochhaus, Andreas; Soverini, Simona; Apperley, Jane F.; Cervantes, Francisco; Clark, Richard E.; Cortes, Jorge E.; Guilhot, François; Hjorth-Hansen, Henrik; Hughes, Timothy P.; Kantarjian, Hagop M.; Kim, Dong-Wook; Larson, Richard A.; Lipton, Jeffrey H.; Mahon, François-Xavier; Martinelli, Giovanni; Mayer, Jiri; Müller, Martin C.; Niederwieser, Dietger; Pane, Fabrizio; Radich, Jerald P.; Rousselot, Philippe; Saglio, Giuseppe; Saußele, Susanne; Schiffer, Charles; Silver, Richard; Simonsson, Bengt; Steegmann, Juan-Luis; Goldman, John M.; Hehlmann, Rüdiger

    2013-01-01

    Advances in chronic myeloid leukemia treatment, particularly regarding tyrosine kinase inhibitors, mandate regular updating of concepts and management. A European LeukemiaNet expert panel reviewed prior and new studies to update recommendations made in 2009. We recommend as initial treatment imatinib, nilotinib, or dasatinib. Response is assessed with standardized real quantitative polymerase chain reaction and/or cytogenetics at 3, 6, and 12 months. BCR-ABL1 transcript levels ≤10% at 3 months, 10% at 6 months and >1% from 12 months onward define failure, mandating a change in treatment. Similarly, partial cytogenetic response (PCyR) at 3 months and complete cytogenetic response (CCyR) from 6 months onward define optimal response, whereas no CyR (Philadelphia chromosome–positive [Ph+] >95%) at 3 months, less than PCyR at 6 months, and less than CCyR from 12 months onward define failure. Between optimal and failure, there is an intermediate warning zone requiring more frequent monitoring. Similar definitions are provided for response to second-line therapy. Specific recommendations are made for patients in the accelerated and blastic phases, and for allogeneic stem cell transplantation. Optimal responders should continue therapy indefinitely, with careful surveillance, or they can be enrolled in controlled studies of treatment discontinuation once a deeper molecular response is achieved. PMID:23803709

  19. Managing inadequate responses to frontline treatment of chronic myeloid leukemia: a case-based review.

    Science.gov (United States)

    Bixby, Dale L

    2013-05-01

    The tyrosine kinase inhibitors (TKIs) imatinib, nilotinib, and dasatinib are the standard of care for treating patients with newly diagnosed chronic-phase chronic myeloid leukemia (CML). Compared with interferon-based treatment, the previous standard of care, imatinib is associated with significantly higher cytogenetic response rates and prolonged overall survival. Nilotinib and dasatinib, both newer and more potent TKIs, significantly improve cytogenetic and molecular response rates compared with imatinib. Despite significant advances in CML treatment enabled by the TKIs, a fraction of patients who receive frontline treatment with a TKI demonstrate inadequate response. The reasons for this vary, but in many cases, inadequate response can be attributed to non-adherence to the treatment regimen, intolerance to the drug, intrinsic or acquired resistance to the drug, or a combination of reasons. More often than not, strategies to improve response necessitate a change in treatment plan, either a dose adjustment or a switch to an alternate drug, particularly in the case of drug intolerance or drug resistance. Improved physician-patient communication and patient education are effective strategies to address issues relating to adherence and intolerance. Because inadequate response to TKI treatment correlates with poor long-term outcomes, it is imperative that patients who experience intolerance or who fail to achieve appropriate responses are carefully evaluated so that appropriate treatment modifications can be made to maximize the likelihood of positive long-term outcome. Copyright © 2012. Published by Elsevier Ltd.

  20. Long-term safety and efficacy of dasatinib in the treatment of chronic-phase chronic myeloid leukemia patients resistant or intolerant to imatinib

    Directory of Open Access Journals (Sweden)

    Shoumariyeh K

    2014-09-01

    Full Text Available Khalid Shoumariyeh, Nikolas von BubnoffDepartment of Hematology, Oncology and Stem Cell Transplantation, University Hospital Freiburg, Freiburg, Germany Abstract: Treatment of chronic myeloid leukemia (CML has undergone dramatic changes in the last decade. Dissecting the molecular pathways that lead to the development of this disease resulted in the development of targeted therapy against the molecular driver of CML, namely the aberrantly activated tyrosine kinase BCR-ABL1. By introducing the tyrosine kinase inhibitor imatinib to the treatment repertoire, the natural course of the disease has been dramatically altered and overall survival of patients with CML prolonged substantially. Nevertheless, a significant number of patients are primarily resistant, acquire resistance during the course of their disease, or do not tolerate the intake of imatinib due to adverse effects. Second-generation tyrosine kinase inhibitors were developed in an attempt to overcome these problems. Dasatinib is a potent oral kinase inhibitor that was originally developed as an Src-kinase inhibitor but exhibited promising potency against BCR-ABL1 as well. Phase I and II trials demonstrated efficacy in patients failing imatinib, and thus dasatanib was approved in 2006 for the treatment of imatinib-resistant or -intolerant patients with chronic-phase CML harboring the BCR-ABL1 fusion protein. It has since shown promising efficacy and good overall tolerability in subsequent clinical trials, including the Phase III first-line DASISION trial that led to the extension of its approval for first-line treatment of chronic-phase CML. The following review summarizes the available data on the long-term efficacy and safety of dasatinib as a second-line therapy in chronic-phase CML. Keywords: BCR-ABL1, TKI, CML-CP, second-line treatment

  1. Successful treatment of follicular lymphoma with second-generation tyrosine kinase inhibitors administered for coexisting chronic myeloid leukemia.

    Science.gov (United States)

    Fujiwara, Shin-Ichiro; Shirato, Yuya; Ikeda, Takashi; Kawaguchi, Shin-Ichiro; Toda, Yumiko; Ito, Shoko; Ochi, Shin-Ichi; Nagayama, Takashi; Mashima, Kiyomi; Umino, Kento; Minakata, Daisuke; Nakano, Hirofumi; Morita, Kaoru; Yamasaki, Ryoko; Kawasaki, Yasufumi; Sugimoto, Miyuki; Ashizawa, Masahiro; Yamamoto, Chihiro; Hatano, Kaoru; Sato, Kazuya; Oh, Iekuni; Ohmine, Ken; Muroi, Kazuo; Kanda, Yoshinobu

    2018-06-01

    Tyrosine kinase inhibitors (TKIs) are standard therapy for chronic myeloid leukemia (CML). However, the effects of these agents on mature B cell lymphoma are not well known. We describe a 50-year-old man who was diagnosed with CML in the chronic phase and treated with imatinib. After 3 years of imatinib therapy that achieved a complete cytogenetic response of CML, he developed Philadelphia-negative follicular lymphoma (FL). Rituximab monotherapy induced a partial response of FL, and he subsequently achieved a major molecular response (MMR) of CML. Three years later, however, the MMR was lost, followed by the progression of FL. Imatinib was switched to nilotinib for the treatment of CML, while we chose watchful waiting for FL. He achieved MMR again under treatment with nilotinib for 8 months including one month of substitutional use of dasatinib due to adverse events, but thereafter nilotinib was switched to bosutinib due to hyperbilirubinemia. With the administration of second-generation TKIs (2G-TKIs) for a total of 18 months, he achieved a complete response to FL without antilymphoma treatment. This is the first report to suggest that 2G-TKIs may have direct or indirect effects on FL.

  2. Early Complete Molecular Response to First-Line Nilotinib in Two Patients with Chronic Myeloid Leukemia Carrying the p230 Transcript

    Directory of Open Access Journals (Sweden)

    Marianna Greco

    2013-01-01

    Full Text Available Chronic myeloid leukemia (CML with the rare fusion gene e19a2, encoding a p230 protein, has been described in patients with typical or rather aggressive clinical course. Although tyrosine kinase inhibitors (TKIs induce a substantial cytogenetic and molecular response in all phases of CML, a minority of p230 positive patients have been treated with TKIs. We report two cases of CML patients carrying the p230 transcript, who achieved fast and deep complete molecular response (CMR after frontline treatment with nilotinib. Our results suggest the use of nilotinib as frontline agent for the treatment of this CML variant.

  3. Analysis of myelomonocytic leukemic differentiation by a cell surface marker panel including a fucose-binding lectin from Lotus tetragonolobus.

    Science.gov (United States)

    Elias, L; Van Epps, D E

    1984-06-01

    The fucose-binding lectin from Lotus tetragonolobus ( FBL -L) has been previously shown to bind specifically to normal cells of the myeloid and monocytic lineages. The purpose of this study was to explore the utility of fluoresceinated FBL -L as a leukemia differentiation marker in conjunction with a panel of other frequently used surface markers (Fc receptor, HLA-DR, OKM1, and antimonocyte antibody). FBL -L reacted with leukemic cells in 8/9 cases of clinically recognized acute myeloid leukemia, including myeloid blast crisis of chronic granulocytic leukemia, 3/3 cases of chronic phase chronic myelogenous leukemia, and in 2/7 cases of clinically undifferentiated acute leukemia. Correlations were noted between reactivity with FBL -L, and DR and Fc receptor expression. Among continuous cell lines, FBL -L bound with high intensity to a majority of HL-60 and U937 cells. The less well differentiated myeloblast cell lines, KG-1, KG1a , and HL-60 blast II, exhibited less FBL -L binding than HL-60 and U937. A moderate proportion of K562 cells exhibited low level binding of FBL -L. Several lymphoblastic cell lines exhibited a pattern of low intensity binding that was distinguishable from the high intensity binding pattern of the myeloblastic lines. FBL -L reactivity of U937 was enhanced by induction of differentiation with leukocyte conditioned medium, but not dimethylsulfoxide. Such treatments induced contrasting patterns of change of HL-60 and U937 when labeled with OKM1, alpha-Mono, and HLA-DR. These studies demonstrate the application of FBL -L to analysis and quantitation of myelomonocytic leukemic differentiation.

  4. Laboratory tools for diagnosis and monitoring response in patients with chronic myeloid leukemia.

    Science.gov (United States)

    Tohami, Tali; Nagler, Arnon; Amariglio, Ninette

    2012-08-01

    Chronic myeloid leukemia (CML) is a clonal hematological disease that represents 15-20% of all adult leukemia cases. The study and treatment of CML has contributed pivotal advances to translational medicine and cancer therapy. The discovery that a single chromosomal abnormality, the Philadelphia (Ph) chromosome, is responsible for the etiology of this disease was a milestone for treating and understanding CML. Subsequently, CML became the first disease for which allogeneic bone marrow transplantation is the treatment of choice. Currently, CML is one of the few diseases where treatment targeted against the chromosomal abnormality is the sole frontline therapy for newly diagnosed patients. The use of directed therapy for CML challenged disease monitoring during treatment and led to the development of definitions that document response and predict relapse sooner than the former routine methods. These methods relied on classical cytogenetics through molecular cytogenetics (FISH) and, finally, on molecular monitoring assays. This review discusses the laboratory tools used for diagnosing CML, for monitoring during treatment, and for assessing remission or relapse. The advantages and disadvantages of each test, the common definition of response levels, and the efforts to standardize molecular monitoring for CML patient management are discussed.

  5. Diagnostic radiography as a risk factor for chronic myeloid and monocytic leukaemia (CML)

    International Nuclear Information System (INIS)

    Preston-Martin, S.; Thomas, D.C.; Yu, M.C.; Henderson, B.E.

    1989-01-01

    The study included 136 Los Angeles County residents aged 20-69 with chronic myeloid and monocytic leukemia CML diagnosed from 1979 to 1985 (cases) and 136 neighbourhood controls. During 3-20 years before diagnosis more cases than controls had radiographic examinations of back, gastrointestinal (GI) tract and kidneys, and cases more often had GI and back radiography on multiple occasions (odds ratio (OR) for back X-rays on five or more occasions = 12.0; P < 0.01). Published estimates were used to assign a minimum dose to active bone marrow for various radiographic procedures. ORs were estimated for cumulative marrow doses for each of four time periods (3-5 years, 6-10 years, 11-20 years and 3-20 years before diagnosis). ORs for exposure to 0.99, 100-999, 1000-1999 and ≥ 2000 mrad in the 3-20 years before diagnosis were 1.0, 1.4, 1.6 and 2.4 (P for highest exposure category and P for trend both < 0.05). The association was strongest for 6-10 years before diagnosis, and effects of radiation exposure during this period remained significant after consideration of other risk factors in a logistic regression analysis. (author)

  6. Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan.

    Science.gov (United States)

    Tabassum, Najia; Saboor, Mohammad; Ghani, Rubina; Moinuddin, Moinuddin

    2014-07-01

    Breakpoint cluster region-Abelson (BCR-ABL) rearrangement or Philadelphia (Ph) chromosome in Chronic Myeloid Leukemia (CML) is derived from a reciprocal chromosomal translocation between ABL gene on chromosome 9 and BCR gene on chromosome 22. This chimeric protein has various sizes and therefore different clinical behaviour. The purpose of this study was to determine the heterogeneity of BCR-ABL rearrangement in patients with Ph(+)CML in Pakistan. The study was conducted at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed to identify various BCR-ABL transcripts. All 25 samples showed BCR-ABL rearrangements. Out of these, 24 (96%) patients expressed p210 BCR-ABL rearrangements i.e. 60% (n=15) had b3a2 and 32% (n=8) had b2a2 rearrangements. Co-expression of b3a2 /b2a2 rearrangement and p190 (e1a3) rearrangement was also identified in two patients. It is apparent that majority of the patients had p210 BCR-ABL rearrangements. Frequency of co-expression and rare fusion transcripts was very low.

  7. Oral chronic graft-versus-host disease: analysis of dendritic cells subpopulations*

    Science.gov (United States)

    Botari, Clara Marino Espricigo; Nunes, Adauto José Ferreira; de Souza, Mair Pedro; Orti-Raduan, Érica Sinara Lenharo; Salvio, Ana Gabriela

    2014-01-01

    The graft-versus-host disease is the major cause of morbidity and mortality in patients who have undergone hematopoietic stem cell transplantation. Aiming at contributing to the understanding of the role of myeloid and plasmacytoid dendritic cells, and natural killer cells in chronic graft-versus-host disease, we examined biopsies of jugal mucosa of 26 patients with acute myeloid leukemia who had undergone allogenic hematopoietic stem cell transplantation. Half of these patients developed oral chronic graft-versus-host disease. Microscopic sections were immunohistochemically stained for anti-CD1a, anti-CD123 and anti-CD56. We calculated the number of immunostained cells in the corium per square millimeter and applied the Mann-Whitney test. Results showed a statistically significant increase of myeloid dendritic cells (CD1a+; p=0,02) and natural killer cells (CD56; p=0,04) in patients with oral chronic graft-versus-host disease. CD123 immunostaining showed no statistical difference between groups. It was concluded that myeloid dendritic cells and natural killer cells participate in the development of oral chronic graft-versus-host disease. PMID:25054751

  8. Oral chronic graft-versus-host disease: analysis of dendritic cells subpopulations.

    Science.gov (United States)

    Botari, Clara Marino Espricigo; Nunes, Adauto José Ferreira; Souza, Mair Pedro de; Orti-Raduan, Erica Sinara Lenharo; Salvio, Ana Gabriela

    2014-01-01

    The graft-versus-host disease is the major cause of morbidity and mortality in patients who have undergone hematopoietic stem cell transplantation. Aiming at contributing to the understanding of the role of myeloid and plasmacytoid dendritic cells, and natural killer cells in chronic graft-versus-host disease, we examined biopsies of jugal mucosa of 26 patients with acute myeloid leukemia who had undergone allogenic hematopoietic stem cell transplantation. Half of these patients developed oral chronic graft-versus-host disease. Microscopic sections were immunohistochemically stained for anti-CD1a, anti-CD123 and anti-CD56. We calculated the number of immunostained cells in the corium per square millimeter and applied the Mann-Whitney test. Results showed a statistically significant increase of myeloid dendritic cells (CD1a+; p=0,02) and natural killer cells (CD56; p=0,04) in patients with oral chronic graft-versus-host disease. CD123 immunostaining showed no statistical difference between groups. It was concluded that myeloid dendritic cells and natural killer cells participate in the development of oral chronic graft-versus-host disease.

  9. Interferon alpha 2 maintenance therapy may enable high rates of treatment discontinuation in chronic myeloid leukemia.

    Science.gov (United States)

    Burchert, A; Saussele, S; Eigendorff, E; Müller, M C; Sohlbach, K; Inselmann, S; Schütz, C; Metzelder, S K; Ziermann, J; Kostrewa, P; Hoffmann, J; Hehlmann, R; Neubauer, A; Hochhaus, A

    2015-06-01

    A minority of chronic myeloid leukemia (CML) patients is capable of successfully discontinuing imatinib. Treatment modalities to increase this proportion are currently unknown. Here, we assessed the role of interferon alpha 2a (IFN) on therapy discontinuation in a previously reported cohort of 20 chronic phase CML patients who were treated upfront with IFN alpha plus imatinib followed by IFN monotherapy to maintain cytogenetic or molecular remission (MR) after imatinib discontinuation. After a median follow-up of 7.9 years (range, 5.2-12.2), relapse-free survival was 73% (8/11 patients) and 84% (5/6 patients) for patients who discontinued imatinib in major MR (MMR) and MR4/MR4.5, respectively. Ten patients discontinued IFN after a median of 4.5 years (range, 0.24-9.3). After a median of 2.8 years (range, 0.7-5.1), nine of them remain in ongoing treatment-free remission with MR5 (n=6) and MR4.5 (n=3). The four patients who still administer IFN are in stable MR5, MR4.5, MR4, and MMR, respectively. In conclusion, an IFN/imatinib induction treatment followed by a temporary IFN maintenance therapy may enable a high rate of treatment discontinuation in CML patients in at least MMR when stopping imatinib.

  10. Combined Targeting of BCL-2 and BCR-ABL Tyrosine Kinase Eradicates Chronic Myeloid Leukemia Stem Cells

    Science.gov (United States)

    Mak, Po Yee; Mu, Hong; Zhou, Hongsheng; Mak, Duncan H.; Schober, Wendy; Leverson, Joel D.; Zhang, Bin; Bhatia, Ravi; Huang, Xuelin; Cortes, Jorge; Kantarjian, Hagop; Konopleva, Marina

    2016-01-01

    BCR-ABL tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML), but they rarely eliminate CML stem cells. Disease relapse is common upon therapy cessation, even in patients with complete molecular responses. Furthermore, once CML progresses to blast crisis (BC), treatment outcomes are dismal. We hypothesized that concomitant targeting of BCL-2 and BCR-ABL tyrosine kinase could overcome these limitations. We demonstrate increased BCL-2 expression at the protein level in bone marrow cells, particularly in Lin−Sca-1+cKit+ cells of inducible CML in mice as determined by CyTOF mass cytometry. Further, selective inhibition of BCL-2, aided by TKI-mediated MCL-1 and BCL-XL inhibition, markedly decreased leukemic Lin−Sca-1+cKit+ cell numbers and long-term stem cell frequency, and prolonged survival in a murine CML model. Additionally, this combination effectively eradicated CD34+CD38−, CD34+CD38+, and quiescent stem/progenitor CD34+ cells from BC CML patient samples. Our results suggest that BCL-2 is a key survival factor for CML stem/progenitor cells and that combined inhibition of BCL-2 and BCR-ABL tyrosine kinase has the potential to significantly improve depth of response and cure rates of chronic phase and BC CML. PMID:27605552

  11. Development of imatinib and dasatinib resistance: dynamics of expression of drug transporters ABCB1, ABCC1, ABCG2, MVP, and SLC22A1.

    Science.gov (United States)

    Gromicho, Marta; Dinis, Joana; Magalhães, Marta; Fernandes, Alexandra R; Tavares, Purificação; Laires, António; Rueff, José; Rodrigues, António Sebastião

    2011-10-01

    About 20% of patients with chronic myeloid leukemia (CML) do not respond to treatment with imatinib either initially or because of acquired resistance. To study the development of CML drug resistance, an in vitro experimental system comprising cell lines with different resistance levels was established by exposing K562 cells to increasing concentrations of imatinib and dasatinib anticancer agents. The mRNA levels of BCR- ABL1 and of genes involved in drug transport or redistribution (ABCB1, ABCC1, ABCC3, ABCG2, MVP, and SLC22A1) were measured and the ABL1 kinase domain sequenced. Results excluded BCR- ABL1 overexpression and mutations as relevant resistance mechanisms. Most studied transporters were overexpressed in the majority of resistant cell lines. Their expression pattern was dynamic: varying with resistance level and chronic drug exposure. Studied efflux transporters may have an important role at the initial stages of resistance, but after prolonged exposure and for higher doses of drugs other mechanisms might take place.

  12. Analysis of immunophenotype in acute myeloid leukemia by multiparameter flow cytometry

    International Nuclear Information System (INIS)

    Gao Yanqun; Jin Haijie; Yan Pei; Wang Feifei; Li Xiaohong; Gao Chunji

    2005-01-01

    To evaluate the immunophenotype of acute leukemia patients, the surface and cytoplasmic antigen expression in 162 cases of acute leukemia were analyzed by multiparameter flow cytometry and CD45/SSC gating. The results showed that CDl17 (94.9%), CD13 (88.5%) and CD33(70.5%) were mainly expressed in ANLL patients; cCD79a(100%), CD19(92.1%) were chiefly expressed in B-ALL patients, and in T-ALL patients, cCD3(100%) and CD2(83.3%) were expressed; For the expression of lymphoid differentiation antigen Ly+ANLL, CD7 (56.2%) and CD19(31.2%) were chiefly found, and for myeloid antigen My+ALL, CD13(88. 9%) and CD33 (27.8%) were detected. In conclusion, multiparameter flow cytometry and three-color direct immunofluorescence staining methods may be of important clinical significance in diagnosis, therapy and prognosis of acute leukemia. (authors)

  13. Interleukin 1 as an autocrine growth factor for acute myeloid leukemia cells

    International Nuclear Information System (INIS)

    Cozzolino, F.; Rubartelli, A.; Aldinucci, D.; Sitia, R.; Torcia, M.; Shaw, A.; Di Guglielmo, R.

    1989-01-01

    Production of interleukin 1 (IL-1) by leukemic cells was studied in 13 cases of acute myeloid leukemia. Intracytoplasmic immunofluorescence studies showed that the cells invariably contained the cytokine. Endogenous labeling studies demonstrated that acute myeloid leukemia cells produced either only the 33-kDa propeptide or both the propeptide and the 17-kDa mature form of IL-1β. The 33-kDa propeptide IL-1α was always produced but was less frequently released. Involvement of IL-1 in leukemic cell growth was investigated using two antibodies specific for IL-1 subtypes, which inhibited spontaneous cell proliferation in the six cases studied. After acid treatment of the cells, a surface receptor for IL-1 could be demonstrated, which mediated 125 I-labeled IL-1-specific uptake by leukemic cells. Furthermore, recombinant IL-1α or IL-1β induced significant cell proliferation in 10 12 cases. The above findings were uncorrelated with the cytologic type (French-American-British classification) of leukemia. The studies suggest that IL-1 may act as an autocrine growth factor in most cases of acute myeloid leukemia

  14. Nitric oxide-releasing nanoparticles: synthesis, characterization, and cytotoxicity to tumorigenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Pelegrino, Milena T. [Universidade Federal de São Paulo, Exact and Earth Sciences Department (Brazil); Silva, Letícia C.; Watashi, Carolina M. [Universidade Federal do ABC, UFABC, Center of Natural and Human Sciences (Brazil); Haddad, Paula S. [Universidade Federal de São Paulo, Exact and Earth Sciences Department (Brazil); Rodrigues, Tiago; Seabra, Amedea B., E-mail: amedea.seabra@ufabc.edu.br [Universidade Federal do ABC, UFABC, Center of Natural and Human Sciences (Brazil)

    2017-02-15

    Nitric oxide (NO) is involved in several biological processes, including toxicity against tumor cells. The aim of this study was to synthesize, characterize, and evaluate the cytotoxicity of NO-releasing chitosan nanoparticles. A thiol-containing molecule, mercaptosuccinic acid (MSA), was encapsulated (encapsulation efficiency of 99%) in chitosan/sodium tripolyphosphate nanoparticles (CS NPs). The obtained nanoparticles showed an average hydrodynamic size of 108.40 ± 0.96 nm and polydispersity index of 0.26 ± 0.01. MSA-CS NPs were nitrosated leading to S-nitroso-MSA-CS NPs, which act as NO donor. The cytotoxicity of CS NPs, MSA-CS NPs, and S-nitroso-MSA-CS NPs were evaluated in several tumor cells, including human hepatocellular carcinoma (HepG2), mouse melanoma (B16F10), and human chronic myeloid leukemia (K562) cell lines and Lucena-1, a vincristine-resistant K562 cell line. Both CS NPs and MSA-CS NPs did not cause toxic effects in these cells, whereas S-nitroso-MSA-CS NPs caused potent cytotoxic effects in all the tested tumor cell lines. The half-maximal inhibitory concentration values of S-nitroso-MSA-CS NPs were 19.7, 10.5, 22.8, and 27.8 μg·mL{sup −1} for HepG2, B16F10, K562, and Lucena-1 cells, respectively. In contrast, S-nitroso-MSA-CS NPs exhibited lower cytotoxic to non-tumorigenic melanocytes (Melan-A) when compared with melanoma B16F10. Therefore, the results highlight the potential use of NO-releasing CS NPs in antitumor chemotherapy.

  15. Complete genome of Phenylobacterium zucineum – a novel facultative intracellular bacterium isolated from human erythroleukemia cell line K562

    Directory of Open Access Journals (Sweden)

    Sun Jie

    2008-08-01

    Full Text Available Abstract Background Phenylobacterium zucineum is a recently identified facultative intracellular species isolated from the human leukemia cell line K562. Unlike the known intracellular pathogens, P. zucineum maintains a stable association with its host cell without affecting the growth and morphology of the latter. Results Here, we report the whole genome sequence of the type strain HLK1T. The genome consists of a circular chromosome (3,996,255 bp and a circular plasmid (382,976 bp. It encodes 3,861 putative proteins, 42 tRNAs, and a 16S-23S-5S rRNA operon. Comparative genomic analysis revealed that it is phylogenetically closest to Caulobacter crescentus, a model species for cell cycle research. Notably, P. zucineum has a gene that is strikingly similar, both structurally and functionally, to the cell cycle master regulator CtrA of C. crescentus, and most of the genes directly regulated by CtrA in the latter have orthologs in the former. Conclusion This work presents the first complete bacterial genome in the genus Phenylobacterium. Comparative genomic analysis indicated that the CtrA regulon is well conserved between C. crescentus and P. zucineum.

  16. Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue.

    Science.gov (United States)

    Sinha, Mithun; Sen, Chandan K; Singh, Kanhaiya; Das, Amitava; Ghatak, Subhadip; Rhea, Brian; Blackstone, Britani; Powell, Heather M; Khanna, Savita; Roy, Sashwati

    2018-03-05

    Inflammation, following injury, induces cellular plasticity as an inherent component of physiological tissue repair. The dominant fate of wound macrophages is unclear and debated. Here we show that two-thirds of all granulation tissue fibroblasts, otherwise known to be of mesenchymal origin, are derived from myeloid cells which are likely to be wound macrophages. Conversion of myeloid to fibroblast-like cells is impaired in diabetic wounds. In cross-talk between keratinocytes and myeloid cells, miR-21 packaged in extracellular vesicles (EV) is required for cell conversion. EV from wound fluid of healing chronic wound patients is rich in miR-21 and causes cell conversion more effectively compared to that by fluid from non-healing patients. Impaired conversion in diabetic wound tissue is rescued by targeted nanoparticle-based delivery of miR-21 to macrophages. This work introduces a paradigm wherein myeloid cells are recognized as a major source of fibroblast-like cells in the granulation tissue.

