WorldWideScience

Sample records for k2nb8o21 nanoribbons cheng-yan

  1. Acoustoelectric photoresponse of graphene nanoribbons

    Science.gov (United States)

    Poole, T.; Nash, G. R.

    2018-04-01

    The acoustoelectric current in graphene nanoribbons, with widths ranging between 350 nm and 600 nm, has been investigated as a function of illumination. For all nanoribbon widths, the acoustoelectric current was observed to decrease on illumination, in contrast to the increase in acoustoelectric current measured in unpatterned graphene sheet devices. This is thought to be due to the higher initial conductivities of the nanoribbons compared to unpatterned devices.

  2. Graphene nanoribbons for electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Zhansong; Granzner, Ralf; Kittler, Mario; Schwierz, Frank [FG Festkoerperelektronik, Institut fuer Mikro- und Nanoelektronik und Institut fuer Mikro- und Nanotechnologien MacroNano registered, Technische Universitaet Ilmenau (Germany); Haehnlein, Bernd; Auge, Manuel; Pezoldt, Joerg [FG Nanotechnologie, Institut fuer Mikro- und Nanoelektronik und Institut fuer Mikro- und Nanotechnologien MacroNano registered, Technische Universitaet Ilmenau (Germany); Lebedev, Alexander A. [National Research University of Information Technologies, Mechanics and Optics, St. Petersburg (Russian Federation); Division Solid State Electronics, Ioffe Institute, Sankt-Peterburg (Russian Federation); Davydov, Valery Y. [Division Solid State Electronics, Ioffe Institute, Sankt-Peterburg (Russian Federation)

    2017-11-15

    Graphene nanoribbons show unique properties and have attracted a lot of attention in the recent past. Intensive theoretical and experimental studies on such nanostructures at both the fundamental and application-oriented levels have been performed. The present paper discusses the suitability of graphene nanoribbons devices for nanoelectronics and focuses on three specific device types - graphene nanoribbon MOSFETs, side-gate transistors, and three terminal junctions. It is shown that, on the one hand, experimental devices of each type of the three nanoribbon-based structures have been reported, that promising performance of these devices has been demonstrated and/or predicted, and that in part they possess functionalities not attainable with conventional semiconductor devices. On the other hand, it is emphasized that - in spite of the remarkable progress achieved during the past 10 years - graphene nanoribbon devices still face a lot of problems and that their prospects for future applications remain unclear. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng

    2010-01-13

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi2Se5 nanomaterials with a variety of morphologies. The synthesis of Bi 2Se5 nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with ∼ 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitais to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states. © 2010 American Chemical Society.

  4. Symmetric scrolled packings of multilayered carbon nanoribbons

    Science.gov (United States)

    Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.

    2016-06-01

    Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.

  5. Flexoelectricity in PZT Nanoribbons and Biomembranes

    Science.gov (United States)

    2015-01-09

    Flexoelectricity in PZT Nanoribbons and Biomembranes The objective of this grant was to study flexoelectric phenomena in solids and in biomembranes...Flexoelectricity in PZT Nanoribbons and Biomembranes Report Title The objective of this grant was to study flexoelectric phenomena in solids and...producing PZT nanoribbons for energy harvesters. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers submitted or

  6. Bends and splitters in graphene nanoribbon waveguides

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Mortensen, N. Asger

    2013-01-01

    We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory...

  7. Seed-mediated growth of patterned graphene nanoribbon arrays

    Science.gov (United States)

    Arnold, Michael Scott; Way, Austin James; Jacobberger, Robert Michael

    2017-09-12

    Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays, and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a seed-mediated, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of a semiconductor substrate and the orientation of the seed particles on the substrate are used to orient the graphene nanoribbon crystals preferentially along a single [110] direction of the substrate.

  8. Bipolar magnetic semiconductor in silicene nanoribbons

    International Nuclear Information System (INIS)

    Farghadan, Rouhollah

    2017-01-01

    Highlights: • A new electronic phase for silicene nanoribbon in the presence of electric and magnetic fields. • Bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps in silicene. • Robust bipolar magnetic semiconductor features in a rough silicene. • Perfect and reversible spin polarization in silicene nanoribbon junctions. - Abstract: A theoretical study was presented on generation of spin polarization in silicene nanoribbons using the single-band tight-binding approximation and the non-equilibrium Green’s function formalism. We focused on the effect of electric and exchange magnetic fields on the spin-filter capabilities of zigzag-edge silicene nanoribbons in the presence of the intrinsic spin-orbit interaction. The results show that a robust bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps can be obtained when exchange magnetic and electric field strengths are both larger than the intrinsic spin-orbit interaction. Therefore, zigzag silicene nanoribbons could act as bipolar and perfect spin filter devices with a large spin-polarized current and a reversible spin polarization in the vicinity of the Fermi energy. We also investigated the effect of edge roughness and found that the bipolar magnetic semiconductor features are robust against edge disorder in silicene nanoribbon junctions. These results may be useful in multifunctional spin devices based on silicene nanoribbons.

  9. Bipolar magnetic semiconductor in silicene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Farghadan, Rouhollah, E-mail: rfarghadan@kashanu.ac.ir

    2017-08-01

    Highlights: • A new electronic phase for silicene nanoribbon in the presence of electric and magnetic fields. • Bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps in silicene. • Robust bipolar magnetic semiconductor features in a rough silicene. • Perfect and reversible spin polarization in silicene nanoribbon junctions. - Abstract: A theoretical study was presented on generation of spin polarization in silicene nanoribbons using the single-band tight-binding approximation and the non-equilibrium Green’s function formalism. We focused on the effect of electric and exchange magnetic fields on the spin-filter capabilities of zigzag-edge silicene nanoribbons in the presence of the intrinsic spin-orbit interaction. The results show that a robust bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps can be obtained when exchange magnetic and electric field strengths are both larger than the intrinsic spin-orbit interaction. Therefore, zigzag silicene nanoribbons could act as bipolar and perfect spin filter devices with a large spin-polarized current and a reversible spin polarization in the vicinity of the Fermi energy. We also investigated the effect of edge roughness and found that the bipolar magnetic semiconductor features are robust against edge disorder in silicene nanoribbon junctions. These results may be useful in multifunctional spin devices based on silicene nanoribbons.

  10. Graphene nanoribbons production from flat carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, São Luís - MA 65080-805 (Brazil)

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  11. Graphene nanoribbons production from flat carbon nanotubes

    International Nuclear Information System (INIS)

    Melo, W. S.; Guerini, S.; Diniz, E. M.

    2015-01-01

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons

  12. Mechanical properties of phosphorene nanoribbons and oxides

    International Nuclear Information System (INIS)

    Hao, Feng; Chen, Xi

    2015-01-01

    Mechanical properties of phosphorene nanoribbons and oxides are investigated by using density functional theory. It is found that the ideal strength of nanoribbon decreases in comparison with that of 2D phosphorene. The Young's modulus of armchair nanoribbon has a remarkable size effect because of the edge relaxations. The analysis of the stress-strain relation indicates that, owing to chemisorbed oxygen atoms, the ideal strength and Young's modulus of 2D phosphorene oxide are greatly reduced along the zigzag direction, especially upon high oxidation ratios. In addition, strain and oxidation have significant impacts on phonon dispersion

  13. Mechanical properties of phosphorene nanoribbons and oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Feng [Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027 (United States); Chen, Xi, E-mail: xichen@columbia.edu [International Center for Applied Mechanics, SV Laboratory, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027 (United States)

    2015-12-21

    Mechanical properties of phosphorene nanoribbons and oxides are investigated by using density functional theory. It is found that the ideal strength of nanoribbon decreases in comparison with that of 2D phosphorene. The Young's modulus of armchair nanoribbon has a remarkable size effect because of the edge relaxations. The analysis of the stress-strain relation indicates that, owing to chemisorbed oxygen atoms, the ideal strength and Young's modulus of 2D phosphorene oxide are greatly reduced along the zigzag direction, especially upon high oxidation ratios. In addition, strain and oxidation have significant impacts on phonon dispersion.

  14. Pseudospin Electronics in Phosphorene Nanoribbons

    Science.gov (United States)

    Soleimanikahnoj, S.; Knezevic, I.

    2017-12-01

    Zigzag phosphorene nanoribbons are metallic owing to the edge states, whose energies are inside the gap and far from the bulk bands. We show that—through electrical manipulation of edge states—electron propagation can be restricted to one of the ribbon edges or, in the case of bilayer phosphorene nanoribbons, to one of the layers. This finding implies that edge and layer can be regarded as tunable equivalents of the spin-one-half degree of freedom, i.e., the pseudospin. In both layer- and edge-pseudospin schemes, we propose and characterize a pseudospin field-effect transistor, which can generate pseudospin-polarized current. Also, we propose edge- and layer-pseudospin valves that operate analogously to conventional spin valves. The performance of valves in each pseudospin scheme is benchmarked by the pseudomagnetoresistance ratio. The edge-pseudospin valve shows a nearly perfect pseudomagnetoresistance ratio, with remarkable robustness against device-parameter variation and disorder. These results may initiate new developments in pseudospin electronics.

  15. Plasmon resonance in multilayer graphene nanoribbons

    DEFF Research Database (Denmark)

    Emani, Naresh Kumar; Wang, Di; Chung, Ting Fung

    2015-01-01

    Plasmon resonances in nanopatterned single-layer graphene nanoribbons (SL-GNRs), double-layer graphene nanoribbons (DL-GNRs) and triple-layer graphene nanoribbons (TL-GNRs) are studied experimentally using 'realistic' graