WorldWideScience

Sample records for k5 polysaccharide derivative

  1. Recombinant Escherichia coli K5 strain with the deletion of waaR gene decreases the molecular weight of the heparosan capsular polysaccharide.

    Science.gov (United States)

    Huang, Haichan; Liu, Xiaobo; Lv, Shencong; Zhong, Weihong; Zhang, Fuming; Linhardt, Robert J

    2016-09-01

    Heparosan, the capsular polysaccharide of Escherichia coli K5 having a carbohydrate backbone similar to that of heparin, has become a potential precursor for bioengineering heparin. In the heparosan biosynthesis pathway, the gene waaR encoding α-1-, 2- glycosyltransferase catalyze s the third glucosyl residues linking to the oligosaccharide chain. In the present study, a waaR deletion mutant of E. coli K5 was constructed. The mutant showed improvement of capsule polysaccharide yield. It is interesting that the heparosan molecular weight of the mutant is reduced and may become more suitable as a precursor for the production of low molecular weight heparin derived from the wild-type K5 capsular polysaccharide.

  2. Marine derived polysaccharides for biomedical applications: chemical modification approaches.

    Science.gov (United States)

    d'Ayala, Giovanna Gomez; Malinconico, Mario; Laurienzo, Paola

    2008-09-03

    Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp) and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol) copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.

  3. Marine Derived Polysaccharides for Biomedical Applications: Chemical Modification Approaches

    Directory of Open Access Journals (Sweden)

    Paola Laurienzo

    2008-09-01

    Full Text Available Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.

  4. Preparation and antioxidant activities of a sulfated derivative of exopolysaccharide from Escherichia coil K5%Escherichia coli K5胞外多糖硫酸酯衍生物的制备及其体外抗氧化活性研究

    Institute of Scientific and Technical Information of China (English)

    王华; 徐静静; 曹凤; 陈敬华

    2012-01-01

    对Escherichia coliK5菌株进行发酵培养,发酵液上清经超滤、醇沉、Sevage法脱蛋白、透析冻干,再经DEAE琼脂糖柱、G75葡聚糖柱分离纯化后得到K5多糖(K5)。以三氧化硫吡啶为硫酸酯化剂,对K5多糖N位进行了硫酸酯化,制备了K5多糖的硫酸酯衍生物(NS-K5),二糖分析结果显示,N位硫酸酯化率达到57%。并对硫酸酯化前后的K5多糖的抗氧化性能进行了研究,结果显示,一定浓度范围内,NS-K5多糖还原力较K5高,当K5和NS-K5浓度达到1mg/mL时,对羟基自由基的清除率分别达到17.7%、25.6%,对DPPH自由基的清除率分别达到26.1%、45%。实验结果表明,NS-K5的抗氧化活性要高于K5。%Escherichia coil K5 strain was cultivated by fermentation,the supernatant was treated by ultrafiltration, exopolysaccharide(EPS) was extracted by ethanol precipitation,and then purified by Sevage method,dialysis, freeze-dried, DEAE-Sepharose and Sephadex G-75 column,finally high-purity K5 polysaccharide(K5) was obtained. N site of the K5 polysaccharide was chemically sulfated by Sulfur trioxide pyridine complex,NS-K5 polysaccharide(NS-K5) was prepared,and disaccharide analysis revealed that N-sulfation rate was up to 57%. The antioxidant capacity of K5 polysaccharideand N-sulfated K5 polysaccharide was investigated,the results showed that within a certain concentration range,the reducing activity of NS-K5 was powerful over K5, when the concentration of K5 and NS-K5 was up to lmg/mL,the hydroxyl radical scavenging rates were 17.7% ,25.6% ,and DPPH radical scavenging rates were 26.1% ,45% ,respectively. The result indicated that NS-K5 showed stronger antioxidant activity than K5.

  5. Recent Advances in Nanocomposite Materials of Graphene Derivatives with Polysaccharides

    Directory of Open Access Journals (Sweden)

    Zoi Terzopoulou

    2015-02-01

    Full Text Available This review article presents the recent advances in syntheses and applications of nanocomposites consisting of graphene derivatives with various polysaccharides. Graphene has recently attracted much interest in the materials field due to its unique 2D structure and outstanding properties. To follow, the physical and mechanical properties of graphene are then introduced. However it was observed that the synthesis of graphene-based nanocomposites had become one of the most important research frontiers in the application of graphene. Therefore, this review also summarizes the recent advances in the synthesis of graphene nanocomposites with polysaccharides, which are abundant in nature and are easily synthesized bio-based polymers. Polysaccharides can be classified in various ways such as cellulose, chitosan, starch, and alginates, each group with unique and different properties. Alginates are considered to be ideal for the preparation of nanocomposites with graphene derivatives due to their environmental-friendly potential. The characteristics of such nanocomposites are discussed here and are compared with regard to their mechanical properties and their various applications.

  6. Use of paramagnetic chelated metal derivatives of polysaccharides and spin-labeled polysaccharides as contrast agents in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bligh, S.W.; Harding, C.T.; Sadler, P.J.; Bulman, R.A.; Bydder, G.M.; Pennock, J.M.; Kelly, J.D.; Latham, I.A.; Marriott, J.A. (Department of Chemistry, Birkbeck College, London (England))

    1991-02-01

    Soluble and insoluble polysaccharides were derivatized with diethylenetriaminepentaacetic acid (DTPA) and/or spin-labeled with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). Polysaccharides derivatized with DTPA were prepared via cyanogen bromide activation, coupling to a diamine linker, and to DTPA anhydride. Spin-labeled polysaccharides were also prepared via cyanogen bromide activation. The extent of derivatization for dextran (18 kDa) was about 120 glucose units per DTPA, and for cellulose and starch about 15-30 units per DTPA. For spin-labeled polysaccharides, the average loading ranged from 1 nitroxide per 16 glucose units for starch to 181 for dextran (82 kDa). These derivatized paramagnetic polysaccharides were shown to be more effective relaxants than the small paramagnetic molecules alone. Both soluble and insoluble polysaccharide-linker-DTPA-Gd(3) complexes were effectively cleared from the body (rats) after oral administration. After intravenous administration, the biodistribution of dextran-linker-DTPA-Gd(3) complexes differed significantly from that of GdDTPA. Reduction of the nitroxide by ascorbic acid was retarded in the polysaccharide derivatives, particularly in starch derivatized with both nitroxide and linker-DTPA-Cu(2). These agents showed contrast enhancement in the gastrointestinal tract of rabbits.

  7. The polysaccharide from Tamarindus indica (TS-polysaccharide) protects cultured corneal-derived cells (SIRC cells) from ultraviolet rays.

    Science.gov (United States)

    Raimondi, L; Lodovici, M; Guglielmi, F; Banchelli, G; Ciuffi, M; Boldrini, E; Pirisino, R

    2003-03-01

    The aim of this work was to investigate the possible protective effect of a new viscosising agent, TS-polysaccharide, on corneal-derived cells (SIRC) exposed to ultraviolet-B rays. To verify this, SIRC cells were first exposed, in the absence or in the presence of TS-polysaccharide (1% w/v), for 9 s at the UV-B source and then post-incubated for 45 min at 37 degrees C. After this period the hydrogen peroxide (H(2)O(2)) accumulated in the medium and the concentration of 8-hydroxy-2'-deoxy-guanosine (8-OHdG) in cell DNA was measured. In addition, the amount of (3)H-methyl-thymidine incorporated in cellular DNA was evaluated after 18 h from irradiation. Our results show that cells exposed to UV-B rays accumulate H(2)O(2), and have higher levels of 8OHdG and a lower amount of (3)H-methyl-thymidine incorporated in DNA than control cells. In the presence of TS-polysaccharide, the H(2)O(2) and 8-OHdG accumulation, and the (3)H-methyl-thymidine incorporation were significantly reduced with respect to the values measured in cells exposed in the absence of the polysaccharide. We propose a protective role of the polysaccharide in reducing UV-B derived DNA damage to eye cells. This finding could be of some clinical importance when the polysaccharide is used as a delivery system for ophthalmic preparations.

  8. In vitro antioxidant activities of sulfated derivatives of polysaccharides extracted from Auricularia auricular.

    Science.gov (United States)

    Zhang, Hua; Wang, Zhen-Yu; Yang, Lin; Yang, Xin; Wang, Xue; Zhang, Zhi

    2011-01-01

    In this research, two types of sulfated polysaccharide derivatives were successfully synthesized. Their antioxidant activities were investigated by employing various established in vitro systems. In addition, the degree of sulfation was evaluated using ion-chromatography and IR spectra. The results verify that, when employing scavenging superoxide radical tests, both the sulfation of acid Auricularia auricular polysaccharides (SAAAP) and the sulfation of neutral Auricularia auricular polysaccharides (SNAAP) derivatives possessed considerable antioxidant activity and had a more powerful antioxidant competence than that of the native non-sulfated polysaccharides (AAAP and NAAP). On the other hand, AAAP and NAAP exhibited stronger activity on scavenging both the hydroxyl radical and lipid peroxidation. Available data obtained with in vitro measurements indicates that the sulfated groups of AAAP and NAAP played an important role on antioxidant activity. In sum, the research demonstrates that the antioxidant activity of sulfated polysaccharide derivatives in vitro has a potential significance for seeking new natural antioxidant protective agents.

  9. In Vitro Antioxidant Activities of Sulfated Derivatives of Polysaccharides Extracted from Auricularia auricular

    Directory of Open Access Journals (Sweden)

    Zhi Zhang

    2011-05-01

    Full Text Available In this research, two types of sulfated polysaccharide derivatives were successfully synthesized. Their antioxidant activities were investigated by employing various established in vitro systems. In addition, the degree of sulfation was evaluated using ion-chromatography and IR spectra. The results verify that, when employing scavenging superoxide radical tests, both the sulfation of acid Auricularia auricular polysaccharides (SAAAP and the sulfation of neutral Auricularia auricular polysaccharides (SNAAP derivatives possessed considerable antioxidant activity and had a more powerful antioxidant competence than that of the native non-sulfated polysaccharides (AAAP and NAAP. On the other hand, AAAP and NAAP exhibited stronger activity on scavenging both the hydroxyl radical and lipid peroxidation. Available data obtained with in vitro measurements indicates that the sulfated groups of AAAP and NAAP played an important role on antioxidant activity. In sum, the research demonstrates that the antioxidant activity of sulfated polysaccharide derivatives in vitro has a potential significance for seeking new natural antioxidant protective agents.

  10. Synbiotic matrices derived from plant oligosaccharides and polysaccharides

    Science.gov (United States)

    A porous synbiotic matrix was prepared by lyophilization of alginate and pectin or fructan oligosaccharides and polysaccharides cross-linked with calcium. These synbiotic matrices were excellent physical structures to support the growth of Lactobacillus acidophilus (1426) and Lactobacillus reuteri (...

  11. Comparison of intraperitoneal anti-adhesive polysaccharides derived from Phellinus mushrooms in a rat peritonitis model

    OpenAIRE

    2005-01-01

    AIM: To assess the adhesion- and abscess-reducing capacities of various concentrations of polysaccharides derived from fungus, Phellinus gilvus (PG) or Phellinus linteus (PL) in a rat peritonitis model.

  12. In Vitro Antioxidant Activities of Sulfated Derivatives of Polysaccharides Extracted from Auricularia auricular

    OpenAIRE

    Zhi Zhang; Xue Wang; Lin Yang; Xin Yang; Zhen-Yu Wang; Hua Zhang

    2011-01-01

    In this research, two types of sulfated polysaccharide derivatives were successfully synthesized. Their antioxidant activities were investigated by employing various established in vitro systems. In addition, the degree of sulfation was evaluated using ion-chromatography and IR spectra. The results verify that, when employing scavenging superoxide radical tests, both the sulfation of acid Auricularia auricular polysaccharides (SAAAP) and the sulfation of neutral Auricularia auricular polysacc...

  13. Hydrogels of polysaccharide derivatives crosslinked with irradiation at paste-like condition

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio E-mail: yoshii@taka.jaeri.go.jp; Zhao, Long; Wach, Radoslaw A.; Nagasawa, Naotsugu; Mitomo, Hiroshi; Kume, Tamikazu

    2003-08-01

    Polysaccharides such as cellulose, starch, chitin/chitosan and their water-soluble derivatives have been known as degradable type polymers under action of ionizing radiation. Recently, we found that water-soluble polysaccharides derivatives such as carboxymethylcellulose (CMC), carboxymethylstarch (CMS) and carboxymethylchitin (CMCT), carboxymethylchitosan (CMCTS) lead to radiation crosslinking at high concentrated aqueous solution (more than 10%, paste-like state). It was proved that the crosslinking was remarkably affected by their concentration. It was assumed that radiation formation of hydrogels of these polysaccharides derivatives were mainly due to the mobility of side chains. Side-chains radicals were formed mostly via indirect effects, by the abstraction of H atoms by the intermediate products of water radiolysis. Some important characteristics of these novel hydrogels were also investigated. These hydrogels exhibited good swelling in water and possess satisfying biodegradability. In addition, the antibacterial activity against E.coli was also found in CMCTS hydrogel.

  14. Biological activities and potential health benefits of polysaccharides from Poria cocos and their derivatives.

    Science.gov (United States)

    Sun, Yichun

    2014-07-01

    Poria cocos has a long history of medicinal use in Asian countries such as China, Japan, Korea and Thailand. It is a kind of edible and pharmaceutical mushroom. The chemical compositions of Poria cocos mainly include triterpenes, polysaccharides, steroids, amino acids, choline, histidine, etc. Great advances have been made in chemical and bioactive studies on Poria cocos polysaccharides (PCP) and their derivatives in recent decades. These PCP and their derivatives exhibit many beneficial biological activities including anticancer, anti-inflammatory, antioxidant and antiviral activities. Therefore, PCP and their derivatives have great potential for further development as therapy or adjuvant therapy for cancer, immune-modulatory and antiviral drugs. This paper presents an overview of biological activities and potential health benefits of PCP and their derivatives.

  15. Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants

    Directory of Open Access Journals (Sweden)

    Alejandra Moenne

    2011-11-01

    Full Text Available Plants interact with the environment by sensing “non-self” molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense responses in plants enhancing protection against pathogens. In addition, oligosaccharides obtained by depolymerization of seaweed polysaccharides also induce protection against viral, fungal and bacterial infections in plants. In particular, most seaweed polysaccharides and derived oligosaccharides trigger an initial oxidative burst at local level and the activation of salicylic (SA, jasmonic acid (JA and/or ethylene signaling pathways at systemic level. The activation of these signaling pathways leads to an increased expression of genes encoding: (i Pathogenesis-Related (PR proteins with antifungal and antibacterial activities; (ii defense enzymes such as pheylalanine ammonia lyase (PAL and lipoxygenase (LOX which determine accumulation of phenylpropanoid compounds (PPCs and oxylipins with antiviral, antifugal and antibacterial activities and iii enzymes involved in synthesis of terpenes, terpenoids and/or alkaloids having antimicrobial activities. Thus, seaweed polysaccharides and their derived oligosaccharides induced the accumulation of proteins and compounds with antimicrobial activities that determine, at least in part, the enhanced protection against pathogens in plants.

  16. Functional Thermoplastic Materials from Derivatives of Cellulose and Related Structural Polysaccharides

    Directory of Open Access Journals (Sweden)

    Yoshikuni Teramoto

    2015-03-01

    Full Text Available This review surveys advances in the development of various material functionalities based on thermoplastic cellulose and related structural polysaccharide derivatives. First, the dependence of thermal (phase transition behavior on the molecular composition of simple derivatives is rationalized. Next, approaches enabling effective thermoplasticization and further incorporation of material functionalities into structural polysaccharides are discussed. These approaches include: (a single-substituent derivatization, (b derivatization with multi-substituents, (c blending of simple derivatives with synthetic polymers, and (d graft copolymerization. Some examples addressing the control of supramolecular structures and the regulation of molecular and segmental orientations for functional materials fabrication, which have especially progressed over the past decade, are also addressed. Attractive material functions include improved mechanical performance, controlled biodegradability, cytocompatiblity, and optical functions.

  17. Preparation and characterisation of the oligosaccharides derived from Chinese water chestnut polysaccharides.

    Science.gov (United States)

    Wu, Sheng-Jun; Yu, Lin

    2015-08-15

    Hydrogen peroxide (H2O2) is a strong oxidant that cleaves glycosidic bonds in polysaccharides. In this study, the oligosaccharides were prepared by removing the starch from Chinese water chestnuts through hydrolysis using α-amylase and then hydrolysing the remaining polysaccharides with H2O2, during which the oligosaccharide yield was monitored. The yield of oligosaccharide was affected by reaction time, temperature, and H2O2 concentration. Extended reaction times, high temperatures, and high H2O2 concentrations decreased oligosaccharide yield. Under optimum conditions (i.e., reaction time of 4h, reaction temperature of 80°C, and 2.5% H2O2 concentration), the maximum oligosaccharide yield was 3.91%. The oligosaccharides derived from Chinese water chestnuts polysaccharides exhibited strong hydroxyl and 2,2-diphenyl-β-picrylhydrazyl radical scavenging activity when applied at a concentration of 100 μg/mL. The results indicate that the oligosaccharides derived from Chinese water chestnuts polysaccharides possessed good antioxidant properties and can be developed as a new dietary supplement and functional food.

  18. Synthesis of New Branched Polysaccharide by Ring-Opening Polymerization of Anhydro-deoxyglucose Derivative and the Subsequent Glycosylation of the Polysaccharide Derivative; Musui deokishigukoru yudotai no kaikan jugo oyobi porima eno tofuka ni yoru shinki bunshi taso no gosei

    Energy Technology Data Exchange (ETDEWEB)

    Hatanaka, Ken`ichi.; Ota, Sanae.; Kasuya, M.C.Z.; Kanno, Ken`ichi. [Tokyo Institute of Technology, Tokyo (Japan). Department of Biomolecular Engineering

    1998-11-10

    1,6-Anhydro-2-deoxy-glucose derivatives having two kinds of protective groups were polymerized and copolymerized in order to synthesize branched polysaccharides. Deoxy-glucose monomers showed high polymerizability. The obtained polymer was selectively deprotected and then glucosylated to give 2-deoxy-(1{yields}6)-{alpha}-D-glucopyranan with glucose branch at C-3. In the present report, it is firstly described that the comb-shaped branched polysaccharide (100% branching) was synthesized by the glycosylation of the polysaccharide derivative. (author)

  19. Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants

    OpenAIRE

    Alejandra Moenne; Jorge Castro; Jeannette Vera; Alberto Gonzalez

    2011-01-01

    Plants interact with the environment by sensing “non-self” molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae) corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense res...

  20. Lentinula edodes-derived polysaccharide alters the spatial structure of gut microbiota in mice.

    Directory of Open Access Journals (Sweden)

    Xiaofei Xu

    Full Text Available Lentinula edodes-derived polysaccharides possess many therapeutic characteristics, including anti-tumor and immuno-modulation. The gut microbes play a critical role in modulation of immune function. However, the impact of Lentinula edodes-derived polysaccharides on the gut microbes have not yet been explored. In this study, high-throughput pyrosequencing technique was employed to investigate the effects of a new heteropolysaccharide L2 from Lentinula edodes on microbiota diversity and composition of small intestine, cecum, colon and distal end of colon (feces in mice. The results demonstrated that along mouse intestine the microbiota exhibit distinctly different space distribution. L2 treatment reduced the diversity and evenness of gut microbiota along the intestine, especially in the cecum and colon. In the fecal microbial communities, the decrease of Bacteroidetes by significantly increasing Proteobacteria were observed, which were characterized by the increased Helicobacteraceae and reduced S24-7 at family level. Some OTUs, corresponding to Bacteroides acidifaciens, Alistipes and Helicobacter suncus, were found to be significantly increased in L2 treated-mice. In particular, 4 phyla Chloroflexi, Gemmatimonadetes, Nitrospirae and Planctomycetes are exclusively present in L2-treated mice. This is helpful for further demonstrating healthy action mechanism of Lentinula edodes-derived polysaccharide L2.

  1. Preparation and characterization of controlled-release fertilizers coated with marine polysaccharide derivatives

    Science.gov (United States)

    Wang, Jing; Liu, Song; Qin, Yukun; Chen, Xiaolin; Xing, Rong'e.; Yu, Huahua; Li, Kecheng; Li, Pengcheng

    2017-09-01

    Encapsulation of water-soluble nitrogen fertilizers by membranes can be used to control the release of nutrients to maximize the fertilization effect and reduce environmental pollution. In this research, we formulated a new double-coated controlled-release fertilizer (CRF) by using food-grade microcrystalline wax (MW) and marine polysaccharide derivatives (calcium alginate and chitosan-glutaraldehyde copolymer). The pellets of water-soluble nitrogen fertilizer were coated with the marine polysaccharide derivatives and MW. A convenient and eco-friendly method was used to prepare the CRF. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the morphology and composition of the products. The nitrogen-release properties were determined in water using UV-Vis spectrophotometry. The controlled-release properties of the fertilizer were improved dramatically after coating with MW and the marine polysaccharide derivatives. The results show that the double-coated CRFs can release nitrogen in a controlled manner, have excellent controlled-release features, and meet the European Standard for CRFs.

  2. Preparation and characterization of controlled-release fertilizers coated with marine polysaccharide derivatives

    Science.gov (United States)

    Wang, Jing; Liu, Song; Qin, Yukun; Chen, Xiaolin; Xing, Rong'e.; Yu, Huahua; Li, Kecheng; Li, Pengcheng

    2016-10-01

    Encapsulation of water-soluble nitrogen fertilizers by membranes can be used to control the release of nutrients to maximize the fertilization effect and reduce environmental pollution. In this research, we formulated a new double-coated controlled-release fertilizer (CRF) by using food-grade microcrystalline wax (MW) and marine polysaccharide derivatives (calcium alginate and chitosan-glutaraldehyde copolymer). The pellets of water-soluble nitrogen fertilizer were coated with the marine polysaccharide derivatives and MW. A convenient and eco-friendly method was used to prepare the CRF. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the morphology and composition of the products. The nitrogen-release properties were determined in water using UV-Vis spectrophotometry. The controlled-release properties of the fertilizer were improved dramatically after coating with MW and the marine polysaccharide derivatives. The results show that the double-coated CRFs can release nitrogen in a controlled manner, have excellent controlled-release features, and meet the European Standard for CRFs.

  3. Separation of piracetam derivatives on polysaccharide-based chiral stationary phases.

    Science.gov (United States)

    Kažoka, H; Koliškina, O; Veinberg, G; Vorona, M

    2013-03-15

    High-performance liquid chromatography was used for the enantiomeric separation of two chiral piracetam derivatives. The suitability of six commercially available polysaccharide-based chiral stationary phases (CSPs) under normal phase mode for direct enantioseparation has been investigated. The influence of the CSPs as well the nature and content of an alcoholic modifier in the mobile phase on separation and elution order was studied. It was established that CSP Lux Amylose-2 shows high chiral recognition ability towards 4-phenylsubstituted piracetam derivatives. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Comparison of intraperitoneal anti-adhesive polysaccharides derived from Phellinus mushrooms in a rat peritonitis model

    Institute of Scientific and Technical Information of China (English)

    Jae-Sung Bae; Kwang-Ho Jang; Hee-Kyung Jin

    2005-01-01

    AIM: To assess the adhesion- and abscess-reducing capacities of various concentrations of polysaccharides derived from fungus, Phellinus gilvus (PG) or Phellinus linteus (PL) in a rat peritonitis model.METHODS: In 96 SD rats, experimental peritonitis was induced using the cecal ligation and puncture model (CLP).Rats were randomly assigned to 8 groups; Ringer's lactate solution (RL group), hyaluronic acid (HA group), 0.025%,0.25%, and 0.5% polysaccharides from PG (PG0.025, 0.25,and 0.5 groups), and PL (PL0.025, 0.25, and 0.5 groups).Adhesions and abscesses were noted at 7 d after CLP.RT-PCR assay was performed to assess the cecal tissue.RESULTS: Adhesion formation was significantly reduced in PG0.25, 0.5, PL0.25, 0.5, and HA groups (2.5±0.7,2.4±0.7, 3.8±1.0, 3.6±0.8, and 2.7±1.1, P<0.05). The incidence of abscesses was significantly reduced in all treated groups compared to RL group (58%, P<0.05). The urokinase-type plasminogen activator (uPA) gene expression was greatly up-regulated by increasing the concentration of polysaccharides. The urokinase-type plasminogen activator receptor (uPAR) and tumor necrosis factor (TNF)-α mRNA were highly expressed in PG0.25, 0.5, PL0.25, and 0.5groups.CONCLUSION: We concluded that 0.5% polysaccharide derived from PG and PL was the optimal concentration in preventing adhesion and abscess formation and may act by modulating activity of uPA and TNF-α in a rat peritonitis model.

  5. Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative.

    Science.gov (United States)

    Chen, Lulu; Ren, Zhi; Zhou, Xuedong; Zeng, Jumei; Zou, Jing; Li, Yuqing

    2016-01-01

    Dental caries, a biofilm-related oral disease, is a result of disruption of the microbial ecological balance in the oral environment. Streptococcus mutans, which is one of the primary cariogenic bacteria, produces glucosyltransferases (Gtfs) that synthesize extracellular polysaccharides (EPSs). The EPSs, especially water-insoluble glucans, contribute to the formation of dental plaque, biofilm stability, and structural integrity, by allowing bacteria to adhere to tooth surfaces and supplying the bacteria with protection against noxious stimuli and other environmental attacks. The identification of novel alternatives that selectively inhibit cariogenic organisms without suppressing oral microbial residents is required. The goal of the current study is to investigate the influence of an oxazole derivative on S. mutans biofilm formation and the development of dental caries in rats, given that oxazole and its derivatives often exhibit extensive and pharmacologically important biological activities. Our data shows that one particular oxazole derivative, named 5H6, inhibited the formation of S. mutans biofilms and prevented synthesis of extracellular polysaccharides by antagonizing Gtfs in vitro, without affecting the growth of the bacteria. In addition, topical applications with the inhibitor resulted in diminished incidence and severity of both smooth and sulcal surface caries in vivo with a lower percentage of S. mutans in the animals' dental plaque compared to the control group (P < 0.05). Our results showed that this oxazole derivative has the capacity to inhibit biofilm formation and cariogenicity of S. mutans.

  6. Interactions and hybrid complex formation of anionic algal polysaccharides with a cationic glycine betaine-derived surfactant.

    Science.gov (United States)

    Covis, Rudy; Vives, Thomas; Gaillard, Cédric; Benoit, Maud; Benvegnu, Thierry

    2015-05-01

    The interaction between anionic algal polysaccharides ((κ)-, (ι)-, (λ)-carrageenans, alginate and ulvan) and a cationic glycine betaine (GB) amide surfactant possessing a C18:1 alkyl chain has been studied using isothermal titration calorimetry (ITC), zeta-potential measurements, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), and surface tension measurements. It was observed that this cationic surfactant derived from renewable raw materials induced cooperative binding with the anionic polymers at critical aggregation concentration (CAC) and the CAC values are significantly lower than the corresponding critical micelle concentration (CMC) for the surfactant. The CMC of cationic GB surfactant was obtained at higher surfactant concentration in polysaccharide solution than in pure water. More interestingly, the presence of original polysaccharide/surfactant hybrid complexes formed above the CMC value was evidenced from (κ)-carrageenan by microscopy (TEM and AFM). Preliminary investigations of the structure of these complexes revealed the existence of surfactant nanoparticles surrounded with polysaccharide matrix, probably resulting from electrostatic attraction. In addition, ITC measurements clearly showed that the interactions of the κ-carrageenan was stronger than for other polysaccharides ((ι)-, (λ)-carrageenans, alginate and ulvan). These results may have important impact on the use of the GB amide surfactant in formulations based on algal polysaccharides for several applications such as in food, cosmetics, and detergency fields.

  7. Effects of a chemically derived homo zwitterionic polysaccharide on immune activation in mice

    Institute of Scientific and Technical Information of China (English)

    Chun Meng; Xu Peng; Xian'ai Shi; Hang Wang; Yanghao Guo

    2009-01-01

    In this study, a chemically modified homo zwitterionic polysaccharide (ZPS), sulfated chitosan, was used to examine its effects on murine immune response. The results showed that homoZPS could markedly promote the proliferation of both splenic T/B cells and adhesive cells. In particular, flow cytometry assay demonstrated that the sulfated chitosan could non-specifically activate CD3+ and CD8+ T cells proliferation in vitro. The effectiveness of sulfated chitosan as adjuvant was tested using bovine serum albumin (BSA) and diphtheria toxin (DT) as antigens and compared with that of aluminum hydroxide. The levels of specific antibodies to BSA and DT significantly increased after homoZPS vaccination. Both homoZPS and aluminum hydroxide adjuvants could protect mice against the attack of DT from edemas of spleen and tail. The present findings demonstrated the chemically derived homoZPS could be a potential candidate in the development of T-lym-phocyte dependent vaccine adjuvants.

  8. Study on gadolinium complexes based on polysaccharide derivatives as a contrast agent for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hashiguchi, Yuji; Seri, Shigemi; Kubomura, Kan; Abe, Yukiko; Kamimura, Kenji; Fujimoto, Chieko; Iguchi, Toshio; Iwai, Kumiko (Nihon Medi-Physics Co., Ltd., Sodegaura, Chiba (Japan))

    1993-05-01

    The authors report new gadolinium compounds, polysaccharide-gadolinium chelate, that have the enhancement property in magnetic resonance imaging (MRI) as well as a longer half-life time in blood. Dialdehyde starch (DAS ; mol. wt. 7 x 10[sup 3]) and dialdehyde amylose (DAA ; mol. wt. 3 x 10[sup 3]) were synthesized to increase the half-life time in blood. The binding of gadolinium to DAS or DAA was facilitated by the newly synthesized bifunctional chelating agents N-[2-bis(carboxymethyl)aminoethyl] -N-[2-bis(carboxymethyl)amino -2(p-benzyl)ethyl]glycine (ABDTPA) and 10-[N-(2-aminoethyl)carbamoyl]methyl-[alpha], [alpha]', [alpha]''-trimethyl-1,4,7,10 -tetraazacyclododecane-1,4,7-triacetic acid (DO 3 MA). The enhancement properties of resulting gadolinium compounds were evaluated for biodistribution, relaxivity and enhancement effect. Biodistribution was examined by use of [sup 111]In labelled complex. Relaxivity was measured at 0.5T and 1.5T. Enhancement effect was examined in vivo by using rats that have brain occlusions. Gadolinium(Gd) complexes with DAS or DAA were found to be staying in the blood vessel for a longer period of time than other existing enhancers. The half-life time of DAS-ABDTPA-Gd is 2h, while as DAA-ABDTPA-Gd is 55 min, eighty to ninety percent of gadolinium complexes bound to DAS or DAA were excreted in urine 24 h after administration. Relaxivities of the above gadolinium complexes were 1.2[approx]2 times as high as those of ABDTPA-Gd or DO 3 MA-Gd. These results demonstrate that gadolinium complexes based on polysaccharide derivatives are promising compounds for future use as MRI enhancers. (author).

  9. Characterization and cytotoxic activity of sulfated derivatives of polysaccharides from Agaricus brasiliensis.

    Science.gov (United States)

    Cardozo, F T G S; Camelini, C M; Cordeiro, M N S; Mascarello, A; Malagoli, B G; Larsen, I V; Rossi, M J; Nunes, R J; Braga, F C; Brandt, C R; Simões, C M O

    2013-06-01

    Agaricus brasiliensis cell-wall polysaccharides isolated from fruiting body (FR) and mycelium (MI) and their respective sulfated derivatives (FR-S and MI-S) were chemically characterized using elemental analysis, TLC, FT-IR, NMR, HPLC, and thermal analysis. Cytotoxic activity was evaluated against A549 tumor cells by MTT and sulforhodamine assays. The average molecular weight (Mw) of FR and MI was estimated to be 609 and 310 kDa, respectively. FR-S (127 kDa) and MI-S (86 kDa) had lower Mw, probably due to hydrolysis occurring during the sulfation reaction. FR-S and MI-S presented ~14% sulfur content in elemental analysis. Sulfation of samples was characterized by the appearance of two new absorption bands at 1253 and 810 cm(-1) in the infrared spectra, related to S=O and C-S-O sulfate groups, respectively. Through (1)H and (13)C NMR analysis FR-S was characterized as a (1→6)-(1→3)-β-D-glucan fully sulfated at C-4 and C-6 terminal and partially sulfated at C-6 of (1→3)-β-D-glucan moiety. MI-S was shown to be a (1→3)-β-D-gluco-(1→2)-β-D-mannan, partially sulfated at C-2, C-3, C-4, and C-6, and fully sulfated at C-6 of the terminal residues. The combination of high degree of sulfation and low molecular weight was correlated with the increased cytotoxic activity (48 h of treatment) of both FR-S (EC₅₀=605.6 μg/mL) and MI-S (EC₅₀=342.1 μg/mL) compared to the non-sulfated polysaccharides FR and MI (EC₅₀>1500 μg/mL).

  10. Characterization, antioxidant and cytotoxic activity of sulfated derivatives of a water-insoluble polysaccharides from Dictyophora indusiata.

    Science.gov (United States)

    Deng, Chao; Xu, Jingjing; Fu, Haitian; Chen, Jinghua; Xu, Xin

    2015-04-01

    The present study described the characterization and biological properties of water‑soluble sulfated polysaccharides prepared from water‑insoluble polysaccharide (DIP), which were extracted from Dictyophora indusiata. The sulfation of DIP was performed using the chlorosulfonic acid‑pyridine method. The water solubilities of the sulfated derivatives were measured at room temperature according to the Chinese Pharmacopoeia. The scavenging activity of hydroxyl radicals and 1,1‑diphenyl‑2‑picrylhydrazyl (DPPH) as determined, together with the reduction ability of the sulfated polysaccharides. The cytotoxic and antiproliferative effects of DIP and the sulfated derivatives on MCF‑7 and B16 cells were then determined using an MTT assay. The substitution degrees of the sulfated polysaccharides were 0.584 (S1‑DIP), 0.989 (S2‑DIP) and 1.549 (S3‑DIP) according to barium chloride‑gelatin nephelometry. Infrared spectroscopy and 13C‑nuclear magnetic resonance indicated that the substitution of S‑DIP occurred mainly at the C‑6 position, followed by the C‑4 and C‑2 positions. A significant increase was noted in the antioxidant activity of the sulfated derivatives compared with that of DIP. In addition, the S‑DIPs exhibited a more marked reducing capacity and clearing activity of hydroxyl radicals and DPPH. This indicated that the antioxidant capacity of the polysaccharides was significantly higher following sulfation. Furthermore, in in vitro cell investigations, DIP exhibited no inhibitory effects on the growth of the B16 or MCF‑7 tumor cells. However, the sulfated derivatives exerted marked inhibitory effects on these cell lines. Sulfate modification may therefore contribute to an improvement in water solubility and in the antioxidant and antitumor activities of natural DIP.

  11. Synthesis and antimicrobial activity of polysaccharide alginate derived cationic surfactant-metal(II) complexes.

    Science.gov (United States)

    Tawfik, Salah M; Hefni, Hassan H

    2016-01-01

    New natural polysaccharide carbohydrate derivatives of sodium alginate surfactant and its cobalt, copper and zinc complexes were synthesized. Structures of the synthesized compounds are reported using FTIR, (1)H NMR and UV-vis. The critical micelle concentration (CMC) value of the alginate surfactant and its metal complexes in aqueous solution was found out from surface tension measurements. Surface tension data at different temperatures served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔGmic, ΔHmic, ΔSmic) and adsorption (ΔGads, ΔGads, ΔSads). The surface activities of the synthesized polymeric surfactant and its metal complexes were influenced by their chemical structures and the type of the transition metals. These compounds were evaluated against Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and fungi (Candida albicans and Asperigllus niger). The antibacterial and antifungal screening tests of the alginate surfactant metal complexes have shown good results compared to its precursor alginate surfactant.

  12. Polysaccharide from Lentinus edodes inhibits the immunosuppressive function of myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Hao Wu

    Full Text Available Reversing the function of immune suppressor cells may improve the efficacy of cancer therapy. Here, we have isolated a novel polysaccharide MPSSS (577.2 Kd from Lentinus edodes and examined its effects on differentiation and function of myeloid-derived suppressor cells (MDSCs. MPSSS is composed of glucose (75.0%, galactose (11.7%, mannose (7.8%, and xylose (0.4%. In vivo, it inhibits the growth of McgR32 tumor cells, which is correlated with a reduced percentage of MDSCs in peripheral blood. In vitro, it induces both morphological and biophysical changes in MDSCs. Importantly, MPSSS up-regulates MHC II and F4/80 expression on MDSCs, and reverses their inhibition effect on CD4(+ T cells in a dose-dependent manner. The mechanism study shows that MPSSS may stimulate MDSCs through a MyD88 dependent NF-κB signaling pathway. Together, we demonstrated for the first time that MPSSS stimulates the differentiation of MDSCs and reverses its immunosuppressive functions, shedding new light on developing novel anti-cancer strategies by targeting MDSCs.

  13. Olefin cross-metathesis as a source of polysaccharide derivatives: cellulose ω-carboxyalkanoates.

    Science.gov (United States)

    Meng, Xiangtao; Matson, John B; Edgar, Kevin J

    2014-01-13

    Cross-metathesis has been shown for the first time to be a useful method for the synthesis of polysaccharide derivatives, focusing herein on preparation of cellulose ω-carboxyalkanoates. Commercially available cellulose esters were first acylated with 10-undecenoyl chloride, providing esters with olefin-terminated side chains. Subsequent cross-metathesis of these terminal olefin moieties with acrylic acid was performed in solvents including acrylic acid, THF, and CH2Cl2. Complete conversion to discrete, soluble cross-metathesis products was achieved by using the Hoveyda-Grubbs second generation ruthenium catalyst and an excess of acrylic acid. Oligomerization during storage, caused by a free radical mechanism, was observed and successfully suppressed by the addition of a free radical scavenger (BHT). Furthermore, the cross-metathesis products exhibited glass transition temperatures (Tg) that were at least 50 °C higher than ambient temperature, supporting the potential for application of these polymers as amorphous solid dispersion matrices for enhancing drug aqueous solubility.

  14. Selective Michael-type addition of a D-glucuronic acid derivative in the synthesis of model substances for uronic acid containing polysaccharides

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available A flexible protocol for the preparation of model substances for uronic acid containing polysaccharides is presented. We have synthesized a D-glucuronic acid derivative which is designed so that it easily can be conjugated with different structures and architectures by selective Michael-type addition. By successful coupling of the glucuronic acid derivative to polyethylene glycol with high degree of conversion, products were obtained that were easily characterized and which resembled polysaccharides in terms of solubility and purification methods that could be employed. The model substance can potentially be used to facilitate optimization of low-degree modification reactions of high molecular weight D-glucuronic acid containing polysaccharides.

  15. Reprint of: Nitric oxide-releasing polysaccharide derivative exhibits 8-log reduction against Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus.

    Science.gov (United States)

    Pegalajar-Jurado, Adoracion; Wold, Kathryn A; Joslin, Jessica M; Neufeld, Bella H; Arabea, Kristin A; Suazo, Lucas A; McDaniel, Stephen L; Bowen, Richard A; Reynolds, Melissa M

    2015-12-28

    Health-care associated infections (HAIs) and the increasing number of antibiotic-resistant bacteria strains remain significant public health threats worldwide. Although the number of HAIs has decreased by using improved sterilization protocols, the cost related to HAIs is still quantified in billions of dollars. Furthermore, the development of multi-drug resistant strains is increasing exponentially, demonstrating that current treatments are inefficient. Thus, the quest for new methods to eradicate bacterial infection is increasingly important in antimicrobial, drug delivery and biomaterials research. Herein, the bactericidal activity of a water-soluble NO-releasing polysaccharide derivative was evaluated in nutrient broth media against three bacteria strains that are commonly responsible for HAIs. Data confirmed that this NO-releasing polysaccharide derivative induced an 8-log reduction in bacterial growth after 24h for Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus. Additionally, the absence of bacteria after 72 h of exposure to NO illustrates the inability of the bacteria to recover and the prevention of biofilm formation. The presented 8-log reduction in bacterial survival after 24h is among the highest reduction reported for NO delivery systems to date, and reaches the desired standard for industrially-relevant reduction. More specifically, this system represents the only water-soluble antimicrobial to reach such a significant bacterial reduction in nutrient rich media, wherein experimental conditions more closely mimic the in vivo environment than those in previous reports. Furthermore, the absence of bacterial activity after 72 h and the versatility of using a water-soluble compound suggest that this NO-releasing polysaccharide derivative is a promising route for treating HAIs.

  16. A new precursor for the immobilization of enzymes inside sol-gel-derived hybrid silica nanocomposites containing polysaccharides.

    Science.gov (United States)

    Shchipunov, Yurii A; Karpenko, Tat'yana Yu; Bakunina, Irina Yu; Burtseva, Yuliya V; Zvyagintseva, Tat'yana N

    2004-01-30

    Tetrakis(2-hydroxyethyl) orthosilicate (THEOS) introduced by Hoffmann et al. (J. Phys. Chem. B., 106 (2002) 1528) was first used to prepare hybrid nanocomposites containing various polysaccharides and immobilize enzymes in these materials. Two different types of O-glycoside hydrolyses (EC3.2.1), 1-->3-beta-D-glucanase LIV from marine mollusk Spisula sacchalinensis and alpha-D-galactosidase from marine bacterium Pseudoalteromonas sp. KMM 701, were taken for the immobilization. To reveal whether the polysaccharide inside the hybrid material influences the enzyme entrapment and functioning, negatively charged xanthan, cationic derivative of hydroxyethylcellulose and uncharged locust bean gum were examined. The mechanical properties of these nanocomposites were characterized by a dynamic rheology and their structure by a scanning electron microscopy. It was found that 1-->3-beta-D-glucanase was usually immobilized without the loss of its activity, while the alpha-D-galactosidase activity in the immobilized state depended on the polysaccharide type of material. An important point is that the amount of immobilized enzymes was small, comparable to their content in the living cells. It was shown by the scanning electron microscopy that the hybrid nanocomposites are sufficiently porous that allows the enzymatic substrates and products to diffuse from an external aqueous solution to the enzymes, whereas protein molecules were immobilized firmly and not easily washed out of the silica matrix. A sharp increase of the enzyme lifetime (more than a hundred times) was observed after the immobilization. As established, the efficient entrapment of enzymes is caused by few advantages of new precursor over the currently used TEOS and TMOS: (i) organic solvents and catalysts are not needed owing to the complete solubility of THEOS in water and the catalytic effect of polysaccharides on the sol-gel processes; (ii) the entrapment of enzymes can be performed at any pH which is suitable

  17. Immune adjuvant effect of V. cholerae O1 derived Proteoliposome coadministered by intranasal route with Vi polysaccharide from Salmonella Typhi.

    Science.gov (United States)

    Acevedo, Reinaldo; Callicó, Adriana; Aranguren, Yisabel; Zayas, Caridad; Valdés, Yolanda; Pérez, Oliver; García, Luis; Ferro, Valerie A; Pérez, José Luis

    2013-01-01

    The proteoliposome derived from Vibrio cholerae O1 (PLc) is a nanoscaled structure obtained by a detergent extraction process. Intranasal (i.n) administration of PLc was immunogenic at mucosal and systemic level vs. V. cholerae; however the adjuvant potential of this structure for non-cholera antigens has not been proven yet. The aim of this work was to evaluate the effect of coadministering PLc with the Vi polysaccharide antigen (Poli Vi) of S. Typhi by the i.n route. The results showed that Poli Vi coadministered with PLc (PLc+Poli Vi) induce a higher IgA response in saliva (p0.05) to that induced in a group of mice immunised by the parenteral route with the Cuban anti-typhoid vaccine vax-TyVi, although this vaccine did not induce a mucosal response. In conclusion, this work demonstrates that PLc can be used as a mucosal adjuvant to potentiate the immune response against a polysaccharide antigen like Poli Vi.

  18. Jellyfish skin polysaccharides: extraction and inhibitory activity on macrophage-derived foam cell formation.

    Science.gov (United States)

    Zhang, Hai-Lin; Cui, Shao-Hua; Zha, Xue-Qiang; Bansal, Vibha; Xue, Lei; Li, Xiao-Long; Hao, Ran; Pan, Li-Hua; Luo, Jian-Ping

    2014-06-15

    In this work, response surface methodology was used to determine optimum conditions for extraction of polysaccharides from jellyfish skin (JSP). The optimum parameters were found to be raw material to water ratio 1:7.5 (w/v), extraction temperature 100°C and extraction time 4h. Under these conditions, the JSP yield reached 1.007 mg/g. Papain (15 U/mL) in combination with Sevag reagent was beneficial in removing proteins from JSP. After precipitation with ethanol at final concentration of 40%, 60% and 80% in turn, three polysaccharide fractions of JSP1, JSP2 and JSP3 were obtained from JSP, respectively. The three fractions exhibited different physicochemical properties with respect to molecular weight distribution, monosaccharide composition, infrared absorption spectra, and glycosyl bond composition. In addition, JSP3 showed strong inhibitory effects on oxidized low-density lipoprotein (oxLDL) induced conversion of macrophages into foam cells, which possibly attributed to the down-regulation of some atherogenesis-related gene expressions.

  19. Optimizing Your K-5 Engineering Design Challenge

    Science.gov (United States)

    Coppola, Matthew Perkins; Merz, Alice H.

    2017-01-01

    Today, elementary school teachers continue to revisit old lessons and seek out new ones, especially in engineering. Optimization is the process by which an existing product or procedure is revised and refined. Drawn from the authors' experiences working directly with students in grades K-5 and their teachers and preservice teachers, the…

  20. Optimizing Your K-5 Engineering Design Challenge

    Science.gov (United States)

    Coppola, Matthew Perkins; Merz, Alice H.

    2017-01-01

    Today, elementary school teachers continue to revisit old lessons and seek out new ones, especially in engineering. Optimization is the process by which an existing product or procedure is revised and refined. Drawn from the authors' experiences working directly with students in grades K-5 and their teachers and preservice teachers, the…

  1. Novel analysis of maturation of murine bone-marrow-derived dendritic cells induced by Ginkgo Seed Polysaccharides.

    Science.gov (United States)

    Chen, Yinghan; Meng, Yiming; Cao, Yan; Wen, Hua; Luo, Hong; Gao, Xinghua; Shan, Fengping

    2015-01-01

    Our understanding of the mechanisms of effect of Ginkgo Seed Polysaccharides (GSPs) on the immune system remains unclear. The aim of this work was to investigate the effect of GSPs on the maturation and function of bone-marrow-derived dendritic cells (BMDCs). The results demonstrate that GSP could exert positive immune modulation on the maturation and functions of BMDCs. This effect was evidenced by decreased changes of phagosome number inside BMDCs, decreased activity of acidic phosphatase (ACP), decreased phagocytosis of BMDCs, and increased changes of key membrane molecules on BMDCs. Upregulated production of cytokines IL-12 and TNF-α also was confirmed. Therefore, it can be concluded that GSPs can efficiently induce the maturation of BMDCs. Our exploration provides direct data and a rationale for potential application of GSPs as an immune enhancer in improving immunity and as a potent adjuvant in the design of DC-based vaccines.

  2. Chemically-modified polysaccharide extract derived from Leucaena leucocephala alters Raw 264.7 murine macrophage functions.

    Science.gov (United States)

    Gamal-Eldeen, Amira M; Amer, Hassan; Helmy, Wafaa A; Talaat, Roba M; Ragab, Halla

    2007-06-01

    In this study, a chemical modification of the polysaccharides extract (E) derived from Leucaena leucocephala seeds was performed to prepare C-glycosidic 2-propanol derivative (PE), and its sulphated derivative (SPE). This study aimed to characterize immunomodulatory activities of the original extract and its derivatives by exploring their effects on Raw macrophage 264.7 functions and their antioxidant activity. Our results indicated that PE was an effective radical scavenger to hydroxyl, peroxyl, and superoxide anion radicals, and SPE was a peroxyl radical scavenger. PE and SPE were found to influence the macrophage functions. Both of PE and SPE enhanced the macrophage proliferation and phagocytosis of FITC-zymosan; PE inhibited nitric oxide (NO) generation and tumor necrosis factor-alpha (TNF-alpha) secretion in lipopolysaccharide (LPS)-stimulated Raw macrophage 264.7. In contrast, SPE over-induced NO generation and TNF-alpha secretion. Moreover, PE strongly inhibited the binding affinity of FITC-LPS to Raw 264.7, as indicated by flow cytometry analysis. These findings revealed that PE may act as a potent anti-inflammatory agent; however SPE may act as an inducer of macrophage functions against pathogens.

  3. Polysaccharide Degradation

    Science.gov (United States)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  4. Superabsorbent polysaccharide hydrogels based on pullulan derivate as antibacterial release wound dressing.

    Science.gov (United States)

    Li, Huanan; Yang, Jing; Hu, Xiaona; Liang, Jie; Fan, Yujiang; Zhang, Xingdong

    2011-07-01

    To accomplish ideal wound dressing, hydrogels based on a natural polysaccharide, pullulan were synthesized by chemical cross-linking. The tensile strengths of the hydrogel films (1 mm thick) were determined to range from 0.663 to 1.097 MPa in proportion to cross-linking degrees and water contents. The swelling study of the hydrogels in water showed remarkable water absorption property with swelling ratio up to 4000%, which provided the hydrogel with quick hemostatic ability and prevent the wound bed from accumulation of exudates. The water vapor transmission rate and water retention of the hydrogels were found to be in the range of 2213-3498 g/m²/day and 34.74-45.81% (after 6 days), indicating that the hydrogel can maintain a moist environment over wound bed, which could prevent the dehydration of the wound bed and prevent the scab formation. Biocompatibility test revealed that the hydrogels were not cytotoxic. The hydrogel could load antimicrobial agents and effectively suppress bacterial proliferation to protect the wound from bacterial invasion. These results suggest that the pullulan hydrogels prepared in this study may have high potential as new ideal wound-dressing materials.

  5. Pacific oyster-derived polysaccharides attenuate allergen-induced intestinal inflammation in a murine model of food allergy

    Directory of Open Access Journals (Sweden)

    Chiung-Hsiang Cheng

    2016-01-01

    Full Text Available Oyster-derived polysaccharides (OPS have been shown to modulate the T helper (Th1/Th2 immunobalance toward the Th1-dominant direction in antigen-primed splenocytes. In the present study, we hypothesized that OPS might attenuate intestinal inflammation associated with food allergy, a Th2-dominant immune disorder. BALB/c mice were sensitized twice with ovalbumin (OVA absorbed to alum and then repeatedly challenged with intragastric OVA to induce intestinal allergic responses. The mice were administered by gavage with OPS and/or vehicle (distilled water once/d during the two sensitization phases, and once every other day during the challenge phase. Administration with OPS attenuated OVA challenge-elicited diarrhea, and the infiltration of mast cells in the intestine. OPS demonstrated a protective effect on the reduced ratio of villus length over crypt depth of the intestine in allergic mice. Furthermore, OPS administration markedly attenuated the intestinal expression of the Th2 signature cytokine interleukin-4 (IL-4. Collectively, these results demonstrated the in vivo antiallergic activity of OPS, which is associated with the suppression of allergen-induced intestinal Th2 responses and mast cell activation.

  6. Biocompatible and fluorescent superparamagnetic iron oxide nanoparticles with superior magnetic properties coated with charged polysaccharide derivatives.

    Science.gov (United States)

    Lachowicz, Dorota; Szpak, Agnieszka; Malek-Zietek, Katarzyna E; Kepczynski, Mariusz; Muller, Robert N; Laurent, Sophie; Nowakowska, Maria; Zapotoczny, Szczepan

    2017-02-01

    Syntheses and characterizations of biocompatible superparamagnetic iron oxide nanoparticles with embedded curcumin and coated with ultrathin layer of hyaluronic acid-curcumin (HA-Cur) conjugate have been reported. Zeta potential measurements confirmed effective coating of native iron oxide nanoparticles stabilized by cationic derivative of chitosan (SPION-CCh) with the synthesized HA-Cur conjugate. Both SPIONs with embedded curcumin and the ones coated with HA-Cur (SPION-CCh/HA-Cur) revealed desired magnetic characteristics while fluorescent properties were much better for the coated nanoparticles. SPION-CCh/HA-Cur nanoparticles were shown to be very promising candidates for T2 MRI contrast agents as they can easily penetrate cell membrane and their relaxivity is exceptionally high (ca. 470mM(-1)s(-1)). They may be also tracked using confocal fluorescence microscopy due to the presence of fluorescent curcumin in the coating. In vitro studies indicated that the obtained SPIONs-CCh/HA-Cur were non-toxic for EA.hy926 endothelial cells.

  7. Structural characterization and solution properties of a galacturonate polysaccharide derived from Aloe vera capable of in situ gelation.

    Science.gov (United States)

    McConaughy, Shawn D; Stroud, Paul A; Boudreaux, Brent; Hester, Roger D; McCormick, Charles L

    2008-02-01

    A series of highly purified galacturonate polysaccharides have been extracted from the Aloe vera plant and analyzed in terms of chemical composition and molecular weight. This Aloe vera polysaccharide (AvP) has been found to exist as a high molecular weight species and possess a unique chemical composition, including a high galacturonic acid (GalA) content and low degree of methyl ester substitution. These factors facilitate gel formation upon exposure to low concentrations of calcium ions, leading to potential application in formulations designed for in situ nasal or subcutaneous protein delivery. Thorough examination of classic dilute solution properties, the [eta]-M(w), and R(g)-M(w) relationships, persistence length (L(p)), and inherent chain stiffness (B parameter), indicate an expanded random coil in aqueous salt solutions. The critical concentration for transition from dilute to concentrated solution, C(e), was determined by measuring both the zero shear viscosity (eta(o)) and fluorescence emission of the probe molecule 1,8-anilino-1-naphthalene sulfonic acid (1,8-ANS) as a function of polymer concentration. Examination of zeta potential and C(e) as a function of ionic strength indicates that the shift in C(e) from 0.60 to 0.30 wt % is related to an increased occurrence of intermolecular interactions at high salt concentrations. Additionally, dynamic rheology data are presented highlighting the ability of AvP to form gels at low polymer and calcium ion concentrations, exemplifying the technological potential of this polysaccharide for in situ drug delivery.

  8. Gifted Education and National Standards: A K-5 Program Evaluation

    Science.gov (United States)

    Harwell-Braun, Debra A.

    2010-01-01

    The purpose of this study was to conduct a program evaluation of a K-5 Gifted Education Program. Program evaluation addressed how well the gifted education program studied met the National Association of Gifted Children standards. In addition, this study included stakeholder perceptions of the current gifted education program K-5. This program…

  9. NMR and molecular dynamics studies of the conformational epitope of the type III group B Streptococcus capsular polysaccharide and derivatives.

    Science.gov (United States)

    Brisson, J R; Uhrinova, S; Woods, R J; van der Zwan, M; Jarrell, H C; Paoletti, L C; Kasper, D L; Jennings, H J

    1997-03-18

    The conformational epitope of the type III group B Streptococcus capsular polysaccharide (GBSP III) exhibits unique properties which can be ascribed to the presence of sialic acid in its structure and the requirement for an extended binding site. By means of NMR and molecular dynamics studies on GBSP III and its fragments, the extended epitope of GBSP III was further defined. The influence of sialic acid on the conformational properties of GBSP III was examined by performing conformational analysis on desialylated GBSP III, which is identical to the polysaccharide of Streptococcus pneumoniae type 14, and also on oxidized and reduced GBSP III. Conformational changes were gauged by 1H and 13C chemical shift analysis, NOE, 1D selective TOCSY-NOESY experiments, J(HH) and J(CH) variations, and NOE of OH resonances. Changes in mobility were examined by 13C T1 and T2 measurements. Unrestrained molecular dynamics simulations with explicit water using the AMBER force field and the GLYCAM parameter set were used to assess static and dynamic conformational models, simulate the observable NMR parameters and calculate helical parameters. GBSP III was found to be capable of forming extended helices. Hence, the length dependence of the conformational epitope could be explained by its location on extended helices within the random coil structure of GBSP III. The interaction of sialic acid with the backbone of the PS was also found to be important in defining the conformational epitope of GBSP III.

  10. Chiral recognition of N-phthaloyl, N-tetrachlorophthaloyl, and N-naphthaloyl α-amino acids and their esters on polysaccharide-derived chiral stationary phases.

    Science.gov (United States)

    Kim, Byoung-Hyoun; Lee, Sang Uck; Moon, Dong Cheul

    2012-12-01

    Enantiomeric separations of N-phthaloyl (N-PHT), N-tetrachlorophthaloyl (N-TCPHT), and N-naphthaloyl (N-NPHT) α-amino acids and their esters were examined on several kinds of polysaccharide-derived chiral stationary phases (CSPs). Resolution capability of CSPs was greater Chiralcel OF than the others for N-PHT and N-NPHT α-amino acids and their esters. In N-TCPHT α-amino acids and their esters, good enantioselectivities showed Chiralcel OG for N-TCPHT α-amino acids, Chiralpak AD for N-TCPHT α-amino acid methyl esters, and Chiralcel OD for N-TCPHT α-amino acid ethyl esters, respectively. From the results of liquid chromatography and computational chemistry, it is concluded that l-form is preferred and more retained with electrostatic interaction in case of interaction between N-PHT α-amino acid derivatives and Chiralcel OF, N-TCPHT α-amino acid derivatives and Chiralcel OD, and N-NPHT α-amino acid derivatives and Chiracel OF. On the other hand, d-form is preferred and more retained with van der Waals interaction in case of interaction between N-TCPHT α-amino acid ester derivatives and Chiralcel OG and Chiralpak AD.

  11. On the Crossing Numbers of K5×Sn%K5×Sn的交叉数

    Institute of Scientific and Technical Information of China (English)

    吕胜祥; 黄元秋

    2008-01-01

    By connecting the 5 vertices of K5 to other n vertices, we obtain a special family of graph denoted by Hn. This paper proves that the crossing number of Hn is Z(5, n) +2n+[n/2] 1, and the crossing number of Cartesian products of K5 with star Sn is Z(5, n) + 5n + [n/2]+1.

  12. THE EFFECT OF NON-STARCH POLYSACCHARIDES DERIVED FROM DIFFERENT GRAINS ON PERFORMANCE AND DIGESTIVE ACTIVITY IN LAYING HENS

    Directory of Open Access Journals (Sweden)

    S. Hartini

    2014-10-01

    Full Text Available An experiment was conducted to observe the effect of non-starch polysaccharides (NSP onperformance and digestive activity of laying hens. Thirty-two ISA Brown hens were individually cagedand offered four diets (wheat-based, millrun-based, barley-based, and barley-enzymes diets for 10weeks. The present experiment was assigned in a completely randomized design with 8 replicates perdietary treatment. Wheat- and barley diets caused significantly higher (P<0.05 viscosity than otherdiets. Increased viscosity caused lower digesta dry matter (DM (P<0.01 and higher excreta moisture(P<0.05. The wheat diet did not cause a negative effect on intestinal starch digestibility, feed intake, andbird performance (P>0.05. Birds fed the barley-based diet had lower weight gain (P<0.05 and highercaecal weight (P<0.05 than those given other diets. Enzyme supplementation on barley dietssignificantly (P<0.05 reduced jejunal digesta viscosity and caecal weight, increased weight gain(P<0.05 and ileal digesta DM (P<0.01, and numerically reduced excreta moisture. The current studydemonstrated that NSP have a profound effect on digesta viscosity, performance, and digestive organs ofbirds; however, the NSP action may be modified by an interaction with each other and with other cellwallcomponents of grains in the gut. Enzyme supplementation reduced the negative effect of digestaviscosity.

  13. Exploring chiral separation of 3-carboxamido-5-aryl isoxazole derivatives by supercritical fluid chromatography on amylose and cellulose tris dimethyl- and chloromethyl phenylcarbamate polysaccharide based stationary phases.

    Science.gov (United States)

    Zehani, Yasmine; Lemaire, Lucas; Ghinet, Alina; Millet, Régis; Chavatte, Philippe; Vaccher, Claude; Lipka, Emmanuelle

    2016-10-07

    Four polysaccharide based chiral stationary phases were chosen, two chlorinated: Lux™ Amylose-2 (tris-5-chloro-2-methylphenylcarbamate of amylose) and Lux™ Cellulose-2 (tris-3-chloro-4-methylphenylcarbamate of cellulose) and two methylated: Chiralpak(®) AD-H (tris-3,5-dimethylphenylcarbamate of amylose) and Chiralcel(®) OD-H (tris-3,5-dimethylphenylcarbamate of cellulose) to separate four 3-carboxamido-5-aryl isoxazole derivatives by supercritical fluid chromatography. The effect of chiral stationary phase, co-solvent nature (MeOH, EtOH, 2-PrOH and ACN) and percentage (10-20%), temperature (20-45°C) and chemical structure of the compounds on retention, resolution and elution order were thoroughly studied. In addition, thermodynamic parameters were determined from the linear portion of the Van't Hoff plots. For all the derivatives, the Lux™ Cellulose-2 and Chiralpak(®) AD-H provided excellent resolutions (Rs=9.78) in short run time (under 6min). The preparation of about 10mg of each of the eight enantiomers was achieved successfully on a Chiralpak(®) AD-H with various percentages of ethanol as a co-solvent. Lastly, the enantiomeric purity of each of the eight individual enantiomer generated was determined and found higher than 98%.

  14. Juneau Indian Studies Elementary Curriculum Guide. Grades K-5.

    Science.gov (United States)

    Cadiente, Ronalda

    Designed to provide instruction in Tlingit culture as an integral part of the K-5 social studies curriculum, this guide presents teachers with extensive lesson plans and numerous resource materials. The units of study focus on the culture and environment of southeast Alaska and emphasize experiential learning activities. Each grade…

  15. Math and Economics: Implementing Authentic Instruction in Grades K-5

    Science.gov (United States)

    Althauser, Krista; Harter, Cynthia

    2016-01-01

    The purpose of this study is to outline a partnership program that involved a local elementary school district, an institution of higher education, the local business community, and a state economic education advocacy group to integrate economics into math in grades K-5. The "Economics: Math in Real Life" program was provided in…

  16. The Common Core: Insights into the K-5 Standards

    Science.gov (United States)

    McLaughlin, Maureen; Overturf, Brenda J.

    2012-01-01

    The role of the Common Core English Language Arts Standards in grades K-5 literacy instruction is the focus of the article. The authors begin by raising four questions: (1) What is the essential philosophy of the Common Core State Standards?; (2) What do educators need to know to use the College and Career Readiness Standards and Common Core State…

  17. 信息动态%Preparation of Polysaccharide Derivatives-based Composite Chiral Stationary Phases and Their Chiral Recognition

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Two coated-type composite chiral stationary phases (CSPs) were prepared based on cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) and amylose tris (3,5-dimethylphenylcarbamate)(ADMPC) by coating the corresponding derivatives onto 3-aminopropyl silica gel separately and then mixing or by coating the mixed derivatives onto silica gel. The CSPs containing only CDMPC or ADMPC were also prepared for comparison. The mixing method does not significantly influence the enantioselectivities. The composite CSPs generally show chiral recognition abilities intermediate between those of the two individual phases, while some racemates were poorer and at the same time one was better resolved on the composite CSPs.

  18. Enantioseparation of pyroglutamide derivatives on polysaccharide based chiral stationary phases by high-performance liquid chromatography and supercritical fluid chromatography: a comparative study.

    Science.gov (United States)

    Baudelet, Davy; Schifano-Faux, Nadège; Ghinet, Alina; Dezitter, Xavier; Barbotin, Florent; Gautret, Philippe; Rigo, Benoit; Chavatte, Philippe; Millet, Régis; Furman, Christophe; Vaccher, Claude; Lipka, Emmanuelle

    2014-10-10

    Analytical enantioseparation of three pyroglutamide derivatives with pharmacological activity against the purinergic receptor P2X7, was run in both high-performance liquid chromatography and supercritical fluid chromatography. Four polysaccharide based chiral stationary phases, namely amylose and cellulose tris (3,5-dimethylphenylcarbamate), amylose tris ((S)-α-methylbenzylcarbamate) and cellulose tris (4-methylbenzoate) with various mobile phases consisted of either heptane/alcohol (ethanol and 2-propanol) or carbon dioxide/alcohol (methanol or ethanol) mixtures, were investigated. After analytical screenings, the best conditions were transposed, for compound 1, to semi-preparative scale. Each approach was fully validated to meet the International Conference on Harmonisation requirements and compared. Whereas the limits of detection and quantification were near six-fold better in HPLC than in SFC (respectively 0.20 and 0.66 μM versus 1.11 and 3.53 μM for one of the enantiomers), in terms of low solvent consumption (7.2 mL of EtOH versus 3.2 mL of EtOH plus 28.8 mL of toxic and inflammable heptane per injection in SFC and HPLC, respectively), time effective cost (9 min versus 40 min per injection in SFC and HPLC, respectively) and yields (98% versus 71% in SFC and HPLC, respectively), the latter method proved its ecological superiority.