  17. Clinical pathway for patients with Chronic Myeloid Leukaemia: The Euriclea Project.

    Science.gov (United States)

    Botti, Stefano; Gargiulo, Gianpaolo; Bombaci, Felice; Artioli, Giovanna; Cosentino, Chiara; Pignatelli, Adriana Concetta; Torino, Daniela; Lionetti, Maria Marcella; Samarani, Emanuela; Cappucciati, Lorella; Bordiga, Paola; Diodati, Antonella; Caffarri, Cristiana; Rosini, Irene; Pane, Fabrizio

    2017-07-18

    The use of Tirosine Kinase Ihnibitors (TKIs) for the treatment of Chronic Myeloid Leukemia (CML) has definitely represented a turning point in the treatment of the onco-hematological diseases. Over the years, the interest of physicians, nurses, patients and caregivers has increasingly focused on the aspects of the humanization of care, the management of side effects and on the full and constant therapeutic adherence. The aim of the project was to define patient-oriented care processes, based on a proactive approach that can fully respond to the new health needs of CML patients. A nursing expert Working Group (WG) was established. WG reviewed literature about CML patients assistance and then it was conducted a survey on organizational models for the treatment of CML patients, adopted by Italian haematologic and transplant centers.  Finally, the main issues regarding CML patients care were identified and discussed on a multiprofessional basis. Euriclea Project for care of CML patients with the description of a new and expanded nurse role was defined. The Nurse Case Manager or Nursing Clinical Experts were identified as key people for the management of the side effects of treatment, the promotion of the therapeutic adherence and the evaluation of efficacy and effectiveness of the process through the identification of specific indicators for structure, process and outcome. The focal areas of the care process were identified so as to define a different approach to the CML patient, through a holistic view of care and the multidisciplinary interventions.

  18. Testicular myeloid sarcoma: case report.

    Science.gov (United States)

    Zago, Luzia Beatriz Ribeiro; Ladeia, Antônio Alexandre Lisbôa; Etchebehere, Renata Margarida; de Oliveira, Leonardo Rodrigues

    2013-01-01

    Myeloid sarcomas are extramedullary solid tumors composed of immature granulocytic precursor cells. In association with acute myeloid leukemia and other myeloproliferative disorders, they may arise concurrently with compromised bone marrow related to acute myeloid leukemia, as a relapsed presentation, or occur as the first manifestation. The testicles are considered to be an uncommon site for myeloid sarcomas. No therapeutic strategy has been defined as best but may include chemotherapy, radiotherapy and/or hematopoietic stem cell transplantation. This study reports the evolution of a patient with testicular myeloid sarcoma as the first manifestation of acute myeloid leukemia. The patient initially refused medical treatment and died five months after the clinical condition started.

  19. SB-715992 in Treating Patients With Acute Leukemia, Chronic Myelogenous Leukemia, or Advanced Myelodysplastic Syndromes

    Science.gov (United States)

    2013-01-10

    Acute Undifferentiated Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  20. Lack of Association of Multidrug Resistance Gene-1 Polymorphisms with Treatment Outcome in Chronic Myeloid Leukemia Patients Treated with Imatinib

    Directory of Open Access Journals (Sweden)

    Yaya Kassogue

    2015-10-01

    Full Text Available Background: Despite the impressive results obtained with imatinib, inadequate response or resistance are observed in certain patients. It is known that imatinib is a substrate of a multidrug resistance gene (MDR1. Thus, interindividual genetic differences linked to single nucleotide polymorphisms in MDR1 may influence the metabolism of imatinib. The present study has aimed to examine the impact of MDR1 polymorphisms on the hematologic and cytogenetic responses in 70 chronic myeloid leukemia patients who received imatinib. Methods: We used a polymerase chain reaction followed by restriction fragment length polymorphism to identify different profiles of 1236C>T, 2677G>T and 3435C>T in MDR1. Results: The distribution of the three SNPs in responders and poor responders did not show any particular trend (P>0.05. The T allele was slightly higher in responders, but not significantly regardless of the type of SNP (40.3% vs. 33.8% for 1236C>T; 25% vs. 14.7% for 2677G>T and 33.3% vs. 22% for 3435C>T. The dominant model showed a similar trend (P>0.05. Diplotypes composed by the T allele in different exons were frequent in responders. Haplotype analysis showed that 1236C-2677G-3435C was slightly higher in poor responders (60.02% compared to responders (50.42%. However, 1236T-2677T-3435T was frequent in responders (16.98% compared to poor responders (13.1%. Overall, none of the haplotypes were associated with IM response in our cohort (global haplotype association test, P=0.39. Conclusion: The identification of 1236C>T, 2677G>T and 3435C>T polymorphisms may not be advantageous to predict imatinib response for our chronic myeloid leukemia patients.

  1. PTCH1 is a reliable marker for predicting imatinib response in chronic myeloid leukemia patients in chronic phase.

    Directory of Open Access Journals (Sweden)

    Juan M Alonso-Dominguez

    Full Text Available Patched homolog 1 gene (PTCH1 expression and the ratio of PTCH1 to Smoothened (SMO expression have been proposed as prognostic markers of the response of chronic myeloid leukemia (CML patients to imatinib. We compared these measurements in a realistic cohort of 101 patients with CML in chronic phase (CP using a simplified qPCR method, and confirmed the prognostic power of each in a competing risk analysis. Gene expression levels were measured in peripheral blood samples at diagnosis. The PTCH1/SMO ratio did not improve PTCH1 prognostic power (area under the receiver operating characteristic curve 0.71 vs. 0.72. In order to reduce the number of genes to be analyzed, PTCH1 was the selected measurement. High and low PTCH1 expression groups had significantly different cumulative incidences of imatinib failure (IF, which was defined as discontinuation of imatinib due to lack of efficacy (5% vs. 25% at 4 years, P = 0.013, probabilities of achieving a major molecular response (81% vs. 53% at first year, P = 0.02, and proportions of early molecular failure (14% vs. 43%, P = 0.015. Every progression to an advanced phase (n = 3 and CML-related death (n = 2 occurred in the low PTCH1 group (P<0.001 for both comparisons. PTCH1 was an independent prognostic factor for the prediction of IF. We also validated previously published thresholds for PTCH1 expression. Therefore, we confirmed that PTCH1 expression can predict the imatinib response in CML patients in CP by applying a more rigorous statistical analysis. Thus, PTCH1 expression is a promising molecular marker for predicting the imatinib response in CML patients in CP.

  2. Secondary Metabolites from Two Species of Tolpis and Their Biological Activities

    Directory of Open Access Journals (Sweden)

    Francisco León

    2012-11-01

    Full Text Available Phytochemical research of two Tolpis species, T. proustii and T. lagopoda, led to the isolation of three new compounds: 30-chloro-3β-acetoxy-22α-hydroxyl-20(21-taraxastene (1, 3β,22α-diacetoxy-30-ethoxy-20(21-taraxastene (2 and 3β,28-dihydroxy-11α-hydroperoxy-12-ursene (3. The structures of the new compounds were elucidated by means of extensive IR, NMR, and MS data and by comparison of data reported in the literature. The in vitro antioxidant activities of the extracts were assessed by the DPPH and ABTS scavenging methods. The cytotoxicity of several known compounds and its derivatives was also assessed against human myeloid leukemia K-562 and K-562/ADR cell lines.

  3. Leucemia mieloide crónica: Actualización en Citogenética y Biología Molecular Chronic myeloid leukemia: Updating in cytogenetics and molecular biology

    Directory of Open Access Journals (Sweden)

    Valia Pavón Morán

    2005-08-01

    Full Text Available La leucemia mieloide crónica (LMC es un síndrome mieloproliferativo crónico de naturaleza clonal, originada en la célula madre, que resulta en un excesivo número de células mieloides en todos los estadios de maduración. Fue la primera enfermedad maligna en que se demostró una anomalía genética adquirida y es en la actualidad el modelo molecular de leucemia mejor estudiado. En la LMC se expresa la translocación cromosómica t (9; 22 (q34; q11 que da lugar a la formación del cromosoma Filadelfia (Ph. A causa de esta translocación se producen 2 nuevos genes híbridos: el BCR-ABL en el cromosoma 22q- o cromosoma Ph y el gen recíproco ABL-BCR en el cromosoma derivado 9q+, el cual, aunque transcripcionalmente activo, no parece desempeñar ninguna actividad funcional en la enfermedad. En la actualidad, la identificación de enfermedad mínima residual mediante métodos moleculares es de vital importancia para la evaluación precisa del estado evolutivo de la enfermedadChronic myeloid leukemia (CML is a a chronic myeloproliferative syndrome of clonal nature, originated in the stem cell, that results in an excessive number of myeloid cells in all the maturation stages. It was the first malignat disease in which an acquired genetic abnormality was proved, and it is at present the best studied molecular model of leukemia. In the chronic myeloid leukemia, it is expressed the chromosal translocation t (9;22 (q34;q11, giving rise to the formation of the Philadelphia (Ph chromosome. Due to this translocation, 2 new hybrid genes are produced: BCR-ABL in chromosome 22q- or Ph chromosome, and the reciprocal gene ABL-BCR in the derivative chromosome 9q+, which , although transcriptionally active, does not seem to play any functional activity in the disease. Nowadays, the identification of the minimal residual disease by molecular methods is very important for the exact evaluation of the evolutive state of the disease

  4. Estimation of the target stem-cell population size in chronic myeloid leukemogenesis

    International Nuclear Information System (INIS)

    Radivoyevitch, T.; Ramsey, M.J.; Tucker, J.D.

    1999-01-01

    Estimation of the number of hematopoietic stem cells capable of causing chronic myeloid leukemia (CML) is relevant to the development of biologically based risk models of radiation-induced CML. Through a comparison of the age structure of CML incidence data from the Surveillance, Epidemiology, and End Results (SEER) Program and the age structure of chromosomal translocations found in healthy subjects, the number of CML target stem cells is estimated for individuals above 20 years of age. The estimation involves three steps. First, CML incidence among adults is fit to an exponentially increasing function of age. Next, assuming a relatively short waiting time distribution between BCR-ABL induction and the appearance of CML, an exponential age function with rate constants fixed to the values found for CML is fitted to the translocation data. Finally, assuming that translocations are equally likely to occur between any two points in the genome, the parameter estimates found in the first two steps are used to estimate the number of target stem cells for CML. The population-averaged estimates of this number are found to be 1.86 x 10 8 for men and 1.21 x 10 8 for women; the 95% confidence intervals of these estimates are (1.34 x 10 8 , 2.50 x 10 8 ) and (0.84 x 10 8 , 1.83 x 10 8 ), respectively. (orig.)

  5. Cutaneous myeloid sarcoma: natural history and biology of an uncommon manifestation of acute myeloid leukemia.

    Science.gov (United States)

    Hurley, M Yadira; Ghahramani, Grant K; Frisch, Stephanie; Armbrecht, Eric S; Lind, Anne C; Nguyen, Tudung T; Hassan, Anjum; Kreisel, Friederike H; Frater, John L

    2013-05-01

    We conducted a retrospective study of patients with cutaneous myeloid sarcoma, from 2 tertiary care institutions. Eighty-three patients presented, with a mean age of 52 years. Diagnosis of myeloid sarcoma in the skin was difficult due to the low frequency of myeloperoxidase and/or CD34+ cases (56% and 19% of tested cases, respectively). Seventy-one of the 83 patients (86%) had ≥ 1 bone marrow biopsy. Twenty-eight (39%) had acute myeloid leukemia with monocytic differentiation. Twenty-three had other de novo acute myeloid leukemia subtypes. Thirteen patients had other myeloid neoplasms, of which 4 ultimately progressed to an acute myeloid leukemia. Seven had no bone marrow malignancy. Ninety-eight percent of the patients received chemotherapy, and approximately 89% died of causes related to their disease. Cutaneous myeloid sarcoma in most cases represents an aggressive manifestation of acute myeloid leukemia. Diagnosis can be challenging due to lack of myeloblast-associated antigen expression in many cases, and difficulty in distinguishing monocyte-lineage blasts from neoplastic and non-neoplastic mature monocytes.

  6. Towards Comprehension of the ABCB1/P-Glycoprotein Role in Chronic Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Raquel C. Maia

    2018-01-01

    Full Text Available Abstract: The introduction of imatinib (IM, a BCR-ABL1 tyrosine kinase inhibitor (TKI, has represented a significant advance in the first-line treatment of chronic myeloid leukemia (CML. However, approximately 30% of patients need to discontinue IM due to resistance or intolerance to this drug. Both resistance and intolerance have also been observed in treatment with the second-generation TKIs—dasatinib, nilotinib, and bosutinib—and the third-generation TKI—ponatinib. The mechanisms of resistance to TKIs may be BCR-ABL1-dependent and/or BCR-ABL1-independent. Although the role of efflux pump P-glycoprotein (Pgp, codified by the ABCB1 gene, is unquestionable in drug resistance of many neoplasms, a longstanding question exists about whether Pgp has a firm implication in TKI resistance in the clinical scenario. The goal of this review is to offer an overview of ABCB1/Pgp expression/activity/polymorphisms in CML. Understanding how interactions, associations, or cooperation between Pgp and other molecules—such as inhibitor apoptosis proteins, microRNAs, or microvesicles—impact IM resistance risk may be critical in evaluating the response to TKIs in CML patients. In addition, new non-TKI compounds may be necessary in order to overcome the resistance mediated by Pgp in CML.

  7. Intermittent targeted therapies and stochastic evolution in patients affected by chronic myeloid leukemia

    Science.gov (United States)

    Pizzolato, N.; Persano Adorno, D.; Valenti, D.; Spagnolo, B.

    2016-05-01

    Front line therapy for the treatment of patients affected by chronic myeloid leukemia (CML) is based on the administration of tyrosine kinase inhibitors, namely imatinib or, more recently, axitinib. Although imatinib is highly effective and represents an example of a successful molecular targeted therapy, the appearance of resistance is observed in a proportion of patients, especially those in advanced stages. In this work, we investigate the appearance of resistance in patients affected by CML, by modeling the evolutionary dynamics of cancerous cell populations in a simulated patient treated by an intermittent targeted therapy. We simulate, with the Monte Carlo method, the stochastic evolution of initially healthy cells to leukemic clones, due to genetic mutations and changes in their reproductive behavior. We first present the model and its validation with experimental data by considering a continuous therapy. Then, we investigate how fluctuations in the number of leukemic cells affect patient response to the therapy when the drug is administered with an intermittent time scheduling. Here we show that an intermittent therapy (IT) represents a valid choice in patients with high risk of toxicity, despite an associated delay to the complete restoration of healthy cells. Moreover, a suitably tuned IT can reduce the probability of developing resistance.

  8. JAK and MPL mutations in myeloid malignancies.

    Science.gov (United States)

    Tefferi, Ayalew

    2008-03-01

    The Janus family of non-receptor tyrosine kinases (JAK1, JAK2, JAK3 and tyrosine kinase 2) transduces signals downstream of type I and II cytokine receptors via signal transducers and activators of transcription (STATs). JAK3 is important in lymphoid and JAK2 in myeloid cell proliferation and differentiation. The thrombopoietin receptor MPL is one of several JAK2 cognate receptors and is essential for myelopoiesis in general and megakaryopoiesis in particular. Germline loss-of-function (LOF) JAK3 and MPL mutations cause severe combined immunodeficiency and congenital amegakaryocytic thrombocytopenia, respectively. Germline gain-of-function (GOF) MPL mutation (MPLS505N) causes familial thrombocytosis. Somatic JAK3 (e.g. JAK3A572V, JAK3V722I, JAK3P132T) and fusion JAK2 (e.g. ETV6-JAK2, PCM1-JAK2, BCR-JAK2) mutations have respectively been described in acute megakaryocytic leukemia and acute leukemia/chronic myeloid malignancies. However, current attention is focused on JAK2 (e.g. JAK2V617F, JAK2 exon 12 mutations) and MPL (e.g. MPLW515L/K/S, MPLS505N) mutations associated with myeloproliferative neoplasms (MPNs). A JAK2 mutation, primarily JAK2V617F, is invariably associated with polycythemia vera (PV). The latter mutation also occurs in the majority of patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF). MPL mutational frequency in MPNs is substantially less (<10%). In general, despite a certain degree of genotype - phenotype correlations, the prognostic relevance of harbouring one of these mutations, or their allele burden when present, remains dubious. Regardless, based on the logical assumption that amplified JAK-STAT signalling is central to the pathogenesis of PV, ET and PMF, several anti-JAK2 tyrosine kinase inhibitors have been developed and are currently being tested in humans with these disorders.

  9. CYP2C8 Genotype Significantly Alters Imatinib Metabolism in Chronic Myeloid Leukaemia Patients.

    Science.gov (United States)

    Barratt, Daniel T; Cox, Hannah K; Menelaou, Andrew; Yeung, David T; White, Deborah L; Hughes, Timothy P; Somogyi, Andrew A

    2017-08-01

    The aims of this study were to determine the effects of the CYP2C8*3 and *4 polymorphisms on imatinib metabolism and plasma imatinib concentrations in chronic myeloid leukaemia (CML) patients. We genotyped 210 CML patients from the TIDELII trial receiving imatinib 400-800 mg/day for CYP2C8*3 (rs11572080, rs10509681) and *4 (rs1058930). Steady-state trough total plasma N-desmethyl imatinib (major metabolite):imatinib concentration ratios (metabolic ratios) and trough total plasma imatinib concentrations were compared between genotypes (one-way ANOVA with Tukey post hoc). CYP2C8*3 (n = 34) and *4 (n = 15) carriers had significantly higher (P  50% higher for CYP2C8*1/*4 than for CYP2C8*1/*1 and CYP2C8*3 carriers (2.18 ± 0.66 vs. 1.45 ± 0.74 [P < 0.05] and 1.36 ± 0.98 μg/mL [P < 0.05], respectively). CYP2C8 genotype significantly alters imatinib metabolism in patients through gain- and loss-of-function mechanisms.

  10. 12 CFR 562.2 - Regulatory reports.

    Science.gov (United States)

    2010-01-01

    ... § 562.2 Regulatory reports. (a) Definition and scope. This section applies to all regulatory reports, as... (TFR) are examples of regulatory reports. Regulatory reports are regulatory documents, not accounting... limited to, the accounting instructions provided in the TFR, guidance contained in OTS regulations...

  11. Final 5-Year Study Results of DASISION: The Dasatinib Versus Imatinib Study in Treatment-Naïve Chronic Myeloid Leukemia Patients Trial.

    Science.gov (United States)

    Cortes, Jorge E; Saglio, Giuseppe; Kantarjian, Hagop M; Baccarani, Michele; Mayer, Jiří; Boqué, Concepción; Shah, Neil P; Chuah, Charles; Casanova, Luis; Bradley-Garelik, Brigid; Manos, George; Hochhaus, Andreas

    2016-07-10

    We report the 5-year analysis from the phase III Dasatinib Versus Imatinib Study in Treatment-Naïve Chronic Myeloid Leukemia Patients (DASISION) trial, evaluating long-term efficacy and safety outcomes of patients with chronic myeloid leukemia (CML) in chronic phase (CP) treated with dasatinib or imatinib. Patients with newly diagnosed CML-CP were randomly assigned to receive dasatinib 100 mg once daily (n = 259) or imatinib 400 mg once daily (n = 260). At the time of study closure, 61% and 63% of dasatinib- and imatinib-treated patients remained on initial therapy, respectively. Cumulative rates of major molecular response and molecular responses with a 4.0- or 4.5-log reduction in BCR-ABL1 transcripts from baseline by 5 years remained statistically significantly higher for dasatinib compared with imatinib. Rates for progression-free and overall survival at 5 years remained high and similar across treatment arms. In patients who achieved BCR-ABL1 ≤ 10% at 3 months (dasatinib, 84%; imatinib, 64%), improvements in progression-free and overall survival and lower rates of transformation to accelerated/blast phase were reported compared with patients with BCR-ABL1 greater than 10% at 3 months. Transformation to accelerated/blast phase occurred in 5% and 7% of patients in the dasatinib and imatinib arms, respectively. Fifteen dasatinib-treated and 19 imatinib-treated patients had BCR-ABL1 mutations identified at discontinuation. There were no new or unexpected adverse events identified in either treatment arm, and pleural effusion was the only drug-related, nonhematologic adverse event reported more frequently with dasatinib (28% v 0.8% with imatinib). First occurrences of pleural effusion were reported with dasatinib, with the highest incidence in year 1. Arterial ischemic events were uncommon in both treatment arms. These final results from the DASISION trial continue to support dasatinib 100 mg once daily as a safe and effective first-line therapy for the long

  12. Sensitive detection of pre-existing BCR-ABL kinase domain mutations in CD34+ cells of newly diagnosed chronic-phase chronic myeloid leukemia patients is associated with imatinib resistance: implications in the post-imatinib era.

    Directory of Open Access Journals (Sweden)

    Zafar Iqbal

    Full Text Available BACKGROUND: BCR-ABL kinase domain mutations are infrequently detected in newly diagnosed chronic-phase chronic myeloid leukemia (CML patients. Recent studies indicate the presence of pre-existing BCR-ABL mutations in a higher percentage of CML patients when CD34+ stem/progenitor cells are investigated using sensitive techniques, and these mutations are associated with imatinib resistance and disease progression. However, such studies were limited to smaller number of patients. METHODS: We investigated BCR-ABL kinase domain mutations in CD34+ cells from 100 chronic-phase CML patients by multiplex allele-specific PCR and sequencing at diagnosis. Mutations were re-investigated upon manifestation of imatinib resistance using allele-specific PCR and direct sequencing of BCR-ABL kinase domain. RESULTS: Pre-existing BCR-ABL mutations were detected in 32/100 patients and included F311L, M351T, and T315I. After a median follow-up of 30 months (range 8-48, all patients with pre-existing BCR-ABL mutations exhibited imatinib resistance. Of the 68 patients without pre-existing BCR-ABL mutations, 24 developed imatinib resistance; allele-specific PCR and BCR-ABL kinase domain sequencing detected mutations in 22 of these patients. All 32 patients with pre-existing BCR-ABL mutations had the same mutations after manifestation of imatinib-resistance. In imatinib-resistant patients without pre-existing BCR-ABL mutations, we detected F311L, M351T, Y253F, and T315I mutations. All imatinib-resistant patients except T315I and Y253F mutations responded to imatinib dose escalation. CONCLUSION: Pre-existing BCR-ABL mutations can be detected in a substantial number of chronic-phase CML patients by sensitive allele-specific PCR technique using CD34+ cells. These mutations are associated with imatinib resistance if affecting drug binding directly or indirectly. After the recent approval of nilotinib, dasatinib, bosutinib and ponatinib for treatment of chronic myeloid

  13. 40 CFR 80.562-80.569 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Other Hardship Provisions §§ 80.562-80.569 [Reserved] Labeling...

  14. The long-term clinical implications of clonal chromosomal abnormalities in newly diagnosed chronic phase chronic myeloid leukemia patients treated with imatinib mesylate.

    Science.gov (United States)

    Lee, Sung-Eun; Choi, Soo Young; Bang, Ju-Hee; Kim, Soo-Hyun; Jang, Eun-Jung; Byeun, Ji-Young; Park, Jin Eok; Jeon, Hye-Rim; Oh, Yun Jeong; Kim, Myungshin; Kim, Dong-Wook

    2012-11-01

    The aim of this study was to evaluate the long-term clinical significance of an additional chromosomal abnormality (ACA), variant Philadelphia chromosome (vPh) at diagnosis, and newly developed other chromosomal abnormalities (OCA) in patients with chronic myeloid leukemia (CML) on imatinib (IM) therapy. Sequential cytogenetic data from 281 consecutive new chronic phase CML patients were analyzed. With a median follow-up of 78.6 months, the 22 patients with vPh (P = 0.034) or ACA (P = 0.034) at diagnosis had more events of IM failure than did the patients with a standard Ph. The 5-year overall survival (OS), event-free survival (EFS), and failure-free survival (FFS) rates for patients with vPh at diagnosis were 77.8%, 75.0%, and 53.3%, respectively; for patients with ACA at diagnosis, 100%, 66.3%, and 52.1%, respectively; and for patients with a standard Ph, 96.0%, 91.3%, and 83.7%, respectively. During IM therapy, eight patients developed an OCA, which had no impact on outcomes as a time-dependent covariate in our Cox proportional hazards regression models. This study showed that vPh was associated with poor OS and FFS and that ACA had adverse effects on EFS and FFS. In addition, no OCA, except monosomy 7, had any prognostic impact, suggesting that the development of OCA may not require a change in treatment strategy. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. A propensity score matching analysis of dasatinib and nilotinib as a frontline therapy for patients with chronic myeloid leukemia in chronic phase.

    Science.gov (United States)

    Takahashi, Koichi; Kantarjian, Hagop M; Yang, Yulong; Sasaki, Koji; Jain, Preetesh; DellaSala, Sara; Ravandi, Farhad; Kadia, Tapan; Pemmaraju, Naveen; Daver, Naval; Borthakur, Gautam; Garcia-Manero, Guillermo; Jabbour, Elias; Cortes, Jorge E

    2016-11-15

    Both dasatinib and nilotinib are approved frontline therapy for chronic myeloid leukemia in chronic phase (CML-CP) based on randomized trials compared with imatinib. However, no head-to-head comparison of dasatinib and nilotinib has been conducted in patients with newly diagnosed CML-CP. The authors conducted a propensity score (PS) matched comparison of patients with CML-CP who received frontline therapy with either dasatinib (N = 102) or nilotinib (N = 104) under the respective phase 2 trials conducted in parallel. PS matching resulted in 87 patients from each trial being matched for pretreatment characteristics. The 3-month BCR-ABL1/ABL1 ratio treatment cohorts. The 3-year probability of event-free survival was 89% among the patients who received dasatinib and 87% among those who received nilotinib (P = .99), and the corresponding 3-year overall survival probabilities were 99% and 93%, respectively (P = .95). No statistical difference was observed between the dasatinib and nilotinib groups in any of the other survival endpoints. The treatment discontinuation rate also was similar between the 2 cohorts (dasatinib group, 18%; nilotinib group, 19%; P = .82). In a PS-matched cohort of patients with newly diagnosed CML-CP, dasatinib and nilotinib offer similar response and survival outcomes. Both drugs can be considered reasonable standard-of-care options as first-line therapy for patients with CML-CP. Cancer 2016;122:3336-3343. © 2016 American Cancer Society. © 2016 American Cancer Society.

