WorldWideScience

Sample records for k40 gamma emissions

  1. Development of marijuana and tobacco detectors using potassium-40 gamma ray emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, J. [Lawrence Livermore National Lab., CA (United States). Fission Energy and Systems Safety Program; Lindquist, R.P. [Customs Service, Washington, DC (United States)

    1994-06-01

    Measurements were made at the Otay Mesa, Ca. border crossing between November 30 and December 4, 1992 to demonstrate proof of concept and the practicality of using potassium 40 (K40) gamma emissions to detect the presence of marijuana in vehicles. Lawrence Livermore National Laboratory (LLNL) personnel, with the assistance of the EPA, set up three large volume gamma ray detectors with lead brick shielding and collimation under a stationary trailer and pickup truck. Measurements were performed for various positions and quantities of marijuana. Also, small quantities of marijuana, cigarettes, and other materials were subjected to gamma counting measurements under controlled geometry conditions to determine their K40 concentration. Larger quantities of heroin and cocaine were subjected to undefined geometry gamma counts for significant K40 gamma emissions.

  2. Development of marijuana and tobacco detectors using potassium-40 gamma-ray emissions

    Science.gov (United States)

    Kirby, John A.; Lindquist, Roy P.

    1994-10-01

    Measurements were made at the Otay Mesa, CA, border crossing between November 30 and December 4, 1992, to demonstrate proof of concept and the practicality of using potassium 40 (K40) gamma emissions to detect the presence of marijuana in vehicles. Lawrence Livermore National Laboratory personnel, with the assistance of the EPA, set up three large volume gamma ray detectors with lead brick shielding and collimation under a stationary trailer and pickup truck. Measurements were performed for various positions and quantities of marijuana. Also, small quantities of marijuana, cigarettes, and other materials were subjected to gamma counting measurements under controlled geometry conditions to determine their K40 concentration. Larger quantities of heroin and cocaine were subjected to undefined geometry gamma counts for significant K40 gamma emissions.

  3. HI-resolution gamma spectrometry measurements of U-238, TH-232, K-40 and CS-137 concentrations in soil samples from Capao Island at CTEx

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luciano S.R.; Oliveira, Celio J.V.; Vilela, Paulo R.T.; Vital, Helio C., E-mail: vital@ctex.eb.br [Centro Tecnologico do Exercito (DDQBN/CTEX), Rio de Janeiro, RJ (Brazil). Div. de Defesa Quimica, Biologica e Nuclear. Secao de Defesa Nuclear

    2013-07-01

    Absolute soil concentrations of U-238, Th-232, K-40 and Cs-137 samples collected from Capao Island have been measured by using Hi-Resolution Gamma HPGe Spectrometry. The area of interest encompasses an embankment in a mangrove swamp in Guaratiba, Rio de Janeiro, where nuclear, chemical and biological defense laboratories of the Brazilian Army Technology Center (CTEx) are located. In order to ensure that no significant environmental impact has resulted from neutron physics experiments performed in a graphite subcritical assembly in addition to the operation of two cesium-driven irradiating facilities, routine monitoring of those isotopes have been regularly performed. A total of eight 250 ml samples of mangrove and embankment soils were extracted from four sites of known coordinates within an area of 300 x 300 m{sup 2} and remained stored for a minimum thirty-day period to allow equilibrium to be reached. Collection and preparation of samples were made according to previously established procedures. High purity germanium detectors were used to obtain high-resolution gamma spectra and counting times were required to exceed 30 hours in order to yield sufficient statistical accuracy. Energy and efficiency calibration curves of the counting system were determined by using the GENIE 2000 software for analysis of the gamma spectrum generated by nine standard sources with a total of 11 peak energies ranging from 0.05 to 1.3 MeV. The results, corrected for background, have been expressed as absolute specific activities. All experiments have been made in the Laboratory for Identification of Radiological Agents (LIAR) at CTEx. No trace of cesium-137 has been found and the measured levels of uranium-238, in the order of 10 Bq/kg, are close to the global mean. However, some data have been found to slightly exceed the expected normal range for thorium-232 (60% of samples) and potassium-40 (20% of samples). Since there is no handling of those isotopes in the site or others that

  4. Gamma-ray emission from nova outbursts

    CERN Document Server

    Hernanz, M

    2013-01-01

    Classical novae produce radioactive nuclei which are emitters of gamma-rays in the MeV range. Some examples are the lines at 478 and 1275 keV (from 7Be and 22Na) and the positron-electron annihilation emission, with the 511 keV line and a continuum. Gamma-ray spectra and light curves are potential unique tools to trace the corresponding isotopes and to give insights on the properties of the expanding envelope. Another possible origin of gamma-rays is the acceleration of particles up to very high energies, so that either neutral pions or inverse Compton processes produce gamma-rays of energies larger than 100 MeV. MeV photons during nova explosions have not been detected yet, although several attempts have been made in the last decades; on the other hand, GeV photons from novae have been detected with the Fermi satellite in V407 Cyg, a nova in a symbiotic binary, where the companion is a red giant with a wind, instead of a main sequence star as in the cataclysmic variables hosting classical novae. Two more nov...

  5. Correlated optical and gamma emissions from GRB 081126

    CERN Document Server

    Klotz, Alain; Atteia, J L; Boër, Michel; Coward, David M; Imerito, Alan C

    2009-01-01

    We present an analysis of time-resolved optical emissions observed from the gamma-ray burst GRB 081126 during the prompt phase. The analysis employed time-resolved photometry using optical data obtained by the TAROT telescope, using BAT data from the Swift spacecraft, and time-resolved spectroscopy at high energies from the GBM instrument onboard the Fermi spacecraft. The optical emission of GRB 081126 is found to be compatible with the second gamma emission pulse shifted by a positive time lag of 8.4 $\\pm$ 3.9 s. This is the first well-resolved observation of a time lag between optical and gamma emissions during a gamma-ray burst. Our observations could potentially provide new constraints on the fireball model for gamma-ray burst early emissions. Furthermore, observations of time lags between optical and gamma ray photons provides an exciting opportunity to constrain quantum gravity theories.

  6. Egret observations of the extragalactic gamma-ray emission

    DEFF Research Database (Denmark)

    Sreekumar, P.; Bertsch, D.L.; Dingus, B.L.

    1998-01-01

    with the local interstellar gas and radiation, as well as an almost uniformly distributed component that is generally believed to originate outside the Galaxy. Through a careful study and removal of the Galactic diffuse emission, the flux, spectrum, and uniformity of the extragalactic emission are deduced......The all-sky survey in high-energy gamma rays (E > 30 MeV) carried out by EGRET aboard the Compton Gamma Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions...

  7. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Van Belle, P. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Howarth, P.J.A. [Birmingham Univ. (United Kingdom); Adams, J.M.; Bond, D.S. [UKAEA Harwell Lab. (United Kingdom). Energy Technology Div.

    1994-07-01

    Gamma-ray emission from plasma-impurity reactions caused by minority ICRH accelerating fuel ions to MeV energies has been measured using the JET neutron profile monitor. A successful data analysis technique has been used to isolate the RF-induced gamma-ray emission that was detected, enabling profiles of gamma-ray emission to be obtained. The 2-d gamma-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. 6 refs., 4 figs.

  8. Photospheric Emission in Gamma-Ray Bursts

    CERN Document Server

    Pe'er, Asaf

    2016-01-01

    A major breakthrough in our understanding of gamma-ray bursts (GRB) prompt emission physics occurred in the last few years, with the realization that a thermal component accompanies the over-all non-thermal prompt spectra. This thermal part is important by itself, as it provides direct probe of the physics in the innermost outflow regions. It further has an indirect importance, as a source of seed photons for inverse-Compton scattering, thereby it contributes to the non-thermal part as well. In this short review, we highlight some key recent developments. Observationally, although so far it was clearly identified only in a minority of bursts, there are indirect evidence that thermal component exists in a very large fraction of GRBs, possibly close to 100%. Theoretically, the existence of thermal component have a large number of implications as a probe of underlying GRB physics. Some surprising implications include its use as a probe of the jet dynamics, geometry and magnetization.

  9. Varying Faces of Photospheric Emission in Gamma-Ray Bursts

    CERN Document Server

    Axelsson, M

    2015-01-01

    Among the more than 1000 gamma-ray bursts observed by the Fermi Gamma-ray Space Telescope, a large fraction show narrow and hard spectra inconsistent with non-thermal emission, signifying optically thick emission from the photosphere. However, only a few of these bursts have spectra consistent with a pure Planck function. We will discuss the observational features of photospheric emission in these GRBs as well as in the ones showing multi-component spectra. We interpret the observations in light of models of subphotospheric dissipation, geometrical broadening and multi-zone emission, and show what we can learn about the dissipation mechanism and properties of GRB jets.

  10. GAMMA-RAY AND X-RAY EMISSION FROM GAMMA-RAY-LOUD BLAZARS

    Institute of Scientific and Technical Information of China (English)

    ZHANG XIONG; ZHAO GANG; XIE GUANG-ZHONG; ZHENG GUANG-SHENG; ZHANG LI

    2001-01-01

    We present a strong correlation of the gamma-ray (above 100 MeV) mean spectral indices aγ and X-ray (1 keV)mean spectral indices cX for 34 gamma-ray-loud blazars (16 BL Lac objects and 18 flat spectrum radio quasars). Astrong correlation is also found between the gamma-ray flux densities F-γ and X-ray flux densities Fx in the low state for 47 blazars (17 BL Lac and 30 flat spectrum radio quasars). Possible correlation on the gamma-ray emission mechanism is discussed. We suggest that the main gamma-ray radiation mechanism is probably the synchrotron process. The gamma-ray emission may be somewhat different from that of BL Lac objects and flat spectrum radio quasars.

  11. Gamma-Ray Pulsars Expected in the Outer Gap Model of Gamma-Ray Emission

    Institute of Scientific and Technical Information of China (English)

    张力; 吴杰; 姜泽军; 梅冬成

    2003-01-01

    We study the possibility of high-energy gamma-ray emission from the known 1130 radio pulsars based on the outer gap model of high-energy emission from pulsars. We estimate the fractional size of outer gap, the integrated flux, the gamma-ray luminosity for each known radio pulsar, and find that only 14% of the known radio pulsars are gamma-ray emitters according to the outer gap model. In the sample of possible 156 gamma-ray pulsars, our statistical analysis indicates that the distributions of the spin-down powers and the ages of these pulsars concentrate mainly on 1033.5-1039 erg/s and 103-107 y, respectively. The predictions of gamma-ray pulsars detected by the AGILE and GLAST missions are given.

  12. Multi-wavelength emission region of gamma-ray pulsars

    CERN Document Server

    Kisaka, Shota

    2011-01-01

    Recent obserbations by Fermi Gamma-Ray Space Telescope of gamma-ray pulsars have revealed further details of the structure of the emission region. We investigate the emission region for the multi-wavelength light curve using outer gap model. We assume that gamma-ray and non-thermal X-ray photons are emitted from a particle acceleration region in the outer magnetosphere, and UV/optical photons originate above that region. We also assume that gamma-rays are radiated only by outwardly moving particles, whereas the other photons are produced by particles moving inward and outward. We parametrize the altitude of the emission region. We find that the outer gap model can explain the multi-wavelength pulse behavior. From observational fitting, we also find a general tendency for the altitude of the gamma-ray emission region to depend on the inclination angle. In particular, the emission region for low inclination angle is required to be located in very low altitude, which corresponds to the inner region within the la...

  13. High energy gamma-ray emission from Gamma-Ray Bursts -- before GLAST

    CERN Document Server

    Fan, Yi-Zhong

    2008-01-01

    Gamma-ray bursts (GRBs) are short and intense emission of soft gamma-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high energy gamma-ray emission (>20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high energy emission from GRBs. Special attention is given to the expected high energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  14. Dark matter properties implied by gamma ray interstellar emission models

    OpenAIRE

    Balázs, Csaba; Li, Tong

    2016-01-01

    We infer dark matter properties from gamma ray residuals extracted using eight different interstellar emission scenarios proposed by the Fermi-LAT Collaboration to explain the Galactic Center gamma ray excess. Adopting the most plausible simplified ansatz, we assume that the dark matter particle is a Majorana fermion interacting with standard fermions via a scalar mediator. Using this theoretical hypothesis and the Fermi residuals we calculate Bayesian evidences, including Fermi-LAT exclusion...

  15. Neutron-gamma competition for $\\beta$-delayed neutron emission

    CERN Document Server

    Mumpower, Matthew; Moller, Peter

    2016-01-01

    We present a coupled Quasi-particle Random Phase Approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information which starts with Gamow-Teller strength distributions in the daughter nucleus, and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is $\\gamma$-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-gamma competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. A second consequence of this formalism is a prediction of more neutrons on average being emitted after $\\beta$-decay for nuclei near the neutron dripline compared to models that do not consider the statistical decay.

  16. Gamma-ray emission from individual classical novae

    CERN Document Server

    Gómez-Gomar, J; José, J; Isern, J

    1997-01-01

    Classical novae are important producers of radioactive nuclei, such as be7, n13, f18, na22 and al26. The disintegration of these nuclei produces positrons (except for be7) that through annihilation with electrons produce photons of energies 511 keV and below. Furthermore, be7 and na22 decay producing photons with energies of 478 keV and 1275 keV, respectively, well in the gamma-ray domain. Therefore, novae are potential sources of gamma-ray emission. The properties of gamma-ray spectra and gamma-ray light curves (for the continuum and for the lines at 511, 478 and 1275 keV) have been analyzed, with a special emphasis on the difference between carbon-oxygen and oxygen-neon novae. Predictions of detectability of individual novae by the future SPI spectrometer on board the INTEGRAL satellite are made.

  17. Fermi Discovery of Gamma-Ray Emission from NGC 1275

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Asano, K.; /Tokyo Inst. Tech.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle; Caliandro, G.A.; /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /SISSA, Trieste /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /ASDC, Frascati /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U.; /more authors..

    2009-05-15

    We report the discovery of high-energy (E > 100 MeV) {gamma}-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the {gamma}-ray source is only {approx}3{prime} away from the NGC 1275 nucleus, well within the 95% LAT error circle of {approx}5{prime}. The spatial distribution of {gamma}-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F{sub {gamma}} = (2.10 {+-} 0.23) x 10{sup -7} ph (>100 MeV) cm{sup -2} s{sup -1} and {Gamma} = 2.17 {+-} 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F{sub {gamma}} < 3.72 x 10{sup -8} ph (>100 MeV) cm{sup -2} s{sup -1} to the {gamma}-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.

  18. Perspectives on Gamma-Ray Pulsar Emission

    CERN Document Server

    Baring, Matthew G

    2010-01-01

    Pulsars are powerful sources of radiation across the electromagnetic spectrum. This paper highlights some theoretical insights into non-thermal, magnetospheric pulsar gamma-ray radiation. These advances have been driven by NASA's Fermi mission, launched in mid-2008. The Large Area Telescope (LAT) instrument on Fermi has afforded the discrimination between polar cap and slot gap/outer gap acceleration zones in young and middle-aged pulsars. Altitude discernment using the highest energy pulsar photons will be addressed, as will spectroscopic interpretation of the primary radiation mechanism in the LAT band, connecting to both polar cap/slot gap and outer gap scenarios. Focuses will mostly be on curvature radiation and magnetic pair creation, including population trends that may afford probes of the magnetospheric accelerating potential.

  19. Exploring Broadband GRB Behavior During gamma-ray Emission

    CERN Document Server

    Yost, S A; Rykoff, E S; Aharonian, F; Akerlof, C W; Alday, A; Ashley, M C B; Barthelmy, S; Burrows, D; Depoy, D L; Dufour, R J; Eastman, J D; Forgey, R D; Gehrels, N; G"uver, T; Halpern, J P; Hardin, L C; Horns, D; Krimm, H A; Lepine, S; Liang, E P; Marshall, J L; McKay, T A; Mineo, T; Mirabal, N; Phillips, A; Prieto, J L; Quimby, R M; Romano, P; Rowell, G; Rujopakarn, W; Schaefer, B E; Silverman, J M; Siverd, R; Skinner, M; Smith, D A; Smith, I A; Tonnesen, S; Troja, E; Vestrand, W T; Wheeler, J C; Wren, J; Yuan, F; Zhang, B

    2006-01-01

    The robotic ROTSE-III telescope network detected prompt optical emission contemporaneous with the gamma-ray emission of Swift events GRB051109A and GRB051111. Both datasets have continuous coverage at high signal-to-noise levels from the prompt phase onwards, thus the early observations are readily compared to the Swift XRT and BAT high energy detections. In both cases, the optical afterglow is established, declining steadily during the prompt emission. For GRB051111, there is evidence of an excess optical component during the prompt emission. The component is consistent with the flux spectrally extrapolated from the gamma-rays, using the gamma-ray spectral index. A compilation of spectral information from previous prompt detections shows that such a component is unusual. The existence of two prompt optical components - one connected to the high-energy emission, the other to separate afterglow flux, as indicated in GRB051111 - is not compatible with a simple ``external-external'' shock model for the GRB and i...

  20. Prompt Optical Emission from Gamma-ray Bursts

    CERN Document Server

    Kehoe, R; Balsano, R; Barthelmy, S D; Bloch, J; Butterworth, P S; Casperson, D E; Cline, T; Fletcher, S; Frontera, F; Gisler, G; Heise, J; Hills, J; Hurley, K; Lee, B; Marshall, S; McKay, T; Pawl, A; Piro, L; Priedhorsky, B; Szymanski, J J; Wren, J; Kehoe, Robert; Akerlof, Carl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Lee, Brian; Marshall, Stuart; Kay, Tim Mc; Pawl, Andrew; Piro, Luigi; Priedhorsky, Bill; Szymanski, John; Wren, Jim

    2001-01-01

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting sensitivities are m(V) > 13.0 at 14.7 seconds after the gamma-ray rise, and m(V) > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray em...

  1. Fast Radio Bursts with Extended Gamma-Ray Emission?

    CERN Document Server

    Murase, Kohta; Fox, Derek B

    2016-01-01

    We consider some general implications of bright gamma-ray counterparts to fast radio bursts (FRBs). We show that, even if these manifest in only a fraction of FRBs, gamma-ray detections with current satellites (including Swift) provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required gamma-ray energy is comparable to that of the early afterglow or extended emission of short gamma-ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the gamma-rays is too dense for radio waves to escape. Highly-relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source...

  2. Late Time Emission of Prompt Fission Gamma Rays

    CERN Document Server

    Talou, P; Stetcu, I; Lestone, J P; McKigney, E; Chadwick, M B

    2016-01-01

    The emission of prompt fission $\\gamma$ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and $\\gamma$-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before $\\beta$-decay, is analyzed. The time evolution of the average total $\\gamma$-ray energy, average total $\\gamma$-ray multiplicity, and fragment-specific $\\gamma$-ray spectra, is presented in the case of neutron-induced fission reactions of $^{235}$U and $^{239}$Pu, as well as spontaneous fission of $^{252}$Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission $\\gamma$ rays are predicted to be emitted between 10 nsec and 5 $\\mu$sec following fission, in the case of $^{235}$U and $^{239}$Pu $(n_{\\rm th},f)$ reactio...

  3. Relation between $\\gamma$-rays and emission lines for the $\\gamma$-ray loud blazars

    CERN Document Server

    Fan, J H

    2000-01-01

    The relation between the $\\gamma$-ray and the emission line luminosities for a sample of 36 $\\gamma$-ray loud blazars is investigated; an apparent correlation between them, $L_{\\gamma} \\propto L_{Line}^{0.69\\pm0.11}$, with a correlation coefficient $r=0.741$ and a chance probability of $p = 1.9\\times10^{-6}$, is found. It is found, however, that there is no intrinsic correlation between them: the apparent correlation is due to the redshift dependence in a flux-limited sample. Thus no evidence is found to support the argument that the up-scattered soft photons are from the broad emission lines. Our analysis does not conflict with the SSC model. The disk-jet symbiosis and radio/$\\gamma$-ray correlation found in the literature are also discussed. The radio/$\\gamma$-ray correlation may be an apparent correlation caused by the boosting effect since both bands are strongly beamed.

  4. Neutron-Activated Gamma-Emission: Technology Review

    Science.gov (United States)

    2012-01-01

    defined in MCNPX to simulate the -spectra collected by NaI detectors (cell 6) from target (cell 3...numerical simulation. Safety issues are of great interest to users and are calculated in section 6. Ideas to increase target distance and reduce...neutron emission, target scatter, and gamma collection processes were simulated using MCNPX . MCNPX is a legacy code from Los Alamos National

  5. Gamma-Ray and Multiwavelength Emission from Blazars

    Indian Academy of Sciences (India)

    Meg Urry

    2011-03-01

    Blazars are now well understood as approaching relativistic jets aligned with the line of sight. The long-time uncertainty about the demographics of blazars is starting to become clearer: since the Fermi blazar sample includes a larger fraction of high-frequency peaked blazars (like the typical X-ray-selected blazars in, say, the Einstein Slew Survey sample) than did the higher-flux-limit EGRET blazar sample, these low-luminosity sources must be more common than their higher luminosity, low-frequency-peaked cousins. Blazar spectral energy distributions have a characteristic two-component form, with synchrotron radiation at radio through optical (UV, X-ray) frequencies and gamma-rays from X-ray through GeV (TeV) energies.Multiwavelength monitoring has suggested that gamma-ray flares can result from acceleration of electrons at shocks in the jet, and there appears to be an association between the creation of outflowing superluminal radio components in VLBI maps and the gamma-ray flares. In many cases, the gamma-ray emission is produced by inverse Compton upscattering of ambient optical-UV photons, although the contribution from energetic hadrons cannot be ruled out. The next few years of coordinated gamma-ray, X-ray, UV, optical, infrared and radio monitoring of blazars will be important for characterizing jet content, structure, and total power.

  6. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    Science.gov (United States)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  7. High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yi-Zhong; Piran, Tsvi

    2011-11-29

    Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  8. Gamma ray pulsars emission from extended polar cap cascades

    CERN Document Server

    Daugherty, J K; Daugherty, Joseph K; Harding, Alice K

    1995-01-01

    We have used a Monte Carlo simulation of a Polar Cap (PC) model of gamma-ray pulsars to estimate light curves and phase-resolved spectra for sources whose rotational and magnetic axes are oriented so that only one of the magnetic poles produces emission directed at the Earth. In this Single Polar Cap (SPC) scenario, even sources whose light curves have two distinct peaks (Crab, Vela, Geminga, PSR B1951+32) are due to emission concentrated near the rim of a single PC. If the inclination alpha is comparable to the half-width of the PC gamma-beam, alpha ~ theta_{b}, the peak-to-peak phase separation can have the large values (0.4 - 0.5) observed from these sources. In the model presented here we attribute the observed interpeak emission to pair cascades above the PC interior. Our simulation assumes the physics of conventional PC models, in which the gamma rays are due to photon-pair cascades initiated by curvature radiation from the acceleration of electrons above the PCs. In this work we assume that the acceler...

  9. FERMI Observations of Gamma -Ray Emission From the Moon

    Science.gov (United States)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwoo, W. B.; Baldini, I.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; Thompson, D. J.; McEnery, J. E.; Troja, E.

    2012-01-01

    We report on the detection of high-energy ? -ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmicray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F(greater than100 MeV) = (1.04 plus or minus 0.01 [statistical error] plus or minus 0.1 [systematic error]) × 10(sup -6) cm(sup -2) s(sup -1). This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on board the Compton Gamma Ray Observatory, F(greater than100 MeV)˜5×10(sup -7) cm(sup -2) s(sup -1), when solar activity was relatively high. The higher gamma -ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of gamma-rays with fast celestial motion. Their paths across the sky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy gamma-ray sources. Analysis of the lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.

  10. Modelling Hard $\\gamma$-Ray Emission From Supernova Remnants

    CERN Document Server

    Baring, M G

    1999-01-01

    The observation by the CANGAROO experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a ``Holy Grail'' for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central c...

  11. Study of the variability of Blazars gamma-ray emission

    CERN Document Server

    Sbarrato, T; Ghisellini, G; Tavecchio, F

    2011-01-01

    The gamma-ray emission of blazar jets shows a pronounced variability and this feature provides limits to the size and to the speed of the emitting region. We study the gamma-ray variability of bright blazars using data from the first 18 months of activity of the Large Area Telescope on the Fermi Gamma-Ray Space Telescope. From the daily light-curves of the blazars characterized by a remarkable activity, we firstly determine the minimum variability time-scale, giving an upper limit for the size of the emitting region of the sources, assumed to be spheroidal blobs in relativistic motion. These regions must be smaller than ~10^-3 parsec. Another interesting time-scale is the duration of the outbursts. We conclude that they cannot correspond to radiation produced by a single blob moving relativistically along the jet, but they are either the signature of emission from a standing shock extracting energy from a modulated jet, or the superposition of a number of flares occurring on a shorter time-scale. We also deri...

  12. Dark matter properties implied by gamma ray interstellar emission models

    Science.gov (United States)

    Balázs, Csaba; Li, Tong

    2017-02-01

    We infer dark matter properties from gamma ray residuals extracted using eight different interstellar emission scenarios proposed by the Fermi-LAT Collaboration to explain the Galactic Center gamma ray excess. Adopting the most plausible simplified ansatz, we assume that the dark matter particle is a Majorana fermion interacting with standard fermions via a scalar mediator. To trivially respect flavor constraints, we only couple the mediator to third generation fermions. Using this theoretical hypothesis, and the Fermi residuals, we calculate Bayesian evidences, including Fermi-LAT exclusion limits from 15 dwarf spheroidal galaxies as well. Our evidence ratios single out one of the Fermi scenarios as most compatible with the simplified dark matter model. In this scenario the dark matter (mediator) mass is in the 25-200 (1-1000) GeV range and its annihilation is dominated by bottom quark final state. Our conclusion is that the properties of dark matter extracted from gamma ray data are highly sensitive to the modeling of the interstellar emission.

  13. Gamma Ray Burst reverse shock emission in early radio afterglows

    CERN Document Server

    Resmi, Lekshmi

    2016-01-01

    Reverse shock (RS) emission from Gamma Ray Bursts is an important tool in investigating the nature of the ejecta from the central engine. If the ejecta magnetization is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would give important contribution to early afterglow light curves. In the radio band, synchrotron self-absorption may suppress early RS emission, and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band for different dynamical conditions. In particular, we stress that the RS radio emission is subject to self-absorption in both reverse and forward shocks. We calculate the ratio between the reverse to forward shock flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS e...

  14. SAS-2 galactic gamma-ray results. 1: Diffuse emission

    Science.gov (United States)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitudes 310 deg and 45 deg, corresponding to a region within 7 kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315, 330, 345, 0, and 35 deg. These peaks appear to be correlated with galactic features and components such as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic-ray concentrations, and photon fields.

  15. Fast Variations of Gamma-Ray Emission in Blazars

    CERN Document Server

    Wagner, S J; Herter, M; Wagner, Stefan J.; Montigny, Corinna von; Herter, Martin

    1997-01-01

    The largest group of sources identified by EGRET are Blazars. This sub-class of AGN is well known to vary in flux in all energy bands on time-scales ranging from a few minutes (in the optical and X-ray bands) up to decades (radio and optical regimes). In addition to variations of the gamma-ray flux between different viewing periods, the brightest of these sources showed a few remarkable gamma-ray flares on time-scales of about one day, confirming the extension of the ``Intraday-Variability (IDV)'' phenomenon into the GeV range. We present first results of a systematic approach to study fast variability with EGRET data. This statistical approach confirms the existence of IDV even during epochs when no strong flares are detected. This provides additional constraints on the site of the gamma-ray emission and allows cross-correlation analyses with light curves obtained at other frequencies even during periods of low flux. We also find that some stronger sources have fluxes systematically above threshold even duri...

  16. MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides

    NARCIS (Netherlands)

    Hendriks, Peter; Maucec, M; de Meijer, RJ

    2002-01-01

    gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of K-40 and the series of Th-232 and U-238 are used to describe the source. A procedure is proposed which excludes the time-consumi

  17. Optical Emissions Associated with Terrestrial Gamma-ray Flashes

    Science.gov (United States)

    Xu, W.; Celestin, S. J.; Pasko, V. P.

    2013-12-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Measurements have correlated TGFs with initial development stages of normal polarity intracloud lightning that transports negative charge upward (+IC) [e.g., Lu et al., GRL, 37, L11806, 2010; JGR, 116, A03316, 2011]. Moreover, Østgaard et al. [GRL, 40, 2423, 2013] have recently reported, for the first time, space-based observations of optical emissions from TGF-associated IC lightning flashes. The purpose of the present work is to quantify the intensities of optical emissions resulting from the excitation of air molecules produced by conventional streamer discharges in negative corona flashes of stepping negative leaders and by the large amount of electrons involved in TGF events based on two production mechanisms: relativistic runaway electron avalanches (RREAs) [Dwyer and Smith, GRL, 32, L22804, 2005] and production of runaway electrons by high-potential +IC lightning leaders [e.g., Celestin and Pasko, JGR, 116, A03315, 2011; Xu et al., GRL, 39, L08801, 2012]. We employ a Monte Carlo model to simulate the acceleration of electrons in the energy range from sub-eV to GeV in either large-scale homogeneous electric field sustaining RREAs or highly inhomogeneous electric field produced around the lightning leader tip region. With the knowledge of the electron energy distribution function, a model similar to that described in [Liu and Pasko, JGR, 109, A

  18. New Limits On Gamma-Ray Emission From Galaxy Clusters

    CERN Document Server

    Griffin, Rhiannon D; Kochanek, Christopher S

    2014-01-01

    Galaxy clusters are predicted to produce gamma-rays through cosmic ray interactions and/or dark matter annihilation, potentially detectable by the Fermi Large Area Telescope (Fermi-LAT). We present a new, independent stacking analysis of Fermi-LAT photon count maps using the 79 richest nearby clusters (z<0.12) from the Two Micron All-Sky Survey (2MASS) cluster catalog. We obtain the lowest limit on the photon flux to date, 1.1e-11 ph/s/cm^2 (95% confidence) per cluster in the 0.8--100~GeV band, which corresponds to a luminosity limit of 1.7e44 ph/s. We also constrain the emission limits in a range of narrower energy bands. Scaling to recent cosmic ray acceleration and gamma-ray emission models, we find that cosmic rays represent a negligible contribution to the intra-cluster energy density and gas pressure. Furthermore, either accretion shocks must have lower Mach numbers than usually assumed (2--4) or significantly less than 50% of the baryon mass has been processed through such shocks, and thus, the majo...

  19. Classification of JET Neutron and Gamma Emissivity Profiles

    Science.gov (United States)

    Craciunescu, T.; Murari, A.; Kiptily, V.; Vega, J.; Contributors, JET

    2016-05-01

    In thermonuclear plasmas, emission tomography uses integrated measurements along lines of sight (LOS) to determine the two-dimensional (2-D) spatial distribution of the volume emission intensity. Due to the availability of only a limited number views and to the coarse sampling of the LOS, the tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET. In specific experimental conditions the availability of LOSs is restricted to a single view. In this case an explicit reconstruction of the emissivity profile is no longer possible. However, machine learning classification methods can be used in order to derive the type of the distribution. In the present approach the classification is developed using the theory of belief functions which provide the support to fuse the results of independent clustering and supervised classification. The method allows to represent the uncertainty of the results provided by different independent techniques, to combine them and to manage possible conflicts.

  20. Short Gamma-Ray Bursts with Extended Emission

    Science.gov (United States)

    Norris, J. P.; Bonnell, J. T.

    2005-01-01

    The recent association of several short gamma-ray bursts (GRBs) with early type galaxies with low star formation rate demonstrates that short bursts arise from a different progenitor mechanism than long bursts. However, since the duration distributions of the two classes overlap, membership is not always easily established. The picture is complicated by the occasional presence of softer, extended emission lasting tens of seconds after the initial spike- like emission comprising an otherwise short burst. Using the large BATSE sample with time-tagged event (TTE) data, we show that the fundamental defining characteristic of the short burst class is that the initial spike exhibits negligible spectral evolution at energies above approx. 25 keV. This is behavior is nearly ubiquitous for the 260 bursts with T(sub 90) less than 2s where the BATSE TTE data type completely included the initial spike: Their spectral lags measured between the 25-50 keV and 100-300 energy ranges are consistent with zero in 90-95% of the cases, with most outliers probably representing the tail of the long burst class. We also analyze a small sample of "short" BATSE bursts - those with the most fluent, intense extended emission. The same lack of evolution on the pulse timescale obtains for the extended emission in the brighter bursts where significant measurements can be made. One possible inference is that both emission components may arise in the same region. We also show that the dynamic range in the ratio of peak intensities, spike : extended, is at least approx. l0(exp 3), and that for some bursts, the extended emission is only a factor of 2-5 lower. However, for our whole sample the total counts fluence of the extended component equals or exceeds that in the spike by a factor of several.

  1. The pulsar contribution to the diffuse galactic gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.; Kanbach, G.; Hunter, S.D.;

    1997-01-01

    There is active interest in the extent to which unresolved gamma-ray pulsars contribute to the Galactic diffuse emission, and in whether unresolved gamma-ray pulsars could be responsible for the excess of diffuse Galactic emission above 1 GeV that has been observed by EGRET. The diffuse gamma-ray...... for a reasonable number of directly observable gamma-ray pulsars (similar to 14). The latitude distribution of the diffuse emission caused by unresolved pulsars is narrower than that of the observed diffuse emission. While the excess above 1 GeV gamma-ray energy is observed up to at least 6 degrees-8 degrees off...... the plane, the pulsar contribution would be small there. Thus, pulsars do significantly contribute to the diffuse Galactic gamma-ray emission above 1 GeV, but they cannot be made responsible for all the discrepancies between observed intensity and model predictions in this energy range....

  2. Short Gamma-Ray Bursts with Extended Emission

    CERN Document Server

    Norris, J P; Bonnell, Jerry T.; Norris, Jay P.

    2006-01-01

    The recent association of several short gamma-ray bursts (GRBs) with early type galaxies with low star formation rate demonstrates that short bursts arise from a different progenitor mechanism than long bursts. However, since the duration distributions of the two classes overlap, membership is not always easily established. The picture is complicated by the occasional presence of softer, extended emission lasting tens of seconds after the initial spike-like emission. We show that the fundamental defining characteristic of the short burst class is that the initial spike exhibits negligible spectral evolution at energies above ~ 25 keV. This behavior is nearly ubiquitous for the 260 bursts with T90 < 2 s, where the BATSE TTE data completely included the initial spike. The same signature obtains for one HETE-2 and six Swift/BAT short bursts. Analysis of a small sample of "short" BATSE bursts with the most intense extended emission shows that the same lack of evolution on the pulse timescale obtains for the ex...

  3. Understanding Limitations in the Determination of the Diffuse Galactic Gamma-ray Emission

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Igor V.; /Stanford U., HEPL /KIPAC, Menlo Park; Digel, S.W.; /SLAC /KIPAC, Menlo Park; Porter, T.A.; /UC, Santa Cruz; Reimer, O.; /Stanford U., HEPL /KIPAC,; Strong, A.W.; /Garching, Max Planck Inst., MPE

    2006-10-03

    We discuss uncertainties and possible sources of errors associated with the determination of the diffuse Galactic {gamma}-ray emission using the EGRET data. Most of the issues will be relevant also in the GLAST era. The focus here is on issues that impact evaluation of dark matter annihilation signals against the diffuse {gamma}-ray emission of the Milky Way.

  4. Dark matter properties implied by gamma ray interstellar emission models

    CERN Document Server

    Balázs, Csaba

    2016-01-01

    We infer dark matter properties from gamma ray residuals extracted using eight different interstellar emission scenarios proposed by the Fermi-LAT Collaboration to explain the Galactic Center gamma ray excess. Adopting the most plausible simplified ansatz, we assume that the dark matter particle is a Majorana fermion interacting with standard fermions via a scalar mediator. Using this theoretical hypothesis and the Fermi residuals we calculate Bayesian evidences, including Fermi-LAT exclusion limits from 15 dwarf spheroidal galaxies as well. Our Bayes factors single out four of the Fermi scenarios as compatible with the simplified dark matter model. In the most preferred scenario the dark matter (mediator) mass is in the 100-500 (1-200) GeV range and its annihilation is dominated by top quark final state. Less preferred but still plausible is annihilation into b\\bar{b} and tau^+tau^- final states with an order of magnitude lower dark matter mass. Our conclusion is that the properties of dark matter extracted ...

  5. Neutrino emission from gamma-ray burst fireballs, revised.

    Science.gov (United States)

    Hümmer, Svenja; Baerwald, Philipp; Winter, Walter

    2012-06-08

    We review the neutrino flux from gamma-ray bursts, which is estimated from gamma-ray observations and used for the interpretation of recent IceCube data, from a particle physics perspective. We numerically calculate the neutrino flux for the same astrophysical assumptions as the analytical fireball neutrino model, including the dominant pion and kaon production modes, flavor mixing, and magnetic field effects on the secondary muons, pions, and kaons. We demonstrate that taking into account the full energy dependencies of all spectra, the normalization of the expected neutrino flux reduces by about one order of magnitude and the spectrum shifts to higher energies, where we can pin down the exact origin of the discrepancies by the recomputation of the analytical models. We also reproduce the IceCube-40 analysis for exactly the same bursts and same assumptions and illustrate the impact of uncertainties. We conclude that the baryonic loading of the fireballs, which is an important control parameter for the emission of cosmic rays, can be constrained significantly with the full-scale experiment after about ten years.

  6. Laser-driven hole boring and gamma-ray emission in high-density plasmas

    CERN Document Server

    Nerush, Evgeny

    2014-01-01

    Ion acceleration in laser-produced dense plasmas is a key topic of many recent investigations thanks to its potential applications. Besides, at forthcoming laser intensities ($I \\gtrsim 10^{23} \\text{W}\\,\\text{cm}^{-2}$) interaction of laser pulses with plasmas can be accompanied by copious gamma-ray emission. Here we demonstrate the mutual influence of gamma-ray emission and ion acceleration during relativistic hole boring in high-density plasmas with ultra-intense laser pulses. If gamma-ray emission is abundant, laser pulse reflection and hole-boring velocity are lower and gamma-ray radiation pattern is narrower than in the case of low emission. Conservation of energy and momentum allows one to elucidate the effects of gamma-ray emission which are more pronounced at higher hole-boring velocities.

  7. Prompt gamma-ray burst emission from gradual magnetic dissipation

    Science.gov (United States)

    Beniamini, Paz; Giannios, Dimitrios

    2017-07-01

    We considered a model for the prompt phase of gamma-ray burst emission arising from a magnetized jet undergoing gradual energy dissipation due to magnetic reconnection. The dissipated magnetic energy is translated to bulk kinetic energy and to acceleration of particles. The energy in these particles is released via synchrotron radiation as they gyrate around the strong magnetic fields in the jet. At small radii, the optical depth is large, and the radiation is reprocessed through Comptonization into a narrow, strongly peaked component. At larger distances the optical depth becomes small and radiation escapes the jet with a non-thermal distribution. The obtained spectra typically peak around ≈300 keV (as observed) and with spectral indices below and above the peak that are, for a broad range of the model parameters, close to the observed values. The small radius of dissipation causes the emission to become self-absorbed at a few keV and can sufficiently suppress the optical and X-ray fluxes within the limits required by observations.

  8. Gamma-emissions of some meteorites and terrestrial rocks. Evaluation of lunar soil radioactivity; Emissions gamma de quelques meteorites et roches terrestres. Evaluation de la radioactivite du sol lunaire

    Energy Technology Data Exchange (ETDEWEB)

    Nordemann, D. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-07-01

    The gamma-emissions of some terrestrial rocks and of the following meteorites: Bogou, Eagle-Station, Granes, and Dosso were studied by quantitative low background gamma spectrometry. These measurements and their interpretation lead to the evaluation of the possible gamma-emissions of several models of lunar soils. (author) [French] Les emissions gamma des meteorites Bogou, Eagle-Station, Granes et Dosso et de quelques roches terrestres ont ete etudiees par spectrometrie gamma quantitative a faible mouvement propre. Ces mesures et leur interpretation permettent d'evaluer les principales contributions des emissions gamma du sol lunaire pour des modeles de compositions possibles variees. (auteur)

  9. Disentangling the gamma-ray emission of NGC 1275 and that of the Perseus cluster

    Science.gov (United States)

    Colafrancesco, S.; Marchegiani, P.; Giommi, P.

    2010-09-01

    Context. The Gamma-ray emission from galaxy clusters hosting active galaxies is a complex combination of diffuse and point-like emission features with different spectral and spatial properties. Aims: We discuss in details the case of the Perseus cluster containing the radio-galaxy NGC 1275 that has been recently detected as a bright gamma-ray source by the Fermi-LAT experiment, in order to disentangle the sources of emission. Methods: We provide a detailed study of the gamma-ray emission coming from the core of Perseus by modeling the central AGN emission with a multiple plasma blob model, and the emission from the extended cluster atmosphere with both a warming ray (WR) model and dark matter (DM) neutralino annihilation models. We set constraints on both the central galaxy and cluster SED models by using both archival multi-frequency data and the recent very high energy observations obtained by Fermi and MAGIC. Results: We find that: i) in all the viable models for the cluster gamma-ray emission, the emission detected recently by Fermi from the center of the Perseus cluster is dominated by the active galaxy NGC 1275, that is found in a high-emission state; ii) the diffuse gamma-ray emission of the cluster, in the WR model and in the DM models with the highest allowed normalization, could be detected by Fermi if the central emission from NGC 1275 is in a low-emission state; iii) Fermi can have the possibility to resolve and detect the diffuse gamma-ray flux (predicted by the WR model) coming from the outer corona of the Perseus cluster atmosphere at distances r ⪆ 800 kpc. These results are consistent with the evidence that in the other frequency bands, the diffuse cluster emission dominates on the central galaxy one at low radio frequencies with ν ⪉ 1 GHz and at X-ray energies of order of E~ keV. Conclusions: Our results show that a simultaneous study of the various emission mechanisms that produce diffuse gamma-rays from galaxy clusters and the study of the

  10. Limits for an inverse bremsstrahlung origin of the diffuse Galactic soft gamma-ray emission

    DEFF Research Database (Denmark)

    Pohl, M.

    1998-01-01

    -7 MeV emission from the Galactic plane, in concert with the constraints from pi(0)-decay gamma-ray emission at higher energies, are in serious conflict with an inverse bremsstrahlung origin of the Galactic soft gamma-ray emission for any physically plausible low-energy cosmic ray spectrum. While...... in case of energetic heavy nuclei the limits are violated by about an order of magnitude, for a large population of low-energy protons the implied gamma-ray line flux and pi(0)-decay continuum intensity are larger than the existing limits by at least a factor of 2....

  11. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; Ajello, M.; /SLAC; Anderson, B.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Taiwan, Natl. Taiwan U. /Ohio State U.; Bechtol, K.; /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; Blandford, R.D.; Bloom, E.D.; /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /SLAC; Bregeon, J.; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Padua U. /Naval Research Lab, Wash., D.C. /Udine U. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Pisa /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Udine U. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Bari U. /INFN, Bari /INFN, Pisa /INFN, Bari /NASA, Goddard /Maryland U.; /more authors..

    2012-04-11

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  12. On the possibility of sub-TeV Gamma-ray emission from Cyg X-3

    CERN Document Server

    Bednarek, W

    2010-01-01

    The compact X-ray binary system Cyg X-3 has been recently discovered as a source of GeV gamma-rays by the AGILE and the {\\it Fermi} satellites. It shows emission features in the GeV gamma-rays similar to other gamma-ray binaries which were also observed in the TeV gamma-rays (LS 5039 and LSI +61 303). The question appears whether Cyg X-3 can be also detected in the TeV gamma-rays by the Cherenkov telescopes. Here we discuss this problem in detail based on the anisotropic inverse Compton (IC) e-p pair cascade model successfully applied to TeV gamma-ray binaries. We calculate the gamma-ray light curves and gamma-ray spectra expected from the cascade process occurring inside the Cyg X-3 binary system. It is found that the gamma-ray light curves at GeV energies can be consistent with the gamma-ray light curve observed by the Fermi for reasonable parameters of the orbit of the injection source of relativistic electrons. Moreover, we show that in such a model the sub-TeV gamma-ray emission (above 100 GeV) is expect...

  13. Compact sources as the origin of the soft gamma-ray emission of the Milky Way

    DEFF Research Database (Denmark)

    Lebrun, F.; Terrier, R.; Bazzano, A.

    2004-01-01

    The Milky Way is known to be an abundant source of gamma-ray photons(1), now determined to be mainly diffuse in nature and resulting from interstellar processes(2). In the soft gamma-ray domain, point sources are expected to dominate, but the lack of sensitive high-resolution observations did...... show that these sources account for the entirety of the Milky Way's emission in soft gamma-rays, leaving at most a minor role for diffuse processes....

  14. Renewed Gamma-Ray Emission from the blazar PKS 1510-089 Detected by AGILE

    Science.gov (United States)

    Munar-Adrover, P.; Pittori, C.; Bulgarelli, A.; Lucarelli, F.; Verrecchia, F.; Piano, G.; Fioretti, V.; Zoli, A.; Tavani, M.; Vercellone, S.; Minervini, G.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-09-01

    AGILE is currently detecting enhanced gamma-ray emission above 100 MeV from a source which position is consistent with the blazar PKS 1510-089. (the last activity of this source was reported in ATel #9350).

  15. Diffuse Galactic gamma-ray emission with H.E.S.S

    CERN Document Server

    :,; Aharonian, F; Benkhali, F Ait; Akhperjanian, A G; Angüner, E O; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Tjus, J Becker; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Grondin, M -H; Grudzińska, M; Hadasch, D; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J -P; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Petrucci, P -O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J -P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Wagner, R M; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H -S; Fukui, Y

    2014-01-01

    Diffuse $\\gamma$-ray emission is the most prominent observable signature of celestial cosmic-ray interactions at high energies. While already being investigated at GeV energies over several decades, assessments of diffuse $\\gamma$-ray emission at TeV energies remain sparse. After completion of the systematic survey of the inner Galaxy, the H.E.S.S. experiment is in a prime position to observe large-scale diffuse emission at TeV energies. Data of the H.E.S.S. Galactic Plane Survey are investigated in regions off known $\\gamma$-ray sources. Corresponding $\\gamma$-ray flux measurements were made over an extensive grid of celestial locations. Longitudinal and latitudinal profiles of the observed $\\gamma$-ray fluxes show characteristic excess emission not attributable to known $\\gamma$-ray sources. For the first time large-scale $\\gamma$-ray emission along the Galactic Plane using imaging atmospheric Cherenkov telescopes has been observed. While the background subtraction technique limits the ability to recover mo...

  16. The Connection between Radio and Gamma Ray Emission in Fermi/LAT Blazars

    CERN Document Server

    Xu-Liang, Fan; Hong-Tao, Liu; Liang, Chen; Neng-Hui, Liao

    2012-01-01

    We collect the 2LAC and MOJAVE quasi-simultaneous data to investigate the radio-gamma connection of blazars. The cross sample contains 166 sources. The statistic analysis based on this sample confirms positive correlations between these two bands, but the correlations become weaker as the gamma-ray energy increases. The statistic results between various parameters show negative correlations of gamma-ray photon spectral index with gamma-ray loudness for both FSRQs and BL Lacertae objects, positive correlations of gamma-ray variability index with the gamma-ray loudness for FSRQs, a negative correlation of the gamma-ray variability index with the gamma-ray photon spectral index for FSRQs, and negative correlations of gamma-ray photon spectral index with gamma-ray luminosity for FSRQs. These results suggest that the gamma-ray variability may be due to changes inside the gamma-ray emission region like the injected power, rather than changes in the photon density of the external radiation fields, and the variabilit...

  17. GRB 090727 and gamma-ray bursts with early time optical emission

    CERN Document Server

    Kopac, D; Gomboc, A; Japelj, J; Mundell, C G; Guidorzi, C; Melandri, A; Bersier, D; Cano, Z; Smith, R J; Steele, I A; Virgili, F J

    2013-01-01

    We present a multi-wavelength analysis of gamma-ray burst GRB 090727, for which optical emission was detected during the prompt gamma-ray emission by the 2-m autonomous robotic Liverpool Telescope and subsequently monitored for a further two days with the Liverpool and Faulkes telescopes. Within the context of the standard fireball model, we rule out a reverse shock origin for the early time optical emission in GRB 090727 and instead conclude that the early time optical flash likely corresponds to emission from an internal dissipation processes. Putting GRB 090727 into a broader observational and theoretical context, we build a sample of 36 gamma-ray bursts (GRBs) with contemporaneous early time optical and gamma-ray detections. From these GRBs, we extract a sub-sample of 18 GRBs, which show optical peaks during prompt gamma-ray emission, and perform detailed temporal and spectral analysis in gamma-ray, X-ray, and optical bands. We find that in most cases early time optical emission shows sharp and steep beha...

  18. Exploring gamma radiation effect on exoelectron emission properties of bone

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V. [Riga Technical Univ., Biomedical Engineering and Nanotechnology Institute (Latvia)

    2006-07-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  19. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  20. INTEGRAL Upper Limits on Gamma-Ray Emission Associated with the Gravitational Wave Event GW150914

    DEFF Research Database (Denmark)

    Savchenko, V.; Ferrigno, C.; Mereghetti, S.;

    2016-01-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we place upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, which was discovered by the LIGO/Virgo Collaboration. The omnidirectional view...... in the 75 keV-2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy Eγ/EGW ... of the gravitational wave source, based on the available predictions for prompt electromagnetic emission....

  1. Multi-wavelength emission from 3C 66A: clues to its redshift and gamma-ray emission location

    Institute of Scientific and Technical Information of China (English)

    Da-Hai Yan; Zhong-Hui Fan; Yao Zhou; Ben-Zhong Dai

    2013-01-01

    The quasi-simultaneous multi-wavelength emission of TeV blazar 3C 66A is studied by using a one-zone multi-component leptonic jet model.It is found that the quasi-simultaneous spectral energy distribution of 3C 66A can be well reproduced; in particular,the first three months of its average Fermi-LAT spectrum can be well reproduced by the synchrotron self-Compton component plus external Compton component of the broad line region (BLR).Clues to its redshift and gamma-ray emission location are obtained.The results indicate the following.(i) On the redshift:The theoretical intrinsic TeV spectra can be predicted by extrapolating the reproduced GeV spectra.Through comparing these extrapolated TeV spectra with the corrected observed TeV spectra from extragalactic background light,it is suggested that the redshift of 3C 66A could be between 0.1 and 0.3,with the most likely value being ~ 0.2.(ii) On the gamma-ray emission location:To well reproduce the GeV emission of 3C 66A under different assumptions on the BLR,the gamma-ray emission region is always required to be beyond the inner zone of the BLR.The BLR absorption effect on gamma-ray emission confirms this point.

  2. Observation of solar high energy gamma and X-ray emission and solar energetic particles

    CERN Document Server

    Struminsky, Alexei

    2015-01-01

    We considered 18 solar flares observed between June 2010 and July 2012, in which high energy >100 MeV {\\gamma}-emission was registered by the Large Area Telescope (LAT) aboard FermiGRO. We examined for these {\\gamma}-events soft X-ray observations by GOES, hard X-ray observations by the Anti-Coincidence Shield of the SPectrometer aboard INTEGRAL (ACS SPI) and the Gamma-Ray burst Monitor (GBM) aboard FermiGRO. Hard X-ray and {\\pi}0-decay {\\gamma}-ray emissions are used as tracers of electron and proton acceleration, respectively. Bursts of hard X-ray were observed by ACS SPI during impulsive phase of 13 events. Bursts of hard X-ray >100 keV were not found during time intervals, when prolonged hard {\\gamma}-emission was registered by LAT/FermiGRO. Those events showing prolonged high-energy gamma-ray emission not accompanied by >100 keV hard X-ray emission are interpreted as an indication of either different acceleration processes for protons and electrons or as the presence of a proton population accelerated du...

  3. Disentangling the gamma-ray emission of NGC1275 and that of the Perseus cluster

    CERN Document Server

    Colafrancesco, S; Giommi, P

    2010-01-01

    (Abridged). The gamma-ray emission from galaxy clusters hosting active galaxies is a complex combination of diffuse and point-like emission with different spectral and spatial properties. We discuss the case of the Perseus cluster containing the radio-galaxy NGC 1275 that has been detected as a bright gamma-ray source by the Fermi-LAT experiment. We provide a detailed study of the gamma-ray emission coming from the core of Perseus by modeling the central AGN emission with a multiple plasma blob model, and the emission from the cluster atmosphere with both a Warming Ray (WR) model and Dark Matter (DM) neutralino annihilation models. We set constraints on both the central galaxy and cluster SED models by using multi-frequency data including the observations obtained by Fermi and MAGIC. We find that: i) in all the viable models for the cluster gamma-ray emission, the emission detected by Fermi from the Perseus core is dominated by the active galaxy NGC 1275, that is found in a high-emission state; ii) the diffus...

  4. STUDY OF THE GAMMA EMISSION PROBABILITY ACCOMPANYING THE SPONTANEOUS FISSION OF CF-252

    NARCIS (Netherlands)

    VANDERPLOEG, H; LAURENS, CR; BACELAR, JCS; BUDA, A; GAARDHOJE, JJ; VANTHOF, G; KALANTARNAYESTANAKI, N; VANDERWOUDE, A; ZELAZNY, Z

    1994-01-01

    A study of the gamma emission accompanying the spontaneous fission process of Cf-252 has been performed. The photon emission probability between 3 and 70 MeV and its angular dependence with respect to the fission direction were measured. These measurements were performed as a function of the mass as

  5. Hard burst emission from the soft gamma repeater SGR 1900+14

    NARCIS (Netherlands)

    P.M. Woods; C. Kouveliotou; J. van Paradijs; M.S. Briggs; K. Hurley; E. Göğüş; R.D. Preece; T.W. Giblin; C. Thompson; R.C. Duncan

    1999-01-01

    We present evidence for burst emission from SGR 1900+14 with a power-law high-energy spectrum extending beyond 500 keV. Unlike previous detections of high-energy photons during bursts from soft gamma repeaters (SGRs), these emissions are not associated with extraordinarily bright flares. Not only is

  6. Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs

    NARCIS (Netherlands)

    Tamborra, I.; Ando, S.

    2015-01-01

    Gamma-ray bursts (GRBs) have been suggested as possible sources of the high-energy neutrino flux recently detected by the IceCube telescope. We revisit the fireball emission model and elaborate an analytical prescription to estimate the high-energy neutrino prompt emission from pion and kaon decays,

  7. STUDY OF THE GAMMA EMISSION PROBABILITY ACCOMPANYING THE SPONTANEOUS FISSION OF CF-252

    NARCIS (Netherlands)

    VANDERPLOEG, H; LAURENS, CR; BACELAR, JCS; BUDA, A; GAARDHOJE, JJ; VANTHOF, G; KALANTARNAYESTANAKI, N; VANDERWOUDE, A; ZELAZNY, Z

    1994-01-01

    A study of the gamma emission accompanying the spontaneous fission process of Cf-252 has been performed. The photon emission probability between 3 and 70 MeV and its angular dependence with respect to the fission direction were measured. These measurements were performed as a function of the mass

  8. Spatially Extended Brackett Gamma Emission in the Environments of Young Stars

    CERN Document Server

    Beck, Tracy L; McGregor, Peter J

    2010-01-01

    The majority of atomic hydrogen Br{\\gamma} emission detected in the spectra of young stellar objects (YSOs) is believed to arise from the recombination regions associated with the magnetospheric accretion of circumstellar disk material onto the forming star. In this paper, we present the results of a K-band IFU spectroscopic study of Br{\\gamma} emission in eight young protostars: CW Tau, DG Tau, Haro 6-10, HL Tau, HV Tau C, RW Aur, T Tau and XZ Tau. We spatially resolve Br{\\gamma} emission structures in half of these young stars and find that most of the extended emission is consistent with the location and velocities of the known Herbig-Haro flows associated with these systems. At some velocities through the Br{\\gamma} line profile, the spatially extended emission comprises 20% or more of the integrated flux in that spectral channel. However, the total spatially extended Br{\\gamma} is typically less than ~10% of the flux integrated over the full emission profile. For DG Tau and Haro 6-10 S, we estimate the m...

  9. Gamma-ray emission from the galactic anticenter at MeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Graser, U.; Schoenfelder, V.

    1982-12-15

    An image of the anticenter region of the Galaxy between right ascension 50/sup 0/ and 110/sup 0/ and between declination +10/sup 0/ and +50/sup 0/ in the energy range 1.1--10 MeV is derived from data obtained during a balloon flight with the MPI Compton telescope. The telescope has a field of view of 40/sup 0/--50/sup 0/ (FWHM) and a 1 sigma angular resolution of about 4/sup 0/ within this field. A significantly enhanced ..gamma..-ray emission is observed along the galactic plane from l/sup II/ = 160/sup 0/ to l/sup II/ = 197/sup 0/. Part of the emission is due to the Crab Nebula. The energy spectrum of the pulsed and total Crab emission is determined. Because of the limited angular resolution of the telescope it is not possible to decide whether the remainder of the emission is diffuse in nature or due to unresolved sources. No significantly enhanced ..gamma..-ray emission is observed from the direction of the high-energy ..gamma..-ray source Geminga (2CG 195+04) or from the Seyfert galaxy MCG 8--11--11, which recently was reported to be a soft ..gamma..-ray source. An upper limit to the diffuse galactic ..gamma..-ray emission is determined, which leads to restrictions of the spectrum of interstellar cosmic ray electrons at MeV energies.

  10. COS-B observations of gamma-ray emission from local galactic features

    Science.gov (United States)

    Bignami, G. F.; Barbareschi, L.; Caraveo, P. A.; Bloemen, J. B. G. M.; Hermsen, W.; Buccheri, R.; Kanbach, G.; Mayer-Hasselwander, H. A.; Lebrun, F.; Paul, J. A.

    1981-01-01

    Evidence for large scale correlations between the high-energy photon sky and the known local distribution of diffuse interstellar matter is discussed. Evidence is presented of correlations with the Gould's Belt and the Dolidze Belt. The correlations indicate that the emission of gamma rays at medium latitudes can be explained by the distribution of interstellar matter, and the interaction of CR with interstellar matter can explain the mechanism of the gamma-ray emission by regarding the emissivity as a global average of the two systems since they contain most of the local dense cloud.

  11. The emission of Gamma Ray Bursts as a test-bed for modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Capozziello, S., E-mail: capozziello@na.infn.it [Dipartimento di Fisica, Universitá di Napoli “Federico II”, Via Cinthia, I-80126, Napoli (Italy); INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); Gran Sasso Science Institute (INFN), Via F. Crispi 7, I-67100, L' Aquila (Italy); Lambiase, G. [Dipartimento di Fisica “E.R. Caianiello”, Universitá di Salerno, I-84084, Fisciano (Italy); INFN – Gruppo Collegato di Salerno (Italy)

    2015-11-12

    The extreme physical conditions of Gamma Ray Bursts can constitute a useful observational laboratory to test theories of gravity where very high curvature regimes are involved. Here we propose a sort of curvature engine capable, in principle, of explaining the huge energy emission of Gamma Ray Bursts. Specifically, we investigate the emission of radiation by charged particles non-minimally coupled to the gravitational background where higher order curvature invariants are present. The coupling gives rise to an additional force inducing a non-geodesic motion of particles. This fact allows a strong emission of radiation by gravitationally accelerated particles. As we will show with some specific model, the energy emission is of the same order of magnitude of that characterizing the Gamma Ray Burst physics. Alternatively, strong curvature regimes can be considered as a natural mechanism for the generation of highly energetic astrophysical events. Possible applications to cosmology are discussed.

  12. The emission of Gamma Ray Bursts as a test-bed for modified gravity

    Directory of Open Access Journals (Sweden)

    S. Capozziello

    2015-11-01

    Full Text Available The extreme physical conditions of Gamma Ray Bursts can constitute a useful observational laboratory to test theories of gravity where very high curvature regimes are involved. Here we propose a sort of curvature engine capable, in principle, of explaining the huge energy emission of Gamma Ray Bursts. Specifically, we investigate the emission of radiation by charged particles non-minimally coupled to the gravitational background where higher order curvature invariants are present. The coupling gives rise to an additional force inducing a non-geodesic motion of particles. This fact allows a strong emission of radiation by gravitationally accelerated particles. As we will show with some specific model, the energy emission is of the same order of magnitude of that characterizing the Gamma Ray Burst physics. Alternatively, strong curvature regimes can be considered as a natural mechanism for the generation of highly energetic astrophysical events. Possible applications to cosmology are discussed.

  13. Constraints on the Emission Geometries and Spin Evolution of Gamma-ray Millisecond Pulsars

    CERN Document Server

    Johnson, T J; Harding, A K; Guillemot, L; Smith, D A; Kramer, M; Celik, O; Hartog, P R den; Ferrara, E C; Hou, X; Lande, J; Ray, P S

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Cl...

  14. A Unified Model for GRB Prompt Emission from Optical to Gamma-Rays; a New Type of Standard Candle

    CERN Document Server

    Guiriec, S; Hartmann, D H; Granot, J; Asano, K; Meszaros, P; Gill, R; Gehrels, N; McEnery, J

    2016-01-01

    The origin of prompt emission from gamma ray bursts remains to be an open question. Correlated prompt optical and gamma-ray emission observed in a handful of GRBs strongly suggests a common emission region, but failure to adequately fit the broadband GRB spectrum prompted the hypothesis of different emission mechanisms for the low- and high-energy radiations. We demonstrate that our multi-component model for GRB gamma-ray prompt emission provides an excellent fit to GRB 110205A from optical to gamma-ray energies. Our results show that the optical and highest gamma-ray emissions have the same spatial and spectral origin, which is different from the bulk of the X- and softest gamma-ray radiation. Finally, our accurate redshift estimate for GRB 110205A demonstrates promise for using GRBs as cosmological standard candles.

  15. Radial distribution of the diffuse gamma-ray emissivity in the galactic disk

    CERN Document Server

    Yang, Rui-zhi; Evoli, Carmelo

    2016-01-01

    The Fermi-LAT data accumulated over 7 years of {\\gamma}-ray observations, together with the high resolution gas (CO & HI) and the dust opacity maps, are used to study the emissivity of {\\gamma}-rays induced by interactions of cosmic rays (CRs) with the interstellar medium. Based on the dust opacity templates, the {\\gamma}-ray emissivity was measured for 36 segments of the Galactic plane. Furthermore, the {\\gamma}-ray emissivity was evaluated in six Galactocentric rings. Both the absolute emissivity and the energy spectra of {\\gamma}-rays derived in the interval 0.2-100 GeV show significant variations along the galactic plane. The density of CRs, derived under the assumption that {\\gamma}-rays are predominately produced in CR interactions with the interstellar gas, is characterised by a strong radial dependence. In the inner Galaxy the CR density substantially exceeds the density in the outer parts of the Galaxy: by a factor of a few at 10 GeV, and by more than an order of magnitude at 1 TeV. Remarkably, t...

  16. Origin of X-Ray and Gamma-Ray Emission from the Galactic Central Region

    Science.gov (United States)

    Chernyshov, D. O.; Cheng, K.-S.; Dogiel, V. A.; Ko, C. M.

    2017-02-01

    We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6‑2858 (or 3FGL J1745.6‑2859c) in the Galactic Center (GC) and the diffuse hard X-ray component recently found by the Nuclear Spectroscopic Telescope Array, as well as the radio emission and processes of hydrogen ionization from this area. We assume that a source in the GC injected energetic particles with power-law spectrum into the surrounding medium in the past or continues to inject until now. The energetic particles may be protons, electrons, or a combination of both. These particles diffuse to the surrounding medium and interact with gas, magnetic field, and background photons to produce non-thermal emissions. We study the spectral and spatial features of the hard X-ray emission and gamma-ray emission by the particles from the central source. Our goal is to examine whether the hard X-ray and gamma-ray emissions have a common origin. Our estimations show that, in the case of pure hadronic models, the expected flux of hard X-ray emission is too low. Despite the fact that protons can produce a non-zero contribution in gamma-ray emission, it is unlikely that they and their secondary electrons can make a significant contribution in hard X-ray flux. In the case of pure leptonic models, it is possible to reproduce both X-ray and gamma-ray emissions for both transient and continuous supply models. However, in the case of the continuous supply model, the ionization rate of molecular hydrogen may significantly exceed the observed value.

  17. Enhanced Gamma-Ray Emission from the Microquasar Cygnus X-3 Detected by AGILE

    Science.gov (United States)

    Piano, G.; Tavani, M.; Verrecchia, F.; Vercellone, S.; Munar-Adrover, P.; Bulgarelli, A.; Donnarumma, I.; Minervini, G.; Fioretti, V.; Pittori, C.; Lucarelli, F.; Striani, E.; Ursi, A.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-03-01

    The AGILE-GRID detector is revealing gamma ray emission above 100 MeV from the microquasar Cygnus X-3. Integrating from 2017-03-15 UT 00:00:00 to 2017-03-16 UT 00:00:00, a preliminary multi-source likelihood analysis finds a gamma-ray flux F( > 100 MeV) = (4.2 +/- 1.7) x 10^-6 photons/cm^2/s with a detection significance near 4 sigma.