  19. Evaluation of a multiplex PCR for detection of serotypes K1, K2 and K5 in Klebsiella sp. and comparison of isolates within these serotypes.

    Science.gov (United States)

    Turton, Jane F; Baklan, Hatice; Siu, L K; Kaufmann, Mary E; Pitt, Tyrone L

    2008-07-01

    A multiplex PCR using targets within the serotype-specific region of the capsular polysaccharide synthesis gene cluster of serotypes K1, K2 and K5 was evaluated using the 77 reference serotype strains of Klebsiella, and a panel of clinical isolates subjected previously to conventional serotyping. The PCR was highly specific for these serotypes, which are those most associated with virulence in humans and horses. PCR confirmed that isolates of the K5 serotype had cross-reacted with antiserum for other serotypes, particularly for K7. K5 isolates received by our laboratory were almost exclusively from thoroughbred horses, and were submitted for screening prior to breeding programmes. Most, including a reference strain isolated in 1955, belonged to a cluster of genetically similar isolates of sequence type (ST) 60. K1 isolates, all from humans, belonged to a previously identified cluster of ST 23.

  20. Comparative study on free radical scavenging qualities of polysaccharide from Cactus and its sulfated derivative%仙人掌多糖的硫酸酯化前后对自由基的清除作用的对比研究

    Institute of Scientific and Technical Information of China (English)

    林爱琴; 王翔

    2012-01-01

    The polysaccharide of Cactus was extracted with ultrasonic waves. Further on the Cactus for sulfated polysaccharide treatment. Free radical scavenging qualities of polysaccharide from cactus and its sulfated derivative were comparatived by the methods of single factorand orthogonal design test. The results make sure that the cactus polysaccharideand sulfated polysaccharide have certaineffect on scavenging the free radicals. The scavenging ratio to OH is increased by a certain trend with the increasing the concentration of polysaccharide of cactus, But sulfated polysaccharide is less potent than polysaccharide at scavenging .OH.%采用超声波法从仙人掌中提取多糖.并对仙人掌多糖进行硫酸酯化处理。通过单因素、正交实验对比研究仙人掌多糖硫酸酯化前后对自由基的清除作用。结果表明:仙人掌多糖硫酸酯化前后对·OH均有一定的清除作用,且均随浓度升高清除能力不断增强,但仙人掌硫酸酯化多糖对·OH的清除能力较低

  1. Electrospinning of polysaccharides for regenerative medicine.

    Science.gov (United States)

    Lee, Kuen Yong; Jeong, Lim; Kang, Yun Ok; Lee, Seung Jin; Park, Won Ho

    2009-10-05

    Electrospinning techniques enable the production of continuous fibers with dimensions on the scale of nanometers from a wide range of natural and synthetic polymers. The number of recent studies regarding electrospun polysaccharides and their derivatives, which are potentially useful for regenerative medicine, is increasing dramatically. However, difficulties regarding the processibility of the polysaccharides (e.g., poor solubility and high surface tension) have limited their application. In this review, we summarize the characteristics of various polysaccharides such as alginate, cellulose, chitin, chitosan, hyaluronic acid, starch, dextran, and heparin, which are either currently being used or have potential to be used for electrospinning. The recent progress of nanofiber matrices electrospun from polysaccharides and their biomedical applications in tissue engineering, wound dressings, drug delivery, and enzyme immobilization are discussed.

  2. Effects of Yulangsan polysaccharide on monoamine neurotransmitters, adenylate cyclase activity and brain-derived neurotrophic factor expression in a mouse model of depression induced by unpredictable chronic mild stress

    Institute of Scientific and Technical Information of China (English)

    Shuang Liang; Renbin Huang; Xing Lin; Jianchun Huang; Zhongshi Huang; Huagang Liu

    2012-01-01

    The present study established a mouse model of depression induced by unpredictable chronic mild stress. The model mice were treated with Yulangsan polysaccharide (YLSPS; 150, 300 and 600 mg/kg) for 21 days, and compared with fluoxetine-treated and normal control groups. Enzyme-linked immunosorbent assay, radioimmunity and immunohistochemical staining showed that following treatment with YLSPS (300 and 600 mg/kg), monoamine neurotransmitter levels, prefrontal cortex adenylate cyclase activity and hippocampal brain-derived neurotrophic factor expression were significantly elevated, and depression-like behaviors were improved. Open-field and novelty-suppressed feeding tests showed that mouse activity levels were increased and feeding latency was shortened following treatment. Our results indicate that YLSPS inhibits depression by upregulating monoamine neurotransmitters, prefrontal cortex adenylate cyclase activity and hippocampal brain-derived neurotrophic factor expression.

  3. Common screening approaches for efficient analytical method development in LC and SFC on columns packed with immobilized polysaccharide-derived chiral stationary phases.

    Science.gov (United States)

    Franco, Pilar; Zhang, Tong

    2013-01-01

    Owing to their remarkable enantioselectivity, versatility, and stability, immobilized polysaccharide-based chiral stationary phases (CSPs) have been successfully integrated into the tool box of many research and industry groups for the separation of enantiomers or stereoisomers by liquid and supercritical fluid chromatography. Due to the structurally diverse range of compounds available, efficient method development for chiral separations utilizing such CSPs is a challenging subject. In this chapter, we will discuss simplified screening protocols and straightforward approaches to achieve chiral separations in HPLC and SFC using the column series CHIRALPAK™ IA, IB, IC, and ID in reasonable time frame and with limited experimental work and a high success rate.

  4. 26 CFR 1.401(k)-5 - Special rules for mergers, acquisitions and similar events. [Reserved

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Special rules for mergers, acquisitions and similar events. 1.401(k)-5 Section 1.401(k)-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE.... § 1.401(k)-5 Special rules for mergers, acquisitions and similar events....

  5. Effects of mushroom-derived ß-glucan rich polysaccharide extracts on nitric oxide production by bone marrow-derived macrophages and nuclear factor-kB transactivation in Caco-2 reporter cells: Can effects be explained by structure?

    NARCIS (Netherlands)

    Volman, J.J.; Helsper, J.P.F.G.; Wei, S.; Baars, J.J.P.; Griensven, van L.J.L.D.; Sonnenberg, A.S.M.; Mensink, R.P.; Plat, J.

    2010-01-01

    Mushrooms are known for their immune-modulating and anti-tumour properties. The polysaccharide fraction, mainly -glucans, is responsible for the immune-modulating effects. Fungal -glucans have been shown to activate leukocytes, which depend on structural characteristics of -glucans. As edible mushro

  6. Inonotus obliquus-derived polysaccharide inhibits the migration and invasion of human non-small cell lung carcinoma cells via suppression of MMP-2 and MMP-9.

    Science.gov (United States)

    Lee, Ki Rim; Lee, Jong Seok; Song, Jeong Eun; Ha, Suk Jin; Hong, Eock Kee

    2014-12-01

    Polysaccharides isolated from the fruiting body of Inonotus obliquus (PFIO) are known to possess various pharmacological properties including antitumor activity. However, the anti-metastatic effect and its underlying mechanistic signaling pathway involved these polysaccharides in human non-small cell lung carcinoma remain unknown. The present study therefore aimed to determine the anti-metastatic potential and signaling pathways of PFIO in the highly metastatic A549 cells. We found that PFIO suppressed the migration and invasive ability of A549 cells while decreasing the expression levels and activity of matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, PFIO decreased the phosphorylation levels of mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) as well as the expression level of COX-2, and inhibited the nuclear translocation of nuclear factor κB (NF-κB) in A549 cells. These results suggested that PFIO could suppress the invasion and migration of human lung carcinoma by reducing the expression levels and activity of MMP-2 and MMP-9 via suppression of MAPKs, PI3K/AKT, and NF-κB signaling pathways.

  7. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class.

    Science.gov (United States)

    Lemieszek, Marta; Rzeski, Wojciech

    2012-01-01

    Basidiomycete mushrooms represent a valuable source of biologically active compounds with anticancer properties. This feature is primarily attributed to polysaccharides and their derivatives. The anticancer potential of polysaccharides is linked to their origin, composition and chemical structure, solubility and method of isolation. Moreover, their activity can be significantly increased by chemical modifications. Anticancer effects of polysaccharides can be expressed indirectly (immunostimulation) or directly (cell proliferation inhibition and/or apoptosis induction). Among the wide range of polysaccharides with documented anticancer properties, lentinan, polysaccharide-K (PSK) and schizophyllan deserve special attention. These polysaccharides for many years have been successfully applied in cancer treatment and their mechanism of action is the best known.

  8. The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview

    Science.gov (United States)

    Wang, Wei; Wang, Shi-Xin; Guan, Hua-Shi

    2012-01-01

    Recently, the studies on the antiviral activities of marine natural products, especially marine polysaccharides, are attracting more and more attention all over the world. Marine-derived polysaccharides and their lower molecular weight oligosaccharide derivatives have been shown to possess a variety of antiviral activities. This paper will review the recent progress in research on the antiviral activities and the mechanisms of these polysaccharides obtained from marine organisms. In particular, it will provide an update on the antiviral actions of the sulfated polysaccharides derived from marine algae including carrageenans, alginates, and fucans, relating to their structure features and the structure–activity relationships. In addition, the recent findings on the different mechanisms of antiviral actions of marine polysaccharides and their potential for therapeutic application will also be summarized in detail. PMID:23235364

  9. The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview

    Directory of Open Access Journals (Sweden)

    Hua-Shi Guan

    2012-12-01

    Full Text Available Recently, the studies on the antiviral activities of marine natural products, especially marine polysaccharides, are attracting more and more attention all over the world. Marine-derived polysaccharides and their lower molecular weight oligosaccharide derivatives have been shown to possess a variety of antiviral activities. This paper will review the recent progress in research on the antiviral activities and the mechanisms of these polysaccharides obtained from marine organisms. In particular, it will provide an update on the antiviral actions of the sulfated polysaccharides derived from marine algae including carrageenans, alginates, and fucans, relating to their structure features and the structure–activity relationships. In addition, the recent findings on the different mechanisms of antiviral actions of marine polysaccharides and their potential for therapeutic application will also be summarized in detail.

  10. Antiviral polysaccharides isolated from Hong Kong brown seaweed Hydroclathrus clathratus

    Institute of Scientific and Technical Information of China (English)

    WANG; Hui; OOI; Engchoon; Vincent; ANG; Put; O; Jr.

    2007-01-01

    Two relatively pure polysaccharides H3-a1 and H3-b1 had been isolated from the brown seaweed Hydroclathrus clathratus. They were characterized by HPLC, ultraviolet scanning, gas chromatography, infrared spectroscopy and elemental analysis, and shown to be two different sulfated polysaccharides with different monosaccharide content, but both with high relative molecular mass. They contained some proteins and uronic acid respectively. The sulfate content and bioactivity of these polysaccharides varied during purification. The fractions derived from the hot water extract also exhibited low anticoagulant effect. This is the first time that the antiherpetic and anticoagulant activities were evaluated for the polysaccharides from the Hong Kong brown seaweed Hydroclathrus clathratus.

  11. Studies on Sulfation of Lycium barbarum Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    YI,Jian-Ping; YAN,Hong; ZHONG,Ru-Gang

    2004-01-01

    @@ Polysaccharides can anti-virus, such as human immunodeficiency virus (HIV-1),[1] herpes simplex virus (HSV-1,HSV-2) and cytomegalovirus. Some of them are sulfates, e.g. dextran sulfate, heparin, sulfonation of chitosan and sulfated derivatives of Lentinan. Our results showed that sulfated derivatives of Lycium barbarum polysaccharides (LBP)have anti-HIV activity. Because the anti-HIV activity of LBP was deeply dependent on the molecular weight, the sulfation pattern and glycosidic branches besides degree of sulfation (DS), so we emphasized our work on the factors of DS.

  12. Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis.

    Science.gov (United States)

    Mishima, T; Murata, J; Toyoshima, M; Fujii, H; Nakajima, M; Hayashi, T; Kato, T; Saiki, I

    1998-08-01

    We have investigated the effect of calcium spirulan (Ca-SP) isolated from a blue-green alga, Spirulina platensis, which is a sulfated polysaccharide chelating calcium and mainly composed of rhamnose, on invasion of B16-BL6 melanoma, Colon 26 M3.1 carcinoma and HT-1080 fibrosarcoma cells through reconstituted basement membrane (Matrigel). Ca-SP significantly inhibited the invasion of these tumor cells through Matrigel/fibronectin-coated filters. Ca-SP also inhibited the haptotactic migration of tumor cells to laminin, but it had no effect on that to fibronectin. Ca-SP prevented the adhesion of B16-BL6 cells to Matrigel and laminin substrates but did not affect the adhesion to fibronectin. The pretreatment of tumor cells with Ca-SP inhibited the adhesion to laminin, while the pretreatment of laminin substrates did not. Ca-SP had no effect on the production and activation of type IV collagenase in gelatin zymography. In contrast, Ca-SP significantly inhibited degradation of heparan sulfate by purified heparanase. The experimental lung metastasis was significantly reduced by co-injection of B16-BL6 cells with Ca-SP. Seven intermittent i.v. injections of 100 microg of Ca-SP caused a marked decrease of lung tumor colonization of B16-BL6 cells in a spontaneous lung metastasis model. These results suggest that Ca-SP, a novel sulfated polysaccharide, could reduce the lung metastasis of B16-BL6 melanoma cells, by inhibiting the tumor invasion of basement membrane probably through the prevention of the adhesion and migration of tumor cells to laminin substrate and of the heparanase activity.

  13. Preparation and the antibacterial property test of derivatives of needle mushroom polysaccharide%金针菇多糖衍生物的制备及其抗菌性的测定

    Institute of Scientific and Technical Information of China (English)

    刘莹; 许琳; 赵杰

    2013-01-01

    以金针菇为材料,采用微波辅助法提取金针菇多糖,采用浓硫酸法和乙酸酐-吡啶法对金针菇多糖进行化学修饰,结果表明,产物经红外光谱表征证明多糖已成功被硫酸化和乙酰化.抗菌活性实验显示硫酸化和乙酰化后的金针菇多糖衍生物抗菌活性较弱,对供试的大肠杆菌和金黄色葡萄球菌的最小抑菌浓度MIC在25~50mg/mL之间.对同一菌株而言,抑菌效果随衍生物质量浓度的增大而增强.%We chose needle mushroom as the research material. Polysaccharides in needle mushroom were extracted by microwave and then modified by sulfuric acid and acetic anhydride-pyridine method. The result showed that they were successfully sulfated and acetylated by infrared spectroscopy. At the meantime, antibacterial activity test showed that the sulfated and acetylated derivatives of polysaccharides had a weaker antibacterial effect. The minimum inhibitory concentration for Escherichia coli and Staphylococcus aureus was between 25mg/mL and 50mg/mL. For one strain,the antibacterial effect got stronger with the growing of mass concentration of the derivatives.

  14. A pharmacological profile of the high-affinity GluK5 kainate receptor.

    Science.gov (United States)

    Møllerud, Stine; Kastrup, Jette Sandholm; Pickering, Darryl S

    2016-10-05

    Mouse GluK5 was expressed in Sf9 insect cells and radiolabelled with [(3)H]-kainate in receptor binding assays (Kd=6.9nM). Western immunoblotting indicated an Sf9 GluK5 band doublet corresponding to the glycosylated (128kDa) and deglycosylated (111kDa) protein, which was identical to the band pattern of native rat brain GluK5. A pharmacological profile of the high-affinity kainate receptor GluK5 is described which is distinct from the profiles of other kainate receptors (GluK1-3). The 27 tested ligands generally show a preferential affinity to GluK1 over GluK5, the exceptions being: dihydrokainate, (S)-5-fluorowillardiine, (S)-glutamate and quisqualate, where the affinity is similar at GluK1 and GluK5. In contrast, quisqualate shows 40-fold higher affinity at GluK5 over GluK3 whereas (S)-1-(2'-amino-2'-caboxyethyl)thienol[3,4-d]pyrimidin-2,4-dione (NF1231), (RS)-2-amino-3-(5-tert-butyl-3-hydroxyisoxazol-4-yl)propionate (ATPA), dihydrokainate and (2S,4R)-4-methyl-glutamate (SYM2081) have higher affinity at GluK3 compared to GluK5. Since some studies have indicated that GluK5 is associated with various diseases in the central nervous system (e.g. schizophrenia, temporal lobe epilepsy, bipolar disorder), selective GluK5 ligands could have therapeutic potential. The distinct pharmacological profile of GluK5 suggests that it would be possible to design ligands with selectivity towards GluK5.

  15. A pharmacological profile of the high-affinity GluK5 kainate receptor

    DEFF Research Database (Denmark)

    Møllerud, Stine; Kastrup, Jette Sandholm Jensen; Pickering, Darryl S

    2016-01-01

    Mouse GluK5 was expressed in Sf9 insect cells and radiolabelled with [3H]-kainate in receptor binding assays (Kd = 6.9 nM). Western immunoblotting indicated an Sf9 GluK5 band doublet corresponding to the glycosylated (128 kDa) and deglycosylated (111 kDa) protein, which was identical to the band...

  16. Polysaccharides isolated from Acai fruit induce innate immune responses.

    Directory of Open Access Journals (Sweden)

    Jeff Holderness

    Full Text Available The Açaí (Acai fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.

  17. Interaction of Escherichia coli K1 and K5 with Acanthamoeba castellanii trophozoites and cysts.

    Science.gov (United States)

    Matin, Abdul; Jung, Suk-Yul

    2011-12-01

    The existence of symbiotic relationships between Acanthamoeba and a variety of bacteria is well-documented. However, the ability of Acanthamoeba interacting with host bacterial pathogens has gained particular attention. Here, to understand the interactions of Escherichia coli K1 and E. coli K5 strains with Acanthamoeba castellanii trophozoites and cysts, association assay, invasion assay, survival assay, and the measurement of bacterial numbers from cysts were performed, and nonpathogenic E. coli K12 was also applied. The association ratio of E. coli K1 with A. castellanii was 4.3 cfu per amoeba for 1 hr but E. coli K5 with A. castellanii was 1 cfu per amoeba for 1 hr. By invasion and survival assays, E. coli K5 was recovered less than E. coli K1 but still alive inside A. castellanii. E. coli K1 and K5 survived and multiplied intracellularly in A. castellanii. The survival assay was performed under a favourable condition for 22 hr and 43 hr with the encystment of A. castellanii. Under the favourable condition for the transformation of trophozoites into cysts, E. coli K5 multiplied significantly. Moreover, the pathogenic potential of E. coli K1 from A. castellanii cysts exhibited no changes as compared with E. coli K1 from A. castellanii trophozoites. E. coli K5 was multiplied in A. castellanii trophozoites and survived in A. castellanii cysts. Therefore, this study suggests that E. coli K5 can use A. castellanii as a reservoir host or a vector for the bacterial transmission.

  18. Carboxymethylation of polysaccharide from Cyclocarya paliurus and their characterization and antioxidant properties evaluation.

    Science.gov (United States)

    Wang, Zhi-Jun; Xie, Jian-Hua; Shen, Ming-Yue; Tang, Wei; Wang, Hui; Nie, Shao-Ping; Xie, Ming-Yong

    2016-01-20

    In this study, three chemically carboxymethyl polysaccharides (CM-CPs) were derived from Cyclocarya paliurus polysaccharides. The physicochemical properties and antioxidant activity in vitro of carboxymethyl derivatives were determined. The results of degree of substitution and FT-IR analysis showed the carboxymethylation of polysaccharides were successful. Compared with unmodified polysaccharides, the contents of carbohydrate and protein were decreased while CM-CP3 with highest DS value had more uronic acid. The carboxymethyl derivatives was mainly composed of Ara, Gal, Glc, Man, GalA, with a molecular weight (Mw) of 1.03-1.08 × 10(6)Da. Compared with the native polysaccharide, the CM-CP3 with highest DS and Mw exhibited the highest antioxidant activity in β-carotene-linoleic acid assay. However, the superoxide radical and hydroxyl radical scavenging activity were decreased by CM-CPs. These results demonstrated appropriate carboxymethylation modification could enhance the potential of C. paliurus polysaccharide as oxidation inhibitor.

  19. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    Directory of Open Access Journals (Sweden)

    H. Stephen Ewart

    2011-02-01

    Full Text Available Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans, ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application.

  20. Detection of Inulin, a Prebiotic Polysaccharide, in Maple Syrup.

    Science.gov (United States)

    Sun, Jiadong; Ma, Hang; Seeram, Navindra P; Rowley, David C

    2016-09-28

    Maple syrup is a widely consumed plant-derived natural sweetener produced by concentrating xylem sap collected from certain maple (Acer) species. During thermal evaporation of water, natural phytochemical components are concentrated in maple syrup. The polymeric components from maple syrup were isolated by ethanol precipitation, dialysis, and anion exchange chromatography and structurally characterized by glycosyl composition analysis, glycosyl linkage analysis, and nuclear magnetic resonance spectroscopy. Among the maple syrup polysaccharides, one neutral polysaccharide was characterized as inulin with a broad molecular weight distribution, representing the first isolation of this prebiotic carbohydrate from a xylem sap. In addition, two acidic polysaccharides with structural similarity were identified as arabinogalactans derived from rhamnogalacturonan type I pectic polysaccharides.

  1. Characterization of polysaccharides with marked inhibitory effect on lipid accumulation in Pleurotus eryngii.

    Science.gov (United States)

    Chen, Jingjing; Yong, Yangyang; Xing, Meichun; Gu, Yifan; Zhang, Zhao; Zhang, Shizhu; Lu, Ling

    2013-09-12

    Mushrooms have a great potential for the production of useful bioactive metabolites. To explore the bioactive compounds from edible mushrooms for interfering with the development of macrophage-derived foam cells, which is recognized as the hallmark of early atherosclerosis, eight types of mushrooms polysaccharides had been selected to be tested. Consequently, different mushrooms polysaccharides displayed diverse component profiles. Of polysaccharides that we tested, the Pleurotus eryngii polysaccharide had the strongest inhibitory effect on lipid accumulation. Furthermore, through fractionation of DEAE-52 and Sephadex G-100, the polysaccharide from P. eryngii had been successfully purified and identified. By the analysis of IR, GC, and HPLC, the purified polysaccharide was estimated to be 30-38 kDa for the average molecular weight with the monosaccharide composition mainly composed of D-types of mannose, glucose and galactose. Findings presented in this report firstly provide direct evidence, which links the purified polysaccharide moiety with the biological function in foam-cell model.

  2. Sulphation can enhance the antioxidant activity of polysaccharides produced by Enterobacter cloacae Z0206.

    Science.gov (United States)

    Jin, Mingliang; Wang, Youming; Huang, Ming; Lu, Zeqing; Wang, Yizhen

    2014-01-01

    The protective effects of sulfated polysaccharide derivatives produced by Enterobacter cloacae Z0206 against H₂O₂-induced oxidative damage in RAW264.7 murine macrophages as well as the possible mechanisms governing the protective effects were studied. Sulfated polysaccharides protected RAW264.7 cells from oxidative damage and apoptosis induced by H₂O₂ by protecting the cellular structure; improving the activity of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px); and inhibiting caspase-3 activation and DNA fragmentation. In addition, the sulfated polysaccharides conferred higher levels of protection from H₂O₂-induced oxidative damage in RAW264.7 murine macrophages compared to the native polysaccharide lacking sulfation. These results indicated that sulfated modifications might be an effective approach to enhance the antioxidant activity of polysaccharides produced by E. cloacae Z0206, and the sulfated derivatives of these polysaccharides may act as potent antioxidant agents.

  3. Structural and biological study of carboxymethylated Phellinus linteus polysaccharides.

    Science.gov (United States)

    Shin, Ji-Yoon; Lee, Suyong; Bae, In Young; Yoo, Sang-Ho; Lee, Hyeon Gyu

    2007-05-02

    Polysaccharides isolated from Phellinus linteus were chemically modified by carboxymethylation, and the structural and physiological properties of the derivative were investigated. 13C NMR spectroscopy showed that the polysaccharides extracted from P. linteus contained (1-3)-beta-glucans with a (1-6)-linkage. The carboxymetehylation of the P. linteus polysaccharides was confirmed by Fourier transform infrared spectroscopy, and the degree of substitution was obtained by the potentiometric titration, which was calculated to be 0.63. The bronchoalveolar lavage experiments showed that the carboxymethylated derivative raised the nitric oxide production. In addition, the carboxymethylation stimulated in vitro cytotoxic activity against the HT1080 cell line. Thus, the derivative exhibited the enhanced activity of immune systems, which would be explained by the improved water solubility and structural changes by carboxymethylation. However, a slight decrease in the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of the derivative was observed.

  4. Assembly Stoichiometry of the GluK2/GluK5 Kainate Receptor Complex

    Directory of Open Access Journals (Sweden)

    Andreas Reiner

    2012-03-01

    Full Text Available Ionotropic glutamate receptors assemble as homo- or heterotetramers. One well-studied heteromeric complex is formed by the kainate receptor subunits GluK2 and GluK5. Retention motifs prevent trafficking of GluK5 homomers to the plasma membrane, but coassembly with GluK2 yields functional heteromeric receptors. Additional control over GluK2/GluK5 assembly seems to be exerted by the amino-terminal domains, which preferentially assemble into heterodimers as isolated domains. However, the stoichiometry of the full-length GluK2/GluK5 receptor complex has yet to be determined, as is the case for all non-NMDA glutamate receptors. Here, we address this question, using a single-molecule imaging technique that enables direct counting of the number of each GluK subunit type in homomeric and heteromeric receptors in the plasma membranes of live cells. We show that GluK2 and GluK5 assemble with 2:2 stoichiometry. This is an important step toward understanding the assembly mechanism, architecture, and functional consequences of heteromer formation in ionotropic glutamate receptors.

  5. Polysaccharide Agaricus blazei Murill stimulates myeloid derived suppressor cell differentiation from M2 to M1 type, which mediates inhibition of tumour immune-evasion via the Toll-like receptor 2 pathway.

    Science.gov (United States)

    Liu, Yi; Zhang, Lingyun; Zhu, Xiangxiang; Wang, Yuehua; Liu, WenWei; Gong, Wei

    2015-11-01

    Gr-1(+) CD11b(+) myeloid-derived suppressor cells (MDSCs) accumulate in tumor-bearing animals and play a critical negative role during tumor immunotherapy. Strategies for inhibition of MDSCs are expected to improve cancer immunotherapy. Polysaccharide Agaricus blazei Murill (pAbM) has been found to have anti-cancer activity, but the underlying mechanism of this is poorly understood. Here, pAbM directly activated the purified MDSCs through inducing the expression of interleukin-6 (IL-6), IL-12, tumour necrosis factor and inducible nitric oxide synthase (iNOS), CD86, MHC II, and pSTAT1 of it, and only affected natural killer and T cells in the presence of Gr-1(+) CD11b(+) monocytic MDSCs. On further analysis, we demonstrated that pAbM could selectively block the Toll-like receptor 2 (TLR2) signal of Gr-1(+) CD11b(+) MDSCs and increased their M1-type macrophage characteristics, such as producing IL-12, lowering expression of Arginase 1 and increasing expression of iNOS. Extensive study showed that Gr-1(+) CD11b(+) MDSCs by pAbM treatment had less ability to convert the CD4(+) CD25(-) cells into CD4(+) CD25(+) phenotype. Moreover, result from selective depletion of specific cell populations in xenograft mice model suggested that the anti-tumour effect of pAbM was dependent on Gr-1(+ ) CD11b(+) monocytes, nether CD8(+) T cells nor CD4(+) T cells. In addition to, pAbM did not inhibit tumour growth in TLR2(-/-) mice. All together, these results suggested that pAbM, a natural product commonly used for cancer treatment, was a specific TLR2 agonist and had potent anti-tumour effects through the opposite of the suppressive function of Gr-1(+) CD11b(+) MDSCs.

  6. Multifrequency Study of Giant Radio Pulses from the Crab Pulsar with K5 VLBI Recording Terminal

    CERN Document Server

    Popov, M V; Kondratiev, V I; Bilous, A V; Moshkina, O; Oreshko, V V; Ilyasov, Yu P; Sekido, M; Kondo, T

    2009-01-01

    Simultaneous multifrequency observations of the Crab pulsar giant pulses (GPs) were performed with the 64-m Kalyazin radio telescope at four frequencies 0.6, 1.4, 2.2 and 8.3 GHz using the K5 VLBI recording terminal. K5 terminal provided continuous recording in 16 4-MHz wide frequency channels distributed over 4 frequency bands. Several thousands of GPs were detected during about 6 hours of observations in two successive days in July 2005. Radio spectra of single GPs were analysed at separate frequencies and over whole frequency range. These spectra manifest notable modulation both on large ($\\Delta\

  7. Mobile Devices and the Teacher Perceived Barriers Impacting Effective Integration in the K-5 Classroom

    Science.gov (United States)

    Nixon, Tina S.

    2013-01-01

    This qualitative, phenomenological study explored the teacher perceived barriers of using mobile devices in the K-5 classroom. Research confirms teachers face various types of variables and become reluctant to use technology within their curriculum driven lessons. This study sought to understand what teachers perceive as barriers, and how the…

  8. K-5 Student Experiences in a Dance Residency: A Case Study

    Science.gov (United States)

    Leonard, Alison E.; McShane-Hellenbrand, Karen

    2012-01-01

    In this article, the collaborating authors, a researcher and dance artist, confront assumptions surrounding dance's experiential nature and assessment in schools. Presenting findings from a qualitative case study assessment of a three-week, whole-school dance artist-in-residence at a diverse and inclusive metropolitan K-5 school, the authors focus…

  9. Democratic Bodies: Exemplary Practice and Democratic Education in a K-5 Dance Residency

    Science.gov (United States)

    Leonard, Alison E.

    2014-01-01

    This research highlights a K-5 dance artist-in-residence as a form of democratic and exemplary dance education that ignited collaboration, promoted equity, fostered student autonomy, and demonstrated rigor in school curriculum. Through examining observation, interview, and performance-based data and calling upon critical, democratic education…

  10. Democratic Bodies: Exemplary Practice and Democratic Education in a K-5 Dance Residency

    Science.gov (United States)

    Leonard, Alison E.

    2014-01-01

    This research highlights a K-5 dance artist-in-residence as a form of democratic and exemplary dance education that ignited collaboration, promoted equity, fostered student autonomy, and demonstrated rigor in school curriculum. Through examining observation, interview, and performance-based data and calling upon critical, democratic education…

  11. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    Directory of Open Access Journals (Sweden)

    Azin Ahmadi

    2015-01-01

    Full Text Available From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  12. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review.

    Science.gov (United States)

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  13. Marine Polysaccharides: A Source of Bioactive Molecules for Cell Therapy and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anne-Marie Fischer

    2011-09-01

    Full Text Available The therapeutic potential of natural bioactive compounds such as polysaccharides, especially glycosaminoglycans, is now well documented, and this activity combined with natural biodiversity will allow the development of a new generation of therapeutics. Advances in our understanding of the biosynthesis, structure and function of complex glycans from mammalian origin have shown the crucial role of this class of molecules to modulate disease processes and the importance of a deeper knowledge of structure-activity relationships. Marine environment offers a tremendous biodiversity and original polysaccharides have been discovered presenting a great chemical diversity that is largely species specific. The study of the biological properties of the polysaccharides from marine eukaryotes and marine prokaryotes revealed that the polysaccharides from the marine environment could provide a valid alternative to traditional polysaccharides such as glycosaminoglycans. Marine polysaccharides present a real potential for natural product drug discovery and for the delivery of new marine derived products for therapeutic applications.

  14. Method to conjugate polysaccharide antigens to surfaces for the detection of antibodies

    DEFF Research Database (Denmark)

    Boas, Ulrik; Lind, Peter; Riber, Ulla

    2014-01-01

    A new generic method for the conjugation of lipopolysaccharide (LPS)-derived polysaccharide antigens from gram-negative bacteria has been developed using Salmonella as a model. After removal of lipid A from the LPS by mild acidolysis, the polysaccharide antigen was conjugated to polystyrene micro...

  15. Chitosan: A promising marine polysaccharide for biomedical research

    Directory of Open Access Journals (Sweden)

    Mercy Halleluyah Periayah

    2016-01-01

    Full Text Available Biomaterials created 50 years ago are still receiving considerable attention for their potential to support development in the biomedical field. Diverse naturally obtained polysaccharides supply a broad range of resources applicable in the biomedical field. Lately, chitosan, a marine polysaccharide derived from chitins—which are extracted from the shells of arthropods such as crab, shrimp, and lobster—is becoming the most wanted biopolymer for use toward therapeutic interventions. This is a general short review of chitosan, highlighting the history, properties, chemical structure, processing method, and factors influencing the usage of chitosan derivatives in the biomedical field.

  16. Chitosan: A Promising Marine Polysaccharide for Biomedical Research.

    Science.gov (United States)

    Periayah, Mercy Halleluyah; Halim, Ahmad Sukari; Saad, Arman Zaharil Mat

    2016-01-01

    Biomaterials created 50 years ago are still receiving considerable attention for their potential to support development in the biomedical field. Diverse naturally obtained polysaccharides supply a broad range of resources applicable in the biomedical field. Lately, chitosan, a marine polysaccharide derived from chitins-which are extracted from the shells of arthropods such as crab, shrimp, and lobster-is becoming the most wanted biopolymer for use toward therapeutic interventions. This is a general short review of chitosan, highlighting the history, properties, chemical structure, processing method, and factors influencing the usage of chitosan derivatives in the biomedical field.

  17. Effect of acetylation on antioxidant and cytoprotective activity of polysaccharides isolated from pumpkin (Cucurbita pepo, lady godiva).

    Science.gov (United States)

    Song, Yi; Yang, Yang; Zhang, Yuyu; Duan, Liusheng; Zhou, Chunli; Ni, Yuanying; Liao, Xiaojun; Li, Quanhong; Hu, Xiaosong

    2013-10-15

    Acetylation of pumpkin (Cucurbita pepo, lady godiva variety) polysaccharide using acetic anhydride with pyridines as catalyst under different conditions was conducted to obtain different degrees of acetylation on a laboratory scale. Furthermore, antioxidant activities and cytoprotective effects of pumpkin polysaccharide and its acetylated derivatives were investigated employing various established in vitro systems. Results showed that addition of pyridine as catalyst could increase the degree of substitution, whereas volume of acetic anhydride had little effect. The acetylated polysaccharides in DPPH scavenging radical activity assay, superoxide anion radical activity assay and reducing power assay exhibited higher antioxidant activity than that of unmodified polysaccharide. H2O2-induced oxidative damages on rat thymic lymphocyte were also prevented by pumpkin polysaccharide and its acetylated derivatives and the derivatives presented higher protective effects. On the whole, acetylated polysaccharide showed relevant antioxidant activity both in vitro and in a cell system.

  18. Polysaccharides of the red algae.

    Science.gov (United States)

    Usov, Anatolii I

    2011-01-01

    Red algae (Rhodophyta) are known as the source of unique sulfated galactans, such as agar, agarose, and carrageenans. The wide practical uses of these polysaccharides are based on their ability to form strong gels in aqueous solutions. Gelling polysaccharides usually have molecules built up of repeating disaccharide units with a regular distribution of sulfate groups, but most of the red algal species contain more complex galactans devoid of gelling ability because of various deviations from the regular structure. Moreover, several red algae may contain sulfated mannans or neutral xylans instead of sulfated galactans as the main structural polysaccharides. This chapter is devoted to a description of the structural diversity of polysaccharides found in the red algae, with special emphasis on the methods of structural analysis of sulfated galactans. In addition to the structural information, some data on the possible use of red algal polysaccharides as biologically active polymers or as taxonomic markers are briefly discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides.

    Science.gov (United States)

    Wasser, S P

    2002-11-01

    polysaccharides requires an intact T-cell component; their activity is mediated through a thymus-dependent immune mechanism. Practical application is dependent not only on biological properties, but also on biotechnological availability. The present review analyzes the pecularities of polysaccharides derived from fruiting bodies and cultured mycelium (the two main methods of biotechnological production today) in selected examples of medicinal mushrooms.

  20. Common Core Literacy Lesson Plans: Ready-to-Use Resources, K-5

    Science.gov (United States)

    Davis, Lauren

    2013-01-01

    Schools nationwide are transitioning to the Common Core--our advice to you: Don't go it alone! Our new book, "Common Core Literacy Lesson Plans: Ready-to-Use Resources, K-5," shows you that teaching the Common Core State Standards in the elementary grades doesn't have to be intimidating! This easy-to-use guide provides model lesson plans for…

  1. Interaction of Escherichia coli K1 and K5 with Acanthamoeba castellanii Trophozoites and Cysts

    OpenAIRE

    Matin, Abdul; Jung, Suk-Yul

    2011-01-01

    The existence of symbiotic relationships between Acanthamoeba and a variety of bacteria is well-documented. However, the ability of Acanthamoeba interacting with host bacterial pathogens has gained particular attention. Here, to understand the interactions of Escherichia coli K1 and E. coli K5 strains with Acanthamoeba castellanii trophozoites and cysts, association assay, invasion assay, survival assay, and the measurement of bacterial numbers from cysts were performed, and nonpathogenic E. ...

  2. Pentapotassium praseodymium(III dilithium decafluoride, K5PrLi2F10

    Directory of Open Access Journals (Sweden)

    Anna Gagor

    2009-11-01

    Full Text Available The crystal structure of K5PrLi2F10 is isotypic with those of other K5RELi2F10 compounds (RE = Eu, Nd. The lanthanoid ions are isolated in K5PrLi2F10, with a mean separation between the Pr ions of 7.356 Å. It classifies this crystal as a so-called self-activated material containing lanthanoid ions within the matrix. Except for two K+ and two F− ions, all atoms are located on sites with m symmetry. In the structure, distorted PrF8 dodecahedra and two different LiF4 tetrahedra share F atoms, forming sheets parallel to (100. The isolated PrF8 dodecahedra exhibit a mean Pr—F distance of 2.406 Å. The K+ cations are located within and between these sheets, leading to highly irregular KFx polyhedra with coordination numbers of eight and nine for the alkali metal cations.

  3. Why Were Polysaccharides Necessary?

    Science.gov (United States)

    Tolstoguzov, Vladimir

    2004-12-01

    The main idea of this paper is that the primordial soup may be modelled by food systems whose structure-property relationship is based on non-specific interactions between denatured biopolymers. According to the proposed hypothesis, polysaccharides were the first biopolymers that decreased concentration of salts in the primordial soup, `compatibilised' and drove the joint evolution of proto-biopolymers. Synthesis of macromolecules within the polysaccharide-rich medium could have resulted in phase separation of the primordial soup and concentration of the polypeptides and nucleic acids in the dispersed phase particles. The concentration of proto-biopolymer mixtures favoured their cross-linking in hybrid supermacromolecules of conjugates. The cross-linking of proto-biopolymers could occur by hydrophobic, electrostatic interactions, H-bonds due to freezing aqueous mixed biopolymer dispersions and/or by covalent bonds due to the Maillard reaction. Cross-linking could have increased the local concentration of chemically different proto-biopolymers, fixed their relative positions and made their interactions reproducible. Attractive-repulsive interactions between cross-linked proto-biopolymer chains could develop pairing of the monomer units, improved chemical stability (against hydrolysis) and led to their mutual catalytic activity and coding. Conjugates could probably evolve to the first self-reproduced entities and then to specialized cellular organelles. Phase separation of the primordial soup with concentration of conjugates in the dispersed particles has probably resulted in proto-cells.

  4. Polysaccharides: Molecular and Supramolecular Structures. Terminology.

    NARCIS (Netherlands)

    Heinze, Thomas; Petzold-Welcke, Katrin; Dam, van J.E.G.

    2012-01-01

    This chapter summarises important issues
    about the molecular and supramolecular structure
    of polysaccharides. It describes the terminology
    of polysaccharides systematically. The
    polysaccharides are divided regarding the
    molecular structures in glucans, polyoses,
    polysaccharid

  5. [Comparison on polysaccharide content and PMP-HPLC fingerprints of polysaccharide in stems and leaves of Dendrobium officinale].

    Science.gov (United States)

    Zhou, Gui-Fen; Pang, Min-Xia; Chen, Su-Hong; Lv, Gui-Yuan; Yan, Mei-Qiu

    2014-03-01

    In order to provide scientific basics for exploitation and sufficient application of Dendrobium officinale leaves resources, the phenol-sulfuric acid method was applied to determine the polysaccharide content. The monosaccharides were derivated by PMP and the derivatives were identified by HPLC-DAD-ESI-MS(n) and the contents of mannose and glucose were determined simultaneously. Similarity evaluation system for chromatographic fingerprint of traditional Chinese medicine (2004A) was employed to generate the mean chromatogram and similarity analysis of the samples was carried out. The results demonstrated that polysaccharide content, monosaccharide compositions and composition ratio had an obvious difference between stems and leaves. The polysaccharide content of stems was higher than that of leaves. Monosaccharide composition in leaf was significantly different from that in stem. The polysaccharide from stems was composed of mannose and glucose, however the polysaccharide of leaves was acid heteropolysaccharide and was mainly composed of five monosaccharides, including mannose, galacturonic acid, glucose, galactose and arabinose. The similarity value of the 14 batches was above 0.9, indicating that similarity of fingerprints among different samples was high. The study can provide evidence for expanding the medicinal parts of D. officinale.

  6. Effect of phosphorylation on antioxidant activities of pumpkin (Cucurbita pepo, Lady godiva) polysaccharide.

    Science.gov (United States)

    Song, Yi; Ni, Yuanying; Hu, Xiaosong; Li, Quanhong

    2015-11-01

    Phosphorylated derivatives of pumpkin polysaccharide with different degree of substitution were synthesized using POCl3 and pyridine. Antioxidant activities and cytoprotective effects of unmodified polysaccharide and phosphorylated derivatives were investigated employing various in vitro systems. Results showed that high ratio of POCl3/pyridine could increase the degree of substitution and no remarkable degradation occurred in the phosphorylation process. Characteristic absorption of phosphorylation appeared both in the IR and (31)P NMR spectrum. The df values between 2.27 and 2.55 indicated the relatively expanded conformation of the phosphorylated derivatives. All the phosphorylated polysaccharides exhibited higher antioxidant activities. H2O2-induced oxidative damages on rat thymic lymphocyte were also prevented by the derivatives. In general, phosphorylation could improve the antioxidant activities of pumpkin polysaccharide both in vitro and in a cell system.

  7. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Sukseree, Supawadee [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Rossiter, Heidemarie; Mildner, Michael [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Pammer, Johannes [Institute of Clinical Pathology, Medical University of Vienna, Vienna (Austria); Buchberger, Maria; Gruber, Florian [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Watanapokasin, Ramida [Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Tschachler, Erwin [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Eckhart, Leopold, E-mail: leopold.eckhart@meduniwien.ac.at [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.

  8. Antibacterial and antiviral study of dialdehyde polysaccharides

    Science.gov (United States)

    Song, Le

    Concerns for microbial contamination and infection to the general population, especially the spread of drug-resistant microorganisms, have greatly increased. Polymeric biocides have been found to be a feasible strategy to inactivate drug-resistant bacteria. However, current polymeric biocide systems involve multi-step chemical reactions and they are not cost-effective. Desirable antimicrobial systems need to be designed to be environmentally friendly, broad-spectrum effective against microorganisms, flexible for various delivery methods and economically affordable. We demonstrated that dialdehyde polysaccharides (including dialdehyde starch and dialdehdye cellulose) were broad-spectrum polymeric biocides against gram-positive/negative bacteria, bacteriophages and human virus. These polymers can be easily converted from starch and cellulose through one-step periodate oxidation. Destructions of microorganism by dialdehyde polysaccharides have been achieved in aqueous suspension or by solid surface contact. The dialdehdye functions of dialdehdye polysaccharides were found to be the dominant action against microorganism. The reactivity of the dialdehyde functionality was found to be pH-dependent as well as related to the dispersion of dialdehyde polysaccharides. Degradation of dialdehyde starch during cooking was confirmed. Degradation of dialdehyde starch was more liable in alkaline condition. Carboxylic acid and conjugated aldehyde functionalities were the two main degradation products, confirmed from the spectroscopic studies. The pH effect on the polysaccharide structure and the corresponding antimicrobial activity was very complicated. No decisive conclusions could be obtained from this study. Liner inactivation kinetics was found for dialdehyde starch aqueous suspension against bacteria. This linear inactivation kinetics was derived from the pseudo-first chemical reaction between the dialdehyde starch and the bacteria. The established inactivation kinetics was

  9. Computer simulation and experimental study of the polysaccharide-polysaccharide interaction in the bacteria Azospirillum brasilense Sp245

    Science.gov (United States)

    Arefeva, Oksana A.; Kuznetsov, Pavel E.; Tolmachev, Sergey A.; Kupadze, Machammad S.; Khlebtsov, Boris N.; Rogacheva, Svetlana M.

    2003-09-01

    We have studied the conformational properties and molecular dynamics of polysaccharides by using molecular modeling methods. Theoretical and experimental results of polysaccharide-polysaccharide interactions are described.

  10. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae

    Directory of Open Access Journals (Sweden)

    Rui Manuel Santos Costa de Morais

    2013-01-01

    Full Text Available Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina, and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS. It goes through the most studied activities of sulphated polysaccharides (sPS or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review.

  11. Bioactivity and applications of sulphated polysaccharides from marine microalgae.

    Science.gov (United States)

    Raposo, Maria Filomena de Jesus; de Morais, Rui Manuel Santos Costa; Bernardo de Morais, Alcina Maria Miranda

    2013-01-23

    Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina), and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS). It goes through the most studied activities of sulphated polysaccharides (sPS) or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review.

  12. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae

    Science.gov (United States)

    de Jesus Raposo, Maria Filomena; de Morais, Rui Manuel Santos Costa; de Morais, Alcina Maria Miranda Bernardo

    2013-01-01

    Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina), and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS). It goes through the most studied activities of sulphated polysaccharides (sPS) or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review. PMID:23344113

  13. Catalytic synthesis of sulfated polysaccharides I: Characterization of chemical structure.

    Science.gov (United States)

    Wang, Junlong; Yang, Wen; Yang, Ting; Zhang, Xiaonuo; Zuo, Yuan; Tian, Jia; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2015-03-01

    In the present study, sulfated derivatives of Artemisia sphaerocephala polysaccharide (SASP) with high degree of substitution (DS) were synthesized by using 4-dimethylaminopyridine (DMAP)/dimethylcyclohexylcarbodiimide (DCC) as catalyst in homogeneous conditions. It was found that DMAP/DCC showed marked improvement in DS of sulfated samples. Compared to sulfated derivatives without catalyst, the DS of SASP increased from 0.91 to 1.28 with an increment in dosage of DMAP from 0 to 10 mg. The influence of DMAP/DCC on the DS of sulfated derivatives was depended on the content of DMAP. The effect of DMAP might be due to its strong coordination to the hydroxy group. The results of FT-IR and X-ray photoelectron spectroscopy (XPS) indicated that SO3- group (S6+, binding energy of 172.3 eV) was widely present in sulfated polysaccharide molecules. 13C NMR results indicated that C-6 substitution was predominant for sulfated polysaccharide when compared with other positions. In the sulfation reaction, a sharp decrease in MW was observed. DMAP/DCC was an effective catalyst system in sulfated modification of polysaccharide.

  14. Polysaccharide hydrogel combined with mesenchymal stem cells promotes the healing of corneal alkali burn in rats.

    Directory of Open Access Journals (Sweden)

    Yifeng Ke

    Full Text Available Corneal chemical burns are common ophthalmic injuries that may result in permanent visual impairment. Although significant advances have been achieved on the treatment of such cases, the structural and functional restoration of a chemical burn-injured cornea remains challenging. The applications of polysaccharide hydrogel and subconjunctival injection of mesenchymal stem cells (MSCs have been reported to promote the healing of corneal wounds. In this study, polysaccharide was extracted from Hardy Orchid and mesenchymal stem cells (MSCs were derived from Sprague-Dawley rats. Supplementation of the polysaccharide significantly enhanced the migration rate of primarily cultured rat corneal epithelial cells. We examined the therapeutic effects of polysaccharide in conjunction with MSCs application on the healing of corneal alkali burns in rats. Compared with either treatment alone, the combination strategy resulted in significantly better recovery of corneal epithelium and reduction in inflammation, neovascularization and opacity of healed cornea. Polysaccharide and MSCs acted additively to increase the expression of anti-inflammatory cytokine (TGF-β, antiangiogenic cytokine (TSP-1 and decrease those promoting inflammation (TNF-α, chemotaxis (MIP-1α and MCP-1 and angiogenesis (VEGF and MMP-2. This study provided evidence that Hardy Orchid derived polysaccharide and MSCs are safe and effective treatments for corneal alkali burns and that their benefits are additive when used in combination. We concluded that combination therapy with polysaccharide and MSCs is a promising clinical treatment for corneal alkali burns and may be applicable for other types of corneal disorder.

  15. New technology for regiospecific covalent coupling of polysaccharide antigens in ELISA for serological detection

    DEFF Research Database (Denmark)

    Jauho, E.S.; Boas, Ulrik; Wiuff, Camilla

    2000-01-01

    In this study we demonstrate a new UV irradiation technique for covalent coupling of bacterial polysaccharides derived from lipopolysaccharides to microtiter plates and the use of such plates in an enzyme linked immunosorbent assay (ELISA). Lipopolysaccharides were cleaved by mild acid hydrolysis...... the formation of stable covalent bonds to polymers e.g, microtiter plates. By this technique the polysaccharides are bound through the anthraquinone part of the polysaccharide-anthraquinone conjugates to the microtiter plates. This minimizes denaturation of O-antigen epitopes during binding to the microtiter...

  16. Catalytic synthesis and antioxidant activity of sulfated polysaccharide from Momordica charantia L.

    Science.gov (United States)

    Liu, Xin; Chen, Tong; Hu, Yan; Li, Kexin; Yan, Liushui

    2014-03-01

    Sulfated derivatives of polysaccharide from Momordica charantia L. (MCPS) with different degree of sulfation (DS) were synthesized by chlorosulfonic acid method with ionic liquids as solvent. Fourier transform infrared spectra and 13C nuclear magnetic resonance spectra indicated that C-6 substitution was predominant in MCPS compared with the C-2 position. Compared with the native polysaccharide from Momordica charantia L. (MCP), MCPS exhibited more excellent antioxidant activities in vitro, which indicated that sulfated modification could enhance antioxidant activities of MCP. Furthermore, high DS and moderate molecular weight could improve the antioxidant activities of polysaccharide. Copyright © 2013 Wiley Periodicals, Inc.

  17. Engineering Computer Games: A Parallel Learning Opportunity for Undergraduate Engineering and Primary (K-5 Students

    Directory of Open Access Journals (Sweden)

    Mark Michael Budnik

    2011-04-01

    Full Text Available In this paper, we present how our College of Engineering is developing a growing portfolio of engineering computer games as a parallel learning opportunity for undergraduate engineering and primary (grade K-5 students. Around the world, many schools provide secondary students (grade 6-12 with opportunities to pursue pre-engineering classes. However, by the time students reach this age, many of them have already determined their educational goals and preferred careers. Our College of Engineering is developing resources to provide primary students, still in their educational formative years, with opportunities to learn more about engineering. One of these resources is a library of engineering games targeted to the primary student population. The games are designed by sophomore students in our College of Engineering. During their Introduction to Computational Techniques course, the students use the LabVIEW environment to develop the games. This software provides a wealth of design resources for the novice programmer; using it to develop the games strengthens the undergraduates

  18. Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects.

    Science.gov (United States)

    Fedorov, Sergey N; Ermakova, Svetlana P; Zvyagintseva, Tatyana N; Stonik, Valentin A

    2013-12-02

    Many marine-derived polysaccharides and their analogues have been reported as showing anticancer and cancer preventive properties. These compounds demonstrate interesting activities and special modes of action, differing from each other in both structure and toxicity profile. Herein, literature data concerning anticancer and cancer preventive marine polysaccharides are reviewed. The structural diversity, the biological activities, and the molecular mechanisms of their action are discussed.

  19. Polysaccharides Isolated from Açaí Fruit Induce Innate Immune Responses

    OpenAIRE

    Jeff Holderness; Schepetkin, Igor A.; Brett Freedman; Kirpotina, Liliya N.; Quinn, Mark T.; Hedges, Jodi F.; Jutila, Mark A.

    2011-01-01

    The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fr...

  20. Polysaccharide-modified synthetic polymeric biomaterials.

    Science.gov (United States)

    Baldwin, Aaron D; Kiick, Kristi L

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. (c) 2010 Wiley Periodicals, Inc.

  1. Survivability of Psychrobacter cryohalolentis K5 Under Simulated Martian Surface Conditions

    Science.gov (United States)

    Smith, David J.; Schuerger, Andrew C.; Davidson, Mark M.; Pacala, Stephen W.; Bakermans, Corien; Onstott, Tullis C.

    2009-03-01

    Spacecraft launched to Mars can retain viable terrestrial microorganisms on board that may survive the interplanetary transit. Such biota might compromise the search for life beyond Earth if capable of propagating on Mars. The current study explored the survivability of Psychrobacter cryohalolentis K5, a psychrotolerant microorganism obtained from a Siberian permafrost cryopeg, under simulated martian surface conditions of high ultraviolet irradiation, high desiccation, low temperature, and low atmospheric pressure. First, a desiccation experiment compared the survival of P. cryohalolentis cells embedded, or not embedded, within a medium/salt matrix (MSM) maintained at 25°C for 24 h within a laminar flow hood. Results indicate that the presence of the MSM enhanced survival of the bacterial cells by 1 to 3 orders of magnitude. Second, tests were conducted in a Mars Simulation Chamber to determine the UV tolerance of the microorganism. No viable vegetative cells of P. cryohalolentis were detected after 8 h of exposure to Mars-normal conditions of 4.55 W/m2 UVC irradiation (200-280 nm), -12.5°C, 7.1 mbar, and a Mars gas mix composed of CO2 (95.3%), N2 (2.7%), Ar (1.6%), O2 (0.2%), and H2O (0.03%). Third, an experiment was conducted within the Mars chamber in which total atmospheric opacities were simulated at τ = 0.1 (dust-free CO2 atmosphere at 7.1 mbar), 0.5 (normal clear sky with 0.4 = dust opacity and 0.1 = CO2-only opacity), and 3.5 (global dust storm) to determine the survivability of P. cryohalolentis to partially shielded UVC radiation. The survivability of the bacterium increased with the level of UVC attenuation, though population levels still declined several orders of magnitude compared to UVC-absent controls over an 8 h exposure period.

  2. An unexpected oxidation: NaK5Cl2(S2O6)2 revisited

    Science.gov (United States)

    Harrison, William T. A.; Plater, M. John

    2017-01-01

    The title compound, NaK5Cl2(S2O6)2 [systematic name: sodium penta­potassium dichloride bis­(di­thio­nate)], arose as an unexpected product from an organic synthesis that used di­thio­nite (S2O4 2−) ions as a reducing agent to destroy excess permanganate ions. Compared to the previous study [Stanley (1953 ▸). Acta Cryst. 6, 187–196], the present tetra­gonal structure exhibits a root 2a × root 2a × c super-cell due to subtle changes in the orientations of the di­thio­nate anions. The structure can be visualized as a three-dimensional framework of [001] columns of alternating trans-NaO4Cl2 and KO4Cl2 octa­hedra cross-linked by the di­thio­nate ions with the inter­stices occupied by KO6Cl2 polyhedra to generate a densely packed three-dimensional framework. The asymmetric unit comprises two sodium ions (site symmetries 4 and -4, four potassium ions (site symmetries = -4, 4, 1 and 1), three chloride ions (site symmetries = 4, 4 and 2) and two half-di­thio­nate ions (all atoms on general positions). Both di­thio­nate ions are completed by crystallographic inversion symmetry. The crystal chosen for data collection was found to be rotationally twinned by 180° about the [100] axis in reciprocal space with a 0.6298 (13):0.3702 (13) domain ratio. PMID:28217339

  3. Microwave superheated water extraction of polysaccharides from spent coffee grounds.

    Science.gov (United States)

    Passos, Cláudia P; Coimbra, Manuel A

    2013-04-15

    The spent coffee grounds (SCG) are a food industry by-product that can be used as a rich source of polysaccharides. In the present work, the feasibility of microwave superheated water extraction of polysaccharides from SCG was studied. Different ratios of mass of SCG to water, from 1:30 to 1:5 (g:mL) were used for a total volume of 80 mL. Although the amount of material extracted/batch (MAE1) increased with the increase of the concentration of the sample, the amount of polysaccharides achieved a maximum of 0.57 g/batch for 1:10. Glycosidic-linkage composition showed that all extraction conditions allowed to obtain mainly arabinogalactans. When the unextracted insoluble material was re-extracted under the same conditions (MAE2), a further extraction of polysaccharides was observed (0.34 g/batch for 1:10), mainly galactomannans. Also, a high amount of oligosaccharides, mainly derived from galactomannans, can be obtained in MAE2 (0.96 g/batch for 1:10). This technology allows to obtain galactomannans and arabinogalactans in proportions that are dependent on the operating conditions.

  4. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula

    Directory of Open Access Journals (Sweden)

    Ariela Burg

    2015-10-01

    Full Text Available Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides’ antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains’ interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca2+ had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides’ stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites.

  5. Nanoparticle and polysaccharide conjugate: a potential candidate vaccine to improve immunological stimuli.

    Science.gov (United States)

    Devi, K Sanjana P; Sahoo, Banalata; Behera, Birendra; Maiti, Tapas K

    2015-01-01

    Active polysaccharides isolated from various fungal sources have been implicated to stimulate immune response against various pathogens as well as self anomalies such as cancer. Therefore, the nuanced approach presented in our work was to blend polysaccharides derived from Pleurotus ostreatus with biocompatible ferrite nanoparticles and thereafter investigate the enhanced immune functionality of the polysaccharide-nanoparticle composite. A Schiff base reductive amination reaction occurred between the aldehyde group of the polysaccharide and the amine group of the nanoparticles in the presence of a strong reducing agent such as sodium cyanoborohydride to form a stable amide bond between the two conjugating molecules. The multifaceted conjugate was characterized by physiochemical techniques such as electron microscopy, FTIR, VSM and DLS measurements. This particulate form of the polysaccharide showed a marked escalation in the production of free radicals such as reactive oxygen and nitrogen species in murine macrophages as compared to the soluble form. Animal based experiments demonstrated a reduction in tumor volume and augmentation in the proliferation of splenocytes in particulate or conjugated polysaccharide treated mice. Furthermore, molecular signaling studies showed a high upregulation in p-p38 and p-MEK molecules in particulate polysaccharide treated RAW264.7 cells suggesting a cellular downstream mechanistic regulation behind the immunostimulative response.

  6. Utilization of polysaccharides by radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Radiation treatment has been applied for improvement or pasteurization of agro-resources to recycle the resources and to reduce the pollution of environment. By using the radiation effect for pasteurization, upgrading of cellulosic wastes of oil palm to animal feeds and mushroom has been studied under the bilateral research cooperation between JAERI and MINT (Malaysian Institute for Nuclear Technology Research). The necessary dose for pasteurization of oil palm empty fruit bunch (EFB), which is a main cellulosic by-product of palm oil industry, was determined as 10 kGy. After pasteurization, the EFB substrate was inoculated with Pleurotus sajor-caju and fermented for 1 month. The digestibility and nutritional value of fermented products were evaluated as ruminant feeds and the mushroom can be produced as by-product. For the improvement of resources, radiation effects on polysaccharides such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to induce the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities. The anti-bacterial activity and elicitor activity of chitosan were induced by irradiation. The induction of phytoalexins was also observed by irradiated pectin but the higher elicitor activity for pisatin was obtained by chitosan than pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa carrageenan irradiated at 100 kGy. Furthermore, some radiation degraded polysaccharides suppressed the damage of environmental stress on plants. (author)

  7. Effects of Polysaccharide of Gastrodia Elata Blume and Electro-Acupuncture on Expressions of Brain-Derived Neurotrophic Factor and Stem Cell Factor Protein in Caudate Putamen of Focal Cerebral Ischemia Rats.

    Science.gov (United States)

    Li, Huai-Bin; Wu, Feng; Miao, Hua-Chun; Xiong, Ke-Ren

    2016-12-23

    BACKGROUND The aim of this study was to explore the neural protective effect of polysaccharide of Gastrodia elata Blume (PGB) and electro-acupuncture (EA) on focal cerebral ischemia rats. MATERIAL AND METHODS A total of 40 Sprague-Dawley rats were randomly divided into 5 groups (normal group, model group, PGB group, EA group and PGB+EA group). The model was prepared by middle cerebral artery occlusion (MCAO). Two week after modeling, rats were given PGB, EA, or a combination of the 2 in continuous treatment for 2 successive weeks. 14 days after modeling, expressions of BDNF and SCF protein in the caudate putamen (CPu) were detected by immunohistochemistry. RESULTS Positive expression of BDNF and SCF protein was found in the right caudate putamen of each group of rats. Expressions of BDNF and SCF in the CPu of the model group were higher than normal group (P<0.05). Compared with the model group, the expressions of BDNF and SCF in the CPu of the PGB group, the EA group, and the PGB plus EA group increased significantly (P<0.05). The expressions of BDNF and SCF obviously increased in the PGB plus EA group compared to those of the EA group and the PGB group (P<0.05). CONCLUSIONS PGB and EA up-regulated the expressions of BDNF and SCF protein in the CPu of focal cerebral ischemia rats, and the combination of PGB+EA has a synergistic effect on the recovery from cerebral ischemia.

  8. Isolation and structural features of an antiradical polysaccharide of Capsicum annuum that interacts with BSA.

    Science.gov (United States)

    Majee, Sujay Kumar; Ray, Sayani; Ghosh, Kanika; Micard, Valérie; Ray, Bimalendu

    2015-04-01

    Red peppers, Capsicum annuum, are used worldwide as spices, foods and medicines. Herein, we have analyzed an antiradical polysaccharide isolated from red peppers through successive acetate buffer extraction. This macromolecule was purified using graded precipitation with ethanol, α-amylase treatment, deproteination and anion-exchange chromatography. This highly-branched polysaccharide (360 kDa) was esterified with phenolic acids and contained a (1,3)-linked-β-Galp chain substituted at O-6 by (1,6)-linked-β-Galp residues. The latter was substituted at O-3 by (1,5)- and (1,3,5)-linked-α-Araf residues, and non-reducing end-units of α-Araf and β-Galp. The antiradical potential of this polysaccharide was comparable to standard antioxidants. The phenolic acid residues were the functional sites. This polysaccharide could form complex with bovine serum albumin having binding constant K = 5.24 × 10(6)/M and change its microenvironment. Thus, aqueous extraction method provides a macromolecule that stimulates biological responses; this emphasizes the significance of red pepper as dietary antioxidant.

  9. Selective Acid Hydrolysis Condition for the Composition and Linkage with a Fructofuranosyl Backbone of a Polysaccharide from Angelica sinensis (Oliv) Diels

    Institute of Scientific and Technical Information of China (English)

    Gui Yun XU; Yang CHEN; Ru Xian CHEN

    2006-01-01

    A new polysaccharide was extracted and purified from the roots of Angelica sinensis (Oliv) Diels (ASD). Its composition and linkage was elucidated by selective hydrolysis and GC/MS analysis of its derivatives. The polysaccharide was made of→1) Fruf(2→and→6) GlCp (1→as its backbone with highly branched structure. To our best knowledge, this is the first report of the fructose residue in polysaccharides from the roots of the ASD.

  10. Evaluation of Macroalgae Sulfated Polysaccharides on the Leishmania (L. amazonensis Promastigote

    Directory of Open Access Journals (Sweden)

    Marcos Hikari Toyama

    2013-03-01

    Full Text Available The sulfated polysaccharides from Solieria filiformis (Sf, Botryocladia occidentalis (Bo, Caulerpa racemosa (Cr and Gracilaria caudata (Gc were extracted and extensively purified. These compounds were then subjected to in vitro assays to evaluate the inhibition of these polysaccharides on the growth of Leishmania (L. amazonensis promastigotes. Under the same assay conditions, only three of the four sulfated polysaccharides were active against L. amazonensis, and the polysaccharide purified from Cr was the most potent (EC50 value: 34.5 μg/mL. The polysaccharides derived from Bo and Sf demonstrated moderate anti-leishmanial activity (EC50 values of 63.7 μg/mL and 137.4 μg/mL. In addition, we also performed in vitro cytotoxic assays toward peritoneal macrophages and J774 macrophages. For the in vitro cytotoxicity assay employing J774 cells, all of the sulfated polysaccharides decreased cell survival, with CC50 values of 27.3 μg/mL, 49.3 μg/mL, 73.2 μg/mL, and 99.8 μg/mL for Bo, Cr, Gc, and Sf, respectively. However, none of the sulfated polysaccharides reduced the cell growth rate of the peritoneal macrophages. These results suggest that macroalgae contain compounds with various chemical properties that can control specific pathogens. According to our results, the assayed sulfated polysaccharides were able to modulate the growth rate and cell survival of Leishmania (L. amazonensis promastigotes in in vitro assays, and these effects involved the interaction of the sulfated polysaccharides on the cell membrane of the parasites.