  16. Antiproliferative Effects of Bacillus coagulans Unique IS2 in Colon Cancer Cells.

    Science.gov (United States)

    Madempudi, Ratna Sudha; Kalle, Arunasree M

    2017-10-01

    In the present study, the in vitro anticancer (antiproliferative) effects of Bacillus coagulans Unique IS2 were evaluated on human colon cancer (COLO 205), cervical cancer (HeLa), and chronic myeloid leukemia (K562) cell lines with a human embryonic kidney cell line (HEK 293T) as noncancerous control cells. The Cytotoxicity assay (MTT) clearly demonstrated a 22%, 31.7%, and 19.5% decrease in cell proliferation of COLO 205, HeLa, and K562 cells, respectively, when compared to the noncancerous HEK 293T cells. Normal phase-contrast microscopic images clearly suggested that the mechanism of cell death is by apoptosis. To further confirm the induction of apoptosis by Unique IS2, the sub-G0-G1 peak of the cell cycle was quantified using a flow cytometer and the data indicated 40% of the apoptotic cells in Unique IS2-treated COLO cells when compared with their untreated control cells. The Western blot analysis showed an increase in pro-apoptotic protein BAX, decrease in antiapoptotic protein, Bcl2, decrease in mitochondrial membrane potential, increase in cytochrome c release, increase in Caspase 3 activity, and cleavage of poly(ADP-ribose) polymerase. The present study suggests that the heat-killed culture supernatant of B. coagulans can be more effective in inducing apoptosis of colon cancer cells and that can be considered for adjuvant therapy in the treatment of colon carcinoma.

  17. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    International Nuclear Information System (INIS)

    Okabe, Seiichi; Tauchi, Tetsuzo; Tanaka, Yuko; Ohyashiki, Kazuma

    2013-01-01

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzed the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance

  18. A large-scale RNA interference screen identifies genes that regulate autophagy at different stages.

    Science.gov (United States)

    Guo, Sujuan; Pridham, Kevin J; Virbasius, Ching-Man; He, Bin; Zhang, Liqing; Varmark, Hanne; Green, Michael R; Sheng, Zhi

    2018-02-12

    Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed a large-scale RNA interference screen in K562 human chronic myeloid leukemia cells using monodansylcadaverine staining, an autophagy-detecting approach equivalent to immunoblotting of the autophagy marker LC3B or fluorescence microscopy of GFP-LC3B. By coupling monodansylcadaverine staining with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays revealed that 57 autophagy-regulating genes suppressed autophagy initiation, whereas 21 candidates promoted autophagy maturation. Our RNA interference screen identifies identified genes that regulate autophagy at different stages, which helps decode autophagy regulation in cancer and offers novel avenues to develop autophagy-related therapies for cancer.

  19. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Okabe, Seiichi, E-mail: okabe@tokyo-med.ac.jp; Tauchi, Tetsuzo; Tanaka, Yuko; Ohyashiki, Kazuma

    2013-06-07

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzed the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance.

  20. Two-dimensional analysis of metabolically and cell surface radiolabeled proteins of some human lymphoid and myeloid leukemia cell lines. II. Glycosylated and phosphorylated proteins

    Energy Technology Data Exchange (ETDEWEB)

    Chorvath, B; Duraj, J; Sedlak, J; Pleskova, I

    1986-01-01

    Cell surface glycoproteins, radiolabelled by the sodium metaperiodate/tritiated borohydride technique, and cell phosphoproteins, metabolically radiolabelled with /sup 32/P-orthophosphate were analyzed by two-dimensional electrophoretic analysis in some myeloid and lymphoid leukemia cell lines. Some markedly expressed major glycoproteins were predominant in some of the cell lines (such as 95k and 100k glycoproteins with marked charge heterogeneity in non-T, non-B acute lymphoblastic leukemia cell lines NALM 6 and NALM 16), but markedly quantitatively reduced in other examined cell lines, such as lymphoblastoid cell line UHKT 34/2. /sup 32/P-orthophosphate radiolabelled phosphoprotein two-dimensional patterns of the examined lymphoid leukemia cell lines were essentially similar, with some minor differences, in examined lymphoid and myeloid leukemia cell lines, such as marked expression of a series of large phosphoproteins in the molecular weight range 80-100k in lymphoid cell lines and almost complete absence of these phosphoproteins on the examined myeloid leukemia cell lines. Another configuration of acidic phosphoproteins (30-35k) exhibited individual cell line variability and differences between both individual myeloid leukemia cell lines and between the lymphoid and myeloid cell lines examined. (author) 2 figs., 15 refs.

  1. Combination of pegylated IFN-α2b with imatinib increases molecular response rates in patients with low- or intermediate-risk chronic myeloid leukemia

    DEFF Research Database (Denmark)

    Simonsson, Bengt; Gedde-Dahl, Tobias; Markevärn, Berit

    2011-01-01

    Biologic and clinical observations suggest that combining imatinib with IFN-a may improve treatment outcome in chronic myeloid leukemia (CML). We randomized newly diagnosed chronic-phase CML patients with a low or intermediate Sokal risk score and in imatinib-induced complete hematologic remission......%) discontinued imatinib treatment (1 because of blastic transformation in imatinib arm). In addition, in the combination arm, 34 patients (61%) discontinued Peg-IFN-a2b, most because of toxicity. The MMR rate at 12 months was significantly higher in the imatinib plus Peg-IFN-a2b arm (82%) compared...... with the imatinib monotherapy arm (54%; intention-to-treat, P = .002). The MMR rate increased with the duration of Peg-IFN-a2b treatment ( 12-week MMR rate 91%). Thus, the addition of even relatively short periods of Peg-IFN-a2b to imatinib markedly increased the MMR rate at 12 months...

  2. The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia.

    Science.gov (United States)

    Blanco, Teresa Mortera; Mantalaris, Athanasios; Bismarck, Alexander; Panoskaltsis, Nicki

    2010-03-01

    Acute myeloid leukaemia (AML) is a cancer of haematopoietic cells that develops in three-dimensional (3-D) bone marrow niches in vivo. The study of AML has been hampered by lack of appropriate ex vivo models that mimic this microenvironment. We hypothesised that fabrication and optimisation of suitable biomimetic scaffolds for culturing leukaemic cells ex vivo might facilitate the study of AML in its native 3-D niche. We evaluated the growth of three leukaemia subtype-specific cell lines, K-562, HL60 and Kasumi-6, on highly porous scaffolds fabricated from biodegradable and non-biodegradable polymeric materials, such as poly (L-lactic-co-glycolic acid) (PLGA), polyurethane (PU), poly (methyl-methacrylate), poly (D, L-lactade), poly (caprolactone), and polystyrene. Our results show that PLGA and PU supported the best seeding efficiency and leukaemic growth. Furthermore, the PLGA and PU scaffolds were coated with extracellular matrix (ECM) proteins, collagen type I (62.5 or 125 microg/ml) and fibronectin (25 or 50 microg/ml) to provide biorecognition signals. The 3 leukaemia subtype-specific lines grew best on PU scaffolds coated with 62.5 microg/ml collagen type I over 6 weeks in the absence of exogenous growth factors. In conclusion, PU-collagen scaffolds may provide a practical model to study the biology and treatment of primary AML in an ex vivo mimicry. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  3. Persistent spiking fever in a child with acute myeloid leukemia and disseminated infection with enterovirus

    NARCIS (Netherlands)

    Murk, J. L.; de Vries, A. C.; GeurtsvanKessel, C. H.; Aron, G.; Osterhaus, A. D.; Wolthers, K. C.; Fraaij, P. L.

    2014-01-01

    We here report a 7 year old acute myeloid leukemia patient with persistent spiking fever likely caused by chronic echovirus 20 infection. After immunoglobulin substitution fevers subsided and the virus was cleared. Enterovirus infection should be considered in immunocompromised patients with

  4. Effectiveness of Quantitative Real Time PCR in Long-Term Follow-up of Chronic Myeloid Leukemia Patients.

    Science.gov (United States)

    Savasoglu, Kaan; Payzin, Kadriye Bahriye; Ozdemirkiran, Fusun; Berber, Belgin

    2015-08-01

    To determine the use of the Quantitative Real Time PCR (RQ-PCR) assay follow-up with Chronic Myeloid Leukemia (CML) patients. Cross-sectional observational. Izmir Ataturk Education and Research Hospital, Izmir, Turkey, from 2009 to 2013. Cytogenetic, FISH, RQ-PCR test results from 177 CMLpatients' materials selected between 2009 - 2013 years was set up for comparison analysis. Statistical analysis was performed to compare between FISH, karyotype and RQ-PCR results of the patients. Karyotyping and FISH specificity and sensitivity rates determined by ROC analysis compared with RQ-PCR results. Chi-square test was used to compare test failure rates. Sensitivity and specificity values were determined for karyotyping 17.6 - 98% (p=0.118, p > 0.05) and for FISH 22.5 - 96% (p=0.064, p > 0.05) respectively. FISH sensitivity was slightly higher than karyotyping but there was calculated a strong correlation between them (p 0.05); however, karyotyping and FISH test failure rate was statistically significant (p < 0.001). Besides, the situation needed for karyotype analysis, RQ-PCR assay can be used alone in the follow-up of CMLdisease.

  5. Spontaneous chronic subdural hematoma development in chronic myeloid leukemia cases at remission phase under maintenance therapy, management strategy - a series with literature review

    Directory of Open Access Journals (Sweden)

    Raheja Amol

    2016-09-01

    Full Text Available Chronic subdural hematoma (CSDH is common squeal of trauma and rarely associated with anticoagulant therapy, antiplatelet, chemotherapeutic drugs, arteriovenous malformation, aneurysms and post-craniotomy. However its occurrence is very unusual with systemic haematological malignancy and mostly reported with acute myeloid leukemia; however incidence of SDH occurrence in chronic myelogenous leukemia (CML is very rare. CML is a haematological malignancy characterized by chromosomal alteration, pathologically represents increased proliferation of the granulocytic cell line without loss of capacity to differentiate. CML has three phases - remission phase, accelerated phase and blast crisis. About 85 % of patients present in remission phase of disease and carries a favorable prognosis. As intracranial, subdural hematoma usually occur in the accelerated phase or blast crisis phase or extremely uncommon during chronic remission phase, although only those affected, who are neglecting therapeutic medication or discontinued therapy or rarely as an adverse effect of medications. However, important role of neurosurgeon lies in early detection and correction of platelet count and associated hematological abnormality as quite sizeable proportion of cases may not need surgical intervention instead can be managed conservatively under regular supervision in association with oncologist colleague, but few cases may need urgent surgical intervention. So, selecting a subgroup of CML cases in the remission phase requiring surgical intervention, presenting with CSDH is not only challenging, as failure to make an informed and timely precise decision can lead to catastrophic worse outcome and even mortality. So, purpose of current article is to formulate the management therapeutic plan. Authors report three cases of CML in chronic remission phase, receiving treatment under guidance of Haemto-oncologist at our institute presented with spontaneous chronic SDH. The mean

  6. Vitamin K metabolism in a rat model of chronic kidney disease

    Science.gov (United States)

    Background: Patients with chronic kidney disease (CKD) have very high levels of uncarboxylated, inactive, extra-hepatic vitamin K-dependent proteins measured in circulation, putting them at risk for complications of vitamin K deficiency. The major form of vitamin K found in the liver is phylloquinon...

  7. Helical tomotherapy for extramedullary hematopoiesis involving the pericardium in a patient with chronic myeloid leukemia.

    Science.gov (United States)

    Toms, Daniel R; Cannick, Leander; Stuart, Robert K; Jenrette, Joseph M; Terwiliger, Lacy

    2010-07-01

    Extramedullary hematopoiesis (EMH) refers to the development of foci of hematopoiesis outside its normal location in the bone marrow. This occurs normally during fetal development but is abnormal postpartum. The most common sites of EMH are the spleen and liver. The phenomenon occurs in a number of disease states, notably in myelofibrosis, thalassemia, immune thrombocytopenic purpura, sickle cell anemia, polycythemia vera, and myelodysplastic syndrome. Affected patients often develop symptoms related to the location of the EMH. Reported treatments include red blood cell transfusions, surgical excision, decompressive laminectomy in cases of cord compression, chemotherapy, and irradiation. Radiation therapy is highly effective for treating hematopoietic tissue because such tissues are extremely radiosensitive. Megavoltage helical tomotherapy is a technical advance in the delivery of radiation therapy, allowing more conformal and precise treatments. The present case report describes a patient with the diagnosis of atypical chronic myeloid leukemia and myelofibrosis who subsequently developed EMH of the pericardium with effusion and tamponade. By utilizing tomotherapy we were able to treat the pericardium while sparing much of the myocardium. The patient tolerated treatment well without acute adverse effects. His symptoms were alleviated, but he died approximately 1 year later.

  8. Real time polymerase chain reaction in diagnosis of chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Tashfeen, S.; Ahmed, S.; Bhatti, F.A.; Ali, N.

    2014-01-01

    Objective: To compare the sensitivity and specificity of Real Time Polymerase Chain Reaction (RT-PCR) with conventional cytogenetics in diagnosis of chronic myeloid leukemia. Study Design: A cross-sectional, analytical study. Place and Duration of Study: The Armed Forces Institute of Pathology (AFIP), Rawalpindi, from December 2010 to January 2012. Methodology: A total number of 40 patients were studied, in which all were diagnosed as CML on peripheral blood and bone marrow aspiration. The subjects were tested for the presence of Philadelphia (Ph) chromosome by cytogenetics and BCR-ABL fusion gene by RT-PCR. 2-3 ml of venous blood was collected, half in sodium heparin (anti-coagulant) for cytogenetics and half in EDTA for PCR. For cytogenetics, cells were cultured for 72 hours in RPMI 1640 medium and examined by arresting in metaphase using Colchicine to identify Philadelphia chromosome. For PCR, RNA extraction was done by Tri Reagent LS (MRC, USA) and cDNA was synthesized using reverse transcriptase and gene specific primer. RT- PCR was done on ABI-7500. The positive samples were identified when fluorescence exceeded threshold limit. Results of cytogenetics and RT PCR were compared. Results: Out of the 40 patients, PCR showed 37 (92.5%) were positive and 3 (7.5%) were negative for BCR-ABL fusion gene, whereas in cytogenetics 28 (70%) were positive for Ph chromosome and 12 (30%) were negative for Ph chromosome. Sensitivity and specificity of cytogenetics was 75.6% and 100% respectively. Conclusion: Real time PCR as compared to cytogenetics is less tedious, gives quick results, does not require multiple sampling due to culture failure and can be done on peripheral blood. (author)

  9. HLA-DRB1*16-restricted recognition of myeloid cells, including CD34+ CML progenitor cells

    NARCIS (Netherlands)

    Ebeling, Saskia B.; Ivanov, Roman; Hol, Samantha; Aarts, Tineke I.; Hagenbeek, Anton; Verdonck, Leo F.; Petersen, Eefke J.

    2003-01-01

    The therapeutic effect of a human leucocyte antigen (HLA)-identical allogeneic stem cell transplantation (allo-SCT) for the treatment of haematological malignancies is mediated partly by the allogeneic T cells that are administered together with the stem cell graft. Chronic myeloid leukaemia (CML)

  10. Mechanisms of Disease Persistence in Chronic Myelogenous Leukemia (CML)

    Science.gov (United States)

    2006-10-01

    9.2 1.4 0.03 K-Ras* 6.7 1.3 0.04 RALA 5.4 1.1 0.13 Opioid receptor mu1 4.4 1.1 0.36 Jak2 4.3 1.2 0.14 TRF1 4.3 1.5 0.06 WT-1* n/a 1.3 0.008 c...2002 American Society of Hematology, Scientific Committee on Neoplasia 2000-2004 American Medical Informatics Association: Global Trial Bank...kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344:1038-1042

  11. Determination of lactate dehydrogenase (LDH and Bcr-Abl transcript in the follow-up of patients with chronic myeloid leukemia - doi: 10.4025/actascihealthsci.v32i2.6408 Determination of lactate dehydrogenase (LDH and Bcr-Abl transcript in the follow-up of patients with chronic myeloid leukemia - doi: 10.4025/actascihealthsci.v32i2.6408

    Directory of Open Access Journals (Sweden)

    Thiago Cezar Fujita

    2010-09-01

    Full Text Available Chronic myeloid leukemia (CML is a malignant myeloproliferative disorder that originates from a pluripotent stem cell characterized by abnormal release of the expanded, malignant stem cell clone from the bone marrow into the bloodstream. The vast majority of patients with CML present Bcr-Abl transcripts. Lactate dehydrogenase (LDH is considered a biochemical marker common for tumor growth, anaerobic glycolysis and has been considered a poor prognostic factor for acute myeloid leukemia. Therefore, this study aimed to evaluate the concentration of LDH in plasma and the detection of the Bcr-Abl transcripts in patients with CML and healthy donors. We analyzed 22 patients demonstrably diagnosed with CML and 56 healthy donors. LDH concentration in plasma was higher in patients with CML. All patients with CML in this study were under treatment, but even so four patients had the Bcr-Abl (b3a2 transcript in peripheral blood. Two out of the four patients with b3a2 showed higher LDH (486 U L-1 and 589 U L-1. Thus, although the study was conducted with small numbers of samples, it is possible to suggest therapy alteration for two patients who presented transcript b3a2 in the peripheral blood samples and whose LDH concentration was high, in order to improve the disease.Chronic myeloid leukemia (CML is a malignant myeloproliferative disorder that originates from a pluripotent stem cell characterized by abnormal release of the expanded, malignant stem cell clone from the bone marrow into the bloodstream. The vast majority of patients with CML present Bcr-Abl transcripts. Lactate dehydrogenase (LDH is considered a biochemical marker common for tumor growth, anaerobic glycolysis and has been considered a poor prognostic factor for acute myeloid leukemia. Therefore, this study aimed to evaluate the concentration of LDH in plasma and the detection of the Bcr-Abl transcripts in patients with CML and healthy donors. We analyzed 22 patients demonstrably diagnosed

  12. Synthesis, characterization and anti cancer activity of some fluorinated 3,6-diaryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles

    Directory of Open Access Journals (Sweden)

    Deepak Chowrasia

    2017-05-01

    Full Text Available A series of fluorinated 3,6-diaryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles (2a–2i was synthesized by condensation of various substituted 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiols (1a–1i with penta fluoro benzoic acid in good yields (60–80%. The synthesized compounds were screened for anticancer activity against three cancerous cell lines MCF7 (human breast cancer, SaOS-2 (human osteosarcoma and K562 (human myeloid leukemia. The compounds showed moderate to good antiproliferative potency against the studied cell lines. Among these, compound 2b showed higher antiproliferative activity (IC50 22.1, 19 and 15 μM against MCF7, SaOS-2 and K562, respectively while 2a exhibited least antiproliferative activity (IC50 30.2, 39 and 29.4 μM against MCF7, SaOS-2 and K562 cells, respectively. Therefore, the present study demonstrates that fluorine substituted 3,6-diaryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles would be a better prospective in the development of anticancer drugs.

  13. Chronic inflammation triggered by the NLRP3 inflammasome in myeloid cells promotes growth plate dysplasia by mesenchymal cells.

    Science.gov (United States)

    Wang, Chun; Xu, Can-Xin; Alippe, Yael; Qu, Chao; Xiao, Jianqiu; Schipani, Ernestina; Civitelli, Roberto; Abu-Amer, Yousef; Mbalaviele, Gabriel

    2017-07-07

    Skeletal complications are common features of neonatal-onset multisystem inflammatory disease (NOMID), a disorder caused by NLRP3-activating mutations. NOMID mice in which NLRP3 is activated globally exhibit several characteristics of the human disease, including systemic inflammation and cartilage dysplasia, but the mechanisms of skeletal manifestations remain unknown. In this study, we find that activation of NLRP3 in myeloid cells, but not mesenchymal cells triggers chronic inflammation, which ultimately, causes growth plate and epiphyseal dysplasia in mice. These responses are IL-1 signaling-dependent, but independent of PARP1, which also functions downstream of NLRP3 and regulates skeletal homeostasis. Mechanistically, inflammation causes severe anemia and hypoxia in the bone environment, yet down-regulates the HIF-1α pathway in chondrocytes, thereby promoting the demise of these cells. Thus, activation of NLRP3 in hematopoietic cells initiates IL-1β-driven paracrine cascades, which promote abnormal growth plate development in NOMID mice.

  14. Imatinib en leucemia mieloide crónica Imatinib in chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Valia Pavón Morán

    2005-12-01

    Full Text Available La leucemia mieloide crónica (LMC fue la primera neoplasia en la que se pudo presentar un modelo de genotipo que sirviera de blanco a una terapia de acción molecular. La activación de múltiples vías de señales de transducción en las células con el gen BCR- ABL favorece el incremento de la proliferación celular, interfiere en la apoptosis y perturba la interacción con la matriz extracelular y el estroma. La introducción del Imatinib en el tratamiento de la LMC ha modificado la evolución y pronóstico de la enfermedad. Cuando se compara con los regímenes basados en interferón e hidroxiurea, el imatinib ha demostrado un alto nivel de eficacia asociado con un número menor de reacciones adversasChronic myeloid leukemia (CML was the first neoplasia in which it was possible to present a model of genotype that served as a target for a molecular action therapy. The activation of multiple ways of transduction signals in the cells with the BCR-ABL gene favors the increase of the cellular proliferation, interferes the apoptosis, and perturbs the interaction with the extracellular matrix and the stroma. The introduction of Imatinib in the treatment of CML has modified the evolution and prognosis of this disease. Imatinib has proved to have a high level of efficiency associated with a smaller number of adverse reactions on being compared with the regimens based on interferon and hydroxyurea

  15. The impact of additional cytogenetic abnormalities at diagnosis and during therapy with tyrosine kinase inhibitors in Chronic Myeloid Leukaemia.

    Science.gov (United States)

    Crisan, A M; Coriu, D; Arion, C; Colita, A; Jardan, C

    2015-01-01

    Chronic Myeloid Leukemia's (CML) treatment was optimized since the development of tyrosine kinase inhibitors (TKI) and an increased overall survival during TKI was noticed. During the TKI era, protocols for assessing response and resistance to treatment were developed. Additional chromosomal abnormalities (ACAs) are strongly associated with disease progression but their prognostic impact and influence on treatment response are yet to be defined. The aim of this study was to analyze the impact of ACAs on time to achieve complete cytogenetic response (CCyR), treatment and overall survival. Since 2005 until 2013, the data from the Hematology and Bone Marrow Transplantation Department of Fundeni Clinical Institute was collected. In this observational retrospective single centre study, 28 CML patients with ACAs at diagnosis and during TKI treatment were included. From ACAs at diagnosis group, the most frequent major route ACAs were trisomy 8, trisomy 19 and second Philadelphia (Ph) chromosome and the most frequent minor route ACAs were monosomies and structural abnormalities (inversions and translocations). From the ACAs during the TKI group, the most frequent major route cytogenetic abnormalities in Ph positive and negative cells were trisomy 8, trisomy 19 and second Ph chromosome and the most frequent minor route cytogenetic abnormalities in Ph positive and negative cells were marker chromosomes and structural abnormalities (inversions, translocations and dicentric chromosomes). In both groups, the time to CCyR was longer and long-term results were inferior in comparison with standard patients but the differences were not significant and in accordance to published data. The 12 months follow-up after the study's end showed that 26 patients were alive and in long-term CCyR and 2 deaths were reported. CML = Chronic Myeloid Leukemia, BCR-ABL1 = Break Cluster Region - Abelson gene, TKI = tyrosine kinase inhibitor treatment, ACAs = additional cytogenetic abnormalities, CCy

  16. Vorinostat in Treating Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2014-04-30

    Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  17. Outcome of allogeneic SCT in patients with chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy.

    Science.gov (United States)

    Oyekunle, Anthony; Zander, Axel R; Binder, Mascha; Ayuk, Francis; Zabelina, Tatjana; Christopeit, Maximilian; Stübig, Thomas; Alchalby, Haefaa; Schafhausen, Philippe; Lellek, Heinrich; Wolschke, Christine; Müller, Ingo; Bacher, Ulrike; Kröger, Nicolaus

    2013-04-01

    The introduction of tyrosine kinase inhibitors (TKIs) for chronic myeloid leukemia (CML) led to a dramatic change in the role of allogeneic stem cell transplantation (SCT) with a rapid decline in the number of patients receiving SCT in first chronic phase (CP1). We evaluated 68 consecutive patients in all phases of CML (male/female = 39:29, 27 in CP1), who received SCT from related/unrelated donors (related/unrelated = 23:45) under myeloablative or reduced intensity conditioning (MAC/RIC = 45:23). Forty-eight patients (71 %) received TKIs pre-SCT, 20 patients post-SCT (29 %). Overall survival (OS) of CP1 patients achieved a plateau of 85 % at 10 months. Relapse-free survival (RFS) of CP1 patients was 85 % at 1 and 2 years, and 81 % at 5 years. Multivariate analysis showed adverse OS and RFS for patients transplanted >CP1 (hazard ratio (HR) = 6.61 and 4.62) and those who had grade III-IV aGvHD (HR = 2.45 and 1.82). Patients with advanced CML had estimated OS of 65 and 47 %; and RFS of 41 and 32 % at 1 and 2 years respectively. Therefore, for patients with advanced CML phases, allogeneic SCT provides an acceptable chance of cure. Transplant research should focus on improving conditioning regimens and post-SCT management for this subgroup of CML patients.

  18. Evaluation of the Safety of Imatinib Mesylate in 200 Iraqi Patients with Chronic Myeloid Leukemia in the Chronic Phase: Single-Center Study

    Directory of Open Access Journals (Sweden)

    Bassam Francis Matti

    2013-12-01

    Full Text Available OBJECTIVE: Imatinib mesylate, a tyrosine kinase inhibitor, is presently the drug of choice for chronic myeloid leukemia (CML. During therapy, a few patients may develop hematological and non-hematological adverse effects. METHODS: The aim of this study was to evaluate the safety of imatinib therapy in patients with CML. Between December 2007 and October 2009 two hundred patients with CML in chronic phase were included in the study. Written informed consent was obtained from all patients prior to the start of the study. Imatinib was started at 400 mg orally daily. Patients were monitored carefully for any adverse effects. Complete blood count, liver, and renal function tests were done once in 2 weeks during the first month and on a monthly basis during follow-up. Toxicities that encountered were graded as per the National Cancer Institute common toxicity criteria version 2. Both hematologic and non-hematologic toxicities were managed with short interruptions of treatment and supportive measures, but the daily dose of imatinib was not reduced below 300 mg/day. RESULTS: Two hundred CML patients in chronic phase were included in this study; the male: female ratio was 0.7: 1 with mean age 39.06±13.21 years (ranged from 15-81 years. The study showed that the commonest hematological side effects were grade 2 anemia (12.5% followed by leukopenia (8% and thrombocytopenia (4%, while the most common non-hematological adverse effects were superficial edema and weight gain (51.5%, followed by musculoskeletal pain (35.5%, then gastro-intestinal symptoms (vomiting, diarrhea (19%. Fluid retention was the commonest side effect, which responded to low-dose diuretics. The drug was safe and well tolerated. There were no deaths due to toxicity. CONCLUSION: Imatinib mesylate a well-tolerated drug, and all undesirable effects could be ameliorated easily. The most common hematological and non-hematological side effects were anemia and fluid retention, respectively.