  18. EDGE: explorer of diffuse emission and gamma-ray burst

    NARCIS (Netherlands)

    Piro, L.; den Herder, J.W.A.; Hermsen, W.; Hoevers, H.F.C.; in 't Zand, J.J.M.; Méndez, M.; Vink, J.

    2008-01-01

    How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE (Piro et al., 2007) will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions,

  19. Acceleration of cosmic rays and gamma-ray emission from supernova remnants in the Galaxy

    Science.gov (United States)

    Cristofari, P.; Gabici, S.; Casanova, S.; Terrier, R.; Parizot, E.

    2013-10-01

    Galactic cosmic rays are believed to be accelerated at supernova remnant shocks. Though very popular and robust, this conjecture still needs a conclusive proof. The strongest support to this idea is probably the fact that supernova remnants are observed in gamma-rays, which are indeed expected as the result of the hadronic interactions between the cosmic rays accelerated at the shock and the ambient gas. However, also leptonic processes can, in most cases, explain the observed gamma-ray emission. This implies that the detections in gamma-rays do not necessarily mean that supernova remnants accelerate cosmic ray protons. To overcome this degeneracy, the multiwavelength emission (from radio to gamma-rays) from individual supernova remnants has been studied and in a few cases it has been possible to ascribe the gamma-ray emission to one of the two processes (hadronic or leptonic). Here, we adopt a different approach and, instead of a case-by-case study we aim for a population study and we compute the number of supernova remnants which are expected to be seen in TeV gamma-rays above a given flux under the assumption that these objects indeed are the sources of cosmic rays. The predictions found here match well with current observational results, thus providing a novel consistency check for the supernova remnant paradigm for the origin of Galactic cosmic rays. Moreover, hints are presented for the fact that particle spectra significantly steeper than E-2 are produced at supernova remnants. Finally, we expect that several of the supernova remnants detected by HESS in the survey of the Galactic plane should exhibit a gamma-ray emission dominated by hadronic processes (i.e. neutral-pion decay). The fraction of the detected remnants for which the leptonic emission dominates over the hadronic one depends on the assumed values of the physical parameters (especially the magnetic field strength at the shock) and can be as high as roughly a half.

  20. Early-time signatures of {\\gamma}-ray emission from supernovae in dense circumstellar media

    CERN Document Server

    Kantzas, Dimitrios; Mastichiadis, Apostolos

    2016-01-01

    We present our results on the {\\gamma}-ray emission from interaction-powered supernovae (SNe), a recently discovered SN type that is suggested to be surrounded by a circumstellar medium (CSM) with densities 10^7-10^12~ cm^-3. Such high densities favor inelastic collisions between relativistic protons accelerated in the SN blast wave and CSM protons and the production of {\\gamma}-ray photons through neutral pion decays. Using a numerical code that includes synchrotron radiation, adiabatic losses due to the expansion of the source, photon-photon interactions, proton-proton collisions and proton-photon interactions, we calculate the multi-wavelength non-thermal photon emission soon after the shock breakout and follow its temporal evolution until 100-1000 days. Focusing on the {\\gamma}-ray emission at >100 MeV, we show that this could be detectable by the Fermi-LAT telescope for nearby (10^11 cm^-3).

  1. Evaluation of the 1077keV gamma-ray emission probability from 68Ga decay

    CERN Document Server

    Huang, X L; Chen, X J; Chen, G C

    2013-01-01

    68Ga decays to the excited states of 68Zn through the electron capture decay mode. New recommended values for the emission probability of 1077keV gamma-ray given by the ENSDF and DDEP databases all use data from absolute measurements. In 2011 Jiang Liyang deduced a new value for 1077keV gamma-ray emission probability by measuring the 69Ga(n,2n)68Ga reaction cross section. The new value is about 20% lower than values obtained from previous absolute measurements and evaluations. In this paper, the discrepancies among the measurements and evaluations are analyzed carefully and the new values are re-recommended. Our recommended value for the emission probability of 1077keV gamma-ray is 2.72+-0.16 %.

  2. Disintegration rate and gamma ray emission probability per decay measurement of 123I.

    Science.gov (United States)

    Koskinas, M F; Gishitomi, K C; Brito, A B; Yamazaki, I M; Dias, M S

    2012-09-01

    A series of (123)I measurements have been carried out in a 4π(e(A),X)-γ coincidence system. The experimental extrapolation curve was determined and compared to Monte Carlo simulation, performed by code ESQUEMA. From the slope of the experimental curve, the total conversion coefficient for the 159 keV total gamma transition, α(159), was determined. All radioactive sources were also measured in an HPGe spectrometry system, in order to determine the gamma-ray emission probability per decay for several gamma transitions. All uncertainties involved and their correlations were analyzed applying the covariance matrix methodology and the measured parameters were compared with those from the literature.

  3. INTEGRAL Upper Limits on Gamma-Ray Emission Associated with the Gravitational Wave Event GW150914

    DEFF Research Database (Denmark)

    Savchenko, V.; Ferrigno, C.; Natalucci, L.;

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we place upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo Collaboration. The omnidirectional view of the INTEGRAL...... MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy Eγ/EGW gravitational wave...

  4. Radioactive decay products in neutron star merger ejecta: heating efficiency and $\\gamma$-ray emission

    CERN Document Server

    Hotokezaka, Kenta; Tanaka, Masaomi; Bamba, Aya; Terada, Yukikatsu; Piran, Tsvi

    2015-01-01

    The radioactive decay of the freshly synthesized $r$-process nuclei ejected in compact binary mergers power optical/infrared macronovae (kilonovae) that follow these events. The light curves depend critically on the energy partition among the different products of the radioactive decay and this plays an important role in estimates of the amount of ejected $r$-process elements from a given observed signal. We study the energy partition and $\\gamma$-ray emission of the radioactive decay. We show that $20$-$50\\%$ of the total radioactive energy is released in $\\gamma$-rays on timescales from hours to a month. The number of emitted $\\gamma$-rays per unit energy interval has roughly a flat spectrum between a few dozen keV and $1$ MeV so that most of this energy is carried by $\\sim 1$ MeV $\\gamma$-rays. However at the peak of macronova emission the optical depth of the $\\gamma$-rays is $\\sim 0.02$ and most of the $\\gamma$-rays escape. The loss of these $\\gamma$-rays reduces the heat deposition into the ejecta and h...

  5. A giant radio flare from Cygnus X-3 with associated Gamma-ray emission

    CERN Document Server

    Corbel, S; Tomsick, J A; Szostek, A; Corbet, R H D; Miller-Jones, J C A; Richards, J L; Pooley, G; Trushkin, S; Dubois, R; Hill, A B; Kerr, M; Max-Moerbeck, W; Readhead, A C S; Bodaghee, A; Tudose, V; Parent, D; Wilms, J; Pottschmidt, K

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy Gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cygnus X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy Gamma-ray emission. We present the results of a multi-wavelength campaign covering a quenched state, when radio emission from Cygnus X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~ 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E >100 MeV) reveal renewed Gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the Gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of Gamma-ray emis...

  6. Extended Emission of Short Gamma-Ray Bursts

    CERN Document Server

    Lin, Lin; Zhang, Bin-Bin; Zhang, Shuang Nan

    2008-01-01

    Preliminary results of our analysis on the extended emission of short/medium duration GRBs observed with Swift/BAT are presented. The Bayesian blocks algorithm is used to analyze the burst durations and the temporal structure of the lightcurves in different energy bands. We show here the results of three bursts (GRBs 050724, 061006 and 070714B) that have a prominent soft extended emission component in our sample. The extended emission of these bursts is a continuous, flickering-liked component, lasting $\\sim 100$ seconds post the GRB trigger at 15-25 keV bands. Without considering this component, the three bursts are classified as short GRBs, with $T_{90}=2\\sim 3$ seconds. GRB 060614 has an emission component similar to the extended emission, but this component has pulse-liked structure, possibly indicating that this emission component is different from that observed in GRBs 050724, 061006, and 070714B. Further analysis on the spectral evolution behavior of the extended emission component is on going.

  7. CONSTRAINTS ON THE EMISSION GEOMETRIES AND SPIN EVOLUTION OF GAMMA-RAY MILLISECOND PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Venter, C. [Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, 2520 Potchefstroom (South Africa); Harding, A. K.; Çelik, Ö.; Ferrara, E. C. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Guillemot, L. [Laboratoire de Physique et Chimie de l' Environnement, LPCE UMR 6115 CNRS, F-45071 Orléans Cedex 02 (France); Smith, D. A.; Hou, X. [Centre d' Études Nucléaires de Bordeaux Gradignan, IN2P3/CNRS, Université Bordeaux 1, BP120, F-33175 Gradignan Cedex (France); Kramer, M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn (Germany); Den Hartog, P. R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Lande, J. [Twitter Inc., 1355 Market Street 900, San Francisco, CA 94103 (United States); Ray, P. S., E-mail: tyrel.j.johnson@gmail.com, E-mail: Christo.Venter@nwu.ac.za, E-mail: ahardingx@yahoo.com [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)

    2014-07-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  8. Constraints On the Emission Geometries and Spin Evolution Of Gamma-Ray Millisecond Pulsars

    Science.gov (United States)

    Johnson, T. J.; Venter, C.; Harding, A. K.; Guillemot, L.; Smith, D. A.; Kramer, M.; Celik, O.; den Hartog, P. R.; Ferrara, E. C.; Hou, X.; Lande, J.; Ray, P. S.

    2014-01-01

    Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using amaximum likelihood technique.We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.

  9. Discovery of VHE $\\gamma$-ray emission from the SNR G54.1+0.3

    CERN Document Server

    Acciari, V A; Arlen, T; Aune, T; Bautista, M; Beilicke, M; Benbow, W; Boltuch, D; Bradbury, S M; Buckley, J H; Bugaev, V; Butt, Y; Byrum, K; Cesarini, A; Ciupik, L; Cui, W; Dickherber, R; Duke, C; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Gillanders, G H; Godambe, S; Gotthelf, E V; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Karlsson, N; Kertzman, M; Kieda, D; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; LeBohec, S; Maier, G; McArthur, S; McCann, A; McCutcheon, M; Moriarty, P; Muhkerjee, R; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Senturk, G Demet; Slane, P; Smith, A W; Steele, D; Swordy, S P; Těsić, G; Theiling, M; Thibadeau, S; Vassiliev, V V; Vincent, S; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wissel, S; Wood, M; Zitzer, B

    2010-01-01

    We report the discovery of very high energy gamma-ray emission from the direction of the SNR G54.1+0.3 using the VERITAS ground-based gamma-ray observatory. The TeV signal has an overall significance of 6.8$\\sigma$ and appears point-like given the 5$^{arcminute}$ resolution of the instrument. The integral flux above 1 TeV is 2.5\\% of the Crab Nebula flux and significant emission is measured between 250 GeV and 4 TeV, well described by a power-law energy spectrum dN/dE $\\sim$ E$^{-\\Gamma}$ with a photon index $\\Gamma= 2.39\\pm0.23_{stat}\\pm0.30_{sys}$. We find no evidence of time variability among observations spanning almost two years. Based on the location, the morphology, the measured spectrum, the lack of variability and a comparison with similar systems previously detected in the TeV band, the most likely counterpart of this new VHE gamma-ray source is the PWN in the SNR G54.1+0.3. The measured X-ray to VHE gamma-ray luminosity ratio is the lowest among all the nebulae supposedly driven by young rotation-p...

  10. Constraints on dark matter annihilations from diffuse gamma-ray emission in the Galaxy

    CERN Document Server

    Tavakoli, Maryam; Evoli, Carmelo; Ullio, Piero

    2014-01-01

    Recent advances in gamma-ray cosmic ray, infrared and radio astronomy have allowed us to develop a significantly better understanding of the galactic medium properties in the last few years. In this work using the DRAGON code, that numerically solves the CR propagation equation and calculating gamma-ray emissivities in a 2-dimensional grid enclosing the Galaxy, we study in a self consistent manner models for the galactic diffuse gamma-ray emission. Our models are cross-checked to both the available CR and gamma-ray data. We address the extend to which dark matter annihilations in the Galaxy can contribute to the diffuse gamma-ray flux towards different directions on the sky. Moreover we discuss the impact that astrophysical uncertainties of non DM nature, have on the derived gamma-ray limits. Such uncertainties are related to the diffusion properties on the Galaxy, the interstellar gas and the interstellar radiation field energy densities. Light ~10 GeV dark matter annihilating dominantly to hadrons is more s...

  11. Discovery of TeV Gamma Ray Emission from Tycho's Supernova Remnant

    CERN Document Server

    Acciari, V A; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Ciupik, L; Collins-Hughes, E; Cui, W; Dickherber, R; Duke, C; Errando, M; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Gillanders, G H; Godambe, S; Griffin, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Hughes, J P; Hui, C M; Humensky, T B; Kaaret, P; Karlsson, N; Kertzman, M; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; LeBohec, S; Madhavan, A S; Maier, G; Majumdar, P; McArthur, S; McCann, A; Moriarty, P; Mukherjee, R; Ong, R A; Orr, M; Otte, A N; Pandel, D; Park, N; Perkins, J S; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Saxon, D B; Schroedter, M; Sembroski, G H; Senturk, G Demet; Slane, P; Smith, A W; Tešić, G; Theiling, M; Thibadeau, S; Tsurusaki, K; Varlotta, A; Vassiliev, V V; Vincent, S; Vivier, M; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wood, M; Zitzer, B

    2011-01-01

    We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tycho's supernova remnant. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at $00^{\\rm h} \\ 25^{\\rm m} \\ 27.0^{\\rm s},\\ +64^{\\circ} \\ 10^{\\prime} \\ 50^{\\prime\\prime}$ (J2000). The TeV photon spectrum measured by VERITAS can be described with a power-law $dN/dE = C(E/3.42\\;\\textrm{TeV})^{-\\Gamma}$ with $\\Gamma = 1.95 \\pm 0.51_{stat} \\pm 0.30_{sys}$ and $C = (1.55 \\pm 0.43_{stat} \\pm 0.47_{sys}) \\times 10^{-14}$ cm$^{-2}$s$^{-1}$TeV$^{-1}$. The integral flux above 1 TeV corresponds to $\\sim 0.9%$ percent of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models which can describe the data. The lowest magnetic field allowed in these models ...

  12. Prompt emission of GRB 121217A from gamma-rays to the NIR

    CERN Document Server

    Elliott, J; Schmidl, S; Greiner, J; Gruber, D; Oates, S; Kobayashi, S; Zhang, B; Cummings, J R; Filgas, R; Gehrels, N; Grupe, D; Kann, D A; Klose, S; Krühler, T; Guelbenzu, A Nicuesa; Rau, A; Rossi, A; Siegel, M; Schady, P; Sudilovsky, V; Tanga, M; Varela, K

    2013-01-01

    The mechanism that causes the prompt-emission episode of gamma-ray bursts (GRBs) is still widely debated despite there being thousands of prompt detections. The favoured internal shock model relates this emission to synchrotron radiation. However, it does not always explain the spectral indices of the shape of the spectrum, often fit with empirical functions. Multi-wavelength observations are therefore required to help investigate the possible underlying mechanisms that causes the prompt emission. We present GRB 121217A, for which we were able to observe its near-infrared (NIR) emission during a secondary prompt-emission episode with the Gamma-Ray Burst Optical Near-infrared Detector (GROND) in combination with the Swift and Fermi satellites, covering an energy range of 0.001 keV to 100 keV. We determine a photometric redshift of z=3.1+/-0.1 with a line-of-sight extinction of A_V~0 mag, utilising the optical/NIR SED. From the afterglow, we determine a bulk Lorentz factor of Gamma~250 and an emission radius of...

  13. Gamma-ray emitting radio galaxies at hard X-rays: Seyfert core or jet emission?

    CERN Document Server

    Beckmann, V; Mattana, F; Saez, D; Soldi, S

    2013-01-01

    A number of radio galaxies has been detected by Fermi/LAT in the gamma-ray domain. In some cases, like Cen A and M 87, these objects have been seen even in the TeV range by Cherenkov telescopes. Whereas the gamma-ray emission is likely to be connected with the non-thermal jet emission, dominating also the radio band, the situation is less clear at hard X-rays. While the smoothly curved continuum emission and the overall spectral energy distribution indicate a non-thermal emission, other features such as the iron line emission and the low variability appear to be rather of Seyfert type, i.e. created in the accretion disk and corona around the central black hole. We investigate several prominent cases using combined X-ray and gamma-ray data in order to constrain the possible contributions of the jet and the accretion disk to the overall spectral energy distribution in radio galaxies. Among the three sources we study, three different origins of the hard X-ray flux can be identified. The emission can be purely no...

  14. Fermi LAT Discovery of Extended Gamma-Ray Emissions in the Vicinity of the HB3 Supernova Remnant

    CERN Document Server

    Katagiri, H; Ballet, J; Grondin, M H; Hanabata, Y; Hewitt, J W; Kubo, H; Lemoine-Goumard, M

    2016-01-01

    We report the discovery of extended gamma-ray emission measured by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) HB3 (G132.7+1.3) and the W3 HII complex adjacent to the southeast of the remnant. W3 is spatially associated with bright 12CO (J=1-0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB3.

  15. FERMI LAT DISCOVERY OF EXTENDED GAMMA-RAY EMISSIONS IN THE VICINITY OF THE HB 3 SUPERNOVA REMNANT

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, H.; Yoshida, K. [College of Science, Ibaraki University, 2-1-1, Bunkyo, Mito 310-8512 (Japan); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Grondin, M.-H.; Lemoine-Goumard, M. [Centre d’Études Nucléaires de Bordeaux Gradignan, IN2P3/CNRS, Université Bordeaux 1, BP120, F-33175 Gradignan Cedex (France); Hanabata, Y. [Institute for Cosmic-Ray Research, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8582 (Japan); Hewitt, J. W. [Department of Physics and Center for Space Sciences and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Kubo, H., E-mail: hideaki.katagiri.sci@vc.ibaraki.ac.jp, E-mail: 13nm169s@gmail.com [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan)

    2016-02-20

    We report the discovery of extended gamma-ray emission measured by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) HB 3 (G132.7+1.3) and the W3 II complex adjacent to the southeast of the remnant. W3 is spatially associated with bright {sup 12}CO (J = 1–0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon–nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3.

  16. COMPTEL upper limits on gamma-ray line emission from Supernova 1991T

    Science.gov (United States)

    Lichti, G. G.; Bennett, K.; Herder, J. W. Den; Diehl, R.; Morris, D.; Ryan, J.; Schoenfelder, V.; Steinle, H.; Strong, A. W.; Winkler, C.

    1994-01-01

    The imaging Compton telescope COMPTEL on board the Compton Gamma-Ray Observatory (CGRO) measures gamma-rays in the energy range 0.75-30 MeV with an energy resolution of 9.7% full width at half maximum (FWHM) at 1 MeV. From June 15 to 28, 1991 and again from October 3 to 17, 1991 the region containing the supernova SN 1991T was observed. A search for gamma-ray line emission from the supernova yields no detection of line emission from the supernova. 2 sigma upper limits for the two predicted lines at 847 keV and at 1.238 MeV of approximately equal to 3 x 10(exp -5) photons/(sq cm)(s) were derived. These limits are compared with the predictions of some theoretical models and constraints imposed by these limits on these models are discussed.

  17. Observations of the Prompt Gamma-Ray Emission of GRB 070125

    CERN Document Server

    Bellm, Eric C; Pal'shin, Valentin; Yamaoka, Kazutaka; Bandstra, Mark E; Boggs, Steven E; Hong, Soojing; Kodaka, Natsuki; Kozyrev, A S; Litvak, M L; Mitrofanov, I G; Nakagawa, Yujin E; Ohno, Masanori; Onda, Kaori; Sanin, A B; Sugita, Satoshi; Tashiro, Makoto; Tretyakov, V I; Urata, Yuji; Wigger, Claudia

    2007-01-01

    The long, bright gamma-ray burst GRB 070125 was localized by the Interplanetary Network. We present light curves of the prompt gamma-ray emission as observed by Konus-WIND, RHESSI, Suzaku-WAM, and Swift-BAT. We detail the results of joint spectral fits with Konus and RHESSI data. The burst shows moderate hard-to-soft evolution in its multi-peaked emission over a period of about one minute. The total burst fluence as observed by Konus is $1.75 \\times 10^{-4}$ erg/cm$^2$ (20 keV-10 MeV). Using the spectroscopic redshift z = 1.547, we find that the burst is consistent with the Amati $E_{peak,i}-E_{iso}$ and the Ghirlanda $E_{peak,i}-E_\\gamma$ correlations.

  18. Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

    CERN Document Server

    Evoli, C; Maccione, L

    2007-01-01

    In this contribution we will discuss recent results concerning the intensity and the angular distribution of the gamma-ray and neutrino emissions as should be originated from the hadronic scattering of cosmic rays (CR) with the interstellar medium (ISM). We assumed that CR sources are supernova remnants (SNR) and estimated the spatial distribution of primary nuclei by solving numerically the diffusion equation. For the ISM, we considered recent models for the 3D spatial distributions of molecular hydrogen. Respect to previous results, we find the secondary gamma-ray and neutrino emissions to be more peaked along the galactic equator and in the galactic centre which improves significantly the perspectives of a positive detection. We compare our predictions with the experimental limits/observations by MILAGRO and TIBET (for the gamma-rays) and by AMANDA-II (for the neutrinos) and discuss the detection perspectives for a km3 neutrino telescope to be built in the North hemisphere.

  19. Study of XK and gamma photon emission following decay of 154Eu.

    Science.gov (United States)

    Terechtchenko, E; Rasko, M; Sepman, S; Zanevsky, A; Tuan, A Tran; Amiot, M N; Bobin, C; Morel, J

    2004-01-01

    A joint project has been established between VNIIM (D.I. Mendeleyev Institute for Metrology) and LNHB (Laboratoire National Henri Becquerel) to determine as accurately as possible the X- and gamma-ray emission probabilities of 154Eu. Point sources were prepared by VNIIM, and absolute measurements of activity per unit mass were undertaken by both laboratories using coincidence, anti-coincidence and 4pi-gamma counting methods. Other point sources and one aliquot were also prepared for precise gamma-ray spectrometry measurements. Absolute photon emission probabilities were determined with a maximum uncertainty of 0.5% for the most intense lines, supporting the development of this nuclide as a multigamma standard.

  20. COMPTEL upper limits on gamma-ray line emission from Supernova 1991T

    Science.gov (United States)

    Lichti, G. G.; Bennett, K.; Herder, J. W. Den; Diehl, R.; Morris, D.; Ryan, J.; Schoenfelder, V.; Steinle, H.; Strong, A. W.; Winkler, C.

    1994-01-01

    The imaging Compton telescope COMPTEL on board the Compton Gamma-Ray Observatory (CGRO) measures gamma-rays in the energy range 0.75-30 MeV with an energy resolution of 9.7% full width at half maximum (FWHM) at 1 MeV. From June 15 to 28, 1991 and again from October 3 to 17, 1991 the region containing the supernova SN 1991T was observed. A search for gamma-ray line emission from the supernova yields no detection of line emission from the supernova. 2 sigma upper limits for the two predicted lines at 847 keV and at 1.238 MeV of approximately equal to 3 x 10(exp -5) photons/(sq cm)(s) were derived. These limits are compared with the predictions of some theoretical models and constraints imposed by these limits on these models are discussed.

  1. Bursts of the Crab Nebula gamma-ray emission at high and ultra-high energies

    Directory of Open Access Journals (Sweden)

    Lidvansky A.S.

    2017-01-01

    Full Text Available Characteristics of the flares of gamma rays detected from the Crab Nebula by the AGILE and Fermi-LAT satellite instruments are compared with those of a gamma ray burst recorded by several air shower arrays on February 23, 1989 and with one recent observation made by the ARGO-YBJ array. It is demonstrated that though pulsar-periodicity and energy spectra of emissions at 100 MeV (satellite gamma ray telescopes and 100 TeV (EAS arrays are different, their time structures seem to be similar. Moreover, maybe the difference between “flares” and “waves” recently found in the Crab Nebula emission by the AGILE team also exists at ultra-high energies.

  2. On the X-Ray emission of Gamma Ray Bursts

    CERN Document Server

    Dado, Shlomo; De Rújula, Alvaro

    2007-01-01

    Recent data gathered and triggered by the SWIFT satellite have greatly improved our knowledge of long-duration gamma ray bursts (GRBs) and X-ray flashes (XRFs). This is particularly the case for the X-ray data at all times. We show that the entire X-ray observations are in excellent agreement with the predictions of the `cannonball' model of GRBs and XRFs, which are based on simple physics and were published long before the launch of SWIFT. Two mechanisms underlie these predictions: inverse Compton scattering and synchrotron radiation, generally dominant at early and late times, respectively. The former mechanism provides a unified description of the gamma-ray peaks, X-ray flares and even the optical `humps' seen in some favourable cases; i.e. their very different durations, fluxes and peak-times are related precisely as predicted. The observed smooth or bumpy fast decay of the X-ray light curve is correctly described case-by-case, in minute detail. The `canonical' X-ray plateau, as well as the subsequent gra...

  3. Discovery of VHE gamma-ray emission from the direction of the globular cluster Terzan 5

    CERN Document Server

    Domainko, W; Brun, F; Eger, P; Jamrozy, M; Dyrda, M; Komin, N; Schwanke, U

    2011-01-01

    Globular clusters are old stellar systems which exhibit very-high stellar densities in their cores. The globular cluster Terzan 5 is characterized by a high stellar encounter rate and hosts the largest detected population of millisecond pulsars. It also features bright GeV gamma-ray emission and extended X-ray radiation. However, no globular clusters have been detected in very-high-energy gamma rays (VHE, E> 100 GeV) so far. In order to investigate this possibility Terzan 5 has been observed with the H.E.S.S. telescope array in this energy band. The discovery of a source of VHE gamma rays from the direction of this globular cluster will be reported. The results of the VHE analysis and a multi-wavelength view of Terzan 5 will be presented in this contribution. No counterpart or model can fully explain the observed morphology of the detected VHE gamma-ray source.

  4. The connection between the 15 GHz radio and gamma-ray emission in blazars

    CERN Document Server

    Max-Moerbeck, W; Hovatta, T; Pavlidou, V; Pearson, T J; Readhead, A C S; King, O G; Reeves, R

    2014-01-01

    Since mid-2007 we have carried out a dedicated long-term monitoring programme at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope. One of the main goals of this programme is to study the relation between the radio and gamma-ray emission in blazars and to use it as a tool to locate the site of high energy emission. Using this large sample of objects we are able to characterize the radio variability, and study the significance of correlations between the radio and gamma-ray bands. We find that the radio variability of many sources can be described using a simple power law power spectral density, and that when taking into account the red-noise characteristics of the light curves, cases with significant correlation are rare. We note that while significant correlations are found in few individual objects, radio variations are most often delayed with respect to the gamma-ray variations. This suggests that the gamma-ray emission originates upstream of the radio emission. Because strong flares in mo...

  5. Enhanced gamma-ray emission from the FSRQ CTA 102 detected by AGILE

    Science.gov (United States)

    Minervini, G.; Bulgarelli, A.; Pittori, C.; Verrecchia, F.; Piano, G.; Tavani, M.; Munar-Adrover, P.; Donnarumma, I.; Fioretti, V.; Zoli, A.; Lucarelli, F.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Paoletti, Antonelli A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-05-01

    AGILE is detecting since last week increased gamma-ray emission above 100 MeV from a source positionally consistent with the FSRQ blazar CTA 102 [at Galactic coordinates (l,b)= (77.4 , -38) +/- 0.6 deg (stat.

  6. INTEGRAL upper limits on gamma-ray emission associated with the gravitational wave event GW150914

    CERN Document Server

    Savchenko, V; Mereghetti, S; Natalucci, L; Bazzano, A; Bozzo, E; Courvoisier, T J -L; Brandt, S; Hanlon, L; Kuulkers, E; Laurent, P; Lebrun, F; Roques, J P; Ubertini, P; Weidenspointner, G

    2016-01-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we put tight upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event \\gwevent, discovered by the LIGO/Virgo collaboration. The omni-directional view of the INTEGRAL/SPI-ACS has allowed us to constrain the fraction of energy emitted in the hard X-ray electromagnetic component for the full high-probability sky region of LIGO/Virgo trigger. Our upper limits on the hard X-ray fluence at the time of the event range from $F_{\\gamma}=2 \\times 10^{-8}$ erg cm$^{-2}$ to $F_{\\gamma}=10^{-6}$ erg cm$^{-2}$ in the 75 keV - 2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy E$_\\gamma/$E$_{GW}<10^{-6}$. We discuss the implication of gamma-ray limits on the characteristics of the gravitational wave source, based on the available predictions for prom...

  7. Prompt thermal emission in gamma-ray bursts

    CERN Document Server

    Hascoët, R; Mochkovitch, R

    2013-01-01

    GRB spectra appear non-thermal, but recent observations of a few bursts with Fermi GBM have confirmed previous indications from BATSE of the presence of an underlying thermal component. Photospheric emission is indeed expected when the relativistic outflow emerging from the central engine becomes transparent to its own radiation, with a quasi-blackbody spectrum in absence of additional sub-photospheric dissipation. However, its intensity strongly depends on the acceleration mechanism - thermal or magnetic - of the flow. We aim to compute the thermal and non-thermal emissions produced by an outflow with a variable Lorentz factor, where the power injected at the origin is partially thermal (fraction epsilon_th) and partially magnetic (fraction 1-epsilon_th). The thermal emission is produced at the photosphere, and the non-thermal emission in the optically thin regime. Apart from the value of epsilon_th, we want to test how the other model parameters affect the observed ratio of the thermal to non-thermal emissi...

  8. Non-photonic emission from gamma-ray bursts

    CERN Document Server

    Waxman, E

    2006-01-01

    gamma-ray bursts (GRBs) are likely sources of ultra-high energy, >10^{19} eV, protons and high energy, >1 TeV, neutrinos. Large volume detectors of ultra high energy cosmic rays (UHECRs) and high energy neutrinos, which are already operating and are being expanded, may allow to test in the coming few years the predictions of the GRB model for high energy proton and neutrino production. Detection of the predicted signals will allow to identify the sources of UHECRs and will provide a unique probe, which may allow to resolve open questions related to the underlying physics of GRB models. Moreover, detection of GRB neutrinos will allow to test for neutrino properties (e.g., flavor oscillations for which tau's would be a unique signature, and coupling to gravity) with an accuracy many orders of magnitude better than is currently possible.

  9. Noise Equivalent Counts Based Emission Image Reconstruction Algorithm of Tomographic Gamma Scanning

    CERN Document Server

    Wang, Ke; Feng, Wei; Han, Dong

    2014-01-01

    Tomographic Gamma Scanning (TGS) is a technique used to assay the nuclide distribution and radioactivity in nuclear waste drums. Both transmission and emission scans are performed in TGS and the transmission image is used for the attenuation correction in emission reconstructions. The error of the transmission image, which is not considered by the existing reconstruction algorithms, negatively affects the final results. An emission reconstruction method based on Noise Equivalent Counts (NEC) is presented. Noises from the attenuation image are concentrated to the projection data to apply the NEC Maximum-Likelihood Expectation-Maximization algorithm. Experiments are performed to verify the effectiveness of the proposed method.

  10. Constraint on the counter-jet emission in gamma-ray burst afterglows from GRB 980703

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We present a numerical investigation of emission from the receding jet of gamma-ray bursts.It is found that the peak time of the receding jet emission is significantly affected by synchrotron self-absorption in radio wavelengths.However,the receding jet component is generally very weak.It is observable mainly for those nearby events in a dense environment.Although GRB 980703 has been observed in radio wavelengths for more than 1000 days,we argue that the receding jet emission still has not been detected for this event.Actually,it is completely submerged by the host galaxy.

  11. Detection of Extended VHE Gamma Ray Emission from G106.3+2.7 with VERITAS

    CERN Document Server

    Acciari, V A; Arlen, T; Aune, T; Bautista, M; Beilicke, M; Benbow, W; Boltuch, D; Bradbury, S M; Buckley, J H; Bugaev, V; Butt, Y; Byrum, K; Cannon, A; Cesarini, A; Chow, Y C; Ciupik, L; Cogan, P; Cui, W; Dickherber, R; Ergin, T; Fegan, S J; Finley, J P; Fortin, P; Fortson, L; Furniss, A; Gall, D; Gillanders, G H; Gotthelf, E V; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Horan, D; Hui, C M; Humensky, T B; Kaaret, P; Karlsson, N; Kertzman, M; Kieda, D; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; LeBohec, S; Maier, G; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Mukherjee, R; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Steele, D; Swordy, S P; Theiling, M; Toner, J A; Vassiliev, V V; Vincent, S; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wissel, S; Wood, M; Zitzer, B; 10.1088/0004-637X/703/1/L6

    2009-01-01

    We report the detection of very-high-energy (VHE) gamma-ray emission from supernova remnant (SNR) G106.3+2.7. Observations performed in 2008 with the VERITAS atmospheric Cherenkov gamma-ray telescope resolve extended emission overlapping the elongated radio SNR. The 7.3 sigma (pre-trials) detection has a full angular extent of roughly 0.6deg by 0.4deg. Most notably, the centroid of the VHE emission is centered near the peak of the coincident 12CO (J = 1-0) emission, 0.4deg away from the pulsar PSR J2229+6114, situated at the northern end of the SNR. Evidently the current-epoch particles from the pulsar wind nebula are not participating in the gamma-ray production. The VHE energy spectrum measured with VERITAS is well characterized by a power law dN/dE = N_0(E/3 TeV)^{-G} with a differential index of G = 2.29 +/- 0.33stat +/- 0.30sys and a flux of N_0 = (1.15 +/- 0.27stat +/- 0.35sys)x 10^{-13} cm^{-2} s^{-1} TeV^{-1}. The integral flux above 1 TeV corresponds to ~5 percent of the steady Crab Nebula emission a...

  12. Search for Very High Energy Emission from Gamma-Ray Bursts using Milagro

    CERN Document Server

    Saz-Parkinson, P M

    2007-01-01

    Gamma-Ray Bursts (GRBs) have been detected at GeV energies by EGRET and models predict emission at > 100 GeV. Milagro is a wide field (2 sr) high duty cycle (> 90 %) ground based water Cherenkov detector that records extensive air showers in the energy range 100 GeV to 100 TeV. We have searched for very high energy emission from a sample of 106 gamma-ray bursts (GRB) detected since the beginning of 2000 by BATSE, BeppoSax, HETE-2, INTEGRAL, Swift or the IPN. No evidence for emission from any of the bursts has been found and we present upper limits from these bursts.

  13. Search for cosmic-ray induced $\\gamma$-ray emission in Galaxy Clusters

    CERN Document Server

    :,; Ajello, M; Albert, A; Allafort, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bloom, E D; Bonamente, E; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Chaves, R C G; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Franckowiak, A; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Guiriec, S; Gustafsson, M; Hadasch, D; Hayashida, M; Hewitt, J; Hughes, R E; Jeltema, T E; Jóhannesson, G; Johnson, A S; Kamae, T; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Garde, M Llena; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mayer, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohsugi, T; Orienti, M; Orlando, E; Ormes, J F; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Ruan, J; Sánchez-Conde, M; Schulz, A; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Storm, E; Strong, A W; Suson, D J; Takahashi, H; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vianello, G; Vitale, V; Winer, B L; Wood, K S; Zimmer, S; Pfrommer, C; Pinzke, A

    2013-01-01

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into $\\gamma$ rays, that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended $\\gamma$-ray emission at the locations of 50 galaxy clusters in 4 years of Fermi-LAT data under the assumption of the universal cosmic-ray model proposed by Pinzke & Pfrommer (2010). We find an excess at a significance of $2.7\\,\\sigma$, which upon closer inspection is however correlated to individual excess emission towards three galaxy clusters: Abell 400, Abell 1367 and Abell 3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background (for example, radio galaxies within the clusters). Through the combined analysis of 50 clusters we exclude h...

  14. Gamma-ray Emission from the Vela Pulsar Modeled with the Annular Gap and Core Gap

    CERN Document Server

    Du, Y J; Qiao, G J; Chou, C K

    2011-01-01

    The Vela pulsar represents a distinct group of {\\gamma}-ray pulsars. Fermi {\\gamma}-ray observations reveal that it has two sharp peaks (P1 and P2) in the light curve with a phase separation of 0.42 and a third peak (P3) in the bridge. The location and intensity of P3 are energy-dependent. We use the 3D magnetospheric model for the annular gap and core gap to simulate the {\\gamma}-ray light curves, phase-averaged and phase-resolved spectra. We found that the acceleration electric field along a field line in the annular gap region decreases with heights. The emission at high energy GeV band is originated from the curvature radiation of accelerated primary particles, while the synchrotron radiation from secondary particles have some contributions to low energy {\\gamma}-ray band (0.1 - 0.3 GeV). The {\\gamma}-ray light curve peaks P1 and P2 are generated in the annular gap region near the altitude of null charge surface, whereas P3 and the bridge emission is generated in the core gap region. The intensity and loc...

  15. A common stochastic process rules gamma-ray burst prompt emission and X-ray flares

    CERN Document Server

    Guidorzi, C; Frontera, F; Margutti, R; Baldeschi, A; Amati, L

    2015-01-01

    Prompt gamma-ray and early X-ray afterglow emission in gamma-ray bursts (GRBs) are characterized by a bursty behavior and are often interspersed with long quiescent times. There is compelling evidence that X-ray flares are linked to prompt gamma-rays. However, the physical mechanism that leads to the complex temporal distribution of gamma-ray pulses and X-ray flares is not understood. Here we show that the waiting time distribution (WTD) of pulses and flares exhibits a power-law tail extending over 4 decades with index ~2 and can be the manifestation of a common time-dependent Poisson process. This result is robust and is obtained on different catalogs. Surprisingly, GRBs with many (>=8) gamma-ray pulses are very unlikely to be accompanied by X-ray flares after the end of the prompt emission (3.1 sigma Gaussian confidence). These results are consistent with a simple interpretation: an hyperaccreting disk breaks up into one or a few groups of fragments, each of which is independently accreted with the same pro...

  16. EGRET upper limits on the high-energy gamma-ray emission of galaxy clusters

    CERN Document Server

    Reimer, O; Sreekumar, P; Mattox, J R

    2003-01-01

    We report EGRET upper limits on the high-energy gamma-ray emission from clusters of galaxies. EGRET observations between 1991 and 2000 were analyzed at positions of 58 individual clusters from a flux-limited sample of nearby X-ray bright galaxy clusters. Subsequently, a coadded image from individual galaxy clusters has been analyzed using an adequately adapted diffuse gamma-ray foreground model. The resulting 2 sigma upper limit for the average cluster is \\~ 6 x 10^{-9} cm^{-2} s^{-1} for E > 100 MeV. Implications of the non--detection of prominent individual clusters and of the general inability to detect the X-ray brightest galaxy clusters as a class of gamma-ray emitters are discussed. We compare our results with model predictions on the high-energy gamma-ray emission from galaxy clusters as well as with recent claims of an association between unidentified or unresolved gamma-ray sources and Abell clusters of galaxies and find these contradictory.

  17. THE NATURE OF GAMMA-RAY EMISSION OF TYCHO'S SUPERNOVA REMNANT

    Energy Technology Data Exchange (ETDEWEB)

    Berezhko, E. G.; Ksenofontov, L. T. [Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Avenue, 677980 Yakutsk (Russian Federation); Voelk, H. J., E-mail: berezhko@ikfia.ysn.ru [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2013-01-20

    The nature of the recently detected high-energy and very high-energy {gamma}-ray emission of Tycho's supernova remnant (SNR) is studied. A nonlinear kinetic theory of cosmic-ray (CR) acceleration in SNRs is employed to investigate the properties of Tycho's SNR and their correspondence with the existing experimental data, taking into account that the ambient interstellar medium (ISM) is expected to be clumpy. It is demonstrated that the overall steep {gamma}-ray spectrum observed can be interpreted as the superposition of two spectra produced by the CR proton component in two different ISM phases: the first {gamma}-ray component, extending up to about 10{sup 14} eV, originates in the diluted warm ISM, whereas the second component, extending up to 100 GeV, comes from numerous dense, small-scale clouds embedded in this warm ISM. Given the consistency between acceleration theory and the observed properties of the nonthermal emission of Tycho's SNR, very efficient production of nuclear CRs in Tycho's SNR is established. The excess of the GeV {gamma}-ray emission due to the clouds' contribution above the level expected in the case of a purely homogeneous ISM is inevitably expected in the case of Type Ia SNe.

  18. The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived From First-Year Fermi Large Area Telescope Data

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.

    2011-08-19

    We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called 'extra-galactic' diffuse {gamma}-ray emission (EGB). This component of the diffuse {gamma}-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modelling of the bright foreground diffuse Galactic {gamma}-ray emission (DGE), the detected LAT sources and the solar {gamma}-ray emission. We find the spectrum of the EGB is consistent with a power law with differential spectral index {gamma} = 2.41 {+-} 0.05 and intensity, I(> 100 MeV) = (1.03 {+-} 0.17) x 10{sup -5} cm{sup -2} s{sup -1} sr{sup -1}, where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.

  19. AGILE detection of intense gamma-ray emission from the FSRQ CTA102

    Science.gov (United States)

    Bulgarelli, A.; Tavani, M.; Verrecchia, F.; Pittori, C.; Lucarelli, F.; Munar-Adrover, P.; Minervini, G.; Piano, G.; Ursi, A.; Donnarumma, I.; Fioretti, V.; Zoli, A.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-12-01

    AGILE is detecting enhanced gamma-ray emission above 100 MeV from a position consistent with the flat spectrum radio quasar CTA 102 (also known as 4C +11.69, PKS 2230+11, 5BZQ J2232+1143 and as gamma-ray source as 3EG J2232+1147, 3FGL J2232.5+114), recently reported in flaring activity by AGILE on December 9 (Atel #9841), November 24 and 11, 2016 (ATel #9788, #9743), and in optical/NIR extraordinary outburst (ATel #9821, #9808 and #9801).

  20. High energy (gamma)-ray emission from the starburst nucleus of NGC 253

    Energy Technology Data Exchange (ETDEWEB)

    Domingo-Santamaria, E; Torres, D F

    2005-06-15

    The high density medium that characterizes the central regions of starburst galaxies and its power to accelerate particles up to relativistic energies make these objects good candidates as {gamma}-rays sources. In this paper, a self-consistent model of the multifrequency emission of the starburst galaxy NGC 253, from radio to gamma-rays, is presented. The model is in agreement with all current measurements and provides predictions for the high energy behavior of the NGC 253 central region. Prospects for observations with the HESS array and GLAST satellite are especially discussed.

  1. AGILE Detection of Gamma-Ray Emission from the Microquasar Cygnus X-3

    Science.gov (United States)

    Piano, G.; Tavani, M.; Bulgarelli, A.; Verrecchia, F.; Donnarumma, I.; Munar-Adrover, P.; Minervini, G.; Fioretti, V.; Zoli, A.; Pittori, C.; Lucarelli, F.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-08-01

    The AGILE-GRID detector is revealing gamma-ray emission above 100 MeV from a source positionally consistent with the microquasar Cygnus X-3. Integrating from 2016-08-28 UT 09:00:00 to 2016-08-30 UT 09:00:00 (MJD: 57628.375 - 57630.375), a preliminary multi-source likelihood analysis detects a gamma-ray flux F( > 100 MeV) = (4.0 +/- 1.4) x 10^-6 photons/cm^2/s with a significance near 4 sigma.

  2. AGILE Detection of Enhanced Gamma-Ray Emission from the Microquasar Cygnus X-3

    Science.gov (United States)

    Piano, G.; Tavani, M.; Munar-Adrover, P.; Bulgarelli, A.; Verrecchia, F.; Donnarumma, I.; Minervini, G.; Fioretti, V.; Pittori, C.; Lucarelli, F.; Vercellone, S.; Striani, E.; Ursi, A.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-03-01

    The AGILE-GRID detector is revealing gamma ray emission above 100 MeV from a source positionally consistent with the microquasar Cygnus X-3. Integrating from 2017-02-27 UT 03:00:00 to 2017-03-01 UT 03:00:00 (MJD 57811.125 - 57813.125), a preliminary multi-source likelihood analysis detects a gamma-ray flux F( > 100 MeV) = (3 +/- 1) x 10^-6 photons/cm^2/s with a detection significance near 4 sigma.

  3. COS-B gamma ray sources beyond the predicted diffuse emission

    Science.gov (United States)

    Mayer-Hasselwander, H. A.; Simpson, G.

    1990-01-01

    COS-B data were reanalyzed using for background subtraction the modeled galactic diffuse gamma-ray emission based on HI- and CO-line surveys and the gamma-ray data itself. A methodology was developed for this purpose with the following three features: automatic generation of source catalogs using correlation analysis, simulation of trials to derive significance thresholds for source detection, and bootstrap sampling to drive error boxes and confidence intervals for source parameters. The analysis shows that about half of the 2CG sources are explained by concentrations in the distribution of molecular hydrogen. Indication for a few weak new sources is also obtained.

  4. Search for gamma-ray emission from star-forming galaxies with Fermi LAT

    CERN Document Server

    Rojas-Bravo, Cesar

    2016-01-01

    Recent studies have found a positive correlation between the star-formation rate of galaxies and their gamma-ray luminosity. Galaxies with a high star-formation rate are expected to produce a large amount of high-energy cosmic rays, which emit gamma-rays when interacting with the interstellar medium and radiation fields. We search for gamma-ray emission from a sample of galaxies within and beyond the Local Group with data from the LAT instrument onboard the Fermi satellite. We exclude recently detected galaxies (NGC 253, M82, NGC 4945, NGC 1068, NGC 2146, Arp 220) and use seven years of cumulative Pass 8 data from the LAT in the 100 MeV to 100 GeV range. No new detections are seen in the data and upper limits for the gamma- ray fluxes are calculated. The correlation between gamma-ray luminosity and infrared luminosity for galaxies obtained using our new upper limits is in agreement with a previously published correlation, but the new upper limits imply that some galaxies are not as efficient gamma-ray emitter...

  5. Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1

    Science.gov (United States)

    Laurent, P.; Rodriquez, J.; Wilms, J.; Bel, M. Cadolle; Pottschmidt, K.; Grinberg, V.

    2011-01-01

    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-I with the INTEGRAL/IBIS telescope. Spectral modeling ofthe data reveals two emission mechanisms: The 250-400 keY data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.

  6. Prompt high-energy emission from gamma-ray bursts in the internal shock model

    CERN Document Server

    Bosnjak, Z; Dubus, G

    2008-01-01

    The prompt GRB emission is thought to arise from electrons accelerated in internal shocks propagating within a highly relativistic outflow. The launch of Fermi offers the prospect of observations with unprecedented sensitivity in high-energy (>100 MeV) gamma-rays. The aim is to explore the predictions for HE emission from internal shocks, taking into account both dynamical and radiative aspects, and to deduce how HE observations constrain the properties of the relativistic outflow. The emission is modeled by combining a time-dependent radiative code with a dynamical code giving the evolution of the physical conditions in the shocked regions.Synthetic lightcurves and spectra are compared to observations. The HE emission deviates significantly from analytical estimates, which tend to overpredict the IC component, when the time dependence and full cross-sections are included. The exploration of the parameter space favors the case where the dominant process in the BATSE range is synchrotron emission. The HE compo...

  7. On the origin of \\gamma-ray emission in \\eta\\ Carina

    CERN Document Server

    Ohm, S; Hinton, J A; Parkin, E R

    2015-01-01

    \\eta\\ Car is the only colliding-wind binary for which high-energy \\gamma\\ rays are detected. Although the physical conditions in the shock region change on timescales of hours to days, the variability seen at GeV energies is weak and on significantly longer timescales. The \\gamma-ray spectrum exhibits two features that can be interpreted as emission from the shocks on either side of the contact discontinuity. Here we report on the first time-dependent modelling of the non-thermal emission in \\eta\\ Car. We find that emission from primary electrons is likely not responsible for the \\gamma-ray emission, but accelerated protons interacting with the dense wind material can explain the observations. In our model, efficient acceleration is required at both shocks, with the primary side acting as a hadron calorimeter, whilst on the companion side acceleration is limited by the flow time out of the system, resulting in changing acceleration conditions. The system therefore represents a unique laboratory for the explor...

  8. GRB 080503: Implications of a Naked Short Gamma-Ray Burst Dominated by Extended Emission

    CERN Document Server

    Perley, D A; Granot, J; Butler, N R; Sakamoto, T; Ramirez-Ruiz, E; Levan, A J; Bloom, J S; Miller, A A; Bunker, A; Chen, H -W; Filippenko, A V; Gehrels, N; Glazebrook, K; Hall, P; Hurley, K C; Kocevski, D; Li, W; López, S; Norris, J; Piro, A L; Poznanski, D; Prochaska, J X; Quataert, E; Tanvir, N

    2008-01-01

    We report on observations of GRB 080503, a short gamma-ray burst with very bright extended emission (about 30 times the gamma-ray fluence of the initial spike) in conjunction with a thorough comparison to other short Swift events. In spite of the prompt-emission brightness, however, the optical counterpart is extraordinarily faint, never exceeding 25 mag in deep observations starting at ~1 hr after the BAT trigger. The optical brightness peaks at ~1 day and then falls sharply in a manner similar to the predictions of Li & Paczynski (1998) for supernova-like emission following compact-binary mergers. However, a shallow spectral index and similar evolution in X-rays inferred from Chandra observations are more consistent with an afterglow interpretation. The extreme faintness of this probable afterglow relative to the bright gamma-ray emission argues for a very low-density medium surrounding the burst (a "naked" GRB), consistent with the lack of a coincident host galaxy down to 28.5 mag in deep HST imaging. ...

  9. Multi-wavelength emission region of gamma-ray emitting pulsars

    CERN Document Server

    Kisaka, Shota

    2011-01-01

    Using the outer gap model, we investigate the emission region for the multi-wavelength light curve from energetic pulsars. We assume that gamma-ray and non-thermal X-ray photons are emitted from a particle acceleration region in the outer magnetosphere, and UV/optical photons originate above that region. We assume that gamma-rays are radiated only by outwardly moving particles, whereas the other photons are produced by particles moving inward and outward. We parameterize the altitude of the emission region as the deviation from the rotating dipole in vacuum and determine it from the observed multi-wavelength pulse profile using the observationally constrained magnetic dipole inclination angle and viewing angle of the pulsars. We find that the outer gap model can explain the multi-wavelength pulse behavior by a simple distribution of emissivity, and discuss the possibility of further improvement. From observational fitting, we also find a general tendency for the altitude of the gamma-ray emission region to de...

  10. Powerful GeV emission from a gamma-ray-burst shock wave scattering stellar photons

    CERN Document Server

    Giannios, Dimitrios

    2008-01-01

    The gamma-ray bursts of long duration are likely connected to the death of massive stars. The gamma-ray emission is believed to come from energy released internally in a flow that moves at ultrarelativistic speed. The fast flow drives a shock wave into the external medium leading to the afterglow emission. Most massive stars form in dense clusters, their high luminosity producing a very dense radiation field. Here, I explore the observational consequences of the interaction of the shocked external medium of the burst with the photon field of a nearby O star. I show that inverse Compton scattering of the stellar photons by electrons heated by the shock leads to powerful gamma-ray emission in the ~1-100 GeV range. This emission appears minutes to hours after the burst and can be easily detected by Cherenkov telescopes and likely with the GLAST satellite. This signal may have already been observed in GRB 940217 and can yield important information about the circumburst environment.

  11. MAGIC search for VHE $\\gamma$-ray emission from AE Aquarii in a multiwavelength context

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Wilhelmi, E de Oña; Mendez, C Delgado; Doert, M; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Godinović, N; Muñoz, A González; Gozzini, S R; Hadasch, D; Hanabata, Y; Hayashida, M; Herrera, J; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Nowak, N; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Moroni, P G Prada; Prandini, E; Preziuso, S; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Rügamer, S; Saggion, A; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Zanin, R; Bogosavljevic, M; Ioannou, Z; Mauche, C W; Palaiologou, E V; Pérez-Torres, M A; Tuominen, T

    2014-01-01

    It has been claimed that the nova-like cataclysmic variable (CV) AE Aquarii (AE Aqr) is a very-high-energy (VHE, $E>$100 GeV) source both on observational and theoretical grounds. We aim to search for VHE gamma-ray emission from AE Aqr during different states of the source at several wavelengths to confirm or rule out previous claims of detection of gamma-ray emission from this object. We report on observations of AE Aqr performed by MAGIC. The source was observed during 12 hours as part of a multiwavelength campaign carried out between May and June 2012 covering the optical, X-ray, and gamma-ray ranges. Besides MAGIC, the other facilities involved were the KVA, Skinakas, and Vidojevica telescopes in the optical and Swift in X-rays. We calculated integral upper limits coincident with different states of the source in the optical. We computed upper limits to the pulsed emission limiting the signal region to 30% of the phaseogram and we also searched for pulsed emission at different frequencies applying the Ray...

  12. High-energy emissions from the gamma-ray binary LS 5039

    CERN Document Server

    Takata, J; Tam, P H T; Kong, A K H; Hui, C Y; Cheng, K S

    2014-01-01

    We study mechanisms of multi-wavelength emissions (X-ray, GeV and TeV gamma-rays) from the gamma-ray binary LS~5039. This paper is composed of two parts. In the first part, we report on results of observational analysis using four year data of \\fermi\\ Large Area Telescope. Due to the improvement of instrumental response function and increase of the statistics, the observational uncertainties of the spectrum in $\\sim$100-300 MeV bands and $>10$GeV bands are significantly improved. The present data analysis suggests that the 0.1-100GeV emissions from LS~5039 contain three different components; (i) the first component contributes to $<$1GeV emissions around superior conjunction, (ii) the second component dominates in 1-10GeV energy bands and (iii) the third component is compatible to lower energy tail of the TeV emissions. In the second part, we develop an emission model to explain the properties of the phase-resolved emissions in multi-wavelength observations. Assuming that LS~5039 includes a pulsar, we argu...

  13. Prompt Emission of GRB 121217A from Gamma-Rays to the Near-Infrared

    Science.gov (United States)

    Elliott, J.; Yu, H.-F.; Schmidl, S.; Greiner, J.; Gruber, D.; Oates, S.; Kobayashi, S.; Zhang, B.; Cummings, J. R.; Filgas, R.; Gehrels, N.

    2014-01-01

    The mechanism that causes the prompt-emission episode of gamma-ray bursts (GRBs) is still widely debated despite there being thousands of prompt detections. The favoured internal shock model relates this emission to synchrotron radiation. However, it does not always explain the spectral indices of the shape of the spectrum, which is often fit with empirical functions, such as the Band function. Multi-wavelength observations are therefore required to help investigate the possible underlying mechanisms that causes the prompt emission. We present GRB 121217A, for which we were able to observe its near-infrared (NIR) emission during a secondary prompt-emission episode with the Gamma-Ray burst Optical Near-infrared Detector (GROND) in combination with the Swift and Fermi satellites, which cover an energy range of 5 orders of magnitude (10(exp -3) keV to 100 keV). We determine a photometric redshift of z = 3.1 +/- 0.1 with a line-of-sight with little or no extinction (AV approx. 0 mag) utilising the optical/NIR SED. From the afterglow, we determine a bulk Lorentz factor of Gamma(sub 0) approx. 250 and an emission radius of R < 1018 cm. The prompt-emission broadband spectral energy distribution is well fit with a broken power law with beta1 = -0.3 +/- 0.1 and beta2 = 0.6 +/- 0.1 that has a break at E = 6.6 +/- 0.9 keV, which can be interpreted as the maximum injection frequency. Self-absorption by the electron population below energies of Ea < 6 keV suggest a magnetic field strength of B approx. 10(exp 5) G. However, all the best fit models underpredict the flux observed in the NIR wavelengths, which also only rebrightens by a factor of approx. 2 during the second prompt emission episode, in stark contrast to the X-ray emission, which rebrightens by a factor of approx. 100. This suggests an afterglow component is dominating the emission. We present GRB 121217A, one of the few GRBs that has multi-wavelength observations of the prompt-emission period and shows that it can

  14. Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector

    Science.gov (United States)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brown, A. M.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schoenwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, C.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.

    2011-04-01

    IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if gamma-ray bursts are responsible for the observed cosmic-ray flux above 1018eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from pγ interactions in the prompt phase of the gamma-ray burst fireball and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence.

  15. A combined model for the X-ray to gamma-ray emission of Cyg X-1

    OpenAIRE

    Moskalenko, I. V.; Collmar, W.; Schoenfelder, V.

    1998-01-01

    We use recent data obtained by three (OSSE, BATSE, and COMPTEL) of four instruments on board the Compton Gamma Ray Observatory, to construct a model of Cyg X-1 which describes its emission in a broad energy range from soft X-rays to MeV gamma-rays self-consistently. The gamma-ray emission is interpreted to be the result of Comptonization, bremsstrahlung, and positron annihilation in a hot optically thin and spatially extended region surrounding the whole accretion disk. For the X-ray emission...

  16. Fermi Observations of high-energy gamma-ray emissions from GRB 080916C

    CERN Document Server

    Abdo, A A; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, Guido; Baring, Matthew G; Bastieri, Denis; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, Elliott D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, Thompson H; Burrows, David N; Busetto, Giovanni; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, Annalisa; Charles, E; Chekhtman, A; Cheung, C.C.Teddy; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, Johann; Cominsky, Lynn R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; DeKlotz, M; Dermer, C D; De Angelis, Alessandro; de Palma, F; Digel, S W; Dingus, B L; do Couto e Silva, Eduardo; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, Justin D; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, Thomas Lynn; Godfrey, Gary L; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M H; Grove, J.Eric; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, Alice K; Hayashida, M; Hays, Elizabeth A; Hernando Morata, J A; Hoover, A; Hughes, R E; Johannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, Tsuneyoshi; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knodlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, Frederick Gabriel Ivar; Kuss, Michael; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, Pasquale; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, Sheila; McEnery, J E; McGlynn, S; Meegan, C; Miszaros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, Igor Vladimirovich; Murgia, Simona; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, Takashi; Okumura, Akira; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, Vahe; Pinchera, M; Piron, F; Porter, Troy A; Preece, R; Rainr, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, Soebur; Rea, N; Reimer, A; Reimer, O; Reposeur, Thierry; Reyes, Luis C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Parkinson, P.M.Saz; Scargle, J D; Schalk, T L; Segal, K N; Sgro, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, Jean-Luc; Stecker, Floyd William; Steinle, H; Stephens, T E; Strickman, M S; Suson, Daniel J; Tagliaferri, G.; Tajima, Hiroyasu; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, Diego F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-01-01

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  17. Discovery of Gamma-Ray Emission from the X-shaped Bulge of the Milky Way

    CERN Document Server

    Macias, Oscar; Crocker, Roland M; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2016-01-01

    An anomalous signal has been found in Fermi Gamma-Ray Large Area Telescope data covering the center of the Galaxy. Given its morphological and spectral characteristics, this "Galactic Center Excess" is ascribable to self-annihilation of dark matter particles. We report on an analysis that exploits hydrodynamical modeling to register the position of interstellar gas associated with diffuse Galactic $\\gamma$-ray emission. Our improved analysis reveals that the excess $\\gamma$-rays are spatially correlated with both the X-shaped stellar over-density in the Galactic bulge and the nuclear stellar bulge. Given these correlations, we argue that the excess is not a dark matter phenomenon but rather associated with the stellar population of the X-bulge and the nuclear bulge.

  18. Gamma-ray emission spectrum from thermonuclear fusion reactions without intrinsic broadening

    DEFF Research Database (Denmark)

    Nocente, M.; Källne, J.; Salewski, Mirko

    2015-01-01

    First principle calculations of the gamma-ray energy spectrum arising from thermonuclear reactions without intrinsic broadening in fusion plasmas are presented, extending the theoretical framework needed to interpret measurements up to the accuracy level enabled by modern high resolution instrume......First principle calculations of the gamma-ray energy spectrum arising from thermonuclear reactions without intrinsic broadening in fusion plasmas are presented, extending the theoretical framework needed to interpret measurements up to the accuracy level enabled by modern high resolution...... information that can be extracted from the gamma-ray emission spectrum of fusion reactions without intrinsic broadening and are of relevance for applications to high performance plasmas of present and next generation devices....

  19. Gamma-Ray and Multiwaveband Emission from Gamma-Ray-Loud BL Lacertae Objects

    Institute of Scientific and Technical Information of China (English)

    张雄; 赵刚; 郑广生; 张力

    2003-01-01

    We have collected 18 γ-ray-loud BL Lac with observed data in multiwavedand, we find that γ-ray flux densities correlate better with the near-IR flux densities than those with the optical or x-ray flux densities. There is no correlation between γ-ray and radio flux densities. Possible constraints on the γ-ray emission mechanism are discussed. We suggest that the main γ-ray radiation mechanism is probably the synchrotron self-Compton process. The inverse Compton scattering of the radiation from hot circumscribe dust, by beamed ultrarelativistic electrons, is likely to be an important complementary mechanism.

  20. Discovery of an extended source of gamma-ray emission in the Southern hemisphere

    CERN Document Server

    Araya, Miguel

    2016-01-01

    The discovery of a $\\sim$ 3.$^{\\circ}$4-wide region of high-energy emission in data from the Fermi LAT satellite is reported. The region is located in the Southern hemisphere and relatively far from the plane of the Galaxy, around the Galactic coordinates l=350.6, b=-4.7. It shows a hard spectrum that is compatible with a power-law, $\\frac{dN}{dE}\\propto E^{-\\Gamma}$, with a spectral index $\\Gamma = 1.68 \\pm 0.04_{stat}$ above 200 MeV and a total integrated flux above 1 GeV of $(3.76 \\pm 0.33_{stat}) \\times 10^{-9}$ cm$^{-2}$ s$^{-1}$. Two hypotheses about the nature of the source are discussed, namely that the emission comes from the shell of an unknown supernova remnant or from a pulsar wind nebula.

  1. Prompt gamma-ray emission for future imaging applications in proton-boron fusion therapy

    Science.gov (United States)

    Petringa, G.; Cirrone, G. A. P.; Caliri, C.; Cuttone, G.; Giuffrida, L.; La Rosa, G.; Manna, R.; Manti, L.; Marchese, V.; Marchetta, C.; Margarone, D.; Milluzzo, G.; Picciotto, A.; Romano, F.; Romano, F. P.; Russo, A. D.; Russo, G.; Santonocito, D.; Scuderi, V.

    2017-03-01

    Recently, an approach exploiting the proton therapy biological enhancement by using Boron atoms injected inside a tumor, has been proposed [1-3]. Here, the 11B(p,α)2α nuclear fusion reaction channel, where three alpha particles are produced with an average energy around 4 MeV, is considered [4]. These alphas are able to penetrate the cells nucleus and strongly damage their DNA. In addition, gamma prompts emitted by the proton Boron nuclear reactions can be used for on-line proton beam imaging purposes. In this work an experimental study of the gamma prompt emissions from the proton Boron nuclear reactions has been carried out with the main aim to understand and quantify the most probable emission for future clinical applications.

  2. AGN emission processes of NGC 4945 in the X-rays and gamma-rays

    CERN Document Server

    Menzel, Marie-Luise; Mattana, Fabio

    2012-01-01

    NGC 4945 has an outstanding role among the Seyfert 2 active galatic nuclei (AGN) because it is one of the few non-blazars which have been detected in the gamma-rays. Here, we analyse the high energy spectrum using Suzaku, INTEGRAL and Fermi data. We reconstruct the spectral energy distribution in the soft X-ray to gamma-ray domain in order to provide a better understanding of the processes in the AGN. We present two models to fit the high-energy data. The first model assumes that the gamma-ray emission originates from one single non-thermal component, e.g. a shock-induced pion decay caused by the starburst processes in the host galaxy, or by interaction with cosmic rays. The second model describes the high-energy spectrum by two independent components: a thermal inverse Compton process of photons in the non-beamed AGN and a non-thermal emission of the gamma-rays. These components are represented by an absorbed cut-off power law for the thermal component in the X-ray energy range and a simple power law for the...

  3. Assessment of Geant4 prompt gamma emission yields in the context of proton therapy monitoring

    Directory of Open Access Journals (Sweden)

    Marco ePinto

    2016-01-01

    Full Text Available Monte Carlo tools have been long used to assist the research and development of solutions for proton therapy monitoring. The present work focuses on the prompt-gamma emission yields by comparing experimental data with the outcomes of the current version of Geant4 using all applicable proton inelastic models. For the case in study and using the binary cascade model, it was found that Geant4 overestimates the prompt-gamma emission yields by 40.2+/-0.3%, even though it predicts the prompt-gamma profile length of the experimental profile accurately. In addition, the default implementations of all proton inelastic models show an overestimation in the number of prompt gammas emitted. Finally, a set of built-in options and physically-sound Geant4 source code changes have been tested in order to try to improve the discrepancy observed. A satisfactory agreement was found when using the QMD model with a wave packet width equal to 1.3 fm2.