  11. Multiple Signals Govern Utilization of a Polysaccharide in the Gut Bacterium Bacteroides thetaiotaomicron.

    Science.gov (United States)

    Schwalm, Nathan D; Townsend, Guy E; Groisman, Eduardo A

    2016-10-11

    The utilization of simple sugars is widespread across all domains of life. In contrast, the breakdown of complex carbohydrates is restricted to a subset of organisms. A regulatory paradigm for integration of complex polysaccharide breakdown with simple sugar utilization was established in the mammalian gut symbiont Bacteroides thetaiotaomicron, whereby sensing of monomeric fructose regulates catabolism of both fructose and polymeric fructans. We now report that a different regulatory paradigm governs utilization of monomeric arabinose and the arabinose polymer arabinan. We establish that (i) arabinan utilization genes are controlled by a transcriptional activator that responds to arabinan and by a transcriptional repressor that responds to arabinose, (ii) arabinose utilization genes are regulated directly by the arabinose-responding repressor but indirectly by the arabinan-responding activator, and (iii) activation of both arabinan and arabinose utilization genes requires a pleiotropic transcriptional regulator necessary for survival in the mammalian gut. Genomic analysis predicts that this paradigm is broadly applicable to the breakdown of other polysaccharides in both B. thetaiotaomicron and other gut Bacteroides spp. The uncovered mechanism enables regulation of polysaccharide utilization genes in response to both the polysaccharide and its breakdown products. Breakdown of complex polysaccharides derived from "dietary fiber" is achieved by the mammalian gut microbiota. This breakdown creates a critical nutrient source for both the microbiota and its mammalian host. Because the availability of individual polysaccharides fluctuates with variations in the host diet, members of the microbiota strictly control expression of polysaccharide utilization genes. Our findings define a regulatory architecture that controls the breakdown of a polysaccharide by a gut bacterium in response to three distinct signals. This architecture integrates perception of a complex

  12. Sucrose release from polysaccharide gels.

    Science.gov (United States)

    Nishinari, Katsuyoshi; Fang, Yapeng

    2016-05-18

    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed.

  13. Polysaccharide-Based Micelles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2013-05-01

    Full Text Available Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date.

  14. Polysaccharides As Safer Release Systems For Agrochemicals

    OpenAIRE

    Campos E.V.R.; de Oliveira J.L.; Fraceto L.F.; Singh B

    2014-01-01

    International audience; Agrochemicals are used to improve the production of crops. Conventional formulations of agrochemicals can contaminate the environment, in particular in the case of intensive cropping. Hence, there is a need for controlled-release formulations of agrochemicals such as polysaccharides to reduce pollution and health hazards. Natural polysaccharides are hydrophilic, biodegradable polymers. This article reviews the use of polysaccharides in the form of micro- and nanopartic...

  15. Inter-RMO Key Comparison EUROMET.L-K5.2004: Calibration of a step gauge

    DEFF Research Database (Denmark)

    Prieto, Emilio; Brown, Nicholas; Lassila, Antti

    2012-01-01

    The results of the inter-RMO key comparison EUROMET.L-K5.2004 on the calibration of a step gauge are reported. Eighteen National Metrology Institutes and one Designated Institute from four different metrological regions all over the world participated in this comparison which lasted three years...

  16. Moving the School and Dancing Education: Case Study Research of K-5 Students' Experiences in a Dance Residency

    Science.gov (United States)

    Leonard, Alison E.

    2012-01-01

    This dissertation chronicles the qualitative case study of a dance artist-in-residence at a diverse and inclusive K-5 school in an urban district, integrating science, social studies, physical education, music, and visual arts school curriculum and culminating in two public performances. This study focused on how students made meaning through this…

  17. Retention Behaviors of Uronic Acid-containing Polysaccharides and Neutral Polysaccharides in HPGPC

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The chromatographic behaviors of several uronic acid-containing polysaccharides and neutral polysaccharides were investigated in HPGPC for the first time. The effects of sample concentration and ionic strength of mobile phase on retention time were studied. The mechanism for the effects on Mw determination results of polysaccharides by HPGPC was also discussed.

  18. Advances on Bioactive Polysaccharides from Medicinal Plants.

    Science.gov (United States)

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  19. Biological mechanisms of human-derived leukemia stem cells senescence regulated by Angelica sinensis polysaccharide%当归多糖调控人白血病干细胞衰老的机制研究

    Institute of Scientific and Technical Information of China (English)

    贾道勇; 刘俊; 李成鹏; 李静; 张梦思; 张岩岩; 景鹏伟; 徐春燕; 王亚平

    2015-01-01

    目的:探讨当归多糖(Angelica sinensis polysaccharide,ASP)体外诱导人白血病干细胞衰老的相关机制.方法:免疫磁性分选法分离人急性髓系白血病患者骨髓白血病干细胞(leukemia stem cells,LSCs);不同质量浓度的当归多糖(20 ~ 80 mg·L-1)体外诱导LSCs 48 h,CCK-8检测LSCs增殖能力;甲基纤维素半固体培养法检测LSCs形成白血病细胞集落(CFU-LC)能力;透射电子显微镜分析细胞超微结构变化;β-半乳糖苷酶(SA-β-Gal)染色检测细胞衰老;qRT-PCR分析LSCs衰老相关基因p53,p21,p16和Rb表达;Western blotting检测P16,Rb,CDK4和Cyclin E蛋白表达.结果:分选后LSCs纯度达(91.15±2.41)%,形态良好.经不同浓度当归多糖作用后,LSCs呈现明显的的浓度依赖性增殖抑制.40 mg·L-1当归多糖作用LSCs48 h,其SA-β-Gal染色阳性细胞率明显升高,CFU-LC形成能力下降;超微结构显示细胞线粒体肿胀,溶酶体数量增多,异染色质边集;衰老相关基因p53,p21,p16和Rb表达上调;衰老相关蛋白P16和Rb表达上调,CDK4和Cyclin E表达下调.结论:当归多糖在体外能诱导入LSCs衰老,推测其可能机制与当归多糖调控P16-Rb信号通路有关.

  20. Isolation, characterization and investigation of Plantago ovata husk polysaccharide as superdisintegrant.

    Science.gov (United States)

    Pawar, Harshal; Varkhade, Chhaya

    2014-08-01

    Psyllium husk (Plantago ovata, Family: Plantaginaceae) contains a high proportion of hemicellulose, composed of a xylan backbone linked with arabinose, rhamnose, and galacturonic acid units (arabinoxylans). Polysaccharide was isolated from Psyllium husk using solvent precipitation method. The isolated polysaccharide was evaluated for various physicochemical parameters. The rheological behavior of polysaccharide (1% w/v in water) was studied using Brookfield viscometer. Polysaccharide derived from the husk of P. ovata was investigated as superdisintegrant in the fast dissolving tablets. Valsartan, an antihypertensive drug, was selected as a model drug. The tablets of Valsartan were prepared separately using different concentrations (1, 2.5, 5, 7.5% w/w) of isolated Plantago ovata (P. ovata) husk polysaccharide (Natural) and crospovidone as a synthetic superdisintegrant by direct compression method. The prepared tablets were evaluated for various pre-compression and post-compression parameters. The drug excipient interactions were characterized by FTIR studies. The formulation F4 containing7.5% polysaccharide showed rapid wetting time and disintegration time as compared to formulation prepared using synthetic superdisintegrant at the same concentration level. Hence batch F4 was considered as optimized formulation. The stability studies were performed on formulation F4. The disintegration time and in vitro drug release of the optimized formulation was compared with the marketed formulation (Conventional tablets).

  1. Starch-degrading polysaccharide monooxygenases.

    Science.gov (United States)

    Vu, Van V; Marletta, Michael A

    2016-07-01

    Polysaccharide degradation by hydrolytic enzymes glycoside hydrolases (GHs) is well known. More recently, polysaccharide monooxygenases (PMOs, also known as lytic PMOs or LPMOs) were found to oxidatively degrade various polysaccharides via a copper-dependent hydroxylation. PMOs were previously thought to be either GHs or carbohydrate binding modules (CBMs), and have been re-classified in carbohydrate active enzymes (CAZY) database as auxiliary activity (AA) families. These enzymes include cellulose-active fungal PMOs (AA9, formerly GH61), chitin- and cellulose-active bacterial PMOs (AA10, formerly CBM33), and chitin-active fungal PMOs (AA11). These PMOs significantly boost the activity of GHs under industrially relevant conditions, and thus have great potential in the biomass-based biofuel industry. PMOs that act on starch are the latest PMOs discovered (AA13), which has expanded our perspectives in PMOs studies and starch degradation. Starch-active PMOs have many common structural features and biochemical properties of the PMO superfamily, yet differ from other PMO families in several important aspects. These differences likely correlate, at least in part, to the differences in primary and higher order structures of starch and cellulose, and chitin. In this review we will discuss the discovery, structural features, biochemical and biophysical properties, and possible biological functions of starch-active PMOs, as well as their potential application in the biofuel, food, and other starch-based industries. Important questions regarding various aspects of starch-active PMOs and possible economical driving force for their future studies will also be highlighted.

  2. Thermal studies on natural polysaccharide

    Institute of Scientific and Technical Information of China (English)

    Sunil B Bothara; Sudarshan Singh

    2012-01-01

    Objective: To characterize thermal property of natural gums obtained from the seeds of Diospyros melonoxylon(D. melonoxylon) Roxb, Buchanania lanzan (B. lanzan) spreng and Manilkara zapota (M. zapota) (Linn.) P. Royen syn. Methods: Natural gums were thermally characterized using differential scanning calorimetry (DSC), differential thermal analysis (DTA) and thermo-gravimetric analysis (TGA) under nitrogen atmosphere. Major thermal transitions as well as activation energies of the major decomposition stages were determined. Elemental analysis was performed in order to determine the composition of carbon, hydrogen, nitrogen and sulfur. Results: DSC traces indicated a major intense exothermic transition (around 200℃) followed by weaker exotherm(s). Thermogravimetric analysis showed two phase of weight loss. The first phase has minor weight loss in samples is attributed to the loss of adsorbed and structural water of biopolymers or due to desorption of moisture as hydrogen bound water to the saccharide structure. The second weight loss event may be attributed to the polysaccharide decomposition. The initial decomposition temperature (IDT) was calculated from thermograms obtained of TGA, seed Polysaccharide of D. melonoxylon (IDT 221.21℃), B. lanzan (IPDT 170.4℃) and M. zapota (IPDT 178.6℃) were obtained. According to the integral procedural decomposition temperature (IPDT) values calculated based on the TGA thermograms; D. melonoxylon (IPDT 563.3℃), B. lanzan (IPDT 598.1℃) and M. zapota (IPDT 600.6℃) were obtained respectively. The elemental analysis study shows that the isolated natural Polysaccharides consist of certain percentage of carbon, nitrogen, sulphur and hydrogen in all the gums. Conclusions: The results of the present investigation reveal that the natural gums are thermally stable and these gums can be used as release modifiers in various dosage forms.

  3. Pharmacological Action of Adenophora Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    李泱; 李春红; 唐富天; 李新芳

    2004-01-01

    Adenophora polysaccharides (AP), is an active principle extracted from the root of Adenophorae Potaninii Korsh originated in Gansu Province and isolated with boiling water. AP is isolated and purified from the crude drug by DEAE-cellulose and Sephadex G-200 column, with a white powder and mean molecular weight of 8.3×104 , and [α]D20 of AP is + 68. AP is only composed of glucose judging from the analysis of it with patina chromatography (PC) and gas chromatography-mass spectrometer (GC-MS) methods.

  4. Bioactive polysaccharides and gut microbiome (abstract)

    Science.gov (United States)

    Many polysaccharides have shown the ability to reduce plasma cholesterol or postprandial glycemia. Viscosity in the small intestine seems to be required to slow glucose uptake. Cereal mixed linkage beta-glucans, psyllium, glucomannans, and other polysaccharides also seem to require higher molecula...

  5. The Atmospheric Dynamics of Alpha Tau (K5 III) -- Clues to Understanding the Magnetic Dynamo

    Science.gov (United States)

    Carpenter Kenneth G.

    2008-01-01

    Using HST/GHRS, HST/STIS and FUSE archival data for (alpha) Tau and the CHIANTI spectroscopic code, we have derived line shifts, volumetric emission measures, and plasma density estimates, and calculated filling factors for a number of UV lines forming between 10,000 K and 300,000 K in the outer atmosphere of this red giant star. The data suggest the presence of low-temperature extended regions and high-temperature compact regions, associated with magnetically open and closed structures in the stellar atmosphere, respectively. The signatures of UV lines from Alpha Tau can be consistently understood via a model of upward-traveling Alfven waves in a gravitationally stratified atmosphere. These wakes cause non-thermal broadening in UV lines due to unresolved wave motions and downward plasma motions in compact magnetic loops heated by resonant .4lf\\en wave heating. We discuss implications of this interpretation for understanding the nature of magnetic dynamos operating in late-type giants.

  6. Polysaccharides in colon-specific drug delivery.

    Science.gov (United States)

    Sinha, V R; Kumria, R

    2001-08-14

    Natural polysaccharides are now extensively used for the development of solid dosage forms for delivery of drug to the colon. The rationale for the development of a polysaccharide based delivery system for colon is the presence of large amounts of polysaccharidases in the human colon as the colon is inhabited by a large number and variety of bacteria which secrete many enzymes e.g. beta-D-glucosidase, beta-D-galactosidase, amylase, pectinase, xylanase, beta-D-xylosidase, dextranase, etc. Various major approaches utilizing polysaccharides for colon-specific delivery are fermentable coating of the drug core, embedding of the drug in biodegradable matrix, formulation of drug-saccharide conjugate (prodrugs). A large number of polysaccharides have already been studied for their potential as colon-specific drug carrier systems, such as chitosan, pectin, chondroitin sulphate, cyclodextrin, dextrans, guar gum, inulin, amylose and locust bean gum. Recent efforts and approaches exploiting these polysaccharides in colon-specific drug delivery are discussed.

  7. K5/K14-positive cells contribute to salivary gland-like breast tumors with myoepithelial differentiation.

    Science.gov (United States)

    Boecker, Werner; Stenman, Goeran; Loening, Thomas; Andersson, Mattias K; Bankfalvi, Agnes; von Holstein, Sarah; Heegaard, Steffen; Lange, Alina; Berg, Tobias; Samoilova, Vera; Tiemann, Katharina; Buchwalow, Igor

    2013-08-01

    Salivary gland-like tumors of the breast show a great variety of architectural patterns and cellular differentiations such as glandular, myoepithelial, squamous, and even mesenchymal phenotypes. However, currently little is known about the evolution and cellular differentiation of these tumors. For that reason, we performed an in situ triple immunofluorescence lineage/differentiation tracing (isTILT) and qRT-PCR study of basal (K5/K14), glandular (K7/K8/18), and epidermal-specific squamous (K10) keratins, p63, and smooth muscle actin (SMA; myoepithelial marker) with the aim to construct and trace different cell lineages and define their cellular hierarchy in tumors with myoepithelial differentiation. isTILT analysis of a series of 28 breast, salivary, and lacrimal gland tumors, including pleomorphic adenomas (n=8), epithelial-myoepithelial tumors (n=9), and adenoid cystic carcinomas (n=11) revealed that all tumor types contained K5/K14-positive progenitor cells in varying frequencies from a few percent up to 15%. These K5/K14-positive tumor cells were found to differentiate to glandular- (K8/18-positive) and myoepithelial-lineage (SMA-positive)-specific cells and were also shown to generate various heterologeous cell differentiations such as squamous and mesenchymal progenies. p63 was co-expressed with K5/K14 in basal-like progenitor cells, myoepithelial, and squamous cells but not in glandular cells. Our results show that the corresponding counterpart tumors of breast and salivary/lacrimal glands have identical cellular compositions. Taken together, our isTILT and RNA-expression data indicate that look-alike tumors of the breast represent a special subgroup of basal-type tumors with benign or usually low malignant potential.

  8. Acetylation and carboxymethylation of the polysaccharide from Ganoderma atrum and their antioxidant and immunomodulating activities.

    Science.gov (United States)

    Chen, Yi; Zhang, Hui; Wang, Yuanxing; Nie, Shaoping; Li, Chang; Xie, Mingyong

    2014-08-01

    A water-soluble polysaccharide extracted from Ganoderma atrum was chemically modified to obtain its acetyled and carboxymethylated derivatives. The results of chemical analysis, Fourier-transform infrared and (13)C nuclear magnetic resonance spectroscopy showed that these modifications were successful, although the molecular weight of these derivatives decreased due to slight degradation during the reaction. The antioxidant and immunomodulating activities of these derivatives were then investigated to determine the structure-bioactivity relationship. Results showed that the acetyled derivative with appropriate degree of substitution and lower molecular weight exhibited stronger antioxidant abilities on scavenging DPPH radical, and inhibitory effects in β-carotene-linoleic acid systems compared with the native polysaccharide. In addition, it also enhanced the macrophage phagocytosis capacity and tumor necrosis factor-α secretion, whereas the carboxymethylated derivative was shown to be slightly less effective. These results indicated that the type of substitution group and their degree of substitution play a decisive role in the bioactivities of the derivatives.

  9. Effect of ultrasonic treatment on the degradation and inhibition cancer cell lines of polysaccharides from Porphyra yezoensis.

    Science.gov (United States)

    Yu, Xiaojie; Zhou, Cunshan; Yang, Hua; Huang, Xingyi; Ma, Haile; Qin, Xiaopei; Hu, Jiali

    2015-03-01

    The exposure of polysaccharides solutions to high-energy ultrasound produces a permanent reduction in viscosity and change in activity. However, the exact mechanism which occurs in the process is still not clear. In this work, degradation of polysaccharides from Porphyra yezoensis (PP) was indirectly and directly judged by intrinsic viscosity and high performance gel permeation chromatography. The degradation process was established with dynamics and affirmed by theoretical derivation. Inhibition of cancer cell lines (SGC-7901, 95D) was also investigated by assays of tetrazolium colorimetric. The intrinsic viscosity of the degraded PP decreased exponentially with increase in ultrasonic time, and theoretical derivation was established and confirmed well. The distribution and new fraction of degraded polysaccharides was found. Ultrasound degraded preferentially large PP molecules and cleavage took place roughly at the centre of the molecules. During ultrasound degradation the molecular weight distribution was narrowed. The inhibition activities of SGC7901 with ultrasound degraded polysaccharides were increased.

  10. Sulfation of a polysaccharide produced by a marine filamentous fungus Phoma herbarum YS4108 alters its antioxidant properties in vitro.

    Science.gov (United States)

    Yang, X B; Gao, X D; Han, F; Tan, R X

    2005-08-30

    Free radicals and other reactive oxygen species (ROS) are generated by all aerobic cells and are widely believed to play a significant role in aging as well as a number of degenerative or pathological diseases. This study compared the free radical-scavenging properties and antioxidant activity of YCP, a polysaccharide from the mycelium of a marine filamentous fungus Phoma herbarum YS 4108 and its two chemically sulfated derivatives YCP-S1 and YCP-S2. Sulfation, which masks hydroxyl groups of YCP polysaccharide molecule, could introduce new antioxidant activity, such as superoxide and hydroxyl radicals scavenging activity, metal chelating action, lipid peroxidation and linoleic acid oxidation inhibition capability. Furthermore, sulfated YCP was more potent than YCP at protecting erythrocytes against oxidative damage hemolysis. The current data suggest for the first time that sulfation of polysaccharide significantly increases its antioxidant activity and the chemical modification of polysaccharides may allow the preparation of derivatives with new properties and a variety of applications.

  11. Influence of Temperature on the Extractibility of Polysaccharides in Barley

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2011-10-01

    Full Text Available Barley contains substantial amounts of both soluble and insoluble non-starch polysaccharides (NSP. The main watersoluble NSP in barley are highly viscous β-glucans. Monogastric animals, including humans and birds, cannotsynthesize β-glucanase, and the amount of β-glucanase derived from barley grain and bacteria in the gastrointestinaltract is insufficient to completely hydrolyze β-glucans. In the present investigation, we have studied the influence oftemperature and heating time on the extractibility of soluble polysaccharides in barley. Heating the barley samples at60°C and 80°C before extraction has the effect of lowering the soluble fraction of the polysaccharides. The dynamicviscosity values of water extracts from barley decreased up to 21.68% when heating at 60ºC for 15 minutes, and upto 25.30% when heating at 80ºC for 15 minutes, when the determinations were made immediately after extractseparation. Heating the barley samples for 15 minutes at 80°C deactivates the endogenous hydrolytic enzymes.

  12. Isolation and chemical characterization of dissolved and particulate polysaccharides in Mikawa Bay

    Science.gov (United States)

    Sakugawa, Hiroshi; Handa, Nobuhiko

    1985-05-01

    Isolation and chemical elucidation of dissolved and particulate polysaccharides in seawater were conducted. The water samples were collected in Mikawa Bay, Japan during a red tide bloom of the dinoflagellate, Prorocentrum minimum. Dissolved polysaccharides were concentrated from 5-101 of seawater with dialysis followed by separation by gel flitration, and isolation by ethanol precipitation. A heteropolysaccharide consisting of glucose, galactose, mannose, xylose, arabinose, fucose and rhamnose and a glucan were isolated from the polysaccharide component having a molecular weight more than 4,000 Dalton and were characterized by several chemical analyses. The heteropolysaccharide is a mucilaginous polysaccharide having a highly branched structure and a molecular weight of 10 4-5 × 10 6 Daltons and probably contains a sulfate half ester: the glucan is a polysaccharide with β-1,3- and 1,6-linkages (chrysolaminaran type). Concentrations of these were respectively ca. 20 and 67 μg l -1 at 1 m, and 2 and 26 μg l -1 at 6 m. A similar heteropolysaccharide was found in the boiling water extract of the particulate matter, while β-glucan was isolated in a much less purified form than the seawater β-glucan. In addition, a large amount of β-1,4 glucan was found in the strong alkali extract of the particulate matter, indicating that this glucan must be a cell wall polysaccharide derived from phytoplankton. These results strongly suggest that the heteropolysaccharide and chrysolaminaran type polysaccharide dissolved in seawater were derived from water soluble carbohydrates of phytoplankton through extracellular release or cell lysis.

  13. Preparation, characterization and antioxidant activities of acetylated polysaccharides from Cyclocarya paliurus leaves.

    Science.gov (United States)

    Xie, Jian-Hua; Zhang, Fan; Wang, Zhi-Jun; Shen, Ming-Yue; Nie, Shao-Ping; Xie, Ming-Yong

    2015-11-20

    In this study, polysaccharides extracted from Cyclocarya paliurus leaves were modified to obtain its three acetylated derivatives, Ac-CP1, Ac-CP2, and Ac-CP3. The physicochemical characteristics and antioxidant activities of acetylated derivatives were investigated. The results of chemical and FT-IR spectrum analysis showed differences between acetylated derivatives and native C. paliurus polysaccharide, which revealed that the acetylation were successful. Relative to unmodified polysaccharide, the protein contents of acetylated derivatives decreased, while carbohydrate values increased. The molecular weight (Mw) of acetylated derivatives were approximately 1.05-1.09×10(6)Da and were mainly composed of Ara, Gal, Glc, Man, GalA. Ac-CP1 with relatively low degree of substitution (0.13±0.01) exhibited excellent antioxidant activity in DPPH radical assay (95.21±0.89%), and also had strong chelating activity on β-carotene-linoleic acid assay (34.64±2.07%) at 0.5mg/ml. In addition, scanning electron microscope (SEM) observations suggested that acetylation could change the morphology and structure of polysaccharides from C. paliurus leaves.

  14. Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing Materials

    Directory of Open Access Journals (Sweden)

    Donald C. Aduba

    2017-01-01

    Full Text Available Wound dressings are critical for wound care because they provide a physical barrier between the injury site and outside environment, preventing further damage or infection. Wound dressings also manage and even encourage the wound healing process for proper recovery. Polysaccharide biopolymers are slowly becoming popular as modern wound dressings materials because they are naturally derived, highly abundant, inexpensive, absorbent, non-toxic and non-immunogenic. Polysaccharide biopolymers have also been processed into biomimetic platforms that offer a bioactive component in wound dressings that aid the healing process. This review primarily focuses on the fabrication and biocompatibility assessment of polysaccharide materials. Specifically, fabrication platforms such as electrospun fibers and hydrogels, their fabrication considerations and popular polysaccharides such as chitosan, alginate, and hyaluronic acid among emerging options such as arabinoxylan are discussed. A survey of biocompatibility and bioactive molecule release studies, leveraging polysaccharide’s naturally derived properties, is highlighted in the text, while challenges and future directions for wound dressing development using emerging fabrication techniques such as 3D bioprinting are outlined in the conclusion. This paper aims to encourage further investigation and open up new, disruptive avenues for polysaccharides in wound dressing material development.

  15. Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis

    Directory of Open Access Journals (Sweden)

    Chen Rachel

    2006-07-01

    Full Text Available Abstract Metabolic engineering has recently been embraced as an effective tool for developing whole-cell biocatalysts for oligosaccharide and polysaccharide synthesis. Microbial catalysts now provide a practical means to derive many valuable oligosaccharides, previously inaccessible through other methods, in sufficient quantities to support research and clinical applications. The synthesis process based upon these microbes is scalable as it avoids expensive starting materials. Most impressive is the high product concentrations (up to 188 g/L achieved through microbe-catalyzed synthesis. The overall cost for selected molecules has been brought to a reasonable range (estimated $ 30–50/g. Microbial synthesis of oligosaccharides and polysaccharides is a carbon-intensive and energy-intensive process, presenting some unique challenges in metabolic engineering. Unlike nicotinamide cofactors, the required sugar nucleotides are products of multiple interacting pathways, adding significant complexity to the metabolic engineering effort. Besides the challenge of providing the necessary mammalian-originated glycosyltransferases in active form, an adequate uptake of sugar acceptors can be an issue when another sugar is necessary as a carbon and energy source. These challenges are analyzed, and various strategies used to overcome these difficulties are reviewed in this article. Despite the impressive success of the microbial coupling strategy, there is a need to develop a single strain that can achieve at least the same efficiency. Host selection and the manner with which the synthesis interacts with the central metabolism are two important factors in the design of microbial catalysts. Additionally, unlike in vitro enzymatic synthesis, product degradation and byproduct formation are challenges of whole-cell systems that require additional engineering. A systematic approach that accounts for various and often conflicting requirements of the synthesis holds

  16. [The extraction, purification and assaying of Gynostemma pentaphyllum polysaccharides].

    Science.gov (United States)

    Song, Shu-liang; Tang, Jin-bao; Ji, Ai-guo; Liang, Hao; Zhu, Peng; Wang, Wei-li

    2006-06-01

    By orthogonal design, and considering extracting efficiency and cost, optimizing the extract method of Gynostemma pentaphyllum polysaccharides. We purified the crude Gynostemma pentaphyllum polysaccharides initially, and assayed the polysaccharides content of Gynostemma pentaphyllum polysccharides. The content of Gynostemma pentaphyllum polysaccharides was sigificantly higher than the predecessor. It would provide conditions for the deep exploitation of Gynostemma pentaphyllum.

  17. An exocellular polysaccharide and its interactions with proteins

    NARCIS (Netherlands)

    Tuinier, R.

    1999-01-01

    In the food industry polysaccharides are used as thickening or gelling agents. Polysaccharides are usually extracted from plants. Micro-organisms are also capable of excreting polysaccharides: exocellular polysaccharides (EPSs). In some cases EPSs are produced in-situ in food products, notably in ac

  18. Antithrombin activity of an algal polysaccharide.

    Science.gov (United States)

    Trento, F; Cattaneo, F; Pescador, R; Porta, R; Ferro, L

    2001-06-01

    In an effort to reduce the risks of a possible iatrogenic transmission of bovine spongiform encephalitis (BSE) through the use of bovine-derived medicinal products, we patented in the USA in 1999 a polysaccharide from brown algae, endowed with interesting pharmacological activities: (a) concentration-dependent inhibition of thromboplastin or cephalin-kaolin-induced thrombin generation from platelets, (b) concentration-dependent inhibition of thrombin-induced platelet aggregation, (c) thrombin has hypotensive effect, which was blunted and zeroed by our fucansulfate in a dose-dependent way, (d) when aortae are stimulated with thrombin, they become stickier for polymorphonucleated leukocytes (PMNs); our fucansulfate decreased concentration-dependently, PMNs sticking to autologous rabbit aortae, (e) dose-dependent inhibition of thrombin-induced thrombosis. All the above data suggest that our fucansulfate could be a heparin substitute endowed with antithrombotic and anti-inflammatory activities, devoid or the problems caused to heparin by its animal origin, i.e., possible prion protein contamination.

  19. Immunomodulatory Polysaccharide from Chlorophytum borivilianum Roots

    Directory of Open Access Journals (Sweden)

    Mayank Thakur

    2011-01-01

    Full Text Available Chlorophytum borivilianum Santapau & Fernandes (Liliaceae is an ayurvedic Rasayana herb with immunostimulating properties. The polysaccharide fraction (CBP derived from hot water extraction of C. borivilianum (CB, comprising of ~31% inulin-type fructans and ~25% acetylated mannans (of hot water-soluble extract, was evaluated for its effect on natural killer (NK cell activity (in vitro. Human peripheral blood mononuclear cells (PBMCs, isolated from whole blood on a Ficoll-Hypaque density gradient, were tested in the presence or absence of varying concentrations of each C. borivilianum fraction for modulation of NK cell cytotoxic activity toward K562 cells. Preliminary cytotoxicity evaluation against P388 cells was performed to establish non-cytotoxic concentrations of the different fractions. Testing showed the observed significant stimulation of NK cell activity to be due to the CBP of C. borivilianum. Furthermore, in vivo evaluation carried out on Wistar strain albino rats for humoral response to sheep red blood cells (SRBCs and immunoglobulin-level determination using enzyme-linked immunosorbent assay (ELISA, exhibited an effectiveness of C. borivilianum aqueous extract in improving immune function. Present results provide useful information for understanding the role of CBP in modulating immune function.

  20. Bis-Indole Derivatives for Polysaccharide Compositional Analysis and Chiral Resolution of D-, L-Monosaccharides by Ligand Exchange Capillary Electrophoresis Using Borate-Cyclodextrin as a Chiral Selector

    Directory of Open Access Journals (Sweden)

    Wen-Bin Yang

    2011-02-01

    Full Text Available A series of aldo-bis-indole derivatives (aldo-BINs was prepared by aromatic C-alkylation reactions of aldoses and indole in acetic acid solution. Common monosaccharides such as glucose, mannose, galactose, fucose, xylose, rhamnose, ribose, arabinose and N-acetylglucosamine were smoothly derivatized to form the UV absorbing aldo-BINs. The use of a capillary electrophoretic method to separate these novel aldo-BIN derivatives was established. The capillary electrophoresis conditions were set by using borate buffer (100 mM at high pH (pH 9.0. The limit of determination was assessed to be 25 nM. The enantioseparation of D, L-pairs of aldo-BINs based on chiral ligand-exchange capillary electrophoresis technology was also achieved by using modified hydroxypropyl-β-cyclodextrin as the chiral selector in the presence of borate buffer. This aldose labeling method was applied successfully to the compositional and configurational analysis of saccharides, exemplified by a rapid and efficient method to simultaneously analyze the composition and configuration of saccharides from the medicinal herbs Cordyceps sinensis and Dendrobium huoshanense.

  1. Porcine MAP3K5 analysis: molecular cloning, characterization, tissue expression pattern, and copy number variations associated with residual feed intake.

    Science.gov (United States)

    Pu, L; Zhang, L C; Zhang, J S; Song, X; Wang, L G; Liang, J; Zhang, Y B; Liu, X; Yan, H; Zhang, T; Yue, J W; Li, N; Wu, Q Q; Wang, L X

    2016-08-12

    Mitogen-activated protein kinase kinase kinase 5 (MAP3K5) is essential for apoptosis, proliferation, differentiation, and immune responses, and is a candidate marker for residual feed intake (RFI) in pig. We cloned the full-length cDNA sequence of porcine MAP3K5 by rapid-amplification of cDNA ends. The 5451-bp gene contains a 5'-untranslated region (UTR) (718 bp), a coding region (3738 bp), and a 3'-UTR (995 bp), and encodes a peptide of 1245 amino acids, which shares 97, 99, 97, 93, 91, and 84% sequence identity with cattle, sheep, human, mouse, chicken, and zebrafish MAP3K5, respectively. The deduced MAP3K5 protein sequence contains two conserved domains: a DUF4071 domain and a protein kinase domain. Phylogenetic analysis showed that porcine MAP3K5 forms a separate branch to vicugna and camel MAP3K5. Tissue expression analysis using real-time quantitative polymerase chain reaction (qRT-PCR) revealed that MAP3K5 was expressed in the heart, liver, spleen, lung, kidney, muscle, fat, pancrea, ileum, and stomach tissues. Copy number variation was detected for porcine MAP3K5 and validated by qRT-PCR. Furthermore, a significant increase in average copy number was detected in the low RFI group when compared to the high RFI group in a Duroc pig population. These results provide useful information regarding the influence of MAP3K5 on RFI in pigs.

  2. Chemical Characteristic of Bioactive Polysaccharides Isolated from Ornithogalum caudatum Ait.

    Institute of Scientific and Technical Information of China (English)

    SHI Lei; LI Juan; LIU Wen-Xiang; WANG Yong; LIU Zhi-qiang; LIU Shu-ying

    2003-01-01

    A water-soluble crude extract prepared from Ornithogalum caudatum Ait.(OCA) showing a high immunomodulating activitiy was isolated and characterized by virtue of gel filtration and column chromatography. The presence of the monosaccharides has been established by the chemical analysis. The quantitative analysis of the alditol acetate derivatives of them showed the ratios of the monosaccharides analyzed by means of GC respectively. The concentrations of protein(280 nm) and carbohydrate(496 nm) were detected respectively. The information of the molecular weight from the pure polysaccharide was obtained by several standard Dextrans from the Sephadex chromatography.

  3. GEL PERMEATION CHROMATOGRAPHIC ANALYSIS OF LACQUER POLYSACCHARIDE

    Institute of Scientific and Technical Information of China (English)

    QIU Xingping; ZHANG Lina; DU Yumin; QIAN Baogong; LU Zaimin

    1992-01-01

    Ten fractionated samples of Chinese lacquer polysaccharide in aqueous 0.1M NaCl solution were studied by aqueous-phase gel permeation chromatography (GPC). The universal calibration, broad MWD calibration and corrected column dispersion were adopted to the analysis of GPC chromatograms of the polysaccharide. The molecular weights Mw, Mn and polydispersity index Mw/Mn obtained from GPC are in good agreement with the results of light scattering and membrane osmometry. It is verified that the universal calibration concept is applicable to the lacquer polysaccharide having a number of side chains.

  4. Polysaccharides: The “Click” Chemistry Impact

    Directory of Open Access Journals (Sweden)

    Romain Lucas

    2011-09-01

    Full Text Available Polysaccharides are complex but essential compounds utilized in many areas such as biomaterials, drug delivery, cosmetics, food chemistry or renewable energy. Modifications and functionalizations of such polymers are often necessary to achieve molecular structures of interest. In this area, the emergence of the “click” chemistry concept, and particularly the copper-catalyzed version of the Huisgen 1,3-dipolar cycloaddition reaction between terminal acetylenes and azides, had an impact on the polysaccharides chemistry. The present review summarizes the contribution of “click” chemistry in the world of polysaccharides.

  5. Structure of the β-l-fucopyranosyl phosphate-containing O-specific polysaccharide of Escherichia coli O84.

    Science.gov (United States)

    Knirel, Yuriy A; Qian, Chengqian; Senchenkova, Sofya N; Guo, Xi; Shashkov, Alexander S; Chizhov, Alexander O; Perepelov, Andrei V; Liu, Bin

    2016-07-01

    Fine structure of the O-polysaccharide chain of the lipopolysaccharide (O-antigen) defines the serospecificity of bacterial cells, which is the basis for O-serotyping of medically and agriculturally important gram-negative bacteria including Escherichia coli. In order to obtain the O-polysaccharide for structural analysis, the lipopolysaccharide was isolated from cells of E. coli O84a by phenol/water extraction and degraded with mild acid. However, the O-polysaccharide was cleaved at a highly acid-labile β-l-fucopyranosyl phosphate (β-l-Fucp-1-P) linkage to give mainly a pentasaccharide that corresponded to the O-polysaccharide repeat. Therefore, the lipopolysaccharide and the pentasaccharide as well as their O-deacylated derivatives were studied using sugar analysis, NMR spectroscopy, and (for oligosaccharides) ESI HR MS, and the O84-polysaccharide structure was established. The O-polysaccharide is distinguished by the presence of β-l-Fucp-1-P and randomly di-O-acetylated 6-deoxy-d-talose, which are found for the first time in natural carbohydrates. The gene cluster for the O84-antigen biosynthesis was analysed and its content was found to be consistent with the O-polysaccharide structure.

  6. Pharmacological Action of Adenophora Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    李泱; 李春红; 唐富天; 李新芳

    2004-01-01

    @@ Adenophora polysaccharides (AP), is an active principle extracted from the root of Adenophorae Potaninii Korsh originated in Gansu Province and isolated with boiling water(1). AP is isolated and purified from the crude drug by DEAE-cellulose and Sephadex G-200 column, with a white powder and mean molecular weight of 8.3 × 104 , and [α]D20of AP is + 68(1). AP is only composed of glucose judging from the analysis of it with patina chromatography (PC) and gas chromatography-mass spectrometer (GC-MS) methods.The methylation analysis showed that AP is composed of (1→6) linked glucose residues. The measure of nuclear magnetic resonance imaging (NMR) 1H NMR and 14C NMR techniques further proved that AP is α(l→6) linked by Dglucose. The structure of AP is as follows: -[→6]α-D-Glu(1-)n→ (2).

  7. The CO2 Abundance in Comets C/2012 K1 (PanSTARRS), C/2012 K5 (LINEAR), and 290P/Jager as Measured with Spitzer

    CERN Document Server

    McKay, Adam J; Cochran, Anita L; Bodewits, Dennis; DiSanti, Michael A; Russo, Neil Dello; Lisse, Carey M

    2015-01-01

    We present analysis of observations of CO2 and OI emission in three comets to measure the CO2 abundance and evaluate the possibility of employing observations of OI emission in comets as a proxy for CO2. We obtained NIR imaging sensitive to CO2 of comets C/2012 K1 (PanSTARRS), C/2012 K5 (LINEAR), and 290P/Jager with the IRAC instrument on Spitzer. We acquired observations of OI emission in these comets with the ARCES echelle spectrometer mounted on the 3.5-meter telescope at Apache Point Observatory and observations of OH with the Swift observatory (PanSTARRS) and with Keck HIRES (Jager). The CO2/H2O ratios derived from the Spitzer images are 12.6 +/- 1.3% (PanSTARRS), 28.9 +/- 3.6% (LINEAR), and 31.3 +/- 4.2% (Jager). These abundances are derived under the assumption that contamination from CO emission is negligible. The CO2 abundance for PanSTARRS is close to the average abundance measured in comets at similar heliocentric distance to date, while the abundances measured for LINEAR and Jager are significantl...

  8. Polysaccharide films at an air/liquid and a liquid/silicon interface: effect of the polysaccharide and liquid type on their physical properties.

    Science.gov (United States)

    Taira, Yasunori; McNamee, Cathy E

    2014-11-14

    We investigated the effect of the polysaccharide type, the subphase on which the Langmuir monolayers were prepared, and the liquid in which the properties of the transferred monolayers were measured on the physical properties of the polysaccharide films at an air/aqueous interface and at a silicon substrate, and the forces and friction of the polysaccharide transferred films when measured in solution against a silica probe. Chitosan was modified with a silane coupling agent to make chitosan derived compounds with a low and a medium molecular weight. Chitin and the chitosan-derived compounds were used to make Langmuir monolayers at air/water and air/pH 9 buffer interfaces. The monolayers were transferred to silicon substrates via Langmuir-Blodgett deposition, and the chitosan-derived compounds subsequently chemically reacted with the silicon substrates. Atomic force microscope force and friction measurements were made in water and in the pH 9 buffer, where the water and the pH 9 buffer acted as a good and a bad solvent for the polysaccharides, respectively. The polysaccharide type affected the friction of the polysaccharide film, where the physically adsorbed chitin gave the lowest friction. The friction of L-chitosan was higher than that of M-chitosan in water, suggesting that the molecular weight of the polymer affects its lubricating ability. The forces and friction of the polysaccharide films changed when the subphase on which the Langmuir monolayers were formed was changed or when the liquid in which the properties of the films adsorbed at the silicon substrate were measured was changed. The friction increased significantly when the liquid was changed from water to the pH 9 buffer. This increase was explained by the reduced charge of the chitin and chitosan-derived materials due to the pH increase, the screening of the charges by the salts in the buffer, and the possible hardening of the monolayer caused by the adsorption of salts from the buffer.

  9. Serogroup quantitation of multivalent polysaccharide and polysaccharide-conjugate meningococcal vaccines from China.

    Science.gov (United States)

    Cook, Matthew C; Gibeault, Sabrina; Filippenko, Vasilisa; Ye, Qiang; Wang, Junzhi; Kunkel, Jeremy P

    2013-07-01

    The active components of most meningococcal vaccines are four antigenic serogroup capsular polysaccharides (A, C, Y, W135). The vaccines, monovalent or multivalent mixtures of either free polysaccharides or polysaccharides conjugated to antigenic carrier proteins, may be in liquid or lyophilised formulations, with or without excipients. Acid hydrolysis and chromatographic methods for serogroup quantitation, which were previously optimised and qualified using polysaccharide-based standards and a narrow range of real vaccines, are here challenged with multiple lots of a broad assortment of additional multivalent polysaccharide-based meningococcal vaccine products. Centrifugal filtration successfully removed all interfering lactose excipient without loss of polysaccharides to allow for the determination of Y and W135 serogroups. Replicate operations by three different analysts indicated high method reproducibility. Results indicated some lot-to-lot and product-to-product variations. However, all vaccines were within general specifications for each serogroup polysaccharide, with the exception of all lots of one polysaccharide vaccine - which by these methods were found to be deficient in the serogroup A component only. These robust techniques are very useful for the evaluation of antigen content and consistency of manufacture. The deformulation, hydrolysis and chromatographic methods may be adaptable for the evaluation of other types of polysaccharide-based vaccines.

  10. Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme

    DEFF Research Database (Denmark)

    Cannella, David; Möllers, K. Benedikt; Frigaard, Niels-Ulrik;

    2016-01-01

    Oxidative processes are essential for the degradation of plant biomass. A class of powerful and widely distributed oxidative enzymes, the lytic polysaccharide monooxygenases (LPMOs), oxidize the most recalcitrant polysaccharides and require extracellular electron donors. Here we investigated...... and hemicellulose. LPMO enzymes and pigment derivatives common in the environment of plant-degrading organisms thus form a highly reactive and stable light-driven system increasing the turnover rate and versatility of LPMOs. This light-driven system may find applications in biotechnology and chemical processing....

  11. Enzyme-Catalyzed Modifications of Polysaccharides and Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    H. N. Cheng

    2012-06-01

    Full Text Available Polysaccharides are used extensively in various industrial applications, such as food, adhesives, coatings, construction, paper, pharmaceuticals, and personal care. Many polysaccharide structures need to be modified in order to improve their end-use properties; this is mostly done through chemical reactions. In the past 20 years many enzyme-catalyzed modifications have been developed to supplement chemical derivatization methods. Typical reactions include enzymatic oxidation, ester formation, amidation, glycosylation, and molecular weight reduction. These reactions are reviewed in this paper, with emphasis placed on the work done by the authors. The polymers covered in this review include cellulosic derivatives, starch, guar, pectin, and poly(ethylene glycol.

  12. Physicochemical characterization of the polysaccharide from Bletilla striata: effect of drying method.

    Science.gov (United States)

    Kong, Lingshan; Yu, Ling; Feng, Tao; Yin, Xiujun; Liu, Tianjing; Dong, Lei

    2015-07-10

    The polysaccharide from Bletilla striata, a traditional Chinese herbal medicine, was obtained by different drying techniques: vacuum-drying (BVPS) or vacuum freeze-drying (BFPS). The effect of drying method on the physicochemical properties of the B striata polysaccharide was evaluated using high size exclusion chromatography coupled to multiangle laser light scattering (HPSEC-MALLS), FT-IR and UV spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The monosaccharide analysis and pH test revealed that the polysaccharide derived from B. striata was a neutral polysaccharide that is composed of glucose and mannose. The solubility and moisture content test's results demonstrated that BFPS was greater than BVPS. The number average molecular weight (Mn) and the computed average molecular weight (Mw) of 99.3% BFPS were 7.297×10(4)g/mol and 9.545×10(4)g/mol, respectively, whereas the Mn and Mw of 97.6% BVPS were 1.218×10(5)g/mol and 1.472×10(5)g/mol, respectively. The FT-IR and UV results indicated that drying technique has little effect on the structure of the polysaccharide. The thermal analysis showed that weight loss event was at 307.85°C and 305.50°C to BVPS and BFPS, respectively. Furthermore, the XRD confirmed that the polysaccharide was the amorphous nature. However, both SEM and AFM images exhibited that the drying technique had a significant impact on the morphology and conformation of the polysaccharide.

  13. Biochemical Aspects of Non-Starch Polysaccharides

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2010-05-01

    Full Text Available Polysaccharides are macromolecules of monosaccharides linked by glycosidic bonds. Non-starch polysaccharides (NSP are principally non-α-glucan polysaccharides of the plant cell wall. They are a heterogeneous group of polysaccharides with varying degrees of water solubility, size, and structure. The water insoluble fiber fraction include cellulose, galactomannans, xylans, xyloglucans, and lignin, while the water-soluble fibers are the pectins, arabinogalactans, arabinoxylans, and β-(1,3(1,4-D-glucans (β-glucans. Knowledge of the chemical structure of NSP has permitted the development of enzyme technology to overcome their antinutritional effects. The physiological effects of NSP on the digestion and absorption of nutrients in human and monogastric animals have been attributed to their physicochemical properties: hydration properties, viscosity, cation exchange capacity and organic compound absorptive properties. This paper reviews and presents information on NSPs chemistry, physicochemical properties and physiological effects on the nutrient entrapment.

  14. NMR analysis of compositional heterogeneity in polysaccharides

    Science.gov (United States)

    Many copolysaccharides are compositionally heterogeneous, and the composition determined by the usual analytical or spectroscopic methods provides only an average value. For some polysaccharides, the NMR data contain copolymer sequence information, such as diad, triad, and tetrad sequence intensiti...

  15. Extraction Optimization of Polysaccharides from Pitaya Stems

    Institute of Scientific and Technical Information of China (English)

    HE Cong-fen; LI Peng; ZHAO Hua; SONG Li-ya; ZHU Jun; DONG Yin-mao

    2011-01-01

    [Objective] The aim was to describe the extraction of polysaccharides from pitaya stems.[Method] The hot water,enzyme-assisted and microwave-assisted methods were used,with the microwave-assisted extraction being deemed optimal by general evaluation.[Result] The main factors affecting the yield of polysaccharides in the microwave-assisted extraction,by order of magnitude,were as follows:timemicrowave powertemperature;additionally,optimal conditions included a 10 min extraction time,an 80 ℃ extraction temperature and a microwave setting of 200 W.Using these optimal conditions,the yield of PSPS(Polysaccharides from Pitaya Stems) was 1.42%.After purification,the yield of PSPS was 0.74%.[Conclusion] The PSPS was analyzed by IR,MALDI-TOF-MS and an element analysis technique.It was shown to be a polysaccharide mixture,and the molecular weight was between 3 900 and 4 300 Da.

  16. Polysaccharides in fungi. XXXVII. Immunomodulating activities of carboxymethylated derivatives of linear (1-->3)-alpha-D-glucans extracted from the fruiting bodies of Agrocybe cylindracea and Amanita muscaria.

    Science.gov (United States)

    Yoshida, I; Kiho, T; Usui, S; Sakushima, M; Ukai, S

    1996-01-01

    Immunomodulating activities of three carboxymethylated derivatives (AG-AL-CMS, AG-AL-CMI, and AM-APP-CM) of linear (1-->3)-alpha-D-glucans from Agrocybe cylindracea and Amanita muscaria were evaluated with murine peritoneal macrophages playing an important role in tumor immunity. The ratio of macrophages in peritoneal exudate cells increased more than 50% after the administration of three carboxymethylated (1-->3)-alpha-D-glucans. These carboxymethylated (1-->3)-alpha-D-glucans exhibited higher potentiating activities for macrophages than carboxymethylated linear (1-->3)-beta-D-glucan (CMPS) in the potency of reduction of nitro blue tetrazolium, products of nitric oxide and the soluble cytotoxic factor, the amount of glucose consumption, and the activation of acid phosphatase. AG-AL-CMS, AG-AL-CMI, and AM-APP-CM were found to induce the tumor regressing factor in mouse serum, although the ability of the induction of this factor was weaker than that of CMPS. The reticuloendothelial system-potentiating activation of three carboxymethylated alpha-D-glucans was similar to that of the carboxymethylated beta-D-glucan. AG-AL-CMS and AG-AL-CMI, but not AM-APP-CM, were suggested to possess a higher-order structure, resulting from the formation of a fluorescent complex with aniline blue.

  17. Fundamental study of green EUV lithography using natural polysaccharide for the use of pure water in developable process

    Science.gov (United States)

    Takei, Satoshi

    2016-10-01

    The eco-conscious lithography processes of using pure water instead of spin coating organic solvent and alkaline developer were described for extreme-ultraviolet and electron beam techniques of advanced photomask manufactural application. Natural polysaccharide was obtained by the esterification of the hydroxyl groups of the polysaccharide resulting in improved resolution and resist profiles after the purewater developing processes. The 100, 200, and, 300 nm line and space width, and straight profiles of polysaccharide-based resist material on hardmask underlayer were resolved at the doses of 30 μC/cm2. In addition to the superior resolution in the pure-water developing processes, the resist material containing the polysaccharide derivatives for these lithography showed good resist profiles and step filling performance on substrates.

  18. Asparagus polysaccharide and gum with hepatic artery embolization induces tumor growth and inhibits angiogenesis in an orthotopic hepatocellular carcinoma model.

    Science.gov (United States)

    Weng, Ling-Ling; Xiang, Jian-Feng; Lin, Jin-Bo; Yi, Shang-Hui; Yang, Li-Tao; Li, Yi-Sheng; Zeng, Hao-Tao; Lin, Sheng-Ming; Xin, Dong-Wei; Zhao, Hai-Liang; Qiu, Shu-Qi; Chen, Tao; Zhang, Min-Guang

    2014-01-01

    Liver cancer is one of leading digestive malignancies with high morbidity and mortality. There is an urgent need for the development of novel therapies for this deadly disease. It has been proven that asparagus polysaccharide, one of the most active derivates from the traditional medicine asparagus, possesses notable antitumor properties. However, little is known about the efficacy of asparagus polysaccharide as an adjuvant for liver cancer chemotherapy. Herein, we reported that asparagus polysaccharide and its embolic agent form, asparagus gum, significantly inhibited liver tumor growth with transcatheter arterial chemoembolization (TACE) therapy in an orthotopic hepatocellular carcinoma (HCC) tumor model, while significantly inhibiting angiogenesis and promoting tumor cell apoptosis. Moreover, asparagine gelatinous possessed immunomodulatory functions and showed little toxicity to the host. These results highlight the chemotherapeutic potential of asparagus polysaccharide and warrant a future focus on development as novel chemotherapeutic agent for liver cancer TACE therapy.

  19. Polysaccharides for the Delivery of Antitumor Drugs

    Directory of Open Access Journals (Sweden)

    Bianca Posocco

    2015-05-01

    Full Text Available Among the several delivery materials available so far, polysaccharides represent very attractive molecules as they can undergo a wide range of chemical modifications, are biocompatible, biodegradable, and have low immunogenic properties. Thus, polysaccharides can contribute to significantly overcome the limitation in the use of many types of drugs, including anti-cancer drugs. The use of conventional anti-cancer drugs is hampered by their high toxicity, mostly depending on the indiscriminate targeting of both cancer and normal cells. Additionally, for nucleic acid based drugs (NABDs, an emerging class of drugs with potential anti-cancer value, the practical use is problematic. This mostly depends on their fast degradation in biological fluids and the difficulties to cross cell membranes. Thus, for both classes of drugs, the development of optimal delivery materials is crucial. Here we discuss the possibility of using different kinds of polysaccharides, such as chitosan, hyaluronic acid, dextran, and pullulan, as smart drug delivery materials. We first describe the main features of polysaccharides, then a general overview about the aspects ruling drug release mechanisms and the pharmacokinetic are reported. Finally, notable examples of polysaccharide-based delivery of conventional anti-cancer drugs and NABDs are reported. Whereas additional research is required, the promising results obtained so far, fully justify further efforts, both in terms of economic support and investigations in the field of polysaccharides as drug delivery materials.

  20. A sustainable freeze-drying route to porous polysaccharides with tailored hierarchical meso- and macroporosity.

    Science.gov (United States)

    Borisova, Aleksandra; De Bruyn, Mario; Budarin, Vitaliy L; Shuttleworth, Peter S; Dodson, Jennifer R; Segatto, Mateus L; Clark, James H

    2015-04-01

    Bio-derived polysaccharide aerogels are of interest for a broad range of applications. To date, these aerogels have been obtained through the time- and solvent-intensive procedure of hydrogel fomation, solvent exchange, and scCO2 drying, which offers little control over meso/macropore distribution. A simpler and more versatile route is developed, using freeze drying to produce highly mesoporous polysaccharide aerogels with various degrees of macroporosity. The hierarchical pore distribution is controlled by addition of different quantities of t-butanol (TBA) to hydrogels before drying. Through a systematic study an interesting relationship between the mesoporosity and t-butanol/water phase diagram is found, linking mesoporosity maxima with eutectic points for all polysaccharides studied (pectin, starch, and alginic acid). Moreover, direct gelation of polysaccharides in aqueous TBA offers additional time savings and the potential for solvent reuse. This finding is a doorway to more accessible polysaccharide aerogels for research and industrial scale production, due to the widespread accessibility of the freeze drying technology and the simplicity of the method.

  1. Structural investigation of the O-specific polysaccharides of Morganella morganii consisting of two higher sugars.

    Science.gov (United States)

    Kilcoyne, Michelle; Shashkov, Alexander S; Senchenkova, Sof'ya A; Knirel, Yuriy A; Vinogradov, Evgeny V; Radziejewska-Lebrecht, Joanna; Galimska-Stypa, Regina; Savage, Angela V

    2002-10-01

    The lipopolysaccharide of the bacterium Morganella morganii (strain KF 1676, RK 4222) yielded two polysaccharides, PS1 and PS2, when subjected to mild acid degradation followed by GPC. The polysaccharides were studied by 1H and 13C NMR spectroscopy, including two-dimensional COSY, TOCSY, NOESY, 1H,(13)C HMQC, and HMBC experiments. Each polysaccharide was found to contain a disaccharide repeating unit consisting of two higher sugars, 5-acetamidino-7-acetamido-3,5,7,9-tetradeoxy-L-glycero-D-galacto-non-2-ulosonic acid (a derivative of 8-epilegionaminic acid, 8eLeg5Am7Ac) and 2-acetamido-4-C-(3'-carboxamide-2',2'-dihydroxypropyl)-2,6-dideoxy-D-galactose (shewanellose, She). The two polysaccharides differ only in the ring size of shewanellose and have the following structures:Shewanellose has been previously identified in a phenol-soluble polysaccharide from Shewanella putrefaciens A6, which shows a close structural similarity to PS2.

  2. Structural analysis of cell wall polysaccharides using PACE

    Energy Technology Data Exchange (ETDEWEB)

    Mortimer, Jennifer C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint BioEnergy Institute

    2017-01-01

    The plant cell wall is composed of many complex polysaccharides. The composition and structure of the polysaccharides affect various cell properties including cell shape, cell function and cell adhesion. Many techniques to characterize polysaccharide structure are complicated, requiring expensive equipment and specialized operators e.g. NMR, MALDI-MS. PACE (Polysaccharide Analysis using Carbohydrate gel Electrophoresis) uses a simple, rapid technique to analyze polysaccharide quantity and structure (Goubet et al. 2002). Whilst the method here describes xylan analysis, it can be applied (by use of the appropriate glycosyl hydrolase) to any cell wall polysaccharide.

  3. K5/K14-positive cells contribute to salivary gland-like breast tumors with myoepithelial differentiation

    DEFF Research Database (Denmark)

    Boecker, Werner; Stenman, Goeran; Loening, Thomas

    2013-01-01

    Salivary gland-like tumors of the breast show a great variety of architectural patterns and cellular differentiations such as glandular, myoepithelial, squamous, and even mesenchymal phenotypes. However, currently little is known about the evolution and cellular differentiation of these tumors....... For that reason, we performed an in situ triple immunofluorescence lineage/differentiation tracing (isTILT) and qRT-PCR study of basal (K5/K14), glandular (K7/K8/18), and epidermal-specific squamous (K10) keratins, p63, and smooth muscle actin (SMA; myoepithelial marker) with the aim to construct and trace...... different cell lineages and define their cellular hierarchy in tumors with myoepithelial differentiation. isTILT analysis of a series of 28 breast, salivary, and lacrimal gland tumors, including pleomorphic adenomas (n=8), epithelial-myoepithelial tumors (n=9), and adenoid cystic carcinomas (n=11) revealed...

  4. Final report on key comparison CCAUV.A-K5: pressure calibration of laboratory standard microphones in the frequency range 2 Hz to 10 kHz

    Science.gov (United States)

    Avison, Janine; Barham, Richard

    2014-01-01

    This document and the accompanying spreadsheets constitute the final report for key comparison CCAUV.A-K5 on the pressure calibration of laboratory standard microphones in the frequency range from 2 Hz to 10 kHz. Twelve national measurement institutes took part in the key comparison and the National Physical Laboratory piloted the project. Two laboratory standard microphones IEC type LS1P were circulated to the participants and results in the form of regular calibration certificates were collected throughout the project. One of the microphones was subsequently deemed to have compromised stability for the purpose of deriving a reference value. Consequently the key comparison reference value (KCRV) has been made based on the weighted mean results for sensitivity level and for sensitivity phase from just one of the microphones. Corresponding degrees of equivalence (DoEs) have also been calculated and are presented. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. 图K(5m,5)的自同态的自同态谱%On the Andomorphism Spectrum of K(5m,5)

    Institute of Scientific and Technical Information of China (English)

    余鋆

    2012-01-01

    In this paper, we obtain that Aut(K(5m, 5)) ≈D5m,sEnd(k(5m, 5))=Aut(k(5m, 5) and End(K(5m,5)) =qEnd(K(5m, 5)), where Ds. is the dihedral group of order 5m. Furthermore, we solve some enumerative problems of End(K(5m, 5)), and give the endomorphism spectrum of k(5m, 5).%从循环完全图K(5m,5)的结构出发,得到Aut(K(5m,5))≈D5m,其中D5m是5m阶的二面体群,sEnd(k(5m,5))=Aut(k(5m,5),End(K(5m,5))=qEnd(K(5m,5))。同时也解决了End(K(5m,5))的一些记数问题,给出了此类图的自同态谱。

  6. Microbial short-chain fatty acid production and extracellular enzymes activities during in vitro fermentation of polysaccharides from the seeds of Plantago asiatica L. treated with microwave irradiation.

    Science.gov (United States)

    Hu, Jie-Lun; Nie, Shao-Ping; Li, Chang; Fu, Zhi-Hong; Xie, Ming-Yong

    2013-06-26

    Effects of microwave irradiation on microbial short-chain fatty acid production and the activites of extracellular enzymes during in vitro fermentation of the polysaccharide from Plantago asiatica L. were investigated in this study. It was found that the apparent viscosity, average molecular weight, and particle size of the polysaccharide decreased after microwave irradiation. Reducing sugar amount increased with molecular weight decrease, suggesting the degradation may derive from glycosidic bond rupture. The polysaccharide surface topography was changed from large flakelike structure to smaller chips. FT-IR showed that microwave irradiation did not alter the primary functional groups in the polysaccharide. However, short-chain fatty acid productions of the polysaccharide during in vitro fermentation significantly increased after microwave irradiation. Activities of microbial extracellular enzymes xylanase, arabinofuranosidase, xylosidase, and glucuronidase in fermentation cultures supplemented with microwave irradiation treated polysaccharide were also generally higher than those of untreated polysaccharide. This showed that microwave irradiation could be a promising degradation method for the production of value-added polysaccharides.

  7. Sulfated polysaccharides as bioactive agents from marine algae.

    Science.gov (United States)

    Ngo, Dai-Hung; Kim, Se-Kwon

    2013-11-01

    Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A Direct Sulfation Process of a Marine Polysaccharide in Ionic Liquid.

    Science.gov (United States)

    Chopin, Nathalie; Sinquin, Corinne; Ratiskol, Jacqueline; Zykwinska, Agata; Weiss, Pierre; Cérantola, Stéphane; Le Bideau, Jean; Colliec-Jouault, Sylvia

    2015-01-01

    GY785 is an exopolysaccharide produced by a mesophilic bacterial strain Alteromonas infernus discovered in the deep-sea hydrothermal vents. GY785 highly sulfated derivative (GY785 DRS) was previously demonstrated to be a promising molecule driving the efficient mesenchymal stem cell chondrogenesis for cartilage repair. This glycosaminoglycan- (GAG-) like compound was modified in a classical solvent (N,N'-dimethylformamide). However, the use of classical solvents limits the polysaccharide solubility and causes the backbone degradation. In the present study, a one-step efficient sulfation process devoid of side effects (e.g., polysaccharide depolymerization and/or degradation) was developed to produce GAG-like derivatives. The sulfation of GY785 derivative (GY785 DR) was carried out using ionic liquid as a reaction medium. The successful sulfation of this anionic and highly branched heteropolysaccharide performed in ionic liquid would facilitate the production of new molecules of high specificity for biological targets such as tissue engineering or regenerative medicine.

  9. Immunomodulatory effects of a polysaccharide from Tamarindus indica.

    Science.gov (United States)

    Sreelekha, T T; Vijayakumar, T; Ankanthil, R; Vijayan, K K; Nair, M K

    1993-04-01

    A polysaccharide isolated and purified from Tamarindus indica shows immunomodulatory activities such as phagocytic enhancement, leukocyte migration inhibition and inhibition of cell proliferation. These properties suggest that this polysaccharide from T. indica may have some biological applications.

  10. Three-Dimensional Structural Aspects of Protein–Polysaccharide Interactions

    Directory of Open Access Journals (Sweden)

    Masamichi Nagae

    2014-03-01

    Full Text Available Linear polysaccharides are typically composed of repeating mono- or disaccharide units and are ubiquitous among living organisms. Polysaccharide diversity arises from chain-length variation, branching, and additional modifications. Structural diversity is associated with various physiological functions, which are often regulated by cognate polysaccharide-binding proteins. Proteins that interact with linear polysaccharides have been identified or developed, such as galectins and polysaccharide-specific antibodies, respectively. Currently, data is accumulating on the three-dimensional structure of polysaccharide-binding proteins. These proteins are classified into two types: exo-type and endo-type. The former group specifically interacts with the terminal units of polysaccharides, whereas the latter with internal units. In this review, we describe the structural aspects of exo-type and endo-type protein-polysaccharide interactions. Further, we discuss the structural basis for affinity and specificity enhancement in the face of inherently weak binding interactions.

  11. Ice nucleation activity of polysaccharides

    Science.gov (United States)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  12. Elucidation of interaction mechanism between lacquer polysaccharides and proteins

    OpenAIRE

    Bai, Yuting

    2013-01-01

    Lacquer polysaccharides, which exist in the sap of Asian lacquer tree, are highly branched acidic polysaccharides with 1,3-β-galactan backbone and glucouronic acid terminals. Lacquer polysaccharides were reported to be antitumor active and blood coagulation promoting effective, which specific activities might be caused from electrostatic attraction between negative-charged carboxyl groups from the uronic acid terminal of polysaccharides, and positive-charged amino groups from target proteins....

  13. Capsular Polysaccharide Expression in Commensal Streptococcus Species

    DEFF Research Database (Denmark)

    Skov Sørensen, Uffe B; Yao, Kaihu; Yang, Yonghong

    2016-01-01

    Expression of a capsular polysaccharide is considered a hallmark of most invasive species of bacteria, including Streptococcus pneumoniae, in which the capsule is among the principal virulence factors and is the basis for successful vaccines. Consequently, it was previously assumed that capsule...... evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S. pneumoniae...... of Streptococcus pneumoniae and is the basis for successful vaccines against infections caused by this important pathogen. Contrasting with previous assumptions, this study showed that expression of capsular polysaccharides by the same genetic mechanisms is a general property of closely related species...