  19. Quality of life of chronic myeloid leukemia patients in Brazil: ability to work as a key factor.

    Science.gov (United States)

    Hamerschlak, Nelson; de Souza, Carmino; Cornacchioni, Ana Lúcia; Pasquini, Ricardo; Tabak, Daniel; Spector, Nelson; Steagall, Merula

    2014-08-01

    The purpose of this study was to evaluate the quality of life (QOL) of patients receiving treatment by the public health system in Brazil for chronic myeloid leukemia (CML), a disease requiring daily and strict compliance to oral medication and regular blood and bone marrow controls, which are invasive exams. Between 2008 and 2010, patients with CML were surveyed by telephone. Quality of life was evaluated by the functional assessment of chronic illness therapy (FACIT) tool. The mean QOL among CML patients was 92.53 (out of 124 total points) in the trial outcome index, 78.50 (out of 108) in the general total score, and 130.43 (out of 176) in the leukemia total score. Patients who had the prescriptions recently changed anyway had better QOL general score (p = 0.012) and leukemia-specific score (p = 0.043) than those who remained with the same treatment. Imatinib was not associated with this change in QOL (p > 0.797). The more the patient felt able to work, the higher the scores in all three FACIT scales (p work, while chemotherapy (p = 0.017) and the use of hydroxyurea (p = 0.001) were inversely associated with work capability. A recent change in medication can improve quality of life. The ability to work is an important component of quality of life of patients with CML. Ability to work should be specifically considered in CML treatment.

  20. Rapid Evolution to Blast Crisis Associated with a Q252H ABL1 Kinase Domain Mutation in e19a2 BCR-ABL1 Chronic Myeloid Leukaemia

    Directory of Open Access Journals (Sweden)

    Sarah L. McCarron

    2013-01-01

    Full Text Available A minority of chronic myeloid leukaemia (CML patients express variant transcripts of which the e19a2 BCR-ABL1 fusion is the most common. Instances of tyrosine kinase inhibitor (TKI resistance in e19a2 BCR-ABL1 CML patients have rarely been reported. A case of e19a2 BCR-ABL1 CML is described in whom imatinib resistance, associated with a Q252H ABL1 kinase domain mutation, became apparent soon after initiation of TKI therapy. The patient rapidly transformed to myeloid blast crisis (BC with considerable bone marrow fibrosis and no significant molecular response to a second generation TKI. The clinical course was complicated by comorbidities with the patient rapidly succumbing to advanced disease. This scenario of Q252H-associated TKI resistance with rapid BC transformation has not been previously documented in e19a2 BCR-ABL1 CML. This case highlights the considerable challenges remaining in the management of TKI-resistant BC CML, particularly in the elderly patient.

  1. Modifying factors of radiation induced myeloid leukemia of C3H/He mouse

    International Nuclear Information System (INIS)

    Yoshida, Kazuko; Nishimura, Mayumi; Nemoto, Kumie; Seki, Masatoshi

    1989-01-01

    The first experiment examined modifying factors, such as adrenocortical hormones, inflammatory reaction, and surgical stress, for radiation induced myeloid leukemia in C3H/He mice. The incidence of myeloid leukemia was not affected by a solitary subcutaneous injection of one mg of prednisolone acetate (predonine), but increased significantly by whole body irradiation, immediately followed by predonine. Augumentated effects of predonine was found in the 0.47 Gy, 1.42 Gy, and 2.84 Gy irradiated groups, but not found in the 4.73 Gy irradiated group. These results suggest that predonine itself did not have any effect on initiation of leukemogenesis, but promoted the incidence of radiation-induced myeloid leukemia. In the next experiment determining whether the incidence of myeloid leukemia was increased with stimulation of hematopoietic tissues, mice were inserted a piece of cellulose acetate membrane (CAM) into the peritoneal cavity. In the non-irradiated group of mice, CAM insertion did not affect the incidence of myeloid leukemia at all. The incidence of leukemia increased significantly by CAM insertion combined with irradiation of 2.84 Gy. Mice suffered from both surgical stress and inflammatory reaction after CAM insertion. Therefore, surgical stress was considered responsible for the development of radiation-induced leukemia. (Namekawa, K)

  2. Intracranial CNS Manifestations of Myeloid Sarcoma in Patients with Acute Myeloid Leukemia: Review of the Literature and Three Case Reports from the Author’s Institution

    Directory of Open Access Journals (Sweden)

    Gustavo M. Cervantes

    2015-05-01

    Full Text Available Myeloid sarcoma (MS of the central nervous system (CNS is a rare presentation of leukemic mass infiltration outside of the bone marrow. It may involve the subperiosteum and dura mater and, on rare occasions, can also invade the brain parenchyma. The disease is most commonly seen in children or young adults; however, it has been described in multiple age groups. MS can be seen in patients with acute myeloid leukemia (AML, chronic myeloid leukemia and other myeloproliferative disorders. This entity has the potential to be underdiagnosed if the MS appearance precedes the first diagnosis of leukemia. The main reason is that their appearance on CT and MRI has a broad differential diagnosis, and proper diagnosis of MS can only be made if the imaging findings are correlated with the clinical history and laboratory findings. Herein, we describe the intracranial CNS manifestations of MS in patients with AML on CT and MRI involving the brain and/or meninges. This study is based on a systematic review of the literature. In addition, three case reports from the author’s institution with AML and intracranial involvement of MS are included. Our aim is to enhance the awareness of this entity among both clinicians and radiologists.

  3. Allogeneic stem cell transplantation for acute myeloid leukemia with del(7q) following untreated chronic lymphocytic leukemia.

    Science.gov (United States)

    DeFilipp, Zachariah; Huynh, Donny V; Fazal, Salman; Sahovic, Entezam

    2012-01-01

    The development of hematologic malignancy in the presence of chronic lymphocytic leukemia (CLL) is rare. We present a case of acute myeloid leukemia (AML) with del(7q) occurring in a patient with a 4-year history of untreated CLL. Application of flow cytometry and immunohistochemistry allowed for characterization of two distinct coexisting malignant cell populations. After undergoing induction and consolidation chemotherapy, the patient achieved complete remission of AML with the persistence of CLL. Allogeneic transplantation was pursued given his unfavorable cytogenetics. Subsequent matched unrelated donor allogeneic stem cell transplantation resulted in full engraftment and complete remission, with no evidence of AML or CLL. Due to a scarcity of reported cases, insight into treatment and prognosis in cases of concurrent AML and CLL is limited. However, prognosis seems dependent on the chemosensitivity of AML. CLL did not have a detrimental effect on treatment or transplant outcome in our case. This is the first reported case of concomitant de novo AML and CLL to undergo allogeneic transplantation. The patient remained in complete hematologic and cytogenetic remission of both malignancies over a year after transplantation.

  4. The option value of innovative treatments in the context of chronic myeloid leukemia.

    Science.gov (United States)

    Sanchez, Yuri; Penrod, John R; Qiu, Xiaoli Lily; Romley, John; Thornton Snider, Julia; Philipson, Tomas

    2012-11-01

    To quantify in the context of chronic myeloid leukemia (CML) the additional value patients receive when innovative treatments enable them to survive until the advent of even more effective future treatments (ie, the "option value"). Observational study using data from the Surveillance, Epidemiology and End Results (SEER) cancer registry comprising all US patients with CML diagnosed between 2000 and 2008 (N = 9,760). We quantified the option value of recent breakthroughs in CML treatment by first conducting retrospective survival analyses on SEER data to assess the effectiveness of TKI treatments, and then forecasting survival from CML and other causes to measure expected future medical progress. We then developed an analytical framework to calculate option value of innovative CML therapies, and used an economic model to value these gains. We calculated the option value created both by future innovations in CML treatment and by medical progress in reducing background mortality. For a recently diagnosed CML patient, the option value of innovative therapies from future medical innovation amounts to 0.76 life-years. This option value is worth $63,000, equivalent to 9% of the average survival gains from existing treatments. Future innovations in CML treatment jointly account for 96% of this benefit. The option value of innovative treatments has significance in the context of CML and, more broadly, in disease areas with rapid innovation. Incorporating option value into traditional valuations of medical innovations is both a feasible and a necessary practice in health technology assessment.

  5. 33 CFR 183.562 - Metallic fuel lines.

    Science.gov (United States)

    2010-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.562 Metallic fuel lines. (a) Each metallic fuel line that is mounted to the boat structure must be connected to the engine by a flexible fuel line. (b) Each metallic fuel line must be attached to the boat's structure...

  6. A new monoclonal antibody detects downregulation of protein tyrosine phosphatase receptor type γ in chronic myeloid leukemia patients

    Directory of Open Access Journals (Sweden)

    Marzia Vezzalini

    2017-06-01

    Full Text Available Abstract Background Protein tyrosine phosphatase receptor gamma (PTPRG is a ubiquitously expressed member of the protein tyrosine phosphatase family known to act as a tumor suppressor gene in many different neoplasms with mechanisms of inactivation including mutations and methylation of CpG islands in the promoter region. Although a critical role in human hematopoiesis and an oncosuppressor role in chronic myeloid leukemia (CML have been reported, only one polyclonal antibody (named chPTPRG has been described as capable of recognizing the native antigen of this phosphatase by flow cytometry. Protein biomarkers of CML have not yet found applications in the clinic, and in this study, we have analyzed a group of newly diagnosed CML patients before and after treatment. The aim of this work was to characterize and exploit a newly developed murine monoclonal antibody specific for the PTPRG extracellular domain (named TPγ B9-2 to better define PTPRG protein downregulation in CML patients. Methods TPγ B9-2 specifically recognizes PTPRG (both human and murine by flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry. Results Co-localization experiments performed with both anti-PTPRG antibodies identified the presence of isoforms and confirmed protein downregulation at diagnosis in the Philadelphia-positive myeloid lineage (including CD34+/CD38bright/dim cells. After effective tyrosine kinase inhibitor (TKI treatment, its expression recovered in tandem with the return of Philadelphia-negative hematopoiesis. Of note, PTPRG mRNA levels remain unchanged in tyrosine kinase inhibitors (TKI non-responder patients, confirming that downregulation selectively occurs in primary CML cells. Conclusions The availability of this unique antibody permits its evaluation for clinical application including the support for diagnosis and follow-up of these disorders. Evaluation of PTPRG as a potential therapeutic target is also facilitated by the

  7. [The impact of Glivec related side effects on daily life in Chinese patients with chronic myeloid leukemia in the chronic phase].

    Science.gov (United States)

    Yu, L; Wang, H B; Huang, X J; Jiang, Q

    2016-07-01

    To explore the impact of Glivec related side effects on daily life in Chinese patients with chronic myeloid leukemia (CML) in the chronic phase (CP). From May to November in 2014, anonymous questionnaires were distributed to adult CML patients who were receiving tyrosine kinase inhibitors (TKI) treatment in China. The impact of TKI related side effects on daily life were assessed by the score of 1 (no impact) to 5 (high impact) from patient self- report. Data from 548 respondents in the CP on Glivec were collected. 303(55%) cases were male with the median age of 40 years (range, 18 to 88 years). 437 (80% ) cases started Glivec treatment within one year after diagnosis with a median treatment duration of 3 years (range, effects were edema (n=278, 51% ), fatigue (n=218, 40% ), gastrointestinal disorders (n=190, 35%), muscle cramps (n=118, 22%), skin color changes (n=118, 22%), weight gain (n=71, 13%), rash (n=60, 11%), hepatic function abnormality (n=55, 10%), and cytopenia (n=38, 7%). Among the 548 respondents, the mean score of Glivec-related side effects on daily life was 2.4±1.2. There was no negative impact of Glivec related side effects on daily life in 161(29%) respondents. 295 (54% ) and 92 (17% ) respondents reported slightly or moderately (2- 3 score) and significantly decreased (4-5 score) daily life, respectively. Multivariate analysis showed that Glivec treatment duration effects including fatigue (OR=2.9, 95% CI 2.1-4.1;Pnegative effect on daily life. Daily life was impaired seriously in a minority of Chinese CML patients who received Glivec, especially in the first 4 years of treatment. Fatigue, edema, gastrointestinal disorders, rash and hepatic function abnormality were side effects associated with negative impact on patients' daily life.

  8. Dasatinib Induced Avascular Necrosis of Femoral Head in Adult Patient with Chronic Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Mohamed A. Yassin

    2015-01-01

    Full Text Available Chronic myeloid leukemia (CML is a myeloproliferative neoplasm characterized by the presence of the Philadelphia (Ph chromosome resulting from the reciprocal translocation t(9;22(q34;q11. The molecular consequence of this translocation is the generation of the BCR-ABL fusion gene, which encodes a constitutively active protein tyrosine kinase. The oncogenic protein tyrosine kinase, which is located in the cytoplasm, is responsible for the leukemia phenotype through the constitutive activation of multiple signaling pathways involved in the cell cycle and in adhesion and apoptosis. Avascular necrosis of the femoral head (AVNFH is not a specific disease. It occurs as a complication or secondary to various causes. These conditions probably lead to impaired blood supply to the femoral head. The diagnosis of AVNFH is based on clinical findings and is supported by specific radiological manifestations. We reported a case of a 34-year-old Sudanese female with CML who developed AVNFH after receiving dasatinib as a second-line therapy. Though the mechanism by which dasatinib can cause avascular necrosis (AVN is not clear, it can be postulated because of microcirculatory obstruction of the femoral head. To the best of our knowledge and after extensive literature search, this is the first reported case of AVNFH induced by dasatinib in a patient with CML.

  9. The Prognostic Impact of K-RAS Mutations in Adult Acute Myeloid Leukemia Patients Treated with High Dose Cytarabine

    International Nuclear Information System (INIS)

    Ahmad, E.I.; Gawish, H.H.; Al-Azizi, N.M.A.; El-Hefni, A.M.

    2009-01-01

    Activating point mutation of the RAS gene has been generally accepted as an oncogenic event in a variety of malignancies. It represents one of the most common genetic alterations in acute myeloid leukemia (AML). However there is still controversy about its clinical relevance on the treatment outcome of this leukemia. Objective: This study aimed to clarify the biologic and prognostic impact of K-RAS mutations in relation to the dose of cytarabine (ara-C) used in post induction consolidation chemotherapy in adult AML patients. Patients and Methods: The study comprised 71de novo AML patients with a male: Female ratio of 1.4: 1; their ages ranged from 21-59 years with a median of 37 years. They were subjected to full clinical evaluation, routine laboratory investigations, cytogenetic studies by G banding and K-RAS mutation detection using realtime PCR. The patients were randomized into 2 groups (gps) according to the ara-C dose used in consolidation treatment, HDAC gp receiving 400 mg ara-C and LDAC gp receiving 100 mg ara-C. They were followed over a period of 5 years. Results: Mutations in the K-RAS gene (mutRAS) were detected in 23 patients (32%) with the remaining 48 patients (68%) having wild type RAS (wtRAS). Blast cell percentage was significantly lower in mutRAS compared to wtRAS patients (p=<0.001). The M4 subtype of AML and cases with Inv 16 showed significantly higher frequencies in mutRAS compared to wtRAS patients, (p=0.015, 0.003, respectively). The patients were followed up for a median of 43 months (range 11-57 months). There was no significant difference in overall survival (OS) between mutRAS and wtRAS patients (p=0.326). Within the mutRAS patients treated with HDAC, cumulative OS was significantly higher than those treated with LDAC (p=0.001). This was not the case in the wtRAS group (p=0.285). There was no significant difference in disease The Prognostic Impact of K-RAS Mutations in Adult Acute Myeloid Leukemia Patients Treated with High Dose

  10. Acute myeloid and chronic lymphoid leukaemias and exposure to low-level benzene among petroleum workers

    Science.gov (United States)

    Rushton, L; Schnatter, A R; Tang, G; Glass, D C

    2014-01-01

    Background: High benzene exposure causes acute myeloid leukaemia (AML). Three petroleum case–control studies identified 60 cases (241 matched controls) for AML and 80 cases (345 matched controls) for chronic lymphoid leukaemia (CLL). Methods: Cases were classified and scored regarding uncertainty by two haematologists using available diagnostic information. Blinded quantitative benzene exposure assessment used work histories and exposure measurements adjusted for era-specific circumstances. Statistical analyses included conditional logistic regression and penalised smoothing splines. Results: Benzene exposures were much lower than previous studies. Categorical analyses showed increased ORs for AML with several exposure metrics, although patterns were unclear; neither continuous exposure metrics nor spline analyses gave increased risks. ORs were highest in terminal workers, particularly for Tanker Drivers. No relationship was found between benzene exposure and risk of CLL, although the Australian study showed increased risks in refinery workers. Conclusion: Overall, this study does not persuasively demonstrate a risk between benzene and AML. A previously reported strong relationship between myelodysplastic syndrome (MDS) (potentially previously reported as AML) at our study's low benzene levels suggests that MDS may be the more relevant health risk for lower exposure. Higher CLL risks in refinery workers may be due to more diverse exposures than benzene alone. PMID:24357793

  11. An "age"-structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia.

    Science.gov (United States)

    Roeder, Ingo; Herberg, Maria; Horn, Matthias

    2009-04-01

    Previously, we have modeled hematopoietic stem cell organization by a stochastic, single cell-based approach. Applications to different experimental systems demonstrated that this model consistently explains a broad variety of in vivo and in vitro data. A major advantage of the agent-based model (ABM) is the representation of heterogeneity within the hematopoietic stem cell population. However, this advantage comes at the price of time-consuming simulations if the systems become large. One example in this respect is the modeling of disease and treatment dynamics in patients with chronic myeloid leukemia (CML), where the realistic number of individual cells to be considered exceeds 10(6). To overcome this deficiency, without losing the representation of the inherent heterogeneity of the stem cell population, we here propose to approximate the ABM by a system of partial differential equations (PDEs). The major benefit of such an approach is its independence from the size of the system. Although this mean field approach includes a number of simplifying assumptions compared to the ABM, it retains the key structure of the model including the "age"-structure of stem cells. We show that the PDE model qualitatively and quantitatively reproduces the results of the agent-based approach.

  12. Cytomegalovirus immune evasion of myeloid lineage cells.

    Science.gov (United States)

    Brinkmann, Melanie M; Dağ, Franziska; Hengel, Hartmut; Messerle, Martin; Kalinke, Ulrich; Čičin-Šain, Luka

    2015-06-01

    Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.

  13. Induction of Mitochondrial Dependent Apoptosis in Human Leukemia K562 Cells by Meconopsis integrifolia: A Species from Traditional Tibetan Medicine

    Directory of Open Access Journals (Sweden)

    Jianping Fan

    2015-06-01

    Full Text Available Objectives: Meconopsis integrifolia (M. integrifolia is one of the most popular members in Traditional Tibetan Medicine. This study aimed to investigate the anticancer effect of M. integrifolia and to detect the underlying mechanisms of these effects. Methods: 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay and trypan blue assay were used to evaluate the cytotoxicity of M. integrifolia. Changes in cell nuclear morphology and reactive oxygen species (ROS level were observed by fluorescent microscopy. Apoptosis ratio, DNA damage and mitochondrial membrane potential (MMP loss were analyzed by flow cytometry. Western blotting assay was adopted to detect the proteins related to apoptosis. Immunofluorescence was used to observe the release of cytochrome C. Results: The obtained data revealed that M. integrifolia could significantly inhibit K562 cell viability, mainly by targeting apoptosis induction and cell cycle arrest in G2/M phase. Collapse in cell morphology, chromatin condensation, DNA damage and ROS accumulation were observed. Further mechanism detection revealed that mitochondrion might be a key factor in M. integrifolia-induced apoptosis. Conclusions: M. integrifolia could induce mitochondria mediated apoptosis and cell cycle arrest in G2/M phase with little damage to normal cells, suggesting that M. integrifolia might be a potential and efficient anticancer agent that deserves further investigation.

  14. Nilotinib: optimal therapy for patients with chronic myeloid leukemia and resistance or intolerance to imatinib.

    Science.gov (United States)

    Swords, Ronan; Mahalingam, Devalingam; Padmanabhan, Swaminathan; Carew, Jennifer; Giles, Francis

    2009-09-21

    Chronic myeloid leukemia (CML) is the consequence of a single balanced translocation that produces the BCR-ABL fusion oncogene which is detectable in over 90% of patients at presentation. The BCR-ABL inhibitor imatinib mesylate (IM) has improved survival in all phases of CML and is the standard of care for newly diagnosed patients in chronic phase. Despite the very significant therapeutic benefits of IM, a small minority of patients with early stage disease do not benefit optimally while IM therapy in patients with advanced disease is of modest benefit in many. Diverse mechanisms may be responsible for IM failures, with point mutations within the Bcr-Abl kinase domain being amongst the most common resistance mechanisms described in patients with advanced CML. The development of novel agents designed to overcome IM resistance, while still primarily targeted on BCR-ABL, led to the creation of the high affinity aminopyrimidine inhibitor, nilotinib. Nilotinib is much more potent as a BCR-ABL inhibitor than IM and inhibits both wild type and IM-resistant BCR-ABL with significant clinical activity across the entire spectrum of BCR-ABL mutants with the exception of T315I. The selection of a second generation tyrosine kinase inhibitor to rescue patients with imatinib failure will be based on several factors including age, co-morbid medical problems and ABL kinase mutational profile. It should be noted that while the use of targeted BCR-ABL kinase inhibitors in CML represents a paradigm shift in CML management these agents are not likely to have activity against the quiescent CML stem cell pool. The purpose of this review is to summarize the pre-clinical and clinical data on nilotinib in patients with CML who have failed prior therapy with IM or dasatinib.

  15. JAK2 V617F-dependent upregulation of PU.1 expression in the peripheral blood of myeloproliferative neoplasm patients.

    Directory of Open Access Journals (Sweden)

    Tamotsu Irino

    Full Text Available Myeloproliferative neoplasms (MPN are multiple disease entities characterized by clonal expansion of one or more of the myeloid lineages (i.e. granulocytic, erythroid, megakaryocytic and mast cell. JAK2 mutations, such as the common V617F substitution and the less common exon 12 mutations, are frequently detected in such tumor cells and have been incorporated into the diagnostic criteria published by the World Health Organization since 2008. However, the mechanism by which these mutations contribute to MPN development is poorly understood. We examined gene expression profiles of MPN patients focusing on genes in the JAK-STAT signaling pathway using low-density real-time PCR arrays. We identified the following 2 upregulated genes in MPN patients: a known target of the JAK-STAT axis, SOCS3, and a potentially novel target, SPI1, encoding PU.1. Induction of PU.1 expression by JAK2 V617F in JAK2-wildtype K562 cells and its downregulation by JAK2 siRNA transfection in JAK2 V617F-positive HEL cells supported this possibility. We also found that the ABL1 kinase inhibitor imatinib was very effective in suppressing PU.1 expression in BCR-ABL1-positive K562 cells but not in HEL cells. This suggests that PU.1 expression is regulated by both JAK2 and ABL1. The contribution of the two kinases in driving PU.1 expression was dominant for JAK2 and ABL1 in HEL and K562 cells, respectively. Therefore, PU.1 may be a common transcription factor upregulated in MPN. PU.1 is a transcription factor required for myeloid differentiation and is implicated in erythroid leukemia. Therefore, expression of PU.1 downstream of activated JAK2 may explain why JAK2 mutations are frequently observed in MPN patients.

  16. Carbon monoxide induced erythroid differentiation of K562 cells mimics the central macrophage milieu in erythroblastic islands.

    Directory of Open Access Journals (Sweden)

    Shlomi Toobiak

    Full Text Available Growing evidence supports the role of erythroblastic islands (EI as microenvironmental niches within bone marrow (BM, where cell-cell attachments are suggested as crucial for erythroid maturation. The inducible form of the enzyme heme oxygenase, HO-1, which conducts heme degradation, is absent in erythroblasts where hemoglobin (Hb is synthesized. Yet, the central macrophage, which retains high HO-1 activity, might be suitable to take over degradation of extra, harmful, Hb heme. Of these enzymatic products, only the hydrophobic gas molecule--CO can transfer from the macrophage to surrounding erythroblasts directly via their tightly attached membranes in the terminal differentiation stage.Based on the above, the study hypothesized CO to have a role in erythroid maturation. Thus, the effect of CO gas as a potential erythroid differentiation inducer on the common model for erythroid progenitors, K562 cells, was explored. Cells were kept under oxygen lacking environment to mimic BM conditions. Nitrogen anaerobic atmosphere (N₂A served as control for CO atmosphere (COA. Under both atmospheres cells proliferation ceased: in N₂A due to cell death, while in COA as a result of erythroid differentiation. Maturation was evaluated by increased glycophorin A expression and Hb concentration. Addition of 1%CO only to N₂A, was adequate for maintaining cell viability. Yet, the average Hb concentration was low as compared to COA. This was validated to be the outcome of diversified maturation stages of the progenitor's population.In fact, the above scenario mimics the in vivo EI conditions, where at any given moment only a minute portion of the progenitors proceeds into terminal differentiation. Hence, this model might provide a basis for further molecular investigations of the EI structure/function relationship.

  17. Some clinical and laboratory variables in adult patients with chronic myeloid leukemia treated with recombinant alpha interferon + cytosine arabinoside

    International Nuclear Information System (INIS)

    Espinosa Martinez, Edgardo; Diaz Duran, Carmen Virginia; Avila Cabrera, Onel

    2011-01-01

    Chronic myeloid leukemia is the most frequent myeloproliferative syndrome in adults. In a longitudinal retrospective study performed between January 1985 - December 2009, 46 patients in chronic phase diagnosed at the Institute of Hematology and Immunology were evaluated. They received cytoreductor agent as first treatment followed by interferon α2 + cytosar. Forty one percent showed high risk Sokal prognosis score. The most frequent clinical manifestations at diagnosis were asthenia (37 %), splenomegaly (31 %) and weigh lost (28.3 %). The partial and complete hematological response was of 26,8 % and 65.9 % after 6 months and the complete cytogenetic and molecular response was of 9.1 % and 16.3 %. The most frequent adverse reactions were: fever (34.9 %), thrombocytopenia (26.3 %) and general syndrome (23.8 %). Resistance or intolerance to INFα2 was found in 47.8 % of the patients and 90.0 % died due to progression of the disease. The 5 year overall survival was of 63.8 % and the 3 years free event survival was of 68.9 %. According to Sokal prognosis score the overall survival showed significant difference between groups (p= 0.005) but there was no significant difference for free event survival (p= 0.165). The INFα2 treatment in our patients showed better results than those obtained in different developed countries and is an effective therapeutic option in Cuba

  18. Influence of different chromosomal abnormalities in Ph-positive bone marrow cells on the chronic myeloid leukemia course during tyrosine kinase inhibitors therapy

    Directory of Open Access Journals (Sweden)

    O. Yu. Vinogradova

    2014-07-01

    Full Text Available The additional molecular and chromosomal abnormalities (ACA in Phositive cells usually considered as a genetic marker of chronic myeloid leukemia (CML progression. 457 patients in different CML phases received tyrosine kinase inhibitors (1st and 2nd generation were studied. During therapy 50 cases with additional chromosomal abnormalities in Ph+ clone (22 of them in chronic CML phase were revealed (median follow-up from CML diagnosis – 117 months, median imatinib therapy – 62 months. 86 % of patients in chronic phase with Ph+- cell abnormalities were cytogenetic resistance, and their 5-years overall survival was 80 % which was significantly lower than in patients without ACA (p < 0.005. The treatment results depend on chromosomal abnormalities detected. In patients with additional chromosome 8 imatinib therapy is effective, although complete cytogenetic response (CCR is achieved only in the later therapy stages. In patients with additional translocations CCR also achieved with imatinib or 2nd generation TKI. Only a third of patients with additional Ph-chromosome or BCR/ABL amplification achieved complete suppression of Ph+ clone using 2nd generation TKI. The presence of additional chromosome 7 abnormalities and complex karyotype disorders involving isochromosome i(17(q10 are poor prognostic factors of TKI treatment failures.