  4. Enhanced Gamma-Ray Emission from Neutron Unbound States Populated in Beta Decay

    CERN Document Server

    Tain, J L; Algora, A; Agramunt, J; Rubio, B; Rice, S; Gelletly, W; Regan, P; Zakari-Issoufou, A -A; Fallot, M; Porta, A; Rissanen, J; Eronen, T; Aysto, J; Batist, L; Bowry, M; Bui, V M; Caballero-Folch, R; Cano-Ott, D; Elomaa, V -V; Estevez, E; Farrelly, G F; Garcia, A R; Gomez-Hornillos, B; Gorlychev, V; Hakala, J; Jordan, M D; Jokinen, A; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Moore, I; Penttila, H; Podolyak, Zs; Reponen, M; Sonnenschein, V; Sonzogni, A A

    2015-01-01

    Total absorption spectroscopy was used to investigate the beta-decay intensity to states above the neutron separation energy followed by gamma-ray emission in 87,88Br and 94Rb. Accurate results were obtained thanks to a careful control of systematic errors. An unexpectedly large gamma intensity was observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The gamma branching as a function of excitation energy was compared to Hauser-Feshbach model calculations. For 87Br and 88Br the gamma branching reaches 57% and 20% respectively, and could be explained as a nuclear structure effect. Some of the states populated in the daughter can only decay through the emission of a large orbital angular momentum neutron with a strongly reduced barrier penetrability. In the case of neutron-rich 94Rb the observed 4.5% branching is much larger than the calculations performed with standard nuclear statistical model parameters, even after proper c...

  5. Gamma-Ray emission from SN2014J near maximum optical light

    CERN Document Server

    Isern, J; Bravo, E; Knödlseder, J; Lebrun, F; Churazov, E; Sunyaev, R; Domingo, A; Badenes, C; Hartmann, D H; Hoeflich, P; Renaud, M; Soldi, S; Elias--Rosa, N; Hernanz, M; Domínguez, I; García-Senz, D; Lichti, G G; Vedrenne, G; Von Ballmoos, P

    2016-01-01

    The optical light curve of Type Ia supernovae (SNIa) is powered by thermalized gamma-rays produced by the decay of 56Ni and 56Co, the main radioactive isotopes synthesized by the thermonuclear explosion of a C/O white dwarf. Gamma-rays escaping the ejecta can be used as a diagnostic tool for studying the characteristics of the explosion. In particular, it is expected that the analysis of the early gamma emission, near the maximum of the optical light curve, could provide information about the distribution of the radioactive elements in the debris. In this paper, the gamma data obtained from SN2014J in M82 by the instruments on board of INTEGRAL are analyzed taking special care of the impact that the detailed spectral response has on the measurements of the intensity of the lines. The 158 keV emission of 56Ni has been detected in SN2014J at ~5 sigma at low energy with both ISGRI and SPI around the maximum of the optical light curve. After correcting the spectral response of the detector, the fluxes in the line...

  6. INTEGRAL upper limits on gamma-ray emission associated with the gravitational wave event GW150914

    Science.gov (United States)

    Savchenko, V.; Ferrigno, C.; Mereghetti, S.; Natalucci, L.; Kuulkers, E.

    2016-06-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we put tight upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo collaboration. The omni-directional view of the INTEGRAL/SPI-ACS has allowed us to constrain the fraction of energy emitted in the hard X-ray electromagnetic component for the full high-probability sky region of LIGO/Virgo trigger. Our upper limits on the hard X-ray fluence at the time of the event range from F_{γ}=2 × 10^{-8} erg cm^{-2} to F_{γ}=10^{-6} erg cm^{-2} in the 75 keV - 2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy E_γ/E_{GW}<10^{-6}. We discuss the implication of gamma-ray limits on the characteristics of the gravitational wave source, based on the available predictions for prompt electromagnetic emission. This work has been possible thanks to a Memorandum of Understanding with the LIGO-Virgo scientific collaboration and is presented on behalf of a larger collaboration.

  7. DAMPE detection of variable GeV gamma-ray emission from blazar CTA 102

    Science.gov (United States)

    Xu, Zun-Lei; Caragiulo, Micaela; Chang, Jin; Duan, Kai-Kai; Fan, Yi-Zhong; Gargano, Fabio; Lei, Shi-Jun; Li, Xiang; Liang, Yun-Feng; Mazziotta, M. Nicola; Shen, Zhao-Qiang; Su, Meng; Tykhonov, Andrii; Yuan, Qiang; Zimmer, Stephan; Dampe Collaboration; Li, Bin; Zhao, Hai-Bin; Cneost Group

    2016-12-01

    The DArk Matter Particle Explorer (DAMPE), has detected variable gamma-ray emission from a source positionally coincident with the flat spectrum radio quasar CTA 102 (also known as 4C +11.69) with redshift of z=1.037 (Schmidt 1965, ApJ, 141, 1295) and coordinates (J2000.0, from VLBI) of R.A.: 338.151704 deg, Dec.: 11.730807 deg (Johnston et al. 1995, AJ, 110, 880).

  8. AGILE detection of enhanced gamma-ray emission from the FSRQ 4C +01.02

    Science.gov (United States)

    Verrecchia, F.; Lucarelli, F.; Pittori, C.; Bulgarelli, A.; Tavani, M.; Fioretti, V.; Zoli, A.; Piano, G.; Striani, E.; Vercellone, S.; Donnarumma, I.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-07-01

    AGILE is detecting increased gamma-ray emission above 100 MeV from a position consistent with the flat spectrum radio quasar 4C +01.02 (also known as 5BZQ J0108+0135, PKS 0106+01 and 3FGL J0108.7+0134), recently reported in flaring activity also by Fermi/LAT during the week Jun 6-12 (http://fermisky.blogspot.it).

  9. Development of a Reference Database for Particle-Induced Gamma-ray Emission spectroscopy

    OpenAIRE

    Dimitriou, P.; Becker, H.-W.; Bogdanović-Radović, I.; M. Chiari; Goncharov, A.; Jesus, A. P.; Kakuee, O.; Kiss, A. Z.; Lagoyannis, A.; Räisänen, J.; Strivay, David; Zucchiatti, A.

    2016-01-01

    Particle-Induced Gamma-ray Emission (PIGE) is a powerful analytical technique that exploits the interactions of rapid charged particles with nuclei located near a sample surface to determine the composition and structure of the surface regions of solids by measurement of characteristic prompt γ rays. The potential for depth profiling of this technique has long been recognized, however, the implementation has been limited owing to insufficient knowledge of the physical data and lack of suitabl...

  10. Echo Emission From Dust Scattering and X-Ray Afterglows of Gamma-Ray Bursts

    CERN Document Server

    Shao, L; Mirabal, N

    2007-01-01

    We investigate the effect of X-ray echo emission in gamma-ray bursts (GRBs). We find that the echo emission can provide an alternative way of understanding X-ray shallow decays and jet breaks. In particular, a shallow decay followed by a "normal" decay and a further rapid decay of X-ray afterglows can be together explained as being due to the echo from prompt X-ray emission scattered by dust grains in a massive wind bubble around a GRB progenitor. We also introduce an extra temporal break in the X-ray echo emission. By fitting the afterglow light curves, we can measure the locations of the massive wind bubbles, which will bring us closer to finding the mass loss rate, wind velocity, and the age of the progenitors prior to the GRB explosions.

  11. Contribution of Point Sources to the Soft Gamma-Ray Galactic Emission

    Science.gov (United States)

    Terrier, R.; Lebrun, F.; Bélanger, G.; Goldwurm, A.; Strong, A. W.; Schoenfelder, V.; Bouchet, L.; Roques, J. P.; Parmar, A.

    2004-10-01

    The nature of the soft gamma-ray (20-200 keV) Galactic emission has been a matter of debate for a long time. Previous experiments have tried to sep- arate the point source contribution from the real in- terstellar emission, but with a rather poor spatial res- olution, they concluded that the interstellar emission could be a large fraction of the total Galactic emis- sion. INTEGRAL, having both high resolution and high sensitivity, is well suited to reassess more pre- cisely this problem. Using the INTEGRAL core pro- gram Galactic Center Deep Exposure (GCDE), we estimate the contribution of detected point sources to the total Galactic flux. Key words: Interstellar emission; INTEGRAL; IBIS/ISGRI.

  12. Observationally constraining gravitational wave emission from short gamma-ray burst remnants

    CERN Document Server

    Lasky, Paul D

    2015-01-01

    Observations of short gamma-ray bursts indicate ongoing energy injection following the prompt emission, with the most likely candidate being the birth of a rapidly rotating, highly magnetised neutron star. We utilise X-ray observations of the burst remnant to constrain properties of the nascent neutron star, including its magnetic field-induced ellipticity and the saturation amplitude of various oscillation modes. Moreover, we derive strict upper limits on the gravitational wave emission from these objects by looking only at the X-ray light curve, showing the burst remnants are unlikely to be detected in the near future using ground-based gravitational wave interferometers such as Advanced LIGO.

  13. Emission of extremely bright gamma-ray pulsar in the Large Magellanic Cloud

    CERN Document Server

    Machabeli, George

    2016-01-01

    In the present paper a theoretical interpretation of observational characteristics of the pulsar PSR J0540-6919 is suggested. In particular, we provide a theoretical model explaining the presence of two peaks in the radio domain and the brooding of these peaks at higher frequencies. The model also explains the pulse-phase coincidence of emission peaks at different frequencies and shows the physical, 'genetic' connection between the radio remission at frequencies of the order of GHz with gamma-ray emission up to GeV energies.

  14. High-energy gamma-ray emission from the Galactic Center

    DEFF Research Database (Denmark)

    Mayer-Hasselwander, H.A.; Bertsch, D.L.; Dingus, B.L.

    1998-01-01

    interactions within 85 pc from the center of the Galaxy at 8.5 kpc distance. The spatial distribution of the emission does not correlate with the details of the CO-line surveys. Thus, in spite of the existence of a strong emission peak, earlier conclusions based on an apparent 'gamma-ray deficit', postulating......The EGRET instrument on the Compton Gamma-Ray Observatory has observed the Galactic Center (GC) region with good coverage at a number of epochs. A strong excess of emission is observed, peaking at energies > 500 MeV in an error circle of 0.2 degree radius including the position l = 0 degrees and b...... = 0 degrees. The close coincidence of this excess with the GC direction and the fact that it is the strongest emission maximum within 15 degrees from the GC is taken as compelling evidence for the source's location in the GC region. The history of the emission intensity, observed over 5 years, leaves...

  15. Gamma-ray emission region located in the parsec scale jet of OJ287

    CERN Document Server

    Agudo, Ivan; Marscher, Alan P; Larionov, Valeri M; Gomez, Jose L; Lahteenmaki, Anne; Gurwell, Mark; Smith, Paul S; Wiesemeyer, Helmut; Thum, Clemens; Heidt, Jochen

    2011-01-01

    We report on the location of the gamma-ray emission region in flares of the BL Lacertae object OJ287 at >14pc from the central supermassive black hole. We employ data from multi-spectral range (total flux and linear polarization) monitoring programs combined with sequences of ultra-high-resolution 7mm VLBA images. The correlation between the brightest gamma-ray and mm flares is found to be statistically significant. The two gamma-ray peaks, detected by Fermi-LAT, that we report here happened at the rising phase of two exceptionally bright mm flares accompanied by sharp linear polarization peaks. The VLBA images show that these mm flares in total flux and polarization degree occurred in a jet region at >14pc from the innermost jet region. The time coincidence of the brighter gamma-ray flare and its corresponding mm linear polarization peak evidences that both the gamma-ray and mm outbursts occur >14pc from the central black hole. We find two sharp optical flares occurring at the peak times of the two reported ...

  16. Long-duration gamma-ray emissions from 2007 and 2008 winter thunderstorms

    CERN Document Server

    Tsuchiya, H; Yamada, S; Yuasa, T; Nakazawa, K; Kitaguchi, T; Kawaharada, M; Kokubun, M; Kato, H; Okano, M; Makishima, K

    2011-01-01

    The Gamma-Ray Observation of Winter THunderclouds (GROWTH) experiment, consisting of two radiation-detection subsystems, has been operating since 2006 on the premises of Kashiwazaki-Kariwa nuclear power plant located at the coastal area of Japan Sea. By 2010 February, GROWTH detected 7 long-duration $\\gamma$-rays emissions associated with winter thunderstorms. Of them, two events, obtained on 2007 December 13 and 2008 December 25, are reported.On both occasions, all inorganic scintillators (NaI, CsI, and BGO) of the two subsystems detected significant gamma-ray signals lasting for >1 minute. Neither of these two events were associated with any lightning. In both cases, the gamma-ray energy spectra extend to 10 MeV, suggesting that the detected gamma-rays are produced by relativistic electrons via bremsstrahlung. Assuming that the initial photon spectrum at the source is expressed by a power-law function,the observed photons can be interpreted as being radiated from a source located at a distance of 290-560 m ...

  17. Gamma-ray emission from galaxy cluster outskirts versus radio relics

    CERN Document Server

    Siemieniec--Oziȩbło, G

    2016-01-01

    Galaxy cluster peripheries provide important information on the nature of ICM/IGM linkage. In this paper we consider potential future observations in the gamma-ray domain at cluster edges involving the radio relic phenomenon. We focus on the spectral signature of gamma radiation that should be evident in the energy range of Fermi--LAT, i.e. $\\gtrsim 10^{-1}$ GeV and the CTA energy range $\\sim$ $ 10^{2}$ GeV. The spectral signature results from a comparable gamma-ray flux due to the IC and $ \\pi ^{0} $ decay on the edge of the cluster, and its spectral position is a function of the magnetic field and relative efficiency of the acceleration of protons and electrons. We aim to draw attention to the dependence of the gamma-ray structure on the magnetic field value. As an example, we carried out analyses of two types of non-thermal diffuse radio emission: the radio relic of A 2256 and the radio halo of Coma cluster. We suggest that in both cases the expected spatially correlated gamma-ray spectrum should have a ch...

  18. Understanding Low Energy Gamma Emission from Fission and Capture with DANCE

    Science.gov (United States)

    Wilburn, Grey; Couture, Aaron; Mosby, Shea

    2012-10-01

    Los Alamos National Laboratory's Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 barium fluoride (BaF2) detectors in a 4π array used to study cross-section measurements from neutron capture reactions. Further, recent studies have taken advantage of DANCE to study the gamma emission from fission, which is not well characterized. Neutron capture is studied because of its relevance to nuclear astrophysics (almost all elements heavier than iron are formed via neutron capture) and nuclear energy, where neutron capture is a poison in the reactor. Gamma ray cascades following neutron capture and fission include photons with energies between 100 keV and 10 MeV. DANCE uses a ^6LiH sphere to attenuate scattered neutrons, the primary background in DANCE. Unfortunately, it also attenuates low energy gamma rays. In order to quantify this effect and validate simulations, direct measurements of low energy gammas were made with a high purity germanium (HPGe) crystal. HPGe's allow for high resolution measurements of low energy gamma rays that are not possible using the BaF2 crystals. The results and their agreement with simulations will be discussed.

  19. Time-monitoring Observations of Br$\\gamma$ Emission from Young Stars

    CERN Document Server

    Eisner, J A; Rieke, M J; Flaherty, K M; Stone, Jordan M; Arnold, T J; Cortes, S R; Cox, E; Hawkins, C; Cole, A; Zajac, S; Rudolph, A L

    2014-01-01

    We present multiple epochs of near-IR spectroscopy for a sample of 25 young stars, including T Tauri, Herbig Ae/Be, and FU Ori objects. Using the FSPEC instrument on the Bok 90-inch telescope, we obtained K-band spectra of the BrGamma transition of hydrogen, with a resolution of ~3500. Epochs were taken over a span of >1 year, sampling time-spacings of roughly one day, one month, and one year. The majority of our targets show BrGamma emission, and in some cases these are the first published detections. Time-variability is seen in approximately half of the targets showing BrGamma emission. We compare the observed variability with expectations for rotationally-modulated accretion onto the central stars and time-variable continuum emission or extinction from matter in the inner disk. Our observations are not entirely consistent with models of rotationally-modulated magnetospheric accretion. Further monitoring, over a larger number of epochs, will facilitate more quantitative constraints on variability timescales...

  20. Search for VHE gamma-ray emission from Geminga pulsar and nebula with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2016-06-01

    The Geminga pulsar, one of the brighest gamma-ray sources, is a promising candidate for emission of very-high-energy (VHE > 100 GeV) pulsed gamma rays. Also, detection of a large nebula has been claimed by water Cherenkov instruments. We performed deep observations of Geminga with the MAGIC telescopes, yielding 63 h of good-quality data, and searched for emission from the pulsar and pulsar wind nebula. We did not find any significant detection, and derived 95% confidence level upper limits. The resulting upper limits of 5.3 × 10-13 TeV cm-2 s-1 for the Geminga pulsar and 3.5 × 10-12 TeV cm-2 s-1 for the surrounding nebula at 50 GeV are the mostconstraining ones obtained so far at VHE. To complement the VHE observations, we also analyzed 5 yr of Fermi-LAT data from Geminga, finding that the sub-exponential cut-off is preferred over the exponential cut-off that has been typically used in the literature. We also find that, above 10 GeV, the gamma-ray spectra from Geminga can be described with a power law with index softer than 5. The extrapolation of the power-law Fermi-LAT pulsed spectra to VHE goes well below the MAGIC upper limits, indicating that the detection of pulsed emission from Geminga with the current generation of Cherenkov telescopes is very difficult.

  1. Search for Cosmic-Ray-Induced Gamma-Ray Emission in Galaxy Clusters

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bloom, E. D.; Bonamente, E.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Chaves, R. C. G.; Kuss, M.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.; Tinivella, M.

    2014-01-01

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into gamma rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended gamma-ray emission at the locations of 50 galaxy clusters in four years of Fermi-LAT data under the assumption of the universal cosmic-ray (CR) model proposed by Pinzke & Pfrommer. We find an excess at a significance of 2.7 delta, which upon closer inspection, however, is correlated to individual excess emission toward three galaxy clusters: A400, A1367, and A3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background systems (for example, radio galaxies within the clusters).Through the combined analysis of 50 clusters, we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the CR to thermal pressure ratio within the virial radius, R(sub 200), to be below 1.25%-1.4% depending on the morphological classification. In addition, we derive new limits on the gamma-ray flux from individual clusters in our sample.

  2. Electromagnetic Afterglows Associated with Gamma-Ray Emission Coincident with Binary Black Hole Merger Event GW150914

    CERN Document Server

    Yamazaki, Ryo; Ohira, Yutaka

    2016-01-01

    Fermi Gamma-ray Burst Monitor detected gamma-ray emission 0.4 sec after a binary black-hole merger event, GW150914. We show that the gamma-ray emission is caused by a relativistic outflow with Lorentz factor larger than 10. Subsequently debris outflow pushes ambient gas to form a shock, which is responsible for the afterglow synchrotron emission. We find that the fluxes of radio and optical afterglows increase from about $10^7$ sec to at least $\\sim10$ yr after the burst trigger. Further follow-up observations in the radio and optical/infrared bands are encouraged. Detection of afterglows will localize the sky position of the gravitational-wave and the gamma-ray emissions and it will support the physical association between them.

  3. Measurement of direct photon emission in the K(L) ---> pi+ pi- gamma decay mode

    Energy Technology Data Exchange (ETDEWEB)

    Abouzaid, E.; /Chicago U., EFI; Arenton, M.; /Virginia U.; Barker, A.R.; /Colorado U.; Bellantoni, L.; /Fermilab; Bellavance, A.; /Rice U.; Blucher, E.; /Chicago U., EFI; Bock,; /Fermilab; Cheu, E.; /Arizona U.; Coleman, R.; /Fermilab; Corcoran, M.D.; /Rice U.; Corti, G.; /Virginia U. /Wisconsin U., Madison

    2006-04-01

    In this paper the KTeV collaboration reports the analysis of 112.1 x 10{sup 3} candidate K{sub L} {yields} {pi}{sup +}{pi}{sup -}{gamma} decays including a background of 671 {+-} 41 events with the objective of determining the photon production mechanisms intrinsic to the decay process. These decays have been analyzed to extract the relative contributions of the Cp violating bremsstrahlung process and the CP conserving M1 and CP violating E1 direct photon emission processes. The M1 direct photon emission amplitude and its associated vector form factor parameterized as |{bar g}{sub M1}|(1 + a{sub 1}/a{sub 2}/(M{sub {rho}}{sup 2}-M{sub K}{sup 2}) + 2M{sub K}E{sub {gamma}}) have been measured to be |{bar g}{sub M1}| = 1.198 {+-} 0.035(stat) {+-} 0.086(syst) and a{sub 1}/a{sub 2} = =0.738 {+-} 0.007(stat) {+-} 0.018(syst) GeV{sup 2}/c{sup 2} respectively. An upper limit for the CP violating E1 direct emission amplitude |g{sub E1}| {le} 0.1 (90%CL) has been found. The overall ratio of direct photon emission (DE) to total photon emission including the bremsstrahlung process (IB) has been determined to be DE/(DE + IB) = 0.689 {+-} 0.021 for E{sub {gamma}} {ge} 20 MeV.

  4. The Spectrum of Isotropic Diffuse Gamma-Ray Emission Between 100 Mev and 820 Gev

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Brandt, T. J.; Hays, E.; Perkins, J. S.

    2014-01-01

    The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

  5. Enhanced high-energy gamma-ray emission from the microquasar Cygnus X-3 detected by Fermi/LAT

    Science.gov (United States)

    Loh, Alan; Corbel, Stephane

    2017-02-01

    Following the recent decrease of the hard X-ray emission from the high-mass X-ray binary Cygnus X-3 as seen by the Swift/Burst Alert Telescope (https://swift.gsfc.nasa.gov/results/transients/CygX-3/), the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed significant gamma-ray emission originating from the microquasar.

  6. Gamma-ray emission from globular clusters. Shock high energy emission from the Be-Star/Pulsar System PSR 1259-63. Echoes in x-ray novae

    Science.gov (United States)

    Kaaret, Philip

    1995-01-01

    This grant covers work on the Compton phase 3 investigation, 'Shock High Energy Emission from the Be- Star/Pulsar System PSR 1259-63' and cycle 4 investigations 'Diffuse Gamma-Ray Emission at High Latitudes' and 'Echoes in X-Ray Novae'. Work under the investigation 'Diffuse Gamma-Ray Emission at High Latitudes' has lead to the publication of a paper (attached), describing gamma-ray emissivity variations in the northern galactic hemisphere. Using archival EGRET data, we have found a large irregular region of enhanced gamma-ray emissivity at energies greater 100 MeV. This is the first observation of local structure in the gamma-ray emissivity. Work under the investigation 'Echoes in X-Ray Novae' is proceeding with analysis of data from OSSE from the transient source GRO J1655-40. The outburst of this source last fall triggered this Target of Opportunity investigation. Preliminary spectral analysis shows emission out to 600 keV and a pure power low spectrum with no evidence of an exponential cutoff. Work is complete on the analysis of BATSE data from the Be-Star/Pulsar Sustem PSR 1259-63.

  7. Glow curves and the emission of flux-grown BaFCl:Na crystals. [X radiation and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Somaiah, K.; Hari Babu, V. (Osmania Univ., Hyderabad (India). Dept. of Physics)

    1984-08-01

    The thermoluminescence glow curves and the emission spectra of flux-grown BaFCl:Na crystals were recorded. An additional TL peak at 320 K, an optical absorption band at 570nm and an emission peak at 490 nm have been seen in X/..gamma..-irradiated crystals. Bleaching, room-temperature annealing and high-temperature emission results led us to conclude that the sodium impurity is responsible for the additional glow peak optical absorption band and emission peak.

  8. Simultaneous optical/gamma-ray observations of GRB 121217's prompt emission

    CERN Document Server

    Elliott, J; Schmidl, S; Greiner, J; Gruber, D; Oates, S; Kobayashi, S; Zhang, B; Cummings, J R; Filgas, R; Gehrels, N; Grupe, D; Kann, D A; Klose, S; Krühler, T; Guelbenzu, A Nicuesa; Rau, A; Rossi, A; Siegel, M; Schady, P; Sudilovsky, V; Tanga, M; Varela, K

    2013-01-01

    Since the advent of the Swift satellite it has been possible to obtain precise localisations of GRB positions of sub-arcsec accuracy within seconds, facilitating ground-based robotic telescopes to automatically slew to the target within seconds. This has yielded a plethora of observational data for the afterglow phase of the GRB, but the quantity of data (<2 keV) covering the initial prompt emission still remains small. Only in a handful of cases has it been possible obtain simultaneous coverage of the prompt emission in a multi-wavelength regime (gamma-ray to optical), as a result of: observing the field by chance prior to the GRB (e.g. 080319B/naked-eye burst), long-prompt emission (e.g., 080928, 110205A) or triggered on a pre-cursor (e.g., 041219A, 050820A, 061121). This small selection of bursts have shown both correlated and uncorrelated gamma-ray and optical light curve behaviour, and the multi-wavelength emission mechanism remains far from resolved (i.e. single population synchrotron self-Component,...

  9. Hard Burst Emission from the Soft Gamma Repeater SGR 1900+14

    Science.gov (United States)

    Woods, Peter M.; Kouveliotou, Chryssa; VanParadijs, Jan; Briggs, Michael S.; Hurley, Kevin; Gogus, Ersin; Preece, Robert D.; Giblin, Timothy W.; Thompson, Christopher; Duncan, Robert C.

    1999-01-01

    We present evidence for burst emission from SGR 1900 + 14 with a power-law high-energy spectrum extending beyond 500 keV. Unlike previous detections of high-energy photons during bursts from soft gamma repeaters (SGRs), these emissions are not associated with extraordinarily bright flares. Not only is the emission hard, but the spectra are better fitted by D. Band's gamma-ray burst (GRB) function rather than by the traditional optically thin thermal bremsstrahlung model. We find that the spectral evolution within these hard events obeys a hardness/intensity anticorrelation. Temporally, these events are distinct from typical SGR burst emissions in that they are longer (approximately 1 s) and have relatively smooth profiles. Despite a difference in peak luminosity of approximately > 10(exp 11) between these bursts from SGR 1900 + 14 and cosmological GRBs, there are striking temporal and spectral similarities between the two kinds of bursts, aside from spectral evolution. We outline an interpretation of these events in the context of the magnetar model.

  10. Modelling the high-energy emission from gamma-ray binaries using numerical relativistic hydrodynamics

    CERN Document Server

    Dubus, Guillaume; Fromang, Sébastien

    2015-01-01

    Detailed modeling of the high-energy emission from gamma-ray binaries has been propounded as a path to pulsar wind physics. Fulfilling this ambition requires a coherent model of the flow and its emission in the region where the pulsar wind interacts with the stellar wind of its companion. We developed a code that follows the evolution and emission of electrons in the shocked pulsar wind based on inputs from a relativistic hydrodynamical simulation. The code is used to model the well-documented spectral energy distribution and orbital modulations from LS 5039. The pulsar wind is fully confined by a bow shock and a back shock. The particles are distributed into a narrow Maxwellian, emitting mostly GeV photons, and a power law radiating very efficiently over a broad energy range from X-rays to TeV gamma rays. Most of the emission arises from the apex of the bow shock. Doppler boosting shapes the X-ray and VHE lightcurves, constraining the system inclination to $i\\approx 35^{\\rm o}$. There is a tension between th...

  11. Magic constraints on Gamma-ray emission from Cygnus X-3

    CERN Document Server

    Aleksić, J; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berdyugin, A; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Bordas, P; Tridon, D Borla; Bosch-Ramon, V; Bose, D; Braun, I; Bretz, T; Britzger, D; Camara, M; Carmona, E; Carosi, A; Colin, P; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Dazzi, F; De Angelis, A; del Pozo, E De Cea; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Elsaesser, D; Errando, M; Ferenc, D; Fonseca, M V; Font, L; López, R J García; Garczarczyk, M; Gaug, M; Godinovic, N; Göebel, F; Hadasch, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Hsu, C C; Jogler, T; Klepser, S; Krähenbühl, T; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Orito, R; Oya, I; Paiano, S; Paoletti, R; Paredes, J M; Partini, S; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Prada, F; Prandini, E; Puchades, N; Puljak, I; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Rissi, M; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Sánchez-Conde, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shayduk, M; Shore, S N; Sierpowska-Bartosik, A; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Spiro, S; Stamerra, A; Steinke, B; Struebig, J C; Suric, T; Takalo, L; Tavecchio, F; Temnikov, P; Terzic, T; Tescaro, D; Teshima, M; Torres, D F; Vankov, H; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R; Max-Moerbeck, W; Piano, G; Pooley, G; Readhead, A C S; Richards, J L; Sabatini, S; Striani, E; Tavani, M; Trushkin, S

    2010-01-01

    Cygnus X-3 is a microquasar consisting of an accreting compact object orbiting around a Wolf-Rayet star. It has been detected at radio frequencies and up to high-energy gamma rays (above 100 MeV). However, many models predict also a very-high-energy (VHE) emission (above hundreds of GeV) when the source displays relativistic persistent/transient ejections. Therefore, detecting such emission would improve the understanding of the jet physics. The imaging atmospheric Cherenkov telescope MAGIC observed Cygnus X-3 for about 70 hours between 2006 March and 2009 August in different X-ray/radio spectral states and also during a period of enhanced gamma-ray emission. MAGIC found no evidence for a VHE signal from the direction of the microquasar. An upper limit to the integral flux for energies higher than 250 GeV has been set to 2.2 x 10-12 photons cm-2 s-1 (95% confidence level). This is the best limit so far to the VHE emission from this source. The non-detection of a VHE signal during the period of activity in the...

  12. The Spatial Morphology of the Secondary Emission in the Galactic Center Gamma-Ray Excess

    CERN Document Server

    Lacroix, Thomas; Gordon, Chris; Panci, Paolo; Boehm, Celine; Silk, Joseph

    2015-01-01

    Excess GeV gamma rays from the Galactic Center (GC) have been measured with the Fermi Large Area Telescope (LAT). The presence of the GC excess (GCE) appears to be robust with respect to changes in the diffuse galactic background modelling. The three main proposals for the GCE are an unresolved population of millisecond pulsars (MSPs), outbursts of cosmic rays from the GC region, and self-annihilating dark matter (DM). The injection of secondary electrons and positrons into the interstellar medium (ISM) by an unresolved population of MSPs or DM annihilations can lead to observable gamma-ray emission via inverse Compton scattering or bremsstrahlung. Here we show the importance of accounting for the spatial morphology of the secondary emission when fitting a particular model to the data, as the residuals can be changed. We show examples of DM models where not accounting for the distinct spatial morphology of the secondary emission can cause the significance of the secondary emission to be overestimated. We also...

  13. Hard Burst Emission from the Soft Gamma Repeater SGR 1900+14.

    Science.gov (United States)

    Woods; Kouveliotou; van Paradijs J; Briggs; Hurley; Göğüş; Preece; Giblin; Thompson; Duncan

    1999-12-10

    We present evidence for burst emission from SGR 1900+14 with a power-law high-energy spectrum extending beyond 500 keV. Unlike previous detections of high-energy photons during bursts from soft gamma repeaters (SGRs), these emissions are not associated with extraordinarily bright flares. Not only is the emission hard, but the spectra are better fitted by D. Band's gamma-ray burst (GRB) function rather than by the traditional optically thin thermal bremsstrahlung model. We find that the spectral evolution within these hard events obeys a hardness/intensity anticorrelation. Temporally, these events are distinct from typical SGR burst emissions in that they are longer ( approximately 1 s) and have relatively smooth profiles. Despite a difference in peak luminosity of greater, similar1011 between these bursts from SGR 1900+14 and cosmological GRBs, there are striking temporal and spectral similarities between the two kinds of bursts, aside from spectral evolution. We outline an interpretation of these events in the context of the magnetar model.

  14. Spatial distribution of {gamma} emissivity and fast ions during ({sup 3}He)D ICRF heating experiments on JET

    Energy Technology Data Exchange (ETDEWEB)

    Start, D.F.H. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Righi, E. [Imperial Coll. of Science and Technology, London (United Kingdom); Warrick, C. [UKAEA Culham Lab., Abingdon (United Kingdom)

    1994-07-01

    A model is presented that can simulate the {gamma} emissivity in the poloidal cross-section during ({sup 3}He)D ICRF heated discharges in JET plasmas, by merging information obtained from the fast ion distribution and from nuclear reactions producing the observed {gamma} emissivity (production of {gamma} photons during {sup 3}He-{sup 9}Be reactions). This technique can play an important role in the identification of plasma instabilities that affect the redistribution of the fast ions in the plasma, like the TAE modes and the ripple in the tokamak magnetic field. 9 refs., 4 figs., 1 tab.

  15. Search for Pulsed TeV $\\gamma$-ray Emission from the Crab Pulsar

    CERN Document Server

    Lessard, R W; Bradbury, S M; Buckley, J H; Burdett, A M; Carter-Lewis, D A; Catanese, M; Cawley, M F; D'Vali, M; Fegan, D J; Finley, J P; Gaidos, J A; Gillanders, G H; Hall, T; Hillas, A M; Krennrich, F; Lang, M J; Masterson, C; Moriarty, P; Quinn, J; Rose, H J; Samuelson, F W; Sembroski, G H; Srinivasan, R; Vasilev, V; Weekes, T C

    1999-01-01

    We present the results of a search for pulsed TeV emission from the Crab pulsar using the Whipple Observatory's 10 m gamma-ray telescope. The direction of the Crab pulsar was observed for a total of 73.4 hours between 1994 November and 1997 March. During this period the Whipple 10 m telescope was operated at its lowest energy threshold to date. Spectral analysis techniques were applied to search for the presence of a gamma-ray signal from the Crab pulsar over the energy band 250 GeV to 4 TeV. We do not see any evidence of the 33 ms pulsations present in other energy bands from the Crab pulsar. The 99.9% confidence level upper limit for pulsed emission above 250 GeV is derived to be 4.8x10^-12 cm^-2 s^-1 or <3% of the steady flux from the Crab Nebula. These results imply a sharp cut-off of the power-law spectrum seen by the EGRET instrument on the Compton Gamma-Ray Observatory. If the cut-off is exponential, it must begin at 60 GeV or lower to accommodate these upper limits.

  16. A Search for Pulsed TeV $\\gamma$ Ray Emission from the Crab Pulsar

    CERN Document Server

    Burdett, A M; Boyle, P J; Bradbury, S M; Buckley, J H; Carter-Lewis, D A; Catanese, M; Cawley, M F; D'Vali, M; Fegan, D J; Fegan, S J; Finley, J P; Gaidos, J A; Gillanders, G H; Hall, T A; Hillas, A M; Kildea, J; Knapp, J; Krennrich, F; Lang, M J; Le Bohec, S; Lessard, R W; Masterson, C; Moriarty, P; Quinn, J; Rose, H J; Samuelson, F W; Sembroski, G H; Srinivasan, R; Vasilev, V; Weekes, T C

    1999-01-01

    We present the results of a search for pulsed TeV emission from the Crab pulsar using the Whipple Observatory's 10m gamma-ray telescope. The direction of the Crab pulsar was observed for a total of 73.4 hours between 1994 November and 1997 March. Spectral analysis techniques were applied to search for the presence of a gamma-ray signal from the Crab pulsar over the energy band 250GeV to 4TeV. At these energies we do not see any evidence of the 33ms pulsations present at lower energies from the Crab pulsar. The 99.9% confidence level upper limit for pulsed emission above 250GeV is derived to be 4.8 10^-12 cm^-2 s^-1 or <3% of the steady flux from the Crab Nebula. These results imply a sharp cut-off of the power-law spectrum seen by the EGRET instrument on the Compton Gamma-Ray Observatory. If the cut-off is exponential, it must begin at 60GeV or lower to accommodate these upper limits.

  17. The diffuse GeV-TeV $\\gamma$-ray emission of the Cygnus region

    CERN Document Server

    Bi, X J; Wang, Y; Yuan, Q

    2008-01-01

    The Milagro's observation shows that there is a strong diffuse multi-TeV $\\gamma$-ray excess in the Cygnus region compared with the background estimated by GALPROP. While the GeV observation by EGRET shows no significant excess in this region (except the ``GeV excess''). It indicates that there exists high energy cosmic ray population to generate the very high energy $\\gamma$-rays. We try to build theoretical models to account for this very high energy $\\gamma$-ray emission from GeV to multi-TeV energy range in the Cygnus region. A diffuse source term of cosmic rays (either proton or electron), together with the background contribution from the average Galactic cosmic rays, is used to reproduce both the EGRET observational data in GeV energy range and the Milagro data in TeV range. The background is calculated using GALPROP. A dark matter contribution is introduced to account for the ``GeV excess'' problem of EGRET data. The neutrino emission associated with the hadronic interaction or the hard X-ray synchrot...

  18. Absolute activity measurement and gamma-ray emission probability for decay of I-126

    CERN Document Server

    Fonseca, K A

    1997-01-01

    The accurate knowledge of the gamma-ray emission probability per decay of radionuclides is important in several applications. In the case of sup 1 sup 2 sup 6 I, its importance lies mainly in fast neutron dosimetry as well as in the production of sup 1 sup 2 sup 5 I where sup 1 sup 2 sup 6 I appears as an impurity. In the present work the gamma-ray emission probabilities per decay for the 388 and 666-KeV transitions of sup 1 sup 2 sup 6 I have been measured. This radionuclide was obtained by means of the sup 1 sup 2 sup 7 I(n, 2n) sup 1 sup 2 sup 6 I reaction in a fast neutron flux at the IPEN 2 MW research reactor. The methodology for the primary standardization of sup 1 sup 2 sup 6 I is described. For this purpose, two different coincidence systems were used due to the complex decay scheme of this radionuclide. The beta branch measurement was carried out in a 4 pi(PC)beta-gamma coincidence system consisting of a proportional counter, coupled to a pair of 3'x3' Na I (Tl) crystal. The electron capture branch ...

  19. Magnetically insulated diode for generating pulsed neutron and gamma ray emissions

    Science.gov (United States)

    Kuswa, Glenn W.; Leeper, Ramon J.

    1987-01-01

    A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating an nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a .sup.7 Li(p,.gamma.).sup.8 Be reaction to produce 16.5 MeV gamma emission.

  20. Gamma-ray emission from Cassiopeia A produced by accelerated cosmic rays

    CERN Document Server

    Berezhko, E G; Völk, H J

    2003-01-01

    The nonlinear kinetic model of cosmic ray (CR) acceleration in supernova remnants (SNRs) is used to describe the relevant properties of Cassiopeia A (Cas A). In order to reproduce the SNR's observed size, expansion rate and thermal X-ray emission we employ a piecewise homogeneous model for the progenitor's circumstellar medium developed by Borkowski et al. (1996). It consists of a tenuous inner wind bubble, a dense shell of swept-up red supergiant wind material, and a subsequent red supergiant wind region. A quite large SNR interior magnetic field B_d approx 1 mG is required to give a good fit for the radio and X-ray synchrotron emission. The steep radio spectrum is consistent with efficient proton acceleration which produces a significant shock modification and leads to a steep electron spectrum at energies E_e < 1 GeV. The calculated integral gamma-ray flux from Cas A, F propto E_gamma^-1, is dominated by pi^0-decay gamma-rays due to relativistic protons. It extends up to roughly 30 TeV if CR diffusion i...

  1. Search for VHE gamma-ray emission from Geminga pulsar and nebula with the MAGIC telescopes

    CERN Document Server

    Ahnen, M L; Antonelli, L A; Antoranz, P; Babic, A; Banerjee, B; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Bil, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Chatterjee, A; Clavero, R; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Lotto, B; Wilhelmi, E de O na; Mendez, C Delgado; Di Pierro, F; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Glawion, D Eisenacher; Elsaesser, D; Fernández-Barral, A; Fidalgo, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giammaria, P; Godinovic, N; Muñoz, A González; Guberman, D; Hahn, A; Hanabata, Y; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Hughes, G; Idec, W; Kodani, K; Konno, Y; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Majumdar, P; Makariev, M; Mallot, K; Maneva, G; Manganaro, M; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Mira, J M; Mirzoyan, R; Moralejo, A; Moretti, E; Nakajima, D; Neustroev, V; Niedzwiecki, A; Rosillo, M Nievas; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palacio, J; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Moroni, P G Prada; Prini, E; Puljak, I; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Saito, T; Satalecka, K; Schultz, C; Schweizer, T; Shore, S N; Sillanpaa, A; Sitarek, J; Snidaric, I; Sobczynska, D; Stamerra, A; Steinbring, T; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzic, T; Tescaro, D; Teshima, M; Thaele, J; Torres, D F; Toyama, T; Treves, A; Verguilov, V; Vovk, I; Ward, J E; Will, M; Wu, M H; Zanin, R

    2016-01-01

    The Geminga pulsar, one of the brighest gamma-ray sources, is a promising candidate for emission of very-high-energy (VHE > 100 GeV) pulsed gamma rays. Also, detection of a large nebula have been claimed by water Cherenkov instruments. We performed deep observations of Geminga with the MAGIC telescopes, yielding 63 hours of good-quality data, and searched for emission from the pulsar and pulsar wind nebula. We did not find any significant detection, and derived 95% confidence level upper limits. The resulting upper limits of 5.3 x 10^{-13} TeV cm^{-2} s^{-1} for the Geminga pulsar and 3.5 x 10^{-12} TeV cm^{-2} s^{-1} for the surrounding nebula at 50 GeV are the most constraining ones obtained so far at VHE. To complement the VHE observations, we also analyzed 5 years of Fermi-LAT data from Geminga, finding that the sub-exponential cut-off is preferred over the exponential cut-off that has been typically used in the literature. We also find that, above 10 GeV, the gamma-ray spectra from Geminga can be describ...

  2. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xilu; Fields, Brian D. [Department of Astronomy, MC-221, 1002 W. Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  3. On The gamma-ray emission from Reticulum II and other dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; Linden, Tim

    2015-09-01

    The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources. We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2σ. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.

  4. Prompt dipole gamma-ray emission in fusionlike heavy-ion reactions

    CERN Document Server

    Pierroutsakou, D; Di Pietro, M; Mordente, R; Ordine, A; Romoli, M; De Rosa, A; Inglima, G; La Commara, M; Martin, B; Roca, V; Sandoli, M; Trotta, M; Vardaci, E; Ming, R; Rizzo, F; Soramel, F; Stroe, L

    2003-01-01

    The sup 3 sup 2 S+ sup 1 sup 0 sup 0 Mo and sup 3 sup 6 S+ sup 9 sup 6 Mo fusionlike reactions were studied at incident energy of E sub l sub a sub b =298 MeV and 320 MeV, respectively, with the aim of probing the influence of the entrance channel charge asymmetry on the dipole gamma-ray emission. The excitation energy and spin distribution of the compound nucleus created in these reactions were identical, the only difference being associated with the unequal charge asymmetry of the two entrance channels. High-energy gamma-rays were detected in an array of 9 seven-pack BaF sub 2 clusters. Coincidence with fusionlike residues detected in four PPAC ensured the selection of central reaction events. By studying the differential gamma-ray multiplicity associated with the two reactions it was shown that the dipole strength excited in the compound nucleus increases with the entrance channel charge asymmetry. From the linearized spectra, the increase of the GDR gamma-ray intensity was found to be propor to 25% for th...

  5. Bremsstrahlung component of the diffuse galactic gamma-ray emission at MeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, W.; Schoenfelder, V.

    1984-04-15

    Recently the galactic plane has been resolved at low and medium ..gamma..-ray energies in the directions toward the center and anticenter. Spectral measurements are now available at those energies, where the contribution of ..pi../sup 0/-decay from nuclear reactions of cosmic-ray protons (and heavier nuclei) with interstellar matter can be neglected. Under the assumption that most of the observed ..gamma..-ray flux below 30 MeV is produced by electron bremsstrahlung, restrictions on the energy spectrum of cosmic-ray electrons in interstellar space below 100 MeV are derived. The most accurate bremsstrahlung production cross sections of Koch and Motz and of Blumental and Gould are used in order to derive the bremsstrahlung production spectrum in interstellar space down to 10 keV-photon energies. If the low-energy ..gamma..-ray emission, as seen by most observers, is indeed produced by electron bremsstrahlung, then a high interstellar electron flux at MeV energy results, which-at higher energies-connects to the upper limit derived by Cummings, Stone, and Vogt. Such a high low-energy electron flux would be able to explain the ionization rate of 1 x 10/sup -15/ ion pairs (H-atom/sup -1/ s/sup -1/) in H I regions. Because of uncertainties in the low-energy ..gamma..-ray measurements, however, no definite conclusion is possible yet.

  6. Monte Carlo simulations of prompt-gamma emission during carbon ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Le Foulher, F.; Bajard, M.; Chevallier, M.; Dauvergne, D.; Henriquet, P.; Ray, C.; Testa, E.; Testa, M. [Universite de Lyon 1, F-69003 Lyon (France); IN2P3/CNRS, UMR 5822, Institut de Physique Nucleaire de Lyon, F-69622 Villeurbanne (France); Freud, N.; Letang, J. M. [Laboratoire de Controles Non Destructifs Par Rayonnements Ionisants, INSA-Lyon, F-69621 Villeurbanne cedex (France); Karkar, S. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Plescak, R.; Schardt, D. [Gesellschaft fur Schwerionenforschung (GSI), D-64291 Darmstadt (Germany)

    2009-07-01

    Monte Carlo simulations based on the Geant4 tool-kit (version 9.1) were performed to study the emission of secondary prompt gamma-rays produced by nuclear reactions during carbon ion-beam therapy. These simulations were performed along with an experimental program and instrumentation developments which aim at designing a prompt gamma-ray device for real-time control of hadron therapy. The objective of the present study is twofold: first, to present the features of the prompt gamma radiation in the case of carbon ion irradiation; secondly, to simulate the experimental setup and to compare measured and simulated counting rates corresponding to various experiments. For each experiment, we found that simulations overestimate prompt gamma-ray detection yields by a factor of 12. Uncertainties in fragmentation cross sections and binary cascade model cannot explain such discrepancies. The so-called 'photon evaporation' model is therefore questionable and its modification is currently in progress. (authors)

  7. Binary Orbits as the Driver of Gamma-Ray Emission and Mass Ejection in Classical Novae

    Science.gov (United States)

    Chomiuk, Laura; Linford, Justin D.; Yang, Jun; O'Brien, T. J.; Paragi, Zsolt; Mioduszewski, Amy J.; Beswick, R. J.; Cheung, C. C.; Mukai, Koji; Nelson, Thomas

    2014-01-01

    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel about 10 (sup -4) solar masses of material at velocities exceeding 1,000 kilometers per second.However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds or binary interaction with the nova envelope. Classical novae are now routinely detected at giga-electronvolt gamma-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the gamma-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion..At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters.

  8. Locating the gamma-ray emission site in Fermi/LAT blazars from correlation analysis between 37 GHz radio and gamma-ray light curves

    CERN Document Server

    Ramakrishnan, V; Nieppola, E; Tornikoski, M; Lähteenmäki, A; Valtaoja, E

    2015-01-01

    We address the highly debated issue of constraining the gamma-ray emission region in blazars from cross-correlation analysis using discrete correlation function between radio and gamma-ray light curves. The significance of the correlations is evaluated using two different approaches: simulating light curves and mixed source correlations. The cross-correlation analysis yielded 26 sources with significant correlations. In most of the sources, the gamma-ray peaks lead the radio with time lags in the range +20 and +690 days, whereas in sources 1633+382 and 3C 345 we find the radio emission to lead the gamma rays by -15 and -40 days, respectively. Apart from the individual source study, we stacked the correlations of all sources and also those based on sub-samples. The time lag from the stacked correlation is +80 days for the whole sample and the distance travelled by the emission region corresponds to 7 pc. We also compared the start times of activity in radio and gamma rays of the correlated flares using Bayesia...

  9. Identification of gamma-ray emission from BZB J1450+5201: the most distant gamma-ray BL Lacertae object at z=2.47

    CERN Document Server

    Liao, N H; Liu, H T; Jiang, Ning; Yuan, Z L; Chen, Liang

    2013-01-01

    $\\gamma$-ray BL Lacertae objects (BL Lacs) with high redshifts ($z\\geq2$) are rarely detected. We report on an analysis of \\fermi data from five-year observation of 2FGL J1451.0+5159 whose $\\gamma$-ray emission is doubtful in the second \\fermi catalog (2FGL). It is detected at a higher energy, 3-10 GeV, with 6.7$\\sigma$ from our analysis than at 1-3 GeV from the 2FGL. The $\\gamma$-ray emission of the source is identified to be valid. Association presented in the 2FGL, between 2FGL J1451.0+5159 and BZB J1450+5201 whose redshift is suggested as 2.47, has been confirmed. BZB J1450+5201 appears to be the most distant $\\gamma$-ray BL Lac discovered to date. Multi-wavelength data from radio to $\\gamma$-ray energies are analyzed, indicating that this intermediate synchrotron peaked (ISP) source seems to be no difference from other ISP sources at lower redshifts in the second LAT AGN catalog. The pure SSC model is likely ruled out due to the extreme value of Doppler factor. Scattering of weak external emission plus S...

  10. Detection of persistent gamma-ray emission from SS433/W50

    CERN Document Server

    Bordas, Pol; Kafexhiu, Ervin; Aharonian, Felix

    2014-01-01

    The microquasar SS433 features the most energetic jets known in our Galaxy. A large fraction of the jet kinetic power is delivered to the surrounding W50 nebula at the jet termination shock, from which high-energy emission and cosmic-ray production have been anticipated. Here we report on the detection of a persistent gamma-ray signal from the direction of SS433/W50 with the Fermi Large Area Telescope. The steady flux and a narrow spectral energy distribution with a maximum around 250 MeV suggest that gamma-rays are rendered by the bulk jet kinetic power through proton-proton collisions at the SS433/W50 interaction regions. If the same mechanism is operating in other baryon-loaded microquasar jets, their collective contribution may represent a significant fraction of the total galactic cosmic-ray flux at GeV energies.

  11. Focusing of Alfvenic wave power in the context of gamma-ray burst emissivity

    Science.gov (United States)

    Fatuzzo, Marco; Melia, Fulvio

    1993-01-01

    Highly dynamic magnetospheric perturbations in neutron star environments can naturally account for the features observed in gamma-ray burst spectra. The source distribution, however, appears to be extragalactic. Although noncatastrophic isotropic emission mechanisms may be ruled out on energetic and timing arguments, MHD processes can produce strongly anisotropic gamma rays with an observable flux out to distances of about 1-2 Gpc. Here we show that sheared Alfven waves propagating along open magnetospheric field lines at the poles of magnetized neutron stars transfer their energy dissipationally to the current sustaining the field misalignment and thereby focus their power into a spatial region about 1000 times smaller than that of the crustal disturbance. This produces a strong (observable) flux enhancement along certain directions. We apply this model to a source population of 'turned-off' pulsars that have nonetheless retained their strong magnetic fields and have achieved alignment at a period of approximately greater than 5 sec.

  12. Photometry of the 4686 A emission line of gamma(2) Velorum from the South Pole

    Science.gov (United States)

    Taylor, Maryjane

    1990-01-01

    An automated optical telescope located at the Amundsen-Scott South Pole station on Antarctica, has been used to obtain more than 78 h of photometry of the He II emission line (4686 A) of the spectroscopic binary gamma(2) Velorum. These data were obtained on seven different days during the 1987 austral winter; the longest continuous run spans 19 h. Two independent period search techniques have been used to search for periodic behavior in the strength of the He II emission line of this Wolf-Rayet star. They are: (1) power spectrum analysis and (2) a first-order sine function fit to the data using least squares. Various multiplicities of a period on the order of 1.3 h with amplitudes of a few percent are found in most of these data. According to recent theoretical models of Wolf-Rayet stars, fluctuations in the He II emission line may indicate vibrational instability in gamma(2) Vel. These pulsations may, in turn, give rise to shocks which propagate outward and which may provide the necessary conditions for periodic changes in the state of a given region of the atmosphere to occur.

  13. Photometry of the 4686 A emission line of gamma(2) Velorum from the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M. (Wisconsin Univ., Madison (USA) Florida Univ., Gainesville (USA))

    1990-10-01

    An automated optical telescope located at the Amundsen-Scott South Pole station on Antarctica, has been used to obtain more than 78 h of photometry of the He II emission line (4686 A) of the spectroscopic binary gamma(2) Velorum. These data were obtained on seven different days during the 1987 austral winter; the longest continuous run spans 19 h. Two independent period search techniques have been used to search for periodic behavior in the strength of the He II emission line of this Wolf-Rayet star. They are: (1) power spectrum analysis and (2) a first-order sine function fit to the data using least squares. Various multiplicities of a period on the order of 1.3 h with amplitudes of a few percent are found in most of these data. According to recent theoretical models of Wolf-Rayet stars, fluctuations in the He II emission line may indicate vibrational instability in gamma(2) Vel. These pulsations may, in turn, give rise to shocks which propagate outward and which may provide the necessary conditions for periodic changes in the state of a given region of the atmosphere to occur. 15 refs.

  14. Search of X-ray emission from roAp stars: The case of gamma Equulei

    CERN Document Server

    Stelzer, B; Schöller, M; Hubrig, S; Cowley, C

    2011-01-01

    The detection of X-ray emission from Ap stars can be an indicator for the presence of magnetic activity and dynamo action, provided different origins for the emission, such as wind shocks and close late-type companions, can be excluded. Here we report on results for gamma Equu, the only roAp star for which an X-ray detection is reported in ROSAT catalogs. We use high resolution imaging in X-rays with Chandra and in the near-infrared with NACO/VLT that allow us to spatially resolve companions down to ~1" and ~0.06" separations, respectively. The bulk of the X-ray emission is associated with a companion of gamma Equu identified in our NACO image. Assuming coevality with the primary roAp star (~900 Myr), the available photometry for the companion points at a K-type star with ~0.6 M_sun. Its X-ray properties are in agreement with the predictions for its age and mass. An excess of photons with respect to the expected background and contribution from the nearby companion is observed near the optical position of gam...

  15. High energy neutron and pion-decay gamma-ray emissions from solar flares

    Institute of Scientific and Technical Information of China (English)

    Edward L. Chupp; James M. Ryan

    2009-01-01

    Solar flare gamma-ray emissions from energetic ions and electrons have been detected and measured to GeV energies since 1980. In addition, neutrons produced in solar flares with 100 MeV to GeV energies have been observed at the Earth. These emis-sions are produced by the highest energy ions and electrons accelerated at the Sun and they provide our only direct (albeit secondary) knowledge about the properties of the acceler-ator(s) acting in a solar flare. The solar flares, which have direct evidence for pion-decaygamma-rays, are unique and are the focus of this paper. We review our current knowl-edge of the highest energy solar emissions, and how the characteristics of the acceleration process are deduced from the observations. Results from the RHESSI, INTEGRAL and CORONAS missions will also be covered. The review will also cover the solar flare ca-pabilities of the new mission, FERMI GAMMA RAY SPACE TELESCOPE, launched on 2008 June 11. Finally, we discuss the requirements for future missions to advance this vital area of solar flare physics.

  16. Comptonization signatures in the prompt emission of gamma-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Frontera, F.; Farinelli, R.; Dichiara, S.; Guidorzi, C.; Titarchuk, L. [Dipartimento di Fisicae Scienze della Terra, Università di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy); Amati, L.; Landi, R., E-mail: frontera@fe.infn.it [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2013-12-20

    We report results of a systematic study of the broadband (2-2000 keV) time-resolved prompt emission spectra of a sample of gamma-ray bursts (GRBs) detected with both Wide Field Cameras (WFCs) on board the BeppoSAX satellite and the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory. The main goal of this paper is to test spectral models of the GRB prompt emission that have recently been proposed. In particular, we test a recent photospheric model proposed, i.e., blackbody plus power law, the addition of a blackbody emission to the Band function in the cases in which this function does not fit the data, and a recent Comptonization model. By considering the few spectra for which the simple Band function does not provide a fully acceptable fit to the data, we find a statistically significant better fit by adding a blackbody to this function only in one case. We confirm earlier results found fitting the BATSE spectra alone with a blackbody plus power law. Instead, when the BATSE GRB spectra are joined to those obtained with WFCs (2-28 keV), this model becomes unacceptable in most time intervals in which we subdivide the GRB light curves. We find instead that the Comptonization model is always acceptable, even in the few cases in which the Band function is inconsistent with the data. We discuss the implications of these results.

  17. Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector

    CERN Document Server

    Abbasi, R; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Alba, J L Bazo; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Brown, A M; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Demirörs, L; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Groß, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülß, J -P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K -H; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kemming, N; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lehmann, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Nießen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Heros, C Pérez de los; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schoenwald, A; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, C; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2011-01-01

    IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if GRBs are responsible for the observed cosmic-ray flux above $10^{18}$ eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from $p \\gamma$-interactions in the prompt phase of the GRB fireball, and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence.

  18. Gamma-ray Burst Reverse Shock Emission in Early Radio Afterglows

    Science.gov (United States)

    Resmi, Lekshmi; Zhang, Bing

    2016-07-01

    Reverse shock (RS) emission from gamma-ray bursts is an important tool in investigating the nature of the ejecta from the central engine. If the magnetization of the ejecta is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would provide an important contribution to early afterglow light curve. In the radio band, synchrotron self-absorption may suppress early RS emission and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band under different dynamical conditions. In particular, we stress that the RS radio emission is subject to self-absorption in both RSs and forward shocks (FSs). We calculate the ratio between the RS to FS flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS emission which is enhanced by moderate magnetization, moderately magnetized ejecta do not necessarily produce a brighter radio RS due to the self-absorption effect. For typical parameters, the RS emission component would not be detectable below 1 GHz unless the medium density is very low (e.g., n < 10-3 cm-3 for the interstellar medium and A * < 5 × 10-4 for wind). These predictions can be tested using the afterglow observations from current and upcoming radio facilities such as the Karl G. Jansky Very Large Array, the Low-Frequency Array, the Five Hundred Meter Aperture Spherical Telescope, and the Square Kilometer Array.

  19. Standardization of (106)Ru/Rh by live-timed anticoincidence counting and gamma emission determination.

    Science.gov (United States)

    da Silva, C J; Rezende, E A; Poledna, R; Tauhata, L; Iwahara, A; Lopes, R T

    2017-04-01

    The absolute activity standardization measurement system of radionuclide by live-timed anticoincidence counting was implemented at LNMRI in 2008 to reduce the effects of some correction factors on the determination of activity with coincidence counting technique used for decades in the laboratory, for example, the corrections of dead time and resolution. With the live-timed anticoincidence system, the variety of radionuclides that can be calibrated by LNMRI was increased in relation to the type of decay. The objective of this study was to standardize the (106)Ru activity, determine gamma emission probabilities by spectrometric method for some energies, and estimate measurement uncertainties.

  20. Gamma-ray emission from early-type stars interacting with AGN jets

    Directory of Open Access Journals (Sweden)

    Araudo Anabella T.

    2013-12-01

    Full Text Available We study the interaction of early-type stars with the jets of active galactic nuclei. A bow-shock will form as a consequence of the interaction of the jet with the winds of stars and particles can be accelerated up to relativistic energies in these shocks. We compute the non-thermal radiation produced by relativistic electrons from radio to gamma-rays. This radiation may be significant, and its detection might yield information on the properties of the stellar population in the galaxy nucleus, as well as on the relativistic jet. This emission is expected to be relevant for nearby non-blazar sources.

  1. SEARCH FOR PROMPT NEUTRINO EMISSION FROM GAMMA-RAY BURSTS WITH ICECUBE

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005 Australia (Australia); Ackermann, M.; Berghaus, P. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Ahlers, M.; Arguelles, C.; BenZvi, S. [Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Ahrens, M. [Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Altmann, D. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Anderson, T.; Arlen, T. C. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Auffenberg, J. [Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Bay, R. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Beatty, J. J. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Tjus, J. Becker [Fakultät für Physik and Astronomie, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Becker, K.-H. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); and others

    2015-05-20

    We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high-energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than ∼1% of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.

  2. MAGIC detection of VHE Gamma-ray emission from NGC 1275 and IC 310

    CERN Document Server

    Hildebrand, Dorothee; Colin, Pierre; Sitarek, Julian; Zandanel, Fabio; Prada, Francisco; Pfrommer, Christoph; Pintzke, Andreas

    2011-01-01

    The MAGIC Cherenkov telescopes observed the Perseus cluster sky region in stereo mode for nearly 90 hr from October 2009 to February 2011. This campaign led to the discovery of very high energy Gamma-ray emission from the central radio galaxy NGC 1275 and the head-tail radio galaxy IC 310. Here we report the results on the most recent discovery of NGC 1275 which was detected at low energies in the 2010/2011 data. We also present latest results on IC 310, which had been detected in the 2009/2010 data.

  3. Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube

    CERN Document Server

    Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Ehrhardt, T; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Frantzen, K; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jlelati, O; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Lünemann, J; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vanheule, S; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zoll, M

    2014-01-01

    We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino was found in coincidence with one of the 506 observed bursts, consistent with the expectation from atmospheric backgrounds. Although GRBs have been proposed as candidate sources for ultra-high energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than $\\sim1\\%$ of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.

  4. Evaluation of cross-sections for particle induced gamma-ray emission (PIGE) spectroscopy

    Science.gov (United States)

    Gurbich, A. F.

    2014-07-01

    The extension of the cross-section evaluation procedure to PIGE data was investigated and the first results are reported. Two different cases were studied: the gamma emission accompanying inelastic scattering of protons, and the (p,γ)-reaction. The corresponding theoretical calculations were performed in the framework of R-matrix and DWBA for the (p,p‧γ) reaction on 23Na, and using statistical model for the proton radiative capture by 52Cr. The possibility of achieving a close fit to the experimental data is demonstrated.

  5. Evaluation of cross-sections for particle induced gamma-ray emission (PIGE) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gurbich, A.F., E-mail: gurbich@ippe.ru

    2014-07-15

    The extension of the cross-section evaluation procedure to PIGE data was investigated and the first results are reported. Two different cases were studied: the gamma emission accompanying inelastic scattering of protons, and the (p,γ)-reaction. The corresponding theoretical calculations were performed in the framework of R-matrix and DWBA for the (p,p′γ) reaction on {sup 23}Na, and using statistical model for the proton radiative capture by {sup 52}Cr. The possibility of achieving a close fit to the experimental data is demonstrated.

  6. Antineutrino emission and gamma background characteristics from a thermal research reactor

    CERN Document Server

    Bui, V M; Fallot, M; Communeau, V; Cormon, S; Estienne, M; Lenoir, M; Peuvrel, N; Shiba, T; Cucoanes, A S; Elnimr, M; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Thiolliere, N; Yermia, F; Zakari-Issoufou, A -A

    2016-01-01

    The detailed understanding of the antineutrino emission from research reactors is mandatory for any high sensitivity experiments either for fundamental or applied neutrino physics, as well as a good control of the gamma and neutron backgrounds induced by the reactor operation. In this article, the antineutrino emission associated to a thermal research reactor: the OSIRIS reactor located in Saclay, France, is computed in a first part. The calculation is performed with the summation method, which sums all the contributions of the beta decay branches of the fission products, coupled for the first time with a complete core model of the OSIRIS reactor core. The MCNP Utility for Reactor Evolution code was used, allowing to take into account the contributions of all beta decayers in-core. This calculation is representative of the isotopic contributions to the antineutrino flux which can be found at research reactors with a standard 19.75\\% enrichment in $^{235}$U. In addition, the required off-equilibrium correction...

  7. Search for extended gamma ray emission in Markarian 421 using VERITAS observations

    CERN Document Server

    ,

    2014-01-01

    Very high energy (VHE: >100 GeV) gamma rays coming from AGN can pair-produce on the intergalactic background light generating an electromagnetic cascade. If the Intergalactic Magnetic Field (IGMF) is sufficiently strong, this cascade may result in an extended isotropic emission of photons around the source, or halo. Using VERITAS observations of the blazar Markarian 421, we search for extended emission by comparing the source angular distribution (${\\theta}^2$) from a quiescent period with one coming from a flare period, which can be considered as halo-free. ${\\chi}^2$ test showed no significant statistical differences between the samples, suggesting that the effect is either non-existent or too weak to be detected. We calculated upper limits for the extended flux considering different angle ranges, the most stringent being <8% of the Crab Nebulae flux (C.U), in the range $0\\deg \\leq {\\theta} \\leq 0.1\\deg$ .

  8. Prospects of detecting gamma-ray emission from galaxy clusters: cosmic rays and dark matter annihilations

    CERN Document Server

    Pinzke, Anders; Bergstrom, Lars

    2011-01-01

    We study the possibility for detecting gamma-ray emission in galaxy clusters. We consider 1) cosmic ray (CR) induced pion decay which is thought to dominate the astrophysical signal from clusters, 2) different representative benchmark models of supersymmetric dark matter (DM), and 3) leptophilic models of DM annihilation that include a Sommerfeld enhancement (SFE). To model DM annihilation, we consider hadronization of annihilating neutralinos, internal bremsstrahlung, and inverse Compton emission from the cosmic microwave background as well as from a realistic spatial and spectral distribution of dust and stellar light. We predict the Virgo and Fornax clusters to be the brightest DM sources and find a particularly low CR induced background for Fornax. For a minimum substructure mass given by the DM free-streaming scale, we find a substructure boost factor of more than 1000. Since the annihilation flux of substructures is mostly contributed by the regions around the virial radius, the resulting surface bright...