  14. Influence of polysaccharides on wine protein aggregation.

    Science.gov (United States)

    Jaeckels, Nadine; Meier, Miriam; Dietrich, Helmut; Will, Frank; Decker, Heinz; Fronk, Petra

    2016-06-01

    Polysaccharides are the major high-molecular weight components of wines. In contrast, proteins occur only in small amounts in wine, but contribute to haze formation. The detailed mechanism of aggregation of these proteins, especially in combination with other wine components, remains unclear. This study demonstrates the different aggregation behavior between a buffer and a model wine system by dynamic light scattering. Arabinogalactan-protein, for example, shows an increased aggregation in the model wine system, while in the buffer system a reducing effect is observed. Thus, we could show the importance to examine the behavior of wine additives under conditions close to reality, instead of simpler buffer systems. Additional experiments on melting points of wine proteins reveal that only some isoforms of thaumatin-like proteins and chitinases are involved in haze formation. We can confirm interactions between polysaccharides and proteins, but none of these polysaccharides is able to prevent haze in wine.

  15. Depolymerization of sulfated polysaccharides under hydrothermal conditions.

    Science.gov (United States)

    Morimoto, Minoru; Takatori, Masaki; Hayashi, Tetsuya; Mori, Daiki; Takashima, Osamu; Yoshida, Shinichi; Sato, Kimihiko; Kawamoto, Hitoshi; Tamura, Jun-ichi; Izawa, Hironori; Ifuku, Shinsuke; Saimoto, Hiroyuki

    2014-01-30

    Fucoidan and chondroitin sulfate, which are well known sulfated polysaccharides, were depolymerized under hydrothermal conditions (120-180°C, 5-60min) as a method for the preparation of sulfated polysaccharides with controlled molecular weights. Fucoidan was easily depolymerized, and the change of the molecular weight values depended on the reaction temperature and time. The degree of sulfation and IR spectra of the depolymerized fucoidan did not change compared with those of untreated fucoidan at reaction temperatures below 140°C. However, fucoidan was partially degraded during depolymerization above 160°C. Nearly the same depolymerization was observed for chondroitin sulfate. These results indicate that hydrothermal treatment is applicable for the depolymerization of sulfated polysaccharides, and that low molecular weight products without desulfation and deformation of the initial glycan structures can be obtained under mild hydrothermal conditions.

  16. Capsular Polysaccharide Expression in Commensal Streptococcus Species

    DEFF Research Database (Denmark)

    Skov Sørensen, Uffe B; Yao, Kaihu; Yang, Yonghong

    2016-01-01

    biosynthesis (cps) loci in all strains tested. Truncated cps loci were detected in three strains of S. pseudopneumoniae, in 26% of S. mitis strains, and in a single S. oralis strain. The level of sequence identities of cps locus genes confirmed that the structural polymorphism of capsular polysaccharides in S....... pneumoniae evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S...... of streptococci that form a significant part of our commensal microbiota. The demonstrated antigenic identity of many capsular polysaccharides expressed by commensal streptococci and S. pneumoniae raises important questions concerning the consequences for vaccination and host-parasite relationships both...

  17. [Component analysis on polysaccharides in exocarp of Ginkgo biloba].

    Science.gov (United States)

    Song, G; Xu, A; Chen, H; Wang, X

    1997-09-01

    This paper reports the content and component analysis on polysaccharides in exocarp of Ginkgo biloba. The results show that the content of total saccharides is 89.7%; content of polysaccharides is 84.6%; content of reductic saccharides is 5.1%; the polysaccharides are composed of glucose, fructose, galactose and rhamnose.

  18. The Epstein-Barr Virus-encoded miR-BART22 targets MAP3K5 to promote host cell proliferative and invasive abilities in nasopharyngeal carcinoma

    Science.gov (United States)

    Chen, Ruichao; Zhang, Minfeng; Li, Qiulian; Xiong, Hanzhen; Liu, Shaoyan; Fang, Weiyi; Zhang, Qianbing; Liu, Zhen; Xu, Xuehu; Jiang, Qingping

    2017-01-01

    miR-BART22, a new discovered Epstein-Barr virus (EBV) miRNA, is abundant in Nasopharyngeal carcinoma (NPC). It has been reported that miR-BART22 promoted the tumor development by down-modulating EBV LMP2 expression to evade the host immune response. But its cell target genes have still been obscure. We have reported an inverse correlation between the BART-22 and MAP3K5 protein expression in NPC tissues and NPC cell lines. Meanwhile, MAP3K5 protein expression level was significantly decreased in primary NPC tissues compared with nasopharyngitis when MAP3K5 mRNA expression was consistent in two group tissues. According to our data and target prediction by miRnada, we assume MAP3K5 is an important target gene of NPC. MAP3K5, also named apoptosis signal-regulating kinase1 (ASK1), is an important early answer gene in P38MAPK pathway and an apoptosis-related gene. In present study, MAP3K5 was verified the target gene of miR-BART22 by luciferase assay. miRBART-22 decreased MAP3K5 protein level. Moreover, it also decreased MAP3K5 downstream gene MAP2K4 expression in P38MAPK pathway, and even their activated phosphorylation forms. Additionally, we found stable transfection of miR-BAT22 could improve tumor cells' proliferative and invasive abilities in NPC cell line 5-8F. The data highlight the role of the EBV miR-BART22 in regulating genes involving in apoptosis and some important pathways to promote cancer development. And it also raises the possibility that inhibitors of miR-BART22 can be as a therapeutic strategy for NPC and other EBV-infected tumors treatment. PMID:28243335

  19. Galactomannan: a versatile biodegradable seed polysaccharide.

    Science.gov (United States)

    Prajapati, Vipul D; Jani, Girish K; Moradiya, Naresh G; Randeria, Narayan P; Nagar, Bhanu J; Naikwadi, Nikhil N; Variya, Bhavesh C

    2013-09-01

    Polysaccharides have been finding, in the last decades, very interesting and useful applications in the biomedical and, specifically, in the biopharmaceutical field. Galactomannans are a group of storage polysaccharides from various plant seeds that reserve energy for germination in the endosperm. There are four major sources of seed galactomannans: locust bean (Ceratonia siliqua), guar (Cyamopsis tetragonoloba), tara (Caesalpinia spinosa Kuntze), and fenugreek (Trigonella foenum-graecum L.). Through keen references of reported literature on galactomannans, in this review, we have described occurrence of various galactomannans, its physicochemical properties, characterization, applications, and overview of some major galactomannans.

  20. Incorporation of bacterial extracellular polysaccharide by black fly larvae (Simuliidae)

    Science.gov (United States)

    Couch, C.A.; Meyer, J.L.; Hall, R.O.

    1996-01-01

    Black fly larvae (Simulium) assimilated, with high efficiency (80-90%), bacterial extracellular polysaccharide (EPS) extracted from laboratory cultures of a pseudomonad isolated from the Ogeechee River. Incorporation was traced using 13C-labelled EPS offered to larvae as a coating on a mixture of 1-??m latex beads and kaolin particles. These EPS-coated particles were used to simulate natural particles, both living and dead. Solubility, protein, and nitrogen content of the EPS suggested it was a slime rather than a capsular polysaccharide. Glycosyl composition of the EPS was glucose and galactose in ?? and ?? linkages, with pyruvate, succinate, and possibly malonate constituent groups. To evaluate the incorporation of C derived from protein associated with the EPS matrix, feeding experiments were conducted using EPS with and without proteins extracted. Black fly larvae incorporated 7.2 ??g EPS C larva-1 d-1 from EPS that did not have proteins extracted, and 19.5 ??g EPS C larva-1 d-1 from EPS with proteins extracted. Carbon in protein that is typically associated with EPS was not solely or selectively incorporated. EPS incorporation rates are similar to rates of cellular bacterial carbon incorporation previously estimated for Ogeechee River black fly larvae. If EPS is generally available as a food resource, the importance of bacteria in detrital food webs may be underestimated by studies that examine only the consumption of bacterial cells.

  1. Micropatterned polysaccharide surfaces via laser ablation for cell guidance

    Energy Technology Data Exchange (ETDEWEB)

    Barbucci, Rolando; Lamponi, Stefania; Pasqui, Daniela; Rossi, Antonella; Weber, Elisabetta

    2003-03-03

    Micropatterned materials were obtained by a controlled laser ablation of a photoimmobilised homogeneous layer of hyaluronic acid (Hyal) and its sulphated derivative (HyalS). The photoimmobilisation was performed by coating the polysaccharide, adequately functionalised with a photoreactive group, on aminosilanised glass substrate and immobilising it on the surface under UV light. Hyal or HyalS photoimmobilised samples were then subjected to laser ablation with wavelengths in the UV regions in order to drill the pattern. Four different patterns with stripes of 100, 50, 25 and 10 {mu}m were generated. A chemical characterisation by attenuated total reflection/Fourier transform infrared (ATR/FT-IR) and time of flight-secondary ions mass spectrometry (TOF-SIMS) confirmed the success of the laser ablation procedure and the presence of alternating stripes of polysaccharide and native glass. The exact dimensions of the stripes were determined by atomic force microscopy. The analysis of cell behaviour in terms of adhesion, proliferation and movement using mouse fibroblasts (3T3 line) and bovine aortic endothelial cells (BAEC) was also performed.

  2. Scleroglucan: A Versatile Polysaccharide for Modified Drug Delivery

    Directory of Open Access Journals (Sweden)

    Franco Alhaique

    2005-01-01

    Full Text Available Scleroglucan is a natural polysaccharide, produced by fungi of the genus Sclerotium, that has been extensively studied for various commercial applications (secondary oil recovery, ceramic glazes, food, paints, etc. and also shows several interesting pharmacological properties. This review focuses its attention on the use of scleroglucan, and some derivatives, in the field of pharmaceutics and in particular for the formulation of modified-release dosage forms. The reported investigations refer mainly to the following topics: natural scleroglucan suitable for the preparation of sustained release tablets and ocular formulations; oxidized and crosslinked scleroglucan used as a matrix for dosage forms sensitive to environmental conditions; co-crosslinked scleroglucan/gellan whose delivery rate can be affected by calcium ions. Furthermore, a novel hydrogel obtained with this polysaccharide and borate ions is described, and the particular structure of this hydrogel network has been interpreted in terms of conformational analysis and molecular dynamics. Profound attention is devoted to the mechanisms involved in drug release from the tested dosage forms that depend, according to the specific preparation, on swelling and/or diffusion. Experimental data are also discussed on the basis of a mathematical approach that allows a better understanding of the behavior of the tested polymeric materials.

  3. Characterization of a cold-active lipase from Psychrobacter cryohalolentis K5(T) and its deletion mutants.

    Science.gov (United States)

    Novototskaya-Vlasova, K A; Petrovskaya, L E; Rivkina, E M; Dolgikh, D A; Kirpichnikov, M P

    2013-04-01

    A gene coding for cold-active lipase from the psychrotrophic Gram-negative bacterium Psychrobacter cryohalolentis K5(T) isolated from a Siberian cryopeg has been cloned and expressed in Escherichia coli. The recombinant protein Lip1Pc with a 6× histidine tag at its C-terminus was purified by nickel affinity chromatography. With p-nitrophenyl dodecanoate (C12) as a substrate, the purified recombinant protein displayed maximum lipolytic activity at 25°C and pH 8.0. Increasing the temperature above 40°C and addition of various metal ions and organic solvents inhibited the enzymatic activity of Lip1Pc. Most nonionic detergents, such as Triton X-100 and Tween 20, slightly increased the lipase activity, while SDS completely inhibited it. To investigate the functional significance of the Lip1Pc N-terminal domain, we constructed five deletion mutants of this protein. The ND1 and ND2 mutants displayed specific activity reduced by 30-35%, while other truncated proteins were completely inactive. Both mutants demonstrated increased activity towards p-nitrophenyl decanoate (C10) and impaired utilization of C16 substrate. Although optimum reaction temperature of ND2 lowered to 20°C, it displayed enhanced stability by 44% after incubation at 40°C. The results prove that the N-terminal domain of Lip1Pc has a fundamental impact on the activity and stability of the protein.

  4. Expression and chaperone-assisted refolding of a new cold-active lipase from Psychrobacter cryohalolentis K5(T).

    Science.gov (United States)

    Novototskaya-Vlasova, Ksenia; Petrovskaya, Lada; Kryukova, Elena; Rivkina, Elizaveta; Dolgikh, Dmitry; Kirpichnikov, Mikhail

    2013-09-01

    We describe cloning and expression of genes coding for lipase Lip2Pc and lipase-specific foldase LifPc from a psychrotrophic microorganism Psychrobacter cryohalolentis K5(T) isolated from a Siberian cryopeg (the lense of overcooled brine within permafrost). Upon expression in Escherichiacoli Lip2Pc accumulated in inclusion bodies while chaperone was synthesized in a soluble form. An efficient protocol for solubilization and subsequent refolding of the recombinant lipase in the presence of the truncated chaperone was developed. Using this procedure Lip2Pc with specific activity of 6900U/mg was obtained. Contrary to published data on other lipase-chaperone complexes, refolded Lip2Pc was mostly recovered from the complex with chaperone by metal-affinity chromatography. Recombinant Lip2Pc displayed maximum lipolytic activity at 25°C and pH 8.0 with p-nitrophenyl palmitate (C16) as a substrate. Activity assays conducted at different temperatures revealed that the recombinant Lip2Pc is a cold-adapted lipase with ability to utilize substrates with long (C10-C16) hydrocarbon chains in the temperature range from +5 to +65°C. It demonstrated relatively high stability at temperatures above 60°C and in the presence of various metal ions or organic solvents (ethanol, methanol, etc.). Non-ionic detergents, such as Triton X-100 and Tween 20 decreased Lip2Pc activity and SDS completely inhibited it.

  5. Probing M subdwarf metallicity with an esdK5+esdM5.5 binary

    CERN Document Server

    Pavlenko, Ya V; Gálvez-Ortiz, M C; Kushniruk, I O; Jones, H R A

    2015-01-01

    We present a spectral analysis of the binary G 224-58 AB that consists of the coolest M extreme subdwarf (esdM5.5) and a brighter primary (esdK5). This binary may serve as a benchmark for metallicity measurement calibrations and as a test-bed for atmospheric and evolutionary models for esdM objects. We determine abundances primarily using high resolution optical spectra of the primary. Other parameters were determined from the fits of synthetic spectra computed with these abundances to the observed spectra from 0.4 to 2.5 microns for both components. We determine \\Tef =4625 $\\pm$ 100 K, \\logg = 4.5 $\\pm$ 0.5 for the A component and \\Tef = 3200 $\\pm$ 100 K, \\logg = 5.0 $\\pm$ 0.5, for the B component. We obtained abundances of [Mg/H]=$-$1.51$\\pm$0.08, [Ca/H]=$-$1.39$\\pm$0.03, [Ti/H]=$-$1.37$\\pm$0.03 for alpha group elements and [CrH]=$-$1.88$\\pm$0.07, [Mn/H]=$-$1.96$\\pm$0.06, [Fe/H]=$-$1.92$\\pm$0.02, [Ni/H]=$-$1.81$\\pm$0.05 and [Ba/H]W=$-$1.87$\\pm$0.11 for iron group elements from fits to the spectral lines obs...

  6. Discussion for the Innovation of Automatic Welding Practice Education Based on K5 Demonstrate Education Method%基于K5示教法的自动化焊接实践教学改革初探

    Institute of Scientific and Technical Information of China (English)

    曲芳; 沈斌; 岳旭东; 刘存宪; 海波; 高路

    2016-01-01

    在自动化焊接的学生实践教学环节中,学校需投入大量的人力、物力和财力,以保障实践教学工作的有序进行。然而,部分高校由于受到各方面条件的限制,不得不减少或取消实践教学环节,这对于提高学生的实践动手能力造成了很大的阻碍。拟利用黑龙江科技大学实训中心现有设备:奥地利IGM公司的RTI330型自动化焊接机器人,针对该校材料学院焊接专业在校学生,采用K5示教器模拟实践操作环节,通过人机交互界面以示教的方法让学生更多地去感受实际焊接过程,使更多学生得到实践锻炼的机会,为自动化焊接实践环节节省了材料和设备。在整个教学环节中,既发挥了教师的主导作用,又体现了学生的认知主体作用,真正实现了产学一体化,学做合一,为用人单位培养出适应行业发展的应用型焊接人才。%In the segment of the students' automatic welding practice education, the universities need to investment in generous manpower, material and wealth in order to insure the practice education work to carry out smoothly. However, part of the universities are enslaved to the conditions in all direction, they have to reduce or cancel the segment of the practice education, this action creates impediment of enhancing the students’practice manipulative ability. We plan to use the existing automatic welding robot equipment of the center of training and practice in our university, which is from IGM company of Austria with the version of RTI330, focuses on the students whose major is welding of Material Science Institute, use K5 demonstrate education implement to simulation the segment of the practice manipulation, by means of human-computer interaction interface and the demonstrate education method to let the students to feel the reality welding process still more, get more chances of practice and save more materials and equipments for the

  7. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation

    NARCIS (Netherlands)

    Ganzevles, R.A.; Kosters, H.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2007-01-01

    Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different

  8. Effects of Longyanshen polysaccharides on free radical metabolism in senescence accelerated-prone mice

    Institute of Scientific and Technical Information of China (English)

    Zhongshi Huang; Haiyuan Xie; Shijun Zhang; Yang Jiao; Weizhe Jiang; Renbin Huang

    2008-01-01

    BACKGROUND: Along with aging, antioxidase activity decreases and oxygen-derived free radicals greatly accumulate, resulting in cellular senescence, or even cell death. This is manifested by hypomnesia and disordered metabolism of free radicals. Studies have reported that Longyanshen polysaccharidcs have the function of antioxidation and improved brain memory.OBJECTIVE: To observe the effects of Longyanshen polysaccharides on free radical metabolism in brain tissue to verify the anti-aging mechanisms in senescence accelerated-prime (SAMPS) mice. DESIGN, TIME AND SETTING: The randomized, controlled, biochemical experiment was performed in the Department of Pharmacology and Scientific Experimental Center of Guangxi Medical University (China) from September 2005 to January 2008.MATERIALS: Forty SAMP8 mice were randomized into four groups: SAMP8 control group, as well as low-, mid-, and high-dose polysaccharide, with 10 mice in each group. Ten senescence accelerated-resistant-prone (SAMR 1) mice served as the normal control group. Longyanshen polysaccharides, extracted from the medical plant Longyanshen, were supplied by the Department of Pharmacology, Guangxi Medical University. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malonaldehydc (MDA), nitric oxide (NO), and total protein test kitwere purchased from Nanjing Jiancheng Bioengineering Institute (China).METHODS: SAMP8 mice were used to establish a dementia animal model. SAMP8 and SAMRI control mice were administered 30 mL/kg saline. The low-, middle-, and high-dose polysaccharide groups were administered 45, 90, and 180 mg/kg Longyanshen polysaccharides, respectively. Each group was treated by intragastric administration, once daily, for 50 continuous days.MAIN OUTCOME MEASURES: One hour after the last administration, mouse brain tissues were collected, and retro orbital blood sampling was performed. Spectrophotometry was used to measure SOD and GSH-Px activity, as well as MDA and NO concentration

  9. Improved coupling of bacterial polysaccharides to macromolecules and solid supports

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method of producing a polysaccharide-carrier conjugate comprising coupling a polysaccharide to a carrier, said polysaccharide comprising at least one monosaccharide unit comprising a keto-carboxy group according to the formula -C(=O)COOR, where R is either hydrogen or C1......-alkoxyamine group of the carrier with a keto-carboxy group of said polysaccharide to form a covalent amide bond between the carrier and the polysaccharide. Another aspect of the present invention relates to a compound or solid surface obtained when performing the method of the present invention. A third aspect...

  10. Perspective on the Use of Sulfated Polysaccharides from Marine Organisms as a Source of New Antithrombotic Drugs

    Directory of Open Access Journals (Sweden)

    Paulo A. S. Mourão

    2015-05-01

    Full Text Available Thromboembolic diseases are increasing worldwide and always require anticoagulant therapy. We still need safer and more secure antithrombotic drugs than those presently available. Sulfated polysaccharides from marine organisms may constitute a new source for the development of such drugs. Investigation of these compounds usually attempts to reproduce the therapeutic effects of heparin. However, we may need to follow different routes, focusing particularly in the following aspects: (1 defining precisely the specific structures required for interaction of these sulfated polysaccharides with proteins of the coagulation system; (2 looking for alternative mechanisms of action, distinct from those of heparin; (3 identifying side effects (mostly pro-coagulant action and hypotension rather than bleeding and preparing derivatives that retain the desired antithrombotic action but are devoid of side effects; (4 considering that sulfated polysaccharides with low anticoagulant action on in vitro assays may display potent effects on animal models of experimental thrombosis; and finally (5 investigating the antithrombotic effect of these sulfated polysaccharides after oral administration or preparing derivatives that may achieve this effect. If these aspects are successfully addressed, sulfated polysaccharides from marine organisms may conquer the frontier of antithrombotic therapy and open new avenues for treatment or prevention of thromboembolic diseases.

  11. Perspective on the Use of Sulfated Polysaccharides from Marine Organisms as a Source of New Antithrombotic Drugs

    Science.gov (United States)

    Mourão, Paulo A. S.

    2015-01-01

    Thromboembolic diseases are increasing worldwide and always require anticoagulant therapy. We still need safer and more secure antithrombotic drugs than those presently available. Sulfated polysaccharides from marine organisms may constitute a new source for the development of such drugs. Investigation of these compounds usually attempts to reproduce the therapeutic effects of heparin. However, we may need to follow different routes, focusing particularly in the following aspects: (1) defining precisely the specific structures required for interaction of these sulfated polysaccharides with proteins of the coagulation system; (2) looking for alternative mechanisms of action, distinct from those of heparin; (3) identifying side effects (mostly pro-coagulant action and hypotension rather than bleeding) and preparing derivatives that retain the desired antithrombotic action but are devoid of side effects; (4) considering that sulfated polysaccharides with low anticoagulant action on in vitro assays may display potent effects on animal models of experimental thrombosis; and finally (5) investigating the antithrombotic effect of these sulfated polysaccharides after oral administration or preparing derivatives that may achieve this effect. If these aspects are successfully addressed, sulfated polysaccharides from marine organisms may conquer the frontier of antithrombotic therapy and open new avenues for treatment or prevention of thromboembolic diseases. PMID:25955754

  12. SORPTION PROPERTIES OF PLANT POLYSACCHARIDE COMPLEXES

    Directory of Open Access Journals (Sweden)

    L. E. Glagoleva

    2012-01-01

    Full Text Available The article presents information on the laws of the sorption of water to grow-negative polysaccharide complexes of the pumpkin and briar, deter-mined the rate constant of swelling as a function of temperature and pH, the maximum degree of swelling and limit the time to achieve it.

  13. Fucoidans - sulfated polysaccharides of brown algae

    Energy Technology Data Exchange (ETDEWEB)

    Usov, Anatolii I; Bilan, M I [N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2009-08-31

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  14. Fucoidans — sulfated polysaccharides of brown algae

    Science.gov (United States)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  15. Polysaccharides from Polygonatum odoratum strengthen antioxidant ...

    African Journals Online (AJOL)

    . Purpose: To investigate the potential effects of polysaccharides isolated from ... groups were treated with different doses (150, 300, and 600 mg/kg) of PPO, ..... anti-fatigue properties. .... Zhao XN, Liang JL, Chen HB, Liang YE, Guo HZ, Su ZR,.

  16. Sustainability, polysaccharide science, and bio-economy

    NARCIS (Netherlands)

    Bos, Ten R.; Dam, Van J.E.G.

    2013-01-01

    At the opening of the 2nd EPNOE conference the role and responsibility of polysaccharide scientists was reflected upon and placed in the context of actual global issues like the transition process towards “sustainable bio-economy”. Difficulties in the chain of communication between the different

  17. Enzymatic production of polysaccharides from gum tragacanth

    DEFF Research Database (Denmark)

    2014-01-01

    Plant polysaccharides, relating to the field of natural probiotic components, can comprise structures similar to human milk oligosaccharides. A method for enzymatic hydrolysis of gum tragacanth from the bush-like legumes of the genus Astragalus, using a combination of pectin hydrolases...

  18. Polysaccharide coating of human corneal endothelium

    DEFF Research Database (Denmark)

    Schroder, H D; Sperling, S

    1977-01-01

    Electron microscopy revealed the presence of a 600-1500 A thick layer of polysaccharide on the surface of human corneal endothelial cells. The surface layer was visualized by combined fixation and staining in a mixture of ruthenium red and osmium tetroxide. The coating material was stable...

  19. Sulfated polysaccharides and immune response: promoter or inhibitor?

    Science.gov (United States)

    Chen, D; Wu, X Z; Wen, Z Y

    2008-06-01

    Sulfated polysaccharides, which frequently connect to core protein, are expressed not only on cell surface but also throughout the extracellular matrix. Besides providing structural integrity of cells, sulfated polysaccharides interact with a variety of sulfated polysaccharides-binding proteins, such as growth factors, cytokines, chemokines and proteases. Sulfated polysaccharides play two-edged roles, inhibitor and promoter, in immune response. Some sulfated polysaccharides act as the immunosuppressor by blocking inflammatory signal transduction induced by proinflammatory cytokines, suppressing the activation of complement and inhibiting the process that leukocytes adhere to and pass through endothelium. On the contrary, the interaction between immune cells and sulfated polysaccharides produced by bacteria, endothelial cells and immune cells initiate the occurrence of immune response. It promotes the processes of recognizing and arresting antigen, migrating transendothelium, moving into and out of immune organ and enhancing the proliferation of lymphocyte. The structure of sulfated polysaccharides, such as molecular weight and sulfated sites heterogeneity, especially the degree of disaccharide sulfation, position of the sulfate moiety and organization of sulfated domains, may play critical role in their controversial effects. As a consequence, the interaction between sulfated polysaccharides and sulfated polysaccharide-binding proteins may be changed by modifying the structure of sulfated polysaccharides chains. The administration of drug targeting sulfated polysaccharide-protein interaction may be useful in treating inflammatory related diseases.

  20. Immunomodulatory activities of five clinically used Chinese herbal polysaccharides

    Directory of Open Access Journals (Sweden)

    Aiping Lu

    2012-02-01

    Full Text Available Polysaccharide is a natural macromolecular compound with complex, important and multifaceted biological activities. Some of polysaccharides have been marketed in China as drugs or healthy products. More studies confirm that the active ingredient of many traditional Chinese medicine exist in the form of polysaccharides. They play a role in disease therapy by activating immune cells and the complement system; regulating the cytokines expression; promoting the production of antibodies; inhibiting tumor cell proliferation and inducing tumor cell apoptosis; inhibiting virus entering cells and replication; increasing activity of antioxidant enzyme; scavenging free radicals; and inhibiting lipid peroxidation. In this review, we focus on the immunomodulatory effects and its possible mechanism of polysaccharides from Chinese herbal polysaccharides products, including Lentinan, Astragalus polysaccharide, Polyporus polysaccharide and Achyranthes bidentata polysaccharide. The immunomodulatory activities of polysaccharides were categorized in the paper into general immunoregulatory activity, anti-tumor, anti-infections, anti-inflammatory, anti-oxidative, anti-mutagenic and radioprotective, anti-complementary, anti-adhesive, and anti-allergy since all the activities are related to modulate immune responses by the polysaccharides. Also the challenges in the research of polysaccharides will be discussed. [J Exp Integr Med 2012; 2(1.000: 15-27

  1. The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin.

    Directory of Open Access Journals (Sweden)

    Claire Pardieu

    2010-04-01

    Full Text Available Tetherin (CD317/BST2 is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18 in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition.

  2. Chemical composition and antioxidant activity of an acidic polysaccharide extracted from Cucurbita moschata Duchesne ex Poiret.

    Science.gov (United States)

    Yang, Xingbin; Zhao, Yan; Lv, You

    2007-06-13

    A simple and sensitive high-performance capillary electrophoresis (HPCE) method was designed for quantitative analysis of the component monosaccharides of an acidic polysaccharide extracted from pumpkin. In this method, the polysaccharide was hydrolyzed into component monosaccharides with 2.0 M trifluoroacetic acid at 100 degrees C for 6 h and then labeled with 1-phenyl-3-methyl-5-pyrazolone, and subsequently the labeled monosaccharide derivatives were separated by HPCE. As a result, glucose (21.7%) and glucuronic acid (18.9%) were identified to be the main component monosaccharides, followed by galactose (11.5%), arabinose (9.8%), xylose (4.4%), and rhamnose (2.8%). Furthermore, the pumpkin polysaccharide was also demonstrated to effectively inhibit the H2O2-caused decrease of cell viability, lactate dehydrogenase leakage, and malondialdehyde formation, and also reduced the H2O2-caused decline of superoxide dismutase activity and glutathione depletion in cultured mouse peritoneal macrophages, indicating that pumpkin polysaccharide possessed significant cytoprotective effect and antioxidative activity.

  3. Synthesis, characterization and antioxidant activity of selenium polysaccharide from Cordyceps militaris.

    Science.gov (United States)

    Zhu, Zhen-Yuan; Liu, Fei; Gao, Hui; Sun, Huiqing; Meng, Meng; Zhang, Yong-Min

    2016-12-01

    A purified selenium-containing derivatives of Cordyceps militaris polysaccharide synthesized using H2SeO3/HNO3 and BaCl2 as a catalyst was investigated in this paper. The reaction condition was optimized by selecting different reaction temperature and period. Afterward, the one with the highest Se content was purified by ultra-filtration device with a molecular cut off size of 10KDa. Followed by its structural characterizations. Results of IFR and (13)C NMR spectroscopy indicated that C-6 substitution was predominant in selenized polysaccharide. The modified polysaccharide with molecular weight of 1998 KDa was mainly consisted of mannose, glucose and galactose in the mole ratios of with the mole ratios of 1:28.63:1.41. Thermogravimetric and morphological analyses of the samples were carried out by AFS, SEM and AFM. In addition, the in vitro antioxidant results suggested that selenium-containing polysaccharide should be applied as a novel selenium source in dietary supplements, with potent antioxidant properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Fixation of soil surface contamination using natural polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, M.R.

    1993-09-01

    Natural polysaccharides were evaluated as alternatives to commercially available dust-control agents for application in buried-waste and contaminated-soil remediation situations. Materials were identified and evaluated with specific criteria in mind: the materials must be environmentally benign and must not introduce any additional hazardous materials; they must be effective for at least 2 or 3 days, but they do not necessarily have to be effective for more than 2 to 3 weeks; they should be relatively resistant to light traffic; they must not interfere with subsequent soil treatment techniques, especially soil washing; and they must be relatively inexpensive. Two products, a pregelled potato starch and a mixture of carbohydrates derived from sugar beets, were selected for evaluation. Testing included small- and large-scale field demonstrations, laboratory physical property analyses, and wind-tunnel evaluations.

  5. Molecular-level understanding of the carbonisation of polysaccharides.

    Science.gov (United States)

    Shuttleworth, Peter S; Budarin, Vitaliy; White, Robin J; Gun'ko, Vladimir M; Luque, Rafael; Clark, James H

    2013-07-01

    Understanding of both the textural and functionality changes occurring during (mesoporous) polysaccharide carbonisation at the molecular level provides a deeper insight into the whole spectrum of material properties, from chemical activity to pore shape and surface energy, which is crucial for the successful application of carbonaceous materials in adsorption, catalysis and chromatography. Obtained information will help to identify the most appropriate applications of the carbonaceous material generated during torrefaction and different types of pyrolysis processes and therefore will be important for the development of cost- and energy-efficient zero-waste biorefineries. The presented approach is informative and semi-quantitative with the potential to be extended to the formation of other biomass-derived carbonaceous materials.

  6. Recent progress on the design and applications of polysaccharide-based graft copolymer hydrogels as adsorbents for wastewater purification

    CSIR Research Space (South Africa)

    Mittal, Hemant

    2016-05-01

    Full Text Available Gum polysaccharides are one of the most abundant bio-based polymers. They are generally derived from plants as exudates or from microorganisms and have diverse applications in many industries, especially in the food industries where they are used...

  7. α-Amylase-assisted extraction of polysaccharides from Panax ginseng.

    Science.gov (United States)

    Sun, Lin; Wu, Di; Ning, Xin; Yang, Guang; Lin, Ziheng; Tian, Meihong; Zhou, Yifa

    2015-04-01

    In this paper, α-amylase-assisted extraction was used to isolate the polysaccharide that remained in hot water-extracted ginseng. The yield of the polysaccharide was 9.0%, almost equal to that of the hot water-extracted polysaccharide. Using anion exchange and gel permeation chromatography, the polysaccharide was fractionated into a neutral polysaccharide fraction and six pectic fractions. The neutral fraction accounted for 76% of the polysaccharide and contained both amylopectin and amylose. The pectic polysaccharide fractions were identified to be arabinogalactan, type-I rhamnogalacturonan and homogalacturonan-type pectin by high-performance liquid chromatography, Fourier transform-infrared and nuclear magnetic resonance analysis. Structural and lymphocyte proliferation activity results showed that these polysaccharides were different from those extracted by hot water, indicating that ginseng contains complex polysaccharides with diverse structures, which results in its diverse pharmacological activities. The α-amylase-assisted extraction is a novel method for preparing ginseng polysaccharides and could be applied toward the further study and exploration of ginseng. These findings provide technical and theoretical support for ginseng pharmacology. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Regulation of Polysaccharide Utilization Contributes to the Persistence of Group A Streptococcus in the Oropharynx▿

    Science.gov (United States)

    Shelburne, Samuel A.; Okorafor, Nnaja; Sitkiewicz, Izabela; Sumby, Paul; Keith, David; Patel, Payal; Austin, Celest; Graviss, Edward A.; Musser, James M.

    2007-01-01

    Group A Streptococcus (GAS) genes that encode proteins putatively involved in polysaccharide utilization show growth phase-dependent expression in human saliva. We sought to determine whether the putative polysaccharide transcriptional regulator MalR influences the expression of such genes and whether MalR helps GAS infect the oropharynx. Analysis of 32 strains of 17 distinct M protein serotypes revealed that MalR is highly conserved across GAS strains. malR transcripts were detectable in patients with GAS pharyngitis, and the levels increased significantly during growth in human saliva compared to the levels during growth in glucose-containing or nutrient-rich media. To determine if MalR influenced the expression of polysaccharide utilization genes, we compared the transcript levels of eight genes encoding putative polysaccharide utilization proteins in the parental serotype M1 strain MGAS5005 and its ΔmalR isogenic mutant derivative. The transcript levels of all eight genes were significantly increased in the ΔmalR strain compared to the parental strain, especially during growth in human saliva. Following experimental infection, the ΔmalR strain persistently colonized the oropharynx in significantly fewer mice than the parental strain colonized, and the numbers of ΔmalR strain CFU recovered were significantly lower than the numbers of the parental strain CFU recovered. These data led us to conclude that MalR influences the expression of genes putatively involved in polysaccharide utilization and that MalR contributes to the persistence of GAS in the oropharynx. PMID:17403878

  9. POLYPEPTIDE AND POLYSACCHARIDE PROCESSING IN HYPERTHERMOPHILIC MICROORGANISMS

    Energy Technology Data Exchange (ETDEWEB)

    KELLY, ROBERT M.

    2008-12-22

    This project focused on the microbial physiology and biochemistry of heterotrophic hyperthermophiles with respect to mechanisms by which these organisms process polypeptides and polysaccharides under normal and stressed conditions. Emphasis is on two model organisms, for which completed genome sequences are available: Pyrococcus furiosus (growth Topt of 98°C), an archaeon, and Thermotoga maritima (growth Topt of 80°C), a bacterium. Both organisms are obligately anaerobic heterotrophs that reduce sulfur facultatively. Whole genome cDNA spotted microarrays were used to follow transcriptional response to a variety of environmental conditions in order to identify genes encoding proteins involved in the acquisition, synthesis, processing and utilization of polypeptides and polysaccharides. This project provided new insights into the physiological aspects of hyperthermophiles as these relate to microbial biochemistry and biological function in high temperature habitats. The capacity of these microorganisms to produce biohydrogen from renewable feedstocks makes them important for future efforts to develop biofuels.

  10. Antihypertensive activity of polysaccharide from Crassostrea gigas.

    Science.gov (United States)

    Wang, Ting; Ding, Jie; Li, Haibo; Xiang, Jingjing; Wen, Ping; Zhang, Qin; Yin, Linliang; Jiang, Wei; Shen, Caie

    2016-02-01

    Water-soluble polysaccharide was extracted from Crassostrea gigas by hydrolysis with flavourzyme and filtered, ultrafiltered and precipitated using absolute ethanol. Sugar composition analysis performed on the C. gigas polysaccharide (CGP) by high performance liquid chromatography indicated that it was comprised primarily of glucose, and its molecular weight was determined using a TSK-GEL G5000PW column to be ∼3.413×10(6) Da. Next, the antihypertensive activity of CGP was evaluated in rats. Hypertension model Wistar rats were divided into three groups and intragastrically treated with physiological saline (negative control group), CGP (treatment group), and captopril (positive control group). CGP treatment led to significant decrease in both systolic and diastolic pressures in the hypertension model Wistar rats. Furthermore, the antihypertensive effect of CGP was comparable with that of captopril. Thus, CGP has antihypertensive effects and can potentially be used as a therapeutic agent for hypertension. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Structural characterization of polysaccharides from bamboo

    Science.gov (United States)

    Kamil, Ruzaimah Nik Mohamad; Yusuf, Nur'aini Raman; Yunus, Normawati M.; Yusup, Suzana

    2014-10-01

    The alkaline and water soluble polysaccharides were isolate by sequential extractions with distilled water, 60% ethanol containing 1%, 5% and 8% NaOH. The samples were prepared at 60 °C for 3 h from local bamboo. The functional group of the sample were examined using FTIR analysis. The most precipitate obtained is from using 60% ethanol containing 8% NaOH with yield of 2.6%. The former 3 residues isolated by sequential extractions with distilled water, 60% ethanol containing 1% and 5% NaOH are barely visible after filtering with cellulose filter paper. The FTIR result showed that the water-soluble polysaccharides consisted mainly of OH group, CH group, CO indicates the carbohydrate and sugar chain. The sample weight loss was slightly decreased with increasing of temperature.

  12. The structure-anticoagulant activity relationships of sulfated lacquer polysaccharide: effect of carboxyl group and position of sulfation.

    Science.gov (United States)

    Yang, Jianhong; Du, Yumin; Huang, Ronghua; Wan, Yunyang; Wen, Yan

    2005-07-01

    Regiospecific oxidation of the primary hydroxyl groups in lacquer polysaccharide (LPL, Mw 6.85 x 10(4)) and its NaIO4 oxidation derivatives (LPLde) to C-6 carboxy groups was achieved with NaOCl in the presence of Tempo and NaBr. Sulfate groups were incorporated into the oxidated polysaccharides using Py.SO3 complex as a reagent. Reactivity of polysaccharide hydroxyl group was C-6 > C-2 > C-4. Sulfate groups were mainly linked to the second hydroxy at C-2 in the products. The results of APTT assay showed after incorporation of carboxyl groups into lacquer polysaccharides, the intrinsic coagulation pathway was promoted, and all sulfated polysaccharides had very weak anticoagulant activity within the scope of studied DS (0.39-1.11). These indicated that carboxyl groups and sulfate groups had the synergistic action. At the same time, the anticoagulant activity increased very slowly with the DS in the second hydroxy. This indicated that 6-O-SO3- in the side chains took an important role in the anticoagulant activity.

  13. Pneumococcal capsular polysaccharide structure predicts serotype prevalence.

    Directory of Open Access Journals (Sweden)

    Daniel M Weinberger

    2009-06-01

    Full Text Available There are 91 known capsular serotypes of Streptococcus pneumoniae. The nasopharyngeal carriage prevalence of particular serotypes is relatively stable worldwide, but the host and bacterial factors that maintain these patterns are poorly understood. Given the possibility of serotype replacement following vaccination against seven clinically important serotypes, it is increasingly important to understand these factors. We hypothesized that the biochemical structure of the capsular polysaccharides could influence the degree of encapsulation of different serotypes, their susceptibility to killing by neutrophils, and ultimately their success during nasopharyngeal carriage. We sought to measure biological differences among capsular serotypes that may account for epidemiological patterns. Using an in vitro assay with both isogenic capsule-switch variants and clinical carriage isolates, we found an association between increased carriage prevalence and resistance to non-opsonic neutrophil-mediated killing, and serotypes that were resistant to neutrophil-mediated killing tended to be more heavily encapsulated, as determined by FITC-dextran exclusion. Next, we identified a link between polysaccharide structure and carriage prevalence. Significantly, non-vaccine serotypes that have become common in vaccinated populations tend to be those with fewer carbons per repeat unit and low energy expended per repeat unit, suggesting a novel biological principle to explain patterns of serotype replacement. More prevalent serotypes are more heavily encapsulated and more resistant to neutrophil-mediated killing, and these phenotypes are associated with the structure of the capsular polysaccharide, suggesting a direct relationship between polysaccharide biochemistry and the success of a serotype during nasopharyngeal carriage and potentially providing a method for predicting serotype replacement.

  14. INTERACTION OF IONIC LIQUIDS WITH POLYSACCHARIDES

    OpenAIRE

    2008-01-01

    The use of ionic liquids (ILs) in the field of cellulose chemistry opens up a broad variety of new opportunities. Besides the regeneration of the biopolymer to fibers, films, and beads, this new class of cellulose solvents is particularly useful for the homogeneous chemical modification of the polysaccharide. In this review, the potential of ILs as a reaction medium for the homogeneous cellulose functionalization is discussed. It is shown that numerous conversions proceed very efficiently and...

  15. Marine Origin Polysaccharides in Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Matias J. Cardoso

    2016-02-01

    Full Text Available Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  16. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2010-06-22

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  17. Plant Cell Wall Matrix Polysaccharide Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Ajay Pal S. Sandhu; Gursharn S. Randhawa; Kanwarpal S. Dhugga

    2009-01-01

    The wall of an expanding plant cell consists primarily of cellulose microfibrils embedded in a matrix of hemi-cellulosic and pectic polysaccharides along with small amounts of structural and enzymatic proteins. Matrix polysacchar-ides are synthesized in the Golgi and exported to the cell wall by exocytosis, where they intercalate among cellulose microfibrUs, which are made at the plasma membrane and directly deposited into the cell wall. Involvement of Golgi glucan synthesis in auxin-induced cell expansion has long been recognized; however, only recently have the genes corresponding to glucan synthases been identified. Biochemical purification was unsuccessful because of the labile nature and very low abundance of these enzymes. Mutational genetics also proved fruitless. Expression of candidate genes identified through gene expression profiling or comparative genomics in heterologous systems followed by functional characterization has been relatively successful. Several genes from the cellulose synthase-like (Cs/) family have been found to be involved in the synthesis of various hemicellulosic glycans. The usefulness of this approach, however, is limited to those enzymes that probably do not form complexes consisting of unrelated proteins. Nonconventional approaches will continue to incre-mentally unravel the mechanisms of Golgi polysaccharide biosynthesis.

  18. Rheological studies of polysaccharides for skin scaffolds.

    Science.gov (United States)

    Almeida, Nalinda; Mueller, Anja; Hirschi, Stanley; Rakesh, Leela

    2014-05-01

    Polysaccharide hydrogels are good candidates for skin scaffolds because of their inherent biocompatibility and water transport properties. In the current study, hydrogels were made from a mixture of four polysaccharides: xanthan gum, konjac gum, iota-carrageenan, and kappa-carrageenan. Gel formation, strength, and structure of these polysaccharides were studied using rheological and thermal techniques. All gel samples studied were strong gels at all times because of the gradual water loss. However, after 12 h of storage, elastic (G') and loss (G'') moduli of hydrogel mixture containing all the ingredients is of one to two orders of magnitude greater than that of mixtures not containing either xanthan gum or iota-carrageenan, which confirmed the varied levels of gel strength. This is mainly due to the rate of water loss in each of these mixtures, resulting in gels of varying structures and dynamic moduli over a period of time. Iota-carrageenan and xanthan gum differ in their effect on gel strength and stability in combination with konjac gum and kappa-carrageenan.

  19. Biocompatible polysaccharide-based cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Reichelt, Senta, E-mail: senta.reichelt@iom-leipzig.de [Leibniz Institute of Surface Modification, Permoserstr. 15, 04318 Leipzig (Germany); Becher, Jana; Weisser, Jürgen [Innovent e.V., Pruessingstr. 27B, 07745 Jena (Germany); Prager, Andrea; Decker, Ulrich [Leibniz Institute of Surface Modification, Permoserstr. 15, 04318 Leipzig (Germany); Möller, Stephanie; Berg, Albrecht; Schnabelrauch, Matthias [Innovent e.V., Pruessingstr. 27B, 07745 Jena (Germany)

    2014-02-01

    This study focuses on the development of novel biocompatible macroporous cryogels by electron-beam assisted free-radical crosslinking reaction of polymerizable dextran and hyaluronan derivatives. As a main advantage this straightforward approach provides highly pure materials of high porosity without using additional crosslinkers or initiators. The cryogels were characterized with regard to their morphology and their basic properties including thermal and mechanical characteristics, and swellability. It was found that the applied irradiation dose and the chemical composition strongly influence the material properties of the resulting cryogels. Preliminary cytotoxicity tests illustrate the excellent in vitro-cytocompatibility of the fabricated cryogels making them especially attractive as matrices in tissue regeneration procedures. - Graphical abstract: Electron-beam initiated synthesis of biocompatible cryogels based on natural polymers. - Highlights: • Successful electron-beam induced synthesis of dextran and hyaluronan cryogels. • Mechanical and thermal stable cryogels were obtained. • Excellent cytocompatibility of the materials was proven. • Promising materials for tissue engineering were developed.

  20. Synthetic Polymer Nanoparticle-Polysaccharide Interactions: A Systematic Study

    OpenAIRE

    Zeng, Zhiyang; Patel, Jiten; Lee, Shih-Hui; McCallum, Monica; Tyagi, Anuradha; Yan, Mingdi; Shea, Kenneth J.

    2012-01-01

    The interaction between synthetic polymer nanoparticles (NPs) and biomacromolecules (e.g. proteins, lipids and polysaccharides) can profoundly influence the NPs fate and function. Polysaccharides (e.g. heparin/heparin sulfate) are a key component of cell surfaces and the extracelluar matrix and play critical roles in many biological processes. We report a systematic investigation of the interaction between synthetic polymer nanoparticles and polysaccharides by ITC, SPR and an anticoagulant as...

  1. Structural Analysis of Polysaccharide from Cladonia furcatar and Its Activities

    Institute of Scientific and Technical Information of China (English)

    CHEN; Qian

    2001-01-01

    Cladonia furcatar is a member of the lichens genus Cladonia. Japanese scientific researchers [1] made a great achievement in selecting lichens as anticancer agent and polysaccharides are generally considered to be their main bioactive constituents. Recently, Iacomini et al[2] have investigated the members of the genus Cladonia, a mannose-containing polysaccharide was isolated from Cladoniafurcatar. We now report the new chemical structure of polysaccharide from Cladoniafurcatar and its activities.  ……

  2. Oligo- and polysaccharide synthesis by Rhizobium leguminosarum and Rhizobium meliloti.

    OpenAIRE

    Breedveld, M W

    1992-01-01

    Rhizobium and Agrobacterium species are capable of synthesizing a variety of extracellular and cellular oligo- and polysaccharides. Changes in environmental conditions may all affect the composition, physical properties, and relative amounts of oligo- and polysaccharides. Interest in the field of Rhizobium polys accharides has resulted from a development in two distinct areas, (i) the role of oligo- and polysaccharides in the microbe- plant interaction, and (ii) studies on the physico- chemic...

  3. Structural Analysis of Polysaccharide from Cladonia furcatar and Its Activities

    Institute of Scientific and Technical Information of China (English)

    CHEN Qian; LIN Xin; CAI YuJun; LI ZhiXiao

    2001-01-01

    @@ Cladonia furcatar is a member of the lichens genus Cladonia. Japanese scientific researchers [1] made a great achievement in selecting lichens as anticancer agent and polysaccharides are generally considered to be their main bioactive constituents. Recently, Iacomini et al[2] have investigated the members of the genus Cladonia, a mannose-containing polysaccharide was isolated from Cladoniafurcatar. We now report the new chemical structure of polysaccharide from Cladoniafurcatar and its activities.

  4. Modeling Math Growth Trajectory--An Application of Conventional Growth Curve Model and Growth Mixture Model to ECLS K-5 Data

    Science.gov (United States)

    Lu, Yi

    2016-01-01

    To model students' math growth trajectory, three conventional growth curve models and three growth mixture models are applied to the Early Childhood Longitudinal Study Kindergarten-Fifth grade (ECLS K-5) dataset in this study. The results of conventional growth curve model show gender differences on math IRT scores. When holding socio-economic…

  5. Preparation, characterization and photocatalytic studies of Cu2+, Sn2+ and N3− substituted K5Sb5P2O20

    Indian Academy of Sciences (India)

    Ch Sudhakar Reddy; Sreenu K; J R Reddy; A Hari Padmasri; Ravi Gundeboina; M Vithal

    2016-04-01

    Potassium antimony phosphates (K-Sb-P-O) exhibit different structural networks and therefore they were studied as photocatalysts in the present investigation. K5Sb5P2O20 was prepared by solid state method. Metal ions (Cu2+ and Sn2+), and non-metal anion, N3−, were substituted into the K5Sb5P2O20 for possible enhancement of photocatalytic activity. The precursor and substituted compounds were characterized by powder X-ray diffraction, FT-IR, SEM-EDS and UV-Vis diffuse reflectance spectra. Nitrogen substitution into K5Sb5P2O20 lattice was studied by O-N-H and XPS measurements. The photocatalytic activity of all the compounds was studied by degradation of methylene blue and methyl violet. The ion-substituted K5Sb5P2O20 have shown higher photocatalytic activity against both the dyes. The role of reactive intermediate species produced in the photocatalytic reaction was studied using their appropriate scavengers.

  6. Expanding the Role of K-5 Science Instruction in Educational Reform: Implications of an Interdisciplinary Model for Integrating Science and Reading

    Science.gov (United States)

    Romance, Nancy R.; Vitale, Michael R.

    2012-01-01

    Addressed is the current practice in educational reform of reducing time for science instruction in favor of traditional reading/language arts instruction. In contrast, presented is an evidence-based rationale for increasing instructional time for K-5 science instruction as an educational reform initiative. Overviewed are consensus…

  7. Effect of Reishi polysaccharides on human stem/progenitor cells.

    Science.gov (United States)

    Chen, Wan-Yu; Yang, Wen-Bin; Wong, Chi-Huey; Shih, Daniel Tzu-Bi

    2010-12-15

    The polysaccharide fraction of Ganoderma lucidum (F3) was found to benefit our health in many ways by influencing the activity of tissue stem/progenitor cells. In this study, F3 was found to promote the adipose tissue MSCs' aggregation and chondrosphere formation, with the increase of CAM (N-CAM, I-CAM) expressions and autokine (BMP-2, IL-11, and aggrecan) secretions, in an in vitro chondrogenesis assay. In a stem cell expansion culture, it possesses the thrombopoietin (TPO) and GM-CSF like functions to enhance the survival/renewal abilities of primitive hematopoietic stem/progenitor cells (HSCs). F3 was found to promote the dendrite growth of blood mononuclear cells (MNCs) and the expression of cell adhesion molecules in the formation of immature dendritic cells (DC). On the other hand, F3 exhibited inhibitory effects on blood endothelial progenitor (EPC) colony formation, with concomitant reduction of cell surface endoglin (CD105) and vascular endothelial growth factor receptor-3 (VEGFR-3) marker expressions, in the presence of angiogenic factors. A further cytokine array analysis revealed that F3 indeed inhibited the angiogenin synthesis and enhanced IL-1, MCP-1, MIP-1, RANTES, and GRO productions in the blood EPC derivation culture. Collectively, we have demonstrated that the polysaccharide fraction of G. lucidum F3 exhibits cytokine and chemokine like functions which are beneficial to human tissue stem/progenitor cells by modulating their CAM expressions and biological activities. These findings provide us a better the observation that F3 glycopolysaccharides indeed possesses anti-angiogenic and immune-modulating functions and promotes hematopoietic stem/progenitor cell homing for better human tissue protection, reducing disease progression and health.

  8. COUPLING OF LIPOPOLYSACCHARIDE-DERIVED CARBOHYDRATES ONTO SOLID SURFACES

    DEFF Research Database (Denmark)

    2000-01-01

    The present invention provides a method for immobilising a polysaccharide (PS) to a solid surface, said polysaccharide having a keto-carboxy group (-C(=O)-COOH) or a ketal or hemiketal group corresponding thereto, e.g. derived from KDO (2-keto-3-deoxy-D-mannooctonic acid), the method comprising...... the steps of: (a) forming a covalent bond between the carboxy group of the polysaccharide and a reporter molecule (RM). Comprising a recognition/substrate site (e.g. biotin or an anthraquinone); and (b) immobilising for diagnostic purposes, e.g. for the detection of bacterial infections from Gram...

  9. Determination of free polysaccharide in Vi glycoconjugate vaccine against typhoid fever.

    Science.gov (United States)

    Giannelli, C; Cappelletti, E; Di Benedetto, R; Pippi, F; Arcuri, M; Di Cioccio, V; Martin, L B; Saul, A; Micoli, F

    2017-05-30

    Glycoconjugate vaccines based on the Vi capsular polysaccharide directed against Salmonella enterica serovar Typhi are licensed or in development against typhoid fever, an important cause of morbidity and mortality in developing countries. Quantification of free polysaccharide in conjugate vaccines is an important quality control for release, to monitor vaccine stability and to ensure appropriate immune response. However, we found that existing separation methods based on size are not appropriate as free Vi non-specifically binds to unconjugated and conjugated protein. We developed a method based on free Vi separation by Capto Adhere resin and quantification by HPAEC-PAD. The method has been tested for conjugates of Vi derived from Citrobacter freundii with different carrier proteins such as CRM197, Tetanus Toxoid and Diphtheria Toxoid. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Polysaccharide-based polyelectrolytes hollow microcapsules constructed by layer-by-layer technique.

    Science.gov (United States)

    Zhang, Yifeng; Chen, Cong; Wang, Jianguo; Zhang, Lina

    2013-07-25

    Two water-soluble polysaccharide derivatives, carboxymethylated and quarternized glucans (CMGP and QGP) were synthesized for the first time from water-insoluble polysaccharides (GP) extracted from Ganoderma lucidum. Hollow microspheres were constructed using electrostatic layer-by-layer (LbL) deposition of the CMGP and QGP polyelectrolytes onto colloidal ZnO particles followed by the core decomposition with an acid solution. The structures of the multilayered CMGP/QGP microspheres were investigated by transmission electron microscopy (TEM), zeta potential and dynamic light scattering (DLS). The results revealed that the multilayer thickness increased regularly from 48 to 145 nm as the number of deposited CMGP/QGP layers was increased from two to seven, and the mean increment of thickness was ∼25 nm per layer, reflecting the high regularity of the layer-by-layer assembly. This work provided an easy method to construct hollow microcapsules with biocompatibility and controlled dimensions.

  11. Effects of sulfate group in red seaweed polysaccharides on anticoagulant activity and cytotoxicity.

    Science.gov (United States)

    Liang, Wanai; Mao, Xuan; Peng, Xiaohui; Tang, Shunqing

    2014-01-30

    In this paper, the structural effects of two main red seaweed polysaccharides (agarose and carrageenan) and their sulfated derivatives on the anticoagulant activity and cytotoxicity were investigated. The substitution position rather than the substitution degree of sulfate groups shows the biggest impact on both the anticoagulant activity and the cell proliferation. Among them, C-2 of 3,6-anhydro-α-d-Galp is the most favorable position for substitution, whereas C-6 of β-d-Galp is the most disadvantageous. Moreover, the secondary structures of glycans also play a key role in biological activities. These demonstrations warrant that the red seaweed polysaccharides should be seriously considered in biomedical applications after carefully tailoring the sulfate groups.

  12. The core and O-polysaccharide structure of the Caulobacter crescentus lipopolysaccharide.

    Science.gov (United States)

    Jones, Michael D; Vinogradov, Evgeny; Nomellini, John F; Smit, John

    2015-01-30

    Here we describe the analysis of the structure of the lipopolysaccharide (LPS) from Caulobacter crescentus strain JS1025, a derivative of C. crescentus CB15 NA1000 with an engineered amber mutation in rsaA, leading to the loss of the protein S-layer and gene CCNA_00471 encoding a putative GDP-L-fucose synthase. LPS was isolated using an aqueous membrane disruption method. Polysaccharide and core oligosaccharide were produced by mild acid hydrolysis and analyzed by nuclear magnetic resonance spectroscopy and chemical methods. Spectra revealed the presence of two polysaccharides, one of them, a rhamnan, could be removed using periodate oxidation. Another polymer, built from 4-amino-4-deoxy-D-rhamnose (perosamine), mannose, and 3-O-methyl-glucose, should be the O-chain of the LPS according to genetic data. The attribution of the rhamnan as a part of LPS or a separate polymer was not possible.

  13. Study on preparation and antigenicity activity of glycosylation products derived from whey protein and auricularia auricula polysaccharide%黑木耳多糖-乳清蛋白复合物的制备及其抗原性的研究

    Institute of Scientific and Technical Information of China (English)

    齐晓彦; 李春; 张微; 刘宁

    2012-01-01

    Protein and polysaccharide covalent complex through Maillard could form protein-polysaccharide conjugations which showed excellent properties.And the conjugates of whey protein and auricularia auricula polysaccharides(AAP)were studied by means of the dry-heating glycosylated reaction.It was shown that after the whey protein and Auricularia auricula polysaccharides(AAP)of different mass ratio reacting for different time,the antigenicity of β-LG and α-LA were estimated by indirect competition ELISA.The results indicated that the glycolsylation of whey protein could reduce the antigenicity of β-LG and α-LA.The optimum reaction condition were WPI and AAP(1:1 weight ratio)for 24 hours could reduce the antigenicity of whey protein effectively,The antigenicity of bovine milk β-LG and α-LA was reduced by conjugation with AAP,about 75.7% and 25% respectively.%蛋白质和多糖在控制条件下通过美拉德反应会发生一定程度的共价复合,能显示更优越的性能。采用黑木耳多糖作为糖基供体,用糖基化的手段与牛乳中乳清蛋白结合形成木耳多糖-乳清蛋白复合物,并在现有的条件下探索不同质量比与不同反应时间对糖基化进程的影响,采用间接竞争ELISA法测定复合物中β-乳球蛋白和α-乳白蛋白抗原性的影响。结果表明,乳清蛋白与黑木耳多糖质量比为1:1,反应时间为24h,是糖基化反应最佳条件并且能有效减低乳清蛋白抗原性,其中β-乳球蛋白抗原性降低率为75.7%,α-乳白蛋白抗原性降低率为25%。

  14. Polysaccharides as Bacterial Antiadhesive Agents and "Smart" Constituents for Improved Drug Delivery Systems Against Helicobacter pylori Infection.

    Science.gov (United States)

    Menchicchi, Bianca; Hensel, Andreas; Goycoolea, Francisco M

    2015-01-01

    The standard eradication treatment of the hostile Helicobacter pylori (H. pylori) stomach infection is facing increasing alarming antibiotic resistance worldwide and calls for alternative strategies to the use of antibiotics. One new perspective in this direction is cytoprotective compounds for targeted prevention of the adhesion of the bacteria to the stomach host cell and to inhibit the bacterial cell-cell communication via quorum sensing by specific inhibitors. Bacterial adhesion of H. pylori to the host cells is mainly mediated by carbohydrate-protein interactions. Therefore, the use of polyvalent carbohydrates, (e.g. plant-derived polysaccharides), as potential antiadhesive compounds, seems to be a promising tool to prevent the initial docking of the bacterium to the stomach cells. Polysaccharides are common constituents of daily food, either as starch or as dietary fiber and often also function as excipients for galenic drug-delivery formulations. In addition, polysaccharides with defined pharmacodynamics action against bacterial outer membrane proteins can have potential as therapeutic tools in the treatment of bacterial infections. Some polysaccharides are known to possess antibacterial properties against gram-positive bacteria, others to inhibit bacterial colonization by blocking specific carbohydrate receptors involved in host-bacteria interaction. This mode of action is advocated as alternative antiadhesion therapy. Ongoing research is also seeking for polysaccharide-based nanoformulations with potential for local drug delivery at the stomach as novel H. pylori therapies. These approaches pose challenges concerned with the stability of the nanomaterials in the harsh conditions of the gastric environment and their capacity to adhere to the stomach mucosa. In a global scenario, geographical diversity and social habits, namely lifestyle and dietary factors, influence the prevalence of the H. pylori-associated diseases and their severity. In this context

  15. Immunomodulatory dietary polysaccharides: a systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Nelson Erika D

    2010-11-01

    Full Text Available Abstract Background A large body of literature suggests that certain polysaccharides affect immune system function. Much of this literature, however, consists of in vitro studies or studies in which polysaccharides were injected. Their immunologic effects following oral administration is less clear. The purpose of this systematic review was to consolidate and evaluate the available data regarding the specific immunologic effects of dietary polysaccharides. Methods Studies were identified by conducting PubMed and Google Scholar electronic searches and through reviews of polysaccharide article bibliographies. Only articles published in English were included in this review. Two researchers reviewed data on study design, control, sample size, results, and nature of outcome measures. Subsequent searches were conducted to gather information about polysaccharide safety, structure and composition, and disposition. Results We found 62 publications reporting statistically significant effects of orally ingested glucans, pectins, heteroglycans, glucomannans, fucoidans, galactomannans, arabinogalactans and mixed polysaccharide products in rodents. Fifteen controlled human studies reported that oral glucans, arabinogalactans, heteroglycans, and fucoidans exerted significant effects. Although some studies investigated anti-inflammatory effects, most studies investigated the ability of oral polysaccharides to stimulate the immune system. These studies, as well as safety and toxicity studies, suggest that these polysaccharide products appear to be largely well-tolerated. Conclusions Taken as a whole, the oral polysaccharide literature is highly heterogenous and is not sufficient to support broad product structure/function generalizations. Numerous dietary polysaccharides, particularly glucans, appear to elicit diverse immunomodulatory effects in numerous animal tissues, including the blood, GI tract and spleen. Glucan extracts from the Trametes versicolor

  16. [Immunomodulatory and antitumor properties of polysaccharide peptide (PSP)].

    Science.gov (United States)

    Piotrowski, Jakub; Jędrzejewski, Tomasz; Kozak, Wiesław

    2015-01-21

    Modern medicine successfully uses multiple immunomodulators of natural origin, that can affect biological reactions and support body's natural defense mechanisms including antitumor activities. Among them is a group of products derived from fungi, including schizophyllan, lentinan, polysaccharide Krestin (PSK), and polysaccharidepeptide (PSP). Present paper is focused on polysaccharidepeptide, which due to the negligible toxicity and numerous benefits for health, is increasingly used in China and Japan as an adjuvant in the treatment of cancer. PSP is a protein-polisaccharide complex with a molecular weight 100 kDa derived from Coriolus versicolor mushroom. The results of numerous studies and clinical trials confirm that it inhibits the growth of cancer cells in in vitro and in vivo settings as well as decreases cancer treatment-related adverse side effects such as fatigue, loss of appetite, nausea, vomiting, and pain. PSP is able to restore weakened immune response observed in patients with cancer during chemotherapy. Its anti-tumor effects seemed to be mediated through immunomodulatory regulation. PSP stimulates cells of the immune system, induces synthesis of cytokines such as interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α), eicosanoids including prostaglandin E2 (PGE2), histamine, reactive oxygen species and nitrogen mediators. There is a growing interest in understanding the mechanisms of PSP action. Because of its unique properties and safety, PSP may become a widely used therapeutic agent in the near future.

  17. Analgesic activity of a polysaccharide in experimental osteoarthritis in rats.

    Science.gov (United States)

    Castro, Rondinelle Ribeiro; Feitosa, Judith Pessoa Andrade; da Cunha, Pablyana Leila Rodrigues; da Rocha, Francisco Airton Castro

    2007-08-01

    Viscosupplementation efficacy has been related to the high molecular weight of hyaluronic acid-like compounds, as well as to gel formulation. We evaluated the effect of a galactomannan polysaccharide derived from Guar gum (GG) in joint pain in an osteoarthritis (OA) model. Wistar rats (six animals/group) were subjected to anterior cruciate ligament transection (ACLT-OA group). The OA group was compared to a false-operated group (sham). Joint pain was recorded daily, using the articular incapacitation test, until 7 days after ACLT. Solutions or gel preparations of GG (100 microg) or Hylan G-F 20 (100 microg), used as a comparator, were given intraarticularly (i.a.) at day 4 after ACLT. Controls received saline i.a. The OA group had significantly increased joint pain as compared to sham (Pgalactomannan derived from GG reduces joint pain in experimental OA. This analgesia is independent of the colloidal state. We propose that the analgesic benefit of viscosupplementation may be due to an intrinsic carbohydrate-mediated mechanism rather than to the rheologic properties of the material.