  19. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia.

    Science.gov (United States)

    Hattori, Ayuna; Tsunoda, Makoto; Konuma, Takaaki; Kobayashi, Masayuki; Nagy, Tamas; Glushka, John; Tayyari, Fariba; McSkimming, Daniel; Kannan, Natarajan; Tojo, Arinobu; Edison, Arthur S; Ito, Takahiro

    2017-05-25

    Reprogrammed cellular metabolism is a common characteristic observed in various cancers. However, whether metabolic changes directly regulate cancer development and progression remains poorly understood. Here we show that BCAT1, a cytosolic aminotransferase for branched-chain amino acids (BCAAs), is aberrantly activated and functionally required for chronic myeloid leukaemia (CML) in humans and in mouse models of CML. BCAT1 is upregulated during progression of CML and promotes BCAA production in leukaemia cells by aminating the branched-chain keto acids. Blocking BCAT1 gene expression or enzymatic activity induces cellular differentiation and impairs the propagation of blast crisis CML both in vitro and in vivo. Stable-isotope tracer experiments combined with nuclear magnetic resonance-based metabolic analysis demonstrate the intracellular production of BCAAs by BCAT1. Direct supplementation with BCAAs ameliorates the defects caused by BCAT1 knockdown, indicating that BCAT1 exerts its oncogenic function through BCAA production in blast crisis CML cells. Importantly, BCAT1 expression not only is activated in human blast crisis CML and de novo acute myeloid leukaemia, but also predicts disease outcome in patients. As an upstream regulator of BCAT1 expression, we identified Musashi2 (MSI2), an oncogenic RNA binding protein that is required for blast crisis CML. MSI2 is physically associated with the BCAT1 transcript and positively regulates its protein expression in leukaemia. Taken together, this work reveals that altered BCAA metabolism activated through the MSI2-BCAT1 axis drives cancer progression in myeloid leukaemia.

  20. [Early monitoring of BCR-ABL transcript levels and cytogenetic in assessing the prognosis of chronic myeloid leukemia].

    Science.gov (United States)

    Huang, Qin; Zhang, Xiao-yan; Li, Yan; Wang, Xiao-min

    2013-10-15

    To explore the prognostic significance of early monitoring of BCR-ABL transcript levels and cytogenetic evaluations for chronic myeloid leukemia in chronic phase (CML-CP). From July 2007 to May 2012, 56 CML-CP patients received oral imatinib 400 mg/d. The BCR-ABL transcript levels were monitored and cytogenetic examinations performed after 3 and 6 months respectively. The median follow-up time was 48 months. The 3-month BCR-ABL transcript levels ≤ 10% of patients 5-year overall survival (OS) and progression-free survival (PFS) were better than BCR-ABL transcript levels >10% of patients (OS: 100% vs 84.6%, P = 0.011; PFS: 94.6% vs 67.7%, P = 0.045); cytogenetics: Ph(+) ≤ 35 % of patients 5-year OS and PFS better than Ph(+) > 35% of patients (OS: 100% vs 76.2%, P = 0.001; PFS: 95.2% vs 38.1%, P = 0.001); the 6-month BCR-ABL transcripts level ≤ 1% of patients 5-year OS and PFS also better than BCR-ABL transcript levels> 1% of patients (OS: 100% vs 71.4%, P = 0.000; PFS: 95.2% vs 47.6%, P = 0.001); Ph(+) = 0% and Ph(+)> 0% patients, 5-year OS and PFS were significantly different (OS: 100% vs 68.6%, P = 0.000; PFS: 95.3% vs 45.7%, P = 0.000). Early molecular biology and cytogenetics monitoring have some significance in the prognostic assessment of CML-CP. And individualized treatment strategies should be based upon the monitoring results in conjunctions with comprehensive judgments.

  1. Thrombopoietin/MPL participates in initiating and maintaining RUNX1-ETO acute myeloid leukemia via PI3K/AKT signaling.

    Science.gov (United States)

    Pulikkan, John Anto; Madera, Dmitri; Xue, Liting; Bradley, Paul; Landrette, Sean Francis; Kuo, Ya-Huei; Abbas, Saman; Zhu, Lihua Julie; Valk, Peter; Castilla, Lucio Hernán

    2012-07-26

    Oncogenic mutations in components of cytokine signaling pathways elicit ligand-independent activation of downstream signaling, enhancing proliferation and survival in acute myeloid leukemia (AML). The myeloproliferative leukemia virus oncogene, MPL, a homodimeric receptor activated by thrombopoietin (THPO), is mutated in myeloproliferative disorders but rarely in AML. Here we show that wild-type MPL expression is increased in a fraction of human AML samples expressing RUNX1-ETO, a fusion protein created by chromosome translocation t(8;21), and that up-regulation of Mpl expression in mice induces AML when coexpressed with RUNX1-ETO. The leukemic cells are sensitive to THPO, activating survival and proliferative responses. Mpl expression is not regulated by RUNX1-ETO in mouse hematopoietic progenitors or leukemic cells. Moreover, we find that activation of PI3K/AKT but not ERK/MEK pathway is a critical mediator of the MPL-directed antiapoptotic function in leukemic cells. Hence, this study provides evidence that up-regulation of wild-type MPL levels promotes leukemia development and maintenance through activation of the PI3K/AKT axis, and suggests that inhibitors of this axis could be effective for treatment of MPL-positive AML.

  2. Acute myeloid leukemia (AML) - children

    Science.gov (United States)

    Acute myeloid leukemia is a cancer of the blood and bone marrow. Bone marrow is the soft tissue inside ... develops quickly. Both adults and children can get acute myeloid leukemia ( AML ). This article is about AML in children.

  3. Frequency of JAK2 V617F mutation in patients with Philadelphia positive Chronic Myeloid Leukemia in Pakistan.

    Science.gov (United States)

    Tabassum, Najia; Saboor, Mohammed; Ghani, Rubina; Moinuddin, Moinuddin

    2014-01-01

    Co-existence of myeloproliferative disorders (MPD) and Janus associated kinase 2 mutation (JAK2 V617F) is a well-established fact. Only few case reports are available showing presence of JAK2 V617F mutation in chronic myeloid leukemia (CML). Purpose of this study was to determine the frequency of JAK2 V617F mutation in Philadelphia Chromosome positive (Ph (+)) CML patients in Pakistan. The study was conducted from August 2009 to July 2010 at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed for Breakpoint Cluster Region - Abelson (BCR-ABL) rearrangement. Conventional PCR was performed for JAK2 V617F mutation on BCR-ABL positive samples. All 25 samples showed BCR-ABL rearrangement. Out of these 11 samples (44%) had JAK2 V617F mutation; the remaining 14 (56%) cases showed JAK2 617V wild type. It is concluded that the co-existence of Ph (+)CML and JAK2 V617F mutation is possible.

  4. Structural Characteristics of the Novel Polysaccharide FVPA1 from Winter Culinary-Medicinal Mushroom, Flammulina velutipes (Agaricomycetes), Capable of Enhancing Natural Killer Cell Activity against K562 Tumor Cells.

    Science.gov (United States)

    Jia, Wei; Feng, Jie; Zhang, Jing-Song; Lin, Chi-Chung; Wang, Wen-Han; Chen, Hong-Ge

    2017-01-01

    FVPA1, a novel polysaccharide, has been isolated from fruiting bodies of the culinary-medicinal mushroom Flammulina velutipes, a historically popular, widely cultivated and consumed functional food with an attractive taste, beneficial nutraceutical properties such as antitumor and immunomodulatory effects, and a number of essential biological activities. The average molecular weight was estimated to be ~1.8 × 104 Da based on high-performance size exclusion chromatography. Sugar analyses, methylation analyses, and 1H, 13C, and 2-dimensional nuclear magnetic resonance spectroscopy revealed the following structure of the repeating units of the FVPA1 polysaccharide Identification of this structure would conceivably lead to better understanding of the nutraceutical functions of this very important edible fungus. Bioactivity tests in vitro indicated that FVPA1 could significantly enhance natural killer cell activity against K562 tumor cells.

  5. Minimal Residual Disease in Acute Myeloid Leukemia

    Science.gov (United States)

    Hourigan, Christopher S.; Karp, Judith E.

    2014-01-01

    Technological advances in the laboratory have lead to substantial improvements in clinical decision-making by the use of pre-treatment prognostic risk stratification factors in acute myeloid leukemia (AML). Unfortunately similar progress has not been made in treatment response criteria, with the definition of “complete remission” in AML largely unchanged for over half a century. Several recent clinical trials have demonstrated that higher sensitivity measurements of residual disease burden during or after treatment can be performed, that results are predictive for clinical outcome and can be used to improve outcomes by guiding additional therapeutic intervention to patients in clinical complete remission but at increased relapse risk. We review here these recent trials, the characteristics and challenges of the modalities currently used to detect minimal residual disease (MRD), and outline opportunities to both refine detection and better clinically utilize MRD measurements. MRD measurement is already the standard of care in other myeloid malignancies such as chronic myelogenous leukemia (CML) and acute promyelocytic leukemia (APL). It is our belief that response criteria for non-APL AML should be updated to include assessment for molecular complete remission (mCR) and that recommendations for post-consolidation surveillance should include regular monitoring for molecular relapse as a standard of care. PMID:23799371

  6. AR-42 and Decitabine in Treating Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2018-03-12

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  7. The prognostic impact of K-RAS mutations in adult acute myeloid leukemia patients treated with high-dose cytarabine

    Directory of Open Access Journals (Sweden)

    Ahmad EI

    2011-07-01

    Full Text Available Ebtesam I Ahmad, Heba H Gawish, Nashwa MA Al Azizi, Ashraf M ElhefniClinical Pathology Department, Hematology and Oncology Unit of Internal Medicine Department, Faculty of Medicine, Zagazig University, Sharkia, EgyptBackground: Activating point mutation of the RAS gene has been generally accepted as an oncogenic event in a variety of malignancies. It represents one of the most common genetic alterations in acute myeloid leukemia (AML. However, little is known about its clinical relevance in the treatment outcome for this leukemia.Objective: This study aimed to clarify the biologic and prognostic impact of K-RAS mutations in relation to the dose of cytarabine (ara-C used in postinduction consolidation chemotherapy in adult AML patients.Patients and methods: The study comprised of 71 de novo AML patients with male/female ratio 1.4:1; their ages ranged from 21–59 years with a median of 37 years. They were subjected to full clinical evaluation, routine laboratory investigations, cytogenetic studies by G-banding (Giemsa staining, and K-RAS mutation detection using real-time polymerase chain reaction. The patients were randomized into two groups according to the ara-C dose used in consolidation treatment, the high the dose ara-C (HDAC group receiving 400 mg ara-C and-low-dose ara-C (LDAC group receiving 100 mg ara-C; they were followed over a period of five years.Results: Mutations in the K-RAS gene (mutRAS were detected in 23 patients (32% with the remaining 48 patients (68% having wild-type RAS (wtRAS. The percent of blast cells was significantly lower in mutRAS compared to wtRAS patients (P ≤ 0.001 while M4 subtype of AML and Inv(16 frequencies were significantly higher in mutRAS compared to wtRAS patients (P = 0.015 and (P = 0.003, respectively. The patients were followed up for a median of 43 months (range 11–57 months. There was no significant difference in overall survival (OS between mutRAS and wtRAS (P = 0.326. Within the mut

  8. Guidelines for molecular monitoring of BCR-ABL1 in chronic myeloid leukemia patients by RT-qPCR

    Directory of Open Access Journals (Sweden)

    Irene Larripa

    2017-02-01

    Full Text Available Current clinical guidelines for managing chronic myeloid leukemia include molecular monitoring of BCR-ABL1 transcript quantitative reverse-transcription PCR. Despite the proven prognostic significance of molecular response, it is not widely appreciated that quantitative reverse-transcription PCR potentially produces highly variable data, which may affect the validity of results, making comparability between different laboratories difficult. Therefore, standardized reporting of BCR-ABL1 measurements is needed for optimal clinical management. An approach to achieve comparable BCR-ABL1 values is the use of an international reporting scale. Conversion to the international scale is achieved by the application of laboratory specific conversion factor that is obtained by using validated secondary reference calibrators. Moreover, with the aim to mitigate the interlaboratory imprecision of quantitative BCR-ABL1 measurements and to facilitate local laboratory results interpretation and reporting, we decide to prepare laboratory guidelines that will further facilitate interlaboratory comparative studies and independent quality-assessment programs, which are of paramount importance for worldwide standardization of BCR-ABL1 monitoring results, in particular for those most isolated laboratories, with not easy access to commercial kits or sample interchange programs

  9. Alteration of radiation response by two tyrosine kinase inhibitors: STI571 (Glivec) and BIBW 2992

    International Nuclear Information System (INIS)

    Huguet, F.

    2010-01-01

    Concurrent chemo-radiation is one of the main weapon in the treatment of cancer. The targeted therapies may act on the mechanisms of tumor resistance to radiation and are therefore very promising in combination with radiotherapy. The STI571 (imatinib or Gleevec) inhibits specifically the Bcr-Abl tyrosine kinase. It leads to radiosensitization in K562 chronic myeloid leukemia cell line by alterations of the cell cycle. The BIBW2992 is a selective inhibitor of EGFR and HER2. The BIBW 2992 shows cytotoxic and radiosensitizing effects on pancreatic adenocarcinoma cells BxPC3 and Capan-2, regardless of KRAS status. The mechanism underlying this radiosensitization is not unequivocal, involving both changes in the cell cycle and induction of mitotic death. Our results show that the combination of an inhibitor of tyrosine kinase with ionizing radiation may lead to a radiosensitization in vitro with mechanisms depending on the type of cell line. (author)

  10. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters

    Science.gov (United States)

    Wang, Jianling; Zhang, Gen; Li, Qiwei; Jiang, Hui; Liu, Chongyang; Amatore, Christian; Wang, Xuemei

    2013-01-01

    Fluorescence imaging in vivo allows non-invasive tumor diagnostic thus permitting a direct monitoring of cancer therapies progresses. It is established herein that fluorescent gold nanoclusters are spontaneously biosynthesized by cancerous cell (i.e., HepG2, human hepatocarcinoma cell line; K562, leukemia cell line) incubated with micromolar chloroauric acid solutions, a biocompatible molecular Au(III) species. Gold nanoparticles form by Au(III) reduction inside cells cytoplasms and ultimately concentrate around their nucleoli, thus affording precise cell imaging. Importantly, this does not occur in non-cancerous cells, as evidenced with human embryo liver cells (L02) used as controls. This dichotomy is exploited for a new strategy for in vivo self-bio-imaging of tumors. Subcutaneous injections of millimolar chloroauric acid solution near xenograft tumors of the nude mouse model of hepatocellular carcinoma or chronic myeloid leukemia led to efficient biosynthesis of fluorescent gold nanoclusters without significant dissemination to the surrounding normal tissues, hence allowing specific fluorescent self-bio-marking of the tumors.

  11. Effectiveness of quantitative real time PCR in long-term follow-up of chronic myeloid leukemia patients

    International Nuclear Information System (INIS)

    Savasoglu, K.; Berber, B.

    2015-01-01

    To determine the use of the Quantitative Real Time PCR (RQ-PCR) assay follow-up with Chronic Myeloid Leukemia (CML) patients. Study Design: Cross-sectional observational. Place and Duration of Study: Izmir Ataturk Education and Research Hospital, Izmir, Turkey, from 2009 to 2013. Methodology: Cytogenetic, FISH, RQ-PCR test results from 177 CML patients materials selected between 2009 - 2013 years was set up for comparison analysis. Statistical analysis was performed to compare between FISH, karyotype and RQ-PCR results of the patients. Karyotyping and FISH specificity and sensitivity rates determined by ROC analysis compared with RQ-PCR results. Chi-square test was used to compare test failure rates. Results:Sensitivity and specificity values were determined for karyotyping 17.6 - 98% (p=0.118, p > 0.05) and for FISH 22.5 - 96% (p=0.064, p > 0.05) respectively. FISH sensitivity was slightly higher than karyotyping but there was calculated a strong correlation between them (p < 0.001). RQ-PCR test failure rate did not correlate with other two tests (p > 0.05); however, karyotyping and FISH test failure rate was statistically significant (p < 0.001). Conclusion: Besides, the situation needed for karyotype analysis, RQ-PCR assay can be used alone in the follow-up of CML disease. (author)

  12. Second tyrosine kinase inhibitor discontinuation attempt in patients with chronic myeloid leukemia.

    Science.gov (United States)

    Legros, Laurence; Nicolini, Franck E; Etienne, Gabriel; Rousselot, Philippe; Rea, Delphine; Giraudier, Stéphane; Guerci-Bresler, Agnès; Huguet, Françoise; Gardembas, Martine; Escoffre, Martine; Ianotto, Jean-Christophe; Noël, Marie-Pierre; Varet, Bruno R; Pagliardini, Thomas; Touitou, Irit; Morisset, Stéphane; Mahon, Francois-Xavier

    2017-11-15

    Several studies have demonstrated that approximately one-half of patients with chronic myeloid leukemia (CML) who receive treatment with tyrosine kinase inhibitors (TKIs) and achieve and maintain a deep molecular response (DMR) are able to successfully discontinue therapy. In patients who have a molecular relapse, a DMR is rapidly regained upon treatment re-initiation. The authors report the results from RE-STIM, a French observational, multicenter study that evaluated treatment-free remission (TFR) in 70 patients who re-attempted TKI discontinuation after a first unsuccessful attempt. After the second TKI discontinuation attempt, the trigger for treatment re-introduction was the loss of a major molecular response in all patients. The median follow-up was 38.3 months (range, 4.7-117 months), and 45 patients (64.3%) lost a major molecular response after a median time off therapy of 5.3 months (range, 2-42 months). TFR rates at 12, 24, and 36 months were 48% (95% confidence interval [CI], 37.6%-61.5%), 42% (95% CI, 31.5%-55.4%), and 35% (95% CI, 24.4%-49.4%), respectively. No progression toward advanced-phase CML occurred, and no efficacy issue was observed upon TKI re-introduction. In univariate analysis, the speed of molecular relapse after the first TKI discontinuation attempt was the only factor significantly associated with outcome. The TFR rate at 24 months was 72% (95% CI, 48.8%-100%) in patients who remained in DMR within the first 3 months after the first TKI discontinuation and 36% (95% CI, 25.8%-51.3%) for others. This study is the first to demonstrate that a second TKI discontinuation attempt is safe and that a first failed attempt at discontinuing TKI does not preclude a second successful attempt. Cancer 2017;123:4403-10. © 2017 American Cancer Society. © 2017 American Cancer Society.

  13. Fludarabine Melphalan reduced-intensity conditioning allotransplanation provides similar disease control in lymphoid and myeloid malignancies: analysis of 344 patients.

    Science.gov (United States)

    Bryant, A; Nivison-Smith, I; Pillai, E S; Kennedy, G; Kalff, A; Ritchie, D; George, B; Hertzberg, M; Patil, S; Spencer, A; Fay, K; Cannell, P; Berkahn, L; Doocey, R; Spearing, R; Moore, J

    2014-01-01

    This was an Australasian Bone Marrow Transplant Recipient Registry (ABMTRR)-based retrospective study assessing the outcome of Fludarabine Melphalan (FluMel) reduced-intensity conditioning between 1998 and 2008. Median follow-up was 3.4 years. There were 344 patients with a median age of 54 years (18-68). In all, 234 patients had myeloid malignancies, with AML (n=166) being the commonest indication. There were 110 lymphoid patients with non-hodgkins lymphoma (NHL) (n=64) the main indication. TRM at day 100 was 14% with no significant difference between the groups. OS and disease-free survival (DFS) were similar between myeloid and lymphoid patients (57 and 50% at 3 years, respectively). There was no difference in cumulative incidence of relapse or GVHD between groups. Multivariate analysis revealed four significant adverse risk factors for DFS: donor other than HLA-identical sibling donor, not in remission at transplant, previous autologous transplant and recipient CMV positive. Chronic GVHD was associated with improved DFS in multivariate analysis predominantly due to a marked reduction in relapse (HR:0.44, P=0.003). This study confirms that FluMel provides durable and equivalent remissions in both myeloid and lymphoid malignancies. Disease stage and chronic GVHD remain important determinants of outcome for FluMel allografting.

  14. Updated estimates of survival and cost effectiveness for imatinib versus interferon-alpha plus low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukaemia.

    Science.gov (United States)

    Reed, Shelby D; Anstrom, Kevin J; Li, Yanhong; Schulman, Kevin A

    2008-01-01

    For trials in which participants are followed beyond the main study period to assess long-term outcomes, economic evaluations conducted using short-term data should be systematically updated to reflect new information. We used 60-month survival data from the IRIS (International Randomized study of Interferon vs STI571) trial to update previously published cost-effectiveness estimates, based on 19 months of follow-up, of imatinib versus interferon (IFN)-alpha plus low-dose cytarabine in patients with chronic-phase chronic myeloid leukaemia. For patients treated with imatinib, we used the 60-month data to calibrate the survival curves generated from the original cost-effectiveness model. We used historical data to model survival for patients randomized to IFNalpha. We updated costs for medical resources using 2006 Medicare reimbursement rates and applied average wholesale prices (AWPs) and wholesale acquisition costs (WACs) to study medications. Five-year survival for patients randomized to imatinib was better than predicted in the original model (89.4% vs 83.2%). We estimated remaining life expectancy with first-line imatinib to be 19.1 life-years (3.8 life-years over the original model) and 15.2 QALYs (3.1 QALYs over the original estimate). Estimates for IFNalpha remained at 9.1 life-years and 6.3 QALYs. When we applied AWPs to study medications, incremental cost-effectiveness ratios (ICERs) were $US 51,800-57,500 per QALY. When we applied WACs, ICERs were $US 42,000-46,200 per QALY. Although the analysis revealed that the original survival estimates were conservative, the updated cost-effectiveness ratios were consistent with, or slightly higher than, the original estimates, depending on the method for assigning costs to study medications.

  15. Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia

    International Nuclear Information System (INIS)

    Eriksson, A; Österroos, A; Hassan, S; Gullbo, J; Rickardson, L; Jarvius, M; Nygren, P; Fryknäs, M; Höglund, M; Larsson, R

    2015-01-01

    To find drugs suitable for repositioning for use against leukemia, samples from patients with chronic lymphocytic, acute myeloid and lymphocytic leukemias as well as peripheral blood mononuclear cells (PBMC) were tested in response to 1266 compounds from the LOPAC 1280 library (Sigma). Twenty-five compounds were defined as hits with activity in all leukemia subgroups (<50% cell survival compared with control) at 10 μM drug concentration. Only one of these compounds, quinacrine, showed low activity in normal PBMCs and was therefore selected for further preclinical evaluation. Mining the NCI-60 and the NextBio databases demonstrated leukemia sensitivity and the ability of quinacrine to reverse myeloid leukemia gene expression. Mechanistic exploration was performed using the NextBio bioinformatic software using gene expression analysis of drug exposed acute myeloid leukemia cultures (HL-60) in the database. Analysis of gene enrichment and drug correlations revealed strong connections to ribosomal biogenesis nucleoli and translation initiation. The highest drug–drug correlation was to ellipticine, a known RNA polymerase I inhibitor. These results were validated by additional gene expression analysis performed in-house. Quinacrine induced early inhibition of protein synthesis supporting these predictions. The results suggest that quinacrine have repositioning potential for treatment of acute myeloid leukemia by targeting of ribosomal biogenesis

  16. Disease-related mortality exceeds treatment-related mortality in patients with chronic myeloid leukemia on second-line or later therapy.

    Science.gov (United States)

    Pearson, Edward; McGarry, Lisa; Gala, Smeet; Nieset, Christopher; Nanavaty, Merena; Mwamburi, Mkaya; Levy, Yair

    2016-04-01

    Treatment of newly-diagnosed patients with chronic-phase chronic myeloid leukemia (CP-CML) with tyrosine kinase inhibitors (TKIs) results in near-normal life expectancy. However, CP-CML patients resistant to initial TKIs face a poorer prognosis and significantly higher CML-related mortality. We conducted a systematic literature review to evaluate the specific causes of deaths (diseases progression versus drug-related) in CP-CML patients receiving second- or third-line therapy. We identified eight studies based on our criteria that reported causes of death. Overall, 5% of second-line and 10% of third-line patients died during the study follow-up period. For second-line, (7 studies, n=1926), mortality was attributed to disease progression for 41% of deaths, 2% to treatment-related causes, 3% were treatment-unrelated, and 50% were unspecified adverse events (AEs), not likely related to study drug. In third-line, (2 studies, n=144), 71% deaths were attributed to disease progression, 7% treatment-related AEs, 14% treatment-unrelated and 7% unspecified AEs. Annual death rates for second- and third-line therapy were significantly higher than for general population in similar age group. Our findings suggest death attributed to disease progression is approximately 10 times that due to treatment-related AEs in patients with CP-CML receiving second- or third-line therapy. Therefore, the potential benefits of effective treatment for these patients with the currently available TKIs outweigh the risks of treatment-induced AEs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Sacral Myeloid Sarcoma Manifesting as Radiculopathy in a Pediatric Patient: An Unusual Form of Myeloid Leukemia Relapse

    Directory of Open Access Journals (Sweden)

    Joana Ruivo Rodrigues

    2018-01-01

    Full Text Available Myeloid sarcoma (MS, granulocytic sarcoma or chloroma, is defined as a localized extramedullary mass of blasts of granulocytic lineage with or without maturation, occurring outside the bone marrow. MS can be diagnosed concurrently with acute myeloid leukemia (AML or myelodysplastic syndrome (MDS. The authors report a case of sacral MS occurring as a relapse of myeloid leukemia in a 5-year-old girl who was taken to the emergency department with radiculopathy symptoms.

  18. UV light B-mediated inhibition of skin catalase activity promotes Gr-1+ CD11b+ myeloid cell expansion.

    Science.gov (United States)

    Sullivan, Nicholas J; Tober, Kathleen L; Burns, Erin M; Schick, Jonathan S; Riggenbach, Judith A; Mace, Thomas A; Bill, Matthew A; Young, Gregory S; Oberyszyn, Tatiana M; Lesinski, Gregory B

    2012-03-01

    Skin cancer incidence and mortality are higher in men compared with women, but the causes of this sex discrepancy remain largely unknown. UV light exposure induces cutaneous inflammation and neutralizes cutaneous antioxidants. Gr-1(+)CD11b(+) myeloid cells are heterogeneous bone marrow-derived cells that promote inflammation-associated carcinogenesis. Reduced activity of catalase, an antioxidant present in the skin, has been associated with skin carcinogenesis. We used the outbred, immune-competent Skh-1 hairless mouse model of UVB-induced inflammation and non-melanoma skin cancer to further define sex discrepancies in UVB-induced inflammation. Our results demonstrated that male skin had relatively lower baseline catalase activity, which was inhibited following acute UVB exposure in both sexes. Further analysis revealed that skin catalase activity inversely correlated with splenic Gr-1(+)CD11b(+) myeloid cell percentage. Acute UVB exposure induced Gr-1(+)CD11b(+) myeloid cell skin infiltration, which was inhibited to a greater extent in male mice by topical catalase treatment. In chronic UVB studies, we demonstrated that the percentage of splenic Gr-1(+)CD11b(+) myeloid cells was 55% higher in male tumor-bearing mice compared with their female counterparts. Together, our findings indicate that lower skin catalase activity in male mice may at least in part contribute to increased UVB-induced generation of Gr-1(+)CD11b(+) myeloid cells and subsequent skin carcinogenesis.