  9. Detecting extended gamma-ray emission with the next generation Cherenkov telescopes

    CERN Document Server

    Alonso, M Fernandez; Rovero, A C

    2015-01-01

    Very high energy (VHE $>$100 GeV) gamma rays coming from blazars can produce pairs when interacting with the Extragalactic Background Light (EBL) and the Cosmic Microwave Background, generating an electromagnetic cascade. Depending on the Intergalactic Magnetic Field (IGMF) intensity, this cascade may result in an extended isotropic emission of photons around the source (halo), or in a broadening of the emission beam. The detection of these effects might lead to important constrains both on the IGMF intensity and the EBL density, quantities of great relevance in cosmological models. Using a Monte Carlo program, we simulate electromagnetic cascades for different values of the IGMF intensities and coming from a source similar to 1ES0229+200, a blazar with hard intrinsic spectrum at redshift $z=0.14$, which is an ideal distance for potentially observing the effect. We study the possible response of a generic future Cherenkov telescope using a simplified model for the sensitivity, effective area and angular resol...

  10. Observation of gamma-ray emission from the galaxy M87 above 250 GeV with VERITAS

    CERN Document Server

    Acciari, V A; Blaylock, G; Bradbury, S M; Buckley, J H; Bugaev, V; Butt, Y; Celik, O; Cesarini, A; Ciupik, L; Cogan, P; Colin, P; Cui, W; Daniel, M K; Duke, C; Ergin, T; Falcone, A D; Fegan, S J; Finley, J P; Finnegan, G; Fortin, P; Fortson, L F; Gibbs, K; Gillanders, G H; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Hays, E; Holder, J; Horan, D; Hughes, S B; Hui, M C; Humensky, T B; Imran, A; Kaaret, Philip; Kertzman, M; Kieda, D B; Kildea, J; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Lee, K; Maier, G; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Mukherjee, R; Nagai, T; Ong, R A; Pandel, D; Perkins, J S; Pohl, M; Quinn, J; Ragan, K; Reynolds, P T; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Steele, D; Swordy, S P; Toner, A Syson J A; Valcarcel, L; Vasilev, V V; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; White, R J; Williams, D A; Wissel, S A; Wood, M D; Zitzer, B

    2008-01-01

    The multiwavelength observation of the nearby radio galaxy M87 provides a unique opportunity to study in detail processes occurring in Active Galactic Nuclei from radio waves to TeV gamma-rays. Here we report the detection of gamma-ray emission above 250 GeV from M87 in spring 2007 with the VERITAS atmospheric Cherenkov telescope array and discuss its correlation with the X-ray emission. The gamma-ray emission is measured to be point-like with an intrinsic source radius less than 4.5 arcmin. The differential energy spectrum is fitted well by a power-law function: dPhi/dE=(7.4+-1.3_{stat}+-1.5_{sys})(E/TeV)^{-2.31+-0.17_{stat}+-0.2_{sys}} 10^{-9}m^{-2}s^{-1}TeV^{-1}. We show strong evidence for a year-scale correlation between the gamma-ray flux reported by TeV experiments and the X-ray emission measured by the ASM/RXTE observatory, and discuss the possible short-time-scale variability. These results imply that the gamma-ray emission from M87 is more likely associated with the core of the galaxy than with othe...

  11. Detailed Investigation of the Gamma-Ray Emission in the Vicinity of SNR W28 with FERMI-LAT

    CERN Document Server

    Hanabata, Yoshitaka; Hewitt, John W; Ballet, Jean; Fukazawa, Yasushi; Fukui, Yasuo; Hayakawa, Takahiro; Lemoine-Goumard, Marianne; Pedaletti, Giovanna; Strong, Andrew; Torres, Diego F; Yamazaki, Ryo

    2014-01-01

    We present a detailed investigation of the $\\gamma$-ray emission in the vicinity of the supernova remnant (SNR) W28 (G6.4$-$0.1) observed by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. We detected significant $\\gamma$-ray emission spatially coincident with TeV sources HESS J1800$-$240A, B, and C, located outside the radio boundary of the SNR. Their spectra in the 2-100 GeV band are consistent with the extrapolation of the power-law spectra of the TeV sources. We also identified a new source of GeV emission, dubbed Source W, which lies outside the boundary of TeV sources and coincides with radio emission from the western part of W28. All of the GeV $\\gamma$-ray sources overlap with molecular clouds in the velocity range from 0 to 20 km s$^{-1}$. Under the assumption that the $\\gamma$-ray emission towards HESS J1800-240A, B, and C comes from $\\pi^0$ decay due to the interaction between the molecular clouds and cosmic rays (CRs) escaping from W28, they can be naturally explained b...

  12. Galactic outflow driven by the active nucleus and the origin of the gamma-ray emission in NGC 1068

    CERN Document Server

    Lamastra, A; Guetta, D; Antonelli, L A; Colafrancesco, S; Menci, N; Puccetti, S; Stamerra, A; Zappacosta, L

    2016-01-01

    We compute the non-thermal emissions produced by relativistic particles accelerated by the AGN-driven shocks in NGC 1068, and we compare the model predictions with the observed gamma-ray and radio spectra . The former is contributed by pion decay, inverse Compton scattering, and bremsstrahlung, while the latter is produced by synchrotron radiation. We derive the gamma-ray and radio emissions by assuming the standard acceleration theory, and we discuss how our results compare with those corresponding to other commonly assumed sources of gamma-ray and radio emissions, like Supernova remnants (SNR) or AGN jets. We find that the AGN-driven shocks observed in the circumnuclear molecular disk of such a galaxy provide a contribution to the gamma-ray emission comparable to that provided by the starburst activity when standard particle acceleration efficiencies are assumed, while they can yield the whole gamma-ray emission only when the parameters describing the acceleration efficiency and the proton coupling with the...

  13. Search for neutrino emission in gamma-ray flaring blazars with the ANTARES telescope

    CERN Document Server

    Sánchez-Losa, Agustín

    2012-01-01

    The ANTARES telescope observes a full hemisphere of the sky all the time with a duty cycle close to 100%. This makes it well suited for an extensive observation of neutrinos produced in astrophysical transient sources. In the surrounding medium of blazars, i.e. active galactic nuclei with their jets pointing almost directly towards the observer, neutrinos may be produced together with gamma-rays by hadronic interactions, so a strong correlation between neutrinos and gamma-rays emissions is expected. The time variability information of the studied source can be obtained by the gamma-ray light curves measured by the LAT instrument on-board the Fermi satellite. If the expected neutrino flux observation is reduced to a narrow window around the assumed neutrino production period, the point-source sensitivity can be drastically improved. The ANTARES data collected in 2008 has been analysed looking for neutrinos detected in the high state period of ten bright and variable Fermi sources assuming that the neutrino emi...

  14. Jet outflow and gamma-ray emission correlations in S5 0716+714

    CERN Document Server

    Rani, B; Marscher, A P; Jorstad, S G; Hodgson, J A; Fuhrmann, L; Zensus, J A

    2014-01-01

    Using millimeter-very long baseline interferometry (VLBI) observations of the BL Lac object S5 0716+714 from August 2008 to September 2013, we investigate variations in the core flux density and orientation of the sub-parsec scale jet i.e. position angle. The gamma-ray data obtained by the Fermi-LAT (Large Area Telescope) are used to investigate the high-energy flux variations over the same time period. For the first time in any blazar, we report a significant correlation between the gamma-ray flux variations and the position angle (PA) variations in the VLBI jet. The cross-correlation analysis also indicates a positive correlation such that the mm-VLBI core flux density variations are delayed with respect to the gamma-ray flux by 82$\\pm$32 days. This suggests that the high-energy emission is coming from a region located $\\geq$(3.8$\\pm$1.9) parsecs upstream of the mm-VLBI core (closer to the central black hole). These results imply that the observed inner jet morphology has a strong connection with the observ...

  15. Detection of very high energy gamma-ray emission from NGC 1275 by the MAGIC telescopes

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Asensio, M; Backes, M; de Almeida, U Barres; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berdyugin, A; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Braun, I; Bretz, T; Cañellas, A; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Dazzi, F; De Angelis, A; De Caneva, G; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Eisenacher, D; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Garrido, D; Giavitto, G; Godinović, N; Gozzini, S R; Hadasch, D; Häfner, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Jogler, T; Kellermann, H; Klepser, S; Krähenbühl, T; Krause, J; Kushida, J; La Barbera, A; Lelas, D; Leonardo, E; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Moldón, J; Moralejo, A; Munar-Adrover, P; Niedzwiecki, A; Nieto, D; Nilsson, K; Nowak, N; Orito, R; Paiano, S; Paneque, D; Paoletti, R; Pardo, S; Paredes, J M; Partini, S; Perez-Torres, M A; Persic, M; Peruzzo, L; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Gimenez, I Puerto; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shayduk, M; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Spiro, S; Stamatescu, V; Stamerra, A; Steinke, B; Storz, J; Strah, N; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Treves, A; Uellenbeck, M; Vankov, H; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R; Pfrommer, C; Pinzke, A

    2011-01-01

    We report on the detection of very high energy (VHE, E > 100 GeV) gamma-ray emission from NGC 1275, the central radio galaxy of the Perseus cluster of galaxies. The source has been detected by the MAGIC telescopes with a statistical significance of 6.6 sigma above 100 GeV in 46 hr of stereo observations carried out between August 2010 and February 2011. The measured differential energy spectrum between 70 GeV and 500 GeV can be described by a power-law with a steep spectral index of Gamma = -4.1 +- 0.7stat +- 0.3syst, and the average flux above 100 GeV is F = (1.3 +- 0.2stat +- 0.3syst) x 10-11 cm-2 s-1. These results, combined with the power-law spectrum measured in the first two years of observations by the Fermi-LAT above 100 MeV, with a spectral index of Gamma ~= -2.1, strongly suggest the presence of a break or a cut-off around tens of GeV in the NGC 1275 spectrum. The light curve of the source above 100 GeV does not show hints of variability on month time-scale. Finally, we report on the non-detection i...

  16. Location of Gamma-ray emission and magnetic field strengths in OJ 287

    CERN Document Server

    Hodgson, J A; Marscher, A P; Jorstad, S G; Rani, B; Marti-Vidal, I; Bach, U; Sanchez, S; Bremer, M; Lindqvist, M; Uunila, M; Kallunki, J; Vicente, P; Fuhrmann, L; Angelakis, E; Karamanavis, V; Myserlis, I; Nestoras, I; Chidiac, C; Sievers, A; Gurwell, M; Zensus, J A

    2016-01-01

    The Gamma-ray BL Lac object OJ 287 is known to exhibit inner-parsec "jet-wobbling", high degrees of variability at all wavelengths and quasi-stationary features including an apparent (~100 deg) position angle change in projection on the sky plane. Sub-50 micro-arcsecond resolution 86 GHz observations with the global mm-VLBI array (GMVA) supplement ongoing multi-frequency VLBI blazar monitoring at lower frequencies. Using these maps together with cm/mm total intensity and Gamma-ray observations from Fermi/LAT from 2008-2014, we aimed to determine the location of Gamma-ray emission and to explain the inner-mas structural changes. Observations with the GMVA offer approximately double the angular resolution compared with 43 GHz VLBA observations and allow us to observe above the synchrotron self-absorption peak frequency. The jet was spectrally decomposed at multiple locations along the jet. From this we derived estimates of the magnetic field. How the field decreases down the jet allowed an estimate of the dista...

  17. The Attenuation of $\\gamma$-Ray Emission in Strongly-Magnetized Pulsars

    CERN Document Server

    Baring, M G; Gonthier, P L; Baring, Matthew G.; Harding, Alice K.; Gonthier, Peter L.

    1997-01-01

    Gamma-rays from pulsars can be efficiently attenuated in their magnetospheres via the mechanism of single-photon pair production and also the exotic QED process of photon splitting, which become prolific in fields approaching the quantum critical value of $B_{cr}=4.41\\times 10^{13}$ Gauss. Recently we have published results of our modelling of strongly-magnetized $\\gamma$-ray pulsars, which focused on the escape or attenuation of photons emitted near the pole at the neutron star surface in dipole fields, in a Schwarzschild metric. We found that pair production and splitting totally inhibit emission above around 10--30 MeV in PSR1509-58, whose surface field is inferred to be as high as $0.7B_{cr}$. Our model pulsar spectra are consistent with the EGRET upper limits for PSR1509-58 for a wide range of polar cap sizes. Here we review the principal predictions of our attenuation analysis, and identify how its powerful observational diagnostic capabilities relate to current and future gamma-ray experiments. Diagnos...

  18. An Observed Correlation Between Thermal and Non-Thermal Emission in Gamma-Ray Bursts

    CERN Document Server

    Burgess, J Michael; Ryde, Felix; Veres, Peter; Meszaros, Peter; Connaughton, Valerie; Briggs, Michael; Pe'er, Asaf; Iyyani, Shabnam; Goldstein, Adam; Axelsson, Magnus; Baring, Matthew G; Bhat, P N; Byrne, David; Fitzpatrick, Gerard; Foley, Suzanne; Kocevski, Daniel; Omodei, Nicola; Paciesas, William S; Pelassa, Veronique; Kouveliotou, Chryssa; Xiong, Shaolin; Yu, Hoi-Fung; Zhang, Binbin; Zhu, Sylvia

    2014-01-01

    Recent observations by the $Fermi$ Gamma-ray Space Telescope have confirmed the existence of thermal and non-thermal components in the prompt photon spectra of some Gamma-ray bursts (GRBs). Through an analysis of six bright Fermi GRBs, we have discovered a correlation between the observed photospheric and non-thermal $\\gamma$-ray emission components of several GRBs using a physical model that has previously been shown to be a good fit to the Fermi data. From the spectral parameters of these fits we find that the characteristic energies, $E_{\\rm p}$ and $kT$, of these two components are correlated via the relation $E_{\\rm p} \\propto T^{\\alpha}$ which varies from GRB to GRB. We present an interpretation in which the value of index $\\alpha$ indicates whether the jet is dominated by kinetic or magnetic energy. To date, this jet composition parameter has been assumed in the modeling of GRB outflows rather than derived from the data.

  19. High-resolution observations of gamma-ray line emission from SN 1987A

    Science.gov (United States)

    Sandie, W. G.; Nakano, G. H.; Chase, L. F., Jr.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.; Lasche, G. P.

    1988-11-01

    A balloon-borne gamma-ray spectrometer was flown from Alice springs, Australia, 1987 October 29 - 31, nominally 250 days after the supernova event. High-resolution data, typically 2.5 keV at 1.33 MeV, were obtained for two transits of the supernova. A significant net flux of gamma rays with energy 847 keV was observed from the direction of SN 1987A on each transit. No prominent gamma-ray features were seen at other energies. A preliminary estimate of the line flux is (5.1±1.7)×10-4photons cm-2s-1. The net flux observed in the first supernova transit extends from 838 keV to 850 keV and may be evidence of dynamical broadening of the 847 keV line. The total excess flux from 838 keV to 850 keV corresponds to (1.0±0.28)×10-3photons cm-2s-1. This line may be interpreted as emission from the first excited state of 56Fe due to the radioactive decay of 56Co.

  20. COMPTEL observations of Ti-44 gamma-ray line emission from Cas A

    Science.gov (United States)

    Iyudin, A. F.; Diehl, R.; Bloemen, H.; Hermsen, W.; Lichti, G. G.; Morris, D.; Ryan, J.; Schoenfelder, V.; Steinle, H.; Varendorff, M.

    1994-01-01

    The Compton Telescope (COMPTEL) telescope aboard the Compton Gamma-Ray Observatory (CGRO) is capable of imaging gamma-ray line sources in the MeV region with a sensitivity of the order 10(exp -5) photons/(sq cm s). During two observations periods in July 1992 and February 1993 the Galactic plane in the region of the young supernova remnant Cas A was observed, showing evidence for line emission at 1.16 MeV from the decay of Ti-44 at a significance level of approximately 4 sigma. This is the first time a supernova remnant has been detected in the gamma-ray line from Ti-44 decay. Adopting a distance of 2.8 kpc to the Cas A remnant, the measured line flux (7.0 +/- 1.7) x 10(exp -5) photons/(sq cm s), can be translated into a Ti-44 mass ejected during the Cas A supernova explosion, between (1.4 +/- 0.4) x 10(exp -4) solar mass and (3.2 +/- 0.8) x 10(exp -4) solar mass, depending on the precise value of the Ti-44 mean life time and on the precise date of the event. Implications of this result for supernova nucleosynthesis models are discussed.

  1. COS-B observations of localized sources of gamma-ray emission

    Science.gov (United States)

    1977-01-01

    In October 1975, the high-energy gamma-ray flux from the Vela pulsar measured by COS-B was found to be 1.6 to 2.1 times higher than the flux measured by SAS-2 in 1973. This factor is too large to be accounted for by error in the COS-B calibration or analysis. This is supported by a comparison of the COS-B measurement of the narrow-line component from the galactic center region with the flux derived from the measurements of SAS-2; the COS-B flux comes out about 15 percent lower than the SAS-2 figure. It is interesting to note that a glitch in the pulsar period took place about 1 month prior to the COS-B observation; the previous glitch occurred about 1.5 years before the SAS-2 observation. The increased rotational energy loss after the glitch cannot simply explain the increased gamma-ray luminosity. If the two phenomena are related, the gamma-ray emission, absorption, or beaming process must be extremely sensitive to changes in rotational parameters. The existence is confirmed of a second region of enhanced radiation in the galactic anticenter in addition to that from the Crab pulsar.

  2. Gamma-ray emission from SN2014J near maximum optical light

    Science.gov (United States)

    Isern, J.; Jean, P.; Bravo, E.; Knödlseder, J.; Lebrun, F.; Churazov, E.; Sunyaev, R.; Domingo, A.; Badenes, C.; Hartmann, D. H.; Hoeflich, P.; Renaud, M.; Soldi, S.; Elias-Rosa, N.; Hernanz, M.; Domínguez, I.; García-Senz, D.; Lichti, G. G.; Vedrenne, G.; Von Ballmoos, P.

    2016-04-01

    Context. The optical light curve of Type Ia supernovae (SNIa) is powered by thermalized gamma-rays produced by the decay of 56Ni and 56Co, the main radioactive isotopes synthesized by the thermonuclear explosion of a C/O white dwarf. Aims: Gamma-rays escaping the ejecta can be used as a diagnostic tool for studying the characteristics of the explosion. In particular, it is expected that the analysis of the early gamma emission, near the maximum of the optical light curve, could provide information about the distribution of the radioactive elements in the debris. Methods: The gamma data obtained from SN2014J in M 82 by the instruments on board INTEGRAL were analysed paying special attention to the effect that the detailed spectral response has on the measurements of the intensity of the lines. Results: The 158 keV emission of 56Ni has been detected in SN2014J at ~5σ at low energy with both ISGRI and SPI around the maximum of the optical light curve. After correcting the spectral response of the detector, the fluxes in the lines suggest that, in addition to the bulk of radioactive elements buried in the central layers of the debris, there is a plume of 56Ni, with a significance of ~3σ, moving at high velocity and receding from the observer. The mass of the plume is in the range of ~0.03-0.08 M⊙. Conclusions: No SNIa explosion model has ever predicted the mass and geometrical distribution of 56Ni suggested here. According to its optical properties, SN2014J looks like a normal SNIa, so it is extremely important to discern whether it is also representative in the gamma-ray band. Based on observations with INTEGRAL, an ESA project with instruments and the science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, and Spain), the Czech Republic, and Poland and with the participation of Russia and USA.

  3. The relationship between gamma Cassiopeiae's X-ray emission and its circumstellar environment

    CERN Document Server

    Smith, M A; Motch, C; Henry, G W; Richardson, N D; Bjorkman, K S; Stee, Ph; Mourard, D; Monnier, J D; Che, X; Buecke, R; Pollmann, E; Gies, D R; Schaefer, G H; Brummelaar, T ten; McAlister, H A; Turner, N H; Sturmann, J; Sturmann, L; Ridgway, S T

    2012-01-01

    \\gamma Cas is the prototypical classical Be star and is best known for its variable hard X-ray emission. To elucidate the reasons for this emission, we mounted a multiwavelength campaign in 2010 centered around 4 XMM observations. The observational techniques included long baseline optical interferometry (LBOI), monitoring by an Automated Photometric Telescope and Halpha observations. Because gamma Cas is also known to be in a binary, we measured Halpha radial velocities and redetermined its period as 203.55+/-0.2 days and an eccentricity near zero. The LBOI observations suggest that the star's decretion disk was axisymmetric in 2010, has an inclination angle near 45^o, and a larger radius than previously reported. The Be star began an "outburst" at the beginning of our campaign, made visible by a disk brightening and reddening during our campaign. Our analyses of the new high resolution spectra disclosed many attributes found from spectra obtained in 2001 (Chandra) and 2004 (XMM). As well as a dominant hot 1...

  4. High-energy emission from non-relativistic radiative shocks: application to gamma-ray novae

    CERN Document Server

    Vurm, Indrek

    2016-01-01

    Multiwavelength radiation from relativistic particles accelerated at shocks in novae and other astrophysical sources carries a wealth of information about the outflow properties and the microphysical processes at work near the shocks. The observation of GeV gamma-rays from novae by Fermi/LAT demonstrates that the shocks in these systems can accelerate particles to energies of at least $\\sim 10$ GeV. The low-energy extension of the same non-thermal particle distribution inevitably gives rise to emission extending into the X-ray band. Above $\\gtrsim 10$ keV this radiation can escape the system without significant absorption/attenuation, and can potentially be detected by NuSTAR. We present theoretical models for hard X-ray and gamma-ray emission from radiative shocks in both leptonic and hadronic scenarios, accounting for the rapid evolution of the downstream properties due to the fast cooling of thermal plasma. Due to strong Coulomb cooling of the mildly relativistic electrons nominally responsible for produci...

  5. Milagro Search for Very High Energy Emission from Gamma-Ray Bursts in the Swift Era

    CERN Document Server

    Parkinson, P M S

    2006-01-01

    The recently launched Swift satellite is providing an unprecedented number of rapid and accurate Gamma-Ray Burst (GRB) localizations, facilitating a flurry of follow-up observations by a large number of telescopes at many different wavelengths. The Very High Energy (VHE, >100 GeV) regime has so far been relatively unexplored. Milagro is a wide field of view (2 sr) and high duty cycle (> 90%) ground-based gamma-ray telescope which employs a water Cherenkov detector to monitor the northern sky almost continuously in the 100 GeV to 100 TeV energy range. We have searched the Milagro data for emission from the most recent GRBs identified within our field of view. These include three Swift bursts which also display late-time X-ray flares. We have searched for emission coincident with these flares. No significant detection was made. A 99% confidence upper limit is provided for each of the GRBs, as well as the flares.

  6. Evidence for Gamma-ray Emission from the Newly Discovered Dwarf Galaxy Reticulum 2

    CERN Document Server

    Geringer-Sameth, Alex; Koushiappas, Savvas M; Koposov, Sergey E; Belokurov, Vasily; Torrealba, Gabriel; Evans, N Wyn

    2015-01-01

    We present a search for gamma-ray emission from the direction of the newly discovered dwarf galaxy Reticulum 2. Using Fermi-LAT data, we detect a signal that exceeds expected backgrounds between ~2-10 GeV and is consistent with annihilation of dark matter for particle masses less than a few x 10^2 GeV. Modeling the background as a Poisson process based on Fermi-LAT diffuse models, and taking into account trials factors, we detect emission with p-value less than 9.8 x 10^-5 (>3.7 sigma). An alternative, model-independent treatment of background reduces the significance, raising the p-value to 9.7 x 10^-3 (2.3 sigma). Even in this case, however, Reticulum 2 has the most significant gamma-ray signal of any known dwarf galaxy. If Reticulum 2 has a dark matter halo that is similar to those inferred for other nearby dwarfs, the signal is consistent with the s-wave relic abundance cross section for annihilation.

  7. Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

    CERN Document Server

    Gaggero, Daniele; Marinelli, Antonio; Urbano, Alfredo; Valli, Mauro

    2015-01-01

    As recently shown, Fermi-LAT measurements of the diffuse gamma-ray emission from the Galaxy favor the presence of a smooth softening in the primary cosmic-ray spectrum with increasing Galactocentric distance. This result can be interpreted in terms of a spatial-dependent rigidity scaling of the diffusion coefficient. The DRAGON code was used to build a model based on such feature. That scenario correctly reproduces the latest Fermi-LAT results as well as local cosmic-ray measurements from PAMELA, AMS-02 and CREAM. Here we show that the model, if extrapolated at larger energies, grasps both the gamma-ray flux measured by MILAGRO at 15 TeV and the H.E.S.S. data from the Galactic ridge, assuming that the cosmic-ray spectral hardening found by those experiments at about 250 GeV/n is present in the whole inner Galactic plane region. Moreover, we show as that model also predicts a neutrino emission which may account for a significant fraction, as well as for the correct spectral shape, of the astrophysical flux mea...

  8. Search for Doppler-shifted gamma-ray emission from SS 433 using the SMM spectrometer

    Science.gov (United States)

    Geldzahler, B. J.; Share, G. H.; Kinzer, R. L.; Magura, J.; Chupp, E. L.

    1989-01-01

    Data accumulated from 1980 to 1983 with the Gamma Ray Spectrometer aboard NASA's Solar Maximum Mission (SMM) satellite were searched for evidence of red and blue Doppler-shifted 1.37 MeV Mg-24 nuclear lines from SS 433. The SMM data base covers 270 days when SS 433 was in the field of view and includes periods of radio flaring and quiescence. No evidence was found for Doppler-shifted line emission in any of the spectra. The range of 3-sigma upper limits for individual 9 day integration periods was 0.0008-0.0023 photons/sq cm per sec for the blue beam, encompassing the reported about 1.5 MeV line, and 0.0008-0.002 photons/sq cm per sec for the red beam, encompassing the reported about 1.2 MeV line; the average 3-sigma upper limit in each beam for shifted about 1.37 MeV lines is 0.0015 photons/sq cm per sec for single 9 day integrations. The 3-sigma upper limit on 1.37 MeV gamma-ray emission over 23 9-day integration intervals for the red beam and 28 intervals for the blue beam is 0.0002 photons/sq cm per sec. These new limits from SMM can be reconciled with the HEAO 3 results only if SS 433 emits gamma radiation at or above the SMM sensitivity limit on rare occasions due to variable physical conditions in the system.

  9. High-energy γ-ray emission from gamma-raybursts-before GLAST

    Institute of Scientific and Technical Information of China (English)

    Yi-Zhong FAN; Tsvi PIRAN

    2008-01-01

    Gamma-ray bursts (GRBs) are short and intense emission of soft γ-rays,which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s.The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs,support the fireball model,and imply a long-activity of the central engine.The high-energy γ-ray emission (>20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work,we review observational and theoretical studies of the high-energy emission from GRBs.Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope.We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  10. Search for extended gamma-ray emission from the Virgo galaxy cluster with Fermi-LAT

    CERN Document Server

    Ackermann, M; Albert, A; Atwood, W B; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Bloom, E D; Bonino, R; Bottacini, E; Brandt, T J; Bregeon, J; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caputo, R; Caragiulo, M; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Charles, E; Chekhtman, A; Chiaro, G; Ciprini, S; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Desiante, R; Digel, S W; Di Venere, L; Drell, P S; Favuzzi, C; Fegan, S J; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Guiriec, S; Gustafsson, M; Hewitt, J W; Hill, A B; Horan, D; Jeltema, T E; Jogler, T; Johnson, A S; Kuss, M; Larsson, S; Latronico, L; Li, J; Li, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Maldera, S; Malyshev, D; Manfreda, A; Mayer, M; Mazziotta, M N; Michelson, P F; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nuss, E; Ohsugi, T; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Petrosian, V; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Sánchez-Conde, M; Schulz, A; Sgró, C; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Storm, E; Tajima, H; Takahashi, H; Thayer, J B; Torres, D F; Tosti, G; Troja, E; Vianello, G; Wood, K S; Wood, M; Zaharijas, G; Zimmer, S; Pinzke, A

    2015-01-01

    Galaxy clusters are one of the prime sites to search for dark matter (DM) annihilation signals. Depending on the substructure of the DM halo of a galaxy cluster and the cross sections for DM annihilation channels, these signals might be detectable by the latest generation of $\\gamma$-ray telescopes. Here we use three years of Fermi Large Area Telescope (LAT) data, which are the most suitable for searching for very extended emission in the vicinity of nearby Virgo galaxy cluster. Our analysis reveals statistically significant extended emission which can be well characterized by a uniformly emitting disk profile with a radius of 3\\deg that moreover is offset from the cluster center. We demonstrate that the significance of this extended emission strongly depends on the adopted interstellar emission model (IEM) and is most likely an artifact of our incomplete description of the IEM in this region. We also search for and find new point source candidates in the region. We then derive conservative upper limits on th...

  11. Constraints on diffuse gamma-ray emission from structure formation processes in the Coma cluster

    CERN Document Server

    Zandanel, Fabio

    2013-01-01

    We analyze the 5-year (63 months) data of Large Area Telescope on board Fermi satellite from the Coma galaxy cluster in the energy range between 100 MeV and 100 GeV. The likelihood analyses are performed with several model templates. We consider (1) a point source; (2) models motivated by cosmological hydrodynamical simulations that predict a dominant pion-decay-induced gamma-ray emission from cosmic ray proton-proton interaction with the cluster ambient gas; (3) a phenomenological template based on the cluster radio relic to test the possible associated inverse-Compton scattering of the relic electrons off the cosmic microwave background; and (4) both a disk and ring-like emission profiles to test the inverse-Compton emission from primary electrons accelerated at accreting shocks. We find no excess emission for any of these models, and derive the most stringent constraints to date on the Coma cluster above 100 MeV, and on the tested scenarios in general. The upper limits on the integral flux range from 10^-1...

  12. The “Far Site” Scenario for Gamma-ray Emission in Blazars

    Directory of Open Access Journals (Sweden)

    Agudo Iván

    2013-12-01

    Full Text Available Since the birth of γ-ray astronomy, locating the origin of γ-ray emission has been a fundamental problem for the knowledge of the emission processes involved. Densely time sampled monitoring programs with very long baseline interferometry and the Fermi Gamma-ray Space Telescope, together with several other facilities at most of the available spectral ranges (including polarization measurements if possible are starting to shed new light for the case of blazars. A successful observing technique consists on analyzing the timing of multi-waveband variations in the flux and linear polarization, as well as changes in ultra-high resolution VLBI images to associate the particularly bright events at different wavebands. Such association can be robustly demonstrated by probing the statistical significance of the correlation among spectral ranges through Monte Carlo simulations. The location of the high energy emission region is inferred through its relative location with regard to the associated low energy event observed in the VLBI images. In this paper, I present some of the latest results using this method that locate the GeV emission within the jets of blazars AO 0235+164 and OJ287 at > 12 pc from the central AGN engine, hence supporting the “far site” scenario.

  13. Scattered emission from a relativistic outflow and its application to gamma-ray bursts

    Science.gov (United States)

    Shen, R.-F.; Barniol Duran, R.; Kumar, P.

    2008-03-01

    We investigate a scenario of photon scattering by electrons within a relativistic outflow. The outflow is composed of discrete shells with different speeds. One shell emits radiation for a short duration. Some of this radiation is scattered by the shell(s) behind. We calculate in a simple two-shell model the observed scattered flux density as a function of the observed primary flux density, the normalized arrival time delay between the two emission components, the Lorentz factor ratio of the two shells and the scattering shell's optical depth. Thomson scattering in a cold shell and inverse Compton scattering in a hot shell are both considered. The results of our calculations are applied to the gamma-ray bursts and the afterglows. We find that the scattered flux from a cold slower shell is small and likely to be detected only for those bursts with very weak afterglows. A hot scattering shell could give rise to a scattered emission as bright as the X-ray shallow decay component detected in many bursts, on a condition that the isotropically equivalent total energy carried by the hot electrons is large, ~1052-1056 erg. The scattered emission from a faster shell could appear as a late short γ-ray/MeV flash or become part of the prompt emission depending on the delay of the ejection of the shell.

  14. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: a case for Caustic Radio Emission?

    CERN Document Server

    Guillemot, L; Venter, C; Kerr, M; Pancrazi, B; Livingstone, M; Janssen, G H; Jaroenjittichai, P; Kramer, M; Cognard, I; Stappers, B W; Harding, A K; Camilo, F; Espinoza, C M; Freire, P C C; Gargano, F; Grove, J E; Johnston, S; Michelson, P F; Noutsos, A; Parent, D; Ransom, S M; Ray, P S; Shannon, R; Smith, D A; Theureau, G; Thorsett, S E; Webb, N

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the \\emph{Fermi} Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nan\\c{c}ay radio telescopes. In addition, we analyzed archival \\emph{RXTE} and \\emph{XMM-Newton} X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence ($\\sim 4\\sigma$) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions...

  15. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    Science.gov (United States)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; Stappers, B. W.; Harding, A. K.; Camilo, F.; Espinoza, C. M.; Freire, P. C. C.; Gargano, F.; Grove, J. E.; Johnston, S.; Michelson, P. F.; Noutsos, A.; Parent, D.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Smith, D. A.; Theureau, G.; Thorsett, S. E.; Webb, N.

    2012-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope and timing solutions based on radio observations conducted at the Westerbork and Nançay radio telescopes. In addition, we analyzed archival Rossi X-ray Timing Explorer and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (~4σ) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.

  16. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    Science.gov (United States)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; Stappers, B. W.; Harding, A. K.; Camilo, F.; Espinoza, C. M.; Freire, P. C. C.; Gargano, F.; Grove, J. E.; Johnston, S.; Michelson, P. F.; Noutsos, A.; Parent, D.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Smith, D. A.

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  17. Emission mechanism of GeV-quiet soft gamma-ray pulsars; A case for peculiar geometry?

    CERN Document Server

    Wang, Y; Takata, J; Leung, Gene C K; Cheng, K S

    2014-01-01

    There is a growing new class of young spin-down powered pulsars called GeV-quiet soft gamma-ray pulsar; (1) spectral turnover appears around~10MeV, (2) the X-ray spectra of below 20 keV can be described by power law with photon index around 1.2 and (3) the light curve in X-ray/soft gamma-ray bands shows single broad pulse. Their emission properties are distinct from the normal gamma-ray pulsars, for which the spectral peak in $\

  18. Analysis of GeV-band gamma-ray emission from SNR RX J1713.7-3946

    CERN Document Server

    Federici, S; Telezhinsky, I; Wilhelm, A; Dwarkadas, V V

    2015-01-01

    RX J1713.7-3946 is the brightest shell-type Supernova remnant (SNR) of the TeV gamma-ray sky. Earlier Fermi-LAT results on low-energy gamma-ray emission suggested that, despite large uncertainties in the background determination, the spectrum is inconsistent with a hadronic origin. We update the GeV-band spectra using improved estimates for the diffuse galactic gamma-ray emission and more than doubled data volume. We further investigate the viability of hadronic emission models for RX J1713.7-3946. We produced a high-resolution map of the diffuse Galactic gamma-ray background corrected for HI self-absorption and used it in the analysis of more than 5~years worth of Fermi-LAT data. We used hydrodynamic scaling relations and a kinetic transport equation to calculate the acceleration and propagation of cosmic-rays in SNR. We then determined spectra of hadronic gamma-ray emission from RX J1713.7-3946, separately for the SNR interior and the cosmic-ray precursor region of the forward shock, and computed flux varia...

  19. Fermi Large Area Telescope Detection of Extended Gamma-Ray Emission from the Radio Galaxy Fornax A

    CERN Document Server

    ,

    2016-01-01

    We report the Fermi Large Area Telescope detection of extended gamma-ray emission from the lobes of the radio galaxy Fornax A using 6.1 years of Pass 8 data. After Centaurus A, this is now the second example of an extended gamma-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be 100 MeV gamma-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the gamma-ray fluxes by factors of about ~ 2 - 3, depending on the EBL model adopted. An additional gamma-ray spectral component is thus ...

  20. Evidence for TeV $\\gamma$-ray emission from the shell type SNR RXJ1713.7-3946

    CERN Document Server

    Muraishi, H; Yanagita, S; Yoshida, T; Moriya, M; Kifune, T; Dazeley, S A; Edwards, P G; Gunji, S; Hara, S; Hara, T; Kawachi, A; Kubo, H; Matsubara, Y; Mizumoto, Y; Mori, M; Muraki, Y; Naito, T; Nishijima, K; Patterson, J R; Rowell, G P; Sako, T; Sakurazawa, K; Susukita, R; Tamura, T; Yoshikoshi, T

    2000-01-01

    We report the results of TeV gamma-ray observations of the shell type SNR RXJ1713.7-3946 (G347.3-0.5). The discovery of strong non-thermal X-ray emission from the northwest part of the remnant strongly suggests the existence of electrons with energies up to 100 TeV in the remnant, making the SNR a good candidate TeV gamma-ray source. We observed RXJ1713.7-3946 from May to August 1998 with the CANGAROO 3.8m atmospheric imaging Cerenkov telescope and obtained evidence for TeV gamma-ray emission from the NW rim of the remnant with the significance of 5.6 sigma. The observed TeV gamma-ray flux from the NW rim region was estimated to be (5.3 +/- 0.9[statistical] +/- 1.6[systematic]) * 10^{-12} photons cm^{-2} s^{-1} at energies >= 1.8 +/- 0.9 TeV. The data indicate that the emitting region is much broader than the point spread function of our telescope. The extent of the emission is consistent with that of hard X-rays observed by ASCA. This TeV gamma-ray emission can be attributed to the Inverse Compton scattering...

  1. Study of gamma-ray emission by proton beam interaction with injected Boron atoms for future medical imaging applications

    Science.gov (United States)

    Petringa, G.; Cirrone, G. A. P.; Caliri, C.; Cuttone, G.; Giuffrida, L.; Larosa, G.; Manna, R.; Manti, L.; Marchese, V.; Marchetta, C.; Margarone, D.; Milluzzo, G.; Picciotto, A.; Romano, F.; Romano, F. P.; Russo, A. D.; Russo, G.; Santonocito, D.; Scuderi, V.

    2017-03-01

    In this work an experimental and theoretical study of gamma-prompt emission has been carried out with the main aim being to understand to what extent this approach can be used during a treatment based on proton-boron fusion therapy. An experimental campaign, carried out with a high purity Germanium detector, has been performed to evaluate the gamma emission from two pure 11B and 10B targets. Furthermore, a set of analytical simulations, using the Talys nuclear reaction code has been performed and the calculated spectra compared with the experimental results. These comparisons allowed us to successfully validate Talys which was then used to estimate the gamma emission when a realistic Boron concentration was considered. Both simulations and experimental results suggest that the gamma emission is low at certain proton energies, thus in order to improve the imaging capabilities, while still maintaining the Boron therapeutic role, we propose the addition of natural Copper bound by a dipyrromethene, BodiPy, to boron atoms. Analytical simulations with Talys suggest that the characteristic spectrum of the copper prompt gamma-rays has several peaks in the energetic regions where the background is negligible.

  2. Emission rate estimation through data assimilation of gamma dose measurements in a Lagrangian atmospheric dispersion model.

    Science.gov (United States)

    Tsiouri, V; Kovalets, I; Andronopoulos, S; Bartzis, J G

    2012-01-01

    This paper presents an efficient algorithm for estimating the unknown emission rate of radionuclides in the atmosphere following a nuclear accident. The algorithm is based on assimilation of gamma dose rate measured data in a Lagrangian atmospheric dispersion model. Such models are used in the framework of nuclear emergency response systems (ERSs). It is shown that the algorithm is applicable in both deterministic and stochastic modes of operation of the dispersion model. The method is evaluated by computational simulations of a 3-d field experiment on atmospheric dispersion of ⁴¹Ar emitted routinely from a research reactor. Available measurements of fluence rate (photons flux) in air are assimilated in the Lagrangian dispersion model DIPCOT and the ⁴¹Ar emission rate is estimated. The statistical analysis shows that the model-calculated emission rates agree well with the real ones. In addition the model-predicted fluence rates at the locations of the sensors, which were not used in the data assimilation procedure are in better agreement with the measurements. The first evaluation results of the method presented in this study show that the method performs satisfactorily and therefore it is applicable in nuclear ERSs provided that more comprehensive validation studies will be performed.

  3. Polarized synchrotron emission from the equatorial current sheet in gamma-ray pulsars

    CERN Document Server

    Cerutti, Benoît; Philippov, Alexander A

    2016-01-01

    Polarization is a powerful diagnostic tool to constrain the site of the high-energy pulsed emission and particle acceleration in gamma-ray pulsars. Recent particle-in-cell simulations of pulsar magnetosphere suggest that high-energy emission results from particles accelerated in the equatorial current sheet emitting synchrotron radiation. In this study, we re-examine the simulation data to compute the phase-resolved polarization properties. We find that the emission is mildly polarized and that there is an anticorrelation between the flux and the degree of linear polarization (on-pulse: ~15%, off-pulse: ~30%). The decrease of polarization during pulses is mainly attributed to the formation of caustics in the current sheet. Each pulse of light is systematically accompanied by a rapid swing of the polarization angle due to the change of the magnetic polarity when the line of sight passes through the current sheet. The optical polarization pattern observed in the Crab can be well-reproduced for a pulsar inclinat...

  4. Multi-epoch study of the gamma-ray emission within the M87 magnetosphere model

    CERN Document Server

    Vincent, Stephane

    2014-01-01

    M87 is a nearby radio galaxy that has been detected at energies ranging from radio to very high energy (VHE) gamma-rays. Its proximity and its jet, misaligned from the line of sight allow detailed morphological studies. The imaging atmospheric Cherenkov technique (from 100 GeV to 10 TeV) provides insufficient angular resolution (few arc-minutes) to resolve the M87 emission region. However, the short time scale variability observed by MAGIC, HESS and VERITAS suggests the TeV emission is coming from a very small region, most likely close to the core. We propose that the variable TeV emission may be produced in a pair-starved region of the central black hole (BH) magnetosphere, i.e. a region where the density of the electron-positron plasma is not sufficient to completely screen the accelerating electric field. The funnel, a low density and magnetically dominated region around the poles, appears as a favourable site of low-density where a Blandford-Znajek process may explain the main properties of the TeV $\\gamm...

  5. The anatomy of a long gamma-ray burst: a simple classification scheme for the emission mechanism(s)

    CERN Document Server

    Bégué, Damien

    2016-01-01

    Ultra-relativistic motion and efficient conversion of kinetic energy to radiation are required by gamma-ray burst (GRB) observations, yet they are difficult to simultaneously achieve. Three leading mechanisms have been proposed to explain the observed emission emanating from GRB outflows: radiation from either relativistic internal or external shocks, or thermal emission from a photosphere. Previous works were dedicated to independently treating these three mechanisms and arguing for a sole, unique origin of the prompt emission of gamma-ray bursts. In contrast, herein, we first explain why all three models are valid mechanisms and that a contribution from each of them is expected in the prompt phase. Additionally, we show that a single parameter, the dimensionless entropy of the GRB outflow, determines which mechanism contributes the most to the emission. More specifically, internal shocks dominate for low values of the dimensionless entropy, external shocks for intermediate values and finally, photospheric e...

  6. NUCLEIDE-LARA, a library for alpha, X and gamma emissions sorted by increasing energy; NUCLEIDE-LARA, bibliotheque des emissions alpha, X et gamma classees par ordre d'energie croissante

    Energy Technology Data Exchange (ETDEWEB)

    Be, M.M.; Dulieu, Ch.; Chiste, V

    2008-07-01

    The NUCLEIDE-LARA library presents, for almost 400 radionuclides of practical interest, the tables of alpha, X and gamma emissions sorted by increasing energy, as well as the associated intensity and radioactive half-life of the parent radionuclide. (authors)

  7. Channeling, Volume Reection and Gamma Emission Using 14GeV Electrons in Bent Silicon Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Brandon [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-14

    High energy electrons can be deflected with very tight bending radius using a bent silicon crystal. This produces gamma radiation. As these crystals can be thin, a series of bent silicon crystals with alternating direction has the potential to produce coherent gamma radiation with reasonable energy of the driving electron beam. Such an electron crystal undulator offers the prospect for higher energy radiation at lower cost than current methods. Permanent magnetic undulators like LCLS at SLAC National Accelerator Laboratory are expensive and very large (about 100 m in case of the LCLS undulator). Silicon crystals are inexpensive and compact when compared to the large magnetic undulators. Additionally, such a high energy coherent light source could be used for probing through materials currently impenetrable by x-rays. In this work we present the experimental data and analysis of experiment T523 conducted at SLAC National Accelerator Laboratory. We collected the spectrum of gamma ray emission from 14 GeV electrons on a bent silicon crystal counting single photons. We also investigated the dynamics of electron motion in the crystal i.e. processes of channeling and volume reflection at 14 GeV, extending and building off previous work. Our single photon spectrum for the amorphous crystal orientation is consistent with bremsstrahlung radiation and the volume reflection crystal orientation shows a trend consistent with synchrotron radiation at a critical energy of 740 MeV. We observe that in these two cases the data are consistent, but we make no further claims because of statistical limitations. We also extended the known energy range of electron crystal dechanneling length and channeling efficiency to 14 GeV.

  8. Dynamical fission life-times deduced from gamma-ray emission observed in the fusion-fission reaction : Ne-20 on Bi-209.

    NARCIS (Netherlands)

    vanderPloeg, H; Bacelar, JCS; Buda, A; Dioszegi, [No Value; vantHof, G; vanderWoude, A

    1996-01-01

    The gamma-ray emission spectra between 4 and 20 MeV have been measured for the fusion-fission reactions Ne-20 on Bi-209 --> Np-229* at beam energies 150, 186 and 220 MeV. In addition for the latter experiment the angular dependence of the gamma-ray emission with respect to the spin axis has been

  9. Properties of the radio jet emission of four gamma-ray Narrow Line Seyfert 1 galaxies

    CERN Document Server

    Angelakis, E; Myserlis, I; Nestoras, I; Karamanavis, V; Krichbaum, T P; Zensus, J A; Marchili, N; Foschini, L; Ungerechts, H; Sievers, A

    2013-01-01

    The detection of gamma rays from a small number of Narrow Line Seyfert 1 galaxies by the LAT instrument onboard Fermi seriously challenged our understanding of AGN physics. Among the most important findings associated with their discovery has been the realisation that smaller-mass black holes seem to be hosted by these systems. Immediately after their discovery a radio multi- frequency monitoring campaign was initiated to understand their jet radio emission. Here the first results of the campaign are presented. The light curves and some first variability analyses are discussed, showing that the brightness temperatures and Doppler factors are moderate. The phenomenologies are typically blazar-like. The frequency domain on the other hand indicates intense spectral evolution and the variability patterns indicate mechanisms similar to those acting in the jets of BL Lacs and FSRQs. Finally, the linear polarisation also reveals the presence of a quiescent, optically thin jet in certain cases.

  10. Polarization of prompt and afterglow emission of Gamma-Ray Bursts

    CERN Document Server

    Covino, Stefano

    2016-01-01

    Gamma-ray bursts and their afterglows are thought to be produced by an ultra-relativistic jet. One of the most important open questions is the outflow composition: the energy may be carried out from the central source either as kinetic energy (of baryons and/or pairs), or in electromagnetic form (Poynting flux). While the total observable flux may be indistinguishable in both cases, its polarization properties are expected to differ markedly. The prompt emission and afterglow polarization are also a powerful diagnostic of the jet geometry. Again, with subtle and hardly detectable differences in the output flux, we have distinct polarization predictions. In this review we briefly describe the theoretical scenarios that have been developed following the observations, and the now large observational datasets that for the prompt and the afterglow phases are available. Possible implications of polarimetric measurements for quantum gravity theory testing are discussed, and future perspectives for the field briefly ...

  11. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    Science.gov (United States)

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. AGILE detects renewed gamma-ray emission from the FSRQ CTA 102

    Science.gov (United States)

    Bulgarelli, A.; Verrecchia, F.; Lucarelli, F.; Pittori, C.; Minervini, G.; Piano, G.; Munar-Adrover, P.; Tavani, M.; Donnarumma, I.; Fioretti, V.; Zoli, A.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-11-01

    AGILE is detecting an increasing gamma-ray emission above 100 MeV from a source with galactic coordinates (l,b)= (77.2 , -38.3) +/- 0.5 deg (stat 95% c.l.) +/- 0.1 deg (syst), (RA, Dec) = (337.81, 11.82) (J2000), consistent with the flat spectrum radio quasar CTA 102. Integrating from 2016-11-22 06:44:00 UT to 2016-11-24 06:44:00 UT, a preliminary maximum likelihood analysis yields a detection with a significance of 9 sigma, and a flux F(E > 100 MeV)=(5.2 +/- 1.0) x 10^-6 ph cm^-2 s^-1.

  13. AGILE detection of enhanced gamma-ray emission from the FSRQ CTA 102

    Science.gov (United States)

    Minervini, G.; Piano, G.; Munar-Adrover, P.; Bulgarelli, A.; Pittori, C.; Verrecchia, F.; Tavani, M.; Donnarumma, I.; Fioretti, V.; Zoli, A.; Lucarelli, F.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-11-01

    AGILE is detecting increased gamma-ray emission above 100 MeV from a source with galactic coordinates (l,b)= (77.4 , -38.4) +/- 0.6 deg (stat 95% c.l.) +/- 0.1 deg (syst), (RA, Dec) = (338.0, 11.8) (J2000), consistent with the flat spectrum radio quasar CTA 102. Integrating from 2016-11-08 10:30:00 UT to 2016-11-10 10:30:00 UT, a preliminary maximum likelihood analysis yields a detection with a significance of 6 sigma, and a flux F(E > 100 MeV)=(3.8 +/- 1.1) x 10^-6 ph cm^-2 s^-1.

  14. Development of a Reference Database for Particle-Induced Gamma-ray Emission spectroscopy

    Science.gov (United States)

    Dimitriou, P.; Becker, H.-W.; Bogdanović-Radović, I.; Chiari, M.; Goncharov, A.; Jesus, A. P.; Kakuee, O.; Kiss, A. Z.; Lagoyannis, A.; Räisänen, J.; Strivay, D.; Zucchiatti, A.

    2016-03-01

    Particle-Induced Gamma-ray Emission (PIGE) is a powerful analytical technique that exploits the interactions of rapid charged particles with nuclei located near a sample surface to determine the composition and structure of the surface regions of solids by measurement of characteristic prompt γ rays. The potential for depth profiling of this technique has long been recognized, however, the implementation has been limited owing to insufficient knowledge of the physical data and lack of suitable user-friendly computer codes for the applications. Although a considerable body of published data exists in the nuclear physics literature for nuclear reaction cross sections with γ rays in the exit channel, there is no up-to-date, comprehensive compilation specifically dedicated to IBA applications. A number of PIGE cross-section data had already been uploaded to the Ion Beam Analysis Nuclear Data Library (IBANDL)

  15. Experimental study of direct photon emission in K- --> pi- pi0 gamma decay using ISTRA+ detector

    CERN Document Server

    Uvarov, V A; Britvich, G I; Datsko, K V; Filin, A P; Inyakin, A V; Khmelnikov, V A; Konstantinov, A S; Konstantinov, V F; Korolkov, I Ya; Leontiev, V M; Novikov, V P; Obraztsov, V F; Polyakov, V A; Romanovsky, V I; Ronjin, V M; Shelikhov, V I; Smirnov, N E; Chikilev, O G; Yushchenko, O P; Bolotov, V N; Duk, V A; Laptev, S V; Polyarush, A Yu

    2004-01-01

    The branching ratio in the charged-pion kinetic energy region of 55 to 90 MeV for the direct photon emission in the K- --> pi- pi0 gamma decay has been measured using in-flight decays detected with the ISTRA+ setup operating in the 25 GeV/c negative secondary beam of the U-70 PS. The value Br(DE)=[0.37+-0.39(stat)+-0.10(syst)]*10^(-5) obtained from the analysis of 930 completely reconstructed events is consistent with the average value of two stopped-kaon experiments, but it differs by 2.5 standard deviations from the average value of three in-flight-kaon experiments. The result is also compared with recent theoretical predictions.

  16. Modulated Gamma-ray emission from compact millisecond pulsar binary systems

    CERN Document Server

    Bednarek, W

    2013-01-01

    A significant amount of the millisecond pulsars has been discovered within binary systems. In several such binary systems the masses of the companion stars have been derived allowing to distinguish two classes of objects, called the Black Widow and the Redback binaries. Pulsars in these binary systems are expected to produce winds which, colliding with stellar winds, create conditions for acceleration of electrons. These electrons should interact with the anisotropic radiation from the companion stars producing gamma-ray emission modulated with the orbital period of the binary system. We consider the interaction of a millisecond pulsar (MSP) wind with a very inhomogeneous stellar wind from the companion star within binary systems of the Black Widow and Redback types. It is expected that the pulsar wind should mix efficiently with the inhomogeneous stellar wind. Electrons accelerated in such mixed, turbulent winds can interact with the magnetic field and also strong radiation from the companion star producing ...

  17. TeV Gamma Ray Emission from Nearby Pulsar Wind Nebulae with HAWC

    Science.gov (United States)

    Zhou, Hao; Salesa Greus, Francisco; López-Coto, Rubén; Benzvi, Segev; Casanova, Sabrina; HAWC Collaboration

    2017-01-01

    Pulsar wind nebulae are considered efficient electron/positron accelerators in our Galaxy. It has been suggested that particles accelerated by nearby pulsar wind nebulae, such as Geminga, would possibly account for the observed multi-GeV positron excess. The Geminga pulsar is one of the closest middle-aged pulsars and its pulsations were first discovered in X-rays. Milagro reported an extended TeV source spatially coincident with the Geminga pulsar, but IACT observations using standard analysis techniques have only provided upper limits. The High Altitude Water Cherenkov (HAWC) Observatory, located in central Mexico at 4100 m above sea level, is sensitive to gamma rays between 100 GeV and 100 TeV. With a field of view of 2 steradians, HAWC has a good sensitivity to extended sources such as pulsar wind nebulae. Early data collected with HAWC reveals an extended source coincident with the Geminga pulsar, similar to what Milagro has reported. We will present results of spectral and morphological analyses on extended TeV gamma-ray emission from Geminga and other nearby pulsar wind nebulae with HAWC data. The interpretation of whether positrons from nearby pulsar wind nebulae can explain the observed positron excess will be discussed as well.

  18. Milagro Constraints on Very High Energy Emission from Short Duration Gamma-Ray Bursts

    CERN Document Server

    Abdo, A A; Berley, D; Blaufuss, E; Casanova, S; Dingus, B L; Ellsworth, R W; González, M M; Goodman, J A; Hays, E; Hoffman, C M; Kolterman, B E; Lansdell, C P; Linnemann, J T; McEnery, J E; Mincer, A I; Némethy, P; Noyes, D; Ryan, J M; Samuelson, F W; Parkinson, P M Saz; Shoup, A; Sinnis, G; Smith, A J; Sullivan, G W; Vasileiou, V; Walker, G P; Williams, D A; Xu, X W; Yodh, G B

    2007-01-01

    Recent rapid localizations of short, hard gamma-ray bursts (GRBs) by the Swift and HETE satellites have led to the observation of the first afterglows and the measurement of the first redshifts from this type of burst. Detection of >100 GeV counterparts would place powerful constraints on GRB mechanisms. Seventeen short duration (100 GeV counterparts to these GRBs and find no significant emission correlated with these bursts. Due to the absorption of high-energy gamma rays by the extragalactic background light (EBL), detections are only expected for redshifts less than ~0.5. While most long duration GRBs occur at redshifts higher than 0.5, the opposite is thought to be true of short GRBs. Lack of a detected VHE signal thus allows setting meaningful fluence limits. One GRB in the sample (050509b) has a likely association with a galaxy at a redshift of 0.225, while another (051103) has been tentatively linked to the nearby galaxy M81. Fluence limits are corrected for EBL absorption, either using the known measu...

  19. Study of the diffuse gamma-ray emission from the Galactic plane with ARGO-YBJ

    CERN Document Server

    Bartoli, B; Bi, X J; Branchini, P; Budano, A; Camarri, P; Cao, Z; Cardarelli, R; Catalanotti, S; Chen, S Z; Chen, T L; Creti, P; Cui, S W; Dai, B Z; D'Amone, A; Danzengluobu,; De Mitri, I; Piazzoli, B D'Ettorre; Di Girolamo, T; Di Sciascio, G; Feng, C F; Feng, Zhaoyang; Feng, Zhenyong; Gou, Q B; Guo, Y Q; He, H H; Hu, Haibing; Hu, Hongbo; Iacovacci, M; Iuppa, R; Jia, H Y; Labaciren,; Li, H J; Liguori, G; Liu, C; Liu, J; Liu, M Y; Lu, H; Ma, L L; Ma, X H; Mancarella, G; Mari, S M; Marsella, G; Martello, D; Mastroianni, S; Montini, P; Ning, C C; Panareo, M; Perrone, L; Pistilli, P; Ruggieri, F; Salvini, P; Santonico, R; Shen, P R; Sheng, X D; Shi, F; Surdo, A; Tan, Y H; Vallania, P; Vernetto, S; Vigorito, C; Wang, H; Wu, C Y; Wu, H R; Xue, L; Yang, Q Y; Yang, X C; Yao, Z G; Yuan, A F; Zha, M; Zhang, H M; Zhang, L; Zhang, X Y; Zhang, Y; Zhao, J; Zhaxiciren,; Zhaxisangzhu,; Zhou, X X; Zhu, F R; Zhu, Q Q; Zizzi, G

    2015-01-01

    The events recorded by ARGO-YBJ in more than five years of data collection have been analyzed to determine the diffuse gamma-ray emission in the Galactic plane at Galactic longitudes 25{\\deg} < l < 100{\\deg} and Galactic latitudes . The energy range covered by this analysis, from ~350 GeV to ~2 TeV, allows the connection of the region explored by Fermi with the multi-TeV measurements carried out by Milagro. Our analysis has been focused on two selected regions of the Galactic plane, i.e., 40{\\deg} < l < 100{\\deg} and 65{\\deg} < l < 85{\\deg} (the Cygnus region), where Milagro observed an excess with respect to the predictions of current models. Great care has been taken in order to mask the most intense gamma-ray sources, including the TeV counterpart of the Cygnus cocoon recently identified by ARGO-YBJ, and to remove residual contributions. The ARGO-YBJ results do not show any excess at sub-TeV energies corresponding to the excess found by Milagro, and are consistent with the predictions of ...

  20. The origin of the puzzling hard X-ray emission of $\\gamma$ Cassiopeiae

    CERN Document Server

    Motch, Christian; Smith, Myron A

    2015-01-01

    Massive B and Be stars produce X-rays from shocks in high velocity winds with temperatures of a few million degrees and maximum X-ray luminosities of $\\approx$ 10$^{31}$ erg/s. Surprisingly, a sub-group of early Be stars exhibits > 20 times hotter X-ray temperatures and > 10 times higher X-ray luminosities than normal. This group of Be stars, dubbed Gamma-Cas analogs, contains about 10 known objects. The origin of this bizarre behavior has been extensively debated in the past decades. Two mechanisms have been put forward, accretion of circumstellar disk matter onto an orbiting white dwarf, or magnetic field interaction between the star and the circumstellar disk (Smith & Robinson 1999). We show here that the X-ray and optical emissions of the prototype of the class, Gamma-Cas, are very well correlated on year time scales with no significant time delay. Since the expected migration time from internal disk regions that emit most of the optical flux to the orbit of the companion star is of several years, the...

  1. AN OBSERVED CORRELATION BETWEEN THERMAL AND NON-THERMAL EMISSION IN GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Burgess, J.; Preece, Robert D. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Ryde, Felix; Axelsson, Magnus [Department of Physics, Royal Institute of Technology (KTH), AlbaNova, SE-106 91 Stockholm (Sweden); Veres, Peter; Mészáros, Peter [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Connaughton, Valerie; Briggs, Michael; Bhat, P. N.; Pelassa, Veronique [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Pe' er, Asaf [Physics Department, University College Cork, Cork (Ireland); Iyyani, Shabnam [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden); Goldstein, Adam [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Baring, Matthew G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Byrne, David; Fitzpatrick, Gerard; Foley, Suzanne [University College Dublin, Belfield, Dublin 4 (Ireland); Kocevski, Daniel; Omodei, Nicola [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Paciesas, William S., E-mail: jmichaelburgess@gmail.com, E-mail: rob.preece@nasa.gov, E-mail: felix@particle.kth.se, E-mail: veres@gwu.edu, E-mail: npp@astro.psu.edu [Universities Space Research Association, Huntsville, AL 35805 (United States); and others

    2014-04-01

    Recent observations by the Fermi Gamma-ray Space Telescope have confirmed the existence of thermal and non-thermal components in the prompt photon spectra of some gamma-ray bursts (GRBs). Through an analysis of six bright Fermi GRBs, we have discovered a correlation between the observed photospheric and non-thermal γ-ray emission components of several GRBs using a physical model that has previously been shown to be a good fit to the Fermi data. From the spectral parameters of these fits we find that the characteristic energies, E {sub p} and kT, of these two components are correlated via the relation E {sub p}∝T {sup α} which varies from GRB to GRB. We present an interpretation in which the value of the index α indicates whether the jet is dominated by kinetic or magnetic energy. To date, this jet composition parameter has been assumed in the modeling of GRB outflows rather than derived from the data.

  2. Spectroscopic study of prompt-gamma emission for range verification in proton therapy.

    Science.gov (United States)

    Kelleter, Laurent; Wrońska, Aleksandra; Besuglow, Judith; Konefał, Adam; Laihem, Karim; Leidner, Johannes; Magiera, Andrzej; Parodi, Katia; Rusiecka, Katarzyna; Stahl, Achim; Tessonnier, Thomas

    2017-02-01

    We present the results of an investigation of the prompt-gamma emission from an interaction of a proton beam with phantom materials. Measurements were conducted with a novel setup allowing the precise selection of the investigated depth in the phantom, featuring three different materials composed of carbon, oxygen and hydrogen. We studied two beam energies of 70.54 and 130.87MeV and two detection angles: 90° and 120°. The results are presented in form of profiles of the prompt-gamma yield as a function of depth. In the analysis we focused on the transitions with the largest cross sections: (12)C4.44→g.s. and (16)O6.13→g.s.. We compare the profiles obtained under various irradiation conditions, with emphasis on the shape of the distal fall-off. The results are also compared to calculations including different cross-section models. They are in agreement with the model exploiting published cross-section data, but the comparison with the Talys model shows discrepancies. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Nonlinear shock acceleration and gamma-ray emission from Tycho and Kepler

    CERN Document Server

    Morlino, G

    2012-01-01

    We apply the non-linear diffusive shock acceleration theory in order to describe the properties of two supernova remnants, SN 1572 (Tycho) and SN 1604 (Kepler). By analyzing the multi-wavelength spectra, we infer that both Tycho's and Kepler's forward shocks are accelerating protons up to ~500 TeV, channeling into cosmic rays more than 10 per cent of their kinetic energy. We find that the streaming instability induced by cosmic rays is consistent with the X-ray morphology of the remnants, indicating a very efficient magnetic field amplification (up to ~300 microG). In the case of Tycho we explain the gamma-ray spectrum from the GeV up to the TeV band as due to pion decay produced in nuclear collisions by accelerated nuclei scattering against the background gas. On the other hand, due to the larger distance, the gamma-ray emission from Kepler is not detected, being below the sensitivity of the present detectors, but it should be detectable by the Cerenkov Telescope Array.

  4. Search for gamma-ray emission from AE Aquarii with seven years of FERMI-LAT observations

    CERN Document Server

    Li, Jian; Rea, Nanda; Wilhelmi, Emma de Ona; Papitto, Alessandro; Hou, Xian; Mauche, Christopher W

    2016-01-01

    AE Aquarii (AE Aqr) is a cataclysmic binary hosting one of the fastest rotating (P$_{\\rm spin}$ = 33.08 s) white dwarfs known. Based on seven years of Fermi Large Area Telescope (LAT) Pass 8 data, we report on a deep search for gamma-ray emission from AE Aqr. Using X-ray observations from ASCA, XMM-Newton, Chandra, Swift, Suzaku, and NuSTAR, spanning 20 years, we substantially extend and improve the spin ephemeris of AE Aqr. Using this ephemeris, we searched for gamma-ray pulsations at the spin period of the white dwarf. No gamma-ray pulsations were detected above 3 $\\sigma$ significance. Neither phase-averaged gamma-ray emission nor gamma-ray variability of AE Aquarii is detected by Fermi-LAT. We impose the most restrictive upper limit to the gamma-ray flux from AE Aqr to date: $1.3\\times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$ in the 100 MeV-300 GeV energy range, providing constraints on models.