  18. Novel hydrazones - antioxidant potential and stabilization via polysaccharide particles

    Science.gov (United States)

    Hristova-Avakumova, N.; Nikolova-Mladenova, B.; Yoncheva, K.; Hadjimitova, V.

    2017-01-01

    In this study, we aimed to: i) determine the impact of three new isonicotinoyl hydrazones derivatives in in vitro systems used to investigate free radical processes - radical scavenging approach (ABTS and DPPH) and iron induced peroxidation in lipid containing model systems and ii) evaluate the potential of polysaccharide-based particles to act as protective carriers preserving the antioxidant activity (AOA) of the tested compounds. The tested compounds revealed excellent antioxidant effectiveness in the ABTS system. In the DPPH radical scavenging assay the compounds exhibited very weak or absence of AOA. The data from the iron induced peroxidation methods disclosed better antioxidant properties of the derivatives in the system containing egg yolk homogenate which is more plausible compared to the lecithin containing one. The incorporation of a bromine atom on 5th position in salicylaldehyde moiety is associated with diminishment of the radical scavenging activity in the systems containing stable free radicals but its AOA reduction after encapsulation during the storage was only 9.17%. The obtained data indicate that compounds have proven themselves as promising candidates for further evaluation as antioxidant agents. Their encapsulation in chitosan-alginate particles could be a useful approach for improving the stability of their antioxidant properties.

  19. Immunomodulatory and antitumor properties of polysaccharide peptide (PSP

    Directory of Open Access Journals (Sweden)

    Jakub Piotrowski

    2015-01-01

    Full Text Available Modern medicine successfully uses multiple immunomodulators of natural origin, that can affect biological reactions and support body’s natural defense mechanisms including antitumor activities. Among them is a group of products derived from fungi, including schizophyllan, lentinan, polysaccharide Krestin (PSK, and polysaccharidepeptide (PSP. Present paper is focused on polysaccharidepeptide, which due to the negligible toxicity and numerous benefits for health, is increasingly used in China and Japan as an adjuvant in the treatment of cancer. PSP is a protein-polisaccharide complex with a molecular weight 100 kDa derived from Coriolus versicolor mushroom. The results of numerous studies and clinical trials confirm that it inhibits the growth of cancer cells in in vitro and in vivo settings as well as decreases cancer treatment-related adverse side effects such as fatigue, loss of appetite, nausea, vomiting, and pain. PSP is able to restore weakened immune response observed in patients with cancer during chemotherapy. Its anti-tumor effects seemed to be mediated through immunomodulatory regulation. PSP stimulates cells of the immune system, induces synthesis of cytokines such as interleukin-1β (IL-1β, IL-6 and tumor necrosis factor-α (TNF-α, eicosanoids including prostaglandin E2 (PGE2, histamine, reactive oxygen species and nitrogen mediators. There is a growing interest in understanding the mechanisms of PSP action. Because of its unique properties and safety, PSP may become a widely used therapeutic agent in the near future.

  20. Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson's disease model in C57BL/6J mice

    Science.gov (United States)

    Zhang, Fang; Lu, Jian; Zhang, Ji-guo; Xie, Jun-xia

    2015-01-01

    The present study aimed to determine whether a polysaccharide obtained from Spirulina platensis shows protective effects on dopaminergic neurons. A Parkinson's disease model was established through the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6J mice. Prior to the MPTP injection, some mice were pretreated with intraperitoneal injections of a polysaccharide derived from Spirulina platensis once daily for 10 days. The results showed that the immunoreactive staining and mRNA expression of the dopamine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were significantly increased in mice pretreated with 800 mg/kg of the polysaccharide compared with those in MPTP-treated mice. The activities of superoxide dismutase and glutathione peroxidase in the serum and midbrain were also increased significantly in mice injected with MPTP after pretreatment with the polysaccharide from Spirulina platensis. By contrast, the activity of monoamine oxidase B in serum and midbrain maintained unchanged. These experimental findings indicate that the polysaccharide obtained from Spirulina platensis plays a protective role against the MPTP-induced loss of dopaminergic neurons in C57BL/6J mice, and that the antioxidative properties of this polysaccharide likely underlie its neuroprotective effect. PMID:25883632

  1. Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson′s disease model in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Fang Zhang

    2015-01-01

    Full Text Available The present study aimed to determine whether a polysaccharide obtained from Spirulina platensis shows protective effects on dopaminergic neurons. A Parkinson′s disease model was established through the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP in C57BL/6J mice. Prior to the MPTP injection, some mice were pretreated with intraperitoneal injections of a polysaccharide derived from Spirulina platensis once daily for 10 days. The results showed that the immunoreactive staining and mRNA expression of the dopamine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were significantly increased in mice pretreated with 800 mg/kg of the polysaccharide compared with those in MPTP-treated mice. The activities of superoxide dismutase and glutathione peroxidase in the serum and midbrain were also increased significantly in mice injected with MPTP after pretreatment with the polysaccharide from Spirulina platensis. By contrast, the activity of monoamine oxidase B in serum and midbrain maintained unchanged. These experimental findings indicate that the polysaccharide obtained from Spirulina platensis plays a protective role against the MPTP-induced loss of dopaminergic neurons in C57BL/6J mice, and that the antioxidative properties of this polysaccharide likely underlie its neuroprotective effect.

  2. Crohn's disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin.

    Directory of Open Access Journals (Sweden)

    Kourtney P Nickerson

    Full Text Available Crohn's disease (CD is associated with intestinal dysbiosis evidenced by an altered microbiome forming thick biofilms on the epithelium. Additionally, adherent-invasive E. coli (AIEC strains are frequently isolated from ileal lesions of CD patients indicating a potential role for these strains in disease pathogenesis. The composition and characteristics of the host microbiome are influenced by environmental factors, particularly diet. Polysaccharides added to food as emulsifiers, stabilizers or bulking agents have been linked to bacteria-associated intestinal disorders. The escalating consumption of polysaccharides in Western diets parallels an increased incidence of CD during the latter 20(th century. In this study, the effect of a polysaccharide panel on adhesiveness of the CD-associated AIEC strain LF82 was analyzed to determine if these food additives promote disease-associated bacterial phenotypes. Maltodextrin (MDX, a polysaccharide derived from starch hydrolysis, markedly enhanced LF82 specific biofilm formation. Biofilm formation of multiple other E. coli strains was also promoted by MDX. MDX-induced E. coli biofilm formation was independent of polysaccharide chain length indicating a requirement for MDX metabolism. MDX exposure induced type I pili expression, which was required for MDX-enhanced biofilm formation. MDX also increased bacterial adhesion to human intestinal epithelial cell monolayers in a mechanism dependent on type 1 pili and independent of the cellular receptor CEACAM6, suggesting a novel mechanism of epithelial cell adhesion. Analysis of mucosa-associated bacteria from individuals with and without CD showed increased prevalence of malX, a gene essential for MDX metabolism, uniquely in the ileum of CD patients. These findings demonstrate that the ubiquitous dietary component MDX enhances E. coli adhesion and suggests a mechanism by which Western diets rich in specific polysaccharides may promote dysbiosis of gut microbes

  3. Methods of saccharification of polysaccharides in plants

    Science.gov (United States)

    Howard, John; Fake, Gina

    2014-04-29

    Saccharification of polysaccharides of plants is provided, where release of fermentable sugars from cellulose is obtained by adding plant tissue composition. Production of glucose is obtained without the need to add additional .beta.-glucosidase. Adding plant tissue composition to a process using a cellulose degrading composition to degrade cellulose results in an increase in the production of fermentable sugars compared to a process in which plant tissue composition is not added. Using plant tissue composition in a process using a cellulose degrading enzyme composition to degrade cellulose results in decrease in the amount of cellulose degrading enzyme composition or exogenously applied cellulase required to produce fermentable sugars.

  4. INTERACTION OF IONIC LIQUIDS WITH POLYSACCHARIDES

    Directory of Open Access Journals (Sweden)

    Tim Liebert

    2008-05-01

    Full Text Available The use of ionic liquids (ILs in the field of cellulose chemistry opens up a broad variety of new opportunities. Besides the regeneration of the biopolymer to fibers, films, and beads, this new class of cellulose solvents is particularly useful for the homogeneous chemical modification of the polysaccharide. In this review, the potential of ILs as a reaction medium for the homogeneous cellulose functionalization is discussed. It is shown that numerous conversions proceed very efficiently and the ILs may be recycled. But it is also demonstrated that some side reactions have to be considered.

  5. Tribological properties of neutral polysaccharide solutions under simulated oral conditions

    NARCIS (Netherlands)

    Zinoviadou, K.G.; Janssen, A.M.; Jongh, H.H.J.de

    2008-01-01

    Predictability of the perception of foods thickened by polysaccharides is only poor. Therefore, the effect of saliva on the lubrication properties of 2 types of neutral polysaccharides, cross-linked starch and locust bean gum, was studied. Despite the similar bulk rheological behavior of the 2

  6. A novel capsular polysaccharide from Rhizobium rubi strain DSM 30149.

    Science.gov (United States)

    De Castro, Cristina; Fregolino, Eleonora; Gargiulo, Valentina; Lanzetta, Rosa; Parrilli, Michelangelo

    2008-07-07

    Rhizobium rubi, strain DSM 30149, is a Gram negative phytopathogenic bacterium which produces a linear polysaccharide with the following repeating unit: This new structure was determined by spectroscopical and chemical methods. It presents similar lipophilic features reported for another strain of R. rubi. These contrast with features already known for capsular polysaccharide species from symbiontic members of the Rhizobiaceae family, namely highly anionic polymers.

  7. Separation of Pneumcoccal Capsular Polysaccharide BY Gel Extraction

    Institute of Scientific and Technical Information of China (English)

    Xu Xiaoping; Huang Xinghua; Li Zhongqin; Chen Jiebo

    2004-01-01

    Separation of pneumcoccal capsular polysaccharide by gel was investigated in this paper. The gels used here were poly(acrylamide-co-sodium methacrylate)gels and prepared by free radical polymerization in aqueous solution. The experimental results indicated that gel extraction is a potential method to separate pneumcoccal capsular polysaccharide from its dilute solution.

  8. Structural Characterization and Enzymatic Modification of Soybean Polysaccharides

    DEFF Research Database (Denmark)

    Pierce, Brian; Wichmann, Jesper

    are currently limited by the material’s insol-ubility. A central hypothesis of this work was that by obtaining a more complete understanding of the structure of this material, chemical and enzymatic ap-proaches could be developed to modify the polysaccharides, creating soluble polysaccharide fractions...

  9. Enzymatic synthesis of oligo- and polysaccharide fatty acid esters

    NARCIS (Netherlands)

    Broek, van den L.A.M.; Boeriu, C.G.

    2013-01-01

    Amphiphilic oligo- and polysaccharides (e.g. polysaccharide alkyl or alkyl-aryl esters) form a new class of polymers with exceptional properties. They function as polymeric surfactants, whilst maintaining most of the properties of the starting polymeric material such as emulsifying, gelling, and

  10. Oligo- and polysaccharide synthesis by Rhizobium leguminosarum and Rhizobium meliloti.

    NARCIS (Netherlands)

    Breedveld, M.W.

    1992-01-01

    Rhizobium and Agrobacterium species are capable of synthesizing a variety of extracellular and cellular oligo- and polysaccharides. Changes in environmental conditions may all affect the composition, physical properties, and relative amounts of oligo- and polysaccharides. Interest in the field of Rh

  11. In vitro antioxidant activity of polysaccharide from Gardenia jasminoides ellis

    Science.gov (United States)

    Fan, Y.; Ge, Z.; Luo, A.

    2011-01-01

    A water-soluble polysaccharide, GP, was isolated from Gardenia jasminoides Ellis through hot water extraction followed by ethanol precipitation. The in vitro free radicals scavenging tests exhibited that GP has significant scavenging abilities especially for ABTS, DPPH, and hydroxyl radicals, which suggests that the polysaccharide GP is a novel antioxidant. ?? 2011 Academic Journals.

  12. Tribological Properties of Neutral Polysaccharide Solutions under Simulated Oral Conditions

    NARCIS (Netherlands)

    Zinoviadou, K.; Janssen, A.M.; Jongh, de H.H.J.

    2008-01-01

    Predictability of the perception of foods thickened by polysaccharides is only poor. Therefore, the effect of saliva on the lubrication properties of 2 types of neutral polysaccharides, cross-linked starch and locust bean gum, was studied. Despite the similar bulk rheological behavior of the 2 polys

  13. Characterisation of cell wall polysaccharides in bilberries and black currants

    NARCIS (Netherlands)

    Hilz, H.

    2007-01-01

    During berry juice production, polysaccharides are released from the cell walls and cause thickening and high viscosity when the berries are mashed. Consequences are a low juice yield and a poor colour. This can be prevented by the use of enzymes that degrade these polysaccharides. To use these enzy

  14. Life cycle assessment of polysaccharide materials: a review

    NARCIS (Netherlands)

    Shen, L.; Patel, M.K.

    2008-01-01

    Apart from conventional uses of polysaccharide materials, such as food, clothing, paper packaging and construction, new polysaccharide products and materials have been developed. This paper reviews life cycle assessment (LCA) studies in order to gain insight of the environmental profiles of polysacc

  15. Structural modification of polysaccharides: A biochemical-genetic approach

    Science.gov (United States)

    Kern, Roger G.; Petersen, Gene R.

    1991-01-01

    Polysaccharides have a wide range of industrial and biomedical applications. An industry trend is underway towards the increased use of bacteria to produce polysaccharides. Long term goals of this work are the adaptation and enhancement of saccharide properties for electronic and optic applications. In this report we illustrate the application of enzyme-bearing bacteriophage on strains of the enteric bacterium Klebsiella pneumoniae, which produces a polysaccharide with the relatively rare rheological property of drag-reduction. This has resulted in the production of new polysaccharides with enhanced rheological properties. Our laboratory is developing techniques for processing and structurally modifying bacterial polysaccharides and oligosaccharides which comprise their basic polymeric repeat units. Our research has focused on bacteriophage which produce specific polysaccharide degrading enzymes. This has lead to the development of enzymes generated by bacteriophage as tools for polysaccharide modification and purification. These enzymes were used to efficiently convert the native material to uniform-sized high molecular weight polymers, or alternatively into high-purity oligosaccharides. Enzyme-bearing bacteriophage also serve as genetic selection tools for bacteria that produce new families of polysaccharides with modified structures.

  16. Isolation and physical characterization of an exocellular polysaccharide

    NARCIS (Netherlands)

    Tuinier, R.; Zoon, P.; Olieman, C.; Cohen Stuart, M.A.; Fleer, G.J.; Kruif, de C.G.

    1999-01-01

    The physical properties of a polysaccharide produced by the lactic acid bacterium Lactococcus lactis subsp. cremoris strain NIZO B40 were investigated. Separation of the polysaccharide from most low molar mass compounds in the culture broth was performed by filtration processes. Residual proteins an

  17. Structural characterization and bioactivities of sulfated polysaccharide from Monostroma oxyspermum.

    Science.gov (United States)

    Seedevi, Palaniappan; Moovendhan, Meivelu; Sudharsan, Sadhasivam; Vasanthkumar, Shanmugam; Srinivasan, Alagiri; Vairamani, Shanmugam; Shanmugam, Annaian

    2015-01-01

    Sulfated polysaccharide was isolated from Monostroma oxyspermum through hot water extraction, anion-exchange and gel permeation column chromatography. The sulfated polysaccharide contained 92% of carbohydrate, 0% of protein, 7.8% of uronic acid, 22% of ash and 33% of moisture respectively. The elemental composition was analyzed using CHNS/O analyzer. The molecular weight of sulfated polysaccharide determined through PAGE was found to be as 55 kDa. Monosaccharides analysis revealed that sulfated polysaccharide was composed of rhamnose, fructose, galactose, xylose, and glucose. The structural features of sulfated polysaccharide were analyzed by NMR spectroscopy. Further the sulfated polysaccharide showed total antioxidant and DPPH free radical scavenging activity were as 66.29% at 250 μg/ml and 66.83% at 160 μg/ml respectively. The sulfated polysaccharide also showed ABTS scavenging ability and reducing power were as 83.88% at 125 μg/ml and 15.81% at 400 μg/ml respectively. The anticoagulant activity was determined for human plasma with respect to Activated Partial Thromboplastin Time (APTT) and Prothrombin Time (PT) was 20.09 IU and 1.79 IU at 25 μg/ml respectively. These results indicated that the sulfated polysaccharide from M. oxyspermum had potent antioxidant and anticoagulant activities.

  18. Condensation patterns of prophase/prometaphase chromosome are correlated with H4K5 histone acetylation and genomic DNA contents in plants.

    Science.gov (United States)

    Feitoza, Lidiane; Costa, Lucas; Guerra, Marcelo

    2017-01-01

    Mitotic prophase chromosome condensation plays an essential role in nuclear division being therefore regulated by highly conserved mechanisms. However, degrees of chromatin condensation in prophase-prometaphase cells may vary along the chromosomes resulting in specific condensation patterns. We examined different condensation patterns (CPs) of prophase and prometaphase chromosomes and investigated their relationship with genome size and distribution of histone H4 acetylated at lysine 5 (H4K5ac) in 17 plant species. Our results showed that most species with small genomes (2C < 5 pg) (Arachis pusilla, Bixa orellana, Costus spiralis, Eleutherine bulbosa, Indigofera campestris, Phaseolus lunatus, P. vulgaris, Poncirus trifoliata, and Solanum lycopersicum) displayed prophase chromosomes with late condensing terminal regions that were highly enriched in H4K5ac, and early condensing regions with apparently non-acetylated proximal chromatin. The species with large genomes (Allium cepa, Callisia repens, Araucaria angustifolia and Nothoscordum pulchellum) displayed uniformly condensed and acetylated prophase/prometaphase chromosomes. Three species with small genomes (Eleocharis geniculata, Rhynchospora pubera, and R. tenuis) displayed CP and H4K5ac labeling patterns similar to species with large genomes, whereas a forth species (Emilia sonchifolia) exhibited a gradual chromosome labeling, being more acetylated in the terminal regions and less acetylated in the proximal ones. The nucleolus organizer chromatin was the only chromosomal region that in prometaphase or metaphase could be hyperacetylated, hypoacetylated or non-acetylated, depending on the species. Our data indicate that the CP of a plant chromosome complement is influenced but not exclusively determined by nuclear and chromosomal DNA contents, whereas the CP of individual chromosomes is clearly correlated with H4K5ac distribution.

  19. Structural Features and Healthy Properties of Polysaccharides Occurring in Mushrooms

    Directory of Open Access Journals (Sweden)

    Eva Guillamón

    2012-12-01

    Full Text Available Polysaccharides from mushrooms have attracted a great deal of attention due to the many healthy benefits they have demonstrated, such as immunomodulation, anticancer activity, prevention and treatment of cardiovascular diseases, antiviral and antimicrobial effects, among others. Isolation and purification of polysaccharides commonly involve several steps, and different techniques are actually available in order to increase extraction yield and purity. Studies have demonstrated that the molecular structure and arrangement significantly influence the biological activity; therefore, there is a wide range of analytical techniques for the elucidation of chemical structures. Different polysaccharides have been isolated from mushrooms, most of them consisting of β-linked glucans, such as lentinan from Lentinus edodes, pleuran from Pleurotus species, schizophyllan from Schizophyllum commune, calocyban from Calocybe indica, or ganoderan and ganopoly from Ganoderma lucidum. This article reviews the main methods of polysaccharide isolation and structural characterization, as well as some of the most important polysaccharides isolated from mushrooms and the healthy benefits they provide.

  20. Characterization of polysaccharides from Ganoderma spp. using saccharide mapping.

    Science.gov (United States)

    Wu, Ding-Tao; Xie, Jing; Hu, De-Jun; Zhao, Jing; Li, Shao-Ping

    2013-09-12

    Polysaccharides from Ganoderma spp. and their adulterants were firstly investigated and compared using saccharide mapping, enzymatic (endo-1,3-β-D-glucanase and pectinase) digestion followed by polysaccharide analysis using carbohydrate gel electrophoresis analysis. The results showed that both 1,3-β-D-glucosidic and 1,4-α-D-galactosiduronic linkages were existed in Lingzhi (Ganoderma lucidum and Ganoderma sinense), and the similarity of polysaccharides from G. lucidum and G. sinense was high, which may contribute to rational use of Lingzhi. Different species of Ganoderma and their adulterants can be differentiated based on the saccharide mapping, which is helpful to well understand the structural characters of polysaccharides from different species of Ganoderma and to improve the quality control of polysaccharides in Lingzhi.

  1. A simple technique for removing plant polysaccharide contaminants from DNA.

    Science.gov (United States)

    Do, N; Adams, R P

    1991-02-01

    A survey of the inhibitory effects of various plant polysaccharides on DNA restrictions (HindIII and EcoRI) revealed that neutral polysaccharides (arabino-galactan, dextran, gum guar, gum locust bean, beta-glucan, inulin, laminaran, mannan and starch) were not very inhibitory. In contrast, acidic polysaccharides (carrageenan, dextran sulfate, gum ghatti, gum karaya, pectin and xylan) were very inhibitory, even at low concentrations. The Elutip-d (RPC-5 type resin) was evaluated for removal of the inhibitory polysaccharides. Used alone or in combination with a phenol/chloroform wash, it proved effective in removing the polysaccharide so that HindIII digestion was possible, except in the cases of carrageenan and dextran sulfate. In addition, the genomic DNA extracts from live oak (Quercus virginiana) and magnolia (Magnolia grandiflora) were sufficiently purified so that the DNAs could be restricted with both EcoRI and HindIII.

  2. Modified polysaccharides as alternative binders for foundry industry

    Directory of Open Access Journals (Sweden)

    K. Kaczmarska

    2016-10-01

    Full Text Available Polysaccharides constitute a wide group of important polymers with many commercial applications, for example food packaging, fibres, coatings, adhesives etc. This review is devoted to the presentation of polysaccharide application in foundry industry. In this paper the selected properties of foundry moulding sand and core sand containing modified polysaccharides as binders are presented according to foreign literature data. Also, author’s own research about effect of using moulding sand binder consisting of modified polysaccharide (modified starch or its composition with non-toxic synthetic polymers are discussed. Based on technologies taken under consideration in this paper, it could be concluded that polysaccharides are suitable as an alternative for use as binder in foundry moulding applications.

  3. Sulfation of tea polysaccharides: synthesis, characterization and hypoglycemic activity.

    Science.gov (United States)

    Wang, Yuanfeng; Peng, Yonghua; Wei, Xinlin; Yang, Zhiwei; Xiao, Jianbo; Jin, Zhengyu

    2010-03-01

    Neutral polysaccharides (NTPS) and acid polysaccharides (ATPS) from tea leaves were obtained on a D315 macroporous anion-exchange resin column chromatography. NTPS and ATPS were sulfated by the pyridine-sulfonic acid method to obtain NTPS-S and ATPS-S. It was found that NTPS was easier sulfated than ATPS. There are strong characteristic absorption peaks located in 1258 cm(-1), 1146 cm(-1), 832 cm(-1) and 617 cm(-1) in the FTIR spectra of sulfated polysaccharides. Sulfation of polysaccharides also affected the endothermic and exothermic peaks via the DSC scan analysis. The appearance of exothermic peaks in both NTPS-S and ATPS-S indicated that the redox reaction might happen. The comparative study of hypoglycemic effect on mice showed that the sulfation of polysaccharides significantly improved hypoglycemic activity.

  4. Research of polysaccharide complexes from asteraceae family plants

    Directory of Open Access Journals (Sweden)

    Світлана Михайлівна Марчишин

    2015-10-01

    Full Text Available Aim of research. Depth study of polysaccharides in some little-known plant species of Asteraceae family is pressing question, considering that polysaccharides are important biologically active compounds widely used in pharmaceutical and medical practice as remedies and preventive medications. The aim of research was to determinate both quantitative content and monomeric composition of polysaccharide complexes from Asteraceae family plant species – Tagetes genus, Arnica genus, and Bellis genus.Materials and methods. Determination of polysaccharides was carried out by the precipitation reaction, using 96 % ethyl alcohol P and Fehling's solution after acid hydrolysis; quantitative content of this group of compounds was determined by gravimetric analysis. On purpose to identify the monomeric composition hydrolysis under sulfuric acid conditions was conducted. Qualitative monomeric composition of polysaccharides after hydrolysis was carried out by paper chromatography method in n-Butanol – Pyridine – Distilled water P (6:4:3 system along with saccharides reference samples.Results. Polysaccharide complexes from Tagetes erecta, Tagetes patula, Tagetes tenuifolia, Arnica montana, Arnica foliosa, wild and cultivated Bellis perennis herbs were studied. Water-soluble polysaccharides and pectin fractions were isolated from studied objects; their quantitative content and monomeric composition were determined.Conclusion. The highest amount of water-soluble polysaccharides was found in cultivated Bellis perennis herb (10,13 %, the highest amount of pectin compounds – in Tagetes tenuifolia herb (13,62 %; the lowest amount of water-soluble polysaccharides and pectin compounds was found in Arnica montana herb (4,61 % and Tagetes patula herb (3,62 %, respectively. It was found that polysaccharide complexes from all studied species include glucose and arabinose

  5. [Effect of polysaccharides from Radix Glycyrrhizae on migration and polyamines contents of IEC-6 cell].

    Science.gov (United States)

    Wen, Peng; Sui, Jing-Jing; Li, Ru-Liu; Zhao, Shi-Qing; Lu, Wen-Biao; Chen, Wei-Wen

    2012-07-01

    To study the effect of polysaccharides from Radix Glycyrrhizae on migration and polyamines (putrescine, spermidine and spermine) contents of IEC-6 cell. Cell migration model was induced by scratch method in each well,and the polyamines in IEC-6 cell was determined by pre-column derivation high performance liquid chromatography. The polysaccharides inhibited effect on migration and polyamines contents of IEC-6 cells, and on IEC-6 cell migration by DFMO (a polyamines synthesis inhibitor) and the polyamines contents in the cells were observed. The polysaccharides (50 mg/L or 100 mg/L) was able to promote the cell migration, reverse the cell migration inhibition by DFMO, enhance the IEC-6 cell polyamines (putrescine, spermidine and spermine) contents in the process of cell migration and reverse the reduction of polyamines (putrescine, spermidine and spermine) induced by DFMO. The effect of Radix Glycyrrhizae on the gastrointestinal mucosal damage repairing may be related to increasing polyamine content in cells and promoting cell migration.

  6. Ultrasonic-enchanced compound-enzymes-assisted extraction of polysaccharides from Cornus officinalis

    Directory of Open Access Journals (Sweden)

    You Qinghong

    2015-01-01

    Full Text Available Process of ultrasonic-enchanced compound-enzymes-assisted extraction of polysaccharides from the fruit of Cornus officinalis was optimized by response surface methodology (RSM. The influence of three different factors on the yield of Cornus officinalis polysaccharides (COP was studied. Results showed that the optimal conditions were extraction temperature 49.6°C, ultrasound time 40.41 min, and ultrasound power 308.07 W. The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis and were analyzed by analysis of variance (ANOVA. The 3-D response surface plot and the contour plot derived from the mathematical models were applied to determine the optimal conditions. Under modificated conditions, the experimental yield of polysaccharides was 11.02 ± 0.41%, which was well in agreement with the value predicted by the model. A good 1,1-diphenyl-2-picryldydrazyl (DPPH radical scavenging activity of COP extracted by ultrasonic-enchanced compound-enzymes-assisted extraction was observed.

  7. Synthesis and Characterization of Periodate-Oxidized Polysaccharides: Dialdehyde Xylan (DAX).

    Science.gov (United States)

    Amer, Hassan; Nypelö, Tiina; Sulaeva, Irina; Bacher, Markus; Henniges, Ute; Potthast, Antje; Rosenau, Thomas

    2016-09-12

    The cleavage of the C2-C3 bond in the building units of 1 → 4-linked polysaccharides by periodate formally results in two aldehyde units, which are present in several masked forms. The structural elucidation of such polysaccharide dialdehydes remains a big challenge. Since polysaccharide derivatives are increasingly applied in materials technology, unveiling the exact structure is of utmost importance. To address this issue for xylan, dialdehyde xylan (DAX, oxidation degree of 91.5%) has been synthesized as water-soluble polymer. The ATR-FTIR spectrum of DAX showed free aldehyde to be absent and exhibited a characteristic absorption at 858 cm(-1) related to hemiacetal groups. By a combination of 1D and 2D NMR techniques, it was confirmed that oxidized xylan is present as poly(2,6-dihydroxy-3-methoxy-5-methyl-3,5-diyl-1,4-dioxane). Based on GPC analysis, the DAX polymer shows a slightly lower molar mass (6.6 kDa) compared to the starting material (7.7 kDa) right after oxidation, and degraded further after one month of storage in 0.1 M NaCl solution (4.3 kDa). The oxidized xylan demonstrated lower thermal stability upon TGA analysis and a greater amount of residual char (20.6%) compared to the unmodified xylan (13.7%).

  8. Structural characterization and immunomodulatory effect of a polysaccharide HCP-2 from Houttuynia cordata.

    Science.gov (United States)

    Cheng, Bao-Hui; Chan, Judy Yuet-Wa; Chan, Ben Chung-Lap; Lin, Huang-Quan; Han, Xiao-Qiang; Zhou, Xuelin; Wan, David Chi-Cheong; Wang, Yi-Fen; Leung, Ping-Chung; Fung, Kwok-Pui; Lau, Clara Bik-San

    2014-03-15

    Immunomodulation of natural polysaccharides has been the hot topic of research in recent years. In order to explore the immunomodulatory effect of Houttuynia cordata Thunb., the water extract was studied and a polysaccharide HCP-2 with molecular weight of 60,000 Da was isolated by chromatography using DEAE Sepharose CL-6B and Sephacryl S-500 [corrected] HR columns. The structure characterization of HCP-2 was performed by Fourier transform infrared spectroscopy (FTIR), acidic hydrolysis, PMP derivation, HPLC analysis and nuclear magnetic resonance spectra (NMR). HCP-2 was elucidated as a pectic polysaccharide with a linear chain of 1,4-linked α-D-galacturonic acid residues in which part of the 6-carboxyl groups were methyl esterified and part of 2-hydroxyl groups were acetylated. The bioactivity assays showed that HCP-2 could increase the secretions of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), macrophage inhibitory protein-1α (MIP-1α), macrophage inhibitory protein-1β (MIP-1β), and RANTES (regulated on activation, normal T cell expressed and secreted) in human peripheral blood mononuclear cells (PBMCs), which play critical roles in the innate immune system and shape the adaptive immunity. Our results implied that HCP-2 could be an immune enhancer.

  9. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  10. Functional polysaccharides as edible coatings for cheese.

    Science.gov (United States)

    Cerqueira, Miguel A; Lima, Alvaro M; Souza, Bartolomeu W S; Teixeira, José A; Moreira, Renato A; Vicente, António A

    2009-02-25

    The objective of the present study was to apply the polysaccharides from different nontraditional sources for cheese coatings. Chitosan, galactomannan from Gleditsia triacanthos, and agar from Glacilaria birdiae were tested, with different formulations and with the addition of plasticizer and corn oil. The surface properties of the cheese and the wetting capacity of the coatings on the cheese were determined. The three best solutions for each polysaccharide were chosen, further films were cast, and permeability to water vapor, oxygen, and carbon dioxide was determined, along with opacity. The solutions of G. triacanthos (formulation: 1.5% of galactomannan, 2.0% of glycerol, and 0.5% of oil) presented the best properties to coat the cheese: -38.76 mN x m(-1) for wettability; 3.24 x 10(-11) (g x (m x s x Pa)(-1)) for water vapor permeability; 0.94 x 10(-15) and 15.35 x 10(-15) (g x m(Pa x s x m(2))(-1)) for oxygen and carbon dioxide permeabilities, respectively; and opacity values of 5.27%. The O(2) consumption and CO(2) production rates of the cheese with and without coating were evaluated, showing a decrease of the respiration rates when the coating was applied. The uncoated cheese had an extensive mold growth at the surface when compared with the coated cheese. The results show that these coatings can be applied as an alternative to synthetic coatings.

  11. EXTRACELLULAR POLYSACCHARIDES OF POTATO RING ROT PATHOGEN

    Directory of Open Access Journals (Sweden)

    Shafikova Т.N.

    2006-03-01

    Full Text Available Many bacteria, including phytopathogenic ones produce extracellular polysaccharides or exopolysaccharides which are universal molecules. Causal agent of potato ring rot, Clavibacter michiganensis subspecies sepedonicus, secretes exopolysaccharides which role in pathogenesis is poorly investigated. The aim of our research is to ascertain the composition and structure of Clavibacter michiganensis subspecies sepedonicus exopolysaccharides. Exopolysaccharides of Clavibacter michiganensis subspecies sepedonicus are determined to consist of 4-6 anionic and neutral components which have molecular weights from 700 kDa. Glucose is a major monomer of polysaccharides and arabinose, rhamnose and mannose are minor monomers. Glucose is present in α-Dglucopyranose and β-D-glucopyranose configurations. Calcium is determined to be a component of exopolysaccharides. Components of exopolysaccharides of potato ring rot pathogen are probably capableto associate via calcium ions and other ionic interactions that may result in a change of their physiological activity. Further studies of Clavibacter michiganensis subspecies sepedonicus exopolysaccharides composition and structure can serve a base for the synthesis of their chemical analogues with elicitor action.

  12. Polysaccharide based edible coating on sapota fruit

    Science.gov (United States)

    Menezes, Joslin; Athmaselvi, K. A.

    2016-10-01

    Sapota fruits are highly perishable and have short shelf life at the ambient conditions. The edible coatings have been used on different agricultural products in order to extend their post harvest life. In the present study, the polysaccharide based edible coating made up of sodium alginate and pectin (2%) was studied on the shelf life of sapota fruits. The coating of the fruits is done by dipping method with two dipping time (2 and 4 min). The both control and coated sapota fruits were stored at refrigerated temperature (4±1°C). The physico-chemical analysis including acidity, total soluble solids, ascorbic acid, pH, weight loss, colour and firmness were measured on 1, 8, 15, 23 and 30th day of storage. There was significant difference (p≤0.05) in these physico-chemical parameters between control and coated sapota fruits with 2 and 4 min dipping time. The sensory analysis of control and coated sapota fruits showed that, the polysaccharide coating with 2 minutes dipping time was effective in maintaining the organoleptic properties of the fruits.

  13. Microanalysis of Plant Cell Wall Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    Nicolai Obel; Veronika Erben; Tatjana Schwarz; Stefan Kühne; Andrea Fodor; Markus Pauly

    2009-01-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first iso-lating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apo-plastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  14. Primary structure and configuration of tea polysaccharide

    Institute of Scientific and Technical Information of China (English)

    ZHOU Peng; XIE Mingyong; NIE Shaoping; WANG Xiaoru

    2004-01-01

    The monosaccharide composition of a tea polysaccharide(TGC)was determined by GC-MS method.Furthermore,the primary structure of tea polysaccharide and its configuration in the aqueous solution were investigated utilizing a combination of classical chemical methods and modern instrumental techniques including GC-MS,Proton NMR,UV and CD.The results indicate that TGC consists of 6 monosaccharides: Rha,Ara,Xyl,Glu,Man and Gal.The configuration of TGC in water solution is proposed to be an ordered helix.The possible primary structure of TGC was outlined as below: the basic structure of the main chain consists of Rha,Glu and Gal units.All three monosaccharides can potentially be connected to branch chains consisting of mainly Ara,and the linkages could be in β1 →2,β1 →3,β2→3 forms.When branch chain is absent in the basic structure of the main chain the linkage consists of only β1→3; Xyl exists at the terminal end of either the main chain or the branch chain with β1 → linkage.

  15. Zero birefringence films of pullulan ester derivatives

    Science.gov (United States)

    Danjo, Takahiro; Enomoto, Yukiko; Shimada, Hikaru; Nobukawa, Shogo; Yamaguchi, Masayuki; Iwata, Tadahisa

    2017-04-01

    High-performance films with almost zero-birefringence and zero-wavelength dispersion were succeeded to prepare from pullulan esters derivatives (PLEs) without any additives. Optical transmittance analysis, birefringence measurement of PLE cast film and hot stretched films, and infrared dichroism analysis were conducted to characterize optical properties of PLE films comparing with cellulose triacetate which is commercially used as low-birefringence in optical devices. The aims of this study, characterization of optical properties of pullulan esters, can develop a deep understanding of the fundamental knowing and applicability of polysaccharides. Accordingly, authors believe this paper will open the gate for researches in the application of polysaccharides.

  16. Analysis of Lignin-Polysaccharide Complexes Formed during Grass Lignin Degradation by Cultures of Pleurotus Species.

    Science.gov (United States)

    Gutierrez, A; Bocchini, P; Galletti, G C; Martinez, A T

    1996-06-01

    A brown material, precipitable with ethanol, was formed during wheat straw and lignin degradation by liquid cultures of different species of Pleurotus. Fourier transform infrared spectroscopy and cross-polarization and magic-angle-spinning (sup13)C nuclear magnetic resonance spectroscopy showed that most of the precipitable material was formed from exopolysaccharide secreted by the fungus but it also contained an aromatic fraction. The results of acid hydrolysis, methylation analysis, and Smith degradation indicated that the major exopolysaccharide produced by these fungi is a (1(symbl)3)-(beta)-glucan branched at C-6 every two or three residues along the main chain. The presence of lignin or straw in the culture medium had little effect on the composition and structure of the extracellular polysaccharide. Cross-polarization and magic-angle-spinning (sup13)C nuclear magnetic resonance spectroscopy provided an estimation of the aromatic content of the lignin-polysaccharide complexes, assigning 20% of the total (sup13)C signal in the material recovered from cultures of Pleurotus eryngii in lignin medium to aromatic carbon. Analytical pyrolysis indicated that the aromatic fractions of the lignin-polysaccharide complexes were derived from lignin, since products characteristic of pyrolytic breakdown of H (p-hydroxyphenylpropane), G (guaiacylpropane), and S (syringylpropane) lignin units were identified. These complexes cannot be fractionated by treatment with polyvinylpyrrolidone or extraction with lignin solvents, suggesting that the two polymers were chemically linked. Moreover, differences in composition with respect to the original lignin indicated that this macromolecule was modified by the fungi during the process of formation of the lignin-polysaccharide complexes.

  17. cis-Encoded Small RNAs, a Conserved Mechanism for Repression of Polysaccharide Utilization in Bacteroides.

    Science.gov (United States)

    Cao, Yanlu; Förstner, Konrad U; Vogel, Jörg; Smith, C Jeffrey

    2016-09-15

    Bacteroides is a major component of the human gut microbiota which has a broad impact on the development and physiology of its host and a potential role in a wide range of disease syndromes. The predominance of this genus is due in large part to expansion of paralogous gene clusters, termed polysaccharide utilization loci (PULs), dedicated to the uptake and catabolism of host-derived and dietary polysaccharides. The nutritive value and availability of polysaccharides in the gut vary greatly; thus, their utilization is hierarchical and strictly controlled. A typical PUL includes regulatory genes that induce PUL expression in response to the presence of specific glycan substrates. However, the existence of additional regulatory mechanisms has been predicted to explain phenomena such as hierarchical control and catabolite repression. In this report, a previously unknown layer of regulatory control was discovered in Bacteroides fragilis Exploratory transcriptome sequencing (RNA-seq) analysis revealed the presence of cis-encoded antisense small RNAs (sRNAs) associated with 15 (30%) of the B. fragilis PULs. A model system using the Don (degradation of N-glycans) PUL showed that the donS sRNA negatively regulated Don expression at the transcriptional level, resulting in a decrease in N-glycan utilization. Additional studies performed with other Bacteroides species indicated that this regulatory mechanism is highly conserved and, interestingly, that the regulated PULs appear to be closely linked to the utilization of host-derived glycans rather than dietary plant polysaccharides. The findings described here demonstrate a global control mechanism underlying known PUL regulatory circuits and provide insight into regulation of Bacteroides physiology. The human gut is colonized by a dense microbiota which is essential to the health and normal development of the host. A key to gut homeostasis is the preservation of a stable, diverse microbiota. Bacteroides is a dominant genus

  18. Antibiofilm Activity of Actinobacillus pleuropneumoniae Serotype 5 Capsular Polysaccharide

    Science.gov (United States)

    Karwacki, Michael T.; Kadouri, Daniel E.; Bendaoud, Meriem; Izano, Era A.; Sampathkumar, Vandana; Inzana, Thomas J.; Kaplan, Jeffrey B.

    2013-01-01

    Cell-free extracts isolated from colony biofilms of Actinobacillus pleuropneumoniae serotype 5 were found to inhibit biofilm formation by Staphylococcus aureus, S. epidermidis and Aggregatibacter actinomycetemcomitans, but not by A. pleuropneumoniae serotype 5 itself, in a 96-well microtiter plate assay. Physical and chemical analyses indicated that the antibiofilm activity in the extract was due to high-molecular-weight polysaccharide. Extracts isolated from a mutant strain deficient in the production of serotype 5 capsular polysaccharide did not exhibit antibiofilm activity. A plasmid harboring the serotype 5 capsule genes restored the antibiofilm activity in the mutant extract. Purified serotype 5 capsular polysaccharide also exhibited antibiofilm activity against S. aureus. A. pleuropneumoniae wild-type extracts did not inhibit S. aureus growth, but did inhibit S. aureus intercellular adhesion and binding of S. aureus cells to stainless steel surfaces. Furthermore, polystyrene surfaces coated with A. pleuropneumoniae wild-type extracts, but not with capsule-mutant extracts, resisted S. aureus biofilm formation. Our findings suggest that the A. pleuropneumoniae serotype 5 capsule inhibits cell-to-cell and cell-to-surface interactions of other bacteria. A. pleuropneumoniae serotype 5 capsular polysaccharide is one of a growing number of bacterial polysaccharides that exhibit broad-spectrum, nonbiocidal antibiofilm activity. Future studies on these antibiofilm polysaccharides may uncover novel functions for bacterial polysaccharides in nature, and may lead to the development of new classes of antibiofilm agents for industrial and clinical applications. PMID:23691104

  19. Antibiofilm activity of Actinobacillus pleuropneumoniae serotype 5 capsular polysaccharide.

    Directory of Open Access Journals (Sweden)

    Michael T Karwacki

    Full Text Available Cell-free extracts isolated from colony biofilms of Actinobacillus pleuropneumoniae serotype 5 were found to inhibit biofilm formation by Staphylococcus aureus, S. epidermidis and Aggregatibacter actinomycetemcomitans, but not by A. pleuropneumoniae serotype 5 itself, in a 96-well microtiter plate assay. Physical and chemical analyses indicated that the antibiofilm activity in the extract was due to high-molecular-weight polysaccharide. Extracts isolated from a mutant strain deficient in the production of serotype 5 capsular polysaccharide did not exhibit antibiofilm activity. A plasmid harboring the serotype 5 capsule genes restored the antibiofilm activity in the mutant extract. Purified serotype 5 capsular polysaccharide also exhibited antibiofilm activity against S. aureus. A. pleuropneumoniae wild-type extracts did not inhibit S. aureus growth, but did inhibit S. aureus intercellular adhesion and binding of S. aureus cells to stainless steel surfaces. Furthermore, polystyrene surfaces coated with A. pleuropneumoniae wild-type extracts, but not with capsule-mutant extracts, resisted S. aureus biofilm formation. Our findings suggest that the A. pleuropneumoniae serotype 5 capsule inhibits cell-to-cell and cell-to-surface interactions of other bacteria. A. pleuropneumoniae serotype 5 capsular polysaccharide is one of a growing number of bacterial polysaccharides that exhibit broad-spectrum, nonbiocidal antibiofilm activity. Future studies on these antibiofilm polysaccharides may uncover novel functions for bacterial polysaccharides in nature, and may lead to the development of new classes of antibiofilm agents for industrial and clinical applications.

  20. The immunostimulating role of lichen polysaccharides: a review.

    Science.gov (United States)

    Shrestha, Gajendra; St Clair, Larry L; O'Neill, Kim L

    2015-03-01

    The immune system has capacity to suppress the development or progression of various malignancies including cancer. Research on the immunomodulating properties of polysaccharides obtained from plants, microorganisms, marine organisms, and fungi is growing rapidly. Among the various potential sources, lichens, symbiotic systems involving a fungus and an alga and/or a cyanobacterium, show promise as a potential source of immunomodulating compounds. It is well known that lichens produce an abundance of structurally diverse polysaccharides. However, only a limited number of studies have explored the immunostimulating properties of lichen polysaccharides. Published studies have shown that some lichen polysaccharides enhance production of nitrous oxide (NO) by macrophages and also alter the production levels of various proinflammatory and antiinflammatory cytokines (IL-10, IL-12, IL-1β, TNF-α, and IFN-α/β) by macrophages and dendritic cells. Although there are only a limited number of studies examining the role of lichen polysaccharides, all results suggest that lichen polysaccharides can induce immunomodulatory responses in macrophages and dendritic cells. Thus, a detailed evaluation of immunomodulatory capacity of lichen polysaccharides could provide a unique opportunity for the discovery of novel therapeutic agents.

  1. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  2. Structural characterization of an immunostimulating polysaccharide from the stems of a new medicinal Dendrobium species: Dendrobium Taiseed Tosnobile.

    Science.gov (United States)

    Yang, Li-Chan; Hsieh, Chang-Chi; Wen, Chi-Luan; Chiu, Chun-Hui; Lin, Wen-Chuan

    2017-10-01

    Dendrobium Taiseed Tosnobile, a new Dendrobium species developed by crossbreeding Dendrobium tosaense and Dendrobium nobile, exhibits the characteristics of high mass production and high polysaccharide content. This study investigated the structural characterization and immunostimulating effects of a polysaccharide isolated from D. Taiseed Tosnobile (DTTPS). DTTPS was fractioned using a DEAE-650M column to obtain the major neutral polysaccharide (DTTPS-N). The structural characteristics of DTTPS-N were investigated through high-performance anion exchange chromatography, high-performance size exclusion chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy. In the immunostimulating experiment, BALB/c mice were administered DTTPS (100 and 300mg/kg) daily for 3 weeks. The results revealed that DTTPS-N comprised arabinose, galactose, glucose, mannose, and xylose at a ratio of 1:1.5:3.0:29.9:1.3. DTTPS-N comprised (1→3; 1→4)-Man as the backbone, and its average molecular weight was 281kDa. Pharmacological experiments demonstrated that DTTPS substantially increased the population of splenic natural killer (NK) cells, NK cytotoxicity, macrophage phagocytosis, and cytokine induction. This is the first study to demonstrate the structural characteristics and immunopharmacological effects of an active polysaccharide derived from D. Taiseed Tosnobile. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Influence of O polysaccharides on biofilm development and outer membrane vesicle biogenesis in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Murphy, Kathleen; Park, Amber J; Hao, Youai; Brewer, Dyanne; Lam, Joseph S; Khursigara, Cezar M

    2014-04-01

    Pseudomonas aeruginosa is a common opportunistic human pathogen known for its ability to adapt to changes in its environment during the course of infection. These adaptations include changes in the expression of cell surface lipopolysaccharide (LPS), biofilm development, and the production of a protective extracellular exopolysaccharide matrix. Outer membrane vesicles (OMVs) have been identified as an important component of the extracellular matrix of P. aeruginosa biofilms and are thought to contribute to the development and fitness of these bacterial communities. The goal of this study was to examine the relationships between changes in the cell surface expression of LPS O polysaccharides, biofilm development, and OMV biogenesis in P. aeruginosa. We compared wild-type P. aeruginosa PAO1 with three chromosomal knockouts. These knockouts have deletions in the rmd, wbpM, and wbpL genes that produce changes in the expression of common polysaccharide antigen (CPA), O-specific antigen (OSA), or both. Our results demonstrate that changes in O polysaccharide expression do not significantly influence OMV production but do affect the size and protein content of OMVs derived from both CPA(-) and OSA(-) cells; these mutant cells also exhibited different physical properties from wild-type cells. We further examined biofilm growth of the mutants and determined that CPA(-) cells could not develop into robust biofilms and exhibit changes in cell morphology and biofilm matrix production. Together these results demonstrate the importance of O polysaccharide expression on P. aeruginosa OMV composition and highlight the significance of CPA expression in biofilm development.

  4. A Modular Approach to a Library of Semi-Synthetic Fucosylated Chondroitin Sulfate Polysaccharides with Different Sulfation and Fucosylation Patterns.

    Science.gov (United States)

    Laezza, Antonio; Iadonisi, Alfonso; Pirozzi, Anna V A; Diana, Paola; De Rosa, Mario; Schiraldi, Chiara; Parrilli, Michelangelo; Bedini, Emiliano

    2016-12-12

    Fucosylated chondroitin sulfate (fCS)-a glycosaminoglycan (GAG) found in sea cucumbers-has recently attracted much attention owing to its biological properties. In particular, a low molecular mass fCS polysaccharide has very recently been suggested as a strong candidate for the development of an antithrombotic drug that would be safer and more effective than heparin. To avoid the use of animal sourced drugs, here we present the chemical transformation of a microbial sourced unsulfated chondroitin polysaccharide into a small library of fucosylated (and sulfated) derivatives thereof. To this aim, a modular approach based on the different combination of only five reactions was employed, with an almost unprecedented polysaccharide branching by O-glycosylation as the key step. The library was differentiated for sulfation patterns and/or positions of the fucose branches, as confirmed by detailed 2D NMR spectroscopic analysis. These semi-synthetic polysaccharides will allow a wider and more accurate structure-activity relationship study with respect to those reported in literature to date.

  5. Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella.

    Science.gov (United States)

    Malang, Saskia Katharina; Maina, Ndegwa Henry; Schwab, Clarissa; Tenkanen, Maija; Lacroix, Christophe

    2015-04-01

    With their broad functional properties, lactic acid bacteria derived high molar mass exopolysaccharides (EPS) and oligosaccharides are of great interest for food, medical and pharmaceutical industry. EPS formation by 123 strains of Weissella cibaria and Weissella confusa, was evaluated. Dextran formation from sucrose was observed for all tested strains while 18 strains produced fructan in addition to dextran. Six isolates synthesized a highly ropy polymer from glucose associated with the formation of a cell-bound, capsular polysaccharide (CPS) composed of glucose, O-acetyl groups and two unidentified monomer components. The soluble EPSs of nine strains were identified as low α-1,3-branched dextran, levan and inulin type polymers using NMR. In addition to glucan and fructan, W. confusa produced gluco- and fructooligosaccharides. Partial dextransucrase and fructansucrase sequences were characterized in the selected Weissella strains. Our study reports the first structural characterization of fructan type EPS from Weissella as well as the first Weissella strain producing inulin. Production of more than one EPS-type by single strains may have high potential for development of applications combining EPS technological and nutritional benefits.

  6. Polysaccharide-based oleogels prepared with an emulsion-templated approach.

    Science.gov (United States)

    Patel, Ashok R; Cludts, Nick; Bin Sintang, Mohd Dona; Lewille, Benny; Lesaffer, Ans; Dewettinck, Koen

    2014-11-10

    The preparation and characterization of oleogels structured by using a combination of a surface-active and a non-surface-active polysaccharide through an emulsion-templated approach is reported. Specifically, the oleogels were prepared by first formulating a concentrated oil-in-water emulsion, stabilized with a combination of cellulose derivatives and xanthan gum, followed by the selective evaporation of the continuous water phase to drive the network formation, resulting in an oleogel with a unique microstructure and interesting rheological properties, including a high gel strength, G'>4000 Pa, shear sensitivity, good thixotropic recovery, and good thermostability.

  7. Composite polysaccharide fibers prepared by electrospinning and coating.

    Science.gov (United States)

    Maeda, N; Miao, J; Simmons, T J; Dordick, J S; Linhardt, R J

    2014-02-15

    Composite polysaccharide fibers composed two oppositely charged natural polysaccharides, chitosan and hyaluronic acid, were prepared by electrospinning and subsequent coating. The fiber size distribution was characterized by scanning electron microscopy. Chitosan/hyaluronic acid composite fibers were stable in water but showed controlled release of hyaluronic acid into phosphate buffered saline, and the presence of 3-wt% hyaluronic acid coating improved the swelling ratio to 30%. The resulting composite polysaccharide fibers have a number of potential biomedical applications in wound healing applications and in drug delivery systems.

  8. Differential Regulation of Protein- and Polysaccharide-Specific Ig Isotype Production In Vivo in Response to Intact Streptococcus pneumoniae

    Science.gov (United States)

    2006-01-01

    whether DCs played a role in either or both of these responses. We first demonstrated that immature bone marrow-derived myeloid dendritic cells ( BmDC ...1640 E-mail: csnapper@usuhs.mil Keywords: Streptococcus pneumoniae, immunoglobulin isotypes, murine, T cells , dendritic cells , cytokines, Toll...polysaccharide; PC, phosphorylcholine; PspA, pneumococcal surface protein A; DC, dendritic cell ; TLR, Toll-like receptor; TI, T cell -independent

  9. Navicula sp. Sulfated Polysaccharide Gels Induced by Fe(III): Rheology and Microstructure

    OpenAIRE

    2016-01-01

    A sulfated polysaccharide extracted from Navicula sp. presented a yield of 4.4 (% w/w dry biomass basis). Analysis of the polysaccharide using gas chromatography showed that this polysaccharide contained glucose (29%), galactose (21%), rhamnose (10%), xylose (5%) and mannose (4%). This polysaccharide presented an average molecular weight of 107 kDa. Scanning electron microscopy (SEM) micrographs showed that the lyophilized Navicula sp. polysaccharide is an amorphous solid with particles of ir...

  10. Polysaccharide Responsiveness Is Not Biased by Prior Pneumococcal-Conjugate Vaccination

    Science.gov (United States)

    Bernth-Jensen, Jens Magnus; Søgaard, Ole Schmeltz

    2013-01-01

    Polysaccharide responsiveness is tested by measuring antibody responses to polysaccharide vaccines to diagnose for humoral immunodeficiency. A common assumption is that this responsiveness is biased by any previous exposure to the polysaccharides in the form of protein-coupled polysaccharide vaccines, such as those used in many childhood vaccination programmes. To examine this assumption, we investigated the effect of protein-coupled polysaccharide vaccination on subsequent polysaccharide responsiveness. HIV-infected adults (n = 47) were vaccinated twice with protein-coupled polysaccharides and six months later with pure polysaccharides. We measured immunoglobulin G responses against three polysaccharides present in only the polysaccharide vaccine (non-memory polysaccharides) and seven recurring polysaccharides (memory polysaccharides). Responsiveness was evaluated according to the consensus guidelines published by the American immunology societies. Impaired responsiveness to non-memory polysaccharides was more frequent than to memory polysaccharides (51% versus 28%, P = 0.015), but the individual polysaccharides did not differ in triggering sufficient responses (74% versus 77%, P = 0.53). Closer analysis revealed important shortcomings of the current evaluation guidelines. The interpreted responseś number and their specificities influenced the likelihood of impaired responsiveness in a complex manor. This influence was propelled by the dichotomous approaches inherent to the American guidelines. We therefore define a novel more robust polysaccharide responsiveness measure, the Z-score, which condenses multiple, uniformly weighted responses into one continuous variable. Using the Z-score, responsiveness to non-memory polysaccharides and memory-polysaccharides were found to correlate (R2 = 0.59, Presponsiveness was not biased by prior protein-coupled polysaccharide vaccination in HIV-infected adults. Studies in additional populations are warranted

  11. An Acidic Polysaccharide from Tribulus terrestris

    Institute of Scientific and Technical Information of China (English)

    HaiShengCHEN; WingNangLEUNG; 等

    2002-01-01

    An aqueous acidic polysaccharide, named rhamnogalacturonan (designated as TIP-D2) was isolated from Tribulus terrestris L by means of DEAE-cellulose chromatography and gel filtration. The molecular mass of TTP-D2 was estimated to be 26 KDa by gel filtration.TTP-D2 is composed of galacturonic acid, rhamnose, arabinose, galactose,fucose,mannose,xylose and glucose in a ratio of 71.4:13.5:5.6:4.9:3.1:1.9:1.9:1.0. The main chain structure of TTP-D2 was elucidated as an acidic hetero-polysaccaride with the connection of α-(1-4) galacturonic acid with α-(1-3) rhamnose by GC analysis of partially hydrolyzed products and determination of 1H,13C-NMR spectra.

  12. An Acidic Polysaccharide from Tribulus terrestris

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An aqucous acidic polysaccharide, named rhamnogalacturonan (designated as TTP-D2)was isolated from Tribulus terrestris L by means of DEAE-cellulose chromatography and gel filtration. The molecular mass of TTP-D2 was estimated to be 26 KDa by gel filtration. TTP-D2 is composed of galacturonic acid, rhamnose, arabinose, galactose, fucose, mannosc, xylose and glucose in a ratio of 71.4: 13.5: 5.6: 4.9: 3.1: 1.9: 1.9: 1.0. The main chain structure of TTP-D2 was elucidated as an acidic hetero-polysaccharidc with the connection of α-(l-4) galacturonic acid with α-(1-3) rhamnose by GC analysis of partially hydrolyzed products and the determination of 1H, 13C-NMR spectra.

  13. NMR studies of polysaccharides from brown seaweeds

    Energy Technology Data Exchange (ETDEWEB)

    Noseda, M.D.; Tisher, C.A.; Gorin, P.A.J.; Duarte, M.E.R. [Parana Univ., Curitiba, PR (Brazil). Dept. de Bioquimica; Cerezo, A.S. [Buenos Aires Univ. Nacional (Argentina). Dept. de Quimica Organica

    1997-12-31

    Alginic acid is the major intercellular polysaccharide serving as matrix in the brown algae and is comprised of an unbranched chain of (1->4)-linked {beta}-D-mannuronic acid (M) and {alpha}-L-guluronic acid (G), arranged in a blockwise fashion. The composition of the monomer residues and the block structure varies depending on the source of the polymer. The selective binding of cations to alginate accounts for its ability to form gels, which is dependent on the number and lenght of the G-blocks. They are widely used industrially for their ability to retain water, and for their gelling, viscosifying and stabilizing properties (Smidsrod and draget, 1996). In this study, alginate composition and block structure in Sargassum stenophyllum has been determined by chemical methods and NMR spectroscopic analysis. (author) 4 refs., 3 figs.

  14. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food......Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments...

  15. Enzymatic Modification of Plant Cell Wall Polysaccharides

    DEFF Research Database (Denmark)

    Øbro, Jens; Hayashi, Takahisa; Mikkelsen, Jørn Dalgaard

    2011-01-01

    fibres, hydrocolloids, paper,textile, animal feeds or biofuels. Classical microbial-based fermentation systems could in the future face serious competition from plant-based expression systems for enzyme production. Plant expressed enzymes can either be targeted to specific cellular compartments......Plant cell walls are intricate structures with remarkable properties, widely used in almost every aspect of our life. Cell walls consist largely of complex polysaccharides and there is often a need for chemical and biochemical processing before industrial use. There is an increasing demand...... for sustainable processes that replace chemical treatments with white biotechnology. Plants can contribute significantly to this sustainable process by producing plant or microbialenzymes in planta that are necessary for plant cell wall modification or total degradation. This will give rise to superior food...

  16. Characterisation and enzymic degradation of non-starch polysaccharides in lignocellulosic by-products. A study on sunflower meal and palm-kernel meal.

    NARCIS (Netherlands)

    Düsterhöft, E.M.

    1993-01-01

    Non-starch polysaccharides (NSP) constitute a potentially valuable part of plant by- products deriving from the food and agricultural industries. Their use for various applications (fuel, feed, food) requires the degradation and modification of the complex plant materials. This can be achieved by en

  17. Final report on COOMET.M.M-K5: Key comparison in the field of multiples and submultiples of the kilogram (COOMET 258/RU/02)

    Science.gov (United States)

    Snegov, V. S.

    2014-01-01

    This report summarizes the results of a comparison of mass standards conducted between four participating members of the Euro-Asian Cooperation of National metrological Institutes (COOMET). The COOMET key comparisons are usually carried out on those schemes that were proposed and implemented by the Consultative Committee for Mass and Related Quantities of the CIPM. Measurement comparisons bring to the laboratories confidence in the measurement standards and lead to their international acceptance. This comparison arose from discussions at the 9th meeting of TC 1.6 'Mass and Related Quantities' on 21-23 April 2004, SMU, Slovakia. The comparison is internally identified as COOMET 258/RU/02 and corresponds to the KCDB identifier COOMET.M.M-K5, as attributed by the BIPM. The purpose of the key comparison COOMET.M.M-K5 'Comparison in the field of multiples and submultiples of the kilogram' is to compare the results of measurements obtained by the participants. Two weights sets with five nominal mass values 2 kg, 200 g, 50 g, 1 g and 200 mg (OIML Class E1) were used as transfer standards. These nominal values were chosen to follow the second phase of the CCM key comparison CCM.M-K5. The All-Russian D I Mendeleyev Research Institute for Metrology, VNIIM, was the pilot laboratory as well as the linking laboratory to CCM.M-K5. The comparison was carried out from May 2015 to July 2008. In 2007, measurements were carried out by Kazakhstan Institute of Metrology (RSE 'KazInMetr') on their own initiative. The computation of the degrees of equivalence shows a generally good agreement between participants. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. DUOX2 promotes the elimination of the Klebsiella pneumoniae strain K5 from T24 cells through the reactive oxygen species pathway.

    Science.gov (United States)

    Lu, Huixia; Wu, Qi; Yang, Huijun

    2015-08-01

    Dual oxidase 2 (DUOX2) plays a major role in host defense in intestinal and airway epithelial cells through the reactive oxygen species (ROS) pathway. Klebsiella pneumoniae is a uropathogen that causes urinary tract infections. It is not known whether DUOX2 plays a role in host defense in bladder cancer epithelial cells. It is also not known whether Klebsiella pneumoniae invades T24 human bladder carcinoma cells and whether DUOX2 plays a role in eliminating the Klebsiella pneumoniae strain K5 through the ROS pathway in T24 cells. Thus, in the present study, we aimed to investigate the infectious capability of the Klebsiella pneumoniae K5 strain and the immunity-promoting capability of DUOX2 in T24 cells. We quantified the number of viable intracellular bacteria using the plate count method. DUOX2 expression was evaluated by western blot analysis and reverse transcription-quantitative PCR (RT-qPCR) following treatment with or without multiple cytokines, phorbol 12-myristate 13-acetate (PMA), muramyl dipeptide (MDP), N-acetylmuramyl-D-alanyl-D-isoglutamine (MDP-DD), H2O2 inhibitor, catalase (CAT), the nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) oxidase inhibitor, diphenyleneiodonium (DPI), or siRNA targeting DUOX2 (siDUOX2). The levels of ROS in the T24 cells infected with the K5 strain were examined following treatment with DPI, CAT or siDUOX2. Our results revealed that DUOX2 expression increased and the number of viable intracellular bacteria decreased in the T24 cells following infection with the K4 bacteria. Treatment with the cytokines and MDP and PMA also induced DUOX2 expression and decreased the number of viable intracellular bacteria. The levels of ROS also increased following treatment with the cytokines and MDP and PMA. However, when the cells were treated with the inhibitors (DPI or CAT), these effects were all reversed. Our data demonstrated that DUOX2 played an important role in innate immunity against bacterial cytoinvasion through the

  19. Sulfated modification, characterization and property of a water-insoluble polysaccharide from Ganoderma atrum.

    Science.gov (United States)

    Zhang, Hui; Wang, Jun-Qiao; Nie, Shao-Ping; Wang, Yuan-Xing; Cui, Steve W; Xie, Ming-Yong

    2015-08-01

    Sulfated modification was carried out to modify a water-insoluble polysaccharide from Ganoderma atrum (AGAP). The effects of sulfation on structure, physicochemical and functional properties of AGAP were investigated. Three sulfated derivatives were prepared, designated as S-1, S-2 and S-3 with degree of substitution (DS) of 0.35, 0.74 and 1.14, respectively. AGAP was elucidated as an α-(1→3)-glucan with few branches terminated by single mannose or xylose residues. The molecular weight (Mw) and radius of gyration (Rg) were estimated to be 1665 kDa and 65.49 nm, respectively. After sulfated modification, non-selective sulfation occurred preferably at O-6, partially at O-2 and O-4 positions of the glucosyl residues. The water-solubility of the derivatives was significantly improved in a DS-dependent manner. Mw of the derivatives showed a sharp decrease, and the chain conformation was estimated to be expanded stiff in phosphate buffer. In vitro tests showed that sulfated modification improved its antioxidant activities and anti-proliferative ability against S-180 tumor cells. This study suggested that sulfated modification was an effective approach to improve the water-solubility and functional properties of insoluble polysaccharides.