  19. El coactivador de receptores nucleares RAC3 tiene un rol protector de la Apoptosis inducida por distintos estímulos RAC3 nuclear receptor co-activator has a protective role in the apoptosis induced by different stimuli

    Directory of Open Access Journals (Sweden)

    Georgina P. Coló

    2007-10-01

    Full Text Available RAC3 pertenece a la familia de coactivadores de receptores nucleares p160, y se encuentra sobreexpresado en varios tumores. Demostramos previamente que RAC3 es coactivador del factor de transcripción anti-apoptótico NF-kapa;B. En este trabajo investigamos su rol en la apoptosis inducida por H2O2 en una línea celular no tumoral derivada de riñón embrionario humano (HEK293, y por el ligando inductor de apoptosis relacionado a TNF (TRAIL en una línea de leucemia mieloide crónica humana (K562, naturalmente resistente a la muerte por este estímulo. Observamos que las células tumorales K562 poseen niveles altos de RAC3 comparados con las células no tumorales HEK293. La sobreexpresión normal de coactivador o por transfección, inhibe la apoptosis mediante una disminución de la activación de caspasas, translocación del factor inductor de apoptosis (AIF al núcleo, aumento de la actividad de NF-kapa;B y las quinasas AKT y p38 y disminución de la quinasa ERK. Lo opuesto fue observado por disminución de RAC3 mediante la técnica de ARN interferente (RNAi en K562, aumentando así la apoptosis inducida por TRAIL. Estas evidencias sugieren que una sobreexpresión de RAC3 contribuye al desarrollo de tumores, participando en las cascadas que controlan la muerte celular por mecanismos no estrictamente dependientes de hormonas esteroideas y/o de acetilación, constituyendo esto un posible blanco de ataque para el tratamiento de tumores.RAC3 belongs to the family of p160 nuclear receptors coactivators and it is over-expressed in several tumors. We have previously shown that RAC3 is a NF-kappa;B coactivator. In this paper, we investigated the role of RAC3 in cell-sensitivity to apoptosis, using H2O2 in the human embryonic kidney cell line (HEK293, and tumor necrosis factor-related apoptosis inducing ligand (TRAIL in a human chronic myeloid leukemia cell line (K562 naturally resistant to TRAIL. We observed that the tumoral K562 cells have high levels

  20. In Vitro Characterization and Evaluation of the Cytotoxicity Effects of Nisin and Nisin-Loaded PLA-PEG-PLA Nanoparticles on Gastrointestinal (AGS and KYSE-30), Hepatic (HepG2) and Blood (K562) Cancer Cell Lines.

    Science.gov (United States)

    Goudarzi, Fariba; Asadi, Asadollah; Afsharpour, Maryam; Jamadi, Robab Hassanvand

    2018-05-01

    The aim of this study was an in vitro evaluation and comparison of the cytotoxic effects of free nisin and nisin-loaded PLA-PEG-PLA nanoparticles on gastrointestinal (AGS and KYSE-30), hepatic (HepG2), and blood (K562) cancer cell lines. To create this novel anti-cancer drug delivery system, the nanoparticles were synthesized and then loaded with nisin. Subsequently, their biocompatibility, ability to enter cells, and physicochemical properties, including formation, size, and shape, were studied using hemolysis, fluorescein isothiocyanate (FITC), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM), respectively. Then, its loading efficiency and release kinetics were examined to assess the potential impact of this formulation for the nanoparticle carrier candidacy. The cytotoxicities of nisin and nisin-loaded nanoparticles were evaluated by using the MTT and Neutral Red (NR) uptake assays. Detections of the apoptotic cells were done via Ethidium Bromide (EB)/Acridine Orange (AO) staining. The FTIR spectra, SEM images, and DLS graph confirmed the formations of the nanoparticles and nisin-loaded nanoparticles with spherical, distinct, and smooth surfaces and average sizes of 100 and 200 nm, respectively. The loading efficiency of the latter nanoparticles was about 85-90%. The hemolysis test represented their non-cytotoxicities and the FITC images indicated their entrance inside the cells. An increase in the percentage of apoptotic cells was observed through EB/AO staining. These results demonstrated that nisin had a cytotoxic effect on AGS, KYSE-30, HepG2, and K562 cancer cell lines, while the cytotoxicity of nisin-loaded nanoparticles was more than that of the free nisin.

  1. Dynamics of myeloid cell populations during relapse-preventive immunotherapy in acute myeloid leukemia.

    Science.gov (United States)

    Rydström, Anna; Hallner, Alexander; Aurelius, Johan; Sander, Frida Ewald; Bernson, Elin; Kiffin, Roberta; Thoren, Fredrik Bergh; Hellstrand, Kristoffer; Martner, Anna

    2017-08-01

    Relapse of leukemia in the postchemotherapy phase contributes to the poor prognosis and survival in patients with acute myeloid leukemia (AML). In an international phase IV trial (ClinicalTrials.gov; NCT01347996), 84 patients with AML in first complete remission who had not undergone transplantation received immunotherapy with histamine dihydrochloride (HDC) and low-dose IL-2 with the aim of preventing relapse. The dynamics of myeloid cell counts and expression of activation markers was assessed before and after cycles of immunotherapy and correlated with clinical outcome in terms of relapse risk and survival. During cycles, a pronounced increase in blood eosinophil counts was observed along with a reduction in monocyte and neutrophil counts. A strong reduction of blood monocyte counts during the first HDC/IL-2 treatment cycle predicted leukemia-free survival. The HDC component of the immunotherapy exerts agonist activity at histamine type 2 receptors (H2Rs) that are expressed by myeloid cells. It was observed that the density of H 2 R expression in blood monocytes increased during cycles of immunotherapy and that high monocyte H 2 R expression implied reduced relapse risk and improved overall survival. Several other activation markers, including HLA-DR, CD86, and CD40, were induced in monocytes and dendritic cells during immunotherapy but did not predict clinical outcome. In addition, expression of HLA-ABC increased in all myeloid populations during therapy. A low expression of HLA-ABC was associated with reduced relapse risk. These results suggest that aspects of myeloid cell biology may impact clinical benefit of relapse-preventive immunotherapy in AML. © Society for Leukocyte Biology.

  2. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-08-15

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevada National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  3. Chronic myeloproliferative neoplasms and subsequent cancer risk: a Danish population-based cohort study

    DEFF Research Database (Denmark)

    Frederiksen, Henrik; Farkas, Dóra Körmendiné; Christiansen, Christian Fynbo

    2011-01-01

    Patients with chronic myeloproliferative neoplasms, including essential thrombocythemia (ET), polycythemia vera (PV), and chronic myeloid leukemia (CML), are at increased risk of new hematologic malignancies, but their risk of nonhematologic malignancies remains unknown. In the present study, we...

  4. Genital ulcers as diagnostic clue for acute myeloid leukaemia.

    Science.gov (United States)

    Schröder, Sina D; Krause, Stefan W; Erfurt-Berge, Cornelia

    2018-04-23

    Acute myeloid leukaemia is a myeloid neoplasm with an extremely varying clinical appearance. Skin lesions are common for specific subtypes of acute myeloid leukaemia but are often misinterpreted. Here, we present a case of acute myeloid leukaemia in a young woman exhibiting genital ulcerations and gingival erosions. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  5. An analysis of the kinetics of molecular response during the first trimester of treatment with nilotinib in newly diagnosed chronic myeloid leukemia patients in chronic phase.

    Science.gov (United States)

    Steegmann, Juan Luis; Colomer, Dolors; Gómez-Casares, Maria-Teresa; García-Gutiérrez, Valentín; Ortí, Guillermo; Ramírez-Payer, Angel; Olavarria, Eduardo; Vall-Llovera, Ferrán; Giraldo, Pilar; Conde, Eulogio; Vallansot, Rolando; López-Lorenzo, Jose Luis; Palomera, Luis; Álvarez-Larrán, Alberto; Conesa, Venancio; Bautista, Guiomar; Casas, Laura; Giles, Frank; Hochhaus, Andreas; Casado-Montero, Luis Felipe

    2017-10-01

    This study was aimed to analyze the association of very early molecular response to nilotinib with the achievement of deep molecular response (MR4) at 18 months. We hypothesized that the BCR-ABL1 levels during the first 3 months of therapy, and the kinetics of their descent in this period, could be predictive of deep molecular response thereafter. This substudy of the ENEST1st trial included 60 patients with chronic myeloid leukemia in chronic phase treated with front-line nilotinib, and BCR-ABL1IS levels were measured using GUS as the control gene. The analysis included seven time points during the first trimester of treatment (baseline and fortnightly thereafter). The rates of MMR at 12 months, and of MR4 at 18 months (primary variable of the study), were 70 and 41%, respectively, similar to those obtained in the core study. BCR-ABL1IS ≤10% was achieved at 1, 1.5, 2 and 3 months in 50, 70, 83 and 93% of the patients, respectively. The observed shape of the BCR-ABL1IS descent was biphasic, with a faster slope during the first trimester and a median halving time (HT) of 11 days, the shortest reported in the literature. An HT ≤13 days was predictive of MMR at 12 months and MR4 at 18 months. The association of a shorter HT with response provides a rationale for exploring very early kinetics patterns in all patients treated with potent TKIs such as nilotinib.

  6. Chronic myeloid leukemia patients sensitive and resistant to imatinib treatment show different metabolic responses.

    Directory of Open Access Journals (Sweden)

    Jiye A

    Full Text Available The BCR-ABL tyrosine kinase inhibitor imatinib is highly effective for chronic myeloid leukemia (CML. However, some patients gradually develop resistance to imatinib, resulting in therapeutic failure. Metabonomic and genomic profiling of patients' responses to drug interventions can provide novel information about the in vivo metabolism of low-molecular-weight compounds and extend our insight into the mechanism of drug resistance. Based on a multi-platform of high-throughput metabonomics, SNP array analysis, karyotype and mutation, the metabolic phenotypes and genomic polymorphisms of CML patients and their diverse responses to imatinib were characterized. The untreated CML patients (UCML showed different metabolic patterns from those of healthy controls, and the discriminatory metabolites suggested the perturbed metabolism of the urea cycle, tricarboxylic acid cycle, lipid metabolism, and amino acid turnover in UCML. After imatinib treatment, patients sensitive to imatinib (SCML and patients resistant to imatinib (RCML had similar metabolic phenotypes to those of healthy controls and UCML, respectively. SCML showed a significant metabolic response to imatinib, with marked restoration of the perturbed metabolism. Most of the metabolites characterizing CML were adjusted to normal levels, including the intermediates of the urea cycle and tricarboxylic acid cycle (TCA. In contrast, neither cytogenetic nor metabonomic analysis indicated any positive response to imatinib in RCML. We report for the first time the associated genetic and metabonomic responses of CML patients to imatinib and show that the perturbed in vivo metabolism of UCML is independent of imatinib treatment in resistant patients. Thus, metabonomics can potentially characterize patients' sensitivity or resistance to drug intervention.

  7. Bone Marrow and Kidney Transplant for Patients With Chronic Kidney Disease and Blood Disorders

    Science.gov (United States)

    2017-03-21

    Chronic Kidney Disease; Acute Myeloid Leukemia (AML); Acute Lymphoblastic Leukemia (ALL); Chronic Myelogenous Leukemia (CML); Chronic Lymphocytic Leukemia (CLL); Non-Hodgkin's Lymphoma (NHL); Hodgkin Disease; Multiple Myeloma; Myelodysplastic Syndrome (MDS); Aplastic Anemia; AL Amyloidosis; Diamond Blackfan Anemia; Myelofibrosis; Myeloproliferative Disease; Sickle Cell Anemia; Autoimmune Diseases; Thalassemia

  8. Prolonged treatment with imatinib mesylate in patients with advanced chronic myeloid leukemia causes a reduction of bcr/abl mRNA levels independent of cytogenetic response.

    Science.gov (United States)

    Cariani, E; Capucci, M; Micheletti, M; Spalenza, F; Zanella, I; Albertini, A; Rossi, G

    2003-06-01

    Bcr/abl mRNA levels were monitored in 13 patients with chronic myeloid leukemia receiving imatinib mesylate over a period of 78 weeks. During treatment median bcr/abl mRNA levels progressively declined from 77.2 normalized dose (nD) at baseline to 11.28 nD after 13 weeks ( P<0.05) and to 1.28 nD after 78 weeks ( P<0.05). After 13 weeks, bcr/abl mRNA levels were significantly lower in cytogenetic responders compared to nonresponders ( P<0.05), but subsequent decrease in the transcript levels caused the loss of any correlation to the cytogenetic status. These results suggest that bcr/abl mRNA levels may reflect cytogenetic response only during the early phases of imatinib therapy.

  9. Hematopoiesis under conditions of chronic toxicity

    International Nuclear Information System (INIS)

    Seed, T.M.; Kaspar, L.V.

    1985-01-01

    The objective of this project is to elucidate the cellular processes by which chronic exposure to low daily doses of ionizing radiation induce and promote the development of either aplastic anemia or myeloid leukemia, i.e., two prominent pathological consequences of radiation exposure. 5 refs

  10. Vitamins K and D status in patients with stages 3-5 chronic kidney disease

    Science.gov (United States)

    Background and Objectives: Vitamin K, vitamin K-dependent (VKD) proteins and vitamin D may be involved in the regulation of calcification in chronic kidney disease (CKD). Design, setting, participants and measurements: Vitamin K and D status was measured as dietary intake, plasma phylloquinone, se...

  11. Regional variations in age at diagnosis and overall survival among patients with chronic myeloid leukemia from low and middle income countries.

    Science.gov (United States)

    Mendizabal, Adam M; Garcia-Gonzalez, Pat; Levine, Paul H

    2013-06-01

    The epidemiology of chronic myeloid leukemia (CML) in low and middle income countries is limited. As a result, we analyzed a contemporary cohort of patients from low and middle income countries treated with Imatinib through The Glivec(®) International Patient Assistance Program (GIPAP). Generalized estimating equations (GEE) and Kaplan-Meier estimation were utilized to test for regional variations in age at diagnosis and overall survival among 33,985 patients from 94 countries. Patients participated from Asia (79.2%), Africa (9.4%), Latin America (8.7%) and Southern/Eastern Europe (2.5%). Sixty-one (61.2%) percent were male. Mean age at diagnosis was 38.5 years (9.4% 1 year; decreasing to 15.5% in 2010 (p 1-year (p 400 mg (p age at diagnosis and overall survival exist within and between regions. Additional epidemiological studies should be conducted to assess for possible environmental factors associated with the earlier age at onset. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Imatinib Intolerance Is Associated With Blastic Phase Development in Philadelphia Chromosome-Positive Chronic Myeloid Leukemia.

    Science.gov (United States)

    Ángeles-Velázquez, Jorge Luis; Hurtado-Monroy, Rafael; Vargas-Viveros, Pablo; Carrillo-Muñoz, Silvia; Candelaria-Hernández, Myrna

    2016-08-01

    Over the past years, the survival of patients with Philadelphia-positive chronic myeloid leukemia (CML Ph(+)) has increased as a result of therapy with tyrosin kinase inhibitors (TKIs). Intolerance to TKIs has been described in approximately 20% of patients receiving treatment. We studied the incidence of imatinib intolerance in patients with CML Ph(+) and their outcome in our CML reference site, as there is no information about the evolution of patients intolerant to TKIs. A group of 86 patients with CML Ph(+) receiving imatinib monotherapy who abandoned treatment were the basis for this study. We present the trends of their disease evolution. The median of age at diagnosis was 42 years. Within a year, 19 (22%) of 86 patients developed imatinib intolerance, all of them with grade III or IV disease that required imatinib dose reduction or discontinuation. Of these patients, 16 (84%) of 19 developed transformation to blastic phase. The cumulative incidences of blastic phase development were 47% in the nonintolerant group and 84% in the intolerant group. There was a relative risk for those with imatinib intolerance to develop blastic phase of 1.78 (95% confidence interval, 1.28 to 2.42) (P treatment is available. Future research should to determine whether the origin of this evolution is really due to the intolerance itself or whether it is due to a more aggressive form of the disease, perhaps related to genetic transformation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The role of vitamin K in chronic aging diseases: inflammation, cardiovascular disease and osteoarthritis

    Science.gov (United States)

    Vitamin K is an enzyme cofactor required for the carboxylation of vitamin K dependent proteins, several of which have been implicated in diseases of aging. Inflammation is recognized as a crucial component of many chronic aging diseases, and evidence suggests vitamin K has an anti-inflammatory actio...

  14. Changing trends of chronic myeloid leukemia in greater Mumbai, India over a period of 30 years

    Science.gov (United States)

    Dikshit, Rajesh P.; Nagrani, Rajini; Yeole, Balkrishna; Koyande, Shravani; Banawali, Shripad

    2011-01-01

    Background: Little is known about burden of chronic myeloid leukemia (CML) in India. There is a recent interest to observe incidence and mortality because of advent of new diagnostic and treatment policies for CML. Materials and Methods: We extracted data from the oldest population-based cancer registry of Mumbai for 30 years period from 1976−2005 to observe incidence and mortality rates of CML. We classified the data into four age groups 0–14, 15–29, 30–54 and 55–74 to observe incidence rates in the respective age groups. Results: The age specific rates were highest for the age group of 55–74 years. No significant change in trends of CML was observed for 30 years period. However, there was a significant reduction in incidence rate for recent 15-years period (Estimated average annual percentage change=-3.9). No significant reduction in mortality rate was observed till 2005. Conclusion: The study demonstrates that age-specific rates for CML are highest in age group of 55-74 years, although they are lower compared to western populations. Significant reduction in incidence of CML in recent periods might be because of reduced misclassification of leukemias. The data of CML has to be observed for another decade to witness reduction in mortality because of changes in treatment management. PMID:22174498

  15. Prolonged T1 relaxation of the hemopoietic bone marrow in patients with chronic leukemia

    DEFF Research Database (Denmark)

    Jensen, K E; Sørensen, P G; Thomsen, C

    1990-01-01

    Eleven patients with chronic leukemia (7 with chronic lymphocytic leukemia and 4 with chronic myeloid leukemia) were evaluated with magnetic resonance (MR) imaging and T1 relaxation time measurements by use of a 1.5 tesla whole body MR scanner. Bone marrow biopsies were obtained from the posterior...

  16. Cost-effectiveness of Tyrosine Kinase Inhibitor Treatment Strategies for Chronic Myeloid Leukemia in Chronic Phase After Generic Entry of Imatinib in the United States.

    Science.gov (United States)

    Padula, William V; Larson, Richard A; Dusetzina, Stacie B; Apperley, Jane F; Hehlmann, Rudiger; Baccarani, Michele; Eigendorff, Ekkehard; Guilhot, Joelle; Guilhot, Francois; Hehlmann, Rudiger; Mahon, Francois-Xavier; Martinelli, Giovanni; Mayer, Jiri; Müller, Martin C; Niederwieser, Dietger; Saussele, Susanne; Schiffer, Charles A; Silver, Richard T; Simonsson, Bengt; Conti, Rena M

    2016-07-01

    We analyzed the cost-effectiveness of treating incident chronic myeloid leukemia in chronic phase (CML-CP) with generic imatinib when it becomes available in United States in 2016. In the year following generic entry, imatinib's price is expected to drop 70% to 90%. We hypothesized that initiating treatment with generic imatinib in these patients and then switching to the other tyrosine-kinase inhibitors (TKIs), dasatinib or nilotinib, because of intolerance or lack of effectiveness ("imatinib-first") would be cost-effective compared with the current standard of care: "physicians' choice" of initiating treatment with any one of the three TKIs. We constructed Markov models to compare the five-year cost-effectiveness of imatinib-first vs physician's choice from a US commercial payer perspective, assuming 3% annual discounting ($US 2013). The models' clinical endpoint was five-year overall survival taken from a systematic review of clinical trial results. Per-person spending on incident CML-CP treatment overall care components was estimated using Truven's MarketScan claims data. The main outcome of the models was cost per quality-adjusted life-year (QALY). We interpreted outcomes based on a willingness-to-pay threshold of $100 000/QALY. A panel of European LeukemiaNet experts oversaw the study's conduct. Both strategies met the threshold. Imatinib-first ($277 401, 3.87 QALYs) offered patients a 0.10 decrement in QALYs at a savings of $88 343 over five years to payers compared with physician's choice ($365 744, 3.97 QALYs). The imatinib-first incremental cost-effectiveness ratio was approximately $883 730/QALY. The results were robust to multiple sensitivity analyses. When imatinib loses patent protection and its price declines, its use will be the cost-effective initial treatment strategy for CML-CP. © The Author 2016. Published by Oxford University Press.

  17. Relationships between High-mobility Group Protein B1 and Triggering Receptor Expressed on Myeloid Cells Concentrations in Gingival Crevicular Fluid and Chronic Periodontitis.

    Science.gov (United States)

    Paknejad, Mojgan; Sattari, Mandana; Roozbahani, Zohreh; Ershadi, Morteza; Mehrfard, Ali

    2016-10-01

    One of the inflammatory mediators which is secreted by inflammatory cells is high-mobility group protein B1 (HMGB1). Interaction of HMGB1 and toll-like receptors (TLRs) leads to increased production of inflammatory cytokines. On the other hand, it was shown that triggering receptor expressed on myeloid cells (TREM-1) also can be activated by TLRs, and its soluble form (sTREM-1) can be formed by cleaving of membrane-bound form of TREM-1 proteinases. Since there is not enough knowledge about the precise role of HMGB1 and sTREM-1 in periodontal diseases, the aim of this study was to evaluate the concentration of HMGB1 and sTREM-1 in gingival crevicular fluid (GCF) samples of patients with chronic periodontitis. Gingival crevicular fluid (GCF) samples were obtained from a total of 24 individuals with clinically healthy gingiva and 24 patients with moderate to severe chronic periodontitis. For collecting GCF samples, periopapers were placed at the entrance of the crevice and left in position for 30 seconds. Then, they were stored at -80°C. Enzyme-linked immunosorbent assay (ELISA) was used for measuring the concentration of HMGB1 and sTREM-1 in GCF samples. The concentration of HMGB1 (pchronic periodontitis group. In addition, there was a significant positive correlation between HMGB1 and sTREM-1 concentration in chronic periodontitis group (pperiodontal tissues and they can promote inflammatory process, which leads to tissue destruction.

  18. Phenotype-gene: 562 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 562 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u3ria224u1559i non-functional response to gravity...ken.jp/db/SciNetS_ria224i/cria224u4ria224u16690816i non-functional response to gravity http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u947i AT1G54990

  19. THERAPY-RELATED MYELOID MALIGNANCIES IN MYELOMA

    Directory of Open Access Journals (Sweden)

    Xenofon Papanikolaou

    2011-10-01

    Full Text Available Therapy related myeloid malignancies are an increasingly recognized treatment complication in patients undergoing therapy for multiple myeloma. The main predisposing factors are the alkylating agents, topoisomerase II inhibitors and radiotherapy, but recently questions have been raised regarding the immunomodulatory agent lenalidomide. Little is known about the new antimyeloma agents in the context of therapy related myeloid malignanices. The duration of treatment and the time from diagnosis are the main contributing factors in alkylating induced myeloid malignancies which occur 5-10 years after treatment, chromosome 5 and 7 abnormalities being the characteristic finding. High dose therapy (HDT does not seem to be a major contributing factor per se in multiple myeloma. In a number of large published series, all the factors related with therapy-induced myelodysplasia were defined prior to HDT. Topoisomerase II inhibitors induce mainly acute leukemias which invariably correlate with dysregulation of the MLL gene. Radiotherapy causes therapy related myelodysplasia if applied in bone marrow producing areas, especially if combined with chemotherapy. Therapy related myeloid malignancies generally herald a poor prognosis. Karyotypic abnormalities seem to be the main prognostic factor. In all cases the risk for therapy related myeloid malignancies drops sharply by 10 years after the treatment.

  20. THERAPY-RELATED MYELOID MALIGNANCIES IN MYELOMA

    Directory of Open Access Journals (Sweden)

    Bart Barlogie

    2011-01-01

    Full Text Available

    Therapy related myeloid malignancies are an increasingly recognized treatment complication in patients undergoing therapy for multiple myeloma. The main predisposing factors are the alkylating agents, topoisomerase II inhibitors and radiotherapy, but recently questions have been raised regarding the immunomodulatory agent lenalidomide. Little is known about the new antimyeloma agents in the context of therapy related myeloid malignanices. The duration of treatment and the time from diagnosis are the main contributing factors in alkylating induced myeloid malignancies which occur 5-10 years after treatment, chromosome 5 and 7 abnormalities being the characteristic finding. High dose therapy (HDT does not seem to be a major contributing factor per se in multiple myeloma. In a number of large published series, all the factors related with therapy-induced myelodysplasia were defined prior to HDT. Topoisomerase II inhibitors induce mainly acute leukemias which invariably correlate with dysregulation of the MLL gene. Radiotherapy causes therapy related myelodysplasia if applied in bone marrow producing areas, especially if combined with chemotherapy. Therapy related myeloid malignancies generally herald a poor prognosis. Karyotypic abnormalities seem to be the main prognostic factor. In all cases the risk for therapy related myeloid malignancies drops sharply by 10 years after the treatment.

  1. spib is required for primitive myeloid development in Xenopus.

    Science.gov (United States)

    Costa, Ricardo M B; Soto, Ximena; Chen, Yaoyao; Zorn, Aaron M; Amaya, Enrique

    2008-09-15

    Vertebrate blood formation occurs in 2 spatially and temporally distinct waves, so-called primitive and definitive hematopoiesis. Although definitive hematopoiesis has been extensively studied, the development of primitive myeloid blood has received far less attention. In Xenopus, primitive myeloid cells originate in the anterior ventral blood islands, the equivalent of the mammalian yolk sac, and migrate out to colonize the embryo. Using fluorescence time-lapse video microscopy, we recorded the migratory behavior of primitive myeloid cells from their birth. We show that these cells are the first blood cells to differentiate in the embryo and that they are efficiently recruited to embryonic wounds, well before the establishment of a functional vasculature. Furthermore, we isolated spib, an ETS transcription factor, specifically expressed in primitive myeloid precursors. Using spib antisense morpholino knockdown experiments, we show that spib is required for myeloid specification, and, in its absence, primitive myeloid cells retain hemangioblast-like characteristics and fail to migrate. Thus, we conclude that spib sits at the top of the known genetic hierarchy that leads to the specification of primitive myeloid cells in amphibians.

  2. Luteoloside Inhibits Proliferation of Human Chronic Myeloid ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of luteoloside on the proliferation of human chronic ..... Zhang N, Wang D, Zhu Y, Wang J, Lin H. Inhibition ... Han X. Protection of Luteolin-7-O-Glucoside Against ... Hwang YJ, Lee EJ, Kim HR, Hwang KA.