  5. Modeling the gamma-ray emission in the Galactic Center with a fading cosmic-ray accelerator

    CERN Document Server

    Liu, Ruo-Yu; Prosekin, Anton; Chang, Xiao-Chuan

    2016-01-01

    Recent HESS observations of the ~200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic Center. Interestingly, the gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic Center shows a cutoff at ~10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single, yet fading accelerator. In this model, gamma rays from the CMZ region are produced by protons injected in the past, while gamma rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the C...

  6. Modeling the Gamma-Ray Emission in the GALACTIC CENTER with a Fading Cosmic-ray Accelerator

    Science.gov (United States)

    Liu, Ruo-Yu; Wang, Xiang-Yu; Prosekin, Anton; Chang, Xiao-Chuan

    2016-12-01

    Recent HESS observations of the ∼200 pc scale diffuse gamma-ray emission from the central molecular zone (CMZ) suggest the presence of a PeV cosmic-ray accelerator (PeVatron) located in the inner 10 pc region of the Galactic center. Interestingly, the gamma-ray spectrum of the point-like source (HESS J1745-290) in the Galactic center shows a cutoff at ∼10 TeV, implying a cutoff around 100 TeV in the cosmic-ray proton spectrum. Here we propose that the gamma-ray emission from the inner and the outer regions may be explained self-consistently by run-away protons from a single yet fading accelerator. In this model, gamma-rays from the CMZ region are produced by protons injected in the past, while gamma-rays from the inner region are produced by protons injected more recently. We suggest that the blast wave formed in a tidal disruption event (TDE) caused by the supermassive black hole (Sgr A*) could serve as such a fading accelerator. With typical parameters of the TDE blast wave, gamma-ray spectra of both the CMZ region and HESS J1745-290 can be reproduced simultaneously. Meanwhile, we find that the cosmic-ray energy density profile in the CMZ region may also be reproduced in the fading accelerator model when appropriate combinations of the particle injection history and the diffusion coefficient of cosmic rays are adopted.

  7. Search for Very-high-energy \\gamma-ray emission from Galactic globular clusters with H.E.S.S

    CERN Document Server

    :,; Acero, F; Aharonian, F; Akhperjanian, A G; Anton, G; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Tjus, J Becker; Bernlöhr, K; Birsin, E; Biteau, J; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Chaves, R C G; Cheesebrough, A; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; deWilt, P; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gajdus, M; Gallant, Y A; Garrigoux, T; Gast, H; Giebels, B; Glicenstein, J F; Glück, B; Göring, D; Grondin, M -H; Grudzińska, M; Häffner, S; Hague, J D; Hahn, J; Hampf, D; Harris, J; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Klepser, S; Klochkov, D; Kluźniak, W; Kneiske, T; Kolitzus, D; Komin, Nu; Kosack, K; Kossakowski, R; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lemoine-Goumard, M; Lenain, J -P; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Medina, M C; Méhault, J; Menzler, U; Moderski, R; Mohamed, M; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nguyen, N; Niemiec, J; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Raue, M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sheidaei, F; Skilton, J L; Sol, H; Spengler, G; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; White, R; Wierzcholska, A; Wouters, D; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S

    2013-01-01

    Globular clusters (GCs) are established emitters of high-energy (HE, 100 MeV100 GeV) \\gamma-ray regime, judging from the recent detection of a signal from the direction of Terzan 5 with the H.E.S.S. telescope array. We searched for point-like and extended VHE \\gamma-ray emission from 15 GCs serendipitously covered by H.E.S.S observations and also performed a stacking analysis combining the data from all GCs to investigate the hypothesis of a population of faint emitters. Assuming IC emission as the origin of the VHE \\gamma-ray signal from the direction of Terzan 5, we calculated the expected \\gamma-ray flux from each of the 15 GCs, based on their number of millisecond pulsars, their optical brightness and the energy density of background photon fields. We did not detect significant VHE \\gamma-ray emission from any of the 15 GCs in either of the two analyses. Given the uncertainties related to the parameter determinations, the obtained flux upper limits allow to rule out the simple IC/msPSR scaling model for N...

  8. Discovery of TeV Gamma-ray Emission Toward Supernova Remnant SNR G78.2+2.1

    CERN Document Server

    Aliu, E; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Bird, R; Bouvier, A; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Ciupik, L; Collins-Hughes, E; Connolly, M P; Cui, W; Dickherber, R; Duke, C; Dumm, J; Dwarkadas, V V; Errando, M; Falcone, A; Federici, S; Feng, Q; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Gillanders, G H; Godambe, S; Gotthelf, E V; Griffin, S; Grube, J; Gyuk, G; Hanna, D; Holder, J; Huan, H; Hughes, G; Humensky, T B; Kaaret, P; Karlsson, N; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; Lee, K; Madhavan, A S; Maier, G; Majumdar, P; McArthur, S; McCann, A; Millis, J; Moriarty, P; Mukherjee, R; Nelson, T; de Bhróithe, A O'Faoláin; Ong, R A; Orr, M; Otte, A N; Pandel, D; Park, N; Perkins, J S; Pohl, M; Popkow, A; Prokoph, H; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Ruppel, J; Saxon, D B; Schroedter, M; Sembroski, G H; Şentürk, G D; Skole, C; Telezhinsky, I; Tešić, G; Theiling, M; Thibadeau, S; Tsurusaki, K; Tyler, J; Varlotta, A; Vassiliev, V V; Vincent, S; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Welsing, R; Williams, D A; Zitzer, B

    2013-01-01

    We report the discovery of an unidentified, extended source of very-high-energy (VHE) gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hours of data taken by the VERITAS gamma-ray observatory in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of 0.23^{\\circ} \\pm 0.03^{\\circ} (stat)+0.04^{\\circ}_{-0.02}^{\\circ}(sys) and its spectrum is well-characterized by a differential power law (dN/dE = N_0 \\times (E/TeV)^{-\\Gamma}) with a photon index of {\\Gamma} = 2.37 \\pm 0.14 (stat) \\pm 0.20 (sys) and a flux normalization of N0 = 1.5 \\pm 0.2 (stat) \\pm 0.4(sys) \\times 10^-12 ph TeV^{-1} cm^{-2} s^{-1}. This yields ...

  9. The Hard VHE Gamma-ray Emission in High-Redshift TeV Blazars: Comptonization of Cosmic Microwave Background Radiation in an Extended Jet?

    CERN Document Server

    Boettcher, Markus; Finke, Justin D

    2008-01-01

    Observations of very-high-energy (VHE, E > 250 GeV) gamma-ray emission from several blazars at z > 0.1 have placed stringent constraints on the elusive spectrum and intensity of the intergalactic infrared background radiation (IIBR). Correcting their observed VHE spectrum for gamma-gamma absorption even by the lowest plausible level of the IIBR provided evidence for a very hard (photon spectral index Gamma_{ph} 4 X 10^6) on kiloparsec scales along the jet.

  10. DISCOVERY OF TeV GAMMA-RAY EMISSION TOWARD SUPERNOVA REMNANT SNR G78.2+2.1

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T.; Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R.; Cannon, A.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Bradbury, S. M. [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C., E-mail: amandajw@iastate.edu [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); and others

    2013-06-20

    We report the discovery of an unidentified, extended source of very-high-energy gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hr of data taken by the VERITAS gamma-ray observatory in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of 0.23 Degree-Sign .23 {+-} 0. Degree-Sign 03{sub stat-0 Degree-Sign .02sys}{sup +0 Degree-Sign .04} and its spectrum is well-characterized by a differential power law (dN/dE = N{sub 0} Multiplication-Sign (E/TeV){sup -{Gamma}}) with a photon index of {Gamma} = 2.37 {+-} 0.14{sub stat} {+-} 0.20{sub sys} and a flux normalization of N{sub 0} = 1.5 {+-} 0.2{sub stat} {+-} 0.4{sub sys} Multiplication-Sign 10{sup -12} photon TeV{sup -1} cm{sup -2} s{sup -1}. This yields an integral flux of 5.2 {+-} 0.8{sub stat} {+-} 1.4{sub sys} Multiplication-Sign 10{sup -12} photon cm{sup -2} s{sup -1} above 320 GeV, corresponding to 3.7% of the Crab Nebula flux. We consider the relationship of the TeV gamma-ray emission with the GeV gamma-ray emission seen from SNR G78.2+2.1 as well as that seen from a nearby cocoon of freshly accelerated cosmic rays. Multiple scenarios are considered as possible origins for the TeV gamma-ray emission, including hadronic particle acceleration at the SNR shock.

  11. Search for an extended VHE gamma-ray emission from Mrk 421 and Mrk 501 with the MAGIC Telescope

    CERN Document Server

    Aleksić, J; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berdyugin, A; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Bonnoli, G; Bordas, P; Tridon, D Borla; Bosch-Ramon, V; Bose, D; Braun, I; Bretz, T; Britzger, D; Camara, M; Carmona, E; Carosi, A; Colin, P; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Dazzi, F; De Angelis, A; del Pozo, E De Cea; Reyes, R De los; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Elsaesser, D; Errando, M; Ferenc, D; Fonseca, M V; Font, L; López, R J García; Garczarczyk, M; Gaug, M; Godinovic, N; Hadasch, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Hsu, C C; Jogler, T; Klepser, S; Krähenbühl, T; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Orito, R; Oya, I; Paiano, S; Paoletti, R; Paredes, J M; Partini, S; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Prada, F; Prandini, E; Puchades, N; Puljak, I; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Rissi, M; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sánchez-Conde, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shayduk, M; Shore, S N; Sierpowska-Bartosik, A; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Spiro, S; Stamerra, A; Steinke, B; Struebig, J C; Suric, T; Takalo, L; Tavecchio, F; Temnikov, P; Terzic, T; Tescaro, D; Teshima, M; Torres, D F; Vankov, H; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R; Neronov, A; Semikoz, D V

    2010-01-01

    Context: Part of the very high energy $\\gamma$-ray radiation coming from extragalactic sources is absorbed through the pair production process on the extragalactic background light photons. Extragalactic magnetic fields alter the trajectories of these cascade pairs and, in turn, convert cosmic background photons to gamma-ray energies by inverse Compton scattering. These secondary photons can form an extended halo around bright VHE sources. Aims: We searched for an extended emission around the bright blazars Mrk 421 and Mrk 501 using the MAGIC telescope data. Methods: If extended emission is present, the angular distribution of reconstructed gamma-ray arrival directions around the source is broader than for a point-like source. In the analysis of a few tens of hours of observational data taken from Mrk 421 and Mrk 501 we used a newly developed method that provides better angular resolution. This method is based on the usage of multidimensional decision trees. Comparing the measured shapes of angular distributi...

  12. Direct And Reprocessed Gamma-Ray Emission of Kpc-Scale Jets in FR I Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Stawarz, L.; /SLAC; Kneiske, T.M.; /Adelaide U.; Kataoka, J.; /Tokyo Inst. Tech. /KIPAC, Menlo Park

    2007-10-09

    We discuss the contribution of kiloparsec-scale jets in FR I radio galaxies to the diffuse {gamma}-ray background radiation. The analyzed {gamma}-ray emission comes from inverse-Compton scattering of starlight photon fields by the ultrarelativistic electrons whose synchrotron radiation is detected from such sources at radio, optical and X-ray energies. We find that these objects, under the minimum-power hypothesis (corresponding to a magnetic field of 300 {micro}G in the brightest knots of these jets), can contribute about one percent to the extragalactic {gamma}-ray background measured by EGRET. We point out that this result already indicates that the magnetic fields in kpc-scale jets of low-power radio galaxies are not likely to be smaller than 10 {micro}G on average, as otherwise the extragalactic {gamma}-ray background would be overproduced.

  13. Unveiling the origin of gamma-ray emission towards the W41 region with H.E.S.S. data

    Science.gov (United States)

    Méhault, Jérémie; Clapson, Andre-Claude; Fuessling, Matthias; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Behera, B.; Bernlühr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bühler, R.; Bulik, T.; Büsching, I.; Boutelier, T.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Conrad, J.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Domainko, A. Djannati-Ataü W.; Drury, L. O'c.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernan-Des, M. V.; Fiasson, A.; Fürster, A.; Fontaine, G.; Füssling, M.; Gabici, S.; Gallant, Y. A.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Güring, D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jung, I.; Katarzynski, K.; Katz, U.; Kaufmann, S.; Kerschhaggl, M.; Khangulyan, D.; Khálifi, B.; Keogh, D.; Klochkov, D.; Kluzniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Lamanna, G.; Lenain, J.-P.; Lohse, T.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Mau-Rin, D.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Ona Wilhelmi, E.; Opitz, B.; Orford, K. J.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Ryde, F.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schück, F. M.; Schünwald, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sushch, I.; Sikora, M.; Skilton, J. L.; Sol, H.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Szostek, A.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Venter, L.; Vialle, J. P.; Viana, A.; Vincent, P.; Vivier, M.; Vülk, H. J.; Volpe, F.; Vorobiov, S.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    Both H.E.S.S. and MAGIC Cherenkov telescopes have observed very-high energy (VHE) gamma-ray emission from W41, a 105 years-old supernova remnant (SNR). The origin of this emission is still uncertain. Different scenarios, notably interaction with a molecular cloud or pulsar wind nebulae, have been proposed, in relation to 13 CO emission and X-ray pulsar candidates spatially coincident with the VHE excess. The improvement in event reconstruction and selection developed by the H.E.S.S. collaboration allows us to analyse this source with an unprecedented gamma-ray angular resolution. Furthermore, thanks to 5 time more H.E.S.S. data since the discovery paper, it is now possible to examine more precisely the spatial distribution of the VHE gamma-rays from W41 in com-parison with radio data. Informations provided by the 1-year Fermi-LAT catalogue will be included in the discussion of possible scenarios. The nearby SNR G22.7-0.2 (˜0.6° from W41, well within the H.E.S.S. field of view) appears to coincide with CO emission and is thus another potential VHE gamma-ray emitter.

  14. MODELING THE MULTIWAVELENGTH EMISSION FROM G73.9+0.9: GAMMA RAYS FROM AN SNR–MC INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Araya, Miguel, E-mail: miguel.araya@ucr.ac.cr [Centro de Investigaciones Espaciales (CINESPA) and Escuela de Física, Universidad de Costa Rica, San José 2060 (Costa Rica)

    2015-11-01

    G73.9+0.9 has been classified as a probable shell-type supernova remnant, though it has also been suggested that it could have a pulsar wind nebula (PWN). Here, a broadband model of the non-thermal emission of G73.9+0.9 from radio to gamma rays is presented. The model includes a new gamma-ray observation obtained by the analysis of seven years of data from the Fermi/LAT telescope. Above 200 MeV, the source is detected with a significance of 13σ and the spectrum of the radiation is best described by a power law with an index of ∼2.5. The leptonic mechanisms are hard to reconcile with the measured radio and gamma-ray spectral energy distribution. A PWN origin for the high-energy emission is also not very likely, due to the lack of detection of pulsars and of X-ray emission in the region, as well as from the shape of the gamma-ray spectrum. Given the possibility that the object is interacting with molecular clouds, a hadronic origin of the high-energy emission is more likely, and the spectral properties of the cosmic rays responsible for this radiation are derived.

  15. Time resolved spectral analysis of the prompt emission of long gamma ray bursts with GeV Emission

    CERN Document Server

    Rao, A R; Bhattacharya, J; Chandra, S; Maheshwari, N; Choudhury, M; Misra, Ranjeev

    2013-01-01

    We make a detailed time resolved spectroscopy of bright long gamma ray bursts (GRBs) which show significant GeV emissions (GRB 080916C, GRB 090902B, and GRB 090926A). In addition to the standard Band model, we also use a model consisting of a blackbody and a power-law to fit the spectra. We find that for the latter model there are indications for an additional soft component in the spectra. While previous studies have shown that such models are required for GRB 090902B, here we find that a composite spectral model consisting of two black bodies and a power law adequately fit the data of all the three bright GRBs. We investigate the evolution of the spectral parameters and find several generic interesting features for all three GRBs, like a) temperatures of the black bodies are strongly correlated to each other, b) flux in the black body components are strongly correlated to each other, c) the temperatures of the black body trace the profile of the individual pulses of the GRBs, and d) the characteristics of t...

  16. LONG-TERM MONITORING OF MRK 501 FOR ITS VERY HIGH ENERGY {gamma} EMISSION AND A FLARE IN 2011 OCTOBER

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, B.; Catalanotti, S. [Dipartimento di Fisica dell' Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cinthia, I-80126 Napoli (Italy); Bernardini, P.; Bleve, C. [Dipartimento di Matematica e Fisica ' E. De Giorgi' dell' Universita del Salento, via per Arnesano, I-73100 Lecce (Italy); Bi, X. J.; Cao, Z.; Chen, S. Z.; Chen, Y. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, 100049 Beijing (China); Bolognino, I. [Dipartimento di Fisica Nucleare e Teorica dell' Universita di Pavia, via Bassi 6, I-27100 Pavia (Italy); Branchini, P.; Budano, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Calabrese Melcarne, A. K. [Istituto Nazionale di Fisica Nucleare-CNAF, Viale Berti-Pichat 6/2, I-40127 Bologna (Italy); Camarri, P. [Dipartimento di Fisica dell' Universita di Roma ' Tor Vergata' , via della Ricerca Scientifica 1, I-00133 Roma (Italy); Cardarelli, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Cattaneo, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via Bassi 6, I-27100 Pavia (Italy); Chen, T. L. [Tibet University, 850000 Lhasa, Xizang (China); Creti, P. [Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, via per Arnesano, I-73100 Lecce (Italy); Cui, S. W. [Hebei Normal University, Shijiazhuang 050016, Hebei (China); Dai, B. Z. [Yunnan University, 2 North Cuihu Rd., 650091 Kunming, Yunnan (China); D' Ali Staiti, G., E-mail: chensz@ihep.ac.cn [Dipartimento di Fisica e Tecnologie Relative, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, I-90128 Palermo (Italy); Collaboration: ARGO-YBJ Collaboration; and others

    2012-10-10

    As one of the brightest active blazars in both X-ray and very high energy {gamma}-ray bands, Mrk 501, is very useful for physics associated with jets from active galactic nuclei. The ARGO-YBJ experiment has monitored Mrk 501 for {gamma}-rays above 0.3 TeV since 2007 November. The largest flare since 2005 was observed from 2011 October and lasted until about 2012 April. In this paper, a detailed analysis of this event is reported. During the brightest {gamma}-ray flaring episodes from 2011 October 17 to November 22, an excess of the event rate over 6{sigma} is detected by ARGO-YBJ in the direction of Mrk 501, corresponding to an increase of the {gamma}-ray flux above 1 TeV by a factor of 6.6 {+-} 2.2 from its steady emission. In particular, the {gamma}-ray flux above 8 TeV is detected with a significance better than 4{sigma}. Based on time-dependent synchrotron self-Compton (SSC) processes, the broadband energy spectrum is interpreted as the emission from an electron energy distribution parameterized with a single power-law function with an exponential cutoff at its high-energy end. The average spectral energy distribution for the steady emission is well described by this simple one-zone SSC model. However, the detection of {gamma}-rays above 8 TeV during the flare challenges this model due to the hardness of the spectra. Correlations between X-rays and {gamma}-rays are also investigated.

  17. Discovery of High-energy and Very High Energy Gamma-ray Emission from the Blazar RBS 0413

    CERN Document Server

    Aliu, E; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Boettcher, M; Bouvier, A; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Ciupik, L; Collins-Hughes, E; Connolly, M P; Coppi, P; Cui, W; Decerprit, G; Dickherber, R; Dumm, J; Errando, M; Falcone, A; Feng, Q; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Godambe, S; Griffin, S; Grube, J; Gyuk, G; Hanna, D; Hawkins, K; Holder, J; Huan, H; Hughes, G; Humensky, T B; Kaaret, P; Karlsson, N; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; Lee, K; Madhavan, A S; Maier, G; Majumdar, P; McArthur, S; McCann, A; Moriarty, P; Mukherjee, R; Ong, R A; Orr, M; Otte, A N; Palma, N; Park, N; Perkins, J S; Pichel, A; Pohl, M; Prokoph, H; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Ruppel, J; Saxon, D B; Schroedter, M; Sembroski, G H; Senturk, G D; Smith, A W; Staszak, D; Telezhinsky, I; Tesic, G; Theiling, M; Thibadeau, S; Tsurusaki, K; Varlotta, A; Vivier, M; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Zitzer, B; Fortin, P; Horan, D

    2012-01-01

    We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high-energy (VHE; E > 100 GeV) gamma-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based gamma-ray observatory, detected VHE gamma rays from RBS 0413 with a statistical significance of 5.5 standard deviations (sigma) and a gamma-ray flux of (1.5 \\pm 0.6stat \\pm 0.7syst) \\times 10^(-8) photons m^(-2) s^(-1) (\\sim 1% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 \\pm 0.68stat \\pm 0.30syst. Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE gamma rays from RBS 0413 with a statistical significance of more than 9 sigma, a power-law photon index of 1.57 \\pm 0.12stat +0.11sys -0.12sys and a gamma-ray flux between 300 MeV and 300 GeV of (1.64 \\pm 0.43stat +0.31sys -0.22sys) \\times 10^(-5) photons m^(-2) s^(-1). We present the results from Fermi-LAT and VERITAS, including a...

  18. Gamma-Irradiation Effects on the Spectral and Amplified Spontaneous Emission (ASE Properties of Conjugated Polymers in Solution

    Directory of Open Access Journals (Sweden)

    Mohamad S. AlSalhi

    2016-12-01

    Full Text Available In this paper, we investigate the effects of gamma (γ radiation on the spectral and mplified spontaneous emission (ASE properties of two conjugated polymers (CPs viz., poly [2-methoxy-5-(2-ethylhexyloxy-1,4-phenylenevinylene] (MEH–PPV (CPM and poly{[2-[2′,5′-bis(2″-ethylhexyloxyphenyl]-1,4-phenylenevinylene]-co-[2-methoxy-5-(2′-ethylhexyloxy-1,4-phenylene vinylene]} (BEHP-co-MEH–PPV (BMP in tetrahydrofuran (THF. Gamma irradiation strongly affected the photophysical properties of these CPs. To explore these changes, gamma radiation, in the range of 2–50 kGy, was used to maintain the temperature at 5 °C constant for all doses at a dose rate of 12.67 kGy/h, using a 60Co gamma ray. The ASE profiles of the CPs in THF were obtained under the high power excitation of a Nd:YAG laser (355 nm, pre- and post-radiation. The result revealed a dramatic blue shift of the fluorescence and the ASE spectra after gamma irradiation. This shift in the luminescence and ASE spectra could be a response to the conformational disorders such as gamma irradiation-induced polymer crosslinking, which was verified using Raman spectra, FTIR, and swelling experiments. This could be the first report on the effect of gamma radiation on the ASE properties of conjugated polymers.

  19. Fermi-LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Baring, M.G.; /Rice U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bouvier, A.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique /Washington U., Seattle /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /DAPNIA, Saclay /INFN, Perugia /Perugia U. /NASA, Goddard /NASA, Goddard /CSST, Baltimore /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U. /Stockholm U., OKC /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Ecole Polytechnique; /more authors..

    2012-03-30

    The discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant ({approx}10{sup 4} yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1 x 10{sup 36} erg s{sup -1} given the distance constraint of D > 5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral p mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts to {bar n}{sub H} W{sub p} {approx_equal} 5 x 10{sup 51} (D/6 kpc){sup 2} erg cm{sup -3}. Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays.

  20. Broad Line Radio Galaxies Observed with Fermi-LAT: The Origin of the GeV Gamma-Ray Emission

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, J.; /Waseda U., RISE; Stawarz, L.; /JAXA, Sagamihara /Jagiellonian U., Astron. Observ.; Takahashi, Y.; /Waseda U., RISE; Cheung, C.C.; /Natl. Acad. Sci. /Naval Research Lab, Wash., D.C.; Hayashida, M.; /SLAC /Stanford U., HEPL /KIPAC, Menlo Park; Grandi, P.; /Bologna Observ.; Burnett, T.H.; /Washington U., Seattle; Celotti, A.; /SISSA, Trieste; Fegan, S.J.; Fortin, P.; /Ecole Polytechnique; Maeda, K.; Nakamori, T.; /Waseda U., RISE; Taylor, G.B.; /New Mexico U.; Tosti, G.; /INFN, Perugia /Perugia U.; Digel, S.W.; /SLAC /Stanford U., HEPL /KIPAC, Menlo Park; McConville, W.; /NASA, Goddard /Maryland U.; Finke, J.; /Naval Research Lab, Wash., D.C.; D' Ammando, F.; /IASF, Palermo /INAF, Rome

    2012-06-07

    We report on a detailed investigation of the {gamma}-ray emission from 18 broad line radio galaxies (BLRGs) based on two years of Fermi Large Area Telescope (LAT) data. We confirm the previously reported detections of 3C 120 and 3C 111 in the GeV photon energy range; a detailed look at the temporal characteristics of the observed {gamma}-ray emission reveals in addition possible flux variability in both sources. No statistically significant {gamma}-ray detection of the other BLRGs was however found in the considered dataset. Though the sample size studied is small, what appears to differentiate 3C 111 and 3C 120 from the BLRGs not yet detected in {gamma}-rays is the particularly strong nuclear radio flux. This finding, together with the indications of the {gamma}-ray flux variability and a number of other arguments presented, indicate that the GeV emission of BLRGs is most likely dominated by the beamed radiation of relativistic jets observed at intermediate viewing angles. In this paper we also analyzed a comparison sample of high accretion-rate Seyfert 1 galaxies, which can be considered radio-quiet counterparts of BLRGs, and found none were detected in {gamma}-rays. A simple phenomenological hybrid model applied for the broad-band emission of the discussed radio-loud and radio-quiet type 1 active galaxies suggests that the relative contribution of the nuclear jets to the accreting matter is {ge} 1% on average for BLRGs, while {le} 0.1% for Seyfert 1 galaxies.

  1. Search for high energy gamma-ray emission from tidal disruption events with the Fermi Large Area Telescope

    CERN Document Server

    Peng, Feng-Kun; Wang, Xiang-Yu

    2016-01-01

    Massive black holes at galaxy center may tear apart a star when the star passes occasionally within the disruption radius, which is the so-called tidal disruption event(TDE). Most TDEs radiate with thermal emission resulted from the acceleration disk, but three TDEs have been detected in bright non-thermal X-ray emission, which is interpreted as arising from the relativistic jets. Search for high-energy gamma-ray emission from one relativistic TDE (Swift J164449.3+573451) with the \\textsl{Fermi} Large Area Telescope (LAT) has yielded non-detection. In this paper, we report the search for high energy emission from the other two relativistic TDEs (Swift J2058.4+0516 Swift J1112.2-8238) during the flare period. No significant GeV emission is found, with an upper limit fluence in LAT energy range being less than $1\\%$ of that in X-rays. Compared with gamma-ray bursts (GRBs) and blazars, these TDEs have the lowest flux ratio between GeV emission and X-ray emission. The non-detection of high-energy emission from re...

  2. DYNAMIC STRAIN AGING BEHAVIOR OF K40S ALLOY

    Institute of Scientific and Technical Information of China (English)

    F.M. Yang; X.F. Sun; H.R. Guan; Z.Q. Hu

    2003-01-01

    The dynamic strain aging behavior during tensile tests of K40S alloy has been investigated in the temperature range of 25-1100℃ with the strain rate range from 10-4to 10-3 s-1. The results show that four different types of serration, identified as A,B, C and E type serration were observed in the temperature range of 300-600℃. The strain exponents for onset of the serrated flow were calculated as 1.21, 2. 79 and 1.61,and the activation energies as 121, 40 and 67kJ/mol for E, B and C type serration respectively. The main mechanism for dynamic strain aging discussed in light of the strain exponent and the activation energy.

  3. CONSTRAINING GAMMA-RAY BURST EMISSION PHYSICS WITH EXTENSIVE EARLY-TIME, MULTIBAND FOLLOW-UP

    Energy Technology Data Exchange (ETDEWEB)

    Cucchiara, A.; Cenko, S. B.; Bloom, J. S.; Morgan, A.; Perley, D. A.; Li, W.; Butler, N. R.; Filippenko, A. V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Melandri, A. [INAF, Osservatorio Astronomicodi Brera, via E. Bianchi 46, I-23807 Merate (Saint Lucia) (Italy); Kobayashi, S.; Smith, R. J.; Mundell, C. G.; Steele, I. A. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead, CH41 1LD (United Kingdom); Hora, J. L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Da Silva, R. L.; Prochaska, J. X.; Worseck, G.; Fumagalli, M. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Milne, P. A. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85719 (United States); Cobb, B., E-mail: acucchia@ucolick.org [Department of Physics, George Washington University, Corcoran 105, 725 21st St, NW, Washington, DC 20052 (United States); and others

    2011-12-20

    Understanding the origin and diversity of emission processes responsible for gamma-ray bursts (GRBs) remains a pressing challenge. While prompt and contemporaneous panchromatic observations have the potential to test predictions of the internal-external shock model, extensive multiband imaging has been conducted for only a few GRBs. We present rich, early-time, multiband data sets for two Swift events, GRB 110205A and GRB 110213A. The former shows optical emission since the early stages of the prompt phase, followed by the steep rising in flux up to {approx}1000 s after the burst (t{sup -{alpha}} with {alpha} = -6.13 {+-} 0.75). We discuss this feature in the context of the reverse-shock scenario and interpret the following single power-law decay as being forward-shock dominated. Polarization measurements, obtained with the RINGO2 instrument mounted on the Liverpool Telescope, also provide hints on the nature of the emitting ejecta. The latter event, instead, displays a very peculiar optical to near-infrared light curve, with two achromatic peaks. In this case, while the first peak is probably due to the onset of the afterglow, we interpret the second peak to be produced by newly injected material, signifying a late-time activity of the central engine.

  4. The high energy gamma-ray emission expected from Tycho's supernova remnant

    CERN Document Server

    Völk, H J; Ksenofontov, L T; Rowell, G P

    2002-01-01

    A nonlinear kinetic model of cosmic ray (CR) acceleration in supernova remnants (SNRs) is used to describe the properties of Tycho's SNR. Observations of the expansion characteristics and of the nonthermal radio and X-ray emission spectra, assumed to be of synchrotron origin, are used to constrain the overall dynamical evolution and the particle acceleration parameters of the system, in addition to what is known from independent estimates of the distance and thermal X-ray observations. It is shown that a very efficient production of nuclear cosmic rays, leading to strong shock modification, and a large downstream magnetic field strength B_d approx 240muG are required to reproduce the observed synchrotron emission from radio to X-ray frequencies. This field strength is still well within the upper bound for the effective magnetic field, consistent with the acceleration process. The pi^0-decay gamma-ray flux turns out to be somewhat greater than the inverse Compton (IC) flux off the Cosmic Microwave Background a...

  5. Gamma knife treatment for refractory epilepsy in seizure focus localized by positron emission tomography/CT★

    Science.gov (United States)

    Bai, Xia; Wang, Xuemei; Wang, Hongwei; Zhao, Shigang; Han, Xiaodong; Hao, Linjun; Wang, Xiangcheng

    2012-01-01

    A total of 80 patients with refractory epilepsy were recruited from the Inner Mongolia Medical College Affiliated Hospital. The foci of 60% of the patients could be positioned using a combined positron emission tomography/CT imaging modality. Hyper- and hypometabolism foci were examined as part of this study. Patients who had abnormal metabolism in positron emission tomography/CT imaging were divided into intermittent-phase group and the seizure-phase group. The intermittent-phase group was further divided into a single-focus group and a multiple-foci group according to the number of seizure foci detected by imaging. Following gamma knife treatment, seizure frequency was significantly lower in the intermittent-phase group and the seizure-phase group. Wieser’s classification reached Grade I or II in nearly 40% of patients. Seizure frequency was significantly lower following treatment, but Wieser’s classification score was significantly higher in the seizure-phase group compared with the intermittent-phase group. Seizure frequency was significantly lower following treatment in the single-focus group, but Wieser’s classification score was significantly higher in the single-focus group as compared with the multiple-foci group. PMID:25317147

  6. Scattered Emission from A Relativistic Outflow and Its Application to Gamma-Ray Bursts

    CERN Document Server

    Shen, R -F; Kumar, P

    2007-01-01

    We investigate a scenario of photons scattering by electrons within a relativistic outflow. The outflow is composed of discrete shells with different speeds. One shell emits radiation for a short duration. Some of this radiation is scattered by the shell(s) behind. We calculate in a simple two-shell model the observed scattered flux density as a function of: the observed primary flux density, the normalized arrival time delay between the two emission components, the Lorentz factor ratio of the two shells and the scattering shell's optical depth. Thomson scattering in a cold shell and Inverse Compton scattering in a hot shell are both considered. The results of our calculations are applied to the Gamma-Ray Bursts and the afterglows. We find that the scattered flux from a cold slower shell is small and likely to be detected only for those bursts with very weak afterglows. A hot scattering shell could give rise to a scattered emission as bright as the X-ray shallow decay component detected in many bursts, on a c...

  7. Fermi Large Area Telescope observations of high-energy gamma-ray emission from behind-the-limb solar flares

    CERN Document Server

    Pesce-Rollins, Melissa; Petrosian, Vahe'; Liu, Wei; da Costa, Fatima Rubio; Allafort, Alice

    2015-01-01

    Fermi-LAT >30 MeV observations have increased the number of detected solar flares by almost a factor of 10 with respect to previous space observations. These sample both the impulsive and long duration phases of GOES M and X class flares. Of particular interest is the recent detections of three solar flares whose position behind the limb was confirmed by the STEREO-B spacecraft. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources and implications for the particle acceleration mechanisms.

  8. Time-correlation between the radio and gamma-ray activity in blazars and the production site of the gamma-ray emission

    CERN Document Server

    Max-Moerbeck, W; Richards, J L; King, O G; Pearson, T J; Readhead, A C S; Reeves, R; Shepherd, M C; Stevenson, M A; Angelakis, E; Fuhrmann, L; Grainge, K J B; Pavlidou, V; Romani, R W; Zensus, J A

    2014-01-01

    In order to determine the location of the gamma-ray emission site in blazars, we investigate the time-domain relationship between their radio and gamma-ray emission. Light-curves for the brightest detected blazars from the first 3 years of the mission of the Fermi Gamma-ray Space Telescope are cross-correlated with 4 years of 15GHz observations from the OVRO 40-m monitoring program. The large sample and long light-curve duration enable us to carry out a statistically robust analysis of the significance of the cross-correlations, which is investigated using Monte Carlo simulations including the uneven sampling and noise properties of the light-curves. Modeling the light-curves as red noise processes with power-law power spectral densities, we find that only one of 41 sources with high quality data in both bands shows correlations with significance larger than 3-sigma (AO 0235+164), with only two more larger than even 2.25-sigma (PKS 1502+106 and B2 2308+34). Additionally, we find correlated variability in Mrk ...

  9. AN UPSCATTERING SPECTRAL FORMATION MODEL FOR THE PROMPT EMISSION OF GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Titarchuk, Lev; Farinelli, Ruben; Frontera, Filippo [Dipartimento di Fisica, Universita di Ferrara, Via Saragat 1, 44122 Ferrara (Italy); Amati, Lorenzo, E-mail: titarchuk@fe.infn.it, E-mail: ltitarch@gmu.edu, E-mail: lev@milkyway.gsfc.nasa.gov [INAF-IASF Bologna, Via Gobetti 101, 40129 Bologna (Italy)

    2012-06-20

    We propose a model for the spectral formation of gamma-ray burst (GRB) prompt emission, where the phenomenological Band function is usually applied to describe this emission. We suggest that the GRB prompt emission is mainly a result of two upscattering processes. The first process is the Comptonization of relatively cold soft photons of the star off electrons of a hot shell of plasma of temperature T{sub e} of the order of 10{sup 9} K (or kT{sub e} {approx} 100 keV) that moves subrelativistically with the bulk velocity V{sub b} substantially less than the speed of light c. In this phase, the Comptonization parameter Y is high and the interaction between a blackbody-like soft seed photon population and hot electrons leads to formation of a saturated Comptonization spectrum modified by the subrelativistic bulk outflow. The second process is an upscattering of the previously Comptonized spectrum by the plasma outflow once it becomes relativistic. This process gives rise to the high-energy power-law (PL) component above the peak in the EF(E) diagram where F(E) is the energy flux. The latter process can be described by a convolution of the Comptonized spectrum with a broken-PL Green function. Possible physical scenarios for this second upscattering process are discussed. In the framework of our model, we give an interpretation of the Amati relation between the intrinsic spectral peak photon energy and radiated energy or luminosity, and we propose a possible explanation of the GRB temporal variability.

  10. Fermi-LAT Discovery of GeV Gamma-ray Emission from the Young Supernova Remnant Cassiopeia A

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.

    2011-08-19

    We report on the first detection of GeV high-energy gamma-ray emission from a young supernova remnant with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope. These observations reveal a source with no discernible spatial extension detected at a significance level of 12.2{sigma} above 500 MeV at a location that is consistent with the position of the remnant of the supernova explosion that occurred around 1680 in the Cassiopeia constellation - Cassiopeia A. The gamma-ray flux and spectral shape of the source are consistent with a scenario in which the gamma-ray emission originates from relativistic particles accelerated in the shell of this remnant. The total content of cosmic rays (electrons and protons) accelerated in Cas A can be estimated as W{sub CR} {approx_equal} (1-4) x 10{sup 49} erg thanks to the well-known density in the remnant assuming that the observed gamma-ray originates in the SNR shell(s). The magnetic field in the radio-emitting plasma can be robustly constrained as B {ge} 0.1 mG, providing new evidence of the magnetic field amplification at the forward shock and the strong field in the shocked ejecta.

  11. Constraints on the gamma-ray emission from the cluster-scale AGN outburst in the Hydra A galaxy cluster

    CERN Document Server

    Abramowski, A; Aharonian, F; Akhperjanian, A G; Anton, G; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Becker, J; Bernloehr, K; Birsin, E; Biteau, J; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Buesching, I; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Cologna, G; Conrad, J; Couturier, C; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Atai, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Fontaine, G; Foerster, A; Fuessling, M; Gajdus, M; Gallant, Y A; Garrigoux, T; Gast, H; Gerard, L; Giebels, B; Glicenstein, J F; Glueck, B; Goering, D; Grondin, M -H; Haeffner, S; Hague, J D; Hahn, J; Hampf, D; Harris, J; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzynski, K; Katz, U; Kaufmann, S; Khelifi, B; Klochkov, D; Kluzniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Krayzel, F; Laffon, H; Lamanna, G; Lenain, J -P; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Medina, M C; Mehault, J; Moderski, R; Mohamed, M; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Wilhelmi, E de Ona; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Puehlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sheidaei, F; Skilton, J L; Sol, H; Spengler, G; Stawarz, L; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Viana, A; Vincent, P; Voelk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; White, R; Wierzcholska, A; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S; Ali, M O

    2012-01-01

    In some galaxy clusters powerful AGN have blown bubbles with cluster scale extent into the ambient medium. The main pressure support of these bubbles is not known to date, but cosmic rays are a viable possibility. For such a scenario copious gamma-ray emission is expected as a tracer of cosmic rays from these systems. Hydra A, the closest galaxy cluster hosting a cluster scale AGN outburst, located at a redshift of 0.0538, is investigated for being a gamma-ray emitter with the High Energy Stereoscopic System (H.E.S.S.) array and the Fermi Large Area Telescope (Fermi-LAT). Data obtained in 20.2 hours of dedicated H.E.S.S. observations and 38 months of Fermi-LAT data, gathered by its usual all-sky scanning mode, have been analyzed to search for a gamma-ray signal. No signal has been found in either data set. Upper limits on the gamma-ray flux are derived and are compared to models. These are the first limits on gamma-ray emission ever presented for galaxy clusters hosting cluster scale AGN outbursts. The non-de...

  12. Long-term Monitoring on Mrk 501 for Its VHE gamma Emission and a Flare in October 2011

    CERN Document Server

    Bartoli, B; Bi, X J; Bleve, C; Bolognino, I; Branchini, P; Budano, A; Melcarne, A K Calabrese; Camarri, P; Cao, Z; Cardarelli, R; Catalanotti, S; Cattaneo, C; Chen, S Z; Chen, T L; Chen, Y; Creti, P; Cui, S W; Dai, B Z; Staiti, G DAl; Danzengluobu,; Dattoli, M; De Mitri, I; Piazzoli, B D Ettorre; Di Girolamo, T; Ding, X H; Di Sciascio, G; Feng, C F; Feng, Zhaoyang; Feng, Zhenyong; Galeazzi, F; Giroletti, E; Gou, Q B; Guo, Y Q; He, H H; Hu, Haibing; Hu, Hongbo; Huang, Q; Iacovacci, M; Iuppa, R; James, I; Jia, H Y; Labaciren,; Li, H J; Li, J Y; Li, X X; Liguori, G; Liu, C; Liu, C Q; Liu, J; Liu, M Y; Lu, H; Ma, L L; Ma, X H; Mancarella, G; Mari, S M; Marsella, G; Martello, D; Mastroianni, S; Montini, P; Ning, C C; Pagliaro, A; Panareo, M; Panico, B; Perrone, L; Pistilli, P; Ruggieri, F; Salvini, P; Santonico, R; Shen, P R; Sheng, X D; Shi, F; Stanescu, C; Surdo, A; Tan, Y H; Vallania, P; Vernetto, S; Vigorito, C; Wang, B; Wang, H; Wu, C Y; Wu, H R; Xu, B; Xue, L; Yang, Q Y; Yang, X C; Yao, Z G; Yuan, A F; Zha, M; Zhang, H M; Zhang, Jilong; Zhang, Jianli; Zhang, L; Zhang, P; Zhang, X Y; Zhang, Y; Zhao, J; Zhaxiciren,; Zhaxisangzhu,; Zhou, X X; Zhu, F R; Zhu, Q Q; Zizzi, G

    2012-01-01

    As one of the brightest active blazars in both X-ray and very high energy $\\gamma$-ray bands, Mrk 501 is very useful for physics associated with jets from AGNs. The ARGO-YBJ experiment is monitoring it for $\\gamma$-rays above 0.3 TeV since November 2007. Starting from October 2011 the largest flare since 2005 is observed, which lasts to about April 2012. In this paper, a detailed analysis is reported. During the brightest $\\gamma$-rays flaring episodes from October 17 to November 22, 2011, an excess of the event rate over 6 $\\sigma$ is detected by ARGO-YBJ in the direction of Mrk 501, corresponding to an increase of the $\\gamma$-ray flux above 1 TeV by a factor of 6.6$\\pm$2.2 from its steady emission. In particular, the $\\gamma$-ray flux above 8 TeV is detected with a significance better than 4 $\\sigma$. Based on time-dependent synchrotron self-Compton (SSC) processes, the broad-band energy spectrum is interpreted as the emission from an electron energy distribution parameterized with a single power-law funct...

  13. Using gamma-ray emission to measure ablator areal density of imploded capsules at the Omega laser

    Science.gov (United States)

    Hoffman, N.; Rubery, M.; Herrmann, H.; Kim, Y.; Young, C.; Mack, J.; Wilson, D.; McEvoy, A.; Evans, S.; Sedillo, T.; Stoeffl, W.; Horsfield, C.; Glebov, V.

    2010-11-01

    We have measured the ablator areal density of plastic-shell implosions at the Omega laser, using gamma-ray emission from the capsules detected by the prototype Gamma Reaction History (GRH) diagnostic. The intensity of 4.44-MeV gamma emission from ^12C nuclei in the ablator is proportional to the product of ablator areal density and yield of fusion neutrons, so by detecting the gammas we can infer the ablator areal density, provided we also have a measurement of total neutron yield. Neutron yield is determined from the nTOF experiment at Omega in our approach; alternatively one could use 16.7-MeV gammas from DT fusion. Inferred values of time-averaged carbon areal density are in the range 10-30 mg/cm^2, for a range of implosions. These values are smaller than predicted values based on 1D simulations, which are typically in the range 30-40 mg/cm^2. We discuss possible reasons for the discrepancy, primarily related to mixing.

  14. Detailed Investigation of the Gamma-Ray Emission in the Vicinity of SNR W28 with FERMI-LAT

    Science.gov (United States)

    Hanabata, Y.; Katagiri, H.; Hewitt, John William; Ballet, J.; Fukazawa, Y.; Fukui, Y.; Hayakawa, T.; Lemoine-Goumard, M.; Pedaletti, G.; Strong, A. W.; Torres, D. F.; Yamazaki, R.

    2014-01-01

    We present a detailed investigation of the Gamma-ray emission in the vicinity of the supernova remnant (SNR) W28 (G6.4-0.1) observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. We detected significant ? -ray emission spatially coincident with TeV sources HESS J1800-240A, B, and C, located outside the radio boundary of the SNR. Their spectra in the 2-100 GeV band are consistent with the extrapolation of the power-law spectra of the TeV sources. We also identified a new source of GeV emission, dubbed Source W, which lies outside the boundary of TeV sources and coincides with radio emission from the western part of W28. All of the GeV Gamma-ray sources overlap with molecular clouds in the velocity range from 0 to 20 km s (exp-1). Under the assumption that the Gamma-ray emission toward HESS J1800-240A, B, and C comes from 3.14(exp0) decay due to the interaction between the molecular clouds and cosmic rays (CRs) escaping from W28, they can be naturally explained by a single model in which the CR diffusion coefficient is smaller than the theoretical expectation in the interstellar space. The total energy of the CRs escaping from W28 is constrained through the same modeling to be larger than is approximately 2 × 10(exp49) erg. The emission from Source W can also be explained with the same CR escape scenario.

  15. A Measurement of the Spatial Distribution of Diffuse TeV Gamma Ray Emission from the Galactic Plane with Milagro

    CERN Document Server

    Abdo, A A; Aune, T; Berley, D; Blaufuss, E; Casanova, S; Chen, C; Dingus, B L; Ellsworth, R W; Fleysher, L; Fleysher, R; González, M M; Goodman, J A; Hoffman, C M; H"untemeyer, P H; Kolterman, B E; Lansdell, C P; Linnemann, J T; McEnery, J E; Mincer, A I; Nemethy, I V Moskalenko P; Noyes, D; Porter, T A; Pretz, J; Ryan, J M; Parkinson, P M Saz; Shoup, A; Sinnis, G; Smith, A J; Strong, A W; Sullivan, G W; Vasileiou, V; Walker, G P; Williams, D A; Yodh, G B

    2008-01-01

    Diffuse $\\gamma$-ray emission produced by the interaction of cosmic-ray particles with matter and radiation in the Galaxy can be used to probe the distribution of cosmic rays and their sources in different regions of the Galaxy. With its large field of view and long observation time, the Milagro Gamma Ray Observatory is an ideal instrument for surveying large regions of the Northern Hemisphere sky and for detecting diffuse $\\gamma$-ray emission at very high energies. Here, the spatial distribution and the flux of the diffuse $\\gamma$-ray emission in the TeV energy range with a median energy of 15 TeV for Galactic longitudes between 30$^\\circ$ and 110$^\\circ$ and between 136$^\\circ$ and 216$^\\circ$ and for Galactic latitudes between -10$^\\circ$ and 10$^\\circ$ are determined. The measured fluxes are consistent with predictions of the GALPROP model everywhere except for the Cygnus region ($l\\in[65^\\circ,85^\\circ]$). For the Cygnus region, the flux is twice the predicted value. This excess can be explained by the...

  16. Simulation of diffusive particle propagation and related TeV gamma-ray emission at the Galactic Center

    CERN Document Server

    Ziegler, Alexander

    2016-01-01

    Observations of the Galactic Center (GC) region in very-high-energy (VHE, >100 GeV) gamma rays, conducted with the High Energy Stereoscopic System (H.E.S.S.), led to the detection of an extended region of diffuse gamma-ray emission in 2006. To date, the exact origin of this emission has remained unclear, although a tight spatial correlation between the density distribution of the molecular material of the Central Molecular Zone (CMZ) and the morphology of the observed gamma-ray excess points towards a hadronic production scenario. In this proceeding, we present a numerical study of the propagation of high-energy cosmic rays (CRs) through a turbulent environment such as the GC region. In our analysis, we derive an energy-dependent parametrization for the diffusion coefficient which we use for our simulation of the diffuse gamma-ray emission at the GC. Assuming that hadronic CRs have been released by a single impulsive event at the center of our Galaxy, we probe the question whether or not the interaction proce...

  17. X-ray investigation of the diffuse emission around plausible gamma-ray emitting pulsar wind nebulae in Kookaburra region

    CERN Document Server

    Kishishita, Tetsuichi; Uchiyama, Yasunobu; Tanaka, Yasuyuki; Takahashi, Tadayuki

    2012-01-01

    We report on the results from {\\it Suzaku} X-ray observations of the radio complex region called Kookaburra, which includes two adjacent TeV $\\gamma$-ray sources HESS J1418-609 and HESS J1420-607. The {\\it Suzaku} observation revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible PWN Rabbit with elongated sizes of $\\sigma_{\\rm X}=1^{\\prime}.66$ and $\\sigma_{\\rm X}=1^{\\prime}.49$, respectively. The peaks of the diffuse X-ray emission are located within the $\\gamma$-ray excess maps obtained by H.E.S.S. and the offsets from the $\\gamma$-ray peaks are $2^{\\prime}.8$ for PSR J1420-6048 and $4^{\\prime}.5$ for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with $\\Gamma=1.7-2.3$. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one zone electron emission model as the first order approximation, the ambient magnetic field strengths of HESS J1420-607 and HESS J1418-609 can be estimate...

  18. Implications on the X-ray emission of evolved pulsar wind nebulae based on VHE gamma-ray observations

    CERN Document Server

    Mayer, Michael J; Jung, Ira; Valerius, Kathrin; Stegmann, Christian

    2012-01-01

    Energetic pulsars power winds of relativistic leptons which produce photon nebulae (so-called pulsar wind nebulae, PWNe) detectable across the electromagnetic spectrum up to energies of several TeV. The spectral energy distribution has a double-humped structure: the first hump lies in the X-ray regime, the second in the gamma-ray range. The X-ray emission is generally understood as synchrotron radiation by highly energetic electrons, the gamma-ray emission as Inverse Compton scattering of energetic electrons with ambient photon fields. The evolution of the spectral energy distribution is influenced by the time-dependent spin-down of the pulsar and the decrease of the magnetic field strength with time. Thus, the present spectral appearance of a PWN depends on the age of the pulsar: while young PWNe are bright in X-rays and gamma-rays, the X-ray emission of evolved PWNe is suppressed. Hence, evolved PWNe may offer an explanation of the nature of some of the unidentified VHE gamma-ray sources not yet associated ...

  19. A Model for Axions Producing Extended gamma-ray Emission from Neutron Star J0108-1431

    Science.gov (United States)

    Berenji, Bijan; Fermi LAT Collaboration

    2017-01-01

    Axions are hypothetical particles proposed to solve the strong CP problem in QCD and may constitute a significant fraction of the dark matter in the Universe. Axions are expected to be produced in neutron stars and subsequently decay, producing gamma-rays detectable by the Fermi Large Area Telescope (Fermi-LAT). Considering that light axions may travel a long range before they decay into gamma rays, neutron stars may appear as a spatially-extended source of gamma rays. We extend our previous search for gamma rays from axions, based on a point source model, to consider the neutron star as an extended source of gamma rays.We investigate the spatial emission of gamma rays using phenomenological models. We present models including the fundamental astrophysics and relativistic, extended gamma-ray emission from axions around neutron stars. A Monte Carlo simulation of the LAT gives us an expectation for the extended angular profile and spectrum. We predict a mean angular spread of 0.8 degrees with energies in the range 30-200 MeV. We consider projected sensitivities for mass limits on axions from J0108-1431, a neutron star at a distance of 240 pc. We demonstrate the feasibility of setting more stringent limits for axions in this mass range, excluding a range not probed by observations before. Based on the extended angular profile of the source, the expected sensitivity of the 95% CL upper limit on the axion mass from J0108-1431 is >10 meV. We also consider observational strategies in the search for axions from J0108-1431 with the Fermi-LAT.

  20. Observation and Simulation of the Variable Gamma-ray Emission from PSR J2021+4026

    Science.gov (United States)

    Ng, C. W.; Takata, J.; Cheng, K. S.

    2016-07-01

    Pulsars are rapidly spinning and highly magnetized neutron stars, with highly stable rotational periods and a gradual spin-down over a long timescale due to the loss of radiation. Glitches refer to events that suddenly increase the rotational speed of a pulsar. The exact causes of glitches and the resulting processes are not fully understood. It is generally believed that couplings between the normal matter and superfluid components, and starquakes, are the common causes of glitches. In this study, one famous glitching pulsar, PSR J2021+4026, is investigated. PSR J2021+4026 is the first variable gamma-ray pulsar observed by Fermi. From gamma-ray observations, it is found that the pulsar experienced a significant flux drop, an increase in the spin-down rate, a change in the pulse profile and a shift in the spectral cut-off to a lower energy, simultaneously around 2011 October 16. To explain these effects on high-energy emissions by the glitch of PSR J2021+4026, we hypothesized the glitch to be caused by the rearrangement of the surface magnetic field due to crustal plate tectonic activities on the pulsar, which was triggered by a starquake. In this glitch event, the inclination angle of the magnetic dipole axis was slightly shifted. This proposition is then tested by numerical modeling using a three-dimensional two-layer outer gap model. The simulation results indicate that a modification of the inclination angle can affect the pulse profile and the spectral properties, which can explain the observation changes after the glitch.

  1. AGILE detection of a new episode of enhanced gamma-ray emission from the FSRQ CTA102

    Science.gov (United States)

    Verrecchia, F.; Munar-Adrover, P.; Pittori, C.; Lucarelli, F.; Minervini, G.; Piano, G.; Bulgarelli, A.; Tavani, M.; Donnarumma, I.; Fioretti, V.; Zoli, A.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-12-01

    AGILE is detecting a new episode of increased gamma-ray emission above 100 MeV from a position consistent with the flat spectrum radio quasar CTA 102 (also known as 4C +11.69, PKS 2230+11, 5BZQ J2232+1143 and as gamma-ray source as 3EG J2232+1147, 3FGL J2232.5+114), recently reported in flaring activity by AGILE on November 24 and 11, 2016 (ATel #9788, #9743), and in optical/NIR extraordinary outburst (ATel #9821, #9808 and #9801).

  2. The Tropical Cyclones as the Possible Sources of Gamma Emission in the Earth's Atmosphere

    Science.gov (United States)

    Klimov, S. I.; Sharkov, E. A.; Zelenyi, L. M.

    2009-12-01

    [*S. I. Klimov*] (Space Research Institute [IKI] of RAS; Profsoyuznaya 84/32, 117997 GSP-7 Moscow, Russia; Tel: +7 (495) 333-1100; Fax: +7 (495) 333-1248; e-mail: sklimov@iki.rssi.ru)): E. A. Sharkov (Space Research Institute [IKI] of RAS; Profsoyuznaya 84/32, 117997 GSP-7 Moscow, Russia; Tel: +7 (495) 333-1366; Fax: +7 (495) 333-1248; e-mail: e.sharkov@mail.ru): L. M. Zelenyi (Space Research Institute [IKI] of RAS; Profsoyuznaya 84/32, 117997 GSP-7 Moscow, Russia; Tel: +7 (495) 333-2588; Fax: +7 (495) 333-3311; e-mail: lzelenyi@iki.rssi.ru ): The tropical cyclones (TC) are the strongest sources of thunderstorm activity (and, correspondingly, electromagnetic activity in the wide frequency range) in the Earth's atmosphere. The area dimensions of active region comprise to 1000 km and they achieve vertical development to 16-20 km with speeds of the displacement of the charged drops of water of up to 30 m/s. In the work are evaluated the physical mechanisms of the possibility of generation by TC of gamma emission (TCGE), which can be fixed from the low-orbital spacecraft of the type of the potential Russian micro-satellite Chibis-M (MS) [Zelenyi, et al, Walter de Gruter, Berlin, New York, p. 443-451, 2005]. The study of the new physical mechanisms of the electrical discharges in the atmosphere is basic scientific task Chibis- M [Angarov et al. Wissenschaft und Technik Verlag, Berlin, 2009, p. 69-72]. Complex of scientific instruments of the Chibis-M (overall mass of 12,5 kg) including the instruments: - X-ray - gamma detector (range of X-ray and gamma emission - 50-500 keV), - UV detector (range UV - emission - 300-450 nm), - radiofrequency analyzer (20 - 50 MHz). - digital camber of optical range (spatial resolution 300 m). - plasma-wave complex (0.1-40 kHz), it can be used also for the TCGE study. Delivery Chibis-M into orbit, close to the ISS orbit is intended to carry out in second-half 2010. Micro-satellite "Chibis-M" now designed in IKI. Total mass "Chibis

  3. Discovery of extended VHE \\gamma-ray emission from the vicinity of the young massive stellar cluster Westerlund 1

    CERN Document Server

    Abramowski, A; Aharonian, F; Akhperjanian, A G; Anton, G; Balzer, A; Barnacka, A; de Almeida, U Barres; Becherini, Y; Becker, J; Behera, B; Bernlöhr, K; Birsin, E; Biteau, J; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Büsching, I; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L -M; Clapson, A C; Coignet, G; Cologna, G; Conrad, J; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gallant, Y A; Gast, H; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göring, D; Häffner, S; Hague, J D; Hampf, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzynski, K; Katz, U; Kaufmann, S; Keogh, D; Khangulyan, D; Khélifi, B; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Laffon, H; Lamanna, G; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, D; Maxted, N; Mayer, M; McComb, T J L; Medina, M C; Méhault, J; Moderski, R; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Wilhelmi, E de Ona; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Arribas, M Paz; Pedaletti, G; Pelletier, G; Petrucci, P -O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Rayner, S M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Sanchez, D; Santangelo, A; Schlickeiser, R; Schöck, F M; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sheidaei, F; Sikora, M; Skilton, J L; Sol, H; Spengler, G; Stawarz, L; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; White, R; Wierzcholska, A; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S

    2011-01-01

    Results obtained in very-high-energy (VHE; E > 100 GeV) \\gamma-ray observations performed with the H.E.S.S. telescope array are used to investigate particle acceleration processes in the vicinity of the young massive stellar cluster Westerlund 1 (Wd 1). Imaging of Cherenkov light from \\gamma-ray induced particle cascades in the Earth's atmosphere is used to search for VHE \\gamma\\ rays from the region around Wd 1. Possible catalogued counterparts are searched for and discussed in terms of morphology and energetics of the H.E.S.S. source. The detection of the degree-scale extended VHE \\gamma-ray source HESS J1646-458 is reported based on 45 hours of H.E.S.S. observations performed between 2004 and 2008. The VHE \\gamma-ray source is centred on the nominal position of Wd 1 and detected with a total statistical significance of ~20\\sigma. The emission region clearly extends beyond the H.E.S.S. point-spread function (PSF). The differential energy spectrum follows a power law in energy with an index of \\Gamma=2.19 \\p...

  4. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV

    CERN Document Server

    Ackermann, M; Albert, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Blandford, R D; Bloom, E D; Bottacini, E; Brandt, T J; Bregeon, J; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caragiulo, M; Caraveo, P A; Cavazzuti, E; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cuoco, A; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Silva, E do Couto e; Drell, P S; Favuzzi, C; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Guiriec, S; Gustafsson, M; Hadasch, D; Hayashi, K; Hays, E; Hewitt, J W; Ippoliti, P; Jogler, T; Jóhannesson, G; Johnson, A S; Johnson, W N; Kamae, T; Kataoka, J; Knödlseder, J; Kuss, M; Larsson, S; Latronico, L; Li, J; Li, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Manfreda, A; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sánchez-Conde, M; Schaal, M; Schulz, A; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Suson, D J; Takahashi, H; Thayer, J G; Thayer, J B; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Vianello, G; Werner, M; Winer, B L; Wood, K S; Wood, M; Zaharijas, G; Zimmer, S

    2014-01-01

    The {\\gamma}-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse {\\gamma}-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a sig...

  5. DISCOVERY OF HIGH-ENERGY AND VERY HIGH ENERGY {gamma}-RAY EMISSION FROM THE BLAZAR RBS 0413

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Boettcher, M. [Astrophysical Institute, Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Bradbury, S. M. [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom); Byrum, K.; Decerprit, G. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cannon, A.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Coppi, P. [Department of Astronomy, Yale University, P. O. Box 208101 New Haven, CT 06511 (United States); Cui, W., E-mail: gunessenturk@gmail.com, E-mail: fortin@llr.in2p3.fr, E-mail: deirdre@llr.in2p3.fr [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); and others

    2012-05-10

    We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high energy (VHE; E > 100 GeV) {gamma}-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based {gamma}-ray observatory, detected VHE {gamma} rays from RBS 0413 with a statistical significance of 5.5 standard deviations ({sigma}) and a {gamma}-ray flux of (1.5 {+-} 0.6{sub stat} {+-} 0.7{sub syst}) Multiplication-Sign 10{sup -8} photons m{sup -2} s{sup -1} ({approx}1% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 {+-} 0.68{sub stat} {+-} 0.30{sub syst}. Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE {gamma} rays from RBS 0413 with a statistical significance of more than 9{sigma}, a power-law photon index of 1.57 {+-} 0.12{sub stat}+{sup 0.11}{sub -0.12sys}, and a {gamma}-ray flux between 300 MeV and 300 GeV of (1.64 {+-} 0.43{sub stat}{sup +0.31}{sub -0.22sys}) Multiplication-Sign 10{sup -5} photons m{sup -2} s{sup -1}. We present the results from Fermi-LAT and VERITAS, including a spectral energy distribution modeling of the {gamma}-ray, quasi-simultaneous X-ray (Swift-XRT), ultraviolet (Swift-UVOT), and R-band optical (MDM) data. We find that, if conditions close to equipartition are required, both the combined synchrotron self-Compton/external-Compton and the lepto-hadronic models are preferred over a pure synchrotron self-Compton model.

  6. Tracing jet emission at the base of a high-mass YSO. First AMBER/VLTI observations of the Br\\gamma emission in IRAS 13481-6124

    CERN Document Server

    Garatti, A Caratti o; Weigelt, G; Schertl, D; Hofmann, K -H; Kraus, S; Oudmaijer, R D; de Wit, W J; Sanna, A; Lopez, R Garcia; Kreplin, A; Ray, T P

    2016-01-01

    To probe the circumstellar environment of IRAS 13481-6124, a 20 M_sun high-mass young stellar object (HMYSO) with a parsec-scale jet and accretion disc, we investigate the origin of its Br\\gamma-emission line through NIR interferometry. We present the first AMBER/VLTI observations of the Br\\gamma-emitting region in an HMYSO at R~1500. Our AMBER/VLTI observations reveal a spatially and spectrally resolved Br\\gamma-line in emission with a strong P Cygni profile, indicating outflowing matter with a terminal velocity of ~500 km/s. Visibilities, differential phases, and closure phases are detected in our observations within the spectral line and in the adjacent continuum. Both total visibilities (continuum plus line emitting region) and pure-line visibilities indicate that the Br\\gamma-emitting region is more compact (2-4 mas in diameter or ~6-13 au at 3.2 kpc) than the continuum-emitting region (~5.4 mas or ~17 au). The absorption feature is also spatially resolved at the longest baselines (81 and 85 m) and has a...

  7. The anatomy of a long gamma-ray burst: a simple classification scheme for the emission mechanism(s).

    Science.gov (United States)

    Bégué, Damien; Burgess, Michael

    2016-07-01

    Ultra-relativistic motion and efficient conversion of kinetic energy to radiation are required by gamma-ray burst (GRB) observations, yet they are difficult to simultaneously achieve. Three leading mechanisms have been proposed to explain the observed emission emanating from GRB outflows: radiation from either relativistic internal or external shocks, or thermal emission from a photosphere. Previous works were mechanisms and arguing for a sole, unique origin of the prompt emission of gamma-ray bursts. In contrast, herein, we first explain why all three models are valid mechanisms and that a contribution from each of them is expected in the prompt phase. Additionally, we show that a single parameter, the dimensionless entropy of the GRB outflow, determines which mechanism contributes the most to the emission. More specifically, internal shocks dominate for low values of the dimensionless entropy, external shocks for intermediate values and finally, photospheric emission for large values. We present a unified framework for the emission mechanisms of GRBs with easily testable predictions for each process.