  20. A Direct Sulfation Process of a Marine Polysaccharide in Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Nathalie Chopin

    2015-01-01

    Full Text Available GY785 is an exopolysaccharide produced by a mesophilic bacterial strain Alteromonas infernus discovered in the deep-sea hydrothermal vents. GY785 highly sulfated derivative (GY785 DRS was previously demonstrated to be a promising molecule driving the efficient mesenchymal stem cell chondrogenesis for cartilage repair. This glycosaminoglycan- (GAG- like compound was modified in a classical solvent (N,N′-dimethylformamide. However, the use of classical solvents limits the polysaccharide solubility and causes the backbone degradation. In the present study, a one-step efficient sulfation process devoid of side effects (e.g., polysaccharide depolymerization and/or degradation was developed to produce GAG-like derivatives. The sulfation of GY785 derivative (GY785 DR was carried out using ionic liquid as a reaction medium. The successful sulfation of this anionic and highly branched heteropolysaccharide performed in ionic liquid would facilitate the production of new molecules of high specificity for biological targets such as tissue engineering or regenerative medicine.

  1. Campylobacter polysaccharide capsules: virulence and vaccines

    Directory of Open Access Journals (Sweden)

    Patricia eGuerry

    2012-02-01

    Full Text Available Campylobacter jejuni remains a major cause of bacterial diarrhea worldwide and is associated with numerous sequelae, including Guillain Barre Syndrome, inflammatory bowel disease, reactive arthritis, and irritable bowel syndrome. C. jejuni is unusual for an intestinal pathogen in its ability to coat its surface with a polysaccharide capsule (CPS. These capsular polysaccharides vary in sugar composition and linkage, especially those involving heptoses of unusual configuration and O-methyl phosphoramidate linkages. This structural diversity is consistent with CPS being the major serodeterminant of the Penner scheme, of which there are 47 C. jejuni serotypes. Both CPS expression and expression of modifications are subject to phase variation by slip strand mismatch repair. Although capsules are virulence factors for other pathogens, the role of CPS in C. jejuni disease has not been well defined beyond descriptive studies demonstrating a role in serum resistance and for diarrhea in a ferret model of disease. However, perhaps the most compelling evidence for a role in pathogenesis are data that CPS conjugate vaccines protect against diarrheal disease in non-human primates. A CPS conjugate vaccine approach against this pathogen is intriguing, but several questions need to be addressed, including the valency of CPS types required for an effective vaccine. There have been numerous studies of prevalence of CPS serotypes in the developed world, but few studies from developing countries where the disease incidence is higher. The complexity and cost of Penner serotyping has limited its usefulness, and a recently developed multiplex PCR method for determination of capsule type offers the potential of a more rapid and affordable method. Comparative studies have shown a strong correlation of the two methods and studies are beginning to ascertain CPS-type distribution worldwide, as well as examination of correlation of severity of illness with specific CPS types.

  2. Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation

    Directory of Open Access Journals (Sweden)

    Abd-Ellatef GF

    2017-02-01

    Full Text Available Gamal-Eldein F Abd-Ellatef,1 Osama M Ahmed,2 Eman S Abdel-Reheim,2 Abdel-Hamid Z Abdel-Hamid,1 1Pharmaceutical and Drug Industries Research Division, Therapeutic Chemistry Department, National Research Centre, Cairo, Egypt; 2Division of Physiology, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt Background: Recently, several research studies have been focused on the isolation and function of the polysaccharides derived from different algal species, which revealed multiple biological activities such as antioxidant and antitumor activities. This study assesses the possible breast cancer chemopreventive properties of common seaweeds, sea lettuce, Ulva lactuca (ulvan polysaccharides using in vitro bioassays on human breast cancer cell line (MCF-7 and an in vivo animal model of breast carcinogenesis. Methods: Cytotoxic effect of ulvan polysaccharides on MCF-7 was tested in vitro. For an in vivo investigation, a single dose of 25 mg/kg body weight 7,12-dimethylbenz[a]anthracene (DMBA and ulvan polysaccharides (50 mg/kg body weight every other day for 10 weeks were administered orally to the Wistar rats. Results: Deleterious histopathological alterations in breast tissues including papillary cyst adenoma and hyperplasia of ductal epithelial lining with intraluminal necrotic materials and calcifications were observed in the DMBA-administered group. These lesions were prevented in the DMBA-administered group treated with ulvan polysaccharides. The immunohistochemical sections depicted that the treatment of DMBA-administered rats with ulvan polysaccharides markedly increased the lowered pro-apoptotic protein, p53, and decreased the elevated anti-apoptotic marker, bcl2, expression in the breast tissue. The elevated lipid peroxidation and the suppressed antioxidant enzyme activities in DMBA-administered control were significantly prevented by the treatment with ulvan polysaccharides. The elevated levels of inflammatory

  3. Studies of polysaccharides from three edible species of Nostoc (cyanobacteria) with different colony morphologies : structural characterization and effect on the complement system of polysaccharides from Nostoc commune

    NARCIS (Netherlands)

    Brüll, L.P.; Huang, Z.; Thomas-Oates, J.E.; Smestad-Paulsen, B.; Cohen, E.H.; Michaelsen, T.E.

    2000-01-01

    The cyanobacterium Nostoc commune Vaucher produces quite complex extracellular polysaccharides. The cyanobacterium is nitrogen fixing, and on growing the cyanobacterium in media with and without nitrogen, different types of extracellular polysaccharides were obtained. These were also different from

  4. K5R8 METAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — METAR is a routine scheduled observation and is the primary observation code used in the United States to satisfy requirements for reporting surface meteorological...

  5. Oligo- and polysaccharide synthesis by Rhizobium leguminosarum and Rhizobium meliloti

    NARCIS (Netherlands)

    Breedveld, M.W.

    1992-01-01

    Rhizobium and Agrobacterium species are capable of synthesizing a variety of extracellular and cellular oligo- and polysaccharides. Changes in environmental conditions may all affect the composition, physical properties, and relative amounts of

  6. Radiation processed hydrogel of poly (vinyl alcohol) with biodegradable polysaccharides.

    Science.gov (United States)

    Chowdhury, M N K; Alam, A K M M; Dafader, N C; Haque, M E; Akhtar, F; Ahmed, M U; Rashid, H; Begum, R

    2006-01-01

    Poly(vinyl alcohol) (PVA) can be modified to polymer hydrogels by radiation crosslinking and can be used in different biomedical applications. A study was done on the optimization of ingredients concentration for preparing good quality PVA hydrogels with natural polysaccharides. The synthesized hydrogels were also characterized by measuring the different physical properties e.g. gel fraction, swelling and absorption rate. Besides these, sterility test were also performed. Good quality hydrogels were obtained from PVA and natural polysaccharides solutions with 27 kGy radiation dose. There is an influence of natural polysaccharides on the gel fraction of hydrogel. The increase in the amount of polysaccharide causes a decrease in gel fraction that is decrease in the crosslinking density of PVA hydrogel network. The prepared hydrogels were found to be sterile.

  7. Extraction and antioxidant activity of polysaccharides from Rana chensinensis skin.

    Science.gov (United States)

    Wang, Zhanyong; Zhao, Yuanyuan; Su, Tingting

    2015-01-22

    The extraction process of polysaccharides from Rana chensinensis skin was optimized by using a Box-Behnken design. The optimum extraction conditions were as follows: extraction time, 4.96h; extraction temperature, 100°C; ratio of water to raw material, 60; and extraction frequency, 1. Under these conditions, the experimental polysaccharide yield was 2.03±0.14%, which agreed with the predicted yield. The purified polysaccharide RCSP II was successfully obtained by diethylaminoethanol-Sepharose and Sepharose CL-6B column chromatography. In vitro experiments showed that RCSP II exhibited a strong scavenging activity against superoxide anion and 1,1-diphenyl-2-picrylhydrazyl radicals but a weak scavenging activity against hydroxyl radicals. RCSP II also showed a strong reducing capacity. Thus, this polysaccharide can be used as a natural antioxidant in functional foods or medicines.

  8. Degradation studies on Escherichia coli capsular polysaccharides by bacteriophages.

    Science.gov (United States)

    Nimmich, W

    1997-08-01

    The serologically and structurally related Eschrichia coli capsular polysaccharides (K antigens) K13, K20, and K23 were found to be depolymerized by the bacteriophages phi K13 and phi K20 to almost similar oligomer profiles as shown by polyacrylamide gel electrophoresis. The phage-polysaccharide interactions were followed by an increase of reducing 2-keto-3-deoxyoctulosonic acid due to a phage-associated glycanase that catalyzed the hydrolytic cleavage of common beta-ketopyranosidic 2-keto-3-deoxyoctulosonic acid linkages. The related E. coli K antigens K18, K22, and K100 as well as the Haemophilus influenzae type b capsular polysaccharide were degraded by bacteriophage phi K100 with different efficacy. It is suggested that phi K100 enzymatically cleaves ribitol-5-phosphate bonds as the only structural feature present in all the polysaccharides investigated.

  9. Comparison of Polysaccharides from Two Species of Ganoderma

    Directory of Open Access Journals (Sweden)

    Yu-Ping Tang

    2012-01-01

    Full Text Available Ganoderma lucidum and Ganoderma sinense, known as Lingzhi in Chinese, are commonly used Chinese medicines with excellent beneficial health effects. Triterpenes and polysaccharides are usually considered as their main active components. However, the content of triterpenes differs significantly between the two species of Ganoderma. To date, a careful comparison of polysaccharides from the two species of Ganoderma has not been performed. In this study, polysaccharides from fruiting bodies of two species of Lingzhi collected from different regions of China were analyzed and compared based on HPSEC-ELSD and HPSEC-MALLS-RI analyses, as well as enzymatic digestion and HPTLC of acid hydrolysates. The results indicated that both the HPSEC-ELSD profiles and the molecular weights of the polysaccharides were similar. Enzymatic digestion showed that polyshaccharides from all samples of Lingzhi could be hydrolyzed by pectinase and dextranase. HPTLC profiles of their TFA hydrolysates colored with different reagents and their monosaccharides composition were also similar.

  10. Characterisation of the effects of ATPA, a GLU(K5) kainate receptor agonist, on GABAergic synaptic transmission in the CA1 region of rat hippocampal slices.

    Science.gov (United States)

    Clarke, V R J; Collingridge, G L

    2004-09-01

    Kainate receptors are implicated in a variety of physiological and pathological processes in the CNS. Previously we demonstrated that (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid (ATPA), a selective agonist for the GLU(K5) subtype of kainate receptor, depresses monosynaptically evoked inhibitory postsynaptic potentials (IPSPs) in the CA1 region of the rat hippocampus. In the current study, we provide a more detailed characterisation of this effect. Firstly, our data demonstrate a rank order of potency of domoate>kainate>ATPA>alpha-amino-3-(3-hydroxy-5-methyl-4-isoxalolyl)propionic acid Secondly, we confirm that the effects of ATPA are not mediated indirectly via the activation of gamma-aminobutyric acid receptors (i.e. either GABA(A) or GABA(B)). Thirdly, we show that the small increase in conductance induced by ATPA is insufficient to account for the depression of monosynaptic inhibition. Fourthly, we show that the effects of ATPA on IPSPs are antagonised by the GLU(K5)-selective antagonist (3S, 4aR, 6S, 8aR)-6-(4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid (LY382884). However, LY382884 is less potent as an antagonist of the effects of ATPA on IPSPs compared to its depressant effect on EPSPs.

  11. Identification of a capsular polysaccharide from Moraxella bovis.

    Science.gov (United States)

    Wilson, Jennifer C; Hitchen, Paul G; Frank, Martin; Peak, Ian R; Collins, Patrick M; Morris, Howard R; Dell, Anne; Grice, I Darren

    2005-03-21

    The bacterium Moraxella bovis is the causative agent of an economically important disease of cattle: Infectious Bovine Keratoconjunctivitis (IBK), otherwise known as pinkeye. Little is known regarding the structure of the carbohydrates produced by M. bovis. The structure of a capsular polysaccharide from M. bovis (strain Mb25) has been determined using NMR and MS analysis. From these data it is concluded that the polysaccharide is composed of the unmodified chondroitin disaccharide repeat unit.

  12. Composite polysaccharide fibers prepared by electrospinning and coating

    OpenAIRE

    2013-01-01

    Composite polysaccharide fibers composed two oppositely charged natural polysaccharides, chitosan and hyaluronic acid, were prepared by electrospinning and subsequent coating The fiber size distribution was characterized by scanning electron microscopy. Chitosan/hyaluronic acid composite fibers were stable in water but showed controlled release of hyaluronic acid into phosphate buffered saline, and the presence of 3-wt% hyaluronic acid coating improved the swelling ratio to 30%. The resulting...

  13. Characterization of Polysaccharide by HPLC: Extraction and Anticancer Effects

    OpenAIRE

    Liming Gao; Ya Di; Jiandong Wu; Ming Shi; Fulu Zheng

    2014-01-01

    Cervical cancer is a serious health hazard for women’s reproductive system cancer; the method of treatment for cervical cancer is still in surgery, chemotherapy, and radiotherapy as the basic means, but with many complications. The effects of natural medicines for cervical cancer are increasingly becoming the focus of people’s attentions. By studying the polysaccharide of cervical cancer in mice, we found that shark cartilage polysaccharide can increase the serum levels of T-SOD and GSH and d...

  14. Assessment of a Flavone-Polysaccharide Based Prescription for Treating Duck Virus Hepatitis.

    Directory of Open Access Journals (Sweden)

    Hongxu Du

    Full Text Available Because polysaccharide and flavone ingredients display good antiviral activity, we developed a flavone/polysaccharide-containing prescription that would be effective against duck viral hepatitis (DVH and investigated its hepatoprotective effects. Flavones were derived from Hypericum japonicum (HJF (entire herb of Hypericum japonicum Thunb and Salvia plebeia (SPF (entire herb of Salvia plebeia R. Br., and polysaccharides were derived from Radix Rehmanniae Recens (RRRP (dried root of Rehmannia glutinosa Libosch. This prescription combination was based on the theory of syndrome differentiation and treatment in traditional Chinese veterinary medicine. In vitro and in vivo experiments were conducted using the three single ingredients compared to the combined HRS prescription to determine their anti-duck hepatitis A viral (anti-DHAV activity. The results showed that all experimental conditions displayed anti-DHAV activity, but the HRS prescription presented the best effect. To further investigate the hepatoprotective effect of the HRS prescription on DHAV-induced hepatic injury, we tested the mortality rate, the hepatic pathological severity score, plasma biochemical indexes of hepatic function, blood DHAV gene expression levels and peroxidation damage evaluation indexes and then analyzed correlations among these indexes. The results demonstrated that the HRS prescription significantly decreased the mortality rate, reduced the severity of hepatic injury, decreased the hepatic pathological severity score, depressed blood DHAV gene expression levels, and returned the indexes of hepatic function and peroxidation almost to a normal level. These results indicate that the HRS prescription confers an outstanding hepatoprotective effect, and we expect that it will be developed into a new candidate anti-DHAV drug.

  15. Correlation Between Chain Architecture and Hydration Water Structure in Polysaccharides.

    Science.gov (United States)

    Grossutti, Michael; Dutcher, John R

    2016-03-14

    The physical properties of confined water can differ dramatically from those of bulk water. Hydration water associated with polysaccharides provides a particularly interesting example of confined water, because differences in polysaccharide structure provide different spatially confined environments for water sorption. We have used attenuated total reflection infrared (ATR-IR) spectroscopy to investigate the structure of hydration water in films of three different polysaccharides under controlled relative humidity (RH) conditions. We compare the results obtained for films of highly branched, dendrimer-like phytoglycogen nanoparticles to those obtained for two unbranched polysaccharides, hyaluronic acid (HA), and chitosan. We find similarities between the water structuring in the two linear polysaccharides and significant differences for phytoglycogen. In particular, the results suggest that the high degree of branching in phytoglycogen leads to a much more well-ordered water structure (low density, high connectivity network water), indicating the strong influence of chain architecture on the structuring of water. These measurements provide unique insight into the relationship between the structure and hydration of polysaccharides, which is important for understanding and exploiting these sustainable nanomaterials in a wide range of applications.

  16. Oral versus postingestive origin of polysaccharide appetite in the rat.

    Science.gov (United States)

    Sclafani, A; Nissenbaum, J W

    1987-01-01

    Previous studies have revealed that rats consume substantial amounts of polysaccharide solutions, even if the solutions are made bitter with the addition of sucrose octa acetate (SOA). The present experiment used the gastric sham-feeding preparation to determine if it is the orosensory or postingestive properties of polysaccharides that motivate rats to consume polysaccharide (Polycose) solutions. In Experiment 1, food deprived rats sham fed less of a 0.05% SOA + 32% Polycose solution than they did of a 32% glucose solution, but their SOA-Polycose intake was still considerable (44 ml/hr). The same rats refused to sham feed SOA-gum and SOA-sugar solutions that were similar to the SOA-Polycose solution in bitter taste, viscosity and free sugar content. In Experiment 2, rats sham fed as much of a 32% Polycose solution as they did of a 32% sucrose solution. Despite the gastric fistula, some of the ingested Polycose was absorbed as evidenced by an increase in the rats' blood glucose levels. The addition of acarbose, a drug that inhibits polysaccharide digestion, to the Polycose solution blocked the increase in blood glucose, but did not reduce the rats' sham feeding of the solution. These findings indicate that it is the orosensory (presumably taste) properties of polysaccharide solutions, not their postingestive effects, that initially attract rats to the solutions. The results question the assumption that polysaccharides are "tasteless" to animals.

  17. Health benefits of algal polysaccharides in human nutrition.

    Science.gov (United States)

    Mišurcová, Ladislava; Škrovánková, Soňa; Samek, Dušan; Ambrožová, Jarmila; Machů, Ludmila

    2012-01-01

    The interest in functional food, both freshwater and marine algal products with their possible promotional health effects, increases also in regions where algae are considered as rather exotic food. Increased attention about algae as an abundant source of many nutrients and dietary fiber from the nutrition point of view, as well as from the scientific approaches to explore new nutraceuticals and pharmaceuticals, is based on the presence of many bioactive compounds including polysaccharides extracted from algal matter. Diverse chemical composition of dietary fiber polysaccharides is responsible for their different physicochemical properties, such as their ability to be fermented by the human colonic microbiota resulted in health benefit effects. Fundamental seaweed polysaccharides are presented by alginates, agars, carrageenans, ulvanes, and fucoidans, which are widely used in the food and pharmaceutical industry and also in other branches of industry. Moreover, freshwater algae and seaweed polysaccharides have emerged as an important source of bioactive natural compounds which are responsible for their possible physiological effects. Especially, sulfate polysaccharides exhibit immunomodulatory, antitumor, antithrombotic, anticoagulant, anti-mutagenic, anti-inflammatory, antimicrobial, and antiviral activities including anti-HIV infection, herpes, and hepatitis viruses. Generally, biological activity of sulfate polysaccharides is related to their different composition and mainly to the extent of the sulfation of their molecules. Significant attention has been recently focused on the use of both freshwater algae and seaweed for developing functional food by reason of a great variety of nutrients that are essential for human health.

  18. Characterization of active polysaccharides of HemoHIM

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang Sun; Shin, Myeong Suk; Bae, Beom Seon; Hwang, Yong Cheol [Kyonggi University, Suwon (Korea, Republic of); Ryu, Kwang Won [Chungju University, Chungju (Korea, Republic of)

    2007-07-15

    In this study, we aimed to elucidate the detailed structure and active moiety of polysaccharide, one of the active constituents of immune and hematopoietic modulating activities of HemoHIM. We first isolated the polysaccharide fractions from the hot water extracts of the each ingredient herbs (A. gigas, P. janonica, C. officinale) of HemoHIM and their mixture. These polysaccharides were composed of neutral (85.32-92.73%) and acidic (4.25-7.88%) saccharides, proteins (0.16-4.02%), and polyphenols (2.09-5.37%). The hydrolytic analysis of polysaccharide fractions showed that they commonly showed higher arabinose, galactose, and galacturonic acid contents. These result suggested that these polysaccharides may have higher contents of rhamnogalacturonan among pectic substances and the main active moiety is composed of polysaccharides. The anion exchange chromatography of HemoHIM and each ingredient herb extract using DEAE-Sepharose FF (Cl- form) column resulted in 1 non-adsorption and 8 adsorption fractions. The analysis of immune activity (lymphocyte proliferation) on these fractions showed that the fractions obtained by higher salt concentration carried the higher activity, but all fractions showed considerable immune activity

  19. Liposome-Based Delivery Systems in Plant Polysaccharides

    Directory of Open Access Journals (Sweden)

    Meiwan Chen

    2012-01-01

    Full Text Available Plant polysaccharides consist of many monosaccharide by α- or β-glycosidic bond which can be extracted by the water, alcohol, lipophile liquid from a variety of plants including Cordyceps sinensis, astragalus, and mushrooms. Recently, many evidences illustrate that natural plant polysaccharides possess various biological activities including strengthening immunity, lowering blood sugar, regulating lipid metabolism, antioxidation, antiaging, and antitumour. Plant polysaccharides have been widely used in the medical field due to their special features and low toxicity. As an important drug delivery system, liposomes can not only encapsulate small-molecule compound but also big-molecule drug; therefore, they present great promise for the application of plant polysaccharides with unique physical and chemical properties and make remarkable successes. This paper summarized the current progress in plant polysaccharides liposomes, gave an overview on their experiment design method, preparation, and formulation, characterization and quality control, as well as in vivo and in vitro studies. Moreover, the potential application of plant polysaccharides liposomes was prospected as well.

  20. Characterization and antitumor activity of a polysaccharide from Sarcodia ceylonensis.

    Science.gov (United States)

    Fan, Yijun; Lin, Mengchuan; Luo, Aoshuang; Chun, Ze; Luo, Aoxue

    2014-07-25

    A water-soluble polysaccharide from Sarcodia ceylonensis was obtained by using the method of water-extraction and ethanol-precipitation. The polysaccharide was further purified by chromatography on AB-8 and ADS-7 columns, yielding a pure polysaccharide termed SCP-60. The molecular weight (Mw) of SCP-60 was calculated to be 50.0 kDa, based on the calibration curve obtained with a series of Dextran T standards. The results of FT-IR indicated that the polysaccharide contains the α-configuration of sugar units. GC-MS analysis revealed that SCP-60 was mainly composed of galactose and glucose. NMR spectroscopy revealed SCP-60 had the backbone consisting of → 6)-α-Manp-(1 →, α-D-Glcp-(1 →, → 6)-α-D-Glcp-(1 → and → 6)-α-Galp-(1 →. In order to evaluate the antitumor activity in vivo of the polysaccharide, a sarcoma 180 model was used. The results showed SCP-60 had strong antitumor ability, meanwhile, SCP-60 at a high dose (100 mg/kg) could significantly increase the thymic and splenic indices of S180 mice, and strongly promote the secretion of IL-2, TNF-α and IFN-γ, increase the SOD activities and reduce the concentrations of MDA in blood. Therefore the polysaccharide SCP-60 should be explored as a novel potential antitumor drug.

  1. Phosphorylation of psyllium seed polysaccharide and its characterization.

    Science.gov (United States)

    Rao, Monica R P; Warrier, Deepa U; Gaikwad, Snehal R; Shevate, Prachi M

    2016-04-01

    Psyllium is widely used as a medicinally active natural polysaccharide for treating conditions like constipation, diarrhea, and irritable bowel syndrome, inflammatory bowel disease, ulcerative colitis and colon cancer. Studies have been performed to characterize and modify the polysaccharide obtained from psyllium seed husk and to evaluate its use as a pharmaceutical excipient, but no studies have been performed to evaluate the properties of the polysaccharide present in psyllium seeds. The present study focuses on phosphorylation of psyllium seed polysaccharide (PPS) using sodium tri-meta phosphate as the cross-linking agent. The modified phosphorylated psyllium seed polysaccharide was then evaluated for physicochemical properties, rheological properties, spectral analysis, thermal analysis, crosslinking density and acute oral toxicity studies. The modified polysaccharide (PhPPS) has a high swelling index due to which it can be categorized as a hydrogel. The percent increase in swelling of PhPPS as compared to PPS was found to be 90.26%. The PPS & PhPPS mucilages of all strengths were found to have shear thinning properties. These findings are suggestive of the potential use of PhPPS as gelling & suspending agent. PhPPS was found to have a mucoadhesive property which was comparable with carbopol.

  2. Regioselective sulfation of Artemisia sphaerocephala polysaccharide: Characterization of chemical structure.

    Science.gov (United States)

    Wang, Junlong; Yang, Wen; Wang, Jiancheng; Wang, Xia; Wu, Fang; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2015-11-20

    The biological activities of sulfated polysaccharides are related to the substitution positions of functional groups. In this study, regioselective sulfation of Artemisia sphaerocephala polysaccharides (SRSASP) was prepared by using triphenylchloromethane (TrCl) as protecting precursor. FT-IR spectra and X-ray photoelectron spectroscopy (XPS) showed that SO(3-) group (S(6+), high binding energy of 168.7eV) was widely present in sulfated polysaccharides. (13)C NMR spectroscopy showed that C-2 and C-3 substitution was occurred but not fully sulfation. Meanwhile, C-6 substituted signals near 65ppm were not observed. The degree of substitution varied from 0.44 to 0.63 in SRSASP which could be attributed to the low reactivity at secondary hydroxyl. Monosaccharide composition result showed a decrease in the ratio of mannose/glucose, indicating the change of chemical composition in sulfated polysaccharides. In size-exclusion chromatograph analysis, a decrease in molecular weight and broadening of molecular weight distribution of sulfated polysaccharides was also observed. It could be attributed to the hydrolysis of polysaccharide in the sulfated reaction.

  3. Structural determination of Streptococcus pneumoniae repeat units in serotype 41A and 41F capsular polysaccharides to probe gene functions in the corresponding capsular biosynthetic loci.

    Science.gov (United States)

    Petersen, Bent O; Skovsted, Ian C; Paulsen, Berit Smestad; Redondo, Antonio R; Meier, Sebastian

    2014-12-05

    We report the repeating unit structures of the native capsular polysaccharides of Streptococcus pneumoniae serotypes 41A and 41F. Structural determinations yielded six carbohydrate units in the doubly branched repeating unit to give the following structure for serotype 41A: The structure determinations were motivated (1) by an ambition to help close the remaining gaps in S. pneumoniae capsular polysaccharide structures, and (2) by the attempt to derive functional annotations of carbohydrate active enzymes in the biosynthesis of bacterial polysaccharides from the determined structures. An activity present in 41F but not 41A is identified as an acetyltransferase acting on the rhamnopyranosyl sidechain E. The genes encoding the formation of the six glycosidic bonds in serogroup 41 were determined from the capsular polysaccharide structures of serotype 41A, 41F, and genetically related serotypes, in conjunction with corresponding genomic information and computational homology searches. In combination with complementary information, NMR spectroscopy considerably simplifies the functional annotation of carbohydrate active enzymes in the biosynthesis of bacterial polysaccharides.

  4. Effect of sulfated modification on the molecular characteristics and biological activities of polysaccharides from Hypsizigus marmoreus.

    Science.gov (United States)

    Bao, HongHui; Choi, Won-Seok; You, SangGuan

    2010-01-01

    The effect of sulfated modification on polysaccharides from Hypsizigus marmoreus was examined by determining their molecular structures and bioactivities. The sulfation, which was implemented by using an orthogonal array design, produced polysaccharides with varying degrees of substitution (DS) ranging from 0.11 to 1.06. The sulfated polysaccharides exhibited a lower average molecular weight (M(w)) and considerably higher radius of gyration (R(g)) than those of native polysaccharide, suggesting that the conformation of the sulfated polysaccharides had been changed towards a more extended type. The inhibitory activity toward cancer cell growth was enhanced by treating with the sulfated polysaccharides by up to 34%, as compared to the native polysaccharide. In addition, treating with the sulfated polysaccharides increased the nitric oxide (NO) and cytokine (IL-1beta and TNF-alpha) release to levels comparable to those detected in the positive control, lipopolysaccharide (LPS), suggesting that the sulfated polysaccharides might have strong immunomodulatory activity.

  5. Structures of two cell wall-associated polysaccharides of a Streptococcus mitis biovar 1 strain. A unique teichoic acid-like polysaccharide and the group O antigen which is a C-polysaccharide in common with pneumococci

    DEFF Research Database (Denmark)

    Bergström, N; Jansson, P.-E.; Kilian, Mogens

    2000-01-01

    The cell wall of Streptococcus mitis biovar 1 strain SK137 contains the C-polysaccharide known as the common antigen of a closely related species Streptococcus pneumoniae, and a teichoic acid-like polysaccharide with a unique structure. The two polysaccharides are different entities and could...... to that of one of the two structures of C-polysaccharide previously identified in S. pneumoniae. C-polysaccharide of S. mitis is characterized by the presence, in each repeating unit, of two residues of phosphocholine and both galactosamine residues in the N-acetylated form. Immunochemical analysis showed that C......-polysaccharide constitutes the Lancefield group O antigen. Studies using mAbs directed against the backbone and against the phosphocholine moiety of the C-polysaccharide revealed several different patterns of these epitopes among 95 S. mitis and Streptococcus oralis strains tested and the exclusive presence of the group O...

  6. Structural studies of the O-specific polysaccharide(s) from the lipopolysaccharide of Azospirillum brasilense type strain Sp7.

    Science.gov (United States)

    Sigida, Elena N; Fedonenko, Yuliya P; Shashkov, Alexander S; Zdorovenko, Evelina L; Konnova, Svetlana A; Ignatov, Vladimir V; Knirel, Yuriy A

    2013-10-18

    Lipopolysaccharide was obtained by phenol-water extraction from dried bacterial cells of Azospirillum brasilense type strain Sp7. Mild acid hydrolysis of the lipopolysaccharide followed by GPC on Sephadex G-50 resulted in a polysaccharide mixture, which was studied by composition and methylation analyses, Smith degradation and (1)H and (13)C NMR spectroscopy. The following polysaccharide structures were established, where italics indicate a non-stoichiometric (∼40%) 2-O-methylation of l-rhamnose.

  7. Sulfated modification of the polysaccharides from Ganoderma atrum and their antioxidant and immunomodulating activities.

    Science.gov (United States)

    Chen, Yi; Zhang, Hui; Wang, Yuanxing; Nie, Shaoping; Li, Chang; Xie, Mingyong

    2015-11-01

    In this study, three chemically sulfated polysaccharides (S-PSG) with different degree of sulfate substitution (DS) were derived from Ganoderma atrum. FT-IR and (13)C NMR spectra indicated that the substitution was predominantly on C-6 position compared with the C-2 position. The antioxidant and immunomodulatory activities of S-PSG were further examined to determine the relationship between its structure and bioactivity. The results showed that compared with the native polysaccharide, the S-PSG-2 with moderate DS and molecular weight exhibited the highest immunomodulatory activity by increasing the macrophage phagocytosis capacity and TNF-α production. The DPPH radical scavenging activity was also greatly enhanced by S-PSG in all the groups compared with PSG. However, the reducing power and the antioxidant activities in β-carotene-linoleic acid assay were decreased. These results indicated that except for the DS, some other structural characteristics such as molecular weight, substitution position and chain conformation were also important factors affecting their bioactivities. And the S-PSG-2 we derived could be served as immunomodulator and free-radical inhibitors.

  8. Animal lectins: potential receptors for ginseng polysaccharides

    Directory of Open Access Journals (Sweden)

    So Hee Loh

    2017-01-01

    Full Text Available Panax ginseng Meyer, belonging to the genus Panax of the family Araliaceae, is known for its human immune system-related effects, such as immune-boosting effects. Ginseng polysaccharides (GPs are the responsible ingredient of ginseng in immunomodulation, and are classified as acidic and neutral GPs. Although GPs participate in various immune reactions including the stimulation of immune cells and production of cytokines, the precise function of GPs together with its potential receptor(s and their signal transduction pathways have remained largely unknown. Animal lectins are carbohydrate-binding proteins that are highly specific for sugar moieties. Among many different biological functions in vivo, animal lectins especially play important roles in the immune system by recognizing carbohydrates that are found exclusively on pathogens or that are inaccessible on host cells. This review summarizes the immunological activities of GPs and the diverse roles of animal lectins in the immune system, suggesting the possibility of animal lectins as the potential receptor candidates of GPs and giving insights into the development of GPs as therapeutic biomaterials for many immunological diseases.

  9. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    Directory of Open Access Journals (Sweden)

    Mediesse Kengne Francine

    2014-12-01

    Full Text Available Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves. Methods: Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/ L ethylene diamine tetra acetic acid, FPK (extract with 0.05 mol/L KOH and FH (extract with 4 mol/L KOH were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on their ability to scavenge DPPH (1, 1-diphenyl-2-picryl hydrazyl free radical, to reduce ferric power, to chelate ferrous ion and to protect human DNA. Results: The results indicated that protein content was found to be higher in FPK polysaccharide enriched fraction (47.48 µg per mg of FPK. Furthermore, the phenolic compound analysis according to the Folin-Ciocalteu method was higher in FPK (17.71 µg ferulic acid. The DPPH maximal inhibition percentage of the three polysaccharide-enriched fractions at 400 µg/mL was 27.66%, 59.90% and 23.21% respectively for FPE, FPK and FH. All the polysaccharide fractions exhibited a ferric reducing power except the FH one. The three fractions also exhibited lipid peroxidation inhibition, and they completely reverted the DNA damage induced by H2O2/FeCl2. FPK showed the strongest scavenging activity against the DPPH radical, the best chelating ability and lipid peroxidation inhibition. Conclusions: Stevia cell wall polysaccharide fractions are potent protective agents against oxidative stress. The analysis revealed major differences in the antioxidant activity in the three polysaccharides fractions. However, the 0.05 mol/L KOH pectin fraction (FPK showed better antioxidant activity.

  10. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    Institute of Scientific and Technical Information of China (English)

    Mediesse Kengne Francine; Woguia Alice Louise; Fogue Souopgui Pythagore; Atogho-Tiedeu Barbara; Simo Gustave; Thadde Boudjeko

    2014-01-01

    Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves.Methods:L ethylene diamine tetra acetic acid), FPK (extract with 0.05 mol/L KOH) and FH (extract with 4 mol/L KOH) were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on their ability to scavenge DPPH (1, 1-diphenyl-2-picryl hydrazyl) free radical, to reduce ferric power, to chelate ferrous ion and to protect human DNA. Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/Results: The results indicated that protein content was found to be higher in FPK polysaccharide enriched fraction (47.48 µg per mg of FPK). Furthermore, the phenolic compound analysis according to the Folin-Ciocalteu method was higher in FPK (17.71 µg ferulic acid). The DPPH maximal inhibition percentage of the three polysaccharide-enriched fractions at 400 µg/mL was 27.66%, 59.90% and 23.21% respectively for FPE, FPK and FH. All the polysaccharide fractions exhibited a ferric reducing power except the FH one. The three fractions also exhibited lipid peroxidation inhibition, and they completely reverted the DNA damage induced by H2O2/FeCl2. FPK showed the strongest scavenging activity against the DPPH radical, the best chelating ability and lipid peroxidation inhibition.Conclusions: Stevia cell wall polysaccharide fractions are potent protective agents against oxidative stress. The analysis revealed major differences in the antioxidant activity in the three polysaccharides fractions. However, the 0.05 mol/L KOH pectin fraction (FPK) showed better antioxidant activity.

  11. Cytochemical Localization of Polysaccharides in Dendrobium officinale and the Involvement of DoCSLA6 in the Synthesis of Mannan Polysaccharides.

    Science.gov (United States)

    He, Chunmei; Wu, Kunlin; Zhang, Jianxia; Liu, Xuncheng; Zeng, Songjun; Yu, Zhenming; Zhang, Xinghua; Teixeira da Silva, Jaime A; Deng, Rufang; Tan, Jianwen; Luo, Jianping; Duan, Jun

    2017-01-01

    Dendrobium officinale is a precious traditional Chinese medicinal plant because of its abundant polysaccharides found in stems. We determined the composition of water-soluble polysaccharides and starch content in D. officinale stems. The extracted water-soluble polysaccharide content was as high as 35% (w/w). Analysis of the composition of monosaccharides showed that the water-soluble polysaccharides were dominated by mannose, to a lesser extent glucose, and a small amount of galactose, in a molar ratio of 223:48:1. Although starch was also found, its content was less than 10%. This result indicated that the major polysaccharides in D. officinale stems were non-starch polysaccharides, which might be mannan polysaccharides. The polysaccharides formed granules and were stored in plastids similar to starch grains, were localized in D. officinale stems by semi-thin and ultrathin sections. CELLULOSE SYNTHASE-LIKE A (CSLA) family members encode mannan synthases that catalyze the formation of mannan polysaccharides. To determine whether the CSLA gene from D. officinale was responsible for the synthesis of mannan polysaccharides, 35S:DoCSLA6 transgenic lines were generated and characterized. Our results suggest that the CSLA family genes from D. officinale play an important role in the biosynthesis of mannan polysaccharides.

  12. Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow.

    Science.gov (United States)

    DeAngelis, Paul L

    2012-04-01

    Glycosaminoglycans [GAGs] are essential heteropolysaccharides in vertebrate tissues that are also, in certain cases, employed as virulence factors by microbes. Hyaluronan [HA], heparin, and chondroitin sulfate [CS] are GAGs currently used in various medical applications and together are multi-billion dollar products thus targets for production by animal-free manufacture. By using bacteria as the source of GAGs, the pathogen's sword may be converted into a plowshare to help avoid potential liabilities springing from the use of animal-derived GAGs including adventitious agents (e.g., prions, pathogens), antigenicity, degradation of the environment, and depletion of endangered species. HA from microbes, which have a chemical structure identical to human HA, has already been commercialized and sold at the ton-scale. Substantial progress towards microbial heparin and CS has been made, but these vertebrate polymers are more complicated structurally than the unsulfated bacterial polysaccharide precursors thus require additional processing steps. This review provides an overview of GAG structure, medical applications, microbial biosynthesis, and the state of bacterial GAG production systems. Representatives of all glycosyltransferase enzymes that polymerize the sugar chains of the three main GAGs have been identified and serve as the core technology to harness, but the proteins involved in sugar precursor formation and chain export steps of biosynthesis are also essential to the GAG production process. In addition, this review discusses future directions and potential important issues. Overall, this area is poised to make great headway to produce safer (both increased purity and more secure supply chains) non-animal GAG-based therapeutics.

  13. Sulfated modification of the polysaccharides obtained from defatted rice bran and their antitumor activities.

    Science.gov (United States)

    Wang, Li; Li, Xiaoxuan; Chen, Zhengxing

    2009-03-01

    Nine sulfated defatted rice bran polysaccharides (sRBPS), with various degrees of sulfation (DS) and carbohydrate content, were prepared by chlorosulfonic acid-pyridine (CSA-Pyr) method according to orthogonal test. Nine sulfated derivatives sRBPS were obtained and their antitumor activities were compared by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that when DS within the scope of 0.81-1.29, carbohydrate content in the range of 41.41-78.56%, sulfated derivatives exhibit relatively strong antitumor activity in vitro. The optimum modification conditions were reaction temperature of 70 degrees C, the ratio of chlorosulfonic acid to pyridine of 1:4 and the reaction time of 2h.

  14. The dietary polysaccharide maltodextrin promotes Salmonella survival and mucosal colonization in mice.

    Directory of Open Access Journals (Sweden)

    Kourtney P Nickerson

    Full Text Available In the latter half of the 20th century, societal and technological changes led to a shift in the composition of the American diet to include a greater proportion of processed, pre-packaged foods high in fat and carbohydrates, and low in dietary fiber (a "Western diet". Over the same time period, there have been parallel increases in Salmonella gastroenteritis cases and a broad range of chronic inflammatory diseases associated with intestinal dysbiosis. Several polysaccharide food additives are linked to bacterially-driven intestinal inflammation and may contribute to the pathogenic effects of a Western diet. Therefore, we examined the effect of a ubiquitous polysaccharide food additive, maltodextrin (MDX, on clearance of the enteric pathogen Salmonella using both in vitro and in vivo infection models. When examined in vitro, murine bone marrow-derived macrophages exposed to MDX had altered vesicular trafficking, suppressed NAPDH oxidase expression, and reduced recruitment of NADPH oxidase to Salmonella-containing vesicles, which resulted in persistence of Salmonella in enlarged Rab7+ late endosomal vesicles. In vivo, mice consuming MDX-supplemented water had a breakdown of the anti-microbial mucous layer separating gut bacteria from the intestinal epithelium surface. Additionally, oral infection of these mice with Salmonella resulted in increased cecal bacterial loads and enrichment of lamina propria cells harboring large Rab7+ vesicles. These findings indicate that consumption of processed foods containing the polysaccharide MDX contributes to suppression of intestinal anti-microbial defense mechanisms and may be an environmental priming factor for the development of chronic inflammatory disease.

  15. Influence of red algal sulfated polysaccharides on blood coagulation and platelets activation in vitro.

    Science.gov (United States)

    Sokolova, Ekaterina V; Byankina, Anna O; Kalitnik, Alexandra A; Kim, Yong H; Bogdanovich, Larisa N; Solov'eva, Tamara F; Yermak, Irina M

    2014-05-01

    The influence of sulfated polysaccharides (λ-, κ-, and κ/β-carrageenan and porphyran) - on platelet activation was studied. Carrageenans were much weaker inhibitors of a coagulation process than heparin, while porphyran had not that effect. Results of the aPTT and PT assays suppose that carrageenans affected mostly intrinsic pathway of coagulation, while their effect on the extrinsic pathway is extremely low (λ and κ/β) or absent (κ, LMW derivative of κ-carrageenan). λ-Carrageenan was the most potent anticoagulant agent in TT, aPTT, PT, and anti-factor Xa activity. This sample was also the strongest inhibitor of collagen-induced platelet aggregation in PRP. Generally, the correlation of anticoagulant and antithrombotic action in PRP is preserved for carrageenans but not for heparin. Carrageenans and porphyran affected platelet adhesion to collagen by influencing glycoprotein VI. Low molecular weight κ-carrageenan had a similar effect on platelet adhesion mediated with both major collagen receptors: integrin α2 β1 and glycoprotein VI as native polysaccharide had. Carrageenans resulted in activation of platelets under platelet adhesion mediated by integrin αIIb β3 with less degree than heparin. The least sulfated κ/β-carrageenan that possessed an inhibiting effect on thrombin- and collagen-induced aggregation of washed platelets and on the PT test but it had no significant effect on TT was the weakest promoter of integrin αIIb β3 mediated platelet activation. In summary, our study showed that the polysaccharide action was complex, since it depended on its molecular mass, sulfation degree, and monosaccharide contents (3,6-anhydrogalactose).

  16. Soluble fiber polysaccharides: effects on plasma cholesterol and colonic fermentation.

    Science.gov (United States)

    Topping, D L

    1991-07-01

    Many soluble-fiber polysaccharides, used as stabilizers and thickeners by the food industry, lower plasma cholesterol and slow small intestinal transit and nutrient absorption. Although nondigestible by human enzymes, these polysaccharides are fermented by the large-bowel microflora, yielding short-chain fatty acids that are absorbed and contribute to energy. The caloric yield from fiber polysaccharides needs to be quantified. Short-chain fatty acid production from soluble fibers is modified by the presence of insoluble fibers but, in total, is probably less than from other carbohydrates, e.g., resistant starch. Short-chain fatty acids do not seem to mediate effects of fiber on plasma cholesterol, but in the large bowel they exert the trophic and antineoplastic effects of dietary fiber. The mechanism for cholesterol reduction by soluble fibers relates to enhanced steroid excretion and altered fat absorption and may be a function of the viscosity of these fibers in solution. The relationships between the chemical structure of soluble polysaccharides and their documented physiologic effects are not yet clear. By using polysaccharides of defined structure and properties, it should be possible to identify those characteristics that predict physiologic actions.

  17. The Application of Polysaccharide Biocomposites to Repair Cartilage Defects

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2014-01-01

    Full Text Available Owing to own nature of articular cartilage, it almost has no self-healing ability once damaged. Despite lots of restore technologies having been raised in the past decades, no repair technology has smoothly substituted for damaged cartilage using regenerated cartilage tissue. The approach of tissue engineering opens a door to successfully repairing articular cartilage defects. For instance, grafting of isolated chondrocytes has huge clinical potential for restoration of cartilage tissue and cure of chondral injury. In this paper, SD rats are used as subjects in the experiments, and they are classified into three groups: natural repair (group A, hyaluronic acid repair (group B, and polysaccharide biocomposites repair (hyaluronic acid hydrogel containing chondrocytes, group C. Through the observation of effects of repairing articular cartilage defects, we concluded that cartilage repair effect of polysaccharide biocomposites was the best at every time point, and then the second best was hyaluronic acid repair; both of them were better than natural repair. Polysaccharide biocomposites have good biodegradability and high histocompatibility and promote chondrocytes survival, reproduction, and spliting. Moreover, polysaccharide biocomposites could not only provide the porous network structure but also carry chondrocytes. Consequently hyaluronic acid-based polysaccharide biocomposites are considered to be an ideal biological material for repairing articular cartilage.

  18. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.

    Science.gov (United States)

    Alvarez-Lorenzo, Carmen; Blanco-Fernandez, Barbara; Puga, Ana M; Concheiro, Angel

    2013-08-01

    Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Marine Polysaccharide Networks and Diatoms at the Nanometric Scale

    Directory of Open Access Journals (Sweden)

    Tea Mišić Radić

    2013-10-01

    Full Text Available Despite many advances in research on photosynthetic carbon fixation in marine diatoms, the biophysical and biochemical mechanisms of extracellular polysaccharide production remain significant challenges to be resolved at the molecular scale in order to proceed toward an understanding of their functions at the cellular level, as well as their interactions and fate in the ocean. This review covers studies of diatom extracellular polysaccharides using atomic force microscopy (AFM imaging and the quantification of physical forces. Following a brief summary of the basic principle of the AFM experiment and the first AFM studies of diatom extracellular polymeric substance (EPS, we focus on the detection of supramolecular structures in polysaccharide systems produced by marine diatoms. Extracellular polysaccharide fibrils, attached to the diatom cell wall or released into the surrounding seawater, form distinct supramolecular assemblies best described as gel networks. AFM makes characterization of the diatom polysaccharide networks at the micro and nanometric scales and a clear distinction between the self-assembly and self-organization of these complex systems in marine environments possible.

  20. Cell wall polysaccharides in black currants and bilberries-characterisation in berries, juice, and press cake

    NARCIS (Netherlands)

    Hilz, H.; Bakx, E.J.; Schols, H.A.; Voragen, A.G.J.

    2005-01-01

    Cell wall polysaccharides from black currants and bilberries were characterised in three approaches. First, compositions of skin, pulp, and seeds show the distribution of polysaccharides over these tissues. A sequential extraction of cell wall material with different aqueous extractants informs

  1. Hypoglycemic effect of Ganoderma lucidum polysaccharides

    Institute of Scientific and Technical Information of China (English)

    Hui-na ZHANG; Zhi-bin LIN

    2004-01-01

    AIM: To investigate the hypoglycemic effect of Ganoderma lucidum polysaccharides (Gl-PS) in the normal fasted mice and its possible mechanism. METHODS: Normal fasted mice were given a single dose of Gl-PS 25, 50, and 100 mg/kg by ip and the serum glucose was measured at 0, 3, and 6 h after administration. Gl-PS 1 00 mg/kg were also given by ip and the serum glucose and insulin levels were measured at 0 min, 30 min, 1 h, 3 h, 6 h, and 12 h.Pancreatic islets were isolated and incubated with glucose 5.6 mmol/L and different concentration of Gl-PS, the insulin content of islets and insulin release were examined. The islets fluorescent intensity of [Ca2+]i was also studied with a confocal microscope. Verapamil and egtazic acid were used to testify whether the insulin-releasing effect of Gl-PS was mediated by its ability to raise the Ca2+ influx. RESULTS: Gl-PS dose-dependently lowered the serum glucose levels at 3 h and 6 h after administration. Gl-PS 100 mg/kg raised the circulating insulin levels at 1 h after administration. In vitro, Gl-PS had no effect on islets insulin content, but it stimulated the insulin release after incubation with glucose 5.6 mmol/L. Confocal microscope showed that Gl-PS 100 mg/L had the capacity to raise the [Ca2+] i. The insulin-releasing effect of Gl-PS was inhibited by verapamil/egtazic acid. CONCLUSION:Gl-PS possesses the hypoglycemic effect on normal mice; one mechanism is through its insulin-releasing activity due to a facilitation of Ca2+ inflow to the pancreatic β cells.

  2. Protective effects of a polysaccharide fromSpirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson’s disease model in C57BL/6J mice

    Institute of Scientific and Technical Information of China (English)

    Fang Zhang; Jian Lu; Ji-guo Zhang; Jun-xia Xie

    2015-01-01

    The present study aimed to determine whether a polysaccharide obtained fromSpirulina platensis shows protective effects on dopaminergic neurons. A Parkinson’s disease model was established through the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyr-idine (MPTP) in C57BL/6J mice. Prior to the MPTP injection, some mice were pretreated with intraperitoneal injections of a polysaccharide derived fromSpirulina platensis once daily for 10 days. The results showed that the immunoreactive staining and mRNA expression of the dopa-mine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were signiifcantly increased in mice pretreated with 800 mg/kg of the poly-saccharide compared with those in MPTP-treated mice. The activities of superoxide dismutase and glutathione peroxidase in the serum and midbrain were also increased signiifcantly in mice injected with MPTP after pretreatment with the polysaccharide fromSpirulina platensis. By con-trast, the activity of monoamine oxidase B in serum and midbrain maintained unchanged. These experimental ifndings indicate that the polysaccharide obtained fromSpirulina platensis plays a protective role against the MPTP-induced loss of dopaminergic neurons in C57BL/6J mice, and that the antioxidative properties of this polysaccharide likely underlie its neuroprotective effect.

  3. Application of gamma irradiation for the enhanced physiological properties of polysaccharides from seaweeds

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-il; Kim, Hyun-Joo; Kim, Jae-Hun; Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580185 (Korea, Republic of); Soo Chun, Byeong; Hyun Ahn, Dong [Department of Food Science and Biotechnology, Pukyong National University, Busan 608737 (Korea, Republic of); Hwang, Young-Jeong [Division of Food Science, Jinju International University, Jinju 660759 (Korea, Republic of); Kim, Duk-Jin [Division of Food Engineering and Nutrition, Daegu University, Daegu 712714 (Korea, Republic of); Kim, Gwang Hoon [Department of Biology, Kongju National University, Chungnam 314701 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Polysaccharides from seaweeds, fucoidan and laminarin, were irradiated with gamma rays, and their structural changes and anti-oxidative activities were investigated. The gamma irradiation decreased the average molecular weights of polysaccharides, and UV spectra of irradiated polysaccharides showed increases in the numbers of carboxyl and carbonyl groups and double bonds. DPPH radical scavenging ability and reducing power of the gamma irradiated polysaccharides were significantly higher than those non-irradiated.

  4. Characterization of serological cross-reactivity between polysaccharide antigens of Streptococcus mutans serotypes c and d.

    OpenAIRE

    Grossi, S.; Prakobphol, A; Linzer, R; Campbell, L K; Knox, K W

    1983-01-01

    Immunological assays with antisera prepared against purified Streptococcus mutans serotype c polysaccharide demonstrated that a cross-reacting determinant on c polysaccharide reacted with the wall-associated rhamnose-glucose polysaccharide from S. mutans serotype d. Studies with 60 antisera prepared against chemostat cultures of S. mutans Ingbritt (c) demonstrated that the rhamnose-glucose polysaccharide cross-reactive determinant was consistently expressed on c antigen under a variety of gro...

  5. Polysaccharide-Based Membranes in Food Packaging Applications.

    Science.gov (United States)

    Ferreira, Ana R V; Alves, Vítor D; Coelhoso, Isabel M

    2016-01-01

    Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications.

  6. Pleurotus eryngii Polysaccharide Promotes Pluripotent Reprogramming via Facilitating Epigenetic Modification.

    Science.gov (United States)

    Deng, Wenwen; Cao, Xia; Wang, Yan; Yu, Qingtong; Zhang, Zhijian; Qu, Rui; Chen, Jingjing; Shao, Genbao; Gao, Xiangdong; Xu, Ximing; Yu, Jiangnan

    2016-02-17

    Pleurotus eryngii is a medicinal/edible mushroom with great nutritional value and bioactivity. Its polysaccharide has recently been developed into an effective gene vector via cationic modification. In the present study, cationized P. eryngii polysaccharide (CPS), hybridized with calcium phosphate (CP), was used to codeliver plasmids (Oct4, Sox2, Klf4, c-Myc) for generating induced pluripotent stem cells (iPSCs). The results revealed that the hybrid nanoparticles could significantly enhance the process and efficiency of reprogramming (1.6-fold increase) compared with the CP nanoparticles. The hybrid CPS also facilitated epigenetic modification during the reprogramming. Moreover, these hybrid nanoparticles exhibited multiple pathways (both caveolae- and clathrin-mediated endocytosis) in their cellular internalization, which accounted for the improved iPSCs generation. These findings therefore present a novel application of P. eryngii polysaccharide in pluripotent reprogramming via active epigenetic modification.

  7. Optimization of enzyme assisted extraction of polysaccharides from Ganoderma lucidum

    Institute of Scientific and Technical Information of China (English)

    Xu Chunhua; Tian Zhenle; Zhang Chenju; Yu Xiaobing; Zheng Huihua

    2014-01-01

    In the present work,an enzyme assisted extraction method is used to isolate crude polysaccharides from Ganoderma lucidum. The isolating effect was optimized with orthographic graph statistic method with three levels and four independent variables. Complex enzyme,extraction temperature,extraction time and ex-traction pH were combined to obtain the best possible combination to get maximum amount of extract and crude polysaccharides yield. The optimum extraction conditions were:complex enzyme amount of 3%(w/v),extrac-tion temperature at 45℃,extraction time of 3 h and extraction pH at 7. Under these conditions,the experimen-tal amount of extract is 8.9%and the yield of crude polysaccharides is 1.1%,which are in close agreement with the value predicted by the model.

  8. Polysaccharide-Based Membranes in Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Ana R. V. Ferreira

    2016-04-01

    Full Text Available Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications.

  9. Marine polysaccharides from algae with potential biomedical applications.

    Science.gov (United States)

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-05-15

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.

  10. Polysaccharide-Based Membranes in Food Packaging Applications

    Science.gov (United States)

    Ferreira, Ana R. V.; Alves, Vítor D.; Coelhoso, Isabel M.

    2016-01-01

    Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications. PMID:27089372

  11. Polysaccharides of higher fungi: Biological role, structure, and antioxidative activity

    Directory of Open Access Journals (Sweden)

    Kozarski Maja S.

    2014-01-01

    Full Text Available Fungal polysaccharides attract a lot of attention due to their multiple challenging biological properties, such as: anti-tumor, anti-viral, anticomplementary, anticoagulant, hypolipidemic and immunomodulatory and immune-stimulatory activities, which all together make them suitable for application in many quite distinctive areas, such as food industry, biomedicine, cosmetology, agriculture, environmental protection and waste water management. This article presents results with respect to biological properties, structure and procedures related to the isolation and activation of polysaccharides of higher fungi. It is considered and presented along with a review of the critical antioxidative activity and possible influence of the structural composition of polysaccharide extracts (isolated from these higher fungi upon their antioxidative properties.

  12. Microwave-assisted extraction of polysaccharides from solanum nigrum

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-qing; LIU-qin; JIANG xin-yu; ZENG fan

    2005-01-01

    The microwave-assisted method was used to extract polysaccharides from solanum nigrum. The optimum experimental parameters, mechanism of the extraction and the effect of microwave-assisted extraction process on the structures of polysaccharides were investigated. The extract was analyzed by the modified phenol-sulfuric acid method at 490 nm. The optimum experimental parameters were obtained by orthogonal experiments as follows: extraction time 15 min, microwave radiation power 455 W and the process ratio of materials mass to solvent volume 1∶20. The results show that compared with the conventional reflux extraction, the microwave-assisted extraction has a higher yield in shorter time, with no effect on the finally obtained polysaccharides as seen from the FT-IR spectra. The scanning electron microscopy images reveal that the mechanism of the extraction is related to the structural changes of the plant cells in different extracting conditions.

  13. Progress in the research and application of polysaccharide hemostatic materials

    Directory of Open Access Journals (Sweden)

    Yi JIANG

    2015-01-01

    Full Text Available Local hemostasis is the first step in wound treatment, and effective hemostatic methods could reduce the number of unnecessary casualties. Hemostatic materials need to have good hemostatic properties, excellent biocompatibility, no toxic side effects, no irritation and easy to prepare. The polysaccharide has many advantages, including rich source, simple structures, absorbable and biodegradable, excellent biocompatibility. At present, it has been found that polysaccharide is easy to modify in structure and recombine. This paper summarizes the characteristics and products of polysaccharide hemostatic materials including celluloses, chitosans, alginate, hyaluronic acid, and starch in order to offer the indications for clinical application and further study. DOI: 10.11855/j.issn.0577-7402.2014.12.16

  14. Designing Whey Protein-Polysaccharide Particles for Colloidal Stability.

    Science.gov (United States)

    Wagoner, Ty; Vardhanabhuti, Bongkosh; Foegeding, E Allen

    2016-01-01

    Interactions between whey proteins and polysaccharides, in particular the formation of food-grade soluble complexes, are of interest because of potential functional and health benefits. A specific application that has not received much attention is the use of complexes for enhanced colloidal stability of protein sols, such as protein-containing beverages. In beverages, the primary goal is the formation of complexes that remain dispersed after thermal processing and extended storage. This review highlights recent progress in the area of forming whey protein-polysaccharide soluble complexes that would be appropriate for beverage applications. Research in this area indicates that soluble complexes can be formed and stabilized that are reasonably small in size and possess a large surface charge that would predict colloidal stability. Selection of specific proteins and polysaccharides can be tailored to desired conditions. The principal challenges involve overcoming restrictions on protein concentration and ensuring that protein remains bioavailable.

  15. Effect of polysaccharides on the gelatinization properties of cornstarch dispersions.

    Science.gov (United States)

    Xu, Zhiting; Zhong, Fang; Li, Yue; Shoemaker, Charles F; Yokoyama, Wallace H; Xia, Wenshui

    2012-01-18

    Konjac glucomannan (KG, neutral), carboxymethylcellulose (CMC, negatively charged), and chitosan (positively charged) were added to cornstarch dispersions to study the effect of polysaccharide-starch interactions on starch gelatinization properties. Pasting and retrogradation properties were measured with a rheometer and DSC. Swelling properties of the starch granules were determined by solubility index, swelling power, and particle size distribution. Depending on the nature of the different polysaccharides, viscosities of cornstarch dispersions were affected differently. The particle size distributions were not influenced by the addition of any of the polysaccharides. Swelling results showed that the KG and CMC molecules interacted with the released or partly released amylose in the cornstarch dispersions. This was correlated with the short-term retrogradation of the starch pastes being retarded by the additions of KG and CMC. However, the chitosan molecules appeared not to associate with the amylose, so the retrogradation of the chitosan-cornstarch dispersions was not retarded.

  16. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa.

    Science.gov (United States)

    Evans, L R; Linker, A

    1973-11-01

    The slime polysaccharides produced by Pseudomonas aeruginosa isolated from a variety of human infections were investigated. Slime production in culture seemed optimal when adequate amounts of carbohydrate were present and under conditions of either high osmotic pressure or inadequate protein supply. The polysaccharides produced by the organisms were similar to each other, to the slime of Azotobacter vinelandii, and to seaweed alginic acids. They were composed of beta-1,4-linked d-mannuronic acid residues and variable amounts of its 5-epimer l-guluronic acid. All bacterial polymers contained o-acetyl groups which are absent in the alginates. The polysaccharides differed considerably in the ratio of mannuronic to guluronic acid content and in the number of o-acetyl groups. The particular composition of the slime was not found to be characteristic for the disease process from which the mucoid variants of P. aeruginosa were obtained.

  17. Preparation and characterization of mucilage polysaccharide for biomedical applications.

    Science.gov (United States)

    Archana, G; Sabina, K; Babuskin, S; Radhakrishnan, K; Fayidh, Mohammed A; Babu, P Azhagu Saravana; Sivarajan, M; Sukumar, M

    2013-10-15

    In the present investigation, the polysaccharide/mucilage from waste of Abelmoscus esculentus by modification in hot extraction using two different solvents (Acetone, Methanol) were extracted, characterized and further compared with seaweed polysaccharide for their potential applications. The percentage yield, emulsifying capacity and swelling index of this mucilage were determined. The macro algae and okra waste, gave high % yield (22.2% and 8.6% respectively) and good emulsifying capacity (EC%=52.38% and 54.76% respectively) with acetone, compared to methanol (11.3% and 0.28%; EC%=50%) (PH=7) while swelling index was greater with methanol than acetone extracts respectively. The infrared (I.R.) spectrum of the samples was recorded to investigate the chemical structure of mucilage. Thermal analysis of the mucilage was done with TGA (Thermal Gravimetric Analyzer) and DSC (Differential Scanning Calorimeter) which showed both okra and algal polysaccharide were thermostable hydrogels.

  18. Marine Polysaccharides from Algae with Potential Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Maria Filomena de Jesus Raposo

    2015-05-01

    Full Text Available There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.

  19. VISCOSITY BEHAVIOR OF LACQUER POLYSACCHARIDE IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    QIU Xingping; ZHANG Lina; DU Yumin; QIAN Baogong

    1991-01-01

    The dependence of measured viscosity on NaCl concentration (0.1 to 3.0M), pH (range of 2-13) and cadoxen composition Wcad (from 2% to 100% ) for the lacquer polysaccharide in NaCl/cadoxen/H2O mixture containing HCl or without were obtained. All the viscosity exponents γ in the Mark-Houwink equations under three different solvent condition are close to 0.5. The wcad dependence of reduced viscosity ηsp/c confirms the single strand chain of the polysaccharide. As the γ values close to 0.5 and values of unperturbed dimension θ/M and [η] much smaller than those for usual linear polymers, these facts suggest that the polysaccharide chains in the aqueous solutions should be dense random coil owing to the highly branched structure.

  20. Polysaccharides from Probiotics: New Developments as Food Additives

    Directory of Open Access Journals (Sweden)

    Philippe Michaud

    2010-01-01

    Full Text Available Microbial polysaccharides with nutraceutical potential and bioactive properties have been investigated in detail during the last few decades. There is an increasing demand in food industries for live microbes or polysaccharides produced by them which assert health benefits other than dietetic constituents. Although there are a large number of exopolysaccharide (EPS-producing bacteria, the titers are low for commercialization. This manuscript deals with the polysaccharides produced by probiotic strains, with major emphasis on the EPSs, their properties, applications and some of the strategies adopted which would be helpful in better understanding of the process in the near future. Research on the improved EPS biosynthesis is essential for obtaining high yields. Therefore, to reach commercialization, metabolic engineering must be applied.

  1. Antioxidant activity of herbal polysaccharides and cough reflex.

    Science.gov (United States)

    Nosalova, G; Jurecek, L; Hromadkova, Z; Kostalova, Z; Sadlonova, V

    2013-01-01

    The extraction of Fallopia sachalinensis leaves resulted in two fractions (FS-1 and FS-2). Chemical and spectral analyses of samples revealed the prevalence of pectic polysaccharides with high galacturonic acid, arabinose, galactose, and rhamnose content. Arabinogalactan with a higher content of phenolic prevailed in the FS-1, whereas rhamnogalacturonan predominated in the FS-2 fraction. Both polysaccharides showed significant antioxidant activity according to DPPH and FRAP assays. Evaluation of antitussive activity in healthy adult conscious guinea pigs after oral application of 50 and 75 mg/kg of the FS-2 polysaccharide extracts showed a significant suppression of cough reflex, without an influence on specific airway resistance. The suppression of cough was comparable with that of codeine.

  2. Modulation of surgical fibrosis by microbial zwitterionic polysaccharides

    Science.gov (United States)

    Ruiz-Perez, Begonia; Chung, Doo R.; Sharpe, Arlene H.; Yagita, Hideo; Kalka-Moll, Wiltrud M.; Sayegh, Mohamed H.; Kasper, Dennis L.; Tzianabos, Arthur O.