  3. Sox4 is a key oncogenic target in C/EBP alpha mutant acute myeloid leukemia

    Czech Academy of Sciences Publication Activity Database

    Zhang, H.; Alberich-Jorda, Meritxell; Amabile, G.; Yang, H.; Staber, P.B.; DiRuscio, A.; Welner, R.S.; Ebralidze, A.; Zhang, J.; Levantini, E.; Lefebvre, V.; Valk, P.J.; Delwel, R.; Hoogenkamp, M.; Nerlov, C.; Cammenga, J.; Saez, B.; Scadden, D.T.; Bonifer, C.; Ye, M.; Tenen, D.G.

    2013-01-01

    Roč. 24, č. 5 (2013), s. 575-588 ISSN 1535-6108 R&D Projects: GA MŠk LK21307 Institutional support: RVO:68378050 Keywords : Sox4 * C/EBP alpha * acute myeloid leukemia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 23.893, year: 2013

  4. Genetics Home Reference: core binding factor acute myeloid leukemia

    Science.gov (United States)

    ... binding factor acute myeloid leukemia Core binding factor acute myeloid leukemia Printable PDF Open All Close All Enable Javascript ... on PubMed (1 link) PubMed OMIM (1 link) LEUKEMIA, ACUTE MYELOID Sources for This Page Goyama S, Mulloy JC. Molecular ...

  5. Variant Philadelphia translocations with different breakpoints in six chronic myeloid leukemia patients

    Directory of Open Access Journals (Sweden)

    Dilhan Kuru

    2011-09-01

    Full Text Available Objective: The Philadelphia (Ph chromosome, consisting of the t(9;22(q34;q11 translocation, is observed in ~90% of patients with chronic myeloid leukemia (CML. Variant Ph translocations are observed in 5%-10% of CML patients. In variant translocations 3 and possibly more chromosomes are involved. Herein we report 6 CML patients with variant Ph translocations.Materials and Methods: Bone marrow samples were examined using conventional cytogenetic meth ods. Fluorescence in situ hybridization (FISH with whole-chromosome paints and BCR-ABL 1D probes were used to confirm and/or complement the findings, and identify rearrangements beyond the resolution of conventional cytogenetic methods. Results: Variant Ph translocations in the 6 patients were as follows: t(7;22(p22;q11, t(9;22;15(q34;q11;q22, t(15;22(p11;q11, t(1;9;22;3(q24;q34;q11;q21, t(12;22(p13;q11, and t(4;8;9;22(q11;q13;q34;q11.Conclusion: Among the patients, 3 had simple and 3 had complex variant Ph translocations. Two of the presented cases had variant Ph chromosomes not previously described, 1 of which had a new complex Ph translocation involving chromosomes 1, 3, 9, 22, and t(1;9;22;3(q24;q34;q11;q21 apart from a clone with a classical Ph, and the other case had variant Ph translocation with chromosomes 4, 8, 9, and 22, and t(4;8;9;22(q11;q13;q34;q11 full complex translocation. Number of studies reported that some patients with variant Ph translocation were poor responders to imatinib. All of our patients with variant Ph translocations had suboptimal responses to imatinib, denoting a poor prognosis also. Variant Ph translocations may be important as they are associated with prognosis and therapy for CML patients.

  6. Induction of erythroid differentiation in human erythroleukemia cells by depletion of malic enzyme 2.

    Directory of Open Access Journals (Sweden)

    Jian-Guo Ren

    2010-09-01

    Full Text Available Malic enzyme 2 (ME2 is a mitochondrial enzyme that catalyzes the conversion of malate to pyruvate and CO2 and uses NAD as a cofactor. Higher expression of this enzyme correlates with the degree of cell de-differentiation. We found that ME2 is expressed in K562 erythroleukemia cells, in which a number of agents have been found to induce differentiation either along the erythroid or the myeloid lineage. We found that knockdown of ME2 led to diminished proliferation of tumor cells and increased apoptosis in vitro. These findings were accompanied by differentiation of K562 cells along the erythroid lineage, as confirmed by staining for glycophorin A and hemoglobin production. ME2 knockdown also totally abolished growth of K562 cells in nude mice. Increased ROS levels, likely reflecting increased mitochondrial production, and a decreased NADPH/NADP+ ratio were noted but use of a free radical scavenger to decrease inhibition of ROS levels did not reverse the differentiation or apoptotic phenotype, suggesting that ROS production is not causally involved in the resultant phenotype. As might be expected, depletion of ME2 induced an increase in the NAD+/NADH ratio and ATP levels fell significantly. Inhibition of the malate-aspartate shuttle was insufficient to induce K562 differentiation. We also examined several intracellular signaling pathways and expression of transcription factors and intermediate filament proteins whose expression is known to be modulated during erythroid differentiation in K562 cells. We found that silencing of ME2 leads to phospho-ERK1/2 inhibition, phospho-AKT activation, increased GATA-1 expression and diminished vimentin expression. Metabolomic analysis, conducted to gain insight into intermediary metabolic pathways that ME2 knockdown might affect, showed that ME2 depletion resulted in high orotate levels, suggesting potential impairment of pyrimidine metabolism. Collectively our data point to ME2 as a potentially novel

  7. 562,3 MWP installed in european union

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    In the end, the growth problems that were announced for the European photovoltaic market did not happen. With 170 MWp of additional capacity installed in the European Union 2003 has marked a new record high in installations bringing European installed capacity up to the neighbourhood of 562 MWp. While this sector's expansion has been remarkable (+ 43.4 % with respect to 2002), a lot of questions still remain with respect to the true will of certain countries to develop this form of energy. (author)

  8. Extramedullary leukemia in children with acute myeloid leukemia

    DEFF Research Database (Denmark)

    Støve, Heidi Kristine; Sandahl, Julie Damgaard; Abrahamsson, Jonas

    2017-01-01

    BACKGROUND: The prognostic significance of extramedullary leukemia (EML) in childhood acute myeloid leukemia is not clarified. PROCEDURE: This population-based study included 315 children from the NOPHO-AML 2004 trial. RESULTS: At diagnosis, 73 (23%) patients had EML: 39 (12%) had myeloid sarcoma...... the OS. No patients relapsed at the primary site of the myeloid sarcoma despite management without radiotherapy....

  9. Iodine I 131 Monoclonal Antibody BC8, Fludarabine Phosphate, Cyclophosphamide, Total-Body Irradiation and Donor Bone Marrow Transplant in Treating Patients With Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or High-Risk Myelodysplastic Syndrome

    Science.gov (United States)

    2018-05-14

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; CD45-Positive Neoplastic Cells Present; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Refractory Anemia With Excess Blasts; Refractory Anemia With Ring Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ring Sideroblasts

  10. Encapsulation of Piper cabralanum (Piperaceae) nonpolar extract in poly(methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells.

    Science.gov (United States)

    Mendes, Anderson Nogueira; Filgueiras, Lívia Alves; Siqueira, Monica Regina Pimentel; Barbosa, Gleyce Moreno; Holandino, Carla; de Lima Moreira, Davyson; Pinto, José Carlos; Nele, Marcio

    2017-01-01

    This study aimed to synthesize and characterize nanoparticles (NPs) of poly(methyl methacrylate) (PMMA) and evaluate their ability to incorporate plant extracts with antitumor activity and low dissolution in aqueous media. The extract used was n -hexane partition of the methanol extract of Piper cabralanum (PCA-HEX). PMMA NPs were obtained using the mini-emulsion method, which was able to encapsulate almost 100% of PCA-HEX. The synthesized polymeric particles presented with a size of 200 nm and a negative charge. Cytotoxicity tests by MTT and trypan blue assays showed that NPs without PCA-HEX did not kill leukemic cells (K562 cells). NPs containing PCA-HEX were able to enhance cell death when compared to pure extract. The results showed that PMMA NPs could be useful as a drug delivery system as they can enhance the antitumor activity of the PCA-HEX extract by more than 20-fold. PMMA NPs containing plant extracts with antitumor activities may be an alternative to control the evolution of diseases such as leukemia.

  11. Total synthesis of cytochrome b562 by native chemical ligation using a removable auxiliary

    Science.gov (United States)

    Low, Donald W.; Hill, Michael G.; Carrasco, Michael R.; Kent, Stephen B. H.; Botti, Paolo

    2001-01-01

    We have completed the total chemical synthesis of cytochrome b562 and an axial ligand analogue, [SeMet7]cyt b562, by thioester-mediated chemical ligation of unprotected peptide segments. A novel auxiliary-mediated native chemical ligation that enables peptide ligation to be applied to protein sequences lacking cysteine was used. A cleavable thiol-containing auxiliary group, 1-phenyl-2-mercaptoethyl, was added to the α-amino group of one peptide segment to facilitate amide bond-forming ligation. The amine-linked 1-phenyl-2-mercaptoethyl auxiliary was stable to anhydrous hydrogen fluoride used to cleave and deprotect peptides after solid-phase peptide synthesis. Following native chemical ligation with a thioester-containing segment, the auxiliary group was cleanly removed from the newly formed amide bond by treatment with anhydrous hydrogen fluoride, yielding a full-length unmodified polypeptide product. The resulting polypeptide was reconstituted with heme and folded to form the functional protein molecule. Synthetic wild-type cyt b562 exhibited spectroscopic and electrochemical properties identical to the recombinant protein, whereas the engineered [SeMet7]cyt b562 analogue protein was spectroscopically and functionally distinct, with a reduction potential shifted by ≈45 mV. The use of the 1-phenyl-2-mercaptoethyl removable auxiliary reported here will greatly expand the applicability of total protein synthesis by native chemical ligation of unprotected peptide segments. PMID:11390992

  12. AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance

    Science.gov (United States)

    O’Hare, Thomas; Shakespeare, William C.; Zhu, Xiaotian; Eide, Christopher A.; Rivera, Victor M.; Wang, Frank; Adrian, Lauren T.; Zhou, Tianjun; Huang, Wei-Sheng; Xu, Qihong; Metcalf, Chester A.; Tyner, Jeffrey W.; Loriaux, Marc M.; Corbin, Amie S.; Wardwell, Scott; Ning, Yaoyu; Keats, Jeffrey A.; Wang, Yihan; Sundaramoorthi, Raji; Thomas, Mathew; Zhou, Dong; Snodgrass, Joseph; Commodore, Lois; Sawyer, Tomi K.; Dalgarno, David C.; Deininger, Michael W.N.; Druker, Brian J.; Clackson, Tim

    2009-01-01

    SUMMARY Inhibition of BCR-ABL by imatinib induces durable responses in many patients with chronic myeloid leukemia (CML), but resistance attributable to kinase domain mutations can lead to relapse and a switch to second-line therapy with nilotinib or dasatinib. Despite three approved therapeutic options, the cross-resistant BCR-ABLT315I mutation and compound mutants selected on sequential inhibitor therapy remain major clinical challenges. We report design and pre-clinical evaluation of AP24534, a potent, orally available multi-targeted kinase inhibitor active against T315I and other BCR-ABL mutants. AP24534 inhibited all tested BCR-ABL mutants in cellular and biochemical assays, suppressed BCR-ABLT315I-driven tumor growth in mice, and completely abrogated resistance in cell-based mutagenesis screens. Our work supports clinical evaluation of AP24534 as a pan-BCR-ABL inhibitor for treatment of CML. PMID:19878872

  13. AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance

    Energy Technology Data Exchange (ETDEWEB)

    O’Hare, Thomas; Shakespeare, William C.; Zhu, Xiaotian; Eide, Christopher A.; Rivera, Victor M.; Wang, Frank; Adrian, Lauren T.; Zhou, Tianjun; Huang, Wei-Sheng; Xu, Qihong; Metcalf, III, Chester A.; Tyner, Jeffrey W.; Loriaux, Marc M.; Corbin, Amie S.; Wardwell, Scott; Ning, Yaoyu; Keats, Jeffrey A.; Wang, Yihan; Sundaramoorthi, Raji; Thomas, Mathew; Zhou, Dong; Snodgrass, Joseph; Commodore, Lois; Sawyer, Tomi K.; Dalgarno, David C.; Deininger, Michael W.N.; Druker, Brian J.; Clackson, Tim; (OHSU- Cancer Instit.); (ARIAD)

    2010-09-07

    Inhibition of BCR-ABL by imatinib induces durable responses in many patients with chronic myeloid leukemia (CML), but resistance attributable to kinase domain mutations can lead to relapse and a switch to second-line therapy with nilotinib or dasatinib. Despite three approved therapeutic options, the cross-resistant BCR-ABL{sup T315I} mutation and compound mutants selected on sequential inhibitor therapy remain major clinical challenges. We report design and preclinical evaluation of AP24534, a potent, orally available multitargeted kinase inhibitor active against T315I and other BCR-ABL mutants. AP24534 inhibited all tested BCR-ABL mutants in cellular and biochemical assays, suppressed BCR-ABL{sup T315I}-driven tumor growth in mice, and completely abrogated resistance in cell-based mutagenesis screens. Our work supports clinical evaluation of AP24534 as a pan-BCR-ABL inhibitor for treatment of CML.

  14. Diagnostic confusion resulting from CD56 expression by cutaneous myeloid sarcoma

    Directory of Open Access Journals (Sweden)

    Sheeja T. Pullarkat

    2009-12-01

    Full Text Available Myeloid sarcomas are tumor masses composed of aggregates of malignant myeloid precursors in extramedullary sites including the skin. We report a case of myeloid sarcoma in a patient who presented with an ear lobe mass and facial nerve paralysis. Expression of CD56 by the malignant cells led to an initial misdiagnosis as Merkel cell tumor. Comprehensive pathological evaluation confirmed the diagnosis of myeloid sarcoma with aberrant expression of CD56 and carrying the translocation t(8;21 (q22;q22. Aberrant antigen expression by cutaneous myeloid sarcomas can cause diagnostic confusion with other cutaneous neoplasms. This is especially relevant when myeloid sarcoma is the sole manifestation of acute myeloid leukemia.

  15. Characterization of histone H3K27 modifications in the β-globin locus

    International Nuclear Information System (INIS)

    Kim, Yea Woon; Kim, AeRi

    2011-01-01

    Research highlights: → The β-globin locus control region is hyperacetylated and monomethylated at histone H3K27. → Highly transcribed globin genes are marked by H3K27ac, but H3K27me2 is remarkable at silent globin genes in erythroid K562 cells. → Association of PRC2 subunits is comparable with H3K27me3 pattern. → Modifications of histone H3K27 are established in an enhancer-dependent manner. -- Abstract: Histone H3K27 is acetylated or methylated in the environment of nuclear chromatin. Here, to characterize the modification pattern of H3K27 in locus control region (LCR) and to understand the correlation of various H3K27 modifications with transcriptional activity of genes, we analyzed the human β-globin locus using the ChIP assay. The LCR of the human β-globin locus was enriched by H3K27ac and H3K27me1 in erythroid K562 cells. The highly transcribed globin genes were hyperacetylated at H3K27, but the repressed globin genes were highly dimethylated at this lysine in these cells. However, in non-erythroid 293FT cells, the β-globin locus was marked by a high level of H3K27me3. EZH2 and SUZ12, subunits of polycomb repressive complex 2, were comparably detected with the H3K27me3 pattern in K562 and 293FT cells. In addition, H3K27ac, H3K27me1 and H3K27me3 were established in an enhancer-dependent manner in a model minichromosomal locus containing an enhancer and its target gene. Taken together, these results show that H3K27 modifications have distinctive correlations with the chromatin state or transcription level of genes and are influenced by an enhancer.

  16. Molecular response to imatinib & its correlation with mRNA expression levels of imatinib influx & efflux transporters in patients with chronic myeloid leukaemia in chronic phase

    Directory of Open Access Journals (Sweden)

    Hemant Malhotra

    2015-01-01

    Full Text Available Background & objectives: Imatinib is the standard first-line treatment for chronic myeloid leukaemia (CML patients. About 20 to 30 per cent patients develop resistance to imatinib and fail imatinib treatment. One of the mechanisms proposed is varying expression levels of the drug transporters. This study was aimed to determine the expression levels of imatinib transporter genes (OCT1, ABCB1, ABCG2 in CML patients and to correlate these levels with molecular response. Methods: Sixty three CML chronic phase patients who were on 400 mg/day imatinib for more than two years were considered for gene expression analysis study for OCT1, ABCB1 and ABCG2 genes. These were divided into responders and non-responders. The relative transcript expression levels of the three genes were compared between these two categories. The association between the expression values of these three genes was also determined. Results: No significant difference in the expression levels of OCT1, ABCB1 and ABCG2 was found between the two categories. The median transcript expression levels of OCT1, ABCB1 and ABCG2 genes in responders were 26.54, 10.78 and 0.64 versus 33.48, 7.09 and 0.53 in non-responders, respectively. A positive association was observed between the expression of the ABCB1 and ABCG2 transporter genes (r=0.407, P<0.05 while no association was observed between the expression of either of the ABC transporter genes with the OCT1 gene. Interpretation & conclusions: Our findings demonstrated that the mRNA expression levels of imatinib transporter genes were not correlated with molecular response in CML patients. Further studies need to be done on a large sample of CML patients to confirm these findings.

  17. Sequential Use of Second-Generation Tyrosine Kinase Inhibitor Treatment and Intensive Chemotherapy Induced Long-Term Complete Molecular Response in Imatinib-Resistant CML Patient Presenting as a Myeloid Blast Crisis

    Directory of Open Access Journals (Sweden)

    Masaaki Tsuji

    2017-01-01

    Full Text Available Myeloid blast crisis of chronic myeloid leukemia (CML-MBC is rarely seen at presentation and has a poor prognosis. There is no standard therapy for CML-MBC. It is often difficult to distinguish CML-MBC from acute myeloid leukemia expressing the Philadelphia chromosome (Ph+ AML. We present a case in which CML-MBC was seen at the initial presentation in a 75-year-old male. He was treated with conventional AML-directed chemotherapy followed by imatinib mesylate monotherapy, which failed to induce response. However, he achieved long-term complete molecular response after combination therapy involving dasatinib, a second-generation tyrosine kinase inhibitor, and conventional chemotherapy.

  18. Myeloid Sarcoma after Allogenic Stem Cell Transplantation for Acute Myeloid Leukemia: Successful Consolidation Treatment Approaches in Two Patients

    Directory of Open Access Journals (Sweden)

    Silje Johansen

    2018-01-01

    Full Text Available Myeloid sarcoma is an extramedullary (EM manifestation (i.e., manifestation outside the bone marrow of acute myeloid leukemia (AML; it is assumed to be relatively uncommon and can be the only manifestation of leukemia relapse after allogenic stem cell transplantation (allo-SCT. An EM sarcoma can manifest in any part of the body, although preferentially manifesting in immunological sanctuary sites as a single or multiple tumors. The development of myeloid sarcoma after allo-SCT is associated with certain cytogenetic abnormalities, developing of graft versus host disease (GVHD, and treatment with donor lymphocytes infusion (DLI. It is believed that posttransplant myeloid sarcomas develop because the EM sites evade immune surveillance. We present two patients with EM myeloid sarcoma in the breast and epipharynx, respectively, as the only manifestation of leukemia relapse. Both patients were treated with a combination of local and systemic therapy, with successfully longtime disease-free survival. Based on these two case reports, we give an updated review of the literature and discuss the pathogenesis, diagnosis, and treatment of EM sarcoma as the only manifestation of AML relapse after allo-SCT. There are no standard guidelines for the treatment of myeloid sarcomas in allotransplant recipients. In our opinion, the treatment of these patients needs to be individualized and should include local treatment (i.e., radiotherapy combined with systemic therapy (i.e., chemotherapy, immunotherapy, DLI, or retransplantation. The treatment has to consider both the need for sufficient antileukemic efficiency versus the risk of severe complications due to cumulative toxicity.

  19. Downregulation of miR-451 in Tunisian chronic myeloid leukemia patients: potential implication in imatinib resistance.

    Science.gov (United States)

    Soltani, Ismael; Douzi, Kais; Gharbi, Hanen; Benhassine, Islem; Teber, Mouheb; Amouri, Hassiba; Ben Hadj Othman, Hind; Farrah, Ahlem; Ben Lakhel, Raihane; Abbes, Salem; Menif, Samia

    2017-05-01

    Resistance to imatinib has been recognized as a major challenge for the treatment of chronic myeloid leukemia (CML). Aberrant expression of miR-451 has been reported to participate in anticancer drug resistance. However, the role of miR-451 in imatinib resistance has not been investigated. The present study was undertaken to determine the expression of miR-451 in order to find a possible association between the expression of this miRNA and imatinib resistance in Tunisian CML patients. First, real-time RT-PCR was performed to identify the expression of miR-451 in peripheral leukocytes of 59 CML patients treated with imatinib. Then, bioinformatics analysis was carried out to understand the regulatory roles of miR-451 in imatinib-resistant process. Downregulated miR-451 was observed in imatinib-resistant CML cases. In silico analysis identified MYC as a potential target of miR-451. We further revealed the existence of an MYC-binding site in MiR-451 promoter region. On the other hand, increased level of MYC was detected in imatinib-resistant CML cases which may explain the causative role of MYC in CML cases and the downregulation of miR-451. Taken together, our findings suggest that miR-451 and MYC form together a regulatory loop which may act as a potential therapeutic target, and disruption of suggested regulatory loop could help to improve CML therapy.

  20. Molecular measurement of BCR-ABL transcript variations in chronic myeloid leukemia patients in cytogenetic remission

    Directory of Open Access Journals (Sweden)

    Costa Juliana

    2010-11-01

    Full Text Available Abstract Background The monitoring of BCR-ABL transcript levels by real-time quantitative polymerase chain reaction (RT-qPCR has become important to assess minimal residual disease (MRD and standard of care in the treatment of chronic myeloid leukemia (CML. In this study, we performed a prospective, sequential analysis using RT-qPCR monitoring of BCR-ABL gene rearrangements in blood samples from 91 CML patients in chronic phase (CP who achieved complete cytogenetic remission (CCyR and major molecular remission (MMR throughout imatinib treatment. Methods The absolute level of BCR-ABL transcript from peripheral blood was serially measured every 4 to 12 weeks by RT-qPCR. Only level variations > 0.5%, according to the international scale, was considered positive. Sequential cytogenetic analysis was also performed in bone marrow samples from all patients using standard protocols. Results Based on sequential analysis of BCR-ABL transcripts, the 91 patients were divided into three categories: (A 57 (62.6% had no variation on sequential analysis; (B 30 (32.9% had a single positive variation result obtained in a single sample; and (C 4 (4.39% had variations of BCR-ABL transcripts in at least two consecutive samples. Of the 34 patients who had elevated levels of transcripts (group B and C, 19 (55.8% had a BCR-ABL/BCR ratio, 13 (38.2% patients had a 1% to 10% increase and 2 patients had a >10% increase of RT-qPCR. The last two patients had lost a CCyR, and none of them showed mutations in the ABL gene. Transient cytogenetic alterations in Ph-negative cells were observed in five (5.5% patients, and none of whom lost CCyR. Conclusions Despite an increase levels of BCR-ABL/BCR ratio variations by RT-qPCR, the majority of CML patients with MMR remained in CCyR. Thus, such single variations should neither be considered predictive of subsequent failure and nor an indication for altering imatinib dose or switching to second generation therapy. Changing of

  1. Personal history and quality of life in chronic myeloid leukemia patients: a cross-sectional study using narrative medicine and quantitative analysis.

    Science.gov (United States)

    Breccia, Massimo; Graffigna, Guendalina; Galimberti, Sara; Iurlo, Alessandra; Pungolino, Ester; Pizzuti, Michele; Maggi, Alessandro; Falzetti, Franca; Capalbo, Silvana Franca; Intermesoli, Tamara; Maffioli, Margherita; Elena, Chiara; Melosi, Alessandro; Simonetti, Federico; Capochiani, Enrico; Seta, Roberta Della; Pacilli, Matteo; Luppi, Mario; Di Renzo, Nicola; Mastrullo, Lucia; Trabacchi, Elena; Vallisa, Daniele; Rapezzi, Davide; Orlandi, Ester Maria; Gambacorti-Passerini, Carlo; Efficace, Fabio; Alimena, Giuliana

    2016-11-01

    Tyrosine kinase inhibitors (TKIs) drastically changed the outcome of patients diagnosed with chronic myeloid leukemia (CML). Several reports indicated the advantage of continue long-term adherence associated with positive outcome. Therefore, it is important to better understand from the patient's standpoint the experience of living with the disease and the related treatment. In this study, quantitative analysis and narrative medicine were combined to get insights on this issue in a population of 257 patients with CML in chronic phase treated with TKIs (43 % men, with a median age of 58 years, 27 % aged 31-50 years), followed for a median time of 5 years. Sixty-one percent of patients enrolled were treated in first line, whereas 37 % were treated in second line. The results showed more positive perceptions and acceptance in males compared to females, without impact of disease on relationships. Level of positive acceptance was more evident in elderly compared to younger patients, with a close connection with median time from diagnosis. Overall, female patients reported negative perceptions and an impact of disease on family daily living. The majority of patients understood the importance of continue adherence to treatment, with 27 % resulting less adherent (60 % for forgetfulness), even if well informed and supported by his/her physician. Narrative medicine, in association to quantitative analysis, can help physicians to understand needs of their patients in order to improve communication.

  2. Regression Analysis of Combined Gene Expression Regulation in Acute Myeloid Leukemia

    Science.gov (United States)

    Li, Yue; Liang, Minggao; Zhang, Zhaolei

    2014-01-01

    Gene expression is a combinatorial function of genetic/epigenetic factors such as copy number variation (CNV), DNA methylation (DM), transcription factors (TF) occupancy, and microRNA (miRNA) post-transcriptional regulation. At the maturity of microarray/sequencing technologies, large amounts of data measuring the genome-wide signals of those factors became available from Encyclopedia of DNA Elements (ENCODE) and The Cancer Genome Atlas (TCGA). However, there is a lack of an integrative model to take full advantage of these rich yet heterogeneous data. To this end, we developed RACER (Regression Analysis of Combined Expression Regulation), which fits the mRNA expression as response using as explanatory variables, the TF data from ENCODE, and CNV, DM, miRNA expression signals from TCGA. Briefly, RACER first infers the sample-specific regulatory activities by TFs and miRNAs, which are then used as inputs to infer specific TF/miRNA-gene interactions. Such a two-stage regression framework circumvents a common difficulty in integrating ENCODE data measured in generic cell-line with the sample-specific TCGA measurements. As a case study, we integrated Acute Myeloid Leukemia (AML) data from TCGA and the related TF binding data measured in K562 from ENCODE. As a proof-of-concept, we first verified our model formalism by 10-fold cross-validation on predicting gene expression. We next evaluated RACER on recovering known regulatory interactions, and demonstrated its superior statistical power over existing methods in detecting known miRNA/TF targets. Additionally, we developed a feature selection procedure, which identified 18 regulators, whose activities clustered consistently with cytogenetic risk groups. One of the selected regulators is miR-548p, whose inferred targets were significantly enriched for leukemia-related pathway, implicating its novel role in AML pathogenesis. Moreover, survival analysis using the inferred activities identified C-Fos as a potential AML

  3. Long-term outcome of patients with newly diagnosed chronic myeloid leukemia: a randomized comparison of stem cell transplantation with drug treatment.