  8. Development of a Reference Database for Particle-Induced Gamma-ray Emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriou, P., E-mail: P.Dimitriou@iaea.org [International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna (Austria); Becker, H.-W. [Ruhr Universität Bochum, Gebäude NT05/130, Postfach 102148, Bochum 44721 (Germany); Bogdanović-Radović, I. [Department of Experimental Physics, Institute Rudjer Boskovic, Bijenicka Cesta 54, 10000 Zagreb (Croatia); Chiari, M. [Istituto Nazionale di Fisica Nucleare, Via Sansone 1, Sesto Fiorentino, 50019 Firenze (Italy); Goncharov, A. [Kharkov Institute of Physics and Technology, National Science Center, Akademicheskaya Str.1, Kharkov 61108 (Ukraine); Jesus, A.P. [Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (Portugal); Kakuee, O. [Nuclear Science and Technology Research Institute, End of North Karegar Ave., PO Box 14395-836, Tehran (Iran, Islamic Republic of); Kiss, A.Z. [Institute of Nuclear Research (ATOMKI), Bem ter 18/c, PO Box 51, 4001 Debrecen (Hungary); Lagoyannis, A. [National Center of Scientific Research “Demokritos”, Agia Paraskevi, P.O. Box 60228, 15310 Athens (Greece); Räisänen, J. [Division of Materials Physics, Department of Physics, University of Helsinki, PO Box 43, 00014 University of Helsinki (Finland); Strivay, D. [Institut de Physique Nucleaire, Atomique et de Spectroscopie, Universite de Liège, Sart Tilman, B15 4000 Liège (Belgium); Zucchiatti, A. [Centro de Micro Análisis de Materiales, Universidad Autónoma de Madrid, Faraday 3, Madrid 28049 (Spain)

    2016-03-15

    Particle-Induced Gamma-ray Emission (PIGE) is a powerful analytical technique that exploits the interactions of rapid charged particles with nuclei located near a sample surface to determine the composition and structure of the surface regions of solids by measurement of characteristic prompt γ rays. The potential for depth profiling of this technique has long been recognized, however, the implementation has been limited owing to insufficient knowledge of the physical data and lack of suitable user-friendly computer codes for the applications. Although a considerable body of published data exists in the nuclear physics literature for nuclear reaction cross sections with γ rays in the exit channel, there is no up-to-date, comprehensive compilation specifically dedicated to IBA applications. A number of PIGE cross-section data had already been uploaded to the Ion Beam Analysis Nuclear Data Library (IBANDL) ( (http://www-nds.iaea.org/ibandl)) by members of the IBA community by 2011, however a preliminary survey of this body of unevaluated experimental data has revealed numerous discrepancies beyond the uncertainty limits reported by the authors. Using the resources and coordination provided by the IAEA, a concerted effort to improve the situation was made within the Coordinated Research Project on the Development of a Reference Database for PIGE spectroscopy, from 2011 to 2015. The aim of the CRP was to create a data library for Ion Beam Analysis that contains reliable and usable data on charged particle γ-ray emission cross sections that would be made freely available to the user community. As the CRP has reached its completion, we shall present its main achievements, including the results of nuclear cross-section evaluations and the development of a computer code that will become available to the public allowing for the implementation of a standardless PIGE technique.

  9. Measurement of the high-energy gamma-ray emission from the Moon with the Fermi Large Area Telescope

    CERN Document Server

    Ackermann, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P.A.; Cavazzuti, E.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Costanza, F.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S.W.; Di Venere, L.; Drell, P.S.; Favuzzi, C.; Fegan, S.J.; Focke, W.B.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J.E.; Guiriec, S.; Harding, A. K.; Hewitt, J. W.; Horan, D.; Hou, X.; Iafrate, G.; Jóhannesson, G.; Kamae, T.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M.N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M.N.; Michelson, P.F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M.E.; Morselli, A.; Murgia, S.; Nuss, E.; Omodei, N.; Orlando, E.; Ormes, J.F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Sgrò, C.; Reposeur, T.; Siskind, E.J.; Spada, F.; Spandre, G.; Spinelli, P.; Takahashi, H.; Thayer, J.B.; Thompson, D.J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Winer, B. L.; Wood, K. S.; Yassine, M.; Cerutti, F.; Ferrari, A.; Sala, P.R.

    2016-01-01

    We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first 7 years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface. The results of the present analysis can be explained in the framework of this model, where the production of gamma rays is due to the interactions of cosmic-ray proton and helium nuclei with the surface of the Moon. Finally, we have used our simulation to derive the cosmic-ray proton and helium spectra near Earth from the Moon gamma-ray data.

  10. High-energy emission from bright gamma-ray bursts using Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Bissaldi, Elisabetta

    2010-05-25

    Among the scientific objectives of one of the present NASA missions, the Fermi Gamma-ray Space Telescope (FGST), is the study of gamma-ray bursts (GRBs). Fermi's payload comprises two science instruments, the Large Area Telescope (LAT) and the Gamma-Ray Burst Monitor (GBM). GBM was designed to detect and localize bursts for the Fermi mission. By means of an array of 12 NaI(Tl) (8 keV to 1 MeV) and two BGO (0.2 to 40 MeV) scintillation detectors, GBM extends the energy range (20 MeV to > 300 GeV) of the LAT instrument into the traditional range of current GRB databases. The physical detector response of the GBM instrument to GRBs has been determined with the help of Monte Carlo simulations, which are supported and verified by on-ground individual detector calibration measurements. The GBM detectors have been calibrated from 10 keV to 17.5 MeV using various gamma sources, and the detector response has been derived by simulations over the entire energy range (8 keV to 40 MeV) using GEANT. The GBM instrument has been operating successfully in orbit since June 11, 2008. The total trigger count from the time GBM triggering was enabled in July 2008 through December 2009 is 655, and about 380 of these triggers were classified as GRBs. Moreover, GBM detected several bursts in common with the LAT. These amazing detections mainly fulfill the primary science goal of GBM, which is the joint analysis of spectra and time histories of GRBs observed by both Fermi instruments. For every trigger, GBM provides near-real time on-board burst locations to permit repointing of the spacecraft and to obtain LAT observations of delayed emission from bursts. GBM and LAT refined locations are rapidly disseminated to the scientific community, often permitting extensive multiwavelength follow-up observations by NASA's Swift mission or other space- based observatories, and by numerous ground-based telescopes, thus allowing redshift determinations. Calculations of LAT upper limits are

  11. Superorbital modulation of X-ray emission from gamma-ray binary LSI +61 303

    CERN Document Server

    Chernyakova, M; Molkov, S; Malyshev, D; Lutovinov, A; Pooley, G; 10.1088/2041-8205/747/2/L29

    2012-01-01

    We report the discovery of a systematic constant time lag between the X-ray and radio flares of the gamma-ray binary LSI +61 303, persistent over long, multi-year, time scale. Using the data of monitoring of the system by RXTE we show that the orbital phase of X-ray flares from the source varies from $\\phi_X\\simeq 0.35$ to $\\phi_X\\simeq 0.75$ on the superorbital 4.6 yr time scale. Simultaneous radio observations show that periodic radio flares always lag the X-ray flare by $\\Delta\\phi_{X-R}\\simeq 0.2$. We propose that the constant phase lag corresponds to the time of flight of the high-energy particle filled plasma blobs from inside the binary to the radio emission region at the distance ~10 times the binary separation distance. We put forward a hypothesis that the X-ray bursts correspond to the moments of formation of plasma blobs inside the binary system.

  12. Searching for Hard X-Ray Emission from Radio-Loud Gamma-Ray Quiet Blazars

    Science.gov (United States)

    Wada, Katelyn R.; Macomb, Daryl J.

    2017-01-01

    While the Swift BAT AGN source catalog is dominated by radio-quiet Seyfert AGN, around 15% of the sample are radio galaxies or blazars (Ajello et al., 2009). There is an overlap of about 40 sources between the Fermi LAT and Swift BAT detected AGN populations, only a few percent of the Fermi total. These small numbers are presumably a result of selection bias as the SSC peak often falls squarely within the Fermi LAT bandpass while the Swift BAT sensitivity is highest in the spectral region straddling the synchrotron and SSC components.Recently however, a significant sample of bright (F 15GHz >1.5 Jy), radio selected AGN was found, surprisingly, to overlap with Fermi at only the ~80% level (Lister et. al., 2015). This could be a result of selection bias as well as the gamma-ray quiet objects of that survey having synchrotron peak frequencies of 10^13.4 Hz or less. On the other hand it could be due to deficient Doppler boosting among that ~20%. One can, in principle, test the former possibility by assessing emission from the low-energy wings of putative sub-GeV peaked SSC components. We describe our ongoing joint Swift BAT analysis project that attempts to address this possibility. Initial results, comparisons with INTEGRAL observations, and conclusions are presented.

  13. Gamma-ray emission enhanced by direct laser acceleration in a laser-driven magnetic field

    Science.gov (United States)

    Arefiev, Alexey; Wang, Tao; Toncian, Toma; Stark, David

    2016-10-01

    Recently published particle-in-cell simulations indicate that a high-intensity laser irradiating an over-critical plasma can induce relativistic transparency and drive a Megatesla magnetic field while propagating into the plasma. We have examined the role of such an azimuthal Megatesla-level magnetic field on electron dynamics in a laser pulse with intensities around 5 ×1022 W/cm2, within reach for the existing laser facilities. We find that the magnetic field can be utilized in two complementary ways: to enhance direct laser acceleration, generating a GeV-level electron beam in the plasma, and to boost synchrotron emission by the accelerated electrons, producing copious multi-MeV photons in the form of a collimated beam. This regime potentially opens an opportunity for generating dense gamma-ray beams using existing laser facilities, thus fast-tracking a number of eagerly awaited applications. This work was supported by the National Science Foundation under Grant No. 1632777.

  14. Prompt and Afterglow Emission Properties of Gamma-Ray Bursts with Spectroscopically Identified Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Yuki; Ramirez-Ruiz, E.; Granot, J.; Kouveliotou, C.; Woosley, S.E.; Patel, S.K.; Rol, E.; Zand, J.J.M.in' t; a; Wijers, R.A.M.J.; Strom, R.; /USRA, Huntsville

    2006-07-12

    We present a detailed spectral analysis of the prompt and afterglow emission of four nearby long-soft gamma-ray bursts (GRBs 980425, 030329, 031203, and 060218) that were spectroscopically found to be associated with type Ic supernovae, and compare them to the general GRB population. For each event, we investigate the spectral and luminosity evolution, and estimate the total energy budget based upon broadband observations. The observational inventory for these events has become rich enough to allow estimates of their energy content in relativistic and sub-relativistic form. The result is a global portrait of the effects of the physical processes responsible for producing long-soft GRBs. In particular, we find that the values of the energy released in mildly relativistic outflows appears to have a significantly smaller scatter than those found in highly relativistic ejecta. This is consistent with a picture in which the energy released inside the progenitor star is roughly standard, while the fraction of that energy that ends up in highly relativistic ejecta outside the star can vary dramatically between different events.

  15. Average Emissivity Curve of Batse Gamma-Ray Bursts with Different Intensities

    Science.gov (United States)

    Mitrofanov, Igor G.; Litvak, Maxim L.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Preece, Robert D.; Meegan, Charles A.

    1999-01-01

    Six intensity groups with approximately 150 BATSE gamma-ray bursts each are compared using average emissivity curves. Time stretch factors for each of the dimmer groups are estimated with respect to the brightest group, which serves as the reference, taking into account the systematics of counts-produced noise effects and choice statistics. A stretching/intensity anticorrelation is found with good statistical significance during the average back slopes of bursts. A stretch factor approximately 2 is found between the 150 dimmest bursts, with peak flux less than 0.45 photons/sq cm.s, and the 147 brightest bursts, with peak flux greater than 4.1 photons/sq cm.s. On the other hand, while a trend of increasing stretching factor may exist for rise fronts for bursts with decreasing peak flux from greater than 4.1 photons/sq cm.s down to 0.7 photons/sq cm.s, the magnitude of the stretching factor is less than approximately 1.4 and is therefore inconsistent with stretching factor of back slope.

  16. CORONAS-F observation of gamma-ray emission from the solar flare on 2003 October 29

    Science.gov (United States)

    Kurt, Victoria G.; Yushkov, Boris Yu.; Galkin, Vladimir I.; Kudela, Karel; Kashapova, Larisa K.

    2017-10-01

    Appreciable hard X-ray (HXR) and gamma-ray emissions in the 0.04-150 MeV energy range associated with the 2003 October 29 solar flare (X10/3B) were observed at 20:38-20:58 UT by the SONG instrument onboard the CORONAS-F mission. To restore flare gamma-ray spectra we fitted the SONG energy loss spectra with a three-component model of the incident spectrum: (1) a power law in energy, assumed to be due to electron bremsstrahlung; (2) a broad continuum produced by prompt nuclear de-excitation gamma-lines; and (3) a broad gamma-line generated from pion-decay. We also restored spectra from the RHESSI data, compared them with the SONG spectra and found a reasonable agreement between these spectra in the 0.1-10 MeV energy range. The pion-decay emission was observed from 20:44:20 UT and had its maximum at 20:48-20:51 UT. The power-law spectral index of accelerated protons estimated from the ratio between intensities of different components of gamma rays changed with time. The hardest spectrum with a power-law index S = -3.5 - 3.6 was observed at 20:48-20:51 UT. Time histories of the pion-decay emission and proton spectrum were compared with changes of the locations of flare energy release as shown by RHESSI hard X-ray images and remote and remote Hα brightenings. An apparent temporal correlation between processes of particle acceleration and restructuring of flare magnetic field was found. In particular, the protons were accelerated to subrelativistic energies after radical change of the character of footpoint motion from a converging motion to a separation motion.

  17. Radio and Gamma-Ray Constraints on the Emission Geometry and Birthplace of PSR J2043+2740

    CERN Document Server

    Noutsos, A; Ackermann, M; Ajello, M; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Busetto, G; Caliandro, G A; Cameron, R A; Camilo, F; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaty, S; Chekhtman, A; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Colafrancesco, S; Cutini, S; Dermer, C D; de Palma, F; Drell, P S; Dumora, D; Espinoza, C M; Favuzzi, C; Ferrara, E C; Focke, W B; Frailis, M; Freire, P C C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grandi, P; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Harding, A K; Hughes, R E; Jackson, M S; Johannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Johnston, S; Kamae, T; Katagiri, H; Kataoka, J; Knoedlseder, J; Kramer, M; Kuss, M; Lande, J; Lee, S -H; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Lyne, A G; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nolan, P L; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Persic, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rain, S; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Romani, R W; Sadrozinski, H F -W; Sander, A; Parkinson, P M Saz; Sgro, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Theureau, G; Thompson, D J; Thorsett, S E; Tibolla, O; Torres, D F; Tramacere, A; Usher, T L; Vandenbroucke, J; Vianello, G; Vilchez, N; Villata, M; Vitale, V; von Kienlin, A; Waite, A P; Wang, P; Watters, K; Weltevrede, P; Winer, B L; Wood, K S; Ziegler, M

    2010-01-01

    We report on the first year of Fermi gamma-ray observations of pulsed high-energy emission from the old PSR J2043+2740. The study of the gamma-ray efficiency of such old pulsars gives us an insight into the evolution of pulsars' ability to emit in gammma rays as they age. The gamma-ray lightcurve of this pulsar above 0.1 GeV is clearly defined by two sharp peaks, 0.353+/-0.035 periods apart. We have combined the gamma-ray profile characteristics of PSR J2043+2740 with the geometrical properties of the pulsar's radio emission, derived from radio polarization data, and constrained the pulsar-beam geometry in the framework of a Two Pole Caustic and an Outer Gap model. The ranges of magnetic inclination and viewing angle were determined to be {alpha,zeta}~{52-57,61-68} for the Two Pole Caustic model, and {alpha,zeta}~{62-73,74-81} and {alpha,zeta}~{72-83,60-75} for the Outer Gap model. Based on this geometry, we assess possible birth locations for this pulsar and derive a likely proper motion, sufficiently high t...

  18. Discerning the location of the gamma-ray emission region in blazars from multi-messenger observations

    CERN Document Server

    Agudo, Ivan; Jorstad, Svetlana G; Gomez, Jose L

    2012-01-01

    Relativistic jets in AGN in general, and in blazars in particular, are the most energetic and among the most powerful astrophysical objects known so far. Their relativistic nature provides them with the ability to emit profusely at all spectral ranges from radio wavelengths to gamma-rays, as well as to vary extremely at time scales from hours to years. Since the birth of gamma-ray astronomy, locating the origin of gamma-ray emission has been a fundamental problem for the knowledge of the emission processes involved. Deep and densely time sampled monitoring programs with the Fermi Gamma-ray Space Telescope and other facilities at most of the available spectral ranges (including millimeter interferometric imaging and polarization measurements wherever possible) are starting to shed light for the case of blazars. After a short review of the status of the problem, we summarize two of our latest results -obtained from the comprehensive monitoring data compiled by the Boston University Blazar monitoring program - t...

  19. Detection of extended very-high-energy gamma-ray emission towards the young stellar cluster Westerlund 2

    CERN Document Server

    Aharonian, F; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Brion, E; Brown, A M; Buhler, R; Büsching, I; Boutelier, T; Carrigan, S; Chadwick, P M; Chounet, L M; Coignet, G; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; O'Connor-Drury, L; Dubus, G; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Ferrero, E; Fiasson, A; Fontaine, G; Funk, Seb; Funk, S; Fuling, M; Gallant, Y A; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; De Jager, O C; Kendziorra, E; Kerschhaggl, M; Khelifi, B; Komin, Nu; Kosack, K; Lamanna, G; Latham, I J; Le Gallou, R; Lemiere, A; Lemoine-Goumard, M; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, G; McComb, T J L; Moulin, E; De Naurois, Mathieu; Nedbal, D; Nolan, S J; Noutsos, A; Olive, J P; Orford, K J; Osborne, J L; Panter, M; Pelletier, G; Petrucci, P O; Pita, S; Pühlhofer, G; Punch, M; Ranchon, S; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rosier-Lees, S; Rowell, G; Sahakian, V V; Santangelo, A; Sauge, L; Schlenker, S; Schlickeiser, R; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sol, H; Spangler, D; Spanier, F; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J P; Terrier, R; Tluczykont, M; Van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Völk, H J; Wagner, S J; Ward, M; al, et

    2007-01-01

    Results from gamma-ray observations by the H.E.S.S. telescope array in the direction of the young stellar cluster Westerlund 2 are presented. Stereoscopic imaging of Cherenkov light emission of gamma-ray induced showers in the atmosphere is used to study the celestial region around the massive Wolf-Rayet (WR) binary WR 20a. Spectral and positional analysis is performed using standard event reconstruction techniques and parameter cuts. The detection of a new gamma-ray source is reported from H.E.S.S. observations in 2006. HESS J1023-575 is found to be coincident with the young stellar cluster Westerlund 2 in the well-known HII complex RCW 49. The source is detected with a statistical significance of more than 9 sigma, and shows extension beyond a point-like object within the H.E.S.S. point-spread function. The differential gamma-ray spectrum of the emission region is measured over approximately two orders of magnitude in flux. The spatial coincidence between HESS J1023-575 and the young open cluster Westerlund...

  20. Detection of radio emission from the gamma-ray pulsar J1732-3131 at 327 MHz

    Science.gov (United States)

    Maan, Yogesh; Krishnakumar, M. A.; Naidu, Arun K.; Roy, Subhashis; Joshi, Bhal Chandra; Kerr, Matthew; Manoharan, P. K.

    2017-10-01

    Although originally discovered as a radio-quiet gamma-ray pulsar, J1732-3131 has exhibited intriguing detections at decameter wavelengths. We report an extensive follow-up of the pulsar at 327 MHz with the Ooty radio telescope. Using the previously observed radio characteristics, and with an effective integration time of 60 h, we present a detection of the pulsar at a confidence level of 99.82 per cent. The 327 MHz mean flux density is estimated to be 0.5-0.8 mJy, which establishes the pulsar to be a steep spectrum source and one of the least luminous pulsars known to date. We also phase-aligned the radio and gamma-ray profiles of the pulsar, and measured the phase-offset between the main peaks in the two profiles to be 0.24 ± 0.06. We discuss the observed phase-offset in the context of various trends exhibited by the radio-loud gamma-ray pulsar population, and suggest that the gamma-ray emission from J1732-3131 is best explained by outer magnetosphere models. Details of our analysis leading to the pulsar detection, and measurements of various parameters and their implications relevant to the pulsar's emission mechanism are presented.

  1. Counting efficiency for radionuclides decaying by beta and gamma-ray emission; Calculo de la eficiencia de recuento de nucleidos que experimentan desintegracion beta y desexcitacion gamma simple

    Energy Technology Data Exchange (ETDEWEB)

    Grau, A.; Garcia-Torano, E.

    1988-07-01

    In this paper, counting efficiency vs figure of merit for beta and gamma-ray emitters has been computed. It is assumed that the decay scheme has only a gamma level and the beta-ray emission may be coincident with the gamma-rays or the internal-conversion electrons. The radionuclides tabulated are: 20 {sub 0}, 20{sub p}, 28{sub A}l, 35{sub p}, 41{sub A}r, 42{sub K}, 47{sub S}e, 62{sub F}e, 66{sub C}u, 81{sub G}e, 86{sub B}b, 108{sub R}u, 112{sub p}d, 121{sub S}n(Ni), 122{sub I}n, 129{sub I}, 141{sub C}e 171{sub T}m, 194{sub O}s, 2O3{sub H}g, 205{sub H}g, 210{sub p}b, 225{sub R}a, 142{sub p}r, 151{sub S}m, 244{sub A}m(m). It has been assumed that the liquid is a toluene based scintillator solution in standard glass vials containing 10 cm''3. (Author) 8 refs.

  2. Constraints on gamma-ray line and continuum emission from the Galactic Center Region at MeV Energies

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, R.; v. Ballmoos, P.; Schoenfelder, V.

    1988-09-25

    MPE Compton Telescope observations of MeV radiation from the direction of the Galactic Center lead to constraints on the central source and on diffuse processes in the Galaxy: The extent of 1.8 MeV line emission from /sup 26/Al suggests an /sup 26/Al production process with pronounced concentration towards the Galactic Center. The absence of other ..gamma..-ray lines constrains nucleosynthesis and cosmic ray excitation parameters in the Galaxy.

  3. Determination of the 121Te gamma emission probabilities associated with the production process of radiopharmaceutical NaI[123I

    Science.gov (United States)

    de Araújo, M. T. F.; Poledna, R.; Delgado, J. U.; de Almeida, M. C. M.; Lopes, R. T.; Silva, R. L.; Cagido, A. C. F.

    2016-07-01

    The 123I is widely used in radiodiagnostic procedures in nuclear medicine. According to Pharmacopoeia care should be taken during its production process, since radionuclidic impurities may be generated. The 121Te is an impurity that arises during the 123I production and determining their gamma emission probabilities (Pγ) is important in order to obtain more information about its decay. Activities were also obtained by absolute standardization using the sum-peak method and these values were compared to the efficiency curve method.

  4. ECLAIRs A microsatellite for the prompt optical and X-ray emission of Gamma-Ray Bursts

    CERN Document Server

    Barret, D

    2001-01-01

    The prompt gamma-ray emission of Gamma-Ray Bursts (GRBs) is currently interpreted in terms of radiation from electrons accelerated in internal shocks in a relativistic fireball. On the other hand, the origin of the prompt (and early afterglow) optical and X-ray emission is still debated, mostly because very few data exist for comparison with theoretical predictions. It is however commonly agreed that this emission hides important clues on the GRB physics and can be used to constrain the fireball parameters, the acceleration and emission processes and to probe the surroundings of the GRBs. ECLAIRs is a microsatellite devoted to the observation of the prompt optical and X-ray emission of GRBs. For about 150 GRBs/yr, independent of their duration, ECLAIRs will provide high time resolution high sensitivity spectral coverage from a few eV up to ~50 keV and localization to ~ 5'' in near real time. This capability is achieved by combining wide field optical and X-ray cameras sharing a common field of view (>~ 2.2 st...

  5. Gamma-ray limits on Galactic $^{60}Fe$ nucleosynthesis and implications on the Origin of the $^{26}Al$ emission

    CERN Document Server

    Naya, J E; Bartlett, L M; Gehrels, N; Leventhal, M; Parsons, A; Teegarden, B J; Tüller, J

    1998-01-01

    The Gamma Ray Imaging Spectrometer (GRIS) recently observed the gamma-ray emission from the Galactic center region. We have detected the 1809 keV Galactic 26Al emission at a significance level of 6.8-sigma but have found no evidence for emission at 1173 keV and 1332 keV, expected from the decay chain of the nucleosynthetic 60Fe. The isotopic abundances and fluxes are derived for different source distribution models. The resulting abundances are between 2.6+-0.4 and 4.52+-0.67 Solar Masses for 26Al and a 2-sigma upper limit for 60Fe between 1.7 and 3.1 Solar Masses. The measured 26Al emission flux is significantly higher than that derived from the CGRO/COMPTEL 1.8 MeV sky map. This suggests that a fraction of the 26Al emission may come from extended sources with a low surface brightness that are invisible to COMPTEL. We obtain a 60Fe to 26Al flux ratio 2-sigma upper limit of 0.14, which is slightly lower than the 0.16 predicted from current nucleosynthesis models assuming that SNII are the major contributors t...

  6. SkyFACT: high-dimensional modeling of gamma-ray emission with adaptive templates and penalized likelihoods

    Science.gov (United States)

    Storm, Emma; Weniger, Christoph; Calore, Francesca

    2017-08-01

    We present SkyFACT (Sky Factorization with Adaptive Constrained Templates), a new approach for studying, modeling and decomposing diffuse gamma-ray emission. Like most previous analyses, the approach relies on predictions from cosmic-ray propagation codes like GALPROP and DRAGON. However, in contrast to previous approaches, we account for the fact that models are not perfect and allow for a very large number (gtrsim 105) of nuisance parameters to parameterize these imperfections. We combine methods of image reconstruction and adaptive spatio-spectral template regression in one coherent hybrid approach. To this end, we use penalized Poisson likelihood regression, with regularization functions that are motivated by the maximum entropy method. We introduce methods to efficiently handle the high dimensionality of the convex optimization problem as well as the associated semi-sparse covariance matrix, using the L-BFGS-B algorithm and Cholesky factorization. We test the method both on synthetic data as well as on gamma-ray emission from the inner Galaxy, |l|model that removes most of the residual emission from the inner Galaxy, based on conventional diffuse emission components as well as components for the Fermi bubbles, the Fermi Galactic center excess, and extended sources along the Galactic disk. Variants of this reference model can serve as basis for future studies of diffuse emission in and outside the Galactic disk.

  7. Constraining Gamma-Ray Emission from Luminous Infrared Galaxies with Fermi-LAT; Tentative Detection of Arp 220

    CERN Document Server

    Griffin, Rhiannon D; Thompson, Todd A

    2016-01-01

    Star-forming galaxies produce gamma-rays primarily via pion production, resulting from inelastic collisions between cosmic ray protons and the interstellar medium (ISM). The dense ISM and high star formation rates of luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs) imply that they should be strong gamma-ray emitters, but so far only NGC 1068 has been detected. Theoretical models for their emission depend on the unknown fraction of cosmic ray protons that escape these galaxies before interacting. We analyze Fermi Large Area Telescope data for 82 of the brightest IRAS LIRGs and ULIRGs on the sky. We examine each system individually and carry out a stacking analysis to constrain their gamma-ray fluxes. We report the detection of the nearest ULIRG Arp 220 (3.44sigma above background), with a gamma-ray flux (0.8-100 GeV) of 3.2e-10 phot cm^-2 s^-1 (1.5e42 ergs s^-1 at 77 Mpc). We also derive upper limits for the stacked LIRGs and ULIRGs. The gamma-ray luminosity of Arp 220 and the stacked upper lim...

  8. Gamma-ray Flaring Emission in Blazar OJ287 Located in the Jet >14 pc from the Black Hole

    CERN Document Server

    Agudo, I; Marscher, A P; Larionov, V M; Gomez, J L; Lahteenmaki, A; Gurwell, M A; Smith, P S; Wiesemeyer, H; Thum, C; Heidt, J

    2011-01-01

    We combine the Fermi-LAT light curve of the BL Lacertae type blazar OJ287 with time-dependent multi-waveband flux and linear polarization observations and submilliarcsecond-scale polarimetric images at lambda=7mm to locate the gamma-ray emission in prominent flares in the jet of the source >14pc from the central engine. We demonstrate a highly significant correlation between the strongest gamma-ray and millimeter-wave flares through Monte Carlo simulations. The two reported gamma-ray peaks occurred near the beginning of two major millimeter-wave outbursts, each of which is associated with a linear polarization maximum at millimeter wavelengths. Our very long baseline array observations indicate that the two millimeter-wave flares originated in the second of two features in the jet that are separated by >14pc. The simultaneity of the peak of the higher-amplitude gamma-ray flare and the maximum in polarization of the second jet feature implies that the gamma-ray and millimeter-wave flares are cospatial and occu...

  9. A New Method of Determining the Initial Size and Lorentz Factor of Gamma-Ray Burst Fireballs Using a Thermal Emission Component

    NARCIS (Netherlands)

    Pe'er, A.; Ryde, F.; Wijers, R.A.M.J.; Mészáros, P.; Rees, M.J.

    2007-01-01

    In recent years, increasing evidence has emerged for a thermal component in the gamma- and X-ray spectrum of the prompt emission phase in gamma-ray bursts. The temperature and flux of the thermal component show a characteristic break in the temporal behavior after a few seconds. We show here that me

  10. Precise measurement of half lives and gamma ray emission probabilities of sup 2 sup 3 sup 3 TH and sup 2 sup 3 sup 3 Pa

    CERN Document Server

    Usman, K

    2000-01-01

    4 pi beta-gamma coincidence system. Seven of the eight sup 2 sup 3 sup 3 Pa gamma rays recently reported for the first time have been observed and measured. Their presently determined absolute and relative gamma ray emission probabilities are mostly in excellent agreement with the only other available data. In all eighteen sup 2 sup 3 sup 3 Pa gamma rays were measured. The sup 2 sup 3 sup 3 Pa half life values of 27.02 (3) days (from this work) and 27.0 (1) days (widely used by previous workers) were used in the gamma ray emission probability determination. The results showed that the increased accuracy of the half life value has no significant effect on the values of the gamma ray emission probabilities. The attempt to measure the absolute emission probability values of the sup 2 sup 3 sup 3 Th gamma rays was not successful, because the available 4 pi beta-gamma coincidence system could not be used to standardise the sup 2 sup 3 sup 3 Th sources due to its short half life. The aim of this study is to measure...

  11. Constraints on the gamma-ray emission from the cluster-scale AGN outburst in the Hydra A galaxy cluster

    Science.gov (United States)

    HESS Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Couturier, C.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gérard, L.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; Ali, M. O.

    2012-09-01

    Context. In some galaxy clusters, powerful active galactic nuclei (AGN) have blown bubbles with cluster scale extent into the ambient medium. The main pressure support of these bubbles is not known to date, but cosmic rays are a viable possibility. For such a scenario copious gamma-ray emission is expected as a tracer of cosmic rays from these systems. Aims: Hydra A, the closest galaxy cluster hosting a cluster scale AGN outburst, located at a redshift of 0.0538, is investigated for being a gamma-ray emitter with the High Energy Stereoscopic System (H.E.S.S.) array and the Fermi Large Area Telescope (Fermi-LAT). Methods: Data obtained in 20.2 h of dedicated H.E.S.S. observations and 38 months of Fermi-LAT data, gathered by its usual all-sky scanning mode, have been analyzed to search for a gamma-ray signal. Results: No signal has been found in either data set. Upper limits on the gamma-ray flux are derived and are compared to models. These are the first limits on gamma-ray emission ever presented for galaxy clusters hosting cluster scale AGN outbursts. Conclusions: The non-detection of Hydra A in gamma-rays has important implications on the particle populations and physical conditions inside the bubbles in this system. For the case of bubbles mainly supported by hadronic cosmic rays, the most favorable scenario, which involves full mixing between cosmic rays and embedding medium, can be excluded. However, hadronic cosmic rays still remain a viable pressure support agent to sustain the bubbles against the thermal pressure of the ambient medium. The largest population of highly-energetic electrons, which are relevant for inverse-Compton gamma-ray production is found in the youngest inner lobes of Hydra A. The limit on the inverse-Compton gamma-ray flux excludes a magnetic field below half of the equipartition value of 16 μG in the inner lobes.

  12. Analytical computation of prompt gamma ray emission and detection for proton range verification.

    Science.gov (United States)

    Sterpin, E; Janssens, G; Smeets, J; Vander Stappen, François; Prieels, D; Priegnitz, Marlen; Perali, Irene; Vynckier, S

    2015-06-21

    A prompt gamma (PG) slit camera prototype recently demonstrated that Bragg Peak position in a clinical proton scanned beam could be measured with 1-2 mm accuracy by comparing an expected PG detection profile to a measured one. The computation of the expected PG detection profile in the context of a clinical framework is challenging but must be solved before clinical implementation. Obviously, Monte Carlo methods (MC) can simulate the expected PG profile but at prohibitively long calculation times. We implemented a much faster method that is based on analytical processing of precomputed MC data that would allow practical evaluation of this range monitoring approach in clinical conditions. Reference PG emission profiles were generated with MC simulations (PENH) in targets consisting of either (12)C, (14)N, (16)O, (31)P or (40)Ca, with 10% of (1)H. In a given geometry, the local PG emission can then be derived by adding the contribution of each element, according to the local energy of the proton obtained by continuous slowing down approximation and the local composition. The actual incident spot size is taken into account using an optical model fitted to measurements and by super sampling the spot with several rays (up to 113). PG transport in the patient/camera geometries and the detector response are modelled by convolving the PG production profile with a transfer function. The latter is interpolated from a database of transfer functions fitted to MC data (PENELOPE) generated for a photon source in a cylindrical phantom with various radiuses and a camera placed at various positions. As a benchmark, the analytical model was compared to MC and experiments in homogeneous and heterogeneous phantoms. Comparisons with MC were also performed in a thoracic CT. For all cases, the analytical model reproduced the prediction of the position of the Bragg peak computed with MC within 1 mm for the camera in nominal configuration. When compared to measurements, the shape of the

  13. Analytical computation of prompt gamma ray emission and detection for proton range verification

    Science.gov (United States)

    Sterpin, E.; Janssens, G.; Smeets, J.; Vander Stappen, François; Prieels, D.; Priegnitz, Marlen; Perali, Irene; Vynckier, S.

    2015-06-01

    A prompt gamma (PG) slit camera prototype recently demonstrated that Bragg Peak position in a clinical proton scanned beam could be measured with 1-2 mm accuracy by comparing an expected PG detection profile to a measured one. The computation of the expected PG detection profile in the context of a clinical framework is challenging but must be solved before clinical implementation. Obviously, Monte Carlo methods (MC) can simulate the expected PG profile but at prohibitively long calculation times. We implemented a much faster method that is based on analytical processing of precomputed MC data that would allow practical evaluation of this range monitoring approach in clinical conditions. Reference PG emission profiles were generated with MC simulations (PENH) in targets consisting of either 12C, 14N, 16O, 31P or 40Ca, with 10% of 1H. In a given geometry, the local PG emission can then be derived by adding the contribution of each element, according to the local energy of the proton obtained by continuous slowing down approximation and the local composition. The actual incident spot size is taken into account using an optical model fitted to measurements and by super sampling the spot with several rays (up to 113). PG transport in the patient/camera geometries and the detector response are modelled by convolving the PG production profile with a transfer function. The latter is interpolated from a database of transfer functions fitted to MC data (PENELOPE) generated for a photon source in a cylindrical phantom with various radiuses and a camera placed at various positions. As a benchmark, the analytical model was compared to MC and experiments in homogeneous and heterogeneous phantoms. Comparisons with MC were also performed in a thoracic CT. For all cases, the analytical model reproduced the prediction of the position of the Bragg peak computed with MC within 1 mm for the camera in nominal configuration. When compared to measurements, the shape of the profiles

  14. Detection of Low-energy Breaks in Gamma-Ray Burst Prompt Emission Spectra

    Science.gov (United States)

    Oganesyan, Gor; Nava, Lara; Ghirlanda, Giancarlo; Celotti, Annalisa

    2017-09-01

    The radiative process responsible for gamma-ray burst (GRB) prompt emission has not been identified yet. If dominated by fast-cooling synchrotron radiation, the part of the spectrum immediately below the ν {F}ν peak energy should display a power-law behavior with slope {α }2=-3/2, which breaks to a higher value {α }1=-2/3 (i.e., to a harder spectral shape) at lower energies. Prompt emission spectral data (usually available down to ∼ 10{--}20 keV) are consistent with one single power-law behavior below the peak, with typical slope =-1, higher than (and then inconsistent with) the expected value {α }2=-3/2. To better characterize the spectral shape at low energy, we analyzed 14 GRBs for which the Swift X-ray Telescope started observations during the prompt. When available, Fermi-GBM observations have been included in the analysis. For 67% of the spectra, models that usually give a satisfactory description of the prompt (e.g., the Band model) fail to reproduce the 0.5–1000 keV spectra: low-energy data outline the presence of a spectral break around a few keV. We then introduce an empirical fitting function that includes a low-energy power law {α }1, a break energy {E}{break}, a second power law {α }2, and a peak energy {E}{peak}. We find =-0.66 (σ =0.35), =0.63 (σ =0.20), =-1.46 (σ =0.31), and =2.1 (σ =0.56). The values and are very close to expectations from synchrotron radiation. In this context, {E}{break} corresponds to the cooling break frequency. The relatively small ratio {E}{peak}/{E}{break}∼ 30 suggests a regime of moderately fast cooling, which might solve the long-lasting problem of the apparent inconsistency between measured and predicted low-energy spectral index.

  15. HESS upper limits on very high energy gamma-ray emission from the microquasar GRS 1915+105

    Science.gov (United States)

    H.E.S.S. Collaboration; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Behera, B.; Bernlöhr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Boutelier, T.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Conrad, J.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'c.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fiasson, A.; Förster, A.; Fontaine, G.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jung, I.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Kerschhaggl, M.; Khangulyan, D.; Khélifi, B.; Keogh, D.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Lamanna, G.; Lenain, J.-P.; Lohse, T.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, D.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Oña Wilhelmi, E.; Orford, K. J.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Ryde, F.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schönwald, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sushch, I.; Sikora, M.; Skilton, J. L.; Sol, H.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Superina, G.; Szostek, A.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Venter, L.; Vialle, J. P.; Vincent, P.; Vivier, M.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.

    2009-12-01

    Context: High energy particles reside in the relativistic jets of microquasars, making them possible sources of very high energy radiation (VHE, >100 GeV). Detecting this emission would provide a new handle on jet physics. Aims: Observations of the microquasar GRS 1915+105 with the HESS telescope array were undertaken in 2004-2008 to search for VHE emission. Methods: Stereoscopic imaging of Cherenkov radiation from extensive air showers is used to reconstruct the energy and direction of the incident gamma rays. Results: There is no evidence for a VHE gamma-ray signal either from the direction of the microquasar or its vicinity. An upper limit of 6.1× 10-13 ph cm-2 s-1 (99.9% confidence level) is set on the photon flux above 410 GeV, equivalent to a VHE luminosity of ˜ 1034 erg s-1 at 11 kpc. Conclusions: The VHE to X-ray luminosity ratio in GRS 1915+105 is at least four orders of magnitude lower than the ratio observed in gamma-ray binaries. The VHE radiative efficiency of the compact jet is less than 0.01% based on its estimated total power of 1038 erg s-1. Particle acceleration in GRS 1915+105 is not efficient at high energies and/or the magnetic field is too strong. It is also possible that VHE gamma-rays are produced by GRS 1915+105, but the emission is highly time-dependent. Supported by CAPES Foundation, Ministry of Education of Brazil.

  16. A Search for Prompt Very High Energy Emission from Satellite-detected Gamma-ray Bursts using Milagro

    CERN Document Server

    Parkinson, P M Saz

    2007-01-01

    Gamma-ray bursts (GRBs) have been detected up to GeV energies and are predicted by many models to emit in the very high energy (VHE, > 100 GeV) regime too. Detection of such emission would allow us to constrain GRB models. Since its launch, in late 2004, the Swift satellite has been locating GRBs at a rate of approximately 100 per year. The rapid localization and follow-up in many wavelengths has revealed new and unexpected phenomena, such as delayed emission in the form of bright X-ray flares. The Milagro gamma-ray observatory is a wide field of view (2 sr) instrument employing a water Cherenkov detector to continuously ($>$ 90% duty cycle) observe the overhead sky in the 100 GeV to 100 TeV energy range. Over 100 GRBs are known to have been in the field of view of Milagro since January 2000, including 57 since the launch of Swift (through May 2007). We discuss the results of the searches for prompt emission from these bursts, as well as for delayed emission from the X-ray flares observed in some of the Swift...

  17. Fermi Large Area Telescope Observations of High-Energy Gamma-ray Emission From Behind-the-limb Solar Flares

    Science.gov (United States)

    Omodei, Nicola; Pesce-Rollins, Melissa; Petrosian, Vahe; Liu, Wei; Rubio da Costa, Fatima; Golenetskii, Sergei; Kashapova, Larisa; Krucker, Sam; Palshin, Valentin; Fermi Large Area Telescope Collaboration

    2017-01-01

    Fermi LAT >30 MeV observations of the active Sun have increased the number of detected solar flares by almost a factor of 10 with respect to previous space observations. Of particular interest are the recent detections of three solar flares whose position behind the limb was confirmed by the STEREO-B spacecraft. These observations sample flares from active regions originating from behind both the eastern and western limbs and include an event associated with the second ground level enhancement event (GLE) of the 24th Solar Cycle. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. These detections present an unique opportunity to diagnose the mechanisms of high-energy emission and particle acceleration and transport in solar flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources.

  18. First bounds on the very high energy gamma-ray emission from Arp 220

    CERN Document Server

    Albert, J

    2006-01-01

    Using the Major Atmospheric Gamma Imaging Cherenkov Telescope (MAGIC), we have observed the nearest ultra-luminous infrared galaxy Arp 220 for about 15 hours. No significant signal was detected within the dedicated amount of observation time. The first upper limits to the very high energy $\\gamma$-ray flux of Arp 220 are herein reported and compared with theoretical expectations.

  19. Voluminal modelling for the characterization of wastes packages by gamma emission computed tomography; Modelisation volumique pour la caracterisation de colis de dechets par tomographie d'emission gamma

    Energy Technology Data Exchange (ETDEWEB)

    Pettier, J.L.; Thierry, R. [CEA Cadarache, Dept. d' Entreposage et de Stockage des Dechets, 13 - Saint-Paul-lez-Durance (France)

    2001-07-01

    The aim of this work is to model the measurement process used for multi-photon emission computed tomography on nuclear waste drum. Our model MEPHISTO (Multi-Energy PHoton Imagery through Segmented TOmography) takes into account all phenomena influencing gamma emergent flux and high resolution spectrometric measurements using an HpGe detector through a collimator aperture. These phenomena are absorption and Compton scattering of gamma photons in waste drum, geometrical blur, spatial and energetic response of the detector. The analysis of results shows better localisation and quantification performances compared with a Ray-Driven method. It proves the importance of an accurate modelization of collimated measurements to reduce noise and stabilize iterative image reconstructions. (authors)

  20. Non-thermal emission from Galaxy Clusters and future observations with the FERMI gamma-ray telescope and LOFAR

    CERN Document Server

    Brunetti, G

    2008-01-01

    FERMI (formely GLAST) and LOFAR will shortly provide crucial information on the non-thermal components (relativistic particles and magnetic field) in galaxy clusters. After discussing observational facts that already put constraints on the properties and origin of non-thermal components, I will report on the emission spectrum from galaxy clusters as expected in the context of general calculations in which relativistic particles (protons and secondary electrons due to proton-proton collisions) interact with MHD turbulence generated in the cluster volume during cluster-cluster mergers. In this scenario (known as re-acceleration scenario) diffuse cluster-scale radio emission is produced in massive clusters during merging events, while gamma ray emission, at some level, is expected to be common in clusters. Expectations of interest for LOFAR and FERMI are also briefly discussed.

  1. NON-THERMAL EMISSION FROM GALAXY CLUSTERS AND FUTURE OBSERVATIONS WITH THE FERMI GAMMA-RAY TELESCOPE AND LOFAR

    Directory of Open Access Journals (Sweden)

    G. Brunetti

    2009-01-01

    Full Text Available FERMI (formely GLAST and LOFAR will shortly provide crucial information on the non-thermal components (relativistic particles and magnetic eld in galaxy clusters. After discussing relevant observational facts that already put important constraints on the properties and origin of non-thermal components, I will report on the emission spectrum from galaxy clusters as expected in the context of general calculations in which relativistic particles (protons and secondary electrons due to proton-proton collisions interact with MHD turbulence generated in the cluster volume during cluster-cluster mergers. In this scenario (known as re-acceleration scenario di use cluster-scale radio emission is produced in massive clusters during merging events, while gamma ray emission, at some level, is expected to be common in clusters. Expectations of interest for LOFAR and FERMI are also brie y discussed.

  2. Discovery of TeV gamma-ray emission from the pulsar wind nebula 3C 58 by MAGIC

    Science.gov (United States)

    López-Coto, Rubén

    2016-07-01

    The pulsar wind nebula (PWN) 3C 58 is one of the historical very-high-energy (VHE; E>100 GeV) gamma-ray source candidates. It has been compared to the Crab Nebula due to their morphological similarities. This object was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission for the first time at TeV energies with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. According to our results 3C 58 is the least luminous PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR) comparable to CMB photon fields. Hadronic contribution from the hosting supernova remnant (SNR) requires unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.

  3. Search for Extended {\\gamma}-ray Emission around AGN with H.E.S.S. and Fermi-LAT

    CERN Document Server

    Abramowski, A; Benkhali, F Ait; Akhperjanian, A G; Angüner, E; Anton, G; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Tjus, J Becker; Bernlöhr, K; Birsin, E; Bissaldi, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chalme-Calvet, R; Chaves, R C G; Cheesebrough, A; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; deWilt, P; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Grondin, M -H; Grudzińska, M; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kneiske, T; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lemière, A; Lemoine-Goumard, M; Lenain, J -P; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Moderski, R; Mohamed, M; Moulin, E; Murach, T; Naumann, C L; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Raue, M; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Rob, L; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J -P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Venter, C; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H -S; Malyshev, D

    2014-01-01

    Context: Very-high-energy (VHE; E>100 GeV) {\\gamma}-ray emission from blazars inevitably gives rise to electron-positron pair production through the interaction of these {\\gamma}-rays with the Extragalactic Background Light (EBL). Depending on the magnetic fields in the proximity of the source, the cascade initiated from pair production can result in either an isotropic halo around an initially beamed source or a magnetically broadened cascade flux. Aims: Both extended pair halo (PH) and magnetically broadened cascade (MBC) emission from regions surrounding the blazars 1ES 1101-232, 1ES 0229+200 and PKS 2155-304 were searched for, using VHE {\\gamma}-ray data taken with the High Energy Stereoscopic System (H.E.S.S.), and high energy (HE; 100 MeV 10$^{-12}$G, this limits the production of pair halos developing from electromagnetic cascades. For weaker magnetic fields, in which electromagnetic cascades would result in magnetically broadened cascades, EGMF strengths in the range (0.3 - 3)$\\times 10^{-15}$G were e...

  4. Discovery of TeV gamma-ray emission from the pulsar wind nebula 3C 58 by MAGIC

    Directory of Open Access Journals (Sweden)

    López-Coto Rubén

    2016-01-01

    Full Text Available The pulsar wind nebula (PWN 3C 58 is one of the historical very-high-energy (VHE; E>100 GeV gamma-ray source candidates. It has been compared to the Crab Nebula due to their morphological similarities. This object was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission for the first time at TeV energies with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. According to our results 3C 58 is the least luminous PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR comparable to CMB photon fields. Hadronic contribution from the hosting supernova remnant (SNR requires unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.

  5. Broad-band continuum and line emission of the gamma-ray blazar PKS 0537-441

    CERN Document Server

    Pian, E; Hartman, R C; Maraschi, L; Tavecchio, F; Tornikoski, M; Treves, A; Urry, C M; Ballo, L; Mukherjee, R; Scarpa, R; Thompson, D J; Pesce, J E

    2002-01-01

    PKS 0537-441, a bright gamma-ray emitting blazar, was observed at radio, optical, UV and X-ray frequencies during various EGRET pointings, often quasi-simultaneously. In 1995 the object was found in an intense emission state at all wavelengths. BeppoSAX observations made in 1998, non-simultaneously with exposures at other frequencies, allow us to characterize precisely the spectral shape of the high energy blazar component, which we attribute to inverse Compton scattering. The optical-to-gamma-ray spectral energy distributions at the different epochs show that the gamma-ray luminosity dominates the bolometric output. This, together with the presence of optical and UV line emission, suggests that, besides the synchrotron self-Compton mechanism, the Compton upscattering of photons external to the jet (e.g., in the broad line region) may have a significant role for high energy radiation. The multiwavelength variability can be reproduced by changes of the plasma bulk Lorentz factor. The spectrum secured by IUE in...

  6. On the morphology of $\\gamma-$ray emission induced by $e^{\\pm}$ from annihilating self-interacting dark matter

    CERN Document Server

    Cui, Ming-Yang; Zong, Hong-Shi

    2016-01-01

    With the Fermi-LAT data quite a few research groups have reported a spatially extended GeV $\\gamma$-ray excess surrounding the Galactic Center (GC). The physical origin of such a GeV excess is still unclear and one interesting possibility is the inverse Compton scattering of the electrons/positrons from annihilation of self-interacting dark matter (SIDM) particles with the interstellar optical photons. In this work we calculate the morphology of such a kind of $\\gamma$-ray emission. For the annihilation channel of $\\bar{\\chi}\\chi\\rightarrow \\phi\\phi\\rightarrow e^{+}e^{-}e^{+}e^{-}$, the inverse Compton scattering (ICS) dominates over the bremsstrahlung on producing the GeV $\\gamma$-ray emission. For the SIDM particles with a rest mass $m_\\chi \\sim $ tens GeV that may be favored by the modeling of the Galactic GeV excess, the ICS radiation at GeV energies concentrates along the Galactic plane. The degrees of asymmetry high up to $\\geq 0.3$ are found in some regions of interest, which in turn proposes a plausib...

  7. Possible Proton Synchrotron Origin of X-Ray & Gamma Ray Emission in Large Scale Jet of 3C 273

    CERN Document Server

    Kundu, Esha

    2014-01-01

    The large scale jet of quasar 3C 273 has been observed in radio to $\\gamma$ ray frequencies. Earlier the X-ray emission from knot A of this jet has been explained with inverse Compton scattering of the cosmic microwave background radiations by the shock accelerated relativistic electrons in the jet. More recently it has been shown that this mechanism overproduces the gamma ray flux at GeV energy and violates the observational results from Fermi LAT. We have considered the synchrotron emission from a broken power law spectrum of accelerated protons in the jet to explain the observed X-ray to $\\gamma$ ray flux from knot A. The two scenarios discussed in our work are (i) magnetic field is high, synchrotron energy loss time of the protons is shorter than their escape time from the knot region and the age of the jet (ii) their escape time is shorter than their synchrotron energy loss time and the age of the jet. These scenarios can explain the observed photon spectrum well for moderate values of Doppler factor. Th...

  8. Discovery of TeV gamma-ray emission from the pulsar wind nebula 3C 58 by MAGIC

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Wilhelmi, E de Oña; Mendez, C Delgado; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Godinović, N; Muñoz, A González; Gozzini, S R; Hadasch, D; Hanabata, Y; Hayashida, M; Herrera, J; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Moroni, P G Prada; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Rügamer, S; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Zanin, R; Pérez-Torres, M A

    2014-01-01

    The pulsar wind nebula (PWN) 3C 58 is one of the historical very-high-energy (VHE; E>100 GeV) gamma-ray source candidates. It is energized by one of the highest spin-down power pulsars known (5% of Crab pulsar) and it has been compared to the Crab Nebula due to their morphological similarities. This object was previously observed by imaging atmospheric Cherenkov telescopes (Whipple, VERITAS and MAGIC), although not detected, with an upper limit of 2.4% Crab Unit (C.U.) at VHE. It was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. The differential energy spectrum between 400 GeV and 10 TeV is well described by a power-law function d\\phi/dE=f_0(E/1TeV)^{-Gamma} with f_0=(2.0\\pm0.4_{stat}\\pm0.6_{sys})\\times10^{-13}cm^{-2}s^{-1}TeV^{-1} and Gamma=2.4\\pm0.2_{stat}\\pm0.2_{sys}. The skymap is compatible with an unre...

  9. Equipartition gamma-ray blazars and the location of the gamma-ray emission site in 3C 279

    Energy Technology Data Exchange (ETDEWEB)

    Dermer, Charles D. [Code 7653, Space Science Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Cerruti, Matteo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lott, Benoit [Centre d' Études Nucléaires Bordeaux Gradignan, Université de Bordeaux, CNRS/IN2P3, UMR 5797, F-33175 Gradignan (France); Boisson, Catherine; Zech, Andreas, E-mail: charles.dermer@nrl.navy.mil, E-mail: matteo.cerruti@cfa.harvard.edu [Laboratoire Univers et THeories (LUTH), Observatoire de Paris-Meudon, 5 Place Jules Janssen, F-92195 Meudon Cedex (France)

    2014-02-20

    Blazar spectral models generally have numerous unconstrained parameters, leading to ambiguous values for physical properties like Doppler factor δ{sub D} or fluid magnetic field B'. To help remedy this problem, a few modifications of the standard leptonic blazar jet scenario are considered. First, a log-parabola function for the electron distribution is used. Second, analytic expressions relating energy loss and kinematics to blazar luminosity and variability, written in terms of equipartition parameters, imply δ{sub D}, B', and the peak electron Lorentz factor γ{sub pk}{sup ′}. The external radiation field in a blazar is approximated by Lyα radiation from the broad-line region (BLR) and ≈0.1 eV infrared radiation from a dusty torus. When used to model 3C 279 spectral energy distributions from 2008 and 2009 reported by Hayashida et al., we derive δ{sub D} ∼ 20-30, B' ∼ few G, and total (IR + BLR) external radiation field energy densities u ∼ 10{sup –2}-10{sup –3} erg cm{sup –3}, implying an origin of the γ-ray emission site in 3C 279 at the outer edges of the BLR. This is consistent with the γ-ray emission site being located at a distance R ≲ Γ{sup 2} ct {sub var} ∼ 0.1(Γ/30){sup 2}(t {sub var}/10{sup 4} s) pc from the black hole powering 3C 279's jets, where t {sub var} is the variability timescale of the radiation in the source frame, and at farther distances for narrow-jet and magnetic-reconnection models. Excess ≳ 5 GeV γ-ray emission observed with Fermi LAT from 3C 279 challenges the model, opening the possibility of a second leptonic component or a hadronic origin of the emission. For low hadronic content, absolute jet powers of ≈10% of the Eddington luminosity are calculated.

  10. FERMI-LAT OBSERVATIONS OF THE DIFFUSE {gamma}-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L.; Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [CNRS, IRAP, F-31028 Toulouse cedex 4 (France); Brigida, M. [Dipartimento di Fisica ' M. Merlin' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: tporter@stanford.edu, E-mail: gudlaugu@glast2.stanford.edu, E-mail: aws@mpe.mpg.de [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2012-05-01

    The {gamma}-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse {gamma}-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. To assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X{sub CO} factor, the ratio between integrated CO-line intensity and H{sub 2} column density, the fluxes and spectra of the {gamma}-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as {gamma}-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter

  11. Relationship between electromagnetic and acoustic emissions during plastic deformation of gamma-irradiated LiF monocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hadjicontis, V.; Mavromatou, C.; Mastrogiannis, D. [Department of Solid State Physics, University of Athens, Panepistimiopolis, Zografos, TK 157 84, Athens (Greece); Antsygina, T. N.; Chishko, K. A. [B. Verkin Institute for Low Temperature Physics and Engineering, 47 Lenin Ave., 61103 Kharkov (Ukraine)

    2011-07-15

    Simultaneous measurements of acoustic emissions (AE) and electromagnetic emissions (EME) during plastic deformation and destruction under uniaxial compression along <001> direction are made on LiF monocrystals after gamma irradiation by {sup 60}Co source. The irradiation doses are 1, 2, and 10 Mrad. The EME measurements in the radio-frequency range are carried out using two types of electromagnetic sensors: (i) a simple electrical stub antenna and (ii) a toroidal inductance coil. Two checking experiments on unirradiated crystals are performed as the starting point to discover the effect of gamma irradiation on acoustic and electromagnetic emissive ability of plastically deformed ionic crystals. Unirradiated LiF monocrystals demonstrate high-intensive EME at easy glide and work hardening stages, as well as at the fracture during destruction of the sample. At radiation doses more than {approx}1 Mrad, in the active loading stage the EME of LiF monocrystals vanishes, except few individual electromagnetic pulses (only at 1 and 2 Mrad doses), which are time correlated with well-defined drop-jumps on the loading diagram and therefore can be associated with macroscopic crack openings. Moderate electromagnetic activity in irradiated crystals occurs only in the final stage of deformation at the complete fracture of the sample. Thus, after gamma irradiation the formation of polarization currents due to dynamic interaction between charged vacancies and moving dislocations is suppressed, and only EME connected with the redistribution of the free charge on the crack branches is observed. Acoustic emission diagrams of low-irradiated LiF are typical for the work hardening stage in crystals containing a great amount of strong point stoppers. At larger irradiation doses the AE diagram displays quite different behavior at low- and high-loading regions with a sharp boundary between them. The low-loading region shows poor AE activity, which changes sharply into high-active burst

  12. [Gamma]-ray emission form regions of star formation theory and observations with the MAGIC telescope /

    OpenAIRE

    Domingo Santamaría, Eva

    2006-01-01

    Consultable des del TDX Títol obtingut de la portada digitalitzada Es el propósito de esta tesis estudiar la posibilidad de que regiones con importante actividad en formación estelar sean fuentes de rayos gamma para los actuales y futuros detectores, ya sean detectores de rayos gamma con base en satélites como telescopios Cherenkov situados en la superficie terrestre. Tras una evaluación fenomenológica positiva de que la emisión de rayos gamma procedente de galaxias con elevada activida...

  13. (gamma)-ray emission from regions of star formation: Theory and observations with the MAGIC Telescope

    OpenAIRE

    Domingo Santamaría, Eva

    2006-01-01

    Es el propósito de esta tesis estudiar la posibilidad de que regiones con importante actividad en formación estelar sean fuentes de rayos gamma para los actuales y futuros detectores, ya sean detectores de rayos gamma con base en satélites como telescopios Cherenkov situados en la superficie terrestre.Tras una evaluación fenomenológica positiva de que la emisión de rayos gamma procedente de galaxias con elevada actividad en formación estelar (como las llamadas starburst o las galaxias ultra l...

  14. Looking for Stars and Finding the Moon: Effects of Lunar Gamma-ray Emission on Fermi LAT Light Curves

    CERN Document Server

    Corbet, Robin; Kerr, Matthew; Ray, Paul S

    2013-01-01

    We are conducting a search for new gamma-ray binaries by making high signal-to-noise light curves of all cataloged Fermi LAT sources and searching for periodic variability using appropriately weighted power spectra. The light curves are created using a variant of aperture photometry where photons are weighted by the probability that they came from the source of interest. From this analysis we find that the light curves of a number of sources near the ecliptic plane are contaminated by gamma-ray emission from the Moon. This shows itself as modulation on the Moon's sidereal period in the power spectra. We demonstrate that this contamination can be removed by excluding times when the Moon was too close to a source. We advocate that this data screening should generally be used when analyzing LAT data from a source located close to the path of the Moon.

  15. Transfer of Radionuclides K-40, Th-232 and Ra-226 from Mining Soil to Sawi (Japanese Mustard)

    Science.gov (United States)

    Hariandra, M.; Amin, Y. M.

    2008-05-01

    The uptake of naturally occurring thorium, radium and potassium by sawi (Japanese Mustard) from disused tin mining was studied. Both soil and sawi sample were collected from a vegetable farm located 15 km from Kuala Lumpur, Malaysia where the farm has been operating for 22 years on a disused tin mining. By using a gamma spectroscopy system, the transfers of radionuclides from soil to plants were investigated. The highest values of radionuclides in the soil was K-40 which is 52.8 Bq kg-1 and the lowest was Ra-226 which is 6.51 Bq kg-1. The activity of Th-232 is 18.5 Bq kg-1. The activity of radionuclides in the sawi sample shows higher values as compared to the soil sample. The highest values of radionuclides in the sawi were K-40 which is 446 Bq kg-1 and the lowest was Ra-226 which is 17.5 Bq kg-1. The activity of Th-232 is 65.2 Bq kg-1. The concentration of radionuclides in soils and plants can be used for the determination of soil-to-plant transfer factors. The soil to plant transfer factors (TF) were calculated and observed to be 2.68 for radium-226, 3.52 for thorium-232 and the highest which is 3.97 for potassium-40.

  16. Correlated X-ray and Very High Energy emission in the gamma-ray binary LS I +61 303

    CERN Document Server

    Anderhub, H; Antoranz, P; Backes, M; Baixeras, C; Balestra, S; Barrio, J A; Bastieri, D; González, J Becerra; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Bigas, O Blanch; Bock, R K; Bonnoli, G; Bordas, P; Tridon, D Borla; Bosch-Ramon, V; Bose, D; Braun, I; Bretz, T; Britzger, D; Camara, M; Carmona, E; Carosi, A; Colin, P; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Dazzi, F; De Angelis, A; del Pozo, E de Cea; Reyes, R De los; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Elsaesser, D; Errando, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; López, R J García; Garczarczyk, M; Gaug, M; Godinovic, N; Göbel, F; Hadasch, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Hsu, C C; Jogler, T; Klepser, S; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Orito, R; Oya, I; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Pérez-Torres, M A; Persic, M; Peruzzo, L; Prada, F; Prandini, E; Puchades, N; Puljak, I; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sánchez-Conde, M; Satalecka, K; Scalzotto, V; Scapin, V; Schweizer, T; Shayduk, M; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Spiro, S; Stamerra, A; Stark, L S; Suric, T; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Torres, D F; Turini, N; Vankov, H; Wagner, R M; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J; Falcone, A; Vetere, L; Gehrels, N; Trushkin, S; Dhawan, V; Reig, P

    2009-01-01

    The discovery of very high energy (VHE) gamma-ray emitting X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems, which provide variable conditions along eccentric orbits. Despite this, the nature of some of these systems, and of the accelerated particles producing the VHE emission, is unclear. To answer some of these open questions, we conducted a multiwavelength campaign of the VHE gamma-ray emitting X-ray binary LS I +61 303 including the MAGIC telescope, XMM-Newton, and Swift during 60% of an orbit in 2007 September. We detect a simultaneous outburst at X-ray and VHE bands, with the peak at phase 0.62 and a similar shape at both wavelengths. A linear fit to the simultaneous X-ray/VHE pairs obtained during the outburst yields a correlation coefficient of r=0.97, while a linear fit to all simultaneous pairs provides r=0.81. Since a variable absorption of the VHE emission towards the observer is not expecte...

  17. Emission and absorption lines of gamma-ray bursts affected by the relativistic motion of fireball ejecta

    CERN Document Server

    Qin, Y P

    2003-01-01

    We display by numerical calculation how rest frame spectral lines appear in the observed spectrum of gamma-ray bursts due to the Doppler effect in the fireball framework. The analysis shows that: a) in the spectrum of a relativistically expanding fireball, all rest frame lines would shift to higher energy bands and would be significantly smoothed; b) rest frame weak narrow emission lines as well as narrow absorption lines and absorption line forests would be smoothed and would hardly be detectable; c) the features of rest frame broad emission lines as well as both strong and weak broad absorption lines would remain almost unchanged and therefore would be easier to detect; d) deep gaps caused by rest frame broad absorption lines would be significantly filled; e) a rest frame emission line forest would form a single broad line feature; f) the observed relative width of the rest frame very narrow line would approach $ 0.162$; g) when the Lorentz factor $\\Gamma $ is large enough, the observed line frequency $\

  18. Hadronic versus leptonic origin of the gamma-ray emission from Supernova Remnant RX J1713.6-3946

    CERN Document Server

    Berezhko, E G

    2008-01-01

    Aims. The hadronic vs. leptonic origin of the gamma-ray emission from the Supernova Remnant RX J1713.6-3946 is discussed both in the light of new observations and from a theoretical point of view. Methods. The existing good spatial correlation of the gamma-ray emission and the nonthermal X-ray emission is analyzed theoretically. In addition, the recently published new H.E.S.S. observations define the energy spectrum more precisely, in particular at the high and low energy ends of the instrument's dynamical range. There now exist much more constraining X-ray observations from Suzaku that extend substantially beyond 10 keV. These new data are compared with the authors' previous theoretical predictions, both for dominant hadronic and for simple inverse Compton models. Results. Apart from the well-known MHD correlation between magnetic field strength and plasma density variations, emphasized by the wind-bubble-structure of the remnant, it is argued that the regions of magnetic field amplification also are correla...

  19. Superluminal Radio Features in the M87 Jet and the Site of Flaring TeV Gamma-ray Emission

    CERN Document Server

    Cheung, C C; Stawarz, L

    2007-01-01

    Superluminal motion is a common feature of radio jets in powerful gamma-ray emitting active galactic nuclei. Conventionally, the variable emission is assumed to originate near the central supermassive black-hole where the jet is launched on parsec scales or smaller. Here, we report the discovery of superluminal radio features within a distinct flaring X-ray emitting region in the jet of the nearby radio galaxy M87 with the Very Long Baseline Array. This shows that these two phenomenological hallmarks -- superluminal motion and high-energy variability -- are associated, and we place this activity much further (>=120 pc) from the ``central engine'' in M87 than previously thought in relativistic jet sources. We argue that the recent excess very high-energy TeV emission from M87 reported by the H.E.S.S. experiment originates from this variable superluminal structure, thus providing crucial insight into the production region of gamma-ray emission in more distant blazars.

  20. Identification of gamma-ray emission from 3C345 and NRAO512

    CERN Document Server

    Schinzel, F K; D'Ammando, F; Burnett, T H; Max-Moerbeck, W; Cheung, C C; Fegan, S J; Casandjian, J M; Reyes, L C; Villata, M; Raiteri, C M; Agudo, I; Calle, O J A Bravo; Carosati, D; Casas, R; Gomez, J L; Gurwell, M A; Hsiao, H Y; Jorstad, S G; Kimeridze, G; Konstantinova, T S; Kopatskaya, E N; Koptelova, E; Kurtanidze, O M; Kurtanidze, S O; Larionov, V M; Larionova, E G; Larionova, L V; Marscher, A P; Morozova, D A; Nikolashvili, M G; Roca-Sogorb, M; Ros, J A; Sigua, L A; Spiridonova, O; Troitsky, I S; Vlasyuk, V V; Lobanov, A P; Zensus, J A

    2011-01-01

    For more than 15 years, since the days of the Energetic Gamma-Ray Experiment Telescope (EGRET) on board the Compton Gamma-Ray Observatory (CGRO; 1991-2000), it has remained an open question why the prominent blazar 3C 345 was not reliably detected at gamma-ray energies <=20 MeV. Recently a bright gamma-ray source (0FGL J1641.4+3939/1FGL J1642.5+3947), potentially associated with 3C 345, was detected by the Large Area Telescope (LAT) on Fermi. Multiwavelength observations from radio bands to X-rays (mainly GASP-WEBT and Swift) of possible counterparts (3C 345, NRAO 512, B3 1640+396) were combined with 20 months of Fermi-LAT monitoring data (August 2008 - April 2010) to associate and identify the dominating gamma-ray emitting counterpart of 1FGL J1642.5+3947. The source 3C 345 is identified as the main contributor for this gamma-ray emitting region. However, after November 2009 (15 months), a significant excess of photons from the nearby quasar NRAO 512 started to contribute and thereafter was detected with ...

  1. Neutron Capture Cross Sections and Gamma Emission Spectra from Neutron Capture on 234,236,238U Measured with DANCE

    Science.gov (United States)

    Ullmann, J. L.; Mosby, S.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C.-Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.

    2014-05-01

    A new measurement of the 238U(n, γ) cross section using a thin 48 mg/cm2 target was made using the DANCE detector at LANSCE over the energy range from 10 eV to 500 keV. The results confirm earlier measurements. Measurements of the gamma-ray emission spectra were also made for 238U(n, γ) as well as 234,236U(n, γ). These measurements help to constrain the radiative strength function used in the cross-section calculations.

  2. VERITAS Search for VHE Gamma-ray Emission from Dwarf Spheroidal Galaxies

    CERN Document Server

    Acciari, V A; Aune, T; Beilicke, M; Benbow, W; Boltuch, D; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Christiansen, J L; Ciupik, L; Cui, W; Dickherber, R; Duke, C; Finley, J P; Finnegan, G; Furniss, A; Galante, N; Godambe, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Karlsson, N; Kertzman, M; Kieda, D; Konopelko, A; Krawczynski, H; Krennrich, F; Maier, G; McArthur, S; McCann, A; McCutcheon, M; Moriarty, P; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Senturk, G Demet; Smith, A W; Steele, D; Swordy, S P; Tešić, G; Theiling, M; Thibadeau, S; Varlotta, A; Vassiliev, V V; Vincent, S; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wissel, S; Zitzer, B

    2010-01-01

    Indirect dark matter searches with ground-based gamma-ray observatories provide an alternative for identifying the particle nature of dark matter that is complementary to that of direct search or accelerator production experiments. We present the results of observations of the dwarf spheroidal galaxies Draco, Ursa Minor, Bootes 1, and Willman 1 conducted by VERITAS. These galaxies are nearby dark matter dominated objects located at a typical distance of several tens of kiloparsecs for which there are good measurements of the dark matter density profile from stellar velocity measurements. Since the conventional astrophysical background of very high energy gamma rays from these objects appears to be negligible, they are good targets to search for the secondary gamma-ray photons produced by interacting or decaying dark matter particles. No significant gamma-ray flux above 200 GeV was detected from these four dwarf galaxies for a typical exposure of ~20 hours. The 95% confidence upper limits on the integral gamma...

  3. Radio to $\\gamma$-Ray Emission from Shell-type Supernova Remnants Predictions from Non-linear Shock Acceleration Models

    CERN Document Server

    Baring, M G; Reynolds, S P; Grenier, I; Goret, P; Baring, Matthew G.; Ellison, Donald C.; Reynolds, Stephen P; Grenier, Isabelle; Goret, Philippe

    1999-01-01

    Supernova remnants (SNRs) are widely believed to be the principal source of galactic cosmic rays. Such energetic particles can produce gamma-rays and lower energy photons via interactions with the ambient plasma. In this paper, we present results from a Monte Carlo simulation of non-linear shock structure and acceleration coupled with photon emission in shell-like SNRs. These non-linearities are a by-product of the dynamical influence of the accelerated cosmic rays on the shocked plasma and result in distributions of cosmic rays which deviate from pure power-laws. Such deviations are crucial to acceleration efficiency and spectral considerations, producing GeV/TeV intensity ratios that are quite different from test particle predictions. The Sedov scaling solution for SNR expansions is used to estimate important shock parameters for input into the Monte Carlo simulation. We calculate ion and electron distributions that spawn neutral pion decay, bremsstrahlung, inverse Compton, and synchrotron emission, yieldin...

  4. X-Ray and Gamma-Ray Emission from Middle-aged Supernova Remnants in Cavities. I. Spherical Symmetry

    Science.gov (United States)

    Tang竹唐, Zhu; Reynolds, Stephen P.; Ressler, Sean M.

    2016-12-01

    We present analytical and numerical studies of models of supernova-remnant (SNR) blast waves in one spatial dimension expanding into uniform media and interacting with a denser cavity wall. We predict the nonthermal emission from such blast waves: synchrotron emission at radio and X-ray energies, and bremsstrahlung, inverse-Compton emission (from cosmic-microwave-background seed photons; ICCMB), and emission from the decay of {π }0 mesons produced in inelastic collisions between accelerated ions and thermal gas, at GeV and TeV energies. Accelerated-particle spectra are assumed to be power laws with exponential cutoffs at energies limited by the remnant age or (for electrons, if lower) by radiative losses. We compare the results with those from homogeneous (“one-zone”) models. Such models give fair representations of the 1D results for uniform media, but cavity-wall interactions produce effects for which one-zone models are inadequate. We study the time evolution of SNR morphology and emission with time. Strong morphological differences exist between ICCMB and {π }0-decay emission; at some stages, the TeV emission can be dominated by the former and the GeV by the latter, resulting in strong energy dependence of morphology. Integrated gamma-ray spectra show apparent power laws of slopes that vary with time, but do not indicate the energy distribution of a single population of particles. As observational capabilities at GeV and TeV energies improve, spatial inhomogeneity in SNRs will need to be accounted for.

  5. Very-high-energy gamma-ray emission from the direction of the Galactic globular cluster Terzan 5

    Science.gov (United States)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; Behera, B.; Bernlöhr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Cologna, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubois, F.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Häffner, S.; Hague, J. D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Khangulyan, D.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Laffon, H.; Lamanna, G.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, D.; Maxted, N.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, D.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Ryde, F.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sikora, M.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Vialle, J. P.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2011-07-01

    The HESS very-high-energy (VHE, E > 0.1 TeV) gamma-ray telescope system has discovered a new source, HESS J1747-248. The measured integral flux is (1.2 ± 0.3) × 10-12 cm-2 s-1 above 440 GeV for a power-law photon spectral index of 2.5 ± 0.3stat ± 0.2sys. The VHE gamma-ray source is located in the close vicinity of the Galactic globular cluster Terzan 5 and extends beyond the HESS point spread function (0.07°). The probability of a chance coincidence with Terzan 5 and an unrelated VHE source is quite low (~10-4). With the largest population of identified millisecond pulsars (msPSRs), a very high core stellar density and the brightest GeV range flux as measured by Fermi-LAT, Terzan 5 stands out among Galactic globular clusters. The properties of the VHE source are briefly discussed in the context of potential emission mechanisms, notably in relation to msPSRs. Interpretation of the available data accommodates several possible origins for this VHE gamma-ray source, although none of them offers a satisfying explanation of its peculiar morphology.

  6. Discovery of TeV gamma-ray emission from the Pulsar Wind Nebula 3C 58 by MAGIC

    CERN Document Server

    Bigas, O Blanch; Carmona, E; Pérez-Torres, M A

    2015-01-01

    The Pulsar Wind Nebula (PWN) 3C 58 is energized by one of the highest spin-down power pulsars known (5% of Crab pulsar) and it has been compared to the Crab Nebula due to their morphological similarities. This object was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission for the first time at TeV energies with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. The differential energy spectrum between 400 GeV and 10 TeV is well described by a power-law function $d\\Phi/dE=f_{o}(E/1TeV)^{-\\Gamma}$ with $f_{o}=(2.0\\pm0.4stat\\pm0.6sys) 10^{-13}cm^{-2}s^{-1}TeV^{-1}$ and $\\Gamma=2.4\\pm0.2sta\\pm0.2sys$. This leads 3C 58 to be the least luminous PWN ever detected at VHE and the one with the lowest flux at VHE to date. According to time-dependent models in which electrons up-scatter photon fields, the best representation favors a distance to the PWN of 2 kpc and FIR comparable...

  7. Very-high-energy gamma-ray emission from the direction of the Galactic globular cluster Terzan 5

    CERN Document Server

    ,

    2011-01-01

    The H.E.S.S. very-high-energy (VHE, E > 0.1 TeV) gamma-ray telescope system has discovered a new source, HESS J1747-248. The measured integral flux is (1.2 +/- 0.3) \\times 10^-12 cm-2 s-1 above 440 GeV for a power-law photon spectral index of 2.5 +/- 0.3 stat +/- 0.2 sys. The VHE gamma-ray source is located in the close vicinity of the Galactic globular cluster Terzan 5 and extends beyond the H.E.S.S. point spread function (0.07 degree). The probability of a chance coincidence with Terzan 5 and an unrelated VHE source is quite low (~ 10^-4). With the largest population of identified millisecond pulsars (msPSRs), a very high core stellar density and the brightest GeV range flux as measured by Fermi-LAT, Terzan 5 stands out among Galactic globular clusters. The properties of the VHE source are briefly discussed in the context of potential emission mechanisms, notably in relation to msPSRs. Interpretation of the available data accommodates several possible origins for this VHE gamma-ray source, although none of ...

  8. MODELING PHOTODISINTEGRATION-INDUCED TeV PHOTON EMISSION FROM LOW-LUMINOSITY GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuewen [Physics Department, Sichuan University, Chengdu 610065 (China); Wu Xuefeng; Lu Tan, E-mail: astrolxw@gmail.com, E-mail: xfwu@pmo.ac.cn, E-mail: t.lu@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2012-05-15

    Ultra-high-energy cosmic-ray heavy nuclei have recently been considered as originating from nearby low-luminosity gamma-ray bursts that are associated with Type Ibc supernovae. Unlike the power-law decay in long duration gamma-ray bursts, the light curve of these bursts exhibits complex UV/optical behavior: shock breakout dominated thermal radiation peaks at about 1 day, and, after that, nearly constant emission sustained by radioactive materials for tens of days. We show that the highly boosted heavy nuclei at PeV energy interacting with the UV/optical photon field will produce considerable TeV photons via the photodisintegration/photo-de-excitation process. It was later predicted that a thermal-like {gamma}-ray spectrum peaks at about a few TeV, which may serve as evidence of nucleus acceleration. The future observations by the space telescope Fermi and by the ground atmospheric Cherenkov telescopes such as H.E.S.S., VERITAS, and MAGIC will shed light on this prediction.

  9. Thick target yields of proton induced gamma-ray emission from Al, Si and P

    Science.gov (United States)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.; Fathollahi, V.

    2017-03-01

    Thick target excitation yield curves of gamma-rays from the reactions 27Al(p,p‧γ)27Al (Eγ = 844 and 1014 keV), 27Al(p,αγ)27Al (Eγ = 1369 keV), 28Si(p,p‧γ)28Si (Eγ = 1779 keV), 29Si(p,p‧γ)29Si (Eγ = 1273 keV) and 31P(p,p‧γ)31P (Eγ = 1266 keV) were measured by bombarding pure-element targets with protons at energies below 3 MeV. Gamma-rays were detected with a High Purity Ge detector placed at an angle of 90° with respect to the beam direction. The obtained thick target gamma-ray yields were compared with the previously published data. The overall systematic uncertainty of the thick target yield values was estimated to be better than ±9%.

  10. First observation of {gamma}-ray emission assigned to the decay of {sup 164}W

    Energy Technology Data Exchange (ETDEWEB)

    Dressler, R.; Bruchertseifer, H. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schumann, D. [Technische Univ. Dresden (Germany); Taut, S. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany); Fischer, S. [Humboldt-Universitaet, Berlin (Germany). Bereich Medizin (Charite); Binder, R. [Leipzig Univ. (Germany); Yakushev, A.B.; Buklanov, G.; Lien, D.T.; Domanov, V.P. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Szeglowski, Z.; Kubica, B. [Henryk Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland); Guseva, L.I.; Tikhomirova, G.S. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Geokhimii i Analiticheskoj Khimii; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)]|[Bern Univ. (Switzerland)

    1997-12-31

    The excitation functions of the short-lived tungsten isotopes {sup 164}W and {sup 165}W produced in the nuclear reaction {sup 24}Mg + {sup 144}Sm were measured for E{sub Lab} = 109 MeV - 141 MeV. Two {gamma}-lines at (187.0{+-}0.1) keV and (268.7{+-}0.2) keV were discovered in the {gamma}-spectra of the tungsten fraction after chemical separation at a beam energy of 128 MeV which we assign to {sup 164}W. The half-life of the 187.0 keV {gamma}-line is (7.0{+-}0.2) s. (orig.) 14 refs.

  11. Possible Quasi-Periodic Gamma-ray Emission from Blazar PG 1553+113

    Science.gov (United States)

    Thompson, David; Cutini, Sara; Ciprini, Stefano; Larsson, Stefan; Stamerra, Antonio; Fermi Large Area Telescope Collaboration

    2017-01-01

    We report an update on a possible gamma-ray and multiwavelength nearly periodic oscillation in an active galactic nucleus. Data from the Fermi Large Area Telescope exhibit an apparent quasi-periodicity in the gamma-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The indication of a 2.18 +/- 0.08 year period gamma-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the Owens Valley Radio Observatory, Tuorla, Katzman Automatic Imaging Telescope, and Catalina Sky Survey monitoring programs and Swift-UVOT. Further long-term multiwavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.

  12. Constraining Magnetization of Gamma-Ray Bursts Outflows using Prompt Emission Fluence

    CERN Document Server

    Pe'er, Asaf

    2016-01-01

    I consider here acceleration and heating of relativistic outflow by local magnetic energy dissipation process in Poynting flux dominated outflow. Adopting the standard assumption that the reconnection rate scales with the Alfven speed, I show here that the fraction of energy dissipated as thermal photons cannot exceed (13 \\hat \\gamma -14)^{-1} = 30% (for adiabatic index \\hat \\gamma = 4/3) of the kinetic energy at the photosphere. Even in the most radiatively efficient scenario, the energy released as non-thermal photons during the prompt phase is at most equal to the kinetic energy of the outflow. These results imply that calorimetry of the kinetic energy that can be done during the afterglow phase, could be used to constrain the magnetization of gamma-ray bursts (GRB) outflows.

  13. Spectral analysis and interpretation of the \\gamma-ray emission from the Starburst galaxy NGC 253

    CERN Document Server

    Abramowski, A; Aharonian, F; Akhperjanian, A G; Anton, G; Balzer, A; Barnacka, A; Becherini, Y; Becker, J; Bernlöhr, K; Birsin, E; Biteau, J; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Büsching, I; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Cologna, G; Conrad, J; Couturier, C; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gajdus, M; Gallant, Y A; Garrigoux, T; Gast, H; Gérard, L; Giebels, B; Glicenstein, J F; Glück, B; Göring, D; Grondin, M -H; Häffner, S; Hague, J D; Hahn, J; Hampf, D; Harris, J; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Krayzel, F; Laffon, H; Lamanna, G; Lenain, J -P; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Medina, M C; Méhault, J; Moderski, R; Mohamed, M; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sheidaei, F; Skilton, J L; Sol, H; Spengler, G; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; White, R; Wierzcholska, A; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S

    2012-01-01

    Very-high-energy (VHE; E >100 GeV) and high-energy (HE; 100 MeV < E < 100 GeV) data from \\gamma-ray observations performed with the H.E.S.S. telescope array and the Fermi-LAT instrument, respectively, are analysed in order to investigate the non-thermal processes in the starburst galaxy NGC 253. The VHE \\gamma-ray data can be described by a power law in energy with differential photon index \\Gamma=2.14 \\pm 0.18_stat \\pm 0.30_sys and differential flux normalisation at 1 TeV of F_0 = (9.6 \\pm 1.5_stat (+5.7,-2.9)_sys) x 10^{-14} TeV^{-1} cm^{-2} s^{-1}. A power-law fit to the differential HE \\gamma-ray spectrum reveals a photon index of \\Gamma=2.24 \\pm 0.14_stat \\pm 0.03_sys and an integral flux between 200 MeV and 200 GeV of F(0.2-200 GeV) = (4.9 \\pm 1.0_stat \\pm 0.3_sys) x 10^{-9} cm^{-2} s^{-1}. No evidence for a spectral break or turnover is found over the dynamic range of both the LAT instrument and the H.E.S.S. experiment: a combined fit of a power law to the HE and VHE \\gamma-ray data results in a ...

  14. A COMPREHENSIVE STUDY OF GAMMA-RAY BURST OPTICAL EMISSION. II. AFTERGLOW ONSET AND LATE RE-BRIGHTENING COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Liang Enwei; Li Liang; Liang Yunfeng; Tang Qingwen; Chen Jiemin; Lu Ruijing; Lue Lianzhong [Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004 (China); Gao He; Zhang, Bing; Lue Houjun [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States); Wu Xuefeng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Yi Shuangxi; Dai Zigao [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China); Zhang Jin; Wei Jianyan, E-mail: lew@gxu.edu.cn, E-mail: zhang@physics.unlv.edu [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-09-01

    We continue our systematic statistical study of various components of gamma-ray burst (GRB) optical light curves. We decompose the early onset bump and the late re-brightening bump with empirical fits and analyze their statistical properties. Among the 146 GRBs that have well-sampled optical light curves, the onset and re-brightening bumps are observed in 38 and 26 GRBs, respectively. It is found that the typical rising and decaying slopes for both the onset and re-brightening bumps are {approx}1.5 and {approx} - 1.15, respectively. No early onset bumps in the X-ray band are detected to be associated with the optical onset bumps, while an X-ray re-brightening bump is detected for half of the re-brightening optical bumps. The peak luminosity is anti-correlated with the peak time L{sub p}{proportional_to}t{sub p}{sup -1.81{+-}0.32} for the onset bumps and L{sub p}{proportional_to}t{sub p}{sup -0.83{+-}0.17} for the re-brightening bumps. Both L{sub p} and the isotropic energy release of the onset bumps are correlated with E{sub {gamma},iso}, whereas no similar correlation is found for the re-brightening bumps. These results suggest that the afterglow onset bumps are likely due to the deceleration of the GRB fireballs. Taking the onset bumps as probes for the properties of the fireballs and their ambient medium, we find that the typical power-law index of the relativistic electrons is 2.5 and the medium density profile behaves as n{proportional_to}r {sup -1} within the framework of the synchrotron external shock models. With the medium density profile obtained from our analysis, we also confirm the correlation between the initial Lorentz factor ({Gamma}{sub 0}) and E{sub iso,{gamma}} in our previous work. The jet component that produces the re-brightening bump seems to be on-axis and independent of the prompt emission jet component. Its typical kinetic energy budget would be about one order of magnitude larger than the prompt emission component, but with a lower {Gamma

  15. Diffuse gamma-ray emission from the Galactic center and implications of its past activities

    CERN Document Server

    Fujita, Yutaka; Murase, Kohta

    2016-01-01

    It has been indicated that low-luminosity active galactic nuclei (LLAGNs) are accelerating high-energy cosmic-ray (CR) protons in their radiatively inefficient accretion flows (RIAFs). If this is the case, Sagittarius A* (Sgr A*) should also be generating CR protons, because Sgr A* is a LLAGN. Based on this scenario, we calculate a production rate of CR protons in Sgr A* and their diffusion in the central molecular zone (CMZ) around Sgr A*. The CR protons diffusing in the CMZ create gamma-rays through pp interaction. We show that the gamma-ray luminosity and spectrum are consistent with observations if Sgr A* was active in the past.

  16. Hard X-ray Emission from Sh2-104: A NuSTAR search for Gamma-ray Counterparts

    CERN Document Server

    Gotthelf, E V; Aliu, E; Paredes, J M; Tomsick, J A; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Harrison, F A; Hong, J S; Rahoui, F; Stern, D; Zhang, W W

    2016-01-01

    We present NuSTAR hard X-ray observations of Sh 2-104, a compact HII region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Faint, diffuse X-ray emission coincident with the eastern YMSC in Sh2-104 is likely the result of colliding winds of component stars. Just outside the radio shell of Sh 2-104 lies 3XMM J201744.7+365045 and a nearby nebula NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with NH = (3.1 +/- 1.0)E22 cm^-2 and photon index Gamma = 2.1 +/- 0.1. Based on possible long-term flux variation and the lack of detected pulsations (< 43% modulation), this object is likely a background AGN rather than a Galactic pulsar. The spectrum of the NuSTAR nebula shows evi...

  17. Gamma-ray emission from PSR J0007+7303 using 7 years of Fermi Large Area Telescope observations

    CERN Document Server

    Li, Jian; Wilhelmi, Emma de Ona; Rea, Nanda; Martin, Jonatan

    2016-01-01

    Based on more than seven years of Fermi Large Area Telescope (LAT) Pass 8 data, we report on a detailed analysis of the bright gamma-ray pulsar (PSR) J0007+7303. We confirm that PSR J0007+7303 is significantly detected as a point source also during the off-peak phases with a TS value of 262 ($\\sim$ 16 $\\sigma$). In the description of PSR J0007+7303 off-peak spectrum, a power law with an exponential cutoff at 2.7$\\pm$1.2$\\pm$1.3 GeV (the first/second uncertainties correspond to statistical/systematic errors) is preferred over a single power law at a level of 3.5 $\\sigma$. The possible existence of a cutoff hints at a magnetospheric origin of the emission. In addition, no extended gamma-ray emission is detected compatible with either the supernova remnant (CTA 1) or the very high energy (> 100 GeV) pulsar wind nebula. A flux upper limit of 6.5$\\times$10$^{-12}$ erg cm$^{-2}$ s$^{-1}$ in the 10-300 GeV energy range is reported, for an extended source assuming the morphology of the VERITAS detection. During on-pe...

  18. Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data

    Energy Technology Data Exchange (ETDEWEB)

    Drlica-Wagner, A.; et al.

    2015-08-04

    Due to their proximity, high dark-matter (DM) content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of DM. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with DM halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged DM annihilation cross section for these new targets. If the estimated DM content of these dSph candidates is confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for DM particles with masses $\\lesssim 20\\,\\mathrm{GeV}$ annihilating via the $b\\bar{b}$ or τ(+)τ(-) channels.

  19. Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data

    CERN Document Server

    :,; Albert, A; Bechtol, K; Wood, M; Strigari, L; Sanchez-Conde, M; Baldini, L; Essig, R; Cohen-Tanugi, J; Anderson, B; Bellazzini, R; Bloom, E D; Caputo, R; Cecchi, C; Charles, E; Chiang, J; Conrad, J; de Angelis, A; Funk, S; Fusco, P; Gargano, F; Giglietto, N; Giordano, F; Guiriec, S; Gustafsson, M; Kuss, M; Loparco, F; Lubrano, P; Mirabal, N; Mizuno, T; Morselli, A; Ohsugi, T; Orlando, E; Persic, M; Raino, S; Spada, F; Suson, D J; Zaharijas, G; Zimmer, S; Abbott, T; Allam, S; Balbinot, E; Bauer, A H; Benoit-Levy, A; Bernstein, R A; Bernstein, G M; Bertin, E; Brooks, D; Buckley-Geer, E; Burke, D L; Rosell, A Carnero; Castander, F J; Covarrubias, R; D'Andrea, C B; da Costa, L N; DePoy, D L; Desai, S; Diehl, H T; Cunha, C E; Eifler, T F; Estrada, J; Evrard, A E; Neto, A Fausti; Fernandez, E; Finley, D A; Flaugher, B; Frieman, J; Gaztanaga, E; Gerdes, D; Gruen, D; Gruendl, R A; Gutierrez, G; Honscheid, K; Jain, B; James, D; Jeltema, T; Kent, S; Kron, R; Kuropatkin, N; Lahav, O; Li, T S; Luque, E; Maia, M A G; Makler, M; March, M; Marshall, J; Martini, P; Merritt, K W; Miller, C; Miquel, R; Mohr, J; Neilsen, E; Nord, B; Ogando, R; Peoples, J; Petravick, D; Pieres, A; Plazas, A A; Queiroz, A; Romer, A K; Roodman, A; Rykoff, E S; Sako, M; Sanchez, E; Santiago, B; Scarpine, V; Schubnell, M; Sevilla, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Swanson, M E C; Tarle, G; Thaler, J; Thomas, D; Tucker, D; Walker, A; Wechsler, R H; Wester, W; Williams, P; Yanny, B; Zuntz, J

    2015-01-01

    Due to their proximity, high dark matter content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of dark matter. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with dark matter halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged dark matter annihilation cross section for these new targets. If confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for dark matter particles with masses < 20 GeV annihilating via the b-bbar or tau+tau- channels.

  20. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    Science.gov (United States)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  1. VARIABLE GAMMA-RAY EMISSION FROM THE CRAB NEBULA: SHORT FLARES AND LONG 'WAVES'

    Energy Technology Data Exchange (ETDEWEB)

    Striani, E.; Tavani, M.; Vittorini, V.; Donnarumma, I.; Argan, A.; Cardillo, M.; Costa, E.; Del Monte, E.; Pacciani, L.; Piano, G.; Sabatini, S. [INAF/IASF-Roma, I-00133 Roma (Italy); Giuliani, A.; Mereghetti, S. [INAF/IASF-Milano, I-20133 Milano (Italy); Pucella, G.; Rapisarda, M. [ENEA Frascati, I-00044 Frascati (Roma) (Italy); Bulgarelli, A. [INAF/IASF-Bologna, I-40129 Bologna (Italy); Colafrancesco, S. [INAF - Osservatorio Astronomico di Roma via Frascati 33, I-00040 Monteporzio (Italy); Ferrari, A. [CIFS-Torino, I-10133 Torino (Italy); Pellizzoni, A. [INAF-Osservatorio Astronomico di Cagliari, localita' Poggio dei Pini, strada 54, I-09012 Capoterra (Italy); Pittori, C. [ASI Science Data Center, I-00044 Frascati (Roma) (Italy); and others

    2013-03-01

    Gamma-ray emission from the Crab Nebula has been recently shown to be unsteady. In this paper, we study the flux and spectral variability of the Crab above 100 MeV on different timescales ranging from days to weeks. In addition to the four main intense and day-long flares detected by AGILE and Fermi-LAT between 2007 September and 2012 September, we find evidence for week-long and less intense episodes of enhanced gamma-ray emission that we call 'waves'. Statistically significant 'waves' show timescales of 1-2 weeks, and can occur by themselves or in association with shorter flares. We present a refined flux and spectral analysis of the 2007 September-October gamma-ray enhancement episode detected by AGILE that shows both 'wave' and flaring behavior. We extend our analysis to the publicly available Fermi-LAT data set and show that several additional 'wave' episodes can be identified. We discuss the spectral properties of the 2007 September 'wave'/flare event and show that the physical properties of the 'waves' are intermediate between steady and flaring states. Plasma instabilities inducing 'waves' appear to involve spatial distances l {approx} 10{sup 16} cm and enhanced magnetic fields B {approx} (0.5-1) mG. Day-long flares are characterized by smaller distances and larger local magnetic fields. Typically, the deduced total energy associated with the 'wave' phenomenon (E{sub w} {approx} 10{sup 42} erg, where E{sub w} is the kinetic energy of the emitting particles) is comparable with that associated to the flares, and can reach a few percent of the total available pulsar spin-down energy. Most likely, flares and waves are the product of the same class of plasma instabilities that we show acting on different timescales and radiation intensities.

  2. X-ray emission from open star clusters with Spectrum-Rontgen-Gamma

    DEFF Research Database (Denmark)

    Singh, K.P.; Ojha, D.K.; Schnopper, H.W.;

    1998-01-01

    throughput of SPECTRUM-Rontgen-Gamma will help detect main sequence stars like Sun in middle-aged and old clusters. We will study the relationships between various parameters - age, rotation, abundance, UBV colors, X-ray luminosity, coronal temperature etc. X-ray spectra of younger and brighter populations...

  3. TeV Gamma-Ray Emission Observed from Geminga with HAWC

    CERN Document Server

    Baughman, B M

    2015-01-01

    Geminga is a radio-quiet pulsar ~250 parsecs from Earth that was first discovered as a GeV gamma-ray source and then identified as a pulsar. Milagro observed an extended TeV source spatially consistent with Geminga. HAWC observes a similarly extended source. Observations of Geminga's flux and extension will be presented.

  4. High gamma-ray measurement using optical emission of ceramic material

    Energy Technology Data Exchange (ETDEWEB)

    Kakuta, Tsunemi; Sakasai, Kaoru; Yamagishi, Hideshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakazawa, Masaharu

    1996-07-01

    This paper describes the fluorescence phenomena in Zr-O ceramic under expose to high gamma-ray and fission neutron source. In addition, the paper also discusses the possibility of ionizing radiation detection in the core region of reactor. (J.P.N.)

  5. EDGE: explorer of diffuse emission and gamma-ray burst explosions

    NARCIS (Netherlands)

    den Herder, J.W.; Piro, L.; Ohashi, T.; Amati, L.; Atteia, J.; Barthelmy, S.D.; Barbera, M.; Barret, D.; Basso, S.; de Boer, M.; Borgani, S.; Boyarskiy, O.; Branchini, E.; Branduardi-Raymont, G.; Briggs, M.; Brunetti, G.; Budtz-Jorgensenf, C.; Burrows, D.N.; Campana, S.; Caroli, E.; Chincarini, G.; Christensen, F.; Cocchi, M.; Comastri, A.; Corsi, A.; Cotroneo, V.; Conconi, P.; Colasanti, L.; Cusamano, G.; Rosa, A.; Del Santo, M.; Ettori, S.; Ezoe, Y.; Ferrari, L.; Feroci, M.; Finger, M.; Fishman, G.; Fujimoto, R.; Galeazzi, M.; Galli, A.; Gatti, F.; Gehrels, N.; Gendre, B.; Ghirlanda, G.; Ghisellini, G.; Giommi, P.; Girardi, M.; Guzzo, L.; Haardt, F.; Hepburn, I.; Hermsen, W.; Hoevers, H.; Holland, A.; in 't Zand, J.J.M.; Ishisaki, Y.; Kawahara, H.; Kawai, N.; Kaastra, J.; Kippen, M.; de Korte, P.A.J.; Kouveliotou, C.; Kusenko, A.; Labanti, C.; Lieu, R.; Macculi, C.; Makishima, K.; Matt, G.; Mazotta, P.; McCammon, D.; Méndez, M.; Mineo, T.; Mitchell, S.; Mitsuda, K.; Molendi, S.; Moscardini, L.; Mushotzky, R.; Natalucci, L.; Nicastro, F.; O'Brien, P.; Osborne, J.; Paerels, F.; Page, M.; Paltani, S.; Pareschi, G.; Perinati, E.; Perola, C.; Ponman, T.; Rasmussen, A.; Roncarelli, M.; Rosati, P.; Ruchayskiy, O.; Quadrini, E.; Sakurai, I.; Salvaterra, R.; Sasaki, S.; Wijers, R.; et al., [Unknown

    2007-01-01

    How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysics. EDGE will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy cl

  6. Local electron spectrum above 100 MeV derived from gamma-ray emissivity spectra

    Science.gov (United States)

    Strong, A. W.

    1985-01-01

    Two new determinations of the local gamma-ray emmissivity spectrum are in good accord and were used to derive constraints on the local electron spectrum. The requirement for an electron intensity above 1 GeV larger than previously believed is confirmed and no low energy upturn is then needed.

  7. COS-B observations of localised sources of gamma-ray emission

    Science.gov (United States)

    Mayer-Hasselwander, H.

    1976-01-01

    In October 1975 the high energy gamma ray flux from the Vela pulsar was measured by COS-B to be 1.6 to 2.1 times higher than the flux measured by SAS-2 in 1973. The existence is confirmed of a second region of enhanced radiation in the galactic anticenter in addition to that from the Crab pulsar.

  8. Acceleration of cosmic rays and gamma-ray emission from supernova remnant/molecular cloud associations

    CERN Document Server

    Gabici, S; Morlino, G; Nava, L

    2015-01-01

    The gamma-ray observations of molecular clouds associated with supernova remnants are considered one of the most promising ways to search for a solution of the problem of cosmic ray origin. Here we briefly review the status of the field, with particular emphasis on the theoretical and phenomenological aspects of the problem.

  9. Acceleration of cosmic rays and gamma-ray emission from supernova remnant/molecular cloud associations

    Directory of Open Access Journals (Sweden)

    Gabici Stefano

    2015-01-01

    Full Text Available The gamma-ray observations of molecular clouds associated with supernova remnants are considered one of the most promising ways to search for a solution of the problem of cosmic ray origin. Here we briefly review the status of the field, with particular emphasis on the theoretical and phenomenological aspects of the problem.

  10. Detailed investigation of the gamma-ray emission in the vicinity of SNR W28 with Fermi-LAT

    Energy Technology Data Exchange (ETDEWEB)

    Hanabata, Y. [Institute for Cosmic-Ray Research, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Katagiri, H. [College of Science, Ibaraki University, 2-1-1, Bunkyo, Mito 310-8512 (Japan); Hewitt, J.W. [CRESST, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Fukazawa, Y. [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Fukui, Y.; Hayakawa, T. [Department of Physics and Astrophysics, Nagoya University, Chikusa-ku Nagoya 464-8602 (Japan); Lemoine-Goumard, M. [Centre d' Études Nucléaires de Bordeaux Gradignan, IN2P3/CNRS, Université Bordeaux 1, BP120, F-33175 Gradignan Cedex (France); Pedaletti, G.; Torres, D. F. [Institut de Ciències de l' Espai (IEEE-CSIC), Campus UAB, 08193 Barcelona (Spain); Strong, A. W. [Max-Planck Institut für extraterrestrische Physik, D-85748 Garching (Germany); Yamazaki, R., E-mail: hanabata@icrr.u-tokyo.ac.jp, E-mail: katagiri@mx.ibaraki.ac.jp [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258 (Japan)

    2014-05-10

    We present a detailed investigation of the γ-ray emission in the vicinity of the supernova remnant (SNR) W28 (G6.4–0.1) observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. We detected significant γ-ray emission spatially coincident with TeV sources HESS J1800–240A, B, and C, located outside the radio boundary of the SNR. Their spectra in the 2-100 GeV band are consistent with the extrapolation of the power-law spectra of the TeV sources. We also identified a new source of GeV emission, dubbed Source W, which lies outside the boundary of TeV sources and coincides with radio emission from the western part of W28. All of the GeV γ-ray sources overlap with molecular clouds in the velocity range from 0 to 20 km s{sup –1}. Under the assumption that the γ-ray emission toward HESS J1800–240A, B, and C comes from π{sup 0} decay due to the interaction between the molecular clouds and cosmic rays (CRs) escaping from W28, they can be naturally explained by a single model in which the CR diffusion coefficient is smaller than the theoretical expectation in the interstellar space. The total energy of the CRs escaping from W28 is constrained through the same modeling to be larger than ∼2 × 10{sup 49} erg. The emission from Source W can also be explained with the same CR escape scenario.

  11. A 3-Dimensional Analysis of the Galactic Gamma-Ray Emission Resulting from Cosmic-Ray Interactions with the Interstellar Gas and Radiation Fields

    Science.gov (United States)

    Sodroski, Thomas J.; Dwek, Eli (Technical Monitor)

    2001-01-01

    The contractor will provide support for the analysis of data under ADP (NRA 96-ADP- 09; Proposal No . 167-96adp). The primary task objective is to construct a 3-D model for the distribution of high-energy (20 MeV - 30 GeV) gamma-ray emission in the Galactic disk. Under this task the contractor will utilize data from the EGRET instrument on the Compton Gamma-Ray Observatory, H I and CO surveys, radio-continuum surveys at 408 MHz, 1420 MHz, 5 GHz, and 19 GHz, the COBE Diffuse Infrared Background Experiment (DIME) all-sky maps from 1 to 240 p, and ground-based B, V, J, H, and K photometry. The respective contributions to the gamma-ray emission from cosmic ray/matter interactions, inverse Compton scattering, and extragalactic emission will be determined.

  12. VERITAS Search for VHE Gamma-ray Emission from Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Acciari, V. A.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Christiansen, J. L.; Ciupik, L.; Cui, W.; Dickherber, R.; Duke, C.; Finley, J. P.; Finnegan, G.; Furniss, A.; Galante, N.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Maier, G.; McArthur, S.; McCann, A.; McCutcheon, M.; Moriarty, P.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Senturk, G. Demet; Smith, A. W.; Steele, D.; Swordy, S. P.; Tešić, G.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wagner, R. G.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wissel, S.; Zitzer, B.; VERITAS Collaboration

    2010-09-01

    Indirect dark matter searches with ground-based gamma-ray observatories provide an alternative for identifying the particle nature of dark matter that is complementary to that of direct search or accelerator production experiments. We present the results of observations of the dwarf spheroidal galaxies Draco, Ursa Minor, Boötes 1, and Willman 1 conducted by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). These galaxies are nearby dark matter dominated objects located at a typical distance of several tens of kiloparsecs for which there are good measurements of the dark matter density profile from stellar velocity measurements. Since the conventional astrophysical background of very high energy gamma rays from these objects appears to be negligible, they are good targets to search for the secondary gamma-ray photons produced by interacting or decaying dark matter particles. No significant gamma-ray flux above 200 GeV was detected from these four dwarf galaxies for a typical exposure of ~20 hr. The 95% confidence upper limits on the integral gamma-ray flux are in the range (0.4-2.2) × 10-12photonscm-2 s-1. We interpret this limiting flux in the context of pair annihilation of weakly interacting massive particles (WIMPs) and derive constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the WIMPs (langσvrang ~ 300 GeV c -2). This limit is obtained under conservative assumptions regarding the dark matter distribution in dwarf galaxies and is approximately 3 orders of magnitude above the generic theoretical prediction for WIMPs in the minimal supersymmetric standard model framework. However, significant uncertainty exists in the dark matter distribution as well as the neutralino cross sections which under favorable assumptions could further lower this limit.

  13. VERITAS search for vhe gamma-ray emission from dwarf spheroidal galaxies.

    Energy Technology Data Exchange (ETDEWEB)

    Acciari, V. A.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Byrum, K.; Smith, A. W.; Wagner, R. G. (High Energy Physics); (Fred Lawrence Whipple Observatory); (Univ. of California at Los Angeles); (Univ. of California at Santa Cruz); (Washington Univ.)

    2010-09-10

    Indirect dark matter searches with ground-based gamma-ray observatories provide an alternative for identifying the particle nature of dark matter that is complementary to that of direct search or accelerator production experiments. We present the results of observations of the dwarf spheroidal galaxies Draco, Ursa Minor, Bootes 1, and Willman 1 conducted by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). These galaxies are nearby dark matter dominated objects located at a typical distance of several tens of kiloparsecs for which there are good measurements of the dark matter density profile from stellar velocity measurements. Since the conventional astrophysical background of very high energy gamma rays from these objects appears to be negligible, they are good targets to search for the secondary gamma-ray photons produced by interacting or decaying dark matter particles. No significant gamma-ray flux above 200 GeV was detected from these four dwarf galaxies for a typical exposure of {approx}20 hr. The 95% confidence upper limits on the integral gamma-ray flux are in the range (0.4-2.2) x 10{sup -12} photons cm{sup -2} s{sup -1}. We interpret this limiting flux in the context of pair annihilation of weakly interacting massive particles (WIMPs) and derive constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the WIMPs (<{sigma}{nu}> {approx}< 10{sup -23} cm{sup 3} s{sup -1} for m{sub x} {approx}> 300 GeV c{sup -2}). This limit is obtained under conservative assumptions regarding the dark matter distribution in dwarf galaxies and is approximately 3 orders of magnitude above the generic theoretical prediction for WIMPs in the minimal supersymmetric standard model framework. However, significant uncertainty exists in the dark matter distribution as well as the neutralino cross sections which under favorable assumptions could further lower this limit.

  14. Emission probabilities of {gamma}-rays from {sup 238}Np and their use for determination of the thermal neutron capture cross section of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, A. [Irfu, CEA-Saclay, 91191 Gif-sur-Yvette (France)], E-mail: aletourneau@cea.fr; Marie, F. [Irfu, CEA-Saclay, 91191 Gif-sur-Yvette (France); Mutti, P. [Institut Laue-Langevin, 38000 Grenoble (France); AlMahamid, I. [Wadsworth Center, Laboratory of Inorganic and Nuclear Chemistry, Albany, NY (United States)

    2010-03-15

    The relevant absolute {gamma}-ray emission probabilities from the {beta}-decay of {sup 238}Np were measured by means of {alpha}- and {gamma}-spectroscopic techniques. We obtained values of (25.6{+-}0.4)%, (8.9{+-}0.2)% and (18.8{+-}0.3)% for the 984.45-, 1025.87- and 1028.54-keV {gamma}-rays, respectively, in agreement with the previous measured ones. These intensities were used to deduce the thermal neutron capture cross section of {sup 237}Np for which a value of (182.2{+-}4.5) b is obtained higher by 11% than the recommended value.

  15. EDGE: Explorer of Diffuse emission and Gamma-ray burst Explosions

    CERN Document Server

    Piro, L; Ohashi, T

    2007-01-01

    How structures on various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE will trace the cosmic history of the baryons from the early generations of massive star by Gamma-Ray Burst (GRB) explosions, through the period of cluster formation, down to very low redshifts, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing gravitational collapse by dark matter (Warm Hot Intragalactic Medium: WHIM). In addition EDGE, with its unprecedented observational capabilities, will provide key results on several other topics. The science is feasible with a medium class mission using existing technology combined with innovative instrumental and observational capabilities on a single satellite by: a) observing with fast reaction Gamma-Ray Bursts with a high spectral resolution (R ~ 500). This enables the study of their (star-forming) environment from the Dark to the local Universe and the use of GR...

  16. Gamma-Ray Emission from Supernova Remnants and Surrounding Molecular Clouds

    CERN Document Server

    Gabici, Stefano

    2016-01-01

    Galactic cosmic rays are believed to be accelerated at supernova remnant shocks. Gamma-ray observations of both supernova remnants and associated molecular clouds have been used in several occasions to test (so far quite successfully) this popular hypothesis. Despite that, a conclusive solution to the problem of cosmic ray origin is still missing, and further observational and theoretical efforts are needed. In this paper, the current status of these investigations is briefly reviewed.

  17. In-vivo Diagnosis of Breast Cancer Using Gamma Stimulated Emission Computed Tomography

    Science.gov (United States)

    2011-04-01

    DUKE UNIVERSITY. Downloaded on May 07,2010 at 21:39:16 UTC from IEEE Xplore . Restrictions apply. Fig.4. shows the number of gamma-rays detected...2421 Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on May 07,2010 at 21:39:16 UTC from IEEE Xplore . Restrictions apply...21:39:16 UTC from IEEE Xplore . Restrictions apply. Quantitative Elemental Imaging with Neutrons for Breast Cancer Diagnosis: a GEANT4 Study

  18. Thick target yields of proton induced gamma-ray emission from Al, Si and P

    Energy Technology Data Exchange (ETDEWEB)

    Jokar, A., E-mail: arezajokar@gmail.com; Kakuee, O.; Lamehi-Rachti, M.; Fathollahi, V.

    2017-03-01

    Thick target excitation yield curves of gamma-rays from the reactions {sup 27}Al(p,p′γ){sup 27}Al (E{sub γ} = 844 and 1014 keV), {sup 27}Al(p,αγ){sup 27}Al (E{sub γ} = 1369 keV), {sup 28}Si(p,p′γ){sup 28}Si (E{sub γ} = 1779 keV), {sup 29}Si(p,p′γ){sup 29}Si (E{sub γ} = 1273 keV) and {sup 31}P(p,p′γ){sup 31}P (E{sub γ} = 1266 keV) were measured by bombarding pure-element targets with protons at energies below 3 MeV. Gamma-rays were detected with a High Purity Ge detector placed at an angle of 90° with respect to the beam direction. The obtained thick target gamma-ray yields were compared with the previously published data. The overall systematic uncertainty of the thick target yield values was estimated to be better than ±9%.

  19. Investigating the peculiar emission from the new VHE gamma-ray source H1722+119

    CERN Document Server

    Ahnen, M L; Antonelli, L A; Antoranz, P; Babic, A; Banerjee, B; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Buson, S; Carosi, A; Chatterjee, A; Clavero, R; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Lotto, B; Wilhelmi, E de Ona; Di Pierro, F; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Glawion, D Eisenacher; Elsaesser, D; Ramazani, V Fallah; Fernández-Barral, A; Fidalgo, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giammaria, P; Godinović, N; Munoz, A González; Gora, D; Guberman, D; Hadasch, D; Hahn, A; Hanabata, Y; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Hughes, G; Idec, W; Kodani, K; Konno, Y; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; Majumdar, P; Makariev, M; Mallot, K; Maneva, G; Manganaro, M; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Moretti, E; Nakajima, D; Neustroev, V; Niedzwiecki, A; Rosillo, M Nievas; Nilsson, K; Nishijima, K; Noda, K; Nogués, L; Orito, R; Overkemping, A; Paiano, S; Palacio, J; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Pedaletti, G; Perri, L; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Saito, T; Satalecka, K; Schultz, C; Schweizer, T; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Stamerra, A; Steinbring, T; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Torres, D F; Toyama, T; Treves, A; Verguilov, V; Vovk, I; Ward, J E; Will, M; Wu, M H; Zanin, R; D'Ammando, F; Hovatta, T; Max-Moerbeck, W; Raiteri, C M; Readhead, A C S; Reinthal, R; Richards, J L; Verrecchia, F; Villata, M

    2016-01-01

    The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes observed the BL Lac object H1722+119 (redshift unknown) for six consecutive nights between 2013 May 17 and 22, for a total of 12.5 h. The observations were triggered by high activity in the optical band measured by the KVA (Kungliga Vetenskapsakademien) telescope. The source was for the first time detected in the very high energy (VHE, $E > 100$ GeV) $\\gamma$-ray band with a statistical significance of 5.9 $\\sigma$. The integral flux above 150 GeV is estimated to be $(2.0\\pm 0.5)$ per cent of the Crab Nebula flux. We used contemporaneous high energy (HE, 100 MeV $ < E < 100$ GeV) $\\gamma$-ray observations from Fermi-LAT (Large Area Telescope) to estimate the redshift of the source. Within the framework of the current extragalactic background light models, we estimate the redshift to be $z = 0.34 \\pm 0.15$. Additionally, we used contemporaneous X-ray to radio data collected by the instruments on board the Swift satellite, the KVA, and t...

  20. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    CERN Document Server

    Campana, S; D'Avanzo, P; Ghirlanda, G; Melandri, A; Pescalli, A; Salafia, O S; Salvaterra, R; Tagliaferri, G; Vergani, S D

    2016-01-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence >10^{-7} erg cm^{-2}) and relatively nearby (z=0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of <3.0 sigma. Most of the lines are detected around the observed energy of the oxygen edge at ~0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (N_H) testing different models for the Galactic absorption confirms this origin because we found an indication of an...

  1. A Search for Gamma-ray Emission from Wind-Wind Interactions in Black Widow and Redback Millisecond Pulsars

    Science.gov (United States)

    Johnson, Tyrel J.; Ray, Paul S.; Camilo, Fernando M.; Roberts, Mallory S. E.; Fermi Large Area Telescope Collaboration

    2015-01-01

    Recent radio surveys, particularly those targeting unassociated Fermi Large Area Telescope (LAT) sources with pulsar-like characteristics, have greatly increased the number of known millisecond pulsars (MSPs) in binary systems with short orbital periods (less than a day) and low-mass companions (of order 0.2 Solar masses for redbacks and less than 0.08 Solar masses for black widows). These systems are likely laboratories for studying wind-wind interactions, and we here describe a search for unpulsed gamma-ray emission, possibly arising from these interactions, in the off-peak intervals. We will also search the off-peak and phase-averaged data for evidence of modulation at the orbital periods, correcting for exposure variations, and stack the off-peak intervals in the event that the emission is below threshold in any given source. Studying this emission will allow us to better understand the pulsar wind and how these systems evolve. Portions of this research performed at the US Naval Research Laboratory are sponsored by NASA DPR S-15633-Y and Fermi GO proposal 061103.

  2. The extended jet of AP Librae: Origin of the very high-energy gamma-ray emission?

    CERN Document Server

    Zacharias, Michael

    2016-01-01

    The low-frequency peaked BL Lac object (LBL) AP Librae exhibits very-high-energy (VHE, $E>100$GeV) $\\gamma$-ray emission and hosts an extended jet, which has been detected in radio and X-rays. The jet X-ray spectral index implies an inverse Compton origin. These observations are unusual for LBLs calling for a consistent explanation of this extraordinary source. The observationally constrained parameters necessary to describe the core emission within the standard one-zone model are unable to explain the broad-band spectrum, even if observationally unconstrained external photon fields are taken into account. We demonstrate that the addition of the extended jet emission successfully reproduces the total spectral energy distribution. In particular, the VHE radiation is produced in the $>100\\,$kpc long extended jet via inverse Compton scattering of cosmic microwave background photons by highly relativistic electrons. We present several ways to test this theory. The extended jet is weakly magnetized ($B_0 = 2.5\\,\\m...

  3. Leptonic Origin of TeV Gamma-Ray Emission from Crab Nebula

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; WEI Bing-Tao; FANG Jun

    2007-01-01

    We study the nonthermal emission of the Crab nebula in the bands from radio to TeV γ-ray on a simplified timedependent injection model. In this model, relativistic electrons in the Crab nebula consists of two components and their injected spectrum is a broken power law with different indices and a break energy. The relativistic electrons emit nonthermal photons through synchrotron and inverse Compton scattering off soft photon fields inside the nebula. The resulting spectrum calculated with the model is well consistent with the observed data ranging from radio to very high energy γ-rays for the Crab nebula, wvhere the emission from radio to medium γ-rays is from electron's synchrotron emission, whereas the emission above ~100 MeV primarily comes from the inverse Compton scattering of the relativistic electrons on synchrotron photons.

  4. GeV emission from short Gamma-Ray Bursts: the case of GRB 081024B

    CERN Document Server

    Corsi, Alessandra; Piro, Luigi

    2009-01-01

    We investigate the origin of the high energy tail detected by Fermi/LAT in the short GRB 081024B through synchrotron and self-Compton emission in either the internal or external shock models. In the internal shock scenario, we explore the possibility of generating the high energy photons directly through synchrotron process, or through inverse Compton emission in which target photons are synchrotron photons produced in internal shocks taking place either in the short prompt phase, or in a lately emitted shell (delayed internal shocks). In the external shock scenario, we consider the possibility of the high energy tail being the extension of the afterglow synchrotron emission, or alternatively the inverse Compton component associated to the afterglow synchrotron photons. For the internal shock scenario we conclude that, given the constraints set by the observations on the prompt emission spectrum, only an inverse Compton component from delayed internal shocks can accommodate the presence of a high energy tail ...

  5. Channeling, volume reflection and gamma emission using 14GeV electrons in bent silicon crystals - Oral presentation

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Brandon [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-23

    High energy electrons can be deflected with very tight bending radius using a bent silicon crystal. This produces gamma radiation. As these crystals can be thin, a series of bent silicon crystals with alternating direction has the potential to produce coherent gamma radiation with reasonable energy of the driving electron beam. Such an electron crystal undulator offers the prospect for higher energy radiation at lower cost than current methods. Permanent magnetic undulators like LCLS at SLAC National Accelerator Laboratory are expensive and very large (about 100 m in case of the LCLS undulator). Silicon crystals are inexpensive and compact when compared to the large magnetic undulators. Additionally, such a high energy coherent light source could be used for probing through materials currently impenetrable by x-rays. In this work we present the experimental data and analysis of experiment T523 conducted at SLAC National Accelerator Laboratory. We collected the spectrum of gamma ray emission from 14 GeV electrons on a bent silicon crystal counting single photons. We also investigated the dynamics of electron motion in the crystal i.e. processes of channeling and volume reflection at 14 GeV, extending and building off previous work. Our single photon spectrum for the amorphous crystal orientation is consistent with bremsstrahlung radiation and the volume reflection crystal orientation shows a trend consistent with synchrotron radiation at a critical energy of 740 MeV. We observe that in these two cases the data are consistent, but we make no further claims because of statistical limitations. We also extended the known energy range of electron crystal dechanneling length and channeling efficiency to 14 GeV.

  6. A Search for Very High Energy Gamma-Ray Emission from Scorpius X-1 with the Magic Telescopes

    Science.gov (United States)

    Aleksić, J.; Alvarez, E. A.; Antonelli, L. A.; Antoranz, P.; Asensio, M.; Backes, M.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; De Angelis, A.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Huber, B.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Krause, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lindfors, E.; Lombardi, S.; López, M.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Munar-Adrover, P.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thom, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.

    2011-07-01

    The acceleration of particles up to GeV or higher energies in microquasars has been the subject of considerable theoretical and observational efforts in the past few years. Sco X-1 is a microquasar from which evidence of highly energetic particles in the jet has been found when it is in the so-called Horizontal Branch (HB), a state when the radio and hard X-ray fluxes are higher and a powerful relativistic jet is present. Here we present the first very high energy gamma-ray observations of Sco X-1, obtained with the MAGIC telescopes. An analysis of the whole data set does not yield a significant signal, with 95% CL flux upper limits above 300 GeV at the level of 2.4 × 10-12 cm-2 s-1. Simultaneous RXTE observations were conducted to provide the X-ray state of the source. A selection of the gamma-ray data obtained during the HB based on the X-ray colors did not yield a signal either, with an upper limit of 3.4 × 10-12 cm-2 s-1. These upper limits place a constraint on the maximum TeV luminosity to non-thermal X-ray luminosity of L VHE/L ntX <~ 0.02 that can be related to a maximum TeV luminosity to jet power ratio of L VHE/L j <~ 10-3. Our upper limits indicate that the underlying high-energy emission physics in Sco X-1 must be inherently different from that of the hitherto detected gamma-ray binaries.

  7. Sub-millimeter nuclear medical imaging with reduced dose application in positron emission tomography using beta-gamma coincidences

    CERN Document Server

    Lang, C; Parodi, K; Thirolf, P G

    2013-01-01

    Positron emission tomography (PET) permits a functional understanding of the underlying causes of many diseases. Modern whole-body PET systems reach a spatial resolution of 2-6 mm (FWHM). A limitation of this technique occurs from the thermalization and diffusion of the positron before its annihilation, typically within the mm range. We present a nuclear medical imaging technique, able to reach sub-millimeter spatial resolution in 3 dimensions with a reduced effective dose application compared to conventional PET. This 'gamma-PET' technique draws on specific medical isotopes, simultaneously emitting an additional photon accompanying the beta^+ decay. Exploiting the triple coincidence between the positron annihilation and the third photon, it is possible to separate the reconstructed 'true' events from background. In order to characterize the potential of this technique, MC simulations and image reconstructions have been performed. The achievable spatial resolution has been found to reach ca. 0.4 mm (FWHM) in ...

  8. The Utilization of the RCT Telescope for Studies of Blazar Continuum Emission during the GLAST Gamma-Ray Mission

    Science.gov (United States)

    Mattox, J. R.; Cominsky, L.; Spear, G.; Carinni, M.; Gelderman, R.; McGruder, C. H.; Guinan, E.; Howell, S.; Davis, D. R.; Everett, M.; Walter, D. K.

    2003-05-01

    The RCT Consortium successfully proposed to refurbish and automate the Kitt Peak 1.3-m telescope, and to operate it as the Robotically Controlled Telescope (RCT). Refurbishment is nearing completion, and observations have begun. The capabilities of the RCT for broad-band optical photometry will be described. A program for systematic optical monitoring of blazars with the RCT is planned. We anticipate that an important utilization of the RCT will be in conjunction with multi-wavelength studies of blazar continuum emission during the operation of NASA's Gamma-ray Large Area Space Telescope (GLAST) satellite, now scheduled for launch in 2006. Refurbishment of the RCT has been made possible by NASA grant NAG58762.

  9. Determination of total fluorine in five coal reference materials by proton-induced gamma-ray emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Roelandts, I.; Robaye, G.; Delbrouck-Habaru, J.M.; Weber, G. [University of Liege, Sart (Belgium). Dept. of Geology, Petrology and Geochemistry

    1996-03-01

    The direct non-destructive proton-induced gamma-ray emission (PIGE) technique with a germanium detector was applied to the determination of total fluorine concentration in five coal reference materials (BCR 30, NIST 1632b, NIST 1635, SARM 20 and USGS CLB-1). Duplicate analyses were made from five randomly selected bottles of each coal. Individual data are presented and some problems (calibration, proton stopping power, effects of sample heating by the proton beam, background estimation) which were encountered during this study are discussed. Sensitivity and reproducibility of the determinations, and homogeneity of the coal samples with respect to fluorine contents by analysis of variance were investigated. The present data are also compared with the few published values for these reference samples, including other PIGE data. The use of synthetic standards and spiked samples in the present study suggested that the PIGE method was more accurate than other techniques.

  10. A search for Very High Energy gamma-ray emission from Sco X-1 with the MAGIC telescopes

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Asensio, M; Backes, M; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berdyugin, A; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Bordas, P; Tridon, D Borla; Bosch-Ramon, V; Braun, I; Bretz, T; Cañellas, A; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Dazzi, F; De Angelis, A; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Garrido, D; Giavitto, G; Godinović, N; Hadasch, D; Häfner, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Huber, B; Jogler, T; Klepser, S; Krähenbühl, T; Krause, J; La Barbera, A; Lelas, D; Leonardo, E; Lindfors, E; Lombardi, S; López, M; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moralejo, A; Munar-Adrover, P; Nieto, D; Nilsson, K; Orito, R; Oya, I; Paneque, D; Paoletti, R; Pardo, S; Paredes, J M; Partini, S; Pasanen, M; Pauss, F; Perez-Torres, M A; Persic, M; Peruzzo, L; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shayduk, M; Shore, S N; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Spiro, S; Stamerra, A; Steinke, B; Storz, J; Strah, N; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thom, M; Tibolla, O; Torres, D F; Treves, A; Vankov, H; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R

    2011-01-01

    The acceleration of particles up to GeV or higher energies in microquasars has been the subject of considerable theoretical and observational efforts in the past few years. Sco X-1 is a microquasar from which evidence of highly energetic particles in the jet has been found when it is in the so-called Horizontal Branch, a state when accretion is lower and a powerful relativistic jet is present. Here we present the first very high energy gamma-ray observations of Sco X-1 obtained with the MAGIC telescopes. An analysis of the whole dataset does not yield a significant signal, with 95% CL flux upper limits above 300 GeV at the level of 2.4x10^{-12} ph/cm^2/s. Simultaneous RXTE observations were conducted to search for TeV emission during particular X-ray states of the source. A selection of the gamma-ray data obtained during the Horizontal Branch based on the X-ray colors did not yield a signal either, with an upper limit of 3.4x10^{-12} ph/cm^2/s. These upper limits place a constraint on the maximum TeV luminosi...

  11. Discovery of TeV gamma-ray emission from the pulsar wind nebula 3C 58 by MAGIC

    CERN Document Server

    López-Coto, R; Bednarek, W; Blanch, O; Cortina, J; Wilhelmi, E de Ona; Martín, J; Pérez-Torres, M A

    2015-01-01

    The pulsar wind nebula (PWN) 3C 58 has been proposed as a good candidate for detection at VHE (VHE; E>100 GeV) for many years. It is powered by one of the highest spin-down power pulsars known (5\\% of Crab pulsar) and it has been compared to the Crab Nebula due to its morphology. This object was previously observed by imaging atmospheric Cherenkov telescopes (Whipple, VERITAS and MAGIC), and upper limit of 2.4\\% Crab Unit (C.U.) at VHE. It was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission with a significance of 5.7 sigma and an integral flux of 0.65\\% C.U. above 1 TeV. We report the first significant detection of PWN 3C 58 at TeV energies. According to our results 3C 58 is the least luminous VHE gamma-ray PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fiel...

  12. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    Science.gov (United States)

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  13. Discovery of Very High Energy Gamma-Ray Emission from 1FGL J2001.1 4351 by MAGIC

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Karsten; /IAC, La Laguna /Laguna U., Tenerife; Paneque, David; /Munich, Max Planck Inst. /SLAC; Giavitto, Gianluca; /Barcelona, IFAE

    2012-05-07

    We report the discovery of Very High Energy (VHE; >100 GeV) gamma-ray emission from the source 1FGL J2001.1+4351, (RA 20 01 13.5, dec 43 53 02.8, J2000), which is positionally consistent with the location of the flat spectrum radio source MG4 J200112+4352 (RA 20 01 12.9, dec 43 52 52.8, J2000). The VHE detection is based on a 1.5 hour-long observation performed on July 16th in stereoscopic mode with the two 17m diameter imaging Cherenkov telescopes on La Palma, Canary Islands, Spain. The preliminary analysis of the MAGIC data using the standard cuts optimized for soft energy spectra sources yields a detection of 125 gamma-rays above 90 GeV, corresponding to a pre-trail statistical significance of 7.6 standard deviations. The observed flux is estimated to be {approx}20% of the Crab nebula flux above 100 GeV. Earlier MAGIC observations indicated a substantially lower flux; hence indicating that the source is variable on a few days timescale.

  14. Observation and Simulation of the Variable Gamma-ray Emission from PSR~J2021+4026

    CERN Document Server

    Ng, C W; Cheng, K S

    2016-01-01

    Pulsars are rapidly spinning and highly magnetized neutron stars, with highly stable rotational period and gradual spin-down over a long timescale due to the loss of radiation. Glitches refer to the events that suddenly increase the rotational speed of a pulsar. The exact causes of glitches and the resulting processes are not fully understood. It is generally believed that couplings between the normal matter and the superfluid components, and the starquakes, are the common causes of glitches. In this study, one famous glitching pulsar, PSR~J2021+4026, is investigated. PSR~J2021+4026 is the first variable gamma-ray pulsar observed by Fermi. From the gamma-ray observations, it is found that the pulsar experienced a significant flux drop, an increase in the spin-down rate, a change in the pulse profile and a shift in the spectral cut-off to a lower energy, simultaneously around 2011 October 16. To explain these effects on the high-energy emissions by the glitch of PSR~J2021+4026, we hypothesized the glitch to be...

  15. First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst. H.E.S.S. observations of FRB 150418

    Science.gov (United States)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Superb Collaboration; Jankowski, F.; Keane, E. F.; Petroff, E.

    2017-01-01

    Aims: Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods: Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 h of the radio burst. Results: The obtained 1.4 h of gamma-ray observations are presented and discussed. At the 99% C.L. we obtained an integral upper limit on the gamma-ray flux of Φγ(E > 350 GeV) energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions: No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0.492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5.1 × 1047 erg/s at 99% C.L.

  16. Search for VHE Gamma-Ray Emission from Young SNe with H.E.S.S

    CERN Document Server

    Lennarz, D

    2013-01-01

    Supernova (SN) remnants are a well motivated candidate for the acceleration sites of cosmic rays with energies up to the knee (10^15 eV). It has been suggested that also young SNe (~10 GeV) gamma-ray radiation. The H.E.S.S. imaging air Cherenkov telescope array is an instrument sensitive to such radiation. In this contribution, the pointing directions of the H.E.S.S. telescopes are compared to a recently published, extragalactic SN catalogue to identify coincidental observations. The results of the data analysis are discussed.

  17. SEARCH FOR GAMMA-RAY EMISSION FROM THE SUPERNOVA REMNANT IC 443 WITH THE MAGIC TELESCOPE

    Directory of Open Access Journals (Sweden)

    R. J. García López

    2009-01-01

    Full Text Available TeV observations of Supernova remnants (SNRs and, in particular, of SNRs which appear to be physically related to EGRET sources are a prime target for the MAGIC telescope. MAGIC's spatial resolution and sensi- tivity can probe the main mechanism responsible for producing high energy photons in the SNR neighbourhood. Based on a recent systematical analysis of the molecular environment of the vicinity of all SNR-EGRET source pairs, the IC 443 remnant was chosen for observations with MAGIC. We brie y describe the observational strategy which provided the detection of a new very-high energy gamma-ray source: MAGIC 0616+225.

  18. Search for gamma ray burst quasi simultaneous optical emission with BOOTES-1

    Science.gov (United States)

    Castro Cerón, J. M.; Castro-Tirado, A. J.; Soldán, J.; Hudec, R.; Bernas, M.; Páta, P.; Mateo Sanguino, T. J.; de Ugarte Postigo, A.; Berná, J. Á; Nekola, M.; Gorosabel, J.; de la Morena, B. A.; Más-Hesse, J. M.; Giménez, Á.; Torres Riera, J.

    The Burst Observer and Optical Transient Exploring System experiment (BOOTES) has been designed to provide an automatic real time observing response to the detection of Gamma Ray Bursts (GRBs). It achieves such response by using wide field cameras attached to small robotic telescopes and imaging in the B,I and R bands. To date we have obtained images for about 50 events with the Wide Field Camera (WFC), starting, in several ocasions, 3 minutes after the burst commenced. One of the last searches resulted in the detection of an optical transient, candidate to be the optical counterpart of the GRB 000313, although such relation has not been established to absolute certainty yet.

  19. Single photon emission computed tomography of the brain with a rotating gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Biersack, H.J.; Knopp, R.; Winkler, C.; Wappenschmidt, J.

    1981-08-01

    In 471 patients SPECT of the brain was performed in addition to conventional serial brain scintigraphy using a rotating gamma camera (GAMMATOME T 9000). 23 patients had tumorous lesions, 26 had vascular lesions, and 422 patients revealed normal brain findings. 5 of the 23 patients with tumorous lesion and 5 of the 12 patients with vascular lesion (anamnesis shorter than 4 weeks) showed positive SPECT results but false negative conventional brain scans. Specificity could be improved up to 98% (412 out of 422 patients) using SPECT and conventional scintigraphy.

  20. Dark matter origin of the gamma ray emission from the galactic center observed by HESS

    CERN Document Server

    Cembranos, J A R; Maroto, A L

    2012-01-01

    We show that the gamma ray spectrum observed with the HESS array of Cherenkov telescopes coming from the Galactic Center (GC) region and identified with the source HESS J1745-290, is well fitted by the secondary photons coming from dark matter (DM) annihilation over a diffuse power-law background. The amount of photons and morphology of the signal localized within a region of few parsecs, require compressed DM profiles as those resulting from baryonic contraction, which offer $\\sim 10^3$ enhancements in the signal over DM alone simulations. The fitted background from HESS data is consistent with recent Fermi-LAT observations of the same region.

  1. Passive Gamma-Ray Emission for Underwater Sediment-Disturbance Detection

    Science.gov (United States)

    2017-07-18

    as a means for evaluating sediment erosion. Sediment erosion around the base of a bridge pier, bridge scour, is the leading cause of bridge...they suggested the use of gamma-ray detection of 40K activity as a means of tracking land-use dis- turbance, such as excavation. 1.2 Purpose... particle size distribution (i.e., soil texture) was determined via the hy- drometer method, ASTM D422-63 (ASTM 2007). The metal content of the soils was

  2. Modeling the shock-cloud interaction in SN 1006: unveiling the origin of nonthermal X-ray and gamma-ray emission

    CERN Document Server

    Miceli, Marco; Pereira, Victor; Acero, Fabio; Katsuda, Satoru; Decourchelle, Anne; Winkler, Frank P; Bonito, Rosaria; Reale, Fabio; Peres, Giovanni; Li, Jiangtao; Dubner, Gloria

    2016-01-01

    The supernova remnant SN 1006 is a source of high-energy particles and its southwestern limb is interacting with a dense ambient cloud, thus being a promising region for gamma-ray hadronic emission. We aim at describing the physics and the nonthermal emission associated with the shock-cloud interaction to derive the physical parameters of the cloud (poorly constrained by the data analysis), to ascertain the origin of the observed spatial variations in the spectral properties of the X-ray synchrotron emission, and to predict spectral and morphological features of the resulting gamma-ray emission. We performed 3-D magnetohydrodynamic simulations modeling the evolution of SN 1006 and its interaction with the ambient cloud, and explored different model setups. By applying the REMLIGHT code on the model results, we synthesized the synchrotron X-ray emission, and compared it with actual observations, to constrain the parameters of the model. We also synthesized the leptonic and hadronic gamma-ray emission from the ...

  3. Discovery of extended VHE gamma-ray emission from the asymmetric pulsar wind nebula in MSH 15-52 with H.E.S.S

    CERN Document Server

    Aharonian, F; Aye, K M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Borgmeier, C; Braun, I; Breitling, F; Brown, A M; Bussons-Gordo, J; Chadwick, P M; Chounet, L M; Cornils, R; Costamante, L; Degrange, B; Djannati-Atai, A; O'Connor-Drury, L; Dubus, G; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; De Jager, O C; Jung, I; Khelifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemiere, A; Lemoine, M; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; De Naurois, Mathieu; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V V; Sauge, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J P; Terrier, R; Theoret, C G; Tluczykont, M; Vasileiadis, G; Venter, C; Vincent, P; Visser, B; Völk, H J; Wagner, S J

    2005-01-01

    The Supernova Remnant MSH 15-52 has been observed in very high energy (VHE) gamma-rays using the H.E.S.S. 4-telescope array located in Namibia. A gamma-ray signal is detected at the 25 sigma level during an exposure of 22.1 hours live time. The image reveals an elliptically shaped emission region around the pulsar PSR B1509-58, with semi-major axis 6' in the NW-SE direction and semi-minor axis 2' approximately. This morphology coincides with the diffuse pulsar wind nebula as observed at X-ray energies by ROSAT. The overall energy spectrum from 280 GeV up to 40 TeV can be fitted by a power law with photon index Gamma = 2.27 +/- 0.03(stat.) +/- 0.20(syst.). The detected emission can be plausibly explained by inverse Compton scattering of accelerated relativistic electrons with soft photons.

  4. The activity of {gamma}-emitters as measured by ionisation chambers the determination of the specific emission coefficient {gamma} for some radio-elements (1961); Mesure de l'activite des emetteurs {gamma} par chambre d'ionisation. Determination du coefficient specifique d'emission {gamma} de quelques radioelements (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-06-15

    The object of this work is to study techniques of measurement using the gamma ionisation chamber, making it possible either to measure the activities of radioactive sources, or to determine the specific emission coefficient {gamma} (or the coefficient K) of a given radioelement. The ionisation chambers studied belong to two categories: graphites cavity-chambers, and 4 {pi} {gamma} chambers. For the cavity-chamber measurements, the different correction factors of which account must be taken have been calculated, in particular the geometric and hygrometric corrections. The absorption and auto-absorption corrections have led to the introduction of the notion of the 'effective energy {gamma}' of a radioelement. In the case of 4 {pi} {gamma} chambers, it has been shown that appropriately shaped electrodes make it possible to improve their performances. One of the chambers described permits the measurement of {beta} emitters using the associated Bremsstrahlung. In order to measure the K coefficient of some radioelements, it has been found useful a 4 {pi} {gamma} chamber with graphite walls, the measurement being carried out by comparison with a radium standard. The validity of the method was checked with radioelements for whom the K coefficient values are well-known ({sup 24}Na, {sup 60}Co, {sup 131}I, {sup 198}Au). For other radioelements, the following values were obtained (expressed in r cm{sup 3} mc{sup -1} h{sup -1}): {sup 51}Cr: 0,18; {sup 56}Mn: 8,8; {sup 65}Zn: 3,05; {sup 124}Sb: 9,9; {sup 134}Cs: 9,3; {sup 137}Cs: 3,35; {sup 141}Ce: 0,46; {sup 170}Tm: 0,023; {sup 192}Ir: 24,9; {sup 203}Hg: 1,18; These values have been corrected for the contribution to the dose of the fluorescent radiation which may be emitted by the source, except in the case of Tm{sup 170}. In the last part of this work, the performances of the different electro-metric devices used were compared. (author) [French] Le but de ce travail est d'etudier les techniques de mesure par

  5. The gamma-ray emission region in the FRII Radio Galaxy 3C 111

    CERN Document Server

    Grandi, Paola; Stanghellini, Carlo

    2012-01-01

    The Broad Line Radio Galaxy 3C 111, characterized by a Fanaroff-Riley II (FRII) radio morphology, is one of the sources of the Misaligned Active Galactic Nuclei sample, consisting of Radio Galaxies and Steep Spectrum Radio Quasars, recently detected by the Fermi-Large Area Telescope. Our analysis of the 24-month gamma-ray light curve shows that 3C 111 was only occasionally detected at high energies. It was bright at the end of 2008 and faint, below the Fermi-Large Area Telescope sensitivity threshold, for the rest of the time. A multifrequency campaign of 3C~111, ongoing in the same period, revealed an increase of the mm, optical and X-ray fluxes in 2008 September-November, interpreted by Chatterjee et al. (2011) as due to the passage of a superluminal knot through the jet core. The temporal coincidence of the mm-optical-X-ray outburst with the GeV activity suggests a co-spatiality of the events, allowing, for the first time, the localization of the gamma-ray dissipative zone in a FRII jet. We argue that the ...

  6. Binary orbits as the driver of gamma-ray emission and mass ejection in classical novae

    CERN Document Server

    Chomiuk, Laura; Yang, Jun; O'Brien, T J; Paragi, Zsolt; Mioduszewski, Amy J; Beswick, R J; Cheung, C C; Mukai, Koji; Nelson, Thomas; Ribeiro, Valerio A R M; Rupen, Michael P; Sokoloski, J L; Weston, Jennifer; Zheng, Yong; Bode, Michael F; Eyres, Stewart; Roy, Nirupam; Taylor, Gregory B

    2014-01-01

    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel ~10^(-4) solar masses of material at velocities exceeding 1,000 kilometres per second. However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds, or binary interaction with the nova envelope. Classical novae are now routinely detected in gigaelectronvolt gamma-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the gamma-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion. At the interface ...

  7. VHE gamma-ray emission of PKS 2155-304: spectral and temporal variability

    CERN Document Server

    Abramowski, A; Aharonian, F; Akhperjanian, A G; Anton, G; de Almeida, U Barres; Bazer-Bachi, A R; Becherini, Y; Behera, B; Benbow, W; Bernlohr, K; Bochow, A; Boisson, C; Bolmont, J; Borrel, V; Brucker, J; Brun, F; Brun, P; Buhler, R; Bulik, T; Busching, I; Boutelier, T; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Conrad, J; Chounet, L -M; Clapson, A C; Coignet, G; Costamante, L; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Atai, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Foerster, A; Fontaine, G; Fussling, M; Gabici, S; Gallant, Y A; Gerard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glueck, B; Goret, P; Goering, D; Hampf, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jung, I; Katarzynski, K; Katz, U; Kaufmann, S; Kerschhaggl, M; Khangulyan, D; Khelifi, B; Keogh, D; Klochkov, D; Kluzniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Lamanna, G; Lenain, J -P; Lohse, T; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, D; McComb, T J L; Medina, M C; Mehault, J; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; Wilhelmi, E de Ona; Opitz, B; Orford, K J; Ostrowski, M; Panter, M; Arribas, M Paz; Pedaletti, G; Pelletier, G; Petrucci, P -O; Pita, S; Puehlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Ryde, F; Sahakian, V; Santangelo, A; Schlickeiser, R; Schoeck, F M; Schoenwald, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sushch, I; Sikora, M; Skilton, J L; Sol, H; Stawarz, L; Steenkamp, R; Stegmann, C; Stinzing, F; Superina, G; Szostek, A; Tam, P H; Tavernet, J -P; Terrier, R; Tibolla, O; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Venter, L; Vialle, J P; Viana, A; Vincent, P; Vivier, M; Voelk, H J; Volpe, F; Vorobiov, S; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A; Zechlin, H -S

    2010-01-01

    Observations of very high energy gamma-rays from blazars provide information about acceleration mechanisms occurring in their innermost regions. Studies of variability in these objects allow a better understanding of the mechanisms at play. To investigate the spectral and temporal variability of VHE (>100 GeV) gamma-rays of the well-known high-frequency-peaked BL Lac object PKS 2155-304 with the H.E.S.S. imaging atmospheric Cherenkov telescopes over a wide range of flux states. Data collected from 2005 to 2007 are analyzed. Spectra are derived on time scales ranging from 3 years to 4 minutes. Light curve variability is studied through doubling timescales and structure functions, and is compared with red noise process simulations. The source is found to be in a low state from 2005 to 2007, except for a set of exceptional flares which occurred in July 2006. The quiescent state of the source is characterized by an associated mean flux level of 4.32 +/-0.09 x 10^-11 cm^-2 s^-1 above 200 GeV, or approximately 15% ...

  8. Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope

    Science.gov (United States)

    Adrián-Martínez, S.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Morganti, N.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Samtleben, D. F. E.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-08-01

    The ANTARES telescope is well-suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. Radio-loud active galactic nuclei with jets pointing almost directly towards the observer, the so-called blazars, are particularly attractive potential neutrino point sources. The all-sky monitor LAT on board the Fermi satellite probes the variability of any given gamma-ray bright blazar in the sky on time scales of hours to months. Assuming hadronic models, a strong correlation between the gamma-ray and the neutrino fluxes is expected. Selecting a narrow time window on the assumed neutrino production period can significantly reduce the background. An unbinned method based on the minimization of a likelihood ratio was applied to a subsample of data collected in 2008 (61 days live time). By searching for neutrinos during the high state periods of the AGN light curve, the sensitivity to these sources was improved by about a factor of two with respect to a standard time-integrated point source search. First results on the search for neutrinos associated with ten bright and variable Fermi sources are presented.

  9. Search for Neutrino Emission from Gamma-Ray Flaring Blazars with the ANTARES Telescope

    CERN Document Server

    Adrián-Martínez, S; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Camarena, F; Capone, A; Cârloganu, C; Carminati, G; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fehn, K; Fermani, P; Ferri, M; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatà, S; Gay, P; Geyer, K; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Hartman, J; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Larosa, G; Lattuada, D; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Morganti, N; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Payet, K; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Samtleben, D F E; Sapienza, P; Schöck, F; Schuller, J-P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Toscano, S; Vallage, B; Vallée, C; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2011-01-01

    The ANTARES telescope is well-suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. Radio-loud active galactic nuclei with jets pointing almost directly towards the observer, the so-called blazars, are particularly attractive potential neutrino point sources. The all-sky monitor LAT on board the Fermi satellite probes the variability of any given gamma-ray bright blazar in the sky on time scales of hours to months. Assuming hadronic models, a strong correlation between the gamma-ray and the neutrino fluxes is expected. Selecting a narrow time window on the assumed neutrino production period can significantly reduce the background. An unbinned method based on the minimization of a likelihood ratio was applied to a subsample of data collected in 2008 (61 days live time). By searching for neutrinos during the high state periods of the AGN light curve, the sensitivity to these sources was improved by about a facto...

  10. Measurements of the Soft Gamma-ray Emission from SN2014J with Suzaku

    CERN Document Server

    Terada, Y; Fukazawa, Y; Bamba, A; Ueda, Y; Katsuda, S; Enoto, T; Takahashi, T; Tamagawa, T; Roepke, F K; Summa, A; Diehl, R

    2016-01-01

    The hard X-ray detector (HXD) onboard {\\it Suzaku} measured soft $\\gamma$-rays from the Type Ia supernova SN2014J at $77\\pm2$ days after the explosion. Although the confidence level of the signal is about 90\\% (i.e., $2 \\sigma$), the $3 \\sigma$ upper limit has been derived at $< 2.2 \\times10^{-4}$ ph s$^{-1}$ cm$^{-2}$ in the 170 -- 250 keV band as the first independent measurement of soft $\\gamma$-rays with an instrument other than {\\it INTEGRAL}. For this analysis, we have examined the reproducibility of the NXB model of HXD/GSO using blank sky data. We find that the residual count rate in the 90 -- 500 keV band is distributed around an average of 0.19\\% with a standard deviation of 0.42\\% relative to the NXB rate. The averaged residual signals are consistent with that expected from the cosmic X-ray background. The flux of SN2014J derived from {\\it Suzaku} measurements taken in one snapshot at $t=77\\pm2$ days after the explosion is consistent with the {\\it INTEGRAL} values averaged over the period betwee...

  11. A Bright Gamma-ray Galactic Center Excess and Dark Dwarfs: Strong Tension for Dark Matter Annihilation Despite Milky Way Halo Profile and Diffuse Emission Uncertainties

    CERN Document Server

    Abazajian, Kevork N

    2015-01-01

    We incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center Extended gamma-ray excess (GCE) detected by the Fermi Gamma Ray Space Telescope. The range of particle annihilation rate and masses expand when including these unknowns. However, empirical determinations of the Milky Way halo's local density and density profile leave the signal region to be in considerable tension with dark matter annihilation searches from combined dwarf galaxy analyses. Extreme changes to the Milky Way halo, which may be possible in cases of extreme adiabatic contraction, must be adopted to escape these constraints in a dark matter annihilation model for the GCE. Dark matter annihilation models that produce the gamma-ray excess via differential mechanisms in the GCE and dwarfs may circumvent this tension.

  12. Hard X-Ray Emission from Sh 2-104: A NuSTAR Search for Gamma-Ray Counterparts

    DEFF Research Database (Denmark)

    Gotthelf, E. V.; Mori, K.; Aliu, E.

    2016-01-01

    We present NuSTAR hard X-ray observations of Sh 2–104, a compact H ii region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in t...

  13. Search for gamma-ray emission from dark matter annihilation in the large magellanic cloud with the fermi large area telescope

    NARCIS (Netherlands)

    Buckley, M.R.; Charles, E.; Gaskins, J.M.; Brooks, A.M.; Drlica-Wagner, A.; Martin, P.; Zhao, G.

    2015-01-01

    At a distance of 50 kpc and with a dark matter mass of similar to 10(10) M-circle dot, the large magellanic cloud (LMC) is a natural target for indirect dark matter searches. We use five years of data from the Fermi Large Area Telescope (LAT) and updated models of the gamma-ray emission from standar

  14. AGILE detects enhanced gamma-ray emission above 100 MeV from the 3FGL J1037.2-6052 source region

    Science.gov (United States)

    Lucarelli, F.; Pittori, C.; Verrecchia, F.; Tavani, M.; Bulgarelli, A.; Munar-Adrover, P.; Minervini, G.; Piano, G.; Ursi, A.; Donnarumma, I.; Fioretti, V.; Zoli, A.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-01-01

    AGILE is detecting intense gamma-ray emission above 100 MeV from an unidentified source, AGL J1035-6055, at Galactic coordinates (l,b)=(287.19, -2.26) +/- 0.4 deg (95% stat.) +/- 0.1 deg (syst.) (R.A., Dec.= 158.96, -60.92 deg, J2000).

  15. Gamma-ray emission from Cygnus X-3 detected by Fermi/LAT at the onset of a major radio flare

    Science.gov (United States)

    Loh, Alan; Corbel, Stephane

    2017-04-01

    The high-mass X-ray binary Cygnus X-3 (Cyg X-3) remained in an ultra-soft state since the transition from the soft state associated with gamma-ray emission detected by both Fermi and AGILE satellites (ATel#10109 and #10138).

  16. Role of the disk environment in the gamma-ray emission from the binary system PSR B1259-63/LS 2883

    CERN Document Server

    Sushch, Iurii

    2015-01-01

    PSR B1259-63/LS 2883 is a very high energy (VHE; E > 100 GeV) gamma-ray emitting binary consisting of a 48 ms pulsar orbiting around a Be star with a period of 3.4 years. The Be star features a circumstellar disk which is inclined with respect to the orbit in such a way that the pulsar crosses it twice every orbit. The circumstellar disk provides an additional field of target photons which may contribute to inverse Compton scattering and gamma-gamma absorption, leaving a characteristic imprint in the observed spectrum and light curve of the high energy emission. We study the signatures of Compton-supported, VHE gamma-ray induced pair cascades in the circumstellar disc of the Be star and their possible contribution to the GeV flux. We also study a possible impact of the gamma-gamma absorption in the disk on the observed TeV light curve. We show that the cumulative absorption of VHE gamma-rays in stellar and disk photon fields can explain the modulation of the flux at the periastron passage.

  17. Young radio sources: the duty-cycle of the radio emission and prospects for gamma-ray emission

    CERN Document Server

    Orienti, M; Giovannini, G; Giroletti, M; D'Ammando, F

    2011-01-01

    The evolutionary stage of a powerful radio source originated by an AGN is related to its linear size. In this context, compact symmetric objects (CSOs), which are powerful and intrinsically small objects, should represent the young stage in the individual radio source life. However, the fraction of young radio sources in flux density-limited samples is much higher than what expected from the number counts of large radio sources.This indicates that a significant fraction of young radio sources does not develop to the classical Fanaroff-Riley radio galaxies,suggesting an intermittent jet activity. As the radio jets are expanding within the dense and inhomogeneous interstellar medium,the ambient may play a role in the jet growth, for example slowing down or even disrupting its expansion when a jet-cloud interaction takes place. Moreover, this environment may provide the thermal seed photons that scattered by the lobes' electrons may be responsible for high energy emission, detectable by Fermi-LAT.

  18. On the sharpness of gamma-ray burst prompt emission spectra

    CERN Document Server

    Yu, Hoi-Fung; Greiner, Jochen; Sari, Re'em; Bhat, P Narayana; von Kienlin, Andreas; Paciesas, William S; Preece, Robert D

    2015-01-01

    We aim to obtain a measure of the curvature of time-resolved spectra that can be compared directly to theory. This tests the ability of models such as synchrotron emission to explain the peaks or breaks of GBM prompt emission spectra. We take the burst sample from the official Fermi GBM GRB time-resolved spectral catalog. We re-fit all spectra with a measured peak or break energy in the catalog best-fit models in various energy ranges, which cover the curvature around the spectral peak or break, resulting in a total of 1,113 spectra being analysed. We compute the sharpness angles under the peak or break of the triangle constructed under the model fit curves and compare to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. We find that 35% of the time-resolved spectra are inconsistent with the single-electron synchrotron function, and 91% are inconsistent with the Maxwellian synchrot...

  19. TGF electron avalanches and gamma-ray emission with LEPTRACK - a new detailed simulation software package

    Science.gov (United States)

    Connell, Paul

    2014-05-01

    In designing the MXGS coded mask imager of the ASIM mission on the ISS, to detect and locate gamma-rays from Terrestrial Gamma-ray Flashes, it was necessary to write software to simulate the expansion of gamma-ray photons from 15-20 km altitudes for an initial estimate of TGF spectra and diffuse beam structure likely to be observed at orbital altitudes. From this a new detailed LEPTRACK simulation software package has been developed to track all electron-photon scattering via Bremsstrahlung and ionization, and via any spatial electric-magnetic field geometies which will drive the Relativistic Runaway Electron Avalanche (RREA) process at the heart of TGF origin. LEPTRACK uses the standard physics of keV-MeV photon interactions, Bremsstrahlung scattering, Binary-Electron-Bethe models of electron ionization-scattering, positron Bhabha scattering and annihilation. Unlike simulation packages GEANT4, EGS, etc, the physics of these processes is transferred outside the software and controlled by a standard database of text files of total scattering cross sections, differential energy transfer and deflection angle PDFs - easy to read and plot - but which can also be changed, if the user understands the physics involved and wishes to create their own modified database. It also uses a superparticle spatial mesh system to control particle density and flux fields, electric field evolution, and exponential avalanche growth. Results will be presented of TGF simulations using macro electric field geometries expected in storm clouds and micro field geometries expected around streamer tips - and combinations of both - and will include video displays showing the evolving ionization structure of electron trajectories, the time evolution of photon-electron-positron density and flux fields, local molecular ion densities, the dielectric effect of induced local electric fields - and the important effect of the local earth magnetic field on circular lepton feedback and TGF beam direction

  20. Hard X-ray and Gamma-ray Emission Induced by Ultra-High Energy Protons in Cluster Accretion Shocks

    CERN Document Server

    Inoue, S; Sugiyama, N; Inoue, Susumu; Aharonian, Felix A.; Sugiyama, Naoshi

    2005-01-01

    All sufficiently massive clusters of galaxies are expected to be surrounded by strong accretion shocks, where protons can be accelerated to $\\sim 10^{18}$-$10^{19}$ eV under plausible conditions. Such protons interact with the cosmic microwave background and efficiently produce very high energy electron-positron pairs, which then radiate synchrotron and inverse Compton emission, peaking respectively at hard X-ray and TeV gamma-ray energies. Characterized by hard spectra (photon indices $\\sim 1.5$) and spatial distribution tracing the accretion shock, these can dominate over other nonthermal components depending on the shock magnetic field. HESS and other Cerenkov telescopes may detect the TeV emission from nearby clusters, notwithstanding its extended nature. The hard X-rays may be observable by future imaging facilities such as NeXT, and possibly also by ASTRO-E2/HXD. Such detections will not only provide a clear signature of ultra-high energy proton acceleration, but also an important probe of the accretion...

  1. Study of VUV emission and {gamma}-ray responses of Nd:BaF{sub 2} scintillaotor

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: t_yanagi@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kawaguchi, Noriaki [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yokota, Yuui [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Ishidu, Sumito [Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fukuda, Kentaro [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Pejchal, Jan [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Physics AS CR, Cukrovarnicka 10, 162 53 Prague (Czech Republic); Nikl, Martin [Institute of Physics AS CR, Cukrovarnicka 10, 162 53 Prague (Czech Republic); Babin, Vladimir [Sincrotrone Trieste S.C.p.A., Basovizza-Trieste 34012 (Italy); Sekiya, Hiroyuki [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Hida, 506-1205 (Japan); Kamada, Kei [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2010-03-15

    Nd{sup 3+} 1%, 5% and 10% doped BaF{sub 2} single crystals were grown by the micro-pulling down method. Photoluminescence properties, including excitation and emission spectra and luminescence decay were measured under synchrotron radiation excitation at the Superlumi station in HASYLAB at DESY (Hamburg, Germany). The Nd{sup 3+} related 5d-4f emission lines peaking around 180 nm, 230 nm, and 260 nm, identified as the 5d-{sup 4}I{sub j}, 5d-{sup 4}F{sub j}, and 5d-{sup 2}G{sub j} transitions, were observed under 140-168 nm excitation. In photoluminescence decay under the 160 nm excitation, the dominant component decay time is about 12, 2.5 and 1.2 ns for Nd{sup 3+} 1%, 5% and 10% concentration, respectively. The decay time shortening is explained by the concentration quenching effect. Transmittance of Nd1% sample is about 80% for wavelengths above 185 nm. Finally, gamma-ray responses, non-proportionality and energy resolution of Nd1% sample were compared with the undoped BaF{sub 2} scintillator. The light yield of the Nd1%:BaF{sub 2} is about 93% of that of undoped BaF{sub 2}.

  2. PHOTOSPHERIC EMISSION AS THE DOMINANT RADIATION MECHANISM IN LONG-DURATION GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Lazzati, Davide [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States); Morsony, Brian J. [Department of Astronomy, University of Wisconsin-Madison, 3321 Sterling Hall, 475 N. Charter Street, Madison WI 53706-1582 (United States); Margutti, Raffaella [Harvard-Smithsonian Center for Astrophysics, ITC, 60 Garden Street, Cambridge, MA 02138 (United States); Begelman, Mitchell C. [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, CO 80309-0440 (United States)

    2013-03-10

    We present the results of a set of numerical simulations of long-duration gamma-ray burst jets associated with massive, compact stellar progenitors. The simulations extend to large radii and allow us to locate the region in which the peak frequency of the advected radiation is set before the radiation is released at the photosphere. Light curves and spectra are calculated for different viewing angles as well as different progenitor structures and jet properties. We find that the radiation released at the photosphere of matter-dominated jets is able to reproduce the observed Amati and energy-Lorentz factor correlations. Our simulations also predict a correlation between the burst energy and the radiative efficiency of the prompt phase, consistent with observations.

  3. Fermi Large Area Telescope observations of high-energy gamma-ray emission from Solar flares

    Science.gov (United States)

    Pesce Rollins, Melissa

    2017-01-01

    The Fermi Large Area Telescope (LAT) observations of the active Sun provide the largest sample of detected solar flares with emission greater than 30 MeV to date. These include detections of impulsive and sustained emission, extending up to 20 hours in the case of the 2012 March 7 X-class flares. These high-energy flares are coincident with GOES X-ray flares of X, M and C classes as well as very fast Coronal Mass Ejections (CME). We will present results from the First Fermi-LAT solar flare catalog covering the majority of Solar Cycle 24 including correlation studies with the associated Solar Energetic Particles (SEP) and CMEs.

  4. Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation

    Science.gov (United States)

    Schumann, A.; Petzoldt, J.; Dendooven, P.; Enghardt, W.; Golnik, C.; Hueso-González, F.; Kormoll, T.; Pausch, G.; Roemer, K.; Fiedler, F.

    2015-05-01

    Irradiation with protons and light ions offers new possibilities for tumor therapy but has a strong need for novel imaging modalities for treatment verification. The development of new detector systems, which can provide an in vivo range assessment or dosimetry, requires an accurate knowledge of the secondary radiation field and reliable Monte Carlo simulations. This paper presents multiple measurements to characterize the prompt γ-ray emissions during proton irradiation and benchmarks the latest Geant4 code against the experimental findings. Within the scope of this work, the total photon yield for different target materials, the energy spectra as well as the γ-ray depth profile were assessed. Experiments were performed at the superconducting AGOR cyclotron at KVI-CART, University of Groningen. Properties of the γ-ray emissions were experimentally determined. The prompt γ-ray emissions were measured utilizing a conventional HPGe detector system (Clover) and quantitatively compared to simulations. With the selected physics list QGSP_BIC_HP, Geant4 strongly overestimates the photon yield in most cases, sometimes up to 50%. The shape of the spectrum and qualitative occurrence of discrete γ lines is reproduced accurately. A sliced phantom was designed to determine the depth profile of the photons. The position of the distal fall-off in the simulations agrees with the measurements, albeit the peak height is also overestimated. Hence, Geant4 simulations of prompt γ-ray emissions from irradiation with protons are currently far less reliable as compared to simulations of the electromagnetic processes. Deviations from experimental findings were observed and quantified. Although there has been a constant improvement of Geant4 in the hadronic sector, there is still a gap to close.

  5. Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation.

    Science.gov (United States)

    Schumann, A; Petzoldt, J; Dendooven, P; Enghardt, W; Golnik, C; Hueso-González, F; Kormoll, T; Pausch, G; Roemer, K; Fiedler, F

    2015-05-21

    Irradiation with protons and light ions offers new possibilities for tumor therapy but has a strong need for novel imaging modalities for treatment verification. The development of new detector systems, which can provide an in vivo range assessment or dosimetry, requires an accurate knowledge of the secondary radiation field and reliable Monte Carlo simulations. This paper presents multiple measurements to characterize the prompt γ-ray emissions during proton irradiation and benchmarks the latest Geant4 code against the experimental findings. Within the scope of this work, the total photon yield for different target materials, the energy spectra as well as the γ-ray depth profile were assessed. Experiments were performed at the superconducting AGOR cyclotron at KVI-CART, University of Groningen. Properties of the γ-ray emissions were experimentally determined. The prompt γ-ray emissions were measured utilizing a conventional HPGe detector system (Clover) and quantitatively compared to simulations. With the selected physics list QGSP_BIC_HP, Geant4 strongly overestimates the photon yield in most cases, sometimes up to 50%. The shape of the spectrum and qualitative occurrence of discrete γ lines is reproduced accurately. A sliced phantom was designed to determine the depth profile of the photons. The position of the distal fall-off in the simulations agrees with the measurements, albeit the peak height is also overestimated. Hence, Geant4 simulations of prompt γ-ray emissions from irradiation with protons are currently far less reliable as compared to simulations of the electromagnetic processes. Deviations from experimental findings were observed and quantified. Although there has been a constant improvement of Geant4 in the hadronic sector, there is still a gap to close.

  6. The multiwavelength emission from the gamma-ray binary LS I + 61 303

    Institute of Scientific and Technical Information of China (English)

    Jian-Fu Zhang; Ya Zhu; Li Zhang

    2011-01-01

    This paper presents a hadronic dominated jet model to investigate multiwavelength emission from the microquasar LS I+61 303. In this scenario, we take into account evolutions of the primary particles and secondary e± pairs; these pairs are produced by the collisional interactions of the accelerated protons with the cold jet protons and the stellar wind ions. In this model, the non-thermal photons are produced by π0 decay emission, synchrotron and inverse Compton scattering processes from the primary electrons and secondary pairs, and relativistic bremsstrahlung emission from the secondary leptonic pairs. Based on this model framework, we show that the spectral energy distributions can be produced by the primary and secondary particles via interactions with the cold matter, and magnetic and stellar radiation fields. We also consider the attenuation of angular dependence γ-γ due to the effects of the stellar target photon fields. The resulting model can approximately reproduce the recent quasi-simultaneous observational data points and the non-simultaneous multi-band observations.

  7. Search for cosmic-ray-induced gamma-ray emission in galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Albert, A. [Department of Physics, Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Allafort, A.; Bechtol, K.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M. [Dipartimento di Fisica " M. Merlin" dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: olr@slac.stanford.edu, E-mail: zimmer@fysik.su.se, E-mail: conrad@fysik.su.se, E-mail: apinzke@fysik.su.se, E-mail: christoph.pfrommer@h-its.org [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Collaboration: Fermi-LAT Collaboration; and others

    2014-05-20

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into γ rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended γ-ray emission at the locations of 50 galaxy clusters in four years of Fermi-LAT data under the assumption of the universal cosmic-ray (CR) model proposed by Pinzke and Pfrommer. We find an excess at a significance of 2.7σ, which upon closer inspection, however, is correlated to individual excess emission toward three galaxy clusters: A400, A1367, and A3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background systems (for example, radio galaxies within the clusters).Through the combined analysis of 50 clusters, we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the CR to thermal pressure ratio within the virial radius, R {sub 200}, to be below 1.25%-1.4% depending on the morphological classification. In addition, we derive new limits on the γ-ray flux from individual clusters in our sample.

  8. Probing the Birth of Post-merger Millisecond Magnetars with X-Ray and Gamma-Ray Emission

    Science.gov (United States)

    Wang, Ling-Jun; Dai, Zi-Gao; Liu, Liang-Duan; Wu, Xue-Feng

    2016-05-01

    There is growing evidence that a stable magnetar could be formed from the coalescence of double neutron stars. In previous papers, we investigated the signature of formation of stable millisecond magnetars in radio and optical/ultraviolet bands by assuming that the central rapidly rotating magnetar deposits its rotational energy in the form of a relativistic leptonized wind. We found that the optical transient PTF11agg could be the first evidence for the formation of post-merger millisecond magnetars. To enhance the probability of finding more evidence for the post-merger magnetar formation, it is better to extend the observational channel to other photon energy bands. In this paper, we propose to search the signature of post-merger magnetar formation in X-ray and especially gamma-ray bands. We calculate the synchrotron self-Compton (SSC) emission of the reverse shock powered by post-merger millisecond magnetars. We find that the SSC component peaks at 1 {GeV} in the spectral energy distribution and extends to ≳ 10 {TeV} for typical parameters. These energy bands are quite suitable for Fermi Large Area Telescope and Cherenkov Telescope Array (CTA), which, with their current observational sensitivities, can detect the SSC emission powered by post-merger magnetars up to 1 {Gpc}. NuSTAR, which is sensitive in X-ray bands, can detect the formation of post-merger millisecond magnetars at redshift z˜ 1. Future improvements in the sensitivity of CTA can also allow us to probe the birth of post-merger millisecond magnetars at redshift z˜ 1. However, because of the γ-γ collisions, strong high-energy emission is clearly predicted only for ejecta masses lower than {10}-3 {M}⊙ .

  9. GAMMA-400 gamma-ray observatory

    CERN Document Server

    Topchiev, N P; Bonvicini, V; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bakaldin, A V; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, L; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Cumani, P; Dalkarov, O D; Dedenko, G L; De Donato, C; Dogiel, V A; Finetti, N; Gascon, D; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Martinez, M; Menshenin, A L; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Paredes, J M; Pearce, M; Picozza, P; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Stozhkov, Yu I; Suchkov, S I; Taraskin, A A; Tavani, M; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Ward, J E; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The energy range of GAMMA-400 is expected to be from ~20 MeV up to TeV energies for gamma rays, up to 20 TeV for electrons + positrons, and up to 10E15 eV for cosmic-ray nuclei. For high-energy gamma rays with energy from 10 to 100 GeV, the GAMMA-400 angular resolution improves from 0.1{\\deg} to ~0.01{\\deg} and energy resolution from 3% to ~1%; the proton rejection factor is ~5x10E5. GAMMA-400 will be installed onboard the Russian space observatory.

  10. Precise determination of photon emission probabilities for the main X- and gamma-rays of 226Ra in equilibrium with daughters.

    Science.gov (United States)

    Morel, J; Sepman, S; Rasko, M; Terechtchenko, E; Delgado, J U

    2004-01-01

    Within the context of a joint project between VNIIM (D.I. Mendeleyev Institute for Metrology) and LNHB (Laboratoire National Henri Becquerel), special 226Ra sources were prepared by VNIIM in order to determine as accurately as possible the absolute photon emission probabilities for the main X- and gamma-rays following the decay of 226Ra and daughters. The main purpose of this work was to supplement a previous joint study by Laboratorio Nacional de Metrologia das Radiaçoes Ionizantes (LNMRI) and LNHB to determine their relative values. Some specific point sources were produced for alpha-spectrometry measurements that were undertaken at VNIIM and also for gamma-ray spectrometry studies at VNIIM and LNHB. The 226Ra activity for the gamma-spectrometric sources was measured relative to the alpha-spectrometric sources by comparing the counts of the main gamma-rays. The total uncertainty of the activity for these sources was 0.2% (k = 1). Using calibrated germanium detectors, several X- and gamma-ray spectra were analyzed to determine the absolute photon emission probabilities of 226Ra in radioactive equilibrium with daughters. The results are presented and compared to other published values.

  11. THERMAL EMISSION IN THE EARLY X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS: FOLLOWING THE PROMPT PHASE TO LATE TIMES

    Energy Technology Data Exchange (ETDEWEB)

    Friis, Mette [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Watson, Darach, E-mail: mef4@hi.is, E-mail: darach@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark)

    2013-07-01

    Thermal radiation, peaking in soft X-rays, has now been detected in a handful of gamma-ray burst (GRB) afterglows and has to date been interpreted as shock break-out of the GRB's progenitor star. We present a search for thermal emission in the early X-ray afterglows of a sample of Swift bursts selected by their brightness in X-rays at early times. We identify a clear thermal component in eight GRBs and track the evolution. We show that at least some of the emission must come from highly relativistic material since two show an apparent super-luminal expansion of the thermal component. Furthermore, we determine very large luminosities and high temperatures for many of the components-too high to originate in a supernova shock break-out. Instead, we suggest that the component may be modeled as late photospheric emission from the jet, linking it to the apparently thermal component observed in the prompt emission of some GRBs at gamma-ray and hard X-ray energies. By comparing the parameters from the prompt emission and the early afterglow emission, we find that the results are compatible with the interpretation that we are observing the prompt quasi-thermal emission component in soft X-rays at a later point in its evolution.

  12. Observations of the gamma-ray emission from the Quiescent Sun with Fermi Large Area Telescope during the first 7 years in orbit

    Directory of Open Access Journals (Sweden)

    Rainó S.

    2017-01-01

    Full Text Available The high energy gamma-ray emission from the quiescent Sun is due to the interactions of cosmic ray (CR protons and electrons with matter and photons in the solar environment. Such interactions lead to two component gamma-ray emission: a disk-like emission due to the nuclear interactions of CR protons and nuclei in the solar atmosphere and a space extended emission due to the inverse Compton (IC scattering of CR electrons off solar photons in the whole heliosphere. The observation of these two solar emission components may give useful information about the evolution of the solar cycle by probing two different CR components (proton and electrons in regions not directly accessible by direct observations. We present the results of the observations of the Sun with Fermi-LAT in the first 7 years on orbit, with the exception of the flaring periods. Significantly large photon statistics and improved processing performance with respect to previous analysis allow us to explore both components of the emission in greater details and perform better comparisons of data with current models of the IC component. This allows us to probe CR electrons in the inner heliosphere which is not possible by other methods. Moreover, the longer period of observations allows us to study the variations of the emission between the maximum and the minimum of the solar cycle.

  13. Investigating the X-ray Emission from the Galactic TeV Gamma-ray Source MGRO J1908+06

    CERN Document Server

    Pandel, Dirk

    2015-01-01

    MGRO J1908+06 is a bright, extended TeV gamma-ray source located near the Galactic plane. The TeV emission has previously been attributed to the pulsar wind nebula of the radio-faint gamma-ray pulsar PSR J1907+0602 discovered with Fermi. However, studies of the TeV morphology with VERITAS have shown that MGRO J1908+06 is somewhat larger than other pulsar wind nebulae of similar age and that the TeV spectrum does not soften with distance from the pulsar as is observed for other pulsar wind nebulae. Although MGRO J1908+06 is very bright in gamma rays with a flux corresponding to ~80% of the Crab Nebula flux at 20 TeV, no extended emission at other energies has so far been detected. We report on our analysis of X-ray data obtained with XMM-Newton of the region near MGRO J1908+06. We searched the data for point-like sources and detected several hard-spectrum X-ray sources that could be associated with the TeV emission, including the gamma-ray pulsar PSR J1907+0602. We also performed an extended source analysis to...

  14. Measurement of areal density in the ablators of inertial-confinement-fusion capsules via detection of ablator (n, n'γ) gamma-ray emission

    Science.gov (United States)

    Hoffman, N. M.; Herrmann, H. W.; Kim, Y. H.; Hsu, H. H.; Horsfield, C. J.; Rubery, M. S.; Miller, E. K.; Grafil, E.; Stoeffl, W.; Church, J. A.; Young, C. S.; Mack, J. M.; Wilson, D. C.; Langenbrunner, J. R.; Evans, S. C.; Sedillo, T. J.; Glebov, V. Yu.; Duffy, T.

    2013-04-01

    We report the first gamma-ray-based measurements of the areal density of ablators in inertial-confinement-fusion capsule implosions. The measurements, made at the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], used observations of gamma rays arising from inelastic scattering of 14.1-MeV deuterium-tritium (DT) neutrons on 12C nuclei in the compressed plastic ablators. The emission of 12C(n,n'γ) gamma rays from the capsules is detected using the Gamma Reaction History instrument [H. W. Herrmann et al., J. Phys.: Conf. Ser. 244, 032047 (2010)] operating at OMEGA. From the ratio of a capsule's 12C(n,n'γ) emission to the emission from the same processes in an in situ reference graphite "puck" of known mass and geometry [N. M. Hoffman et al., in IFSA 2011 proceedings (submitted)], we determine the time-averaged areal density of 12C in the capsule's compressed ablator. Measured values of total ablator areal density for thirteen imploded capsules, in the range 23 ± 10 to 58 ± 14 mg/cm2, are comparable to values calculated in 1D radiation-hydrodynamic simulations, and measured by charged-particle techniques.

  15. First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst: H.E.S.S. observations of FRB 150418

    CERN Document Server

    :,; Abramowski, A; Aharonian, F; Benkhali, F Ait; Akhperjanian, A G; Andersson, T; Angüner, E O; Arakawa, M; Arrieta, M; Aubert, P; Backes, M; Balzer, A; Barnard, M; Becherini, Y; Tjus, J Becker; Berge, D; Bernhard, S; Bernlöhr, K; Blackwell, R; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Büchele, M; Bulik, T; Capasso, M; Carr, J; Casanova, S; Cerruti, M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chen, A; Chevalier, J; Chrétien, M; Coffaro, M; Colafrancesco, S; Cologna, G; Condon, B; Conrad, J; Cui, Y; Davids, I D; Decock, J; Degrange, B; Deil, C; Devin, J; deWilt, P; Dirson, L; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dutson, K; Dyks, J; Edwards, T; Egberts, K; Eger, P; Ernenwein, J -P; Eschbach, S; Farnier, C; Fegan, S; Fern, M V; Fiasson, A; Fontaine, G; Förster, A; Funk, S; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Goyal, A; Grondin, M -H; Hahn, J; Haupt, M; Hawkes, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hinton, J A; Hofmann, W; Hoischen, C; Holler, M; Horns, D; Ivascenko, A; Iwasaki, H; Jacholkowska, A; Jamrozy, M; Janiak, M; Jankowsky, D; Jankowsky, F; Jingo, M; Jogler, T; Jouvin, L; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katsuragawa, M; Katz, U; Kerszberg, D; Khangulyan, D; Khélifi, B; Kieffer, M; King, J; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Kraus, M; Krüger, P P; Laffon, H; Lamanna, G; Lau, J; Lees, J -P; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J -P; Leser, E; Lohse, T; Lorentz, M; Liu, R; López-Coto, R; Lypova, I; Mar, V; Marcowith, A; Mariaud, C; Marx, R; Maurin, G; Maxted, N; Mayer, M; Meintjes, P J; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Mohrmann, L; Morå, K; Moulin, E; Murach, T; Nakashima, S; de Naurois, M; Niederwanger, F; Niemiec, J; Oakes, L; O'Brien, P; Odaka, H; Öttl, S; Ohm, S; Ostrowski, M; Oya, I; Padovani, M; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perennes, C; Petrucci, P -O; Peyaud, B; Piel, Q; Pita, S; Poon, H; Prokhorov, D; Prokoph, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Richter, S; Rieger, F; Romoli, C; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Saito, S; Salek, D; Sanchez, D A; Santangelo, A; Sasaki, M; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwemmer, S; Seglar-Arroyo, M; Settimo, M; Seyffert, A S; Shafi, N; Shilon, I; Simoni, R; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stycz, K; Sushch, I; Takahashi, T; Tavernet, J -P; Tavernier, T; Taylor, A M; Terrier, R; Tibaldo, L; Tiziani, D; Tluczykont, M; Trichard, C; Tsuji, N; Tuffs, R; Uchiyama, Y; van der Walt, D J; van Eldik, C; van Rensburg, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Voisin, F; Völk, H J; Vuillaume, T; Wadiasingh, Z; Wagner, S J; Wagner, P; Wagner, R M; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zanin, R; Zdziarski, A A; Zech, A; Zefi, F; Ziegler, A; Żywucka, N; :,; Jankowski, F; Keane, E F; Petroff, E

    2016-01-01

    Aims: Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods: Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 hours of the radio burst. Results: The obtained 1.4 hours of gamma-ray observations are presented and discussed. At the 99 % C.L. we obtained an integral upper limit on the gamma-ray flux of (E>350 GeV) < 1.33 x 10^-8 m^-2s^-1. Differential flux upper limits as function of the photon energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions: No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0.492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constr...

  16. Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Harp; Paul A. Demkowicz

    2014-10-01

    In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10-4 to 10-5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materials is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.

  17. On the Fermi Large Area Telescope Surplus of Diffuse Galactic Gamma-Ray Emission

    Science.gov (United States)

    Völk, H. J.; Berezhko, E. G.

    2013-11-01

    Recent observations of diffuse Galactic γ-ray emission (DGE) by the Fermi Large Area Telescope (Fermi-LAT) have shown significant deviations, above a few GeV to about 100 GeV, from DGE models that use the GALPROP code for the propagation of cosmic ray (CR) particles outside their sources in the Galaxy and their interaction with the target distributions of the interstellar gas and radiation fields. The surplus of radiation observed is most pronounced in the inner Galaxy, where the concentration of CR sources is strongest. The present study investigates this "Fermi-LAT Galactic Plane Surplus" by estimating the γ-ray emission from the sources themselves, which is disregarded in the above DGE models. It is shown that the expected hard spectrum of CRs, still confined in their sources (source cosmic rays, SCRs), can indeed explain this surplus. The method is based on earlier studies regarding the so-called EGRET GeV excess, which by now is generally interpreted as an instrumental effect. The contribution from SCRs is also predicted to increasingly exceed the DGE models above 100 GeV, up to γ-ray energies of about 10 TeV, where the corresponding surplus exceeds the hadronic part of the DGE by about one order of magnitude. Above such energies, the emission surplus should decrease again with energy due to the finite lifetime of the assumed supernova remnant sources. Observations of the DGE in the inner Galaxy at 15 TeV with the ground-based Milagro γ-ray detector and, at TeV energies, with the ARGO-YBJ detector are interpreted to provide confirmation of a significant SCR contribution to the DGE.

  18. ON THE FERMI LARGE AREA TELESCOPE SURPLUS OF DIFFUSE GALACTIC GAMMA-RAY EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Völk, H. J. [Max-Planck-Institut für Kernphysik, P.O. Box 103980, D-69029 Heidelberg (Germany); Berezhko, E. G., E-mail: Heinrich.Voelk@mpi-hd.mpg.de [Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Avenue, 677980 Yakutsk (Russian Federation)

    2013-11-10

    Recent observations of diffuse Galactic γ-ray emission (DGE) by the Fermi Large Area Telescope (Fermi-LAT) have shown significant deviations, above a few GeV to about 100 GeV, from DGE models that use the GALPROP code for the propagation of cosmic ray (CR) particles outside their sources in the Galaxy and their interaction with the target distributions of the interstellar gas and radiation fields. The surplus of radiation observed is most pronounced in the inner Galaxy, where the concentration of CR sources is strongest. The present study investigates this 'Fermi-LAT Galactic Plane Surplus' by estimating the γ-ray emission from the sources themselves, which is disregarded in the above DGE models. It is shown that the expected hard spectrum of CRs, still confined in their sources (source cosmic rays, SCRs), can indeed explain this surplus. The method is based on earlier studies regarding the so-called EGRET GeV excess, which by now is generally interpreted as an instrumental effect. The contribution from SCRs is also predicted to increasingly exceed the DGE models above 100 GeV, up to γ-ray energies of about 10 TeV, where the corresponding surplus exceeds the hadronic part of the DGE by about one order of magnitude. Above such energies, the emission surplus should decrease again with energy due to the finite lifetime of the assumed supernova remnant sources. Observations of the DGE in the inner Galaxy at 15 TeV with the ground-based Milagro γ-ray detector and, at TeV energies, with the ARGO-YBJ detector are interpreted to provide confirmation of a significant SCR contribution to the DGE.

  19. Analysis of hard X-ray emission from selected very high energy {gamma}-ray sources observed with INTEGRAL

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Agnes Irene Dorothee

    2009-11-13

    A few years ago, the era of very high energy {gamma}-ray astronomy started, when the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACT) like H.E.S.S. began to operate and to resolve the sources of TeV emission. Identifications via multi-wavelength studies reveal that the detected sources are supernova remnants and active galactic nuclei, but also pulsar wind nebulae and a few binaries. One widely discussed open question is, how these sources are able to accelerate particles to such high energies. The understanding of the underlying particle distribution, the acceleration processes taking place, and the knowledge of the radiation processes which produce the observed emission, is, therefore, of crucial interest. Observations in the hard X-ray domain can be a key to get information on these particle distributions and processes. Important for this thesis are the TeV and the hard X-ray range. The two instruments, H.E.S.S. and INTEGRAL, whose data were used, are, therefore, described in detail. The main part of this thesis is focused on the X-ray binary system LS 5039/RX J1826.2-1450. It was observed in several energy ranges. The nature of the compact object is still not known, and it was proposed either to be a microquasar system or a non-accreting pulsar system. The observed TeV emission is modulated with the orbital cycle. Several explanations for this variability have been discussed in recent years. The observations with INTEGRAL presented in this thesis have provided new information to solve this question. Therefore, a search for a detection in the hard X-ray range and for its orbital dependence was worthwhile. Since LS 5039 is a faint source and the sky region where it is located is crowded, a very careful, non-standard handling of the INTEGRAL data was necessary, and a cross-checking with other analysis methods was essential to provide reliable results. We found that LS 5039 is emitting in the hard X-ray energy range. A flux rate and an upper

  20. Analysis of hard X-ray emission from selected very high energy {gamma}-ray sources observed with INTEGRAL

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Agnes Irene Dorothee

    2009-11-13

    A few years ago, the era of very high energy {gamma}-ray astronomy started, when the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACT) like H.E.S.S. began to operate and to resolve the sources of TeV emission. Identifications via multi-wavelength studies reveal that the detected sources are supernova remnants and active galactic nuclei, but also pulsar wind nebulae and a few binaries. One widely discussed open question is, how these sources are able to accelerate particles to such high energies. The understanding of the underlying particle distribution, the acceleration processes taking place, and the knowledge of the radiation processes which produce the observed emission, is, therefore, of crucial interest. Observations in the hard X-ray domain can be a key to get information on these particle distributions and processes. Important for this thesis are the TeV and the hard X-ray range. The two instruments, H.E.S.S. and INTEGRAL, whose data were used, are, therefore, described in detail. The main part of this thesis is focused on the X-ray binary system LS 5039/RX J1826.2-1450. It was observed in several energy ranges. The nature of the compact object is still not known, and it was proposed either to be a microquasar system or a non-accreting pulsar system. The observed TeV emission is modulated with the orbital cycle. Several explanations for this variability have been discussed in recent years. The observations with INTEGRAL presented in this thesis have provided new information to solve this question. Therefore, a search for a detection in the hard X-ray range and for its orbital dependence was worthwhile. Since LS 5039 is a faint source and the sky region where it is located is crowded, a very careful, non-standard handling of the INTEGRAL data was necessary, and a cross-checking with other analysis methods was essential to provide reliable results. We found that LS 5039 is emitting in the hard X-ray energy range. A flux rate and an upper

  1. Measurements of the Soft Gamma-Ray Emission from SN2014J with Suzaku

    Science.gov (United States)

    Terada, Y.; Maeda, K.; Fukazawa, Y.; Bamba, A.; Ueda, Y.; Katsuda, S.; Enoto, T.; Takahashi, T.; Tamagawa, T.; Röpke, F. K.; Summa, A.; Diehl, R.

    2016-05-01

    The hard X-ray detector (HXD) on board Suzaku measured soft γ-rays from the SN Ia SN2014J at 77 ± 2 days after the explosion. Although the confidence level of the signal is about 90% (i.e., 2σ), the 3σ upper limit has been derived at X-ray background. The flux of SN2014J derived from Suzaku measurements taken in one snapshot at t = 77 ± 2 days after the explosion is consistent with the INTEGRAL values averaged over the period between t = 50 and 100 days and also with explosion models of single or double degenerate scenarios. Being sensitive to the total ejecta mass surrounding the radioactive material, the ratio between continuum and line flux in the soft gamma-ray regime might distinguish different progenitor models. The Suzaku data have been examined with this relation at t = 77 ± 2 days, but could not distinguish models between single and double degenerate-progenitors. We disfavor explosion models with larger 56Ni masses than 1 M ⊙, from our 1σ error on the 170-250 keV X-ray flux of (1.2 ± 0.7) × 10-4 ph s-1 cm-2.

  2. The review of myocardial positron emission computed tomography and positron imaging by gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Tohru [Tokyo Univ. (Japan). Faculty of Medicine

    1998-04-01

    To measure myocardial blood flow, Nitrogen-13 ammonia, Oxygen-15 water, Rubidium-82 and et al. are used. Each has merit and demerit. By measuring myocardial coronary flow reserve, the decrease of flow reserve during dipyridamole in patients with hypercholesterolemia or diabetes mellitus without significant coronary stenosis was observed. The possibility of early detection of atherosclerosis was showed. As to myocardial metabolism, glucose metabolism is measured by Fluorine-18 fluorodeoxyglucose (FDG), and it is considered as useful for the evaluation of myocardial viability. We are using FDG to evaluate insulin resistance during insulin clamp in patients with diabetes mellitus by measuring glucose utilization rate of myocardium and skeletal muscle. FFA metabolism has been measured by {sup 11}C-palmitate, but absolute quantification has not been performed. Recently the method for absolute quantification was reported, and new radiopharmaceutical {sup 18}F-FTHA was reported. Oxygen metabolism has been estimated by {sup 11}C-acetate. Myocardial viability, cardiac efficiency was evaluated by oxygen metabolism. As to receptor or sympathetic nerve end, cardiac insufficiency or cardiac transplantation was evaluated. Imaging of positron emitting radiopharmaceutical by gamma camera has been performed. Collimator method is clinically useful for cardiac imaging of viability study. (author). 54 refs.

  3. The Discovery of gamma-Ray Emission From The Blazar RGB J0710+591

    CERN Document Server

    Acciari, V A; Arlen, T; Aune, T; Bautista, M; Beilicke, M; Benbow, W; Böttcher, M; Boltuch, D; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Ciupik, L; Cui, W; Dickherber, R; Duke, C; Falcone, A; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Gibbs, K; Gillanders, G H; Godambe, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Karlsson, N; Kertzman, M; Kieda, D; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; Lamerato, A; LeBohec, S; Maier, G; McArthur, S; McCann, A; McCutcheon, M; Moriarty, P; Mukherjee, R; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Petry, D; Pichel, A; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Roustazadeh, P; Schroedter, M; Sembroski, G H; Senturk, G Demet; Smith, A W; Steele, D; Swordy, S P; Tešić, G; Theiling, M; Thibadeau, S; Varlotta, A; Vassiliev, V V; Vincent, S; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wissel, S; Wood, M; Zitzer, B; Ackermann, M; Ajello, M; Antolini, E; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Carrigan, S; Casandjian, J M; Cavazzuti, E; Cecchi, C; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Dermer, C D; de Palma, F; Silva, E do Couto e; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Hays, E; Horan, D; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S -H; Garde, M Llena; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ripken, J; Rodriguez, A Y; Roth, M; Sadrozinski, H F -W; Sanchez, D; Sander, A; Scargle, J D; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Ylinen, T; Ziegler, M

    2010-01-01

    The high-frequency-peaked BL Lacertae object RGB J0710+591 was observed in the very high-energy (VHE; E > 100 GeV) wave band by the VERITAS array of atmospheric Cherenkov telescopes. The observations, taken between 2008 December and 2009 March and totaling 22.1 hr, yield the discovery of VHE gamma rays from the source. RGB J0710+591 is detected at a statistical significance of 5.5 standard deviations (5.5{\\sigma}) above the background, corresponding to an integral flux of (3.9 +/- 0.8) x 10-12 cm-2 s-1 (3% of the Crab Nebula's flux) above 300 GeV. The observed spectrum can be fit by a power law from 0.31 to 4.6 TeV with a photon spectral index of 2.69 +/- 0.26stat +/- 0.20sys. These data are complemented by contemporaneous multiwavelength data from the Fermi Large Area Telescope, the Swift X-ray Telescope, the Swift Ultra-Violet and Optical Telescope, and the Michigan-Dartmouth-MIT observatory. Modeling the broadband spectral energy distribution (SED) with an equilibrium synchrotron self-Compton model yields ...

  4. Evidence of polarisation in the prompt gamma-ray emission from GRB 930131 and GRB 960924

    CERN Document Server

    Willis, D R; Bird, A J; Clark, D J; Dean, A J; McConnell, M L; Moran, L; Shaw, S E; Sguera, V

    2005-01-01

    The true nature of the progenitor to GRBs remains elusive; one characteristic that would constrain our understanding of the GRB mechanism considerably is gamma-ray polarimetry measurements of the initial burst flux. We present a method that interprets the prompt GRB flux as it Compton scatters off the Earth's atmosphere, based on detailed modelling of both the Earth's atmosphere and the orbiting detectors. The BATSE mission aboard the \\textit{CGRO} monitored the whole sky in the 20 keV - 1 MeV energy band continuously from April 1991 until June 2000. We present the BATSE Albedo Polarimetry System (BAPS), and show that GRB 930131 and GRB 960924 provide evidence of polarisation in their prompt flux that is consistent with degrees of polarisation of $\\Pi>35$% and $\\Pi>50$% respectively. While the evidence of polarisation is strong, the method is unable to strongly constrain the degree of polarisation beyond a systematics based estimation. Hence the implications on GRB theory are unclear, and further measurements...

  5. Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

    Science.gov (United States)

    Gaggero, D.; Grasso, D.; Marinelli, A.; Urbano, A.; Valli, M.

    2016-05-01

    Conventional cosmic ray propagation models face problems reproducing the diffuse 7-ray spectrum measured by Fermi-LAT over the entire sky. Those models also fail to smoothly connect Fermi-LAT results with data above the TeV as those taken by Milagro in the inner Galactic plane. In this contribution we show that a representative model adopting a spatial dependent rigidity scaling of the diffusion coefficient can reproduce all those experimental results without spoiling the consistency with local cosmic-ray measurements. We use the same model to compute the diffuse neutrino emission of the Galaxy and compare it with IceCube and ANTARES results.

  6. Hard X-ray/soft gamma-ray Characteristics of the Persistent Emission from Magnetars

    CERN Document Server

    Kuiper, L; Hermsen, W

    2008-01-01

    In this paper the current status of high-energy research on the hard X-ray characteristics of the persistent emission from magnetars is reviewed. Focus is put on recent intriguing results for 1RXS J1708-40, from phase resolved spectral analysis over a 2 decades wide energy band (~3-300 keV) combining contemporaneous RXTE, XMM and INTEGRAL data. For 1E 1841-045 and SGR 1806-10 we also present updated results. The perspective for future MAXI observations for this source class is also addressed.

  7. 44Ti gamma-ray emission lines from SN1987A reveal an asymmetric explosion

    DEFF Research Database (Denmark)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.

    2015-01-01

    In core-collapse supernovae, titanium-44 (44Ti) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78........32–kilo–electron volt emission lines from decay of 44Ti produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of ~700 kilometers per second, direct evidence of large-scale asymmetry in the explosion....

  8. Ti-44 Gamma-Ray Emission Lines from SN1987A Reveal an Asymmetric Explosion

    Science.gov (United States)

    Boggs, S. E.; Harrison, F. A.; Miyasaka, H.; Grefenstette, B. W.; Zoglauer, A.; Fryer, C. L.; Reynolds, S. P.; Alexander, D. M.; An, H.; Barret, D.; Christensen, F. E.; Craig, W. W.; Forster, K.; Giommi, P.; Hailey, C. J.; Hornstrup, A.; Kitaguchi, T.; Koglin, J. E.; Madsen, K. K.; Zhang, W. W.

    2015-01-01

    In core-collapse supernovae, titanium-44 (Ti-44) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of Ti-44 produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of 700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.

  9. Gamma-ray emission in ultra-intense laser interaction with solid targets

    Science.gov (United States)

    Klimo, Ondrej; Vyskocil, Jiri; Kumar, Deepak; Limpouch, Jiri; Weber, Stefan

    2016-10-01

    Electrons moving in ultra-intense laser fields emit hard radiation due to radiation reaction and non-linear Compton scattering. Multi-MeV γ-rays were measured by scattering of electrons generated from laser wakefield with a focused laser of intensity a0 1 . However, non-linear Compton scattering and radiation reaction is also an efficient mechanism for generating copious amount of γ-rays in laser interaction with solids at intensities approaching 1022 W/cm2. Emission of γ-rays due to radiation reaction and bremsstrahlung are investigated here in the high intensity regime of laser-solid target interaction by using a combination of Particle-in-Cell and Monte Carlo radiation transport simulations. The relative contribution of these processes is analyzed as a function of the target parameters. We concentrate on the influence of the target thickness, material, preplasma conditions or a surface structure on the generation of high energy photons and study separately their energy and angular distributions. It is demonstrated that the presence of preplasma or a special surface structure may significantly enhance emission of hard γ photons and their cut-off energy and change their angular distribution. Supported by Czech Science Foundation project 15-02964S.

  10. Photohadronic origin of $\\gamma$-ray BL Lac emission: implications for IceCube neutrinos

    CERN Document Server

    Petropoulou, Maria; Padovani, Paolo; Mastichiadis, Apostolos; Resconi, Elisa

    2015-01-01

    The recent IceCube discovery of 0.1-1 PeV neutrinos of astrophysical origin opens up a new era for high-energy astrophysics. Although there are various astrophysical candidate sources, a firm association of the detected neutrinos with one (or more) of them is still lacking. A recent analysis of plausible astrophysical counterparts within the error circles of IceCube events showed that likely counterparts for nine of the IceCube neutrinos include mostly BL Lacs, among which Mrk 421. Motivated by this result and a previous independent analysis on the neutrino emission from Mrk 421, we test the BL Lac-neutrino connection in the context of a specific theoretical model for BL Lac