    2005-11-01

    Bacterial carbohydrates have long been considered T cell-independent antigens that primarily induce humoral immune responses. Recently, it has been demonstrated that bacterial capsules that possess a zwitterionic charge motif can activate CD4+ T cells after processing and presentation by antigen-presenting cells. Here we show that these zwitterionic polysaccharides can prevent T helper 1-mediated fibrosis by signaling for the release of IL-10 from CD4+ T cells in vivo. IL-10 production by these T cells and their ability to prevent fibrosis is controlled by the inducible costimulator (ICOS)-ICOS ligand pathway. These data demonstrate that the interaction of the zwitterionic polysaccharides with T cells results in modulation of surgical fibrosis in vivo and suggest a previously undescribed approach to "harnessing" T cell function to prevent inflammatory tissue disorders in humans. IL-10 | microbial polysaccharides | inducible costimulator

  3. Development of polymer-polysaccharide hydrogels for controlling drug delivery

    Science.gov (United States)

    Baldwin, Aaron David

    Michael type addition of thiol derivatives to N-ethylmaleimide (NEM) undergoes retro and exchange reactions in the presence of other thiol compounds at physiological pH and temperature. Model studies of NEM conjugated to various thiols (4-mercaptophenylacetic acid (MPA), N-acetylcysteine, or 3-mercaptopropionic acid (MP)), incubated with a naturally occurring reducing agent, glutathione, showed half-lives from 20-80 hrs with extents of conversion from 20-90% for MPA and N-acetylcysteine conjugates. The kinetics of the retro reactions and extent of exchange can be modulated by the Michael donor's reactivity; therefore the degradation of maleimide-thiol adducts could be tuned for controlled release of drugs or degradation of materials at timescales different than those currently possible via disulfide-mediated release. The reduction sensitive maleimide-thiol chemistry was then investigated as a crosslinking mechanism for LMWH hydrogels. Crosslinking maleimide functionalized LMWH with PEG functionalized with thiophenyl functionalities imparted glutathione sensitivity. 4-mercaptophenylpropionic acid and 2,2-dimethyl-3-(4-mercaptophenyl)propionic acid, induced sensitivity to glutathione as shown by a decrease in degradation time of 4x and 5x respectively. The pseudo-first order retro reaction constants were approximately an order of magnitude slower than hydrogels crosslinked via disulfide linkages, indicating the potential use of the retro succinimide-thioether covalent bonds for reduction mediated release and/or degradation with increased blood stability and prolonged drug delivery timescales compared to disulfide chemistries. In summary, this work highlights the use of polymer-polysaccharide hydrogels composed of LMWH and PEG as investigated for drug delivery and as a tool for elucidating a novel reduction sensitive controlled release mechanism.

  4. Characterization of the Kingella kingae polysaccharide capsule and exopolysaccharide.

    Directory of Open Access Journals (Sweden)

    Kimberly F Starr

    Full Text Available Recent evidence indicates that Kingella kingae produces a polysaccharide capsule. In an effort to determine the composition and structure of this polysaccharide capsule, in the current study we purified capsular material from the surface of K. kingae strain 269-492 variant KK01 using acidic conditions to release the capsule and a series of steps to remove DNA, RNA, and protein. Analysis of the resulting material by gas chromatography and mass spectrometry revealed N-acetyl galactosamine (GalNAc, 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo, and galactose (Gal. Further analysis by NMR demonstrated two distinct polysaccharides, one consisting of GalNAc and Kdo with the structure →3-β-GalpNAc-(1→5-β-Kdop-(2→ and the other containing galactose alone with the structure →5-β-Galf-(1→. Disruption of the ctrA gene required for surface localization of the K. kingae polysaccharide capsule resulted in elimination of GalNAc and Kdo but had no effect on the presence of Gal in bacterial surface extracts. In contrast, deletion of the pamABCDE locus involved in production of a reported galactan exopolysaccharide eliminated Gal but had no effect on the presence of GalNAc and Kdo in surface extracts. Disruption of ctrA and deletion of pamABCDE resulted in a loss of all carbohydrates in surface extracts. These results establish that K. kingae strain KK01 produces a polysaccharide capsule with the structure →3-β-GalpNAc-(1→5-β-Kdop-(2→ and a separate exopolysaccharide with the structure →5-β-Galf-(1→. The polysaccharide capsule and the exopolysaccharide require distinct genetic loci for surface localization.

  5. Isolation of Polysaccharides Sulfated during Early Embryogenesis in Fucus.

    Science.gov (United States)

    Hogsett, W E; Quatrano, R S

    1975-01-01

    Beginning 10 hours after fertilization, zygotes of Fucus distichus L. Powell incorporate (35)S into polysaccharides as a sulfate ester of fucose. These sulfated polysaccharides are sequestered in only the rhizoid cell of the two-celled embryo and can serve as a marker of cellular differentiation. Zygotes were pulsed at different times after fertilization with Na(2) (35)SO(4) to identify and isolate the fucans localized within the region of cytoplasm destined to become the rhizoid cell. Low molecular weight pools of (35)S were saturated within 60 minutes, with the greatest incorporation into ethanol-soluble and insoluble fractions occurring with 0.1 mm Na(2)SO(4) in the artificial sea water medium. At the time of rhizoid formation, four fucose-containing polysaccharide fractions incorporated (35)S. When each fraction was subjected to diethylaminoethyl chromatography, two components were eluted with KCl that contained over 84% of the fucose and 93% of the (35)S of the particular fraction. Highvoltage paper electrophoresis of each fraction also resulted in the separation of these two major components. Both components from each of the four fractions behaved identically when separated by diethylaminoethyl chromatography and paper electrophoresis. By comparing the incorporation of (35)S into the polysaccharide fractions at 4 and 16 hours after fertilization, the fucan-sulfate components that are localized in the cytoplasm at the time of rhizoid formation were isolated. Although sulfated polysaccharides in brown algae are reported to be very heterogeneous in terms of their sugar composition and complexes with other heteropolymers, we propose that there are two major components that are sulfated during early embryogenesis in Fucus. The location of these two sulfated polysaccharides in different chemical fractions may reflect their subcellular localization (e.g., cytoplasmic vesicles or cell walls), or their association with other heteropolymers.

  6. Final report of key comparison AFRIMETS.AUV.A-K5: primary pressure calibration of LS1P microphones according to IEC 61094-2, over the frequency range 2 Hz to 10 kHz.

    Science.gov (United States)

    Nel, R.; Avison, J.; Harris, P.; Blabla, M.; Hämäläinen, J.

    2017-01-01

    The degrees of equivalence of the AFRIMETS.AUV.A-K5 regional key comparison are reported here as the final report. The scope of the comparison covered the complex pressure sensitivities of two LS1P microphones over the frequency range 2 Hz to 10 kHz in accordance with IEC 61094-2: 2009. Four national metrology institutes from two different regional metrology organisations participated in the comparison. Two LS1P microphones were circulated simultaneously to all the participants in a circular configuration. One of the microphones sensitivity shifted and all results associated with this microphone were subsequently excluded from further analysis and linking. The AFRIMETS.AUV.A-K5 comparison results were linked to the CCAUV.A-K5 comparison results via dual participation in the CCAUV.A-K5 and AFRIMETS.AUV.A-K5 comparisons. The degrees of equivalence, linked to the CCAUV.A-K5 comparison, were calculated for all participants of this comparison. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. Analysis of Polysaccharides in Shii - Take fiom Guizhou

    Institute of Scientific and Technical Information of China (English)

    MO; Liping

    2001-01-01

    Polysaccharides, special those with physiological actions and nutrition, are widely used as an important resources for food, medicine industries, health etc. Herba Glossogynes Tenuifoliae (Shii-Take) is rich in polysaccharides with physiological actions and nutrition.  Guizhou lies to the southwest of China, Natural resources abound in this province, in which there is high output and many species of Shii-Fake. So study in the Shii-Take is favor of reasonably utilizing the natural resources and getting high addvalue products. And what is more, It is necessary for energetically developing west economy.……

  8. Extraction of Opuntia dillenii Haw. Polysaccharides and Their Antioxidant Activities

    OpenAIRE

    Heng Li; Qingxia Yuan; Xianjiao Zhou; Fuhua Zeng; Xiangyang Lu

    2016-01-01

    Use of natural polysaccharides in medicine and food has wide interest in research. In this study, we extracted and purified some polysaccharides from cactus Opuntia dillenii Haw. (ODP). Some preliminary functions of these products were characterized. Under the optimal purification conditions, the yield of ODP extracted from the 2–4 month-old Opuntia dillenii Haw. (T-ODP) was 30.60% ± 0.40%, higher than that of ODP from the 5–10 month-old materials (O-ODP) (18.97% ± 0.58%). The extracted ODP w...

  9. Analysis of Polysaccharides in Shii - Take fiom Guizhou

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Polysaccharides, special those with physiological actions and nutrition, are widely used as an important resources for food, medicine industries, health etc. Herba Glossogynes Tenuifoliae (Shii-Take) is rich in polysaccharides with physiological actions and nutrition. Guizhou lies to the southwest of China, Natural resources abound in this province, in which there is high output and many species of Shii-Fake. So study in the Shii-Take is favor of reasonably utilizing the natural resources and getting high addvalue products. And what is more, It is necessary for energetically developing west economy.

  10. Isolation of a polysaccharide with antiviral effect from Ulva lactuca.

    Science.gov (United States)

    Ivanova, V; Rouseva, R; Kolarova, M; Serkedjieva, J; Rachev, R; Manolova, N

    1994-05-01

    A polysaccharide from the green marine algae Ulva lactuca has been isolated. The substance has been investigated after acid hydrolysis by thin-layer and gas chromatography. The following carbohydrate components have been found: arabinose-xylose-rhamnose-galactose-mannose-glucose in ratio 1:1:9:5:2.5:16 respectively. One unidentified sugar has been demonstrated too. The polysaccharide has been studied for antiviral activity in vitro against a number of human and avian influenza viruses. A considerable inhibition of the viral reproduction was found. The effect was dose-dependent, strain-specific and selective.

  11. Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals

    Directory of Open Access Journals (Sweden)

    Alain Dufresne

    2010-06-01

    Full Text Available Aqueous suspensions of polysaccharide (cellulose, chitin or starch nanocrystals can be prepared by acid hydrolysis of biomass. The main problem with their practical use is related to the homogeneous dispersion of these nanoparticles within a polymeric matrix. Water is the preferred processing medium. A new and interesting way for the processing of polysaccharide nanocrystals-based nanocomposites is their transformation into a co-continuous material through long chain surface chemical modification. It involves the surface chemical modification of the nanoparticles based on the use of grafting agents bearing a reactive end group and a long compatibilizing tail.

  12. Structural characterization of Lytic Polysaccharide MonoOxygenases

    DEFF Research Database (Denmark)

    Frandsen, Kristian Erik Høpfner

    Lytic polysaccharide monooxygenases (LPMOs) are a new class of copper-containingmetalloenzymes that have been found to oxidatively degrade polysaccharides (and recently alsooligosaccharides). They dependent on redox partners to provide them with electrons and they utilizemolecular oxygen to cleave......) and their interaction with substratehave been structurally characterized. A number of structures of LsAA9A have been obtained in complexwith a range of cellulosic- and hemicellulosic substrates and with the active site Cu in different redox state.Two of the LsAA9A structures with the active site Cu in essentially a Cu...

  13. The radii of the nearby K5V and K7V stars 61 Cyg A & B - CHARA/FLUOR interferometry and CESAM2k modeling

    CERN Document Server

    Kervella, Pierre; Pichon, Bernard; Thévenin, Frédéric; Heiter, Ulrike; Bigot, Lionel; Brummelaar, Theo A Ten; Mcalister, Harold A; Ridgway, Stephen T; Turner, Nils; Sturmann, Judit; Sturmann, Laszlo; Goldfinger, P J; Farrington, Christopher

    2008-01-01

    Context: The main sequence binary star 61 Cyg (K5V+K7V) is our nearest stellar neighbour in the northern hemisphere. This proximity makes it a particularly well suited system for very high accuracy interferometric radius measurements. Aims: Our goal is to constrain the poorly known evolutionary status and age of this bright binary star. Methods: We obtained high accuracy interferometric observations in the infrared K' band, using the CHARA/FLUOR instrument. We then computed evolutionary models of 61 Cyg A & B with the CESAM2k code. As model constraints, we used a combination of observational parameters from classical observation methods (photometry, spectroscopy) as well as our new interferometric radii. Results: The measured limb darkened disk angular diameters are theta_LD(A) = 1.775 +/- 0.013 mas and theta_LD(B) = 1.581 +/- 0.022 mas, respectively for 61 Cyg A and B. Considering the high accuracy parallaxes available, these values translate into photospheric radii of R(A) = 0.665 +/- 0.005 Rsun and R(B...

  14. Characterisation of the effects of ATPA, a GLU(K5) receptor selective agonist, on excitatory synaptic transmission in area CA1 of rat hippocampal slices.

    Science.gov (United States)

    Clarke, V R J; Collingridge, G L

    2002-06-01

    Kainate receptors are involved in a variety of synaptic functions in the CNS including the regulation of excitatory synaptic transmission. Previously we described the depressant action of the GLU(K5) selective agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid (ATPA) on synaptic transmission in the Schaffer collateral-commissural pathway of rat hippocampal slices. In the present study we report several new features of the actions of ATPA at this synapse. Firstly, the effectiveness of ATPA is developmentally regulated. Secondly, the effects of ATPA decline during prolonged or repeated applications. Thirdly, the effects of ATPA are not mediated indirectly via activation of GABA(A), GABA(B), muscarinic or adenosine A(1) receptors. Fourthly, elevating extracellular Ca(2+) from 2 to 4 mM antagonises the effects of ATPA. Some differences between the actions of ATPA and kainate on synaptic transmission in the Schaffer collateral-commissural pathway are also noted.

  15. Radical scavenging and antioxidant effects of Matricaria chamomilla polyphenolic-polysaccharide conjugates.

    Science.gov (United States)

    Kolodziejczyk-Czepas, Joanna; Bijak, Michal; Saluk, Joanna; Ponczek, Michal B; Zbikowska, Halina M; Nowak, Pawel; Tsirigotis-Maniecka, Marta; Pawlaczyk, Izabela

    2015-01-01

    Matricaria chamomilla L. (MC), a member of the Asteraceae family, is one of the oldest medicinal plants, widely used worldwide for a variety of healing applications. Its recommendations, derived from both traditional and modern medicine, include numerous disorders such as inflammation, ulcers, wounds, gastrointestinal disorders, stomach ache, pharyngitis, rheumatic pain, as well as the other ailments. This work is focused on another aspect of the biological activity of chamomile polyphenolic-polysaccharide conjugates--their antioxidant properties in the protection of blood plasma components against in vitro oxidative stress. Measurements of DPPH and ABTS radical scavenging indicated considerable anti-free radical action of MC. Pre-incubation of blood plasma with MC considerably diminished the extent of ONOO(-)-induced oxidative modifications such as protein carbonyl groups, SH groups, 3-nitrotyrosine, as well as the formation of lipid hydroperoxides. The analysis of the FRAP assay result shows a considerable increase of ferric reducing ability of blood plasma in the presence of MC. The results obtained in this study indicate that polyphenolic-polysaccharide conjugates isolated from M. chamomilla substances possess antioxidant properties. The M. chamomilla macromolecular glycoconjugates may be useful in the creation of new natural-based medications or dietary supplements, helpful in the prevention and treatment of oxidative stress-mediated disorders.

  16. Photoreductive generation of amorphous bismuth nanoparticles using polysaccharides--bismuth-cellulose nanocomposites.

    Science.gov (United States)

    Breitwieser, Doris; Kriechbaum, Margit; Ehmann, Heike M A; Monkowius, Uwe; Coseri, Sergiu; Sacarescu, Liviu; Spirk, Stefan

    2015-02-13

    A simple and highly reproducible synthesis of amorphous bismuth nanoparticles incorporated into a polysaccharide matrix using a photoreduction process is presented. As precursor for the generation of the Bi nanoparticles, organosoluble triphenylbismuth is used. The precursor is dissolved in toluene and mixed with a hydrophobic organosoluble polysaccharide, namely trimethylsilyl cellulose (TMSC) with high DSSi. The solution is subjected to UV exposure, which induces the homolytic cleavage of the bismuth-carbon bond in BiPh3 resulting in the formation of Bi(0) and phenyl radicals. The aggregation of the Bi atoms can be controlled in the TMSC matrix and yields nanoparticles of around 20 nm size as proven by TEM. The phenyl radicals undergo recombination to form small organic molecules like benzene and biphenyl, which can be removed from the nanocomposite after lyophilization and exposure to high vacuum. Finally, the TMSC matrix is converted to cellulose after exposure to HCl vapors, which remove the trimethylsilyl groups from the TMSC derivative. Although TMSC is converted to cellulose, the formed TMS-OH is not leaving the nanocomposite but reacts instead with surface oxide layer of the Bi nanoparticles to form silylated Bi nanoparticles as proven by TEM/EDX.

  17. Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells

    Science.gov (United States)

    Pramod, P. S.; Shah, Ruchira; Jayakannan, Manickam

    2015-04-01

    The present work reports the development of pH and enzyme dual responsive polysaccharide vesicular nano-scaffolds for the administration of doxorubicin via physical loading and polymer-drug conjugation to breast cancer cells. Dextran was suitably modified with a renewable resource 3-pentadecyl phenol unit through imine and aliphatic ester chemical linkages that acted as pH and esterase enzyme stimuli, respectively. These dual responsive polysaccharide derivatives self-organized into 200 +/- 10 nm diameter nano-vesicles in water. The water soluble anticancer drug doxorubicin (DOX.HCl) was encapsulated in the hydrophilic pocket to produce core-loaded polysaccharide vesicles whereas chemical conjugation produced DOX anchored at the hydrophobic layer of the dextran nano-vesicles. In vitro studies revealed that about 70-80% of the drug was retained under circulatory conditions at pH = 7.4 and 37 °C. At a low pH of 6.0 to 5.0 and in the presence of esterase; both imine and ester linkages were cleaved instantaneously to release 100% of the loaded drugs. Cytotoxicity assays on Wild Type Mouse Embryonic Fibroblasts (WTMEFs) confirmed the non-toxicity of the newly developed dextran derivatives at up to 500 μg mL-1 in PBS. MTT assays on fibroblast cells revealed that DOX.HCl loaded nano-vesicles exhibited better killing abilities than DOX conjugated polymer nano-vesicles. Both DOX loaded and DOX conjugated nano-vesicles were found to show significant killing in breast cancer cells (MCF 7). Confocal microscopy images confirmed the uptake of DOX loaded (or conjugated) nano-vesicles by cells compared to free DOX. Thus, the newly developed pH and enzyme dual responsive polysaccharide vesicular assemblies are potential drug vectors for the administration of DOX in both loaded and chemically conjugated forms for the efficient killing of breast cancer cells.The present work reports the development of pH and enzyme dual responsive polysaccharide vesicular nano-scaffolds for the

  18. Development of capsular polysaccharide-based glycoconjugates for immunization against melioidosis and glanders.

    Science.gov (United States)

    Burtnick, Mary N; Heiss, Christian; Roberts, Rosemary A; Schweizer, Herbert P; Azadi, Parastoo; Brett, Paul J

    2012-01-01

    Burkholderia pseudomallei and Burkholderia mallei, the etiologic agents of melioidosis and glanders, respectively, cause severe disease in humans and animals and are considered potential agents of biological warfare and terrorism. Diagnosis and treatment of infections caused by these pathogens can be challenging and, in the absence of chemotherapeutic intervention, acute disease is frequently fatal. At present, there are no human or veterinary vaccines available for immunization against these emerging/re-emerging infectious diseases. One of the long term objectives of our research, therefore, is to identify and characterize protective antigens expressed by B. pseudomallei and B. mallei and use them to develop efficacious vaccine candidates. Previous studies have demonstrated that the 6-deoxy-heptan capsular polysaccharide (CPS) expressed by these bacterial pathogens is both a virulence determinant and a protective antigen. Consequently, this carbohydrate moiety has become an important component of the various subunit vaccines that we are currently developing in our laboratory. In the present study, we describe a reliable method for isolating CPS antigens from O-polysaccharide (OPS) deficient strains of B. pseudomallei; including a derivative of the select agent excluded strain Bp82. Utilizing these purified CPS samples, we also describe a simple procedure for covalently linking these T-cell independent antigens to carrier proteins. In addition, we demonstrate that high titer IgG responses can be raised against the CPS component of such constructs. Collectively, these approaches provide a tangible starting point for the development of novel CPS-based glycoconjugates for immunization against melioidosis and glanders.

  19. Nonclinical evaluation of novel cationically modified polysaccharide antidotes for unfractionated heparin.

    Directory of Open Access Journals (Sweden)

    Bartlomiej Kalaska

    Full Text Available Protamine, the only registered antidote of unfractionated heparin (UFH, may produce a number of adverse effects, such as anaphylactic shock or serious hypotension. We aimed to develop an alternative UFH antidote as efficient as protamine, but safer and easier to produce. As a starting material, we have chosen generally non-toxic, biocompatible, widely available, inexpensive, and easy to functionalize polysaccharides. Our approach was to synthesize, purify and characterize cationic derivatives of dextran, hydroxypropylcellulose, pullulan and γ-cyclodextrin, then to screen them for potential heparin-reversal activity using an in vitro assay and finally examine efficacy and safety of the most active polymers in Wistar rat and BALB/c mouse models of experimentally induced arterial and venous thrombosis. Efficacy studies included the measurement of thrombus formation, activated partial thromboplastin time, bleeding time, and anti-factor Xa activity; safety studies included the measurement of hemodynamic, hematologic and immunologic parameters. Linear, high molecular weight dextran substituted with glycidyltrimethylammonium chloride groups at a ratio of 0.65 per glucose unit (Dex40-GTMAC3 is the most potent and the safest UFH inhibitor showing activity comparable to that of protamine while possessing lower immunogenicity. Cationic polysaccharides of various structures neutralize UFH. Dex40-GTMAC3 is a promising and potentially better UFH antidote than protamine.

  20. Nonclinical evaluation of novel cationically modified polysaccharide antidotes for unfractionated heparin.

    Science.gov (United States)

    Kalaska, Bartlomiej; Kaminski, Kamil; Sokolowska, Emilia; Czaplicki, Dominik; Kujdowicz, Monika; Stalinska, Krystyna; Bereta, Joanna; Szczubialka, Krzysztof; Pawlak, Dariusz; Nowakowska, Maria; Mogielnicki, Andrzej

    2015-01-01

    Protamine, the only registered antidote of unfractionated heparin (UFH), may produce a number of adverse effects, such as anaphylactic shock or serious hypotension. We aimed to develop an alternative UFH antidote as efficient as protamine, but safer and easier to produce. As a starting material, we have chosen generally non-toxic, biocompatible, widely available, inexpensive, and easy to functionalize polysaccharides. Our approach was to synthesize, purify and characterize cationic derivatives of dextran, hydroxypropylcellulose, pullulan and γ-cyclodextrin, then to screen them for potential heparin-reversal activity using an in vitro assay and finally examine efficacy and safety of the most active polymers in Wistar rat and BALB/c mouse models of experimentally induced arterial and venous thrombosis. Efficacy studies included the measurement of thrombus formation, activated partial thromboplastin time, bleeding time, and anti-factor Xa activity; safety studies included the measurement of hemodynamic, hematologic and immunologic parameters. Linear, high molecular weight dextran substituted with glycidyltrimethylammonium chloride groups at a ratio of 0.65 per glucose unit (Dex40-GTMAC3) is the most potent and the safest UFH inhibitor showing activity comparable to that of protamine while possessing lower immunogenicity. Cationic polysaccharides of various structures neutralize UFH. Dex40-GTMAC3 is a promising and potentially better UFH antidote than protamine.

  1. Bacterial capsular polysaccharide prevents the onset of asthma through T-cell activation.

    Science.gov (United States)

    Johnson, Jenny L; Jones, Mark B; Cobb, Brian A

    2015-04-01

    Over the last four decades, increases in the incidence of immune-mediated diseases in the Western world have been linked to changes in microbial exposure. It is becoming increasingly clear that the normal microbiota in the gut can profoundly alter susceptibility to a wide range of diseases, such as asthma, in which immune homeostasis is disrupted, yet the mechanisms governing this microbial influence remains poorly defined. In this study, we show that gastrointestinal exposure to PSA, a capsular polysaccharide derived from the commensal bacterium Bacteroides fragilis, significantly limits susceptibility to the induction of experimental asthma. We report that direct treatment of mice with PSA generates protection from asthma, and this effect can be given to a naïve recipient by adoptive transfer of CD4(+) T cells from PSA-exposed mice. Remarkably, we found that these PSA-induced T cells are not canonical FoxP3(+) regulatory T cells, but that they potently inhibit both Th1 and Th2 models of asthma in an IL-10-dependent fashion. These findings reveal that bacterial polysaccharides link the microbiota with the peripheral immune system by activating CD4(+)Foxp3(-) T cells upon exposure in the gut, and they facilitate resistance to unnecessary inflammatory responses via the production of IL-10. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. The capsular polysaccharide Vi from Salmonella typhi is a B1b antigen.

    Science.gov (United States)

    Marshall, Jennifer L; Flores-Langarica, Adriana; Kingsley, Robert A; Hitchcock, Jessica R; Ross, Ewan A; López-Macías, Constantino; Lakey, Jeremy; Martin, Laura B; Toellner, Kai-Michael; MacLennan, Calman A; MacLennan, Ian C; Henderson, Ian R; Dougan, Gordon; Cunningham, Adam F

    2012-12-15

    Vaccination with purified capsular polysaccharide Vi Ag from Salmonella typhi can protect against typhoid fever, although the mechanism for its efficacy is not clearly established. In this study, we have characterized the B cell response to this vaccine in wild-type and T cell-deficient mice. We show that immunization with typhoid Vi polysaccharide vaccine rapidly induces proliferation in B1b peritoneal cells, but not in B1a cells or marginal zone B cells. This induction of B1b proliferation is concomitant with the detection of splenic Vi-specific Ab-secreting cells and protective Ab in Rag1-deficient B1b cell chimeras generated by adoptive transfer-induced specific Ab after Vi immunization. Furthermore, Ab derived from peritoneal B cells is sufficient to confer protection against Salmonella that express Vi Ag. Expression of Vi by Salmonella during infection did not inhibit the development of early Ab responses to non-Vi Ags. Despite this, the protection conferred by immunization of mice with porin proteins from Salmonella, which induce Ab-mediated protection, was reduced postinfection with Vi-expressing Salmonella, although protection was not totally abrogated. This work therefore suggests that, in mice, B1b cells contribute to the protection induced by Vi Ag, and targeting non-Vi Ags as subunit vaccines may offer an attractive strategy to augment current Vi-based vaccine strategies.

  3. The excreted polysaccharide of Pleurotus eryngii inhibits the foam-cell formation via down-regulation of CD36.

    Science.gov (United States)

    Chen, Jingjing; Yong, Yangyang; Xia, Xian; Wang, Zeliang; Liang, Youxing; Zhang, Shizhu; Lu, Ling

    2014-11-04

    Previous study has verified the polysaccharide from the fruiting body of Pleurotus eryngii (PEPE) is capable of decreasing the lipid content in both of cell-line and mouse model. However, little is known about underlying mechanisms and whether this bioactive polysaccharide exists in submerged culture. Here, we verified the excreted polysaccharides EP and EP-1 from submersion culture of P. eryngii have the remarkable inhibitory effects on lipid accumulation in macrophage-derived foam cells. Structure analysis indicates EP-1 consists of D-types of glucose, galactose and mannose with the main β(1 → 3)-glucan glycosidic linkage branched at O-6 by α-D-glucose while EP digested by β-1,3-glucanase fails to decrease the lipid accumulation, suggesting that the special structure is essential for its function. Expression analysis suggests that EP is able to cause the down-regulation of the scavenger receptor-CD36 on both transcription and protein levels. Most importantly, EP can be obtained by fermentation in a mass-production.

  4. Prioritization of a plant polysaccharide over a mucus carbohydrate is enforced by a Bacteroides hybrid two-component system.

    Science.gov (United States)

    Lynch, Jonathan B; Sonnenburg, Justin L

    2012-08-01

    Bacteroides is a dominant genus within the intestinal microbiota of healthy humans. Key adaptations of the Bacteroides to the dynamic intestinal ecosystem include a diverse repertoire of genes involved in sensing and processing numerous diet- and host-derived polysaccharides. One such adaptation is the carbohydrate-sensing hybrid two-component system (HTCS) family of signalling sensors, which has been widely expanded within the Bacteroides. Using Bacteroides thetaiotaomicron as a model, we have created a chimeric HTCS consisting of the well-characterized sensing domain of one HTCS, BT1754, and the regulatory domain of another HTCS, BT0366, to explore the regulatory capabilities of these molecules. We found that the BT0366 regulatory region directly binds to and mediates induction of the adjacent polysaccharide utilization locus (PUL) using whole-genome transcriptional profiling after inducing signalling through our chimeric protein. We also found that BT0366 activation simultaneously leads to repression of distal PULs involved in mucus carbohydrate consumption. These results suggest a novel mechanism by which an HTCS enforces a nutrient hierarchy within the Bacteroides via induction and repression of multiple PULs. Thus, hybrid two-component systems provide a mechanism for prioritizing consumption of carbohydrates through simultaneous binding and regulation of multiple polysaccharide utilization loci. © 2012 Blackwell Publishing Ltd.

  5. Sulfated Cyclocarya paliurus polysaccharides markedly attenuates inflammation and oxidative damage in lipopolysaccharide-treated macrophage cells and mice

    Science.gov (United States)

    Wang, Zhijun; Xie, Jianhua; Yang, Yujiao; Zhang, Fan; Wang, Shengnan; Wu, Ting; Shen, Mingyue; Xie, Mingyong

    2017-01-01

    Natural polysaccharides and their modified derivatives are crucial supplements to the prevention of inflammation. This study aimed to evaluate the effect of sulfated modification on the anti-inflammatory and anti-oxidative activities of Cyclocarya paliurus polysaccharides (CP). A sulfated CP, S-CP1–4 was obtained using chlorosulfonic acid-pyridine method. The chemical components and FT-IR spectrum confirmed that sulfated group was synthesized to the polysaccharide chains successfully. S-CP1–4 was found to inhibit nitric oxide production, phagocytic activity and the release of interleukin (IL)-6 and IL-1β in lipopolysaccharide-treated macrophage cells, RAW 264.7. S-CP1–4 significantly decreased the secretion of IL-6 and TNF-α and the thymus and spleen indexes, and increased the production of IL-10 in lipopolysaccharide-treated mice. S-CP1–4 could better protect the liver by inhibiting the activities of alanine aminotransferase and aspartate aminotransferase, and malondialdehyde level while increasing the superoxide dismutase activity and total anti-oxidative capacity. These results suggested that S-CP1–4 may be an effective anti-inflammatory agent, and sulfated modification may be a reliable method for the development of food supplements. PMID:28094275

  6. A sycamore cell wall polysaccharide and a chemically related tomato leaf polysaccharide possess similar proteinase inhibitor-inducing activities.

    Science.gov (United States)

    Ryan, C A; Bishop, P; Pearce, G

    1981-09-01

    A large pectic polysaccharide, called rhamnogalacturonan I, that is solubilized by a fungal endo-alpha-1,4-polygalacturonase from the purified walls of suspension-cultured sycamore cells possesses proteinase inhibitor-inducing activity similar to that of the proteinase inhibitor-inducing factor, a pectic-like oligosaccharide fraction isolated from tomato leaves. This suggests that the proteinase inhibitor-inducing activity resides in particular polysaccharide fragments which can be released when plant cell walls are exposed to appropriate enzyme degradation as a result of either wounding or pest attack.

  7. Evaluation in mice of a conjugate vaccine for cholera made from Vibrio cholerae O1 (Ogawa) O-specific polysaccharide.

    Science.gov (United States)

    Alam, Mohammad Murshid; Bufano, Megan Kelly; Xu, Peng; Kalsy, Anuj; Yu, Y; Freeman, Y Wu; Sultana, Tania; Rashu, Md Rasheduzzaman; Desai, Ishaan; Eckhoff, Grace; Leung, Daniel T; Charles, Richelle C; LaRocque, Regina C; Harris, Jason B; Clements, John D; Calderwood, Stephen B; Qadri, Firdausi; Vann, W F; Kováč, Pavol; Ryan, Edward T

    2014-02-01

    Protective immunity against cholera is serogroup specific. Serogroup specificity in Vibrio cholerae is determined by the O-specific polysaccharide (OSP) of lipopolysaccharide (LPS). Generally, polysaccharides are poorly immunogenic, especially in young children. Here we report the evaluation in mice of a conjugate vaccine for cholera (OSP:TThc) made from V. cholerae O1 Ogawa O-Specific Polysaccharide-core (OSP) and recombinant tetanus toxoid heavy chain fragment (TThc). We immunized mice intramuscularly on days 0, 21, and 42 with OSP:TThc or OSP only, with or without dmLT, a non-toxigenic immunoadjuvant derived from heat labile toxin of Escherichia coli. We detected significant serum IgG antibody responses targeting OSP following a single immunization in mice receiving OSP:TThc with or without adjuvant. Anti-LPS IgG responses were detected following a second immunization in these cohorts. No anti-OSP or anti-LPS IgG responses were detected at any time in animals receiving un-conjugated OSP with or without immunoadjuvant, and in animals receiving immunoadjuvant alone. Responses were highest following immunization with adjuvant. Serum anti-OSP IgM responses were detected in mice receiving OSP:TThc with or without immunoadjuvant, and in mice receiving unconjugated OSP. Serum anti-LPS IgM and vibriocidal responses were detected in all vaccine cohorts except in mice receiving immunoadjuvant alone. No significant IgA anti-OSP or anti-LPS responses developed in any group. Administration of OSP:TThc and adjuvant also induced memory B cell responses targeting OSP and resulted in 95% protective efficacy in a mouse lethality cholera challenge model. We describe a protectively immunogenic cholera conjugate in mice. Development of a cholera conjugate vaccine could assist in inducing long-term protective immunity, especially in young children who respond poorly to polysaccharide antigens.

  8. Regulated expression of polysaccharide utilization and capsular biosynthesis loci in biofilm and planktonic Bacteroides thetaiotaomicron during growth in chemostats.

    Science.gov (United States)

    TerAvest, Michaela A; He, Zhen; Rosenbaum, Miriam A; Martens, Eric C; Cotta, Michael A; Gordon, Jeffrey I; Angenent, Largus T

    2014-01-01

    Bacteroides thetaiotaomicron is a prominent member of the human distal gut microbiota that specializes in breaking down diet and host-derived polysaccharides. While polysaccharide utilization has been well studied in B. thetaiotaomicron, other aspects of its behavior are less well characterized, including the factors that allow it to maintain itself in the gut. Biofilm formation may be a mechanism for bacterial retention in the gut. Therefore, we used custom GeneChips to compare the transcriptomes of biofilm and planktonic B. thetaiotaomicron during growth in mono-colonized chemostats. We identified 1,154 genes with a fold-change greater than 2, with confidence greater than or equal to 95%. Among the prominent changes observed in biofilm populations were: (i) greater expression of genes in polysaccharide utilization loci that are involved in foraging of O-glycans normally found in the gut mucosa; and (ii) regulated expression of capsular polysaccharide biosynthesis loci. Hierarchical clustering of the data with different datasets, which were obtained during growth under a range of conditions in minimal media and in intestinal tracts of gnotobiotic mice, revealed that within this group of differentially expressed genes, biofilm communities were more similar to the in vivo samples than to planktonic cells and exhibited features of substrate limitation. The current study also validates the use of chemostats as an in vitro "gnotobiotic" model to study gene expression of attached populations of this bacterium. This is important to gut microbiota research, because bacterial attachment and the consequences of disruptions in attachment are difficult to study in vivo. © 2013 Wiley Periodicals, Inc.

  9. Purification, characterization and immunomodulating activity of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.).

    Science.gov (United States)

    Lee, Ji Sun; Synytsya, Andriy; Kim, Hyun Bok; Choi, Doo Jin; Lee, Seul; Lee, Jisun; Kim, Woo Jung; Jang, Seongjae; Park, Yong Il

    2013-11-01

    A water-soluble polysaccharide (JS-MP-1) was isolated and purified from the Korean mulberry fruits Oddi (Morus alba L.) by crushing the fresh fruits then performing ethanol precipitation and DEAE-cellulose ion exchange chromatography. The neutral monosaccharide composition of the purified JS-MP-1 was determined to be composed mainly of galactose (37.6%, in mole percent), arabinose (36.3%), and rhamnose (18.4%), while other major sugars such as glucose, xylose, mannose, and fucose were present as minor components. HPLC analysis revealed that JS-MP-1 contains both galacturonic acid (GalA) and glucuronic acid (GlcA) at approximately 4:1 in mole percent. Monosaccharide composition, Fourier-transform infrared (FTIR) analysis, biochemical analysis, and elemental analysis suggested that JS-MP-1 is an acidic heteropolysaccharide, most likely a rhamnoarabinogalacturonan type plant pectic polysaccharide, with an apparent molecular mass of 1600 kDa containing no, or if any, negligible level of sulfate esters and proteins. Enzyme-Linked Immunosorbent Assay and RT-PCR analysis demonstrated that JS-MP-1 significantly stimulates murine RAW264.7 macrophage cells to release chemokines (RANTES and MIP-1α) and proinflammatory cytokines (TNF-α and IL-6) and to induce the expression of iNOS and COX-2, which are responsible for the production of NO and prostaglandin PGE2, respectively. These results suggest that the mulberry fruit-derived polysaccharide JS-MP-1 can act as a potent immunomodulator, and these observations may support the applicability of this polysaccharide as an immunotherapeutic adjuvant or the water extracts of the mulberry fruit as a beneficial health food.

  10. Extracellular acidic polysaccharide production by a two-membered bacterial coculture.

    Science.gov (United States)

    Kurata, Shinya; Yamada, Kazutaka; Takatsu, Kyoko; Hanada, Satoshi; Koyama, Osamu; Yokomaku, Toyokazu; Kamagata, Yoichi; Kanagawa, Takahiro; Kurane, Ryuichiro

    2003-01-01

    A two-membered coculture of strains KYM-7 and KYM-8, identified as Cellulomonas cellulans and Agrobacterium tumefaciens, respectively, produced a large amount of an extracellular polysaccharide, designated APK-78, from starch. Each strain in pure culture produced only very little amount of polysaccharide from starch; the coexistence of the two strains from the early stage of cultivation was indispensable for a large amount of polysaccharide to be produced. The polysaccharide APK-78 was acidic and composed of glucose, galactose, succinic acid, and pyruvic acid with a molar ratio of 8.1:1.0:1.7:1.0, indicating that it is a succinoglycan type of polysaccharide.

  11. Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria.

    Science.gov (United States)

    Cuthbertson, Leslie; Mainprize, Iain L; Naismith, James H; Whitfield, Chris

    2009-03-01

    Many bacteria export extracellular polysaccharides (EPS) and capsular polysaccharides (CPS). These polymers exhibit remarkably diverse structures and play important roles in the biology of free-living, commensal, and pathogenic bacteria. EPS and CPS production represents a major challenge because these high-molecular-weight hydrophilic polymers must be assembled and exported in a process spanning the envelope, without compromising the essential barrier properties of the envelope. Emerging evidence points to the existence of molecular scaffolds that perform these critical polymer-trafficking functions. Two major pathways with different polymer biosynthesis strategies are involved in the assembly of most EPS/CPS: the Wzy-dependent and ATP-binding cassette (ABC) transporter-dependent pathways. They converge in an outer membrane export step mediated by a member of the outer membrane auxiliary (OMA) protein family. OMA proteins form outer membrane efflux channels for the polymers, and here we propose the revised name outer membrane polysaccharide export (OPX) proteins. Proteins in the polysaccharide copolymerase (PCP) family have been implicated in several aspects of polymer biogenesis, but there is unequivocal evidence for some systems that PCP and OPX proteins interact to form a trans-envelope scaffold for polymer export. Understanding of the precise functions of the OPX and PCP proteins has been advanced by recent findings from biochemistry and structural biology approaches and by parallel studies of other macromolecular trafficking events. Phylogenetic analyses reported here also contribute important new insight into the distribution, structural relationships, and function of the OPX and PCP proteins. This review is intended as an update on progress in this important area of microbial cell biology.

  12. Cell surface display of cold-active esterase EstPc with the use of a new autotransporter from Psychrobacter cryohalolentis K5(T).

    Science.gov (United States)

    Petrovskaya, L E; Novototskaya-Vlasova, K A; Kryukova, E A; Rivkina, E M; Dolgikh, D A; Kirpichnikov, M P

    2015-01-01

    We have cloned the gene coding for AT877-a new predicted member of the autotransporter protein family with an esterase passenger domain from permafrost bacterium Psychrobacter cryohalolentis K5(T). Expression of AT877 gene in Escherichia coli resulted in accumulation of the recombinant autotransporter in the outer membrane fraction and at the surface of the induced cells. AT877 displayed maximum hydrolytic activity toward medium-chain p-nitrophenyl esters (C8-C10) at 50 °C and was resistant to the presence of several metal ions, organic solvents and detergents. Previously, we have described a cold-active esterase EstPc from the same bacterium which possesses high activity at low temperatures and relatively high thermal stability. To construct a cell surface display system for EstPc, the hybrid autotransporter gene coding for EstPc with the α-helical linker and the translocator domain from AT877 was constructed and expressed in E. coli. According to the results of the cell fractionation studies and esterase activity measurements, the EstPc passenger was successfully displayed at the surface of the induced cells. It demonstrated a temperature optimum at 15-25 °C and a substrate preference toward p-nitrophenyl butyrate (C4). Obtained results provide a new example of the biotechnologically relevant enzyme from the permafrost microbial community with potential applications for the conversion of short- and medium-chain ester substrates and a basis for the construction of a new cell surface display platform.

  13. Ultrasound assisted extraction of polysaccharides from hazelnut skin.

    Science.gov (United States)

    Yılmaz, Tuncay; Tavman, Şebnem

    2016-03-01

    In this study ultrasound assisted extraction (UAE) of polysaccharides from hazelnut skin has been studied. Optimum sonication time has been evaluated depending on responses such as amount of carbohydrate and dried sample and thermogravimetric analysis. Chemical and structural properties of extracted material have been determined by Fourier transform spectroscopy attenuated-total reflectance (FTIR-ATR) spectroscopy. Pretreated hazelnut skin powders were extracted in distilled water. Mixture was sonicated by ultrasonic processor probe for 15, 30, 45, 60, 90, and 120 min. The results of UAE showed that maximum ethanol insoluble extracts in 60 min and the highest dry matter content could be obtained in 120 min extraction. Although total carbohydrate content of ethanol insoluble dry extract decreased with time, total carbohydrate in ethanol soluble fraction increased. Polysaccharides extracted from hazelnut skin were assumed to be pectic polysaccharide according to the literature survey of FTIR analysis result. Application time of UAE has an important effect on extraction of polysaccharide from hazelnut skin. This affect could be summarized by enhancing extraction yield up to critical level. Decrease of the yield in ethanol insoluble part could be explained by polymer decomposition. Most suitable model was hyperbolic model by having the lowest root mean square error and the highest R(2) values.

  14. Thermal decomposition of natural polysaccharides: Chitin and chitosan

    Directory of Open Access Journals (Sweden)

    Kuchina Yu.A.

    2015-03-01

    Full Text Available The results of the thermal analysis of shrimp’s chitin and chitosan have been presented (samples of polysaccharide differed by the deacetylation degree have been studied. The thermal analysis has been carried out by differential thermogravimetry and differential scanning calorimetry. Activation energy of process of chitin and chitosan thermal destruction has been calculated

  15. Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Thierry Fontaine

    2011-11-01

    Full Text Available A new polysaccharide secreted by the human opportunistic fungal pathogen Aspergillus fumigatus has been characterized. Carbohydrate analysis using specific chemical degradations, mass spectrometry, ¹H and ¹³C nuclear magnetic resonance showed that this polysaccharide is a linear heterogeneous galactosaminogalactan composed of α1-4 linked galactose and α1-4 linked N-acetylgalactosamine residues where both monosacharides are randomly distributed and where the percentage of galactose per chain varied from 15 to 60%. This polysaccharide is antigenic and is recognized by a majority of the human population irrespectively of the occurrence of an Aspergillus infection. GalNAc oligosaccharides are an essential epitope of the galactosaminogalactan that explains the universal antibody reaction due to cross reactivity with other antigenic molecules containing GalNAc stretches such as the N-glycans of Campylobacter jejuni. The galactosaminogalactan has no protective effect during Aspergillus infections. Most importantly, the polysaccharide promotes fungal development in immunocompetent mice due to its immunosuppressive activity associated with disminished neutrophil infiltrates.

  16. Interpenetrating polymer network hydrogels based on polysaccharides for biomedical applications

    NARCIS (Netherlands)

    Pescosolido, L.

    2011-01-01

    The main theme of this thesis is the development and the characterization of interpenetrating polymer network hydrogels (IPNs) based on biodegradable and biocompatible polysaccharides, in particular alginate, hyaluronic acid and dextran. The suitability of these novel systems as pharmaceutical and b

  17. Affinity purification of polysaccharide degrading enzymes with crosslinked substrates

    NARCIS (Netherlands)

    Rozie, H.J.

    1992-01-01

    The aim of this work was to find economically favourable, affinity based, purification methods for several polysaccharide splitting bulk enzymes. The framework in which this study is done is described in Chapter 1.

    Chapter 2 describes the adsorption of endo-polygalacturonase (endoPG

  18. Affinity purification of polysaccharide degrading enzymes with crosslinked substrates

    NARCIS (Netherlands)

    Rozie, H.J.

    1992-01-01

    The aim of this work was to find economically favourable, affinity based, purification methods for several polysaccharide splitting bulk enzymes. The framework in which this study is done is described in Chapter 1.

    Chapter 2 describes the adsorption of endo-polygalacturonase

  19. Feasibility of attached cultivation for polysaccharides production by Porphyridium cruentum.

    Science.gov (United States)

    Lutzu, Giovanni Antonio; Zhang, Lanlan; Zhang, Zhaohui; Liu, Tianzhong

    2017-01-01

    Porphyridium cruentum is one of the most valued microalgae species able to produce both pigments and exopolysaccharides. Conventional liquid suspended cultivation in ponds and photobioreactors show its disadvantages in lower cultivation efficiency and higher stirring power consumption due to the high viscosity of the medium by the accumulation of polysaccharides. In this work, a new method of culture (called attached cultivation) based on the growth of microalgae using a supporting surface was successfully applied to the cultivation of P. cruentum and the effect of the main influential parameters on its growth rate and polysaccharides production has been investigated. Higher values of these factors resulted in a faster growth rate and, in particular, optimum values of 6.98 g m(-2) for initial biomass density, 100 µmol m(-2) s(-1) for light intensity, continuous illumination, 2.0 % for CO2 concentration, and 0.1 v v(-1) min(-1) for aeration rate produced the best polysaccharide production of 42 % dry weight. The nutrition profile of P. cruentum obtained in attached and suspended cultivations was similar. Overall these results demonstrate that the attached cultivation is a promising technique which greatly improves the growth rate of P. cruentum as well as its production of polysaccharides and, therefore, it is worth enhancing to be exploited for commercial application.

  20. [Optimum of polysaccharide distillation on scrap Cordyceps militaris medium].

    Science.gov (United States)

    Ren, Shu-Yu; Zhao, Chun-Yan; Song, Hui-Yi; Zhao, Hao-Lu; Sun, Jun-De

    2008-03-01

    A mass of scrap Cordyceps militaris solid culture medium could not be utilized better. In this test, using orthogonal design the optimal technique parmeter of extracting polysaccharide was 80 degrees C, two times, in twenty times of water, and 120 minutes each time. Temperature was the most important factor. The referenced data could be provided to depurative production of Cordyceps militaris and resource utilization.

  1. Immunization of immunosuppressed patients with pneumococcal polysaccharide vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Ammann, A.J.; Schiffman, G.; Addiego, J.E.; Wara, W.M.; Wara, D.W.

    The antibody response after immunization with capsular polysaccharides of Streptococcus pneumoniae of patients with Hodgkin's disease or with carcinoma of the head and neck was studied. Patients with Hodgkin's disease who were immunized prior to the institution of immunosuppressive therapy were capable of responding to each of the pneumococcal polysaccharides evaluated. The level of antibody achieved by the patients is lower than that of normal control subjects. Nevertheless, absolute values were in the range that would be expected to result in protection. The duration of antibody response was not evaluated. Patients with carcinoma of the head and neck did not demonstrate a significant increase in antibody levels after vaccination, which was done at the time of radiation therapy. Two years after immunization antibody levels were lower with recovery at three years. However, these changes were not statistically significant. Decreased levels of antibody to pneumococcal polysaccharide types not present in the vaccine were observed. Studies of patients with carcinoma of the heat and neck demonstrated that radiation therapy has a profound immunosuppressive effect on antibody levels. More selective immunosuppressive therapy and/or an increase in the immunogenicity of the polysaccharides in the vaccine are required for protection of patients with malignancy.

  2. Immunological and biochemical characterization of extracellular polysaccharides of mucoralean moulds.

    NARCIS (Netherlands)

    Ruiter, de G.A.

    1993-01-01

    In this thesis the characterization is described of the antigenic determinants (epitopes) of the extracellular polysaccharides (EPSs) from moulds belonging to the order of Mucorales. Detailed knowledge of the structure of these epitopes allows for further development of a new generation of methods f

  3. Protein/polysaccharide complexes at air/water interfaces

    NARCIS (Netherlands)

    Ganzevles, R.A.

    2007-01-01

    KEYWORDS:protein, polysaccharide,Pectin, a versatile polysaccharide present in plant cell walls

    NARCIS (Netherlands)

    Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A.

    2009-01-01

    Pectin or pectic substances are collective names for a group of closely associated polysaccharides present in plant cell walls where they contribute to complex physiological processes like cell growth and cell differentiation and so determine the integrity and rigidity of plant tissue. They also pla

  4. Structure of pectic polysaccharides from sunflower salts-soluble fraction

    Science.gov (United States)

    The manuscript discusses the structural features of pectin polysaccharides extracted from seedless sunflower head residues. The analysis using 1H, 13C and two-dimensional gHSQC NMR showed various numbers of methyl and hydroxyl groups attached to the anomeric carbons in the pectin backbone at differe...

  5. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides

    NARCIS (Netherlands)

    Vries, de R.P.; Visser, J.

    2001-01-01

    Degradation of plant cell wall polysaccharides is of major importance in the food and feed, beverage, textile, and paper and pulp industries, as well as in several other industrial production processes. Enzymatic degradation of these polymers has received attention for many years and is becoming a m

  6. Synthesis of Oligosaccharide Fragments of the Pectic Polysaccharide Rhamnogalacturonan I

    DEFF Research Database (Denmark)

    Zakharova, Alexandra

    Pectin is a highly heterogeneous polysaccharide of plant origin. It is found in the primary cell wall and contributes to various cell functions, including support, defense, signaling, and cell adhesion. Pectin also plays important role as a food additive, serving as stabilizing and thickening age...

  7. The digestion of yeast cell wall polysaccharides in veal calves

    NARCIS (Netherlands)

    Gaillard, B.D.E.; Weerden, van E.J.

    1976-01-01

    1. The digestibility of the cell wall polysaccharides of an alkane-grown yeast in different parts of the digestive tract of two veal calves fitted with re-entrant cannulas at the end of the ileum was studied by replacing part of the skim-milk powder of their ‘normal’, milk-substitute (all-milk-prote

  8. Polysaccharide Colloids as Smart Vehicles in Cancer Therapy.

    Science.gov (United States)

    Caro, Carlos; Pozo, David

    2015-01-01

    Cancer disease is one of the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and around 8 million cancer-related deaths yearly. Estimates expect to increase these figures over the next few years. Therefore, it is very important to develop more effective and targeted therapies. Polysaccharides are widely used for biomedical and pharmaceutical applications due to their interesting properties, and can be utilised in the production of nanovehicles for drug delivery, since they frequently extend the half-life and improve the stability of chemotherapeutic agents in bloodstream allowing them to reach the tumour tissue. Moreover, polysaccharide-based nanovehicles are generally expected to increase the therapeutic benefit by reducing the undesired side effects and promoting a more efficient cellular uptake. Here, we highlight the application of various polysaccharides as nanovehicles in cancer therapy, focusing mainly on in vivo applications and describing the main advantages of each designed system in a critical way. The use of different polysaccharides interacting with metal nanoparticles to develop new nanovehicles for cancer therapy will also be discussed.

  9. Downstream processing of polysaccharide degrading enzymes by affinity chromatography.

    NARCIS (Netherlands)

    Somers, W.A.C.

    1992-01-01

    The objective of this study was the development of affinity matrices to isolate and purify a number of polysaccharide degrading enzymes and the application of these adsorbents in the large- scale purification of the enzymes from fermentation broths. Affinity adsorbents were developed for endo-polyga

  10. FTIR characterization of protein-polysaccharide interactions in extruded blends.

    Science.gov (United States)

    Guerrero, Pedro; Kerry, Joe P; de la Caba, Koro

    2014-10-13

    Soy protein-based blends were processed by double screw extrusion and the effects of different types and contents of polysaccharides were analyzed. Although extrusion has not been widely used for this type of blends, in this study it was observed that the increase in polysaccharide content in blends caused a decrease in specific mechanical energy (SME), facilitating extrusion process and showing the potential of this process, which is more cost effective at industrial scale. In order to explain this behavior, infrared spectroscopy analysis was carried out, mainly in the amide I and II regions. Moreover, curve fitting analysis showed the conformational changes produced in the blends due to the addition of polysaccharides, which affected protein denaturation. These changes also affected properties such as moisture content (MC) and total solubility matter (TSM). However, conformational changes did not show significant effects with respect to piece density (PD) or in the expansion ratio (ER) of the pellets. The quantitative analysis of the changes in the amide I and II regions provided novel information about the modifications produced in protein-based blends modified with polysaccharides. In this context, infrared spectroscopy provided a convenient and powerful means to monitor interactions between all ingredients used in the blend formulation, which is of great importance in order to explain changes in the functional properties of biodegradable materials used for industrial applications in food and pharmaceutical industries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Extraction, Characterization and Immunological Activity of Polysaccharides from Rhizoma gastrodiae

    Directory of Open Access Journals (Sweden)

    Juncheng Chen

    2016-06-01

    Full Text Available A response surface and Box-Behnken design approach was applied to augment polysaccharide extraction from the residue of Rhizoma gastrodiae. Statistical analysis revealed that the linear and quadratic terms for three variables during extraction exhibited obvious effects on extraction yield. The optimum conditions were determined to be a liquid-to-solid ratio of 54 mL/g, an extraction temperature of 74 °C, an extraction time of 66 min, and three extractions. These conditions resulted in a maximum Rhizoma gastrodiae polysaccharide (RGP extraction yield of 6.11% ± 0.13%. Two homogeneous polysaccharides (RGP-1a and RGP-1b were obtained using DEAE cellulose-52 and Sephadex G-100 columns. The preliminary characterization of RGP-1a and RGP-1b was performed using HPLC-RID, HPGPC, and FTIR. Tests of the immunological activity in vitro showed that the two polysaccharides could significantly stimulate macrophages to release NO and enhance phagocytosis in a dose-dependent manner. In particular, RGP-1b (200 μg/mL and LPS (2 μg/mL had almost the same influence on the NO production and phagocytic activity of RAW 264.7 macrophages (p > 0.05. All the data obtained indicate that RGP-1a and RGP-1b have the potential to be developed as a health food.

  12. Mapping the polysaccharide degradation potential of Aspergillus niger

    NARCIS (Netherlands)

    Andersen, M.R.; Giese, M.; De Vries, R.P.; Nielsen, J.

    2012-01-01

    Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For

  13. Extraction, Characterization and Immunological Activity of Polysaccharides from Rhizoma gastrodiae.

    Science.gov (United States)

    Chen, Juncheng; Tian, Shan; Shu, Xiaoying; Du, Hongtao; Li, Na; Wang, Junru

    2016-06-25

    A response surface and Box-Behnken design approach was applied to augment polysaccharide extraction from the residue of Rhizoma gastrodiae. Statistical analysis revealed that the linear and quadratic terms for three variables during extraction exhibited obvious effects on extraction yield. The optimum conditions were determined to be a liquid-to-solid ratio of 54 mL/g, an extraction temperature of 74 °C, an extraction time of 66 min, and three extractions. These conditions resulted in a maximum Rhizoma gastrodiae polysaccharide (RGP) extraction yield of 6.11% ± 0.13%. Two homogeneous polysaccharides (RGP-1a and RGP-1b) were obtained using DEAE cellulose-52 and Sephadex G-100 columns. The preliminary characterization of RGP-1a and RGP-1b was performed using HPLC-RID, HPGPC, and FTIR. Tests of the immunological activity in vitro showed that the two polysaccharides could significantly stimulate macrophages to release NO and enhance phagocytosis in a dose-dependent manner. In particular, RGP-1b (200 μg/mL) and LPS (2 μg/mL) had almost the same influence on the NO production and phagocytic activity of RAW 264.7 macrophages (p > 0.05). All the data obtained indicate that RGP-1a and RGP-1b have the potential to be developed as a health food.

  14. In vitro anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis.

    Science.gov (United States)

    Chen, Mei-Zhen; Xie, Hao-Gui; Yang, La-Wei; Liao, Zao-Hui; Yu, Jie

    2010-10-01

    In this paper, in vitro anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis were investigated. Cytotoxicities and antiviral activities of Gracilaria lemaneiformis polysaccharides (PGL), Gracilaria lemaneiformis polysaccharide fraction-1 (GL-1), Gracilaria lemaneiformis polysaccharide fraction-2 (GL-2) and Gracilaria lemaneiformis polysaccharide fraction-3 (GL-3) were studied by the Methyl thiazolyl tetrazolium (MTT) method, and the inhibitory effect against Human influenza virus H1-364 induced cytopathic effect (CPE) on MDCK cells were observed by the CPE method. In addition, the antiviral mechanism of PGL was explored by Plaque forming unit (PFU), MTT and CPE methods. The results showed: i) Cytotoxicities were not significantly revealed, and H1-364 induced CPE was also reduced treated with sulfated polysaccharide fractions from Gracilaria lemaneiformis; ii) Antiviral activities were associated with the mass percentage content of sulfate groups in polysaccharide fractions, which was about 13%, in polysaccharides (PGL and GL-2) both of which exhibited higher antiviral activity; iii) A potential antiviral mechanism to explain these observations is that viral adsorption and replication on host cells were inhibited by sulfated polysaccharides from Gracilaria lemaneiformis. In conclusion, Anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis were revealed, and the antiviral activities were associated with content of sulfate groups in polysaccharide fractions.

  15. Comparison of antioxidant and antiproliferation activities of polysaccharides from eight species of medicinal mushrooms.

    Science.gov (United States)

    Chen, Peiying; Yong, Yangyang; Gu, Yifan; Wang, Zeliang; Zhang, Shizhu; Lu, Ling

    2015-01-01

    Polysaccharides from mushrooms including Pleurotus eryngii, P. ostreatus, P. nebrodensis, Lentinus edodes, Hypsizygus marmoreus, Flammulina velutipes, Ganoderma lucidum, and Hericium erinaceus were isolated by water extraction and alcohol precipitation. Our results suggest that all tested polysaccharides have the significant antioxidant capacities of scavenging free radicals (1,1-diphenyl-2-picrylhydrazyl and hydroxyl radicals). Among them, the H. erinaceus polysaccharide exhibits the highest 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity, whereas the L. edodes polysaccharide shows the strongest scavenging ability for hydroxyl radicals. Furthermore, using the MCF-7 breast cancer cell line and HeLa cells, all 8 selected polysaccharides are able to inhibit the proliferation of tumor cells, but the strength of inhibition varied depending on the mushroom species and the concentration used. Notably, G. lucidum polysaccharide shows the highest inhibition activity on MCF-7 cells. By comparison, H. erinaceus polysaccharide has the strongest inhibitory effect on HeLa cells. Moreover, high-performance liquid chromatography with a carbohydrate analysis column showed significant differences in polysaccharide components among these mushrooms. Thus our data suggest that the different species of mushrooms have the variable functions because of their own specific polysaccharide components. The 8 mushroom polysaccharides have the potential to be used as valuable functional food additives or sources of therapeutic agents for antioxidant and cancer treatments, especially polysaccharides from H. erinaceus, L. edodes, and G. lucidum.

  16. Pleurotus tuber-regium Polysaccharides Attenuate Hyperglycemia and Oxidative Stress in Experimental Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Hui-Yu Huang

    2012-01-01

    Full Text Available Pleurotus tuber-regium contains polysaccharides that are responsible for pharmacological actions, and medicinal effects of these polysaccharides have not yet been studied in diabetic rats. We examined the antidiabetic, antihyperlipidemic, and antioxidant properties of P. tuber-regium polysaccharides in experimental diabetic rats. Forty rats were equally assigned as diabetic high-fat (DHF diet and polysaccharides treated DHF groups (DHF+1P, DHF+2P, and DHF+3P, 20 mg/kg bodyweight/8-week. Diabetes was induced by chronic low-dose streptozotocin injections and a high-fat diet to mimic type 2 diabetes. Polysaccharides (1P, 2P, and 3P were extracted from three different strains of P. tuber-regium. Fasting blood glucose and glycosylated hemoglobin (HbA1c levels substantially decreased, while serum insulin levels were restored by polysaccharides treatment compared to DHF. Furthermore, plasma total cholesterol, triglycerides, and low-density lipoprotein levels were significantly (P<0.01 lower in polysaccharide groups. High-density lipoprotein levels were attenuated with polysaccharides against diabetes condition. Polysaccharides inhibited (P<0.01 the lipid peroxidation index (malondialdehyde, and restored superoxide dismutase and glutathione peroxidase activities in the liver of diabetic rats. The antihyperglycemic property of polysaccharides perhaps boosts the antioxidant system that attenuates oxidative stress. We emphasize that P. tuber-regium polysaccharides can be considered as an alternative medicine to treat hyperglycemia and oxidative stress in diabetic rats.

  17. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing

    DEFF Research Database (Denmark)

    Runavot, Jean-Luc; Guo, Xiaoyuan; Willats, William George Tycho;

    2014-01-01

    Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non......-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide...... localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being...

  18. Proteomic analysis of scallop hepatopancreatic extract provides insights into marine polysaccharide digestion

    Science.gov (United States)

    Lyu, Qianqian; Jiao, Wenqian; Zhang, Keke; Bao, Zhenmin; Wang, Shi; Liu, Weizhi

    2016-01-01

    Marine polysaccharides are used in a variety of applications, and the enzymes that degrade these polysaccharides are of increasing interest. The main food source of herbivorous marine mollusks is seaweed, and several polysaccharide-degrading enzymes have been extracted from mollusk digestive glands (hepatopancreases). Here, we used a comprehensive proteomic approach to examine the hepatopancreatic proteins of the Zhikong scallop (Chlamys farreri). We identified 435 proteins, the majority of which were lysosomal enzymes and carbohydrate and protein metabolism enzymes. However, several new enzymes related to polysaccharide metabolism were also identified. Phylogenetic and structural analyses of these enzymes suggest that these polysaccharide-degrading enzymes may have a variety of potential substrate specificities. Taken together, our study characterizes several novel polysaccharide-degrading enzymes in the scallop hepatopancreas and provides an enhanced view of these enzymes and a greater understanding of marine polysaccharide digestion. PMID:27982037

  19. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing

    DEFF Research Database (Denmark)

    Runavot, Jean-Luc; Guo, Xiaoyuan; Willats, William George Tycho

    2014-01-01

    Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non......-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide...... localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being...

  1. Inulin - a versatile polysaccharide with multiple pharmaceutical and food chemical uses.

    Directory of Open Access Journals (Sweden)

    Thomas Barclay

    2010-12-01

    Full Text Available alpha-D-glucopyranosyl-[beta-D-fructofuranosyl](n-1-D-fructofuranoside, commonly referred to as inulin, is a natural plant-derived polysaccharide with a diverse range of food and pharmaceuticalapplications. It is used by the food industry as a soluble dietary fibre and fat or sugar replacement, and in the pharmaceutical industry as a stabiliser and excipient. It can also be used as a precursor in the synthesis of a wide range of compounds. New uses for inulin are constantly being discovered, with recent research into its use for slow-release drug delivery. Inulin, when in a particulate form, possesses anti-cancer and immune enhancing properties. Given its increasing importance to industry, this review explains how inulin's unique physico-chemical properties bestow it with manyuseful pharmaceutical applications.

  2. Polysaccharides from Gracilaria corticata: sulfation, chemical characterization and anti-HSV activities.

    Science.gov (United States)

    Chattopadhyay, Kausik; Ghosh, Tuhin; Pujol, Carlos A; Carlucci, María J; Damonte, Elsa B; Ray, Bimalendu

    2008-11-01

    In this study, we have analyzed water-extracted polysaccharides of Gracilaria corticata. The water extract (WE), a galactan-containing sub-fraction (F3) and their hyper sulfated derivatives (WES1, WES2, F3S1 and F3S2) had anti-HSV activity with inhibitory concentration 50% (IC50) from 1.1 to 27.4 microg/ml. Sub-fraction F3, which has a molecular mass of 30 kDa, consists of a backbone of beta-(1-->3) and alpha-(1-->4)-linked-galactopyranosyl residues. This linear galactan contained Gal2Xyl1, Gal2AnGal2, Gal4 and Me-Gal3AnGal2 as oligomeric building subunits. Sulfate group was located at C-4 of (1-->3)-linked galactopyranosyl residues of the native galactan, and appeared to be very important for the anti-herpetic activity.

  3. NOVEL pH-SENSITIVE DRUG DELIVERY SYSTEM BASED ON NATURAL POLYSACCHARIDE FOR DOXORUBICIN RELEASE

    Institute of Scientific and Technical Information of China (English)

    Dian-xiang Lu; Xian-tao Wen; Jie Liang; Xing-dong Zhang; Zhong-wei Gu; Yu-jiang Fan

    2008-01-01

    A novel pH-sensitive nanoparticle drug delivery system (DDS) derived from natural polysaccharide pullulan for doxorubicin (DOX) release was prepared. Pullulan was functionalized by successive carboxymethylization and amidation to introduce hydrazide groups. DOX was then grafted onto pullulan backbone through the pH-sensitive hydrazone bond to form a pullulan/DOX conjugate. This conjugate self-assembled to form nano-sized particles in aqueous solution as a result of the hydrophobic interaction of the DOX. Transmission electron microscope (TEM) and dynamic light scattering (DLS)characterization showed that the nanoparticles were spherical and their size was less than 100 nm. The DOX released from the nanoparticles in a pH-sensitive manner. In vitro cytotoxicity assay indicated the pullulan/DOX nanoparticles showed comparable cytotoxicity effect with free DOX on the 4T1 mouse breast cancer cells.

  4. Chemical synthesis of the tetrasaccharide repeating unit of the O-polysaccharide isolated from Azospirillum brasilense SR80.

    Science.gov (United States)

    Sarkar, Vikramjit; Mukhopadhyay, Balaram

    2015-04-10

    A linear strategy has been developed for the synthesis of the tetrasaccharide repeating unit of the O-polysaccharide from Azospirillum brasilense SR80. Stepwise glycosylation of the rationally protected thioglycoside donors activated by NIS in the presence of La(OTf)3 furnished the target tetrasaccharide. The glycosylation reactions resulted in the formation of the desired linkage with absolute stereoselectivity and afforded the required derivatives in good to excellent yields. The phthalimido group has been used as the precursor of the desired acetamido group to meet the requirement of 1,2-trans glycosidic linkage.

  5. Associative polymers and physical gels derived from natural biopolymers; Polymeres associes et gels physiques derives de biopolymeres naturels

    Energy Technology Data Exchange (ETDEWEB)

    Muller, G.; Huguet, J.; Merle, L.; Grisel, M.; Picton, L.; Bataille, I.; Charpentier, D.; Glinel, K. [CNRS, Polymeres, Biopolymeres et Membranes, Universite de Rouen, 76 - Mont-Saint-Aignan (France)

    1997-04-01

    Polymers are largely used in oil-field operations where the control of rheology of aqueous phases ids of primary importance. Polymers systems showing high viscosity present many advantages as candidates for drilling muds. Associating polymers, i.e. polymers the hydrophilic main chains of which have been properly modified by introducing hydrophobic groups and weak physical ges are good examples of such systems. The different systems chosen to be studied are derived from natural biopolymers. They are: Alkyl derivatives issued from neutral (HEC) and ionic (CMC) cellulosic ether derivatives; alkyl and fluoro alkyl derivatives from neutral (Pull) and ionic (CMP) bacterial polysaccharide pullulane; weak physical gels resulting from complex formation between borate ions and the neutral fungal polysaccharide schizophyllan. The different results are given in tables and figures. (N.C.)

  6. Somatic antigens of Pseudomonas aeruginosa. The structure of the O-specific polysaccharide chains of lipopolysaccharides of P. aeruginosa serogroup O4 (Lányi) and related serotype O6 (Habs) and immunotype 1 (Fisher).

    Science.gov (United States)

    Knirel, Y A; Vinogradov, E V; Shashkov, A S; Dmitriev, B A; Kochetkov, N K; Stanislavsky, E S; Mashilova, G M

    1985-08-01

    Acidic O-specific polysaccharides were isolated on mild acidic degradation of lipopolysaccharides of Pseudomonas aeruginosa serotypes O4a,b, O4a,c, O4a,d (Lányi classification) and serologically related to them serotype O6 (Habs classification) and immunotype 1 (Fisher classification). The polysaccharides had identical monosaccharide composition and were built up of L-rhamnose, 2-acetamido-2,6-dideoxy-D-glucose,2-formamido-2-deoxy-D-galacturonic acid and 2-acetamido-2-deoxy-D-galactouronamide residues. The latter two derivatives of D-galactosaminuronic acid were found in nature for the first time. All the polysaccharides, but Lányi serotype O4a,c, contained O-acetyl groups. The polysaccharides were readily de-O-acetylated with aqueous triethylamine and de-N-formylated with dilute hydrochloric acid. De-N-formylated polysaccharide of serotype O4a,c was selectively cleaved with nitrous acid upon 2-amino-2-deoxygalacturonic acid residues to form a tetrasaccharide with a 2,5-anhydrotaluronic acid residue on the reducing end. The tetrasaccharide represented a modified repeating unit of the polysaccharide. Solvolysis of all intact polysaccharides with hydrogen fluoride selectively split the glycosidic linkages of 6-deoxy sugars to give the same trisaccharide, including both derivatives of galactosaminuronic acid and having 2-acetamido-2,6-dideoxyglucose on the reducing end. Structural investigation of the oligosaccharides obtained together with methylation analysis and 13C nuclear magnetic resonance data revealed the following structures of the O-specific polysaccharides: (Formula: see text) An independent confirmation of the structures of the repeating units was obtained as the result of full interpretation of the 13C nuclear magnetic resonance spectra of the intact and modified polymers. Spectral data analysis revealed a number of regularities in the effects of glycosidation connecting their values with the anomeric and absolute configuration of pyranose residues. The

  7. Trans locus inhibitors limit concomitant polysaccharide synthesis in the human gut symbiont Bacteroides fragilis.

    Science.gov (United States)

    Chatzidaki-Livanis, Maria; Weinacht, Katja G; Comstock, Laurie E

    2010-06-29

    Bacteroides is an abundant genus of bacteria of the human intestinal microbiota. Bacteroides species synthesize a large number of capsular polysaccharides (PS), a biological property not shared with closely related oral species, suggesting importance for intestinal survival. Bacteroides fragilis, for example, synthesizes eight capsular polysaccharides per strain, each of which phase varies via inversion of the promoters located upstream of seven of the eight polysaccharide biosynthesis operons. In a single cell, many of these polysaccharide loci promoters can be simultaneously oriented on for transcription of the downstream biosynthesis operons. Here, we demonstrate that despite the promoter orientations, concomitant transcription of multiple polysaccharide loci within a cell is inhibited. The proteins encoded by the second gene of each of these eight loci, collectively designated the UpxZ proteins, inhibit the synthesis of heterologous polysaccharides. These unique proteins interfere with the ability of UpxY proteins encoded by other polysaccharide loci to function in transcriptional antitermination of their respective operon. The eight UpxZs have different inhibitory spectra, thus establishing a hierarchical regulatory network for polysaccharide synthesis. Limitation of concurrent polysaccharide synthesis strongly suggests that these bacteria evolved this property as an evasion-type mechanism to avoid killing by polysaccharide-targeting factors in the ecosystem.

  8. Structural characterization and anti-aging activity of a novel extracellular polysaccharide from fungus Phellinus sp. in a mammalian system.

    Science.gov (United States)

    Ma, Xiao-Kui; Guo, Dan Dan; Peterson, Eric Charles; Dun, Ying; Li, Dan Yang

    2016-08-10

    Little is known about the chemical structure of purified extracellular polysaccharides from Phellinus sp., a fungal species with known medicinal properties. A combination of IR spectroscopy, methylation analysis and NMR were performed for the structural analysis of a purified extracellular polysaccharide derived from Phellinus sp. culture, denoted as SHP-1, along with an evaluation of the anti-aging effect in vivo of the polysaccharide supplementation. The structure of SHP-1 was established, with a backbone composed of →2,4)-α-d-glucopyranose-(1→ and →2)-β-d-mannopyranose-(1→ and two terminal glucopyranose branches. Biochemical analysis from mammalian animal experiments demonstrated that SHP-1 possesses the ability to enhance antioxidant enzyme activities, such as catalase (CAT) and superoxide dismutase (SOD) activities, Trolox equivalent antioxidant capacity (TEAC) in serum of d-galactose-aged mice, while reducing lipofuscin levels, another indicator of cell aging, indicating a potential association with anti-aging activities in a dose dependent manner. This compound had a favourable influence on immune organ indices, and a marked amelioration ability of histopathological hepatic lesions such as necrosis, karyolysis and reduced inflammation and apoptosis in mouse hepatocytes. These results suggest that SHP-1 has strong antioxidant activities and a significant protective effect against oxidative stress or hepatotoxicity induced by d-galactose in mice and it could be developed as a food ingredient or a pharmaceutical to prevent many age-associated diseases such as major depressive disorder and hepatotoxicity. To our knowledge, this is the first report on the antioxidant effects of a novel purified exopolysaccharide derived from Phellinus sp.

  9. Comparison of polysaccharides of Haliotis discus hannai and Volutharpa ampullacea perryi by PMP-HPLC-MS(n) analysis upon acid hydrolysis.

    Science.gov (United States)

    Wang, Hongxu; Zhao, Jun; Li, Dongmei; Wen, Chengrong; Liu, Haiman; Song, Shuang; Zhu, Beiwei

    2015-10-13

    Haliotis discus hannai Ino (Haliotis) is a highly valued marine shellfish, and it is sometimes replaced by another cheaper Gastropoda mollusk, Volutharpa ampullacea perryi (Volutharpa). Polysaccharides from pleopods, viscera and gonads of these two gastropods were compared by analyzing the mono- and di-saccharides in their acid hydrolysates using high performance liquid chromatography-mass spectrometry (HPLC-MS(n)) after 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization. Disaccharide analysis revealed the distribution of uronic acid-containing polysaccharides (UACPs) in the biological samples. GlcA-(1 → 2)-Man, GlcA-(1 → 3)-GalN, and another disaccharide consisting of a hexuronic acid linked to a hexose were found in the hydrolysates, which indicated the existence of AGSP (abalone gonad sulfated polysaccharide) with the backbone composed of → 2)-α-Man(1 → 4)-β-GlcA(1 → repeating unit, AAP (abalone glycosaminoglycan-like polysaccharide) with the backbone of → 3)-GalNAc-(1 → 2)-GlcA-(1 → 3)-GalNAc-(1 → 4)-GlcA-(1 → repeating unit, and unidentified DS1P containing a hexuronic acid linked to a hexose unit, respectively. As shown by extracted ion chromatograms (XICs), AAP was the only UACP found in pleopods of the two gastropods; gonads and viscera of Haliotis contained DS1P and AGSP, while those of Volutharpa contained DS1P, AGSP as well as AAP. Monosaccharides in the acid hydrolysates were demonstrated in XICs by extracting their corresponding PMP derivative quasi-molecular ions one by one, and the results indicated the similar conclusion to the disaccharide analysis. Therefore, it could be concluded that polysaccharides from pleopods of the two gastropods are very similar, while those from their viscera and gonads differ greatly.

  10. Structural Characterization of a Polysaccharide From the Roots of Angelica Sinensis (Oliv) Diels by Gas Chromatography-Mass Spectrometry%气相色谱-质谱法研究当归多糖的糖链联接方式

    Institute of Scientific and Technical Information of China (English)

    徐桂云; 陈汝贤

    2004-01-01

    X-C-3- Ⅱ, a polysaccharide having immunologic adjuvanticity was extracted and purified from the roots of Angelica sinensis (Oliv) Diels. Its linkage was elucidated by selective hydrolysis and GC-MS analysis of its derivatives, as well as its 1H and 13C NMR spectra. This polysaccharide was composed of arabinose, galactose, glucose and fructose with a molar ratio of 1 : 1 : 4 : 9, and it had a highly branched structure with a fructofuranosyl backbone. The sequence of the repeating unit of X-C-3- Ⅱ was deduced. To our best knowledge, this is the first report of the fructose residue in polysaccharides from the rootsof Angelica sinensis (Oliv) Diels.

  11. Comparative Analysis of Tea Polysaccharides in Different Types of Teas%茶叶中茶多糖含量的比较分析

    Institute of Scientific and Technical Information of China (English)

    宋励修; 秦建

    2016-01-01

    Objective] To analyze tea polysaccharide content in different types of teas.[Method] Tea polysaccharides were isolated by water extraction from different types of tea, and its content was determined through sulfuric acid-phenol colorimetry.[ Result] In teas derived from different preparation technology, green and dark tea had higher tea polysaccharide content than yellow tea and black tea.In green tea from dif-ferent regions, tea polysaccharide content in Zhejiang tea was higher than that of Anhui tea .In addition, we also found that plain tea exhibited higher tea polysaccharide compared with flower tea.[Conclusion] There are significant differences of tea polysaccharide in different types of teas.This research is helpful for fully understanding tea polysaccharides in different types of teas, and provides theoretic guidance for tea planting, processing and quality evaluation.%[目的]比较分析不同种类代表茶叶中茶多糖含量。[方法]采用水提法提取各种代表茶叶中的茶多糖,用硫酸-酚比色法测量茶叶中的茶多糖含量。[结果]在不同制备工艺茶叶中,青茶和黑茶的茶多糖含量较高,而黄茶和红茶的含量较低;在不同产地绿茶中,浙茶茶多糖含量比较高而徽茶的含量较低;在不同熏花种类中,素茶茶多糖含量较花茶高。[结论]不同种类茶叶茶多糖的含量存在较大差异。该研究为全面了解不同种类茶叶茶多糖含量提供了参考依据,为茶叶的种植、加工及质量评估提供了理论指导。

  12. LIGHT SCATTERING OF POLYSACCHARIDE FROM LACQUER IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lina; DU Yumin; KUMANOTANI JU

    1989-01-01

    The polysaccharide having weight-average molecular weight Mw= 1. 09 × 105 , isolated from the sap of lac trees ( Vietnam ), was separated into 12 fractions by aqueous-phase preparative gel permeation chromatography. The molecular weights and molecular weight distributions of the fractions were measured in aqueous 0.08M KCl/0.01 M NaAc and 0.4M KCl/0.05M NaAc at pH = 7.6 by light scattering, viscometry and gel permeation chromatography. The Mark-Houwink equation in aqueous 0.08M KCl/0.01M NaAc at30 ℃ was found to be [ η] = 2.28 ×10-2 M0.52w ( cm3/g ), which indicated the polysaccharide chain in the aqueous solution to be a spherical random coil.

  13. Ganoderma lucidum Polysaccharide Peptide (GLPP for the Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Imam Rasjidi

    2015-06-01

    Full Text Available Ganoderma lucidum mushroom (also known as Ling Zhi in China, Mannetake /Reishi in Japan has been widely used for thousands of years to prevent and treat various diseases, such as heart disease, diabetes mellitus, viral infection, and cancer. Polysaccharides from Ganoderma lucidum has been extensively investigated for free radical scavenging activity. Both in vivo and in vitro studies suggest that G. lucidum have anti-tumor effects, which mediated by its immunomodulatory, anti-angiogenesis, and cytotoxic effects. Ganoderma lucidum polysaccharide peptide (GLPP which extracted from Ganoderma lucidum mycelium tissue culture, give the best quality of β-D-Glucans bioactive compounds. These biologically active glucans interact with receptors on the surface of immune cells such as macrophage and natural killer cell (NK cell to induce immunomodulatory and tumoricidal effects. However, many studies still need to answer those mechanisms.

  14. Advances in Research of Polysaccharides in Cordyceps Species

    Directory of Open Access Journals (Sweden)

    Shi Zhong

    2009-01-01

    Full Text Available Cordyceps sinensis (Berk. Sacc. is one of the well-described fungi that has been used in traditional Chinese medicine for over 700 years. Fungal mycelia contain some polysaccharides that are responsible for their biological activity. C. sinensis has traditionally been cultivated on the high Tibetan plateau as a parasitic fungus growing on caterpillars. However, currently it is being cultivated on some insects and in artificial media. This article deals with the advances in the production, isolation and purification of Cordyceps polysaccharide (CP in recent years, as well as the structure elucidation and pharmacological action. The article also aims to provide some references for further application and exploitation in the future.

  15. Development of drilling fluids based on polysaccharides and natural minerals

    Directory of Open Access Journals (Sweden)

    Zhanar Nurakhmetova

    2016-03-01

    Full Text Available The technology of oil well drilling in complex geological conditions by applying the drilling muds based on the polysaccharides – gellan, xanthan and their mixture which potentially possess a good flocculation properties and the ability to reversible sol-gel transition in dependence of temperature and concentration of low molecular weight cations in water has been justified in this work. For the preparation of drilling muds, gellan and xanthan were used, these polymers were obtained from biomass by an aerobic fermentation using microorganisms Sphingomonas elodea and Xanthomonas campestris. Bentonite was used as a natural mineral. Physical and chemical characteristics of aqueous and aqueous-salt solutions of natural polysaccharide gellan including: density, intrinsic and effective viscosity, static shear stress, dynamic shear stress, sedimentation stability and other parameters were determined while varying polymer compositions and concentrations, ionic strength of the solution, nature of low molecular weight salts, concentration of dispersion phase, pH of the medium and temperature.

  16. Extraction, purification and antioxidant activity of polysaccharides from bamboo leaves

    Institute of Scientific and Technical Information of China (English)

    GAO Ya-ni; TIAN Cheng-rui; ZHAO Li-li

    2012-01-01

    Ultrasonic extraction (UE) was employed for the extraction of bamboo leaf polysaccharides (BLP).The influential parameters of UE procedure including extraction time,ultrasonic power and solid/liquid ratio were optimized by orthogonal experiments.DEAE-cellulose column chromatography was applied to purify BLP and then the radical scavenging activity of BLP was also evaluated.Optimal extraction conditions were:extraction time of 15 min,ultrasonic power of 300 W,and solid/liquid ratio of 1:15.Four kinds of polysaccharides were obtained by DEAE-cellulose column chromatography; the maximum superoxide radical scavenging rate (20.4%) of BLP was inferior to that of vitamin C (Vc,the control) and the hydroxyl radical scavenging rate (50%) was equivalent to that of Vc.

  17. Extraction, purification and characterization of polysaccharides from Hawk tea.

    Science.gov (United States)

    Jia, Xuejing; Ding, Chunbang; Yuan, Shu; Zhang, Zhongwei; Chen, Yang'er; Du, Lei; Yuan, Ming

    2014-01-01

    In the present study, the extraction, purification and characterization of polysaccharides from Hawk mature leaf tea (HMP) were investigated. The optimal extraction parameters were obtained by using a Box-Behnken design as follows: extraction temperature 88.9 °C, extraction time 128.2 min and ratio of water to solid 11.4 mL/g. The crude HMP was sequentially purified by chromatography of DEAE-52, and two purified fractions, HMP-1 and HMP-2, were obtained. HMP-1 and HMP-2 were mainly composed of arabinose, galactose, glucose and mannose with the molecular weight of 133 and 100 kDa, respectively. For antioxidant activities in vitro, HMP-1 had strong 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity and ferric reducing activity power (FRAP). These results provide a scientific basis for the further use of polysaccharides from this traditional herb tea. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Carbohydrase Systems of Saccharophagus degradans Degrading Marine Complex Polysaccharides

    Directory of Open Access Journals (Sweden)

    Maxim Suvorov

    2011-04-01

    Full Text Available Saccharophagus degradans 2-40 is a γ-subgroup proteobacterium capable of using many of the complex polysaccharides found in the marine environment for growth. To utilize these complex polysaccharides, this bacterium produces a plethora of carbohydrases dedicated to the processing of a carbohydrate class. Aiding in the identification of the contributing genes and enzymes is the known genome sequence for this bacterium. This review catalogs the genes and enzymes of the S. degradans genome that are likely to function in the systems for the utilization of agar, alginate, α- and β-glucans, chitin, mannans, pectins, and xylans and discusses the cell biology and genetics of each system as it functions to transfer carbon back to the bacterium.

  19. Experience with Salmonella typhi Vi capsular polysaccharide vaccine.

    Science.gov (United States)

    Hessel, L; Debois, H; Fletcher, M; Dumas, R

    1999-09-01

    Typhoid fever remains an important health threat in many parts of the world, with an estimated 16 million cases and 600,000 deaths occurring each year. The emergence of Salmonella typhi strains multiply resistant to antibiotics has complicated the treatment of this disease. Field experience of 8 years shows that a vaccine composed of purified Vi capsular polysaccharide of Salmonella typhi, given as a single intramuscular or deep subcutaneous injection, has consistent immunogenicity and efficacy. Side effects, based on reports since 1989, are infrequent and mild. Furthermore, the Vi vaccine may be administered simultaneously with other common "travel" vaccines, at two different sites of injection, without affecting immunogenicity and tolerability. This review presents an update of the development and clinical experience with the Salmonella typhi Vi polysaccharide vaccine (Typhim Vi; Pasteur Mérieux Connaught, France).

  20. Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure

    Science.gov (United States)

    Villares, Ana; Moreau, Céline; Bennati-Granier, Chloé; Garajova, Sona; Foucat, Loïc; Falourd, Xavier; Saake, Bodo; Berrin, Jean-Guy; Cathala, Bernard

    2017-01-01

    Lytic polysaccharide monooxygenases (LPMOs) are a class of powerful oxidative enzymes that breakdown recalcitrant polysaccharides such as cellulose. Here we investigate the action of LPMOs on cellulose fibers. After enzymatic treatment and dispersion, LPMO-treated fibers show intense fibrillation. Cellulose structure modifications visualized at different scales indicate that LPMO creates nicking points that trigger the disintegration of the cellulose fibrillar structure with rupture of chains and release of elementary nanofibrils. Investigation of LPMO action using solid-state NMR provides direct evidence of modification of accessible and inaccessible surfaces surrounding the crystalline core of the fibrils. The chains breakage likely induces modifications of the cellulose network and weakens fibers cohesion promoting their disruption. Besides the formation of new initiation sites for conventional cellulases, this work provides the first evidence of the direct oxidative action of LPMOs with the mechanical weakening of the cellulose ultrastructure. LPMOs can be viewed as promising biocatalysts for enzymatic modification or degradation of cellulose fibers. PMID:28071716

  1. Melissotarsus ants are likely able to digest plant polysaccharides.

    Science.gov (United States)

    Mony, Ruth; Dejean, Alain; Bilong, Charles Félix Bilong; Kenne, Martin; Rouland-Lefèvre, Corinne

    2013-10-01

    Melissotarsus ants have an extremely specialized set of behaviours. Both workers and gynes tunnel galleries in their host tree bark. Workers walk with their mesothoracic legs pointing upwards and tend Diaspididae hemiptera for their flesh. The ants use their forelegs to plug the galleries with silk that they secrete themselves. We hypothesised that the ants' energetic needs for nearly constant gallery digging could be satisfied through the absorption of host tree tissues; so, using basic techniques, we examined the digestive capacities of workers from two species. We show that workers are able to degrade oligosaccharides and heterosides as well as, to a lesser degree, polysaccharides. This is one of the rare reports on ants able to digest plant polysaccharides other than starch. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  2. Results of the Study of Mutagenic Effects of Microbial Polysaccharides

    Directory of Open Access Journals (Sweden)

    Natalya A. Sidorova

    2016-06-01

    Full Text Available The article presents the results of a study of mutagenic effects of Pseudomonas alcaligenеs polysaccharides. Pseudomonas genus – non-fermentative ubiquitous bacteria, having specific metabolic cycles and unique physical, chemical and biological properties was used as a producer of natural exopolysaccharides. In an experiment using the Ames test, three variants of test compounds were studied: 1. a compound of the Pseudomonas alcaligenes biofilm, 2. exopolysaccharide matrix and the microorganism cell wall compound, and 3. actually the microbial exopolysaccharide. In all cases the lack of mutagen action of polysaccharides of Pseudomonas alcaligenes is proved that make them perspective for use as nanomaterials of new generation – alternative wound coverings.

  3. Structural characterization of Lytic Polysaccharide MonoOxygenases

    DEFF Research Database (Denmark)

    Frandsen, Kristian Erik Høpfner

    Lytic polysaccharide monooxygenases (LPMOs) are a new class of copper-containingmetalloenzymes that have been found to oxidatively degrade polysaccharides (and recently alsooligosaccharides). They dependent on redox partners to provide them with electrons and they utilizemolecular oxygen to cleave......) and their interaction with substratehave been structurally characterized. A number of structures of LsAA9A have been obtained in complexwith a range of cellulosic- and hemicellulosic substrates and with the active site Cu in different redox state.Two of the LsAA9A structures with the active site Cu in essentially a Cu......(II) state show differences in thenature of the Cu-ligand with and without cellulosic substrate bound and provide structural insight into themechanistic action of LPMOs. Interestingly, for an LsAA9A complex structure with a hemicellulosicsubstrate (xylooligosaccharide) a corresponding difference...

  4. Versatile Functionalization of Polysaccharides via Polymer Grafts: From Design to Biomedical Applications.

    Science.gov (United States)

    Hu, Yang; Li, Yang; Xu, Fu-Jian

    2017-02-21

    Because of their biocompatibility, biodegradability, and unique bioactive properties, polysaccharides have been recognized and directly applied as excellent candidates for various biomedical applications. In order to introduce more functionalities onto polysaccharides, various modification methods were applied to improve the physical-chemical and biochemical properties. Grafting polysaccharides with functional polymers with limited reaction sites maximizes the structural integrity. To the best of our knowledge, great efforts have been made by scientists across the world, including our research group, to explore different strategies for the synthesis and design of controllable polymer-grafted polysaccharides. By the application of some reasonable strategies, a series of polymer-grafted polysaccharides with satisfactory biocharacteristics were obtained. The first strategy involves facile modification of polysaccharides with living radical polymerization (LRP). Functionalized polysaccharides with diverse grafts can be flexibly and effectively achieved. The introduced grafts include cationic components for nuclei acid delivery, PEGylated and zwitterionic moieties for shielding effects, and functional species for bioimaging applications as well as bioresponsive drug release applications. The second synthetic model refers to biodegradable polymer-grafted polysaccharides prepared by ring-opening polymerization (ROP). Inspired by pathways to introduce initiation sites onto polysaccharides, the use of amine-functionalized polysaccharides was explored in-depth to trigger ROP of amino acids. A series of poly(amino acid)-grafted polysaccharides with advanced structures (including linear, star-shaped, and comb-shaped copolymers) were developed to study and optimize the structural effects. In addition, biodegradable polyester-grafted polysaccharides were prepared and utilized for drug delivery. Another emerging strategy was to design polysaccharide-based assemblies with

  5. Lubrication, adsorption, and rheology of aqueous polysaccharide solutions.

    Science.gov (United States)

    Stokes, Jason R; Macakova, Lubica; Chojnicka-Paszun, Agnieszka; de Kruif, Cornelis G; de Jongh, Harmen H J

    2011-04-05

    Aqueous lubrication is currently at the forefront of tribological research due to the desire to learn and potentially mimic how nature lubricates biotribological contacts. We focus here on understanding the lubrication properties of naturally occurring polysaccharides in aqueous solution using a combination of tribology, adsorption, and rheology. The polysaccharides include pectin, xanthan gum, gellan, and locus bean gum that are all widely used in food and nonfood applications. They form rheologically complex fluids in aqueous solution that are both shear thinning and elastic, and their normal stress differences at high shear rates are found to be characteristic of semiflexible/rigid molecules. Lubrication is studied using a ball-on-disk tribometer with hydrophobic elastomer surfaces, mimicking biotribological contacts, and the friction coefficient is measured as a function of speed across the boundary, mixed, and hydrodynamic lubrication regimes. The hydrodynamic regime, where the friction coefficient increases with increasing lubricant entrainment speed, is found to depend on the viscosity of the polysaccharide solutions at shear rates of around 10(4) s(-1). The boundary regime, which occurs at the lowest entrainment speeds, depends on the adsorption of polymer to the substrate. In this regime, the friction coefficient for a rough substrate (400 nm rms roughness) is dependent on the dry mass of polymer adsorbed to the surface (obtained from surface plasmon resonance), while for a smooth substrate (10 nm rms roughness) the friction coefficient is strongly dependent on the hydrated wet mass of adsorbed polymer (obtained from quartz crystal microbalance, QCM-D). The mixed regime is dependent on both the adsorbed film properties and lubricant's viscosity at high shear rates. In addition, the entrainment speed where the friction coefficient is a minimum, which corresponds to the transition between the hydrodynamic and mixed regime, correlates linearly with the ratio

  6. Complete structure of the polysaccharide from Streptococcus sanguis J22

    Energy Technology Data Exchange (ETDEWEB)

    Abeygunawardana, C.; Bush, C.A. (Illinois Institute of Technology, Chicago (USA)); Cisar, J.O. (National Institute of Dental Research, Bethesda, MD (USA))

    1990-01-09

    The cell wall polysaccharides of certain oral streptococci such as Streptococcus sanguis strains 34 and J22, although immunologically distinct, act as receptors for the fimbrial lectins of Actinomyces viscosus T14V. The authors report the complete covalent structure of the polysaccharide from S. sanguis J22 which is composed of a heptasaccharide subunit linked by phosphodiester bonds. The repeating subunit, which contains {alpha}-GalNAc, {alpha}-rhamnose, {beta}-rhamnose, {beta}-glucose, and {beta}-galactose all in the pyranoside form and {beta}-galactofuranose, is compared with the previously published structure of the polysaccharide from strain 34. The structure has been determined almost exclusively by high-resolution nuclear magnetic resonance methods. The {sup 1}H and {sup 13}C NMR spectra of the polysaccharides from both strains 34 and J22 have been completely assigned. The stereochemistry of pyranosides was assigned from J{sub H-H} values determined from phase-sensitive COSY spectra, and acetamido sugars were assigned by correlation of the resonances of the amide {sup 1}H with the sugar ring protons. The {sup 13}C spectra were assigned by {sup 1}H-detected multiple-quantum correlation (HMQC) spectra, and the assignments were confirmed by {sup 1}H-detected multiple-bond correlation (HMBC) spectra. The positions of the glycosidic linkages were assigned by detection of three-bond {sup 1}H-{sup 13}C correlation across the glycosidic linkage in the HMBC spectra. The positions of the phosphodiester linkages were determined by splittings observed in the {sup 13}C resonances due to {sup 31}P coupling and also by {sup 1}H-detected {sup 31}P correlation spectroscopy.

  7. Mapping the polysaccharide degradation potential of Aspergillus niger

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Giese, Malene; de Vries, Ronald P.

    2012-01-01

    of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono-and polysaccharide substrates has allowed elucidation of concerted gene expression from...... of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger....

  8. Effect of Extraction Methods on Polysaccharide of Clitocybe maxima Stipe

    OpenAIRE

    Junchen Chen; Pufu Lai; Hengsheng Shen; Hengguang Zhen; Rutao Fang

    2013-01-01

    Clitocybe maxima (Gartn. ex Mey. Fr.) Quél. is a favorable edible fungi species. The proportion of its stipe is about 45% of entire fruit biomass, which is a low value defined byproduct. To increase its value added utilization, three extraction methods (as hot water, microwave-assisted and complex-enzyme-hydrolysis-assist) were conducted. The extraction effect on the polysaccharide of Clitocybe maxima stipe was compared and the processing conditions in extraction were optimized. The content o...

  9. Development of drilling fluids based on polysaccharides and natural minerals

    OpenAIRE

    Zhanar Nurakhmetova; Iskander Gussenov; Vladimir Sigitov; Sarkyt Kudaibergenov

    2016-01-01

    The technology of oil well drilling in complex geological conditions by applying the drilling muds based on the polysaccharides – gellan, xanthan and their mixture which potentially possess a good flocculation properties and the ability to reversible sol-gel transition in dependence of temperature and concentration of low molecular weight cations in water has been justified in this work. For the preparation of drilling muds, gellan and xanthan were used, these polymers were obtained from b...

  10. High molecular weight polysaccharide that binds and inhibits virus

    Science.gov (United States)

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  11. Polysaccharides of green Arabica and Robusta coffee beans.

    Science.gov (United States)

    Fischer, M; Reimann, S; Trovato, V; Redgwell, R J

    2001-01-15

    Two independent procedures for the quantitative determination of the polysaccharide content of Arabica Caturra (Coffea arabica var. Caturra) and Robusta ROM (Coffea canephora var. ROM) green coffee beans showed that they both contained identical amounts of polysaccharide. Cell wall material (CWM) was prepared from the beans and partial solubilisation of component polysaccharides was effected by sequential extraction with water, 1 M KOH, 0.3% NaClO2, 4 M KOH and 8 M KOH. The monosaccharide compositions of the CWMs were similar, although Arabica beans contained slightly more mannose than Robusta. In the latter, more arabinogalactan was solubilised during preparation of the CWM and the water-soluble fraction of the CWM contained higher amounts of galactomannan than in Arabica. Linkage analysis indicated that the galactomannans possessed unbranched to branched mannose ratios between 14:1 and 30:1 which is higher than previously reported. No major difference in the structural features of the galactomannans between species was found. The arabinogalactans were heterogeneous both with regard to the degree of branching and the degree of polymerisation of their arabinan side-chains. Compared to Arabica, Robusta appeared to contain greater amounts of arabinogalactans with longer side chains. It is concluded that there was no detectable difference between the Arabica and Robusta varieties of this study in their absolute polysaccharide content or in the gross structural features of their galactomannans. Differences were apparent both in the structural features and ease of solubility of the arabinogalactans but a more detailed study of several varieties of Arabica and Robusta will be required to determine whether these differences occur consistently between species.

  12. High molecular weight polysaccharide that binds and inhibits virus

    Energy Technology Data Exchange (ETDEWEB)

    Konowalchuk, Thomas W.; Konowalchuk, Jack

    2017-07-18

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods of inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further includes methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  13. Effects of Ganoderma lucidum polysaccharides on diabetic nephropathy in mice

    Institute of Scientific and Technical Information of China (English)

    Chao-yongHE; Zhi-binLIN

    2004-01-01

    AIM: To study the effects of Ganoderma lucidum polysaccharides (GL-PS) on the renal damage in streptozotocin-induced diabetic mice. METHODES: Nine weeks old male C57 BI/6J mice were made diabetes with two or three consecutive intraperitoneal injection of streptozotocin, 72 h later, hyperglycemic mice with glucose levels higher than glucose 300 mg/dL were used. The diabetic mice were randomly divided into three groups and administrated intragastrically with vehicle or Gl-PS (125 mg/

  14. Sulfation patterns determine cellular internalization of heparin-like polysaccharides

    OpenAIRE

    Raman, Karthik; Mencio, Caitlin; Desai, Umesh R.; Kuberan, Balagurunathan

    2013-01-01

    Heparin is a highly sulfated polysaccharide which serves biologically relevant roles as an anticoagulant and anti-cancer agent. While it is well known that modification of heparin’s sulfation pattern can drastically influence its ability to bind growth factors and other extracellular molecules, very little is known about the cellular uptake of heparin and the role sulfation patterns serve in affecting its internalization. In this study, we chemically synthesized several fluorescently-labeled ...

  15. Toll-like receptor 4 mediates the antitumor host response induced by Ganoderma atrum polysaccharide.

    Science.gov (United States)

    Yu, Qiang; Nie, Shao-Ping; Wang, Jun-Qiao; Huang, Dan-Fei; Li, Wen-Juan; Xie, Ming-Yong

    2015-01-21

    The aim of this study is to investigate the role of Toll-like receptor (TLR) 4 in Ganoderma atrum polysaccharide (PSG-1)-induced antitumor activity. In vitro, the apoptosis rate of S-180 cells was increased in PSG-1-induced peritoneal macrophage derived from C3H/HeN (wild-type) mice, but not from C3H/HeJ (TLR4-deficient) mice. In the S-180 tumor model, phagocytosis, NO and ROS release, phosphorylation of MAPKs and Akt, and expression of NF-κB were increased by PSG-1 in peritoneal macrophage derived from C3H/HeN mice. Furthermore, PSG-1 elevated Th1 cytokine production and enhanced the cytotoxic activity of CTL and NK cells in C3H/HeN mice. In addition, PSG-1 decreased the tumor weight and increased the apoptosis rate and caspase-3 and caspase-9 activities of tumor derived from the C3H/HeN mice. However, none of these activities were observed in C3H/HeJ mice. In summary, these findings demonstrated that the antitumor activity of PSG-1 is mediated by TLR4.

  16. Tamarind seed polysaccharide: A promising natural excipient for pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Joshny Joseph

    2012-01-01

    Full Text Available The natural polymers always have exceptional properties which make them distinct from the synthetic polymers and tamarind seed polysaccharide (TSP is one such example which shows more valuable properties making it a useful excipient for a wide range of applications. TSP is a natural polysaccharide obtained from the seeds of Tamarindus indica, recently gaining a wide potential in the field of pharmaceutical and cosmetic industries. Its isolation and characterisation involve simple techniques resulting in cost-effective yield in its production. TSP shows uniqueness in its high drug holding capacity, high swelling index and high thermal stability, especially necessary for various novel drug delivery systems. It also plays the role of stabiliser, thickener, binder, release retardant, modifier, suspending agent, viscosity enhancer, emulsifying agent, as a carrier for novel drug delivery systems in oral, buccal, colon, ocular systems, nanofabrication, wound dressing and is also becoming an important part of food, cosmetics, confectionery and bakery. Various studies and experiments have been carried out to prove its multi-functional potentiality, from which it can be concluded that TSP can be a promising natural polysaccharide having enormous applications. This review focuses on the diversity of applications of TSP.

  17. Synthetic polymer nanoparticle-polysaccharide interactions: a systematic study.

    Science.gov (United States)

    Zeng, Zhiyang; Patel, Jiten; Lee, Shih-Hui; McCallum, Monica; Tyagi, Anuradha; Yan, Mingdi; Shea, Kenneth J

    2012-02-08

    The interaction between synthetic polymer nanoparticles (NPs) and biomacromolecules (e.g., proteins, lipids, and polysaccharides) can profoundly influence the NPs fate and function. Polysaccharides (e.g., heparin/heparin sulfate) are a key component of cell surfaces and the extracelluar matrix and play critical roles in many biological processes. We report a systematic investigation of the interaction between synthetic polymer nanoparticles and polysaccharides by ITC, SPR, and an anticoagulant assay to provide guidelines to engineer nanoparticles for biomedical applications. The interaction between acrylamide nanoparticles (~30 nm) and heparin is mainly enthalpy driven with submicromolar affinity. Hydrogen bonding, ionic interactions, and dehydration of polar groups are identified to be key contributions to the affinity. It has been found that high charge density and cross-linking of the NP can contribute to high affinity. The affinity and binding capacity of heparin can be significantly diminished by an increase in salt concentration while only slightly decreased with an increase of temperature. A striking difference in binding thermodynamics has been observed when the main component of a polymer nanoparticle is changed from acrylamide (enthalpy driven) to N-isopropylacryalmide (entropy driven). This change in thermodynamics leads to different responses of these two types of polymer NPs to salt concentration and temperature. Select synthetic polymer nanoparticles have also been shown to inhibit protein-heparin interactions and thus offer the potential for therapeutic applications.

  18. Polysaccharides with immunomodulating properties from the bark of Parkia biglobosa.

    Science.gov (United States)

    Zou, Yuan-Feng; Zhang, Bing-Zhao; Inngjerdingen, Kari Tvete; Barsett, Hilde; Diallo, Drissa; Michaelsen, Terje Einar; El-Zoubair, Elnour; Paulsen, Berit Smestad

    2014-01-30

    The bark of Parkia biglobosa is used in traditional medicine to cure a wide range of illnesses. Polysaccharides were extracted from the bark with 50% ethanol-water, 50°C and 100°C water, and seven active fractions obtained by anion exchange chromatography and gel filtration. The complement fixation and macrophage stimulating activities of the different fractions were determined. The acidic fractions PBEII-I and PBEII-IV were the most active in the complement fixation assay, but the other fractions were also potent compared to the positive control BPII from Biophytum petersianum. Fractions PBEII-I and PBEII-IV were also the most potent fractions in stimulating macrophages to release nitric oxide. Structural studies showed that PBEII-I and PBEII-IV were pectic type polysaccharides, containing arabinogalactan type II structures. The observed differences in biological activities among the seven purified polysaccharide sub-fractions are probably due to differences in monosaccharide compositions, linkage types and molecular sizes.

  19. Extraction of Opuntia dillenii Haw. Polysaccharides and Their Antioxidant Activities.

    Science.gov (United States)

    Li, Heng; Yuan, Qingxia; Zhou, Xianjiao; Zeng, Fuhua; Lu, Xiangyang

    2016-11-24

    Use of natural polysaccharides in medicine and food has wide interest in research. In this study, we extracted and purified some polysaccharides from cactus Opuntia dillenii Haw. (ODP). Some preliminary functions of these products were characterized. Under the optimal purification conditions, the yield of ODP extracted from the 2-4 month-old Opuntia dillenii Haw. (T-ODP) was 30.60% ± 0.40%, higher than that of ODP from the 5-10 month-old materials (O-ODP) (18.97% ± 0.58%). The extracted ODP was purified by DEAE sepharose fast flow anion exchange and Sephacryl S-400 chromatography with four fractions obtained (ODP-Ia, ODP-Ib, ODP-IIa and ODP-IIb). Analysis with UV-vis chromatography indicated that ODP-Ia and ODP-IIa were relatively homogeneous molecules with a molecular weight of 339 kD and 943 kD, respectively. Results of infrared spectroscopy indicated that ODP, ODP-Ia, and ODP-IIa were acidic polysaccharides. Further, the antioxidant activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) radical, hydroxyl radicals, and superoxide radical in vitro demonstrated that the T-ODP exhibited higher antioxidant activity than the O-ODP, and the purified fraction (ODP-Ia) was superior to the ODP. These results will offer a theoretical basis for further research on the structure-function relationship of ODP and the rational utilization of Opuntia dillenii Haw.

  20. Polysaccharide zeta-potentials and protein-affinity.

    Science.gov (United States)

    Comert, Fatih; Azarikia, Fatemeh; Dubin, Paul L

    2017-08-09

    The ζ-potential, a parameter typically obtained by model-dependent transformation of the measured electrophoretic mobility, is frequently used to understand polysaccharide-protein complexation. We tested the hypothesis that two anionic polysaccharides with identical ζ-potentials would show equal binding affinity to the protein β-lactoglobulin (BLG). We selected two polysaccharide polyelectrolytes (PE) with very different structures: hyaluronic acid (HA) and tragacanthin (TG). Highly precise (±0.1%) turbidimetric titrations were performed to determine critical pH values of complex formation; and PE ζ-potentials were measured for different ionic strengths I at those critical pH values. While phase boundaries (pHcvs. I) showed that HA binds to BLG more strongly (e.g. at a lower pH, for fixed I), comparisons made at fixed ζ-potential indicated that TG binds more strongly. The source of this contradiction is the effect of the bulky side chains of TG on its friction coefficient which diminishes its mobility and hence the resultant ζ-potential; while having a distinctly separate effect on the interaction between BLG and the carboxylated backbone of TG. Thus, unless the locus of the bound protein coincides with the shear plane, the ζ-potential does not directly contribute to the electrostatic PE-protein interaction.

  1. Recombinant expression of Streptococcus pneumoniae capsular polysaccharides in Escherichia coli.

    Science.gov (United States)

    Kay, Emily J; Yates, Laura E; Terra, Vanessa S; Cuccui, Jon; Wren, Brendan W

    2016-04-01

    Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology.

  2. Gelation of soybean protein and polysaccharides delays digestion.

    Science.gov (United States)

    Hu, Bing; Chen, Qing; Cai, Qimeng; Fan, Yun; Wilde, Peter J; Rong, Zhen; Zeng, Xiaoxiong

    2017-04-15

    Xanthan gum and carrageenan, representing the medium and highly negatively charged polysaccharides, were heated respectively together with soybean protein isolate (SPI) at different biopolymer ratios. Upon mixing with simulated stomach juice (SSJ), the xanthan-SPI and carrageenan-SPI at biopolymer ratios higher than 0.01 leads to self-assembled gelation immediately. Stronger gel is formed under higher biopolymer ratios. Highly negatively charged carrageenan forms a stronger gel than that composed with xanthan gum. SDS-PAGE results show the digestibility of SPI is delayed after incorporation with the polysaccharides, which is enhanced with the increase of the biopolymer mass ratios. And the polysaccharide with higher negative charge has stronger potential in delaying the digestion of SPI. Furthermore, the microstructure of the xanthan-SPI and carrageenan-SPI gel before and after simulated stomach digestion was characterized by scanning electron microscope (SEM), which also confirms that the gel delays the digestion of soybean protein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Preparation and Identification of Angelica sinensis Polysaccharide-iron Complex

    Institute of Scientific and Technical Information of China (English)

    WANG Kai-ping; ZHANG Yu; DAI Li-quan

    2005-01-01

    Angelica sinensis polysaccharide(ASP) was extracted from Angelica sinensis by boiling water. An Angelica sinensis polysaccharide-iron complex(APC) was prepared under the alkaline condition by adding a ferric chloride solution to the ASP solution. Then some identifiable properties of the complex were studied. The content of iron (Ⅲ) in the complex was determined with iodometry. The thermal property, the microscopic structure, the spectral characteristics, and N, C, H contents of the complex were examined by a variety of techniques including DSC, TEM, IR,NMR, and elemental analysis. The content of iron (Ⅲ) in the complex ranges from 10% to 40%. The DSC result shows that the melting point of the complex is about 450 ℃. The TEM result shows that the complex has an iron(Ⅲ)core(β-FeOOH core) linked by hydroxy and oxy bridges, with the polysaccharide chains attached to the surface of the core. The IR and NMR results also show that there is aβ-FeOOH core in the complex. The elemental analysis shows that the contents of N, C , H in the complex are, respectively, lower than those of N, C, H in ASP. All our studies indicate that the APC consists of aβ-FeOOH core surrounded by ASP.

  4. Purification, Characterization and Biological Activity of Polysaccharides from Dendrobium officinale.

    Science.gov (United States)

    Huang, Kaiwei; Li, Yunrong; Tao, Shengchang; Wei, Gang; Huang, Yuechun; Chen, Dongfeng; Wu, Chengfeng

    2016-05-30

    Polysaccharide (DOPA) from the stem of D. officinale, as well as two fractions (DOPA-1 and DOPA-2) of it, were isolated and purified by DEAE cellulose-52 and Sephacryl S-300 chromatography, and their structural characteristics and bioactivities were investigated. The average molecular weights of DOPA-1 and DOPA-2 were 394 kDa and 362 kDa, respectively. They were mainly composed of d-mannose, d-glucose, and had a backbone consisting of 1,4-linked β-d-Manp and 1,4-linked β-d-Glcp with O-acetyl groups. Bioactivity studies indicated that both DOPA and its purified fractions (DOPA-1 and DOPA-2) could activate splenocytes and macrophages. The D. officinale polysaccharides had stimulatory effects on splenocytes, T-lymphocytes and B-lymphocytes, promoting the cell viability and NO production of RAW 264.7 macrophages. Furthermore, DOPA, DOPA-1 and DOPA-2 were found to protect RAW 264.7 macrophages against hydrogen peroxide (H₂O₂)-induced oxidative injury by promoting cell viability, suppressing apoptosis and ameliorating oxidative lesions. These results suggested that D. officinale polysaccharides possessed antioxidant activity and mild immunostimulatory activity.

  5. Extraction and purification of the polysaccharides in Hippohaere rhamnoides L.

    Institute of Scientific and Technical Information of China (English)

    XU Yaqin; JIN Ting; YU Zeyuan; FU Hong

    2007-01-01

    The different extraction technology and purification technology of Hippohpae rhamoides polysaccharides were researched in the paper. The best method of papain extraction were obtained, the ratio of papain 2%, pH at 5.5, temperature at 45℃ and extraction time of 20 min were suitable for papain extraction. The highest content of Hippohpae rhamoides polysaccharides was 44.28 mg·g-1. The optimum process of ultrasonic extraction were obtained, namely extracted for 55 min at 480 W with the material ratio of 1:20. The highest content of Hippohpae rhamoides polysaccharides was 48.63 mg·g-1. The results showed that the ultrasonic and papain extraction together was the best method, the content was 54.30 mg·g-1. After the removing protein, pigment and dialysis. Two fraction were separated from the purified Hippohpae rhamoides by DEAE-cellulose chromatography, the main fraction was collected finally. The fraction was identified by Sepharose CL-4B gel filtration. Ultraviolet spectrometry, freeze-thawing analysis showed that fraction was purified. Its molecular weight was probably 109.4 ku.

  6. Polysaccharide extraction from Sphallerocarpus gracilis roots by response surface methodology.

    Science.gov (United States)

    Ma, Tingting; Sun, Xiangyu; Tian, Chengrui; Luo, Jiyang; Zheng, Cuiping; Zhan, Jicheng

    2016-07-01

    The extraction process of Sphallerocarpus gracilis root polysaccharides (SGRP) was optimized using response surface methodology with two methods [hot-water extraction (HWE) and ultrasonic-assisted extraction (UAE)]. The antioxidant activities of SGRP were determined, and the structural features of the untreated materials (HWE residue and UAE residue) and the extracted polysaccharides were compared by scanning electron microscopy. Results showed that the optimal UAE conditions were extraction temperature of 81°C, extraction time of 1.7h, liquid-solid ratio of 17ml/g, ultrasonic power of 300W and three extraction cycles. The optimal HWE conditions were 93°C extraction temperature, 3.6h extraction time, 21ml/g liquid-solid ratio and three extraction cycles. UAE offered a higher extraction yield with a shorter time, lower temperature and a lower solvent consumption compared with HWE, and the extracted polysaccharides possessed a higher antioxidant capacity. Therefore, UAE could be used as an alternative to conventional HWE for SGRP extraction.

  7. Polysaccharide-coated PCL nanofibers for wound dressing applications.

    Science.gov (United States)

    Croisier, Florence; Atanasova, Ganka; Poumay, Yves; Jérôme, Christine

    2014-12-01

    Polysaccharide-based nanofibers with a multilayered structure are prepared by combining electrospinning (ESP) and layer-by-layer (LBL) deposition techniques. Charged nanofibers are firstly prepared by electrospinning poly(ε-caprolactone) (PCL) with a block-copolymer bearing carboxylic acid functions. After deprotonation of the acid groups, the layer-by-layer deposition of polyelectrolyte polysaccharides, notably chitosan and hyaluronic acid, is used to coat the electrospun fibers. A multilayered structure is achieved by alternating the deposition of the positively charged chitosan with the deposition of a negatively charged polyelectrolyte. The construction of this multilayered structure is followed by Zeta potential measurements, and confirmed by observation of hollow nanofibers resulting from the dissolution of the PCL core in a selective solvent. These novel polysaccharide-coated PCL fiber mats remarkably combine the mechanical resistance typical of the core material (PCL)-particularly in the hydrated state-with the surface properties of chitosan. The control of the nanofiber structure offered by the electrospinning technology, makes the developed process very promising to precisely design biomaterials for tissue engineering. Preliminary cell culture tests corroborate the potential use of such system in wound healing applications.

  8. O-acetylation of Plant Cell Wall Polysaccharides

    Directory of Open Access Journals (Sweden)

    Sascha eGille

    2012-01-01

    Full Text Available Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA and the trichome birefringence-like (TBL proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation.From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of e.g. lignocellulosic based biofuel production.

  9. Immunomodulatory Activity and Partial Characterisation of Polysaccharides from Momordica charantia

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Deng

    2014-08-01

    Full Text Available Momordica charantia Linn. is used as an edible and medicinal vegetable in sub-tropical areas. Until now, studies on its composition and related activities have been confined to compounds of low molecular mass, and no data have been reported concerning the plant’s polysaccharides. In this work, a crude polysaccharide of M. charantia (MCP fruit was isolated by hot water extraction and then purified using DEAE-52 cellulose anion-exchange chromatography to produce two main fractions MCP1 and MCP2. The immunomodulatory effects and physicochemical characteristics of these fractions were investigated in vitro and in vivo. The results showed that intragastric administration of 150 or 300 mg·kg−·d−1 of MCP significantly increased the carbolic particle clearance index, serum haemolysin production, spleen index, thymus index and NK cell cytotoxicity to normal control levels in cyclophosphamide (Cy-induced immunosuppressed mice. Both MCP1 and MCP2 effectively stimulated normal and concanavalin A-induced splenic lymphocyte proliferation in vitro at various doses. The average molecular weights of MCP1 and MCP2, which were measured using high-performance gel permeation chromatography, were 8.55 × 104 Da and 4.41 × 105 Da, respectively. Both fractions exhibited characteristic polysaccharide bands in their Fourier transform infrared spectrum. MCP1 is mainly composed of glucose and galactose, and MCP2 is mainly composed of glucose, mannose and galactose. The results indicate that MCP and its fractions have good potential as immunotherapeutic adjuvants.

  10. Characterization of diferuloylated pectic polysaccharides from quinoa (Chenopodium quinoa WILLD.).

    Science.gov (United States)

    Wefers, Daniel; Gmeiner, Bianca M; Tyl, Catrin E; Bunzel, Mirko

    2015-08-01

    In plants belonging to the order of Caryophyllales, pectic neutral side chains can be substituted with ferulic acid. The ability of ferulic acid to form intra- and/or intermolecular polysaccharide cross-links by dimerization was shown by the isolation and characterization of diferulic acid oligosaccharides from monocotyledonous plants. In this study, two diferulic acid oligosaccharides were isolated from the enzymatic hydrolyzate of seeds of the dicotyledonous pseudocereal quinoa by gel permeation chromatography and preparative HPLC and unambiguously identified by LC-MS(2) and 1D/2D NMR spectroscopy. The isolated oligosaccharides are comprised of 5-5- and 8-O-4-diferulic acid linked to the O2-position of the nonreducing residue of two (1→5)-linked arabinobioses. To get insight into the structure and the degree of phenolic acid substitution of the diferuloylated polysaccharides, polymeric sugar composition, glycosidic linkages, and polysaccharide-bound monomeric phenolic acids and diferulic acids were analyzed. This study demonstrates that diferulic acids are involved into intramolecular and/or intermolecular cross-linking of arabinan chains and may have a major impact on cell wall architecture of quinoa and other dicotyledonous plants of the order of Caryophyllales.

  11. Sulfation patterns determine cellular internalization of heparin-like polysaccharides.

    Science.gov (United States)

    Raman, Karthik; Mencio, Caitlin; Desai, Umesh R; Kuberan, Balagurunathan

    2013-04-01

    Heparin is a highly sulfated polysaccharide that serves biologically relevant roles as an anticoagulant and anticancer agent. While it is well-known that modification of heparin's sulfation pattern can drastically influence its ability to bind growth factors and other extracellular molecules, very little is known about the cellular uptake of heparin and the role sulfation patterns serve in affecting its internalization. In this study, we chemically synthesized several fluorescently labeled heparins consisting of a variety of sulfation patterns. These polysaccharides were thoroughly characterized using anion exchange chromatography and size exclusion chromatography. Subsequently, we utilized flow cytometry and confocal imaging to show that sulfation patterns differentially affect the amount of heparin uptake in multiple cell types. This study provides the first comprehensive analysis of the effect of sulfation pattern on the cellular internalization of heparin or heparan sulfate like polysaccharides. The results of this study expand current knowledge regarding heparin internalization and provide insights into developing more effective heparin-based drug conjugates for applications in intracellular drug delivery.

  12. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications

    Science.gov (United States)

    Cunha, Ludmylla; Grenha, Ana

    2016-01-01

    In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting. PMID:26927134

  13. Structure versus anticoagulant and antithrombotic actions of marine sulfated polysaccharides

    Directory of Open Access Journals (Sweden)

    Vitor Hugo Pomin

    2012-08-01

    Full Text Available Marine sulfated polysaccharides (MSP, such as sulfated fucans (SF, sulfated galactans (SG and glycosaminoglycans (GAG isolated from either algae or invertebrate animals, are highly anionic polysaccharides capable of interacting with certain cationic proteins, such as (co-factors of the coagulation cascade during clotting-inhibition processes. These molecular complexes between MSP and coagulation-related proteins might, at first glance, be assumed to be driven mostly by electrostatic interactions. However, a systematic comparison using several novel sulfated polysaccharides composed of repetitive oligosaccharides with clear sulfation patterns has shown that these molecular interactions are regulated essentially by the stereochemistry of the glycans (which depends on a conjunction of anomericity, monosaccharide, conformational preference, and glycosylation and sulfation sites, rather than just a simple consequence of their negative charge density (mainly the number of sulfate groups. Here, we present an overview of the structure-function relationships of MSP, correlating their structures with their potential anticoagulant and antithrombotic actions, since pathologies related to the cardiovascular system are one of the major causes of illness and mortality in the world.

  14. Purification, Characterization and Biological Activity of Polysaccharides from Dendrobium officinale

    Directory of Open Access Journals (Sweden)

    Kaiwei Huang

    2016-05-01

    Full Text Available Polysaccharide (DOPA from the stem of D. officinale, as well as two fractions (DOPA-1 and DOPA-2 of it, were isolated and purified by DEAE cellulose-52 and Sephacryl S-300 chromatography, and their structural characteristics and bioactivities were investigated. The average molecular weights of DOPA-1 and DOPA-2 were 394 kDa and 362 kDa, respectively. They were mainly composed of d-mannose, d-glucose, and had a backbone consisting of 1,4-linked β-d-Manp and 1,4-linked β-d-Glcp with O-acetyl groups. Bioactivity studies indicated that both DOPA and its purified fractions (DOPA-1 and DOPA-2 could activate splenocytes and macrophages. The D. officinale polysaccharides had stimulatory effects on splenocytes, T-lymphocytes and B-lymphocytes, promoting the cell viability and NO production of RAW 264.7 macrophages. Furthermore, DOPA, DOPA-1 and DOPA-2 were found to protect RAW 264.7 macrophages against hydrogen peroxide (H2O2-induced oxidative injury by promoting cell viability, suppressing apoptosis and ameliorating oxidative lesions. These results suggested that D. officinale polysaccharides possessed antioxidant activity and mild immunostimulatory activity.

  15. Extraction of Opuntia dillenii Haw. Polysaccharides and Their Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Heng Li

    2016-11-01

    Full Text Available Use of natural polysaccharides in medicine and food has wide interest in research. In this study, we extracted and purified some polysaccharides from cactus Opuntia dillenii Haw. (ODP. Some preliminary functions of these products were characterized. Under the optimal purification conditions, the yield of ODP extracted from the 2–4 month-old Opuntia dillenii Haw. (T-ODP was 30.60% ± 0.40%, higher than that of ODP from the 5–10 month-old materials (O-ODP (18.97% ± 0.58%. The extracted ODP was purified by DEAE sepharose fast flow anion exchange and Sephacryl S-400 chromatography with four fractions obtained (ODP-Ia, ODP-Ib, ODP-IIa and ODP-IIb. Analysis with UV-vis chromatography indicated that ODP-Ia and ODP-IIa were relatively homogeneous molecules with a molecular weight of 339 kD and 943 kD, respectively. Results of infrared spectroscopy indicated that ODP, ODP-Ia, and ODP-IIa were acidic polysaccharides. Further, the antioxidant activity against DPPH (1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radicals, and superoxide radical in vitro demonstrated that the T-ODP exhibited higher antioxidant activity than the O-ODP, and the purified fraction (ODP-Ia was superior to the ODP. These results will offer a theoretical basis for further research on the structure-function relationship of ODP and the rational utilization of Opuntia dillenii Haw.

  16. Translational Medicine Study on Extraction and Determination of Urtica Polysaccharides and Their Anti-Oxidation Effect

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-tao; LI Shan-shan; WANG Tong-fang; CHEN Xiao-feng

    2016-01-01

    Objective: Translational medicine study on extraction and determination of urtica polysaccharides and their anti-oxidation effect. Methods: Water-soluble alcohol sedimentation technique was used to extract the urtica polysaccharides, and ultraviolet (UV) spectrophotometry was applied to determine their content. The influence of polysaccharides on the activities of glutathione (GSH), catalase (CAT), malondialdéhyde (MDA) and superoxyde dismutase (SOD) in mice with H22-loaded tumors was observed. Results: The purity of urtica polysaccharides was 61.39% after extraction and puriifcation. After administration of high-, moderate- and low-dose urtica polysaccharides, the activity of serum GSH, CAT and SOD was markedly higher while MDA content was prominently lower in mice with H22-loaded tumors than those in model group. Conclusion: Urtica polysaccharides can strengthen the anti-oxidation effect and inhibit the lipid peroxidation reaction in body.

  17. Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment.

    Science.gov (United States)

    Ballesteros, Lina F; Cerqueira, Miguel A; Teixeira, José A; Mussatto, Solange I

    2015-01-01

    Spent coffee grounds (SCG), obtained during the processing of coffee powder with hot water to make soluble coffee, are the main coffee industry residues and retain approximately seventy percent of the polysaccharides present in the roasted coffee beans. The purpose of this study was to extract polysaccharides from SCG by using an alkali pretreatment with sodium hydroxide at 25°C, and determine the chemical composition, as well as the antioxidant and antimicrobial properties of the extracted polysaccharides. Galactose (60.27%mol) was the dominant sugar in the recovered polysaccharides, followed by arabinose (19.93%mol), glucose (15.37%mol) and mannose (4.43%mol). SCG polysaccharides were thermostable, and presented a typical carbohydrate pattern. Additionally, they showed good antioxidant activity through different methods and presented high antimicrobial percent inhibition against Phoma violacea and Cladosporium cladosporioides (41.27% and 54.60%, respectively). These findings allow identifying possible applications for these polysaccharides in the food industry.

  18. Thermal stress resistance and aging effects of Panax notoginseng polysaccharides on Caenorhabditis elegans.

    Science.gov (United States)

    Feng, Shiling; Cheng, Haoran; Xu, Zhou; Shen, Shian; Yuan, Ming; Liu, Jing; Ding, Chunbang

    2015-11-01

    Panax notoginseng attract public attention due to their potential biomedical properties and corresponding health benefits. The present study investigated the anti-aging and thermal stress resistance effects of polysaccharides from P. notoginseng on Caenorhabditis elegans. Results showed polysaccharides had little scavenging ability of reactive oxygen species (ROS) in vitro, but significantly extended lifespan of C. elegans, especially the main root polysaccharide (MRP) which prolongs the mean lifespan of wild type worms by 21%. Further study demonstrated that the heat stress resistance effect of polysaccharides on C. elegans might be attributed to the elevation of antioxidant enzyme activities (both superoxide dismutase (SOD) and catalase (CAT)) and the reduction lipid peroxidation of malondialdehyde (MDA) level. Taken together, the results provided a scientific basis for the further exploitation of the mechanism of longer lifespan controlled by P. notoginseng polysaccharides on C. elegans. The P. notoginseng polysaccharides might be considered as a potential source to delay aging.

  19. [Antitumor Activity of Polysaccharides from Ganoderma lucidum Mycelium: in vivo Comparative Study].

    Science.gov (United States)

    Krasnopolskaya, L M; Yarina, M S; Avtonomova, A V; Usov, A I; Isakova, E B; Bukchman, V M

    2015-01-01

    Fractions of water soluble and alkali soluble polysaccharides, as well as fucogalactan, a water soluble polysaccharide, and xylomannan, an alkali soluble polysaccharide, were isolated from the Ganoderma lucidum submerged mycelium. When administered orally, the polysaccharides showed antitumor activity in vivo on murine models of solid tumors. Xylomannan and fucogalactan showed the highest antitumor activity. Sensitivity to xylomannan was more pronounced in adenocarcinoma Ca755 as compared to the T-cell lymphocytic leukemia P388. The antitumor activity of the water soluble polysaccharides total fractions from the mycelium and fruiting bodies of the G. lucidum strain was almost identical. The maximum antitumor effect of the mycelium water soluble polysaccharides total fraction was observed with the use of the daily dose of 2 mg/kg.

  20. [Biological activities of exogenous polysaccharides via controlling endogenous proteoglycan metabolism in vascular endothelial cells].

    Science.gov (United States)

    Sato, Tomoko; Yamamoto, Chika; Fujiwara, Yasuyuki; Kaji, Toshiyuki

    2008-05-01

    Proteoglycan contains glycosmainoglycans, which are endogenous sulfated polysaccharides, in the molecule. The metabolism of proteoglycans regulates cell behavior and cellular events. It is possible that exogenous polysaccharide-related molecules exhibit their biological activities by two mechanisms. One is the interaction with cells and the other is the interaction with growth factors/cytokines that regulate proteoglycans. In this review, we describe sodium spirulan, a sulfated polysaccharide obtained from a hot-water extract of the blue-green alga Spirulina platensis, as an exogenous polysaccharide that stimulates the release of proteoglycans from vascular endothelial cells. Factors that regulate endothelial proteoglycan metabolism are also being described as possible target molecules of exogenous polysaccharides. Further research is required to obtain exogenous polysaccharide-related molecules that exhibit useful biological activities through controlling endothelial proteoglycan metabolism for protection against vascular lesions such as atheroslcerosis.