    Science.gov (United States)

    Gratwohl, A; Pfirrmann, M; Zander, A; Kröger, N; Beelen, D; Novotny, J; Nerl, C; Scheid, C; Spiekermann, K; Mayer, J; Sayer, H G; Falge, C; Bunjes, D; Döhner, H; Ganser, A; Schmidt-Wolf, I; Schwerdtfeger, R; Baurmann, H; Kuse, R; Schmitz, N; Wehmeier, A; Fischer, J Th; Ho, A D; Wilhelm, M; Goebeler, M-E; Lindemann, H W; Bormann, M; Hertenstein, B; Schlimok, G; Baerlocher, G M; Aul, C; Pfreundschuh, M; Fabian, M; Staib, P; Edinger, M; Schatz, M; Fauser, A; Arnold, R; Kindler, T; Wulf, G; Rosselet, A; Hellmann, A; Schäfer, E; Prümmer, O; Schenk, M; Hasford, J; Heimpel, H; Hossfeld, D K; Kolb, H-J; Büsche, G; Haferlach, C; Schnittger, S; Müller, M C; Reiter, A; Berger, U; Saußele, S; Hochhaus, A; Hehlmann, R

    2016-03-01

    Tyrosine kinase inhibitors represent today's treatment of choice in chronic myeloid leukemia (CML). Allogeneic hematopoietic stem cell transplantation (HSCT) is regarded as salvage therapy. This prospective randomized CML-study IIIA recruited 669 patients with newly diagnosed CML between July 1997 and January 2004 from 143 centers. Of these, 427 patients were considered eligible for HSCT and were randomized by availability of a matched family donor between primary HSCT (group A; N=166 patients) and best available drug treatment (group B; N=261). Primary end point was long-term survival. Survival probabilities were not different between groups A and B (10-year survival: 0.76 (95% confidence interval (CI): 0.69-0.82) vs 0.69 (95% CI: 0.61-0.76)), but influenced by disease and transplant risk. Patients with a low transplant risk showed superior survival compared with patients with high- (Ptreatment (56% vs 6%; P<0.001). Differences in symptoms and Karnofsky score were not significant. In the era of tyrosine kinase inhibitors, HSCT remains a valid option when both disease and transplant risk are considered.

  4. Differentiation Therapy of Acute Myeloid Leukemia

    International Nuclear Information System (INIS)

    Gocek, Elzbieta; Marcinkowska, Ewa

    2011-01-01

    Acute Myeloid Leukemia (AML) is a predominant acute leukemia among adults, characterized by accumulation of malignantly transformed immature myeloid precursors. A very attractive way to treat myeloid leukemia, which is now called ‘differentiation therapy’, was proposed as in vitro studies have shown that a variety of agents stimulate differentiation of the cell lines isolated from leukemic patients. One of the differentiation-inducing agents, all-trans retinoic acid (ATRA), which can induce granulocytic differentiation in myeloid leukemic cell lines, has been introduced into clinics to treat patients with acute promyelocytic leukemia (APL) in which a PML-RARA fusion protein is generated by a t(15;17)(q22;q12) chromosomal translocation. Because differentiation therapy using ATRA has significantly improved prognosis for patients with APL, many efforts have been made to find alternative differentiating agents. Since 1,25-dihydroxyvitamin D 3 (1,25D) is capable of inducing in vitro monocyte/macrophage differentiation of myeloid leukemic cells, clinical trials have been performed to estimate its potential to treat patients with AML or myelodysplastic syndrome (MDS). Unfortunately therapeutic concentrations of 1,25D can induce potentially fatal systemic hypercalcemia, thus limiting clinical utility of that compound. Attempts to overcome this problem have focused on the synthesis of 1,25D analogs (VDAs) which retain differentiation inducing potential, but lack its hypercalcemic effects. This review aims to discuss current problems and potential solutions in differentiation therapy of AML

  5. Differentiation Therapy of Acute Myeloid Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Gocek, Elzbieta; Marcinkowska, Ewa, E-mail: ema@cs.uni.wroc.pl [Department of Biotechnology, University of Wroclaw, ul Tamka 2, Wroclaw 50-137 (Poland)

    2011-05-16

    Acute Myeloid Leukemia (AML) is a predominant acute leukemia among adults, characterized by accumulation of malignantly transformed immature myeloid precursors. A very attractive way to treat myeloid leukemia, which is now called ‘differentiation therapy’, was proposed as in vitro studies have shown that a variety of agents stimulate differentiation of the cell lines isolated from leukemic patients. One of the differentiation-inducing agents, all-trans retinoic acid (ATRA), which can induce granulocytic differentiation in myeloid leukemic cell lines, has been introduced into clinics to treat patients with acute promyelocytic leukemia (APL) in which a PML-RARA fusion protein is generated by a t(15;17)(q22;q12) chromosomal translocation. Because differentiation therapy using ATRA has significantly improved prognosis for patients with APL, many efforts have been made to find alternative differentiating agents. Since 1,25-dihydroxyvitamin D{sub 3} (1,25D) is capable of inducing in vitro monocyte/macrophage differentiation of myeloid leukemic cells, clinical trials have been performed to estimate its potential to treat patients with AML or myelodysplastic syndrome (MDS). Unfortunately therapeutic concentrations of 1,25D can induce potentially fatal systemic hypercalcemia, thus limiting clinical utility of that compound. Attempts to overcome this problem have focused on the synthesis of 1,25D analogs (VDAs) which retain differentiation inducing potential, but lack its hypercalcemic effects. This review aims to discuss current problems and potential solutions in differentiation therapy of AML.

  6. Thrombopoietin/MPL participates in initiating and maintaining RUNX1-ETO acute myeloid leukemia via PI3K/AKT signaling

    NARCIS (Netherlands)

    J.A. Pulikkan (John); D. Madera (Dmitri); L. Xue (Liting); P. Bradley (Paul); S.F. Landrette (Sean Francis); Y.-H. Kuo (Ya-Huei); S. Abbas (Saman); L.J. Zhu (Lihua Julie); P.J.M. Valk (Peter); L.H. Castilla (Lucio)

    2012-01-01

    textabstractOncogenic mutations in components of cytokine signaling pathways elicit ligand-independent activation of downstream signaling, enhancing proliferation and survival in acute myeloid leukemia (AML). The myeloproliferative leukemia virus oncogene, MPL, a homodimeric receptor activated by

  7. 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate promotes megakaryocytic differentiation of myeloid leukaemia cells and primary human CD34⁺ haematopoietic stem cells.

    Science.gov (United States)

    Limb, Jin-Kyung; Song, Doona; Jeon, Mijeong; Han, So-Yeop; Han, Gyoonhee; Jhon, Gil-Ja; Bae, Yun Soo; Kim, Jaesang

    2015-04-01

    In this study we showed that 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient differentiation of megakaryocytes. Specifically, (R)-TEMOSPho induces cell cycle arrest, cell size increase and polyploidization from K562 and HEL cells, which are used extensively to model megakaryocytic differentiation. In addition, megakaryocyte-specific cell surface markers showed a dramatic increase in expression in response to (R)-TEMOSPho treatment. Importantly, we demonstrated that such megakaryocytic differentiation can also be induced from primary human CD34(+) haematopoietic stem cells. Activation of the PI3K-AKT pathway and, to a lesser extent, the MEK-ERK pathway appears to be required for this process, as blocking with specific inhibitors interferes with the differentiation of K562 cells. A subset of (R)-TEMOSPho-treated K562 cells undergoes spontaneous apoptosis and produces platelets that are apparently functional, as they bind to fibrinogen, express P-selectin and aggregate in response to SFLLRN and AYPGFK, the activating peptides for the PAR1 and PAR4 receptors, respectively. Taken together, these results indicate that (R)-TEMOSPho will be useful for dissecting the molecular mechanisms of megakaryocytic differentiation, and that this class of compounds represents potential therapeutic reagents for thrombocytopenia. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Do chronic myeloid leukemia patients with late "warning" responses benefit from "watch and wait" or switching therapy to a second generation tyrosine kinase inhibitor?

    Science.gov (United States)

    García-Gutiérrez, Valentin; Puerta, Jose Manuel; Maestro, Begoña; Casado Montero, Luis Felipe; Muriel, Alfonso; Molina Hurtado, Jose Ramon; Perez-Encinas, Manuel; Moreno Romero, Maria Victoria; Suñol, Pere Barba; Sola Garcia, Ricardo; De Paz, Raquel; Ramirez Sanchez, Maria Jose; Osorio, Santiago; Mata Vazquez, Maria Isabel; Martinez López, Joaquin; Sastre, Jose Luis; Portero, Maria de Los Angles; Bautista, Guiomar; Duran Nieto, Maria Soledad; Giraldo, Pilar; Jimenez Jambrina, Margarita; Burgaleta, Carmen; Ruiz Aredondo, Joaquin; Peñarrubia, Maria Jesús; Requena, Maria José; Fernández Valle, María Del Carmen; Calle, Carmen; Paz Coll, Antonio; Hernández-Rivas, Jose Ángel; Franco Osorio, Rafael; Cano, Pilar; Tallón Pérez, David; Fernández de la Mata, Margarita; Garrido, Pilar López; Steegmann, Juan Luis

    2014-11-01

    In the latest recommendations for the management of chronic-phase chronic myeloid leukemia suboptimal responses have been reclassified as "warning responses." In contrast to previous recommendations current guidance advises close monitoring without changing therapy. We have identified 198 patients treated with first-line imatinib, with a warning response after 12 months of treatment (patients with a complete cytogenetic response but no major molecular response [MMR]). One hundred and forty-six patients remained on imatinib, while 52 patients changed treatment to a second generation tyrosine kinase inhibitor (2GTKI). Changing therapy did not correlate with an increase in overall survival or progression-free survival. Nevertheless, a significant improvement was observed in the probability of a MMR: 24% vs. 42% by 12 months and 43% vs. 64% by 24 months (P = 0.002); as well as the probability of achieving a deep molecular responses (MR(4.5) ): 1% vs. 17% and 7% vs. 23% by 12 and 24 months, respectively (P = molecular responses after changing treatment to 2GTKI in patients with late suboptimal response treated with imatinib first line. However, these benefits were not correlated with an improvement of progression free survival or overall survival. © 2014 Wiley Periodicals, Inc.

  9. The Efficacy of Reduced-dose Dasatinib as a Subsequent Therapy in Patients with Chronic Myeloid Leukemia in the Chronic Phase: The LD-CML Study of the Kanto CML Study Group

    Science.gov (United States)

    Iriyama, Noriyoshi; Ohashi, Kazuteru; Hashino, Satoshi; Kimura, Shinya; Nakaseko, Chiaki; Takano, Hina; Hino, Masayuki; Uchiyama, Michihiro; Morita, Satoshi; Sakamoto, Junichi; Sakamaki, Hisashi; Inokuchi, Koiti

    2017-01-01

    Objective The aim of this study was to prospectively investigate the efficacy and safety profiles of low-dose dasatinib therapy (50 mg once daily). Methods Patients with chronic myeloid leukemia in the chronic phase (CML-CP) who were being treated with low-dose imatinib (≤200 mg/day), but were resistant to this agent were enrolled in the current study (referred to as the LD-CML study). Results There subjects included 9 patients (4 men and 5 women); all were treated with dasatinib at a dose of 50 mg once daily. Among 8 patients who had not experienced major molecular response (MMR; BCR-ABL1 transcript ≤0.1% according to International Scale [IS]) at study enrollment, 5 attained MMR by 12 months. In particular, 3 of 9 patients demonstrated a deep molecular response (DMR; IS ≤0.0069%) by 18 months. Five patients developed lymphocytosis accompanied by cytotoxic lymphocyte predominance. There was no mortality or disease progression, and all continue to receive dasatinib therapy at 18 months with only 2 patients requiring dose reduction. Toxicities were mild-to-moderate, and pleural effusion was observed in 1 patient (grade 1). Conclusion Low-dose dasatinib can attain MMR and DMR without severe toxicity in patients with CML-CP who are unable to achieve MMR with low-dose imatinib. Switching to low-dose dasatinib should therefore be considered for patients in this setting, especially if they are otherwise considering a cessation of treatment. PMID:29033428

  10. Patient-reported adverse drug reactions and their influence on adherence and quality of life of chronic myeloid leukemia patients on per oral tyrosine kinase inhibitor treatment

    Directory of Open Access Journals (Sweden)

    Kekäle M

    2015-12-01

    Full Text Available Meri Kekäle,1 Marikki Peltoniemi,2 Marja Airaksinen1 1Clinical Pharmacy Group, Division of Pharmacology and Pharmacotherapy, 2Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland Purpose: To evaluate adverse drug reactions (ADRs experienced by chronic myeloid leukemia (CML patients during per oral tyrosine kinase inhibitor (TKI treatment and correlation of ADR symptoms with medication adherence and perceived quality of life (QoL.Patients and methods: Eighty-six adult, chronic-phase CML patients who had been on TKI treatment (79% on imatinib, 10.5% dasatinib, and 10.5% nilotinib for at least 6 months participated in the study (mean age: 57.8 years, 52% males. The mean time from diagnosis was 5.1 years. All patients were interviewed, and patient-reported ADRs were obtained using a structured list. Adherence was assessed using Morisky’s 8-item Medication Adherence Scale (MMAS. The symptoms’ interference with patient’s daily QoL was measured by asking patients about the influence of symptom(s on their mood, general condition, enjoyment of life, walking, relationships, and work.Results: Ninety-seven percent of the patients were suffering from at least one ADR. The mean number of different symptoms was seven (range: 0–15, median 6. The most commonly perceived ADRs were muscle soreness or cramp (69/86, 80%; swelling of hands, legs, feet, or around the eyes (59/86, 69%; and fatigue (43/86, 50%. No correlation was found between adherence and ADRs, because symptoms were equally common in each MMAS adherence class. Half of the patients felt that the ADRs had a negative influence on their daily QoL. A quarter of the patients reported that ADRs affected either their mood, general condition, or enjoyment of life. The incidence of almost all ADRs was much higher among patients reporting negative influence of ADRs on their daily life compared to total study population (P=0.016.Conclusion

  11. An entropy-based improved k-top scoring pairs (TSP) method for ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-06-05

    Jun 5, 2012 ... Key words: Cancer classification, gene expression, k-TSP, information entropy, gene selection. INTRODUCTION ..... The 88 kDa precursor protein, progranulin, is also ... TCF3 is in acute myeloid leukemia pathway, so it is.

  12. Regulatory Myeloid Cells in Transplantation

    Science.gov (United States)

    Rosborough, Brian R.; Raïch-Regué, Dàlia; Turnquist, Heth R.; Thomson, Angus W.

    2013-01-01

    Regulatory myeloid cells (RMC) are emerging as novel targets for immunosuppressive (IS) agents and hold considerable promise as cellular therapeutic agents. Herein, we discuss the ability of regulatory macrophages (Mreg), regulatory dendritic cells (DCreg) and myeloid-derived suppressor cells (MDSC) to regulate alloimmunity, their potential as cellular therapeutic agents and the IS agents that target their function. We consider protocols for the generation of RMC and the selection of donor- or recipient-derived cells for adoptive cell therapy. Additionally, the issues of cell trafficking and antigen (Ag) specificity following RMC transfer are discussed. Improved understanding of the immunobiology of these cells has increased the possibility of moving RMC into the clinic to reduce the burden of current IS agents and promote Ag-specific tolerance. In the second half of this review, we discuss the influence of established and experimental IS agents on myeloid cell populations. IS agents believed historically to act primarily on T cell activation and proliferation are emerging as important regulators of RMC function. Better insights into the influence of IS agents on RMC will enhance our ability to develop cell therapy protocols to promote the function of these cells. Moreover, novel IS agents may be designed to target RMC in situ to promote Ag-specific immune regulation in transplantation and usher in a new era of immune modulation exploiting cells of myeloid origin. PMID:24092382

  13. Genetics Home Reference: familial acute myeloid leukemia with mutated CEBPA

    Science.gov (United States)

    ... Familial acute myeloid leukemia with mutated CEBPA Familial acute myeloid leukemia with mutated CEBPA Printable PDF Open All Close ... on PubMed (1 link) PubMed OMIM (1 link) LEUKEMIA, ACUTE MYELOID Sources for This Page Carmichael CL, Wilkins EJ, ...

  14. Evaluation of cooperative antileukemic effects of nilotinib and vildagliptin in Ph+ chronic myeloid leukemia.

    Science.gov (United States)

    Willmann, Michael; Sadovnik, Irina; Eisenwort, Gregor; Entner, Martin; Bernthaler, Tina; Stefanzl, Gabriele; Hadzijusufovic, Emir; Berger, Daniela; Herrmann, Harald; Hoermann, Gregor; Valent, Peter; Rülicke, Thomas

    2018-01-01

    Chronic myeloid leukemia (CML) is a stem cell (SC) neoplasm characterized by the BCR/ABL1 oncogene. Although the disease can be kept under control using BCR/ABL1 tyrosine kinase inhibitors (TKIs) in most cases, some patients relapse or have resistant disease, so there is a need to identify new therapeutic targets in this malignancy. Recent data suggest that leukemic SCs (LSCs) in CML display the stem-cell (SC)-mobilizing cell surface enzyme dipeptidyl-peptidase IV (DPPIV = CD26) in an aberrant manner. In the present study, we analyzed the effects of the DPPIV blocker vildagliptin as single agent or in combination with the BCR/ABL1 TKI imatinib or nilotinib on growth and survival of CML LSCs in vitro and on LSC engraftment in an in vivo xenotransplantation nonobese diabetic SCID-IL-2Rγ -/- (NSG) mouse model. We found that nilotinib induces apoptosis in CML LSCs and inhibits their engraftment in NSG mice. In contrast, no substantial effects were seen with imatinib or vildagliptin. Nevertheless, vildagliptin was found to reduce the "mobilization" of CML LSCs from a stroma cell layer consisting of mouse fibroblasts in an in vitro co-culture model, suggesting reduced disease expansion. However, although vildagliptin and nilotinib produced cooperative effects in individual experiments, overall, no significant effects of coadministered vildagliptin over nilotinib or imatinib treatment alone were seen on the engraftment of CML cells in NSG mice. Gliptins may be interesting drugs in the context of CML and nilotinib therapy, but our preclinical studies did not reveal a major cooperative effect of the drug-combination vildagliptin + nilotinib on engraftment of CML cells in NSG mice. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  15. Effect of dioxin on normal and leukemic human hematopoietic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lambertenghi-Deliliers, G.; Soligo, D. [Univ. degli Studi, Milan (Italy). Dipt. die Ematologia, Ospedale Maggiore Policlinico IRCCS; Fracchiolla, N.S. [Ospedale Maggiore Policlinico IRCCS, Milan (Italy). Dipt. di Ematologia; Servida, F. [Fondazione Matarelli, Milan (Italy); Bertazzi, P.A. [Istituti Clinici di Perfezionamento, Milan (Italy). Dipt. di Medicina del Lavoro

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) arises from chlorination of phenolic substrates or from partial combustion of organic materials in the presence of chlorine sources. TCDD has a large number of biological effects such as long-lasting skin disease, cardiovascular disease, diabete and cancer. TCDD is the prototypical agonist of the aryl hydrocarbon receptor (AhR), a member of the erb-A family that also includes the receptors for steroids, thyroid hormones, peroxisome proliferators and retinoids. When bound to dioxin, the AhR can bind to DNA and alter the expression of some genes including cytokines and growth factors. In this study, we analyzed the effect of escalating doses of TCDD on human CD34{sup +} progenitor cells from the leukapheresis of normal donors stimulated with G-CSF as well as the human myeloid leukemic cell lines HL60 (promyelocytic leukemia) and K562 (chronic myelogenous leukemia). The possible specific modulation of gene expression induced by the TCDD exposure was then tested by means of microarray analyses.

  16. Dasatinib rapidly induces deep molecular response in chronic-phase chronic myeloid leukemia patients who achieved major molecular response with detectable levels of BCR-ABL1 transcripts by imatinib therapy.

    Science.gov (United States)

    Shiseki, Masayuki; Yoshida, Chikashi; Takezako, Naoki; Ohwada, Akira; Kumagai, Takashi; Nishiwaki, Kaichi; Horikoshi, Akira; Fukuda, Tetsuya; Takano, Hina; Kouzai, Yasuji; Tanaka, Junji; Morita, Satoshi; Sakamoto, Junichi; Sakamaki, Hisashi; Inokuchi, Koiti

    2017-10-01

    With the introduction of imatinib, a first-generation tyrosine kinase inhibitor (TKI) to inhibit BCR-ABL1 kinase, the outcome of chronic-phase chronic myeloid leukemia (CP-CML) has improved dramatically. However, only a small proportion of CP-CML patients subsequently achieve a deep molecular response (DMR) with imatinib. Dasatinib, a second-generation TKI, is more potent than imatinib in the inhibition of BCR-ABL1 tyrosine kinase in vitro and more effective in CP-CML patients who do not achieve an optimal response with imatinib treatment. In the present study, we attempted to investigate whether switching the treatment from imatinib to dasatinib can induce DMR in 16 CP-CML patients treated with imatinib for at least two years who achieved a major molecular response (MMR) with detectable levels of BCR-ABL1 transcripts. The rates of achievement of DMR at 1, 3, 6 and 12 months after switching to dasatinib treatment in the 16 patients were 44% (7/16), 56% (9/16), 63% (10/16) and 75% (12/16), respectively. The cumulative rate of achieving DMR at 12 months from initiation of dasatinib therapy was 93.8% (15/16). The proportion of natural killer cells and cytotoxic T cells in peripheral lymphocytes increased after switching to dasatinib. In contrast, the proportion of regulatory T cells decreased during treatment. The safety profile of dasatinib was consistent with previous studies. Switching to dasatinib would be a therapeutic option for CP-CML patients who achieved MMR but not DMR by imatinib, especially for patients who wish to discontinue TKI therapy.

  17. Esterase Isoenzyme Profiles in Acute and Chronic Leukemias.

    Science.gov (United States)

    Drexler, H G; Gignac, S M; Hoffbrand, A V; Minowada, J

    1991-01-01

    Using isoelectric focusing (IEF) a number of carboxylic esterase isoenzymes (EC 3.1.1.1) with isoelectric points between pH 4.5-8.0 can be separated. One particular isoenzyme with an isoelectric point at about pH 6.0, the Mono-band, can be selectively and completely inhibited by sodium fluoride; this isoenzyme comprises a number of closely related subcomponents and may appear in more than one band on the gel. We analyzed the expression of typical esterase isoenzyme patterns in cells from a large panel of leukemias which were tested under identical conditions by IEF on horizontal thin-layer polyacrylamide gels with an ampholyte of pH 2-11. The 442 cases of acute and chronic myeloid and lymphoid leukemia (AML/AMMoL, CML/CMML, ALL, CLL) were classified according to clinical, morpho-cytochemical and immunophenotyping criteria. While bands between pH 4.5-5.5 appeared not to be specific for lineage or stage of differentiation, isoenzymes between pH 6.6-7.7 provided information on the type of leukemia involved. Seven typical isoenzyme patterns termed Mono1/Mono2 (fo monocyte-associated), My1/My2 (myeloid), Lym1/Lym2 (lymphoid) and Und (undifferentiated) could be discerned. Lym and Und patterns are characterized by fewer bands with a weaker staining intensity than Mono and My patterns. Nearly all cases of lymphoid leukemias (acute and chronic) expressed only Lym or Und esterase isoenzyme patterns, but no Mono or My patterns. Cases of acute or chronic myeloid and (myelo)monocytic leukemia showed strong isoenzyme staining displaying predominantly Mono or My isoenzyme patterns. The isoenzyme patterns found in CML in lymphoid or myeloid blast crisis corresponded to those seen in the respective acute leukemias, ALL or AML. The Mono-band was found in most cases of leukemias with monocytic elements (AMMoL 80%, CML 44%, CMML 100%), in the occasional case of CML-myeloid blast crisis or AML, but in none of the cases of ALL or CLL. This isoenzyme is a distinctive, specific marker for

  18. The myeloid receptor PILRβ mediates the balance of inflammatory responses through regulation of IL-27 production.

    Directory of Open Access Journals (Sweden)

    Cristina M Tato

    Full Text Available Paired immunoglobulin-like receptors beta, PILRβ, and alpha, PILRα, are related to the Siglec family of receptors and are expressed primarily on cells of the myeloid lineage. PILRβ is a DAP12 binding partner expressed on both human and mouse myeloid cells. The potential ligand, CD99, is found on many cell types, such as epithelial cells where it plays a role in migration of immune cells to sites of inflammation. Pilrb deficient mice were challenged with the parasite Toxoplasma gondii in two different models of infection induced inflammation; one involving the establishment of chronic encephalitis and a second mimicking inflammatory bowel disease in order to understand the potential role of this receptor in persistent inflammatory responses. It was found that in the absence of activating signals from PILRβ, antigen-presenting cells (APCs produced increased amounts of IL-27, p28 and promoted IL-10 production in effector T cells. The sustained production of IL-27 led ultimately to enhanced survival after challenge due to dampened immune pathology in the gut. Similar protection was also observed in the CNS during chronic T. gondii infection after i.p. challenge again providing evidence that PILRβ is important for regulating aberrant inflammatory responses.

  19. Ascorbate/menadione-induced oxidative stress kills cancer cells that express normal or mutated forms of the oncogenic protein Bcr-Abl. An in vitro and in vivo mechanistic study.

    Science.gov (United States)

    Beck, Raphaël; Pedrosa, Rozangela Curi; Dejeans, Nicolas; Glorieux, Christophe; Levêque, Philippe; Gallez, Bernard; Taper, Henryk; Eeckhoudt, Stéphane; Knoops, Laurent; Calderon, Pedro Buc; Verrax, Julien

    2011-10-01

    Numerous studies suggest that generation of oxidative stress could be useful in cancer treatment. In this study, we evaluated, in vitro and in vivo, the antitumor potential of oxidative stress induced by ascorbate/menadione (asc/men). This combination of a reducing agent (ascorbate) and a redox active quinone (menadione) generates redox cycling leading to formation of reactive oxygen species (ROS). Asc/men was tested in several cell types including K562 cells (a stable human-derived leukemia cell line), freshly isolated leukocytes from patients with chronic myeloid leukemia, BaF3 cells (a murine pro-B cell line) transfected with Bcr-Abl and peripheral blood leukocytes derived from healthy donors. Although these latter cells were resistant to asc/men, survival of all the other cell lines was markedly reduced, including the BaF3 cells expressing either wild-type or mutated Bcr-Abl. In a standard in vivo model of subcutaneous tumor transplantation, asc/men provoked a significant delay in the proliferation of K562 and BaF3 cells expressing the T315I mutated form of Bcr-Abl. No effect of asc/men was observed when these latter cells were injected into blood of mice most probably because of the high antioxidant potential of red blood cells, as shown by in vitro experiments. We postulate that cancer cells are more sensitive to asc/men than healthy cells because of their lack of antioxidant enzymes, mainly catalase. The mechanism underlying this cytotoxicity involves the oxidative cleavage of Hsp90 with a subsequent loss of its chaperone function thus leading to degradation of wild-type and mutated Bcr-Abl protein.

  20. Genetics Home Reference: cytogenetically normal acute myeloid leukemia

    Science.gov (United States)

    ... Testing (1 link) Genetic Testing Registry: Acute myeloid leukemia Other Diagnosis and Management Resources (3 links) Fred Hutchinson Cancer Research Center National Cancer Institute: Acute Myeloid Leukemia Treatment St. Jude Children's Research Hospital General Information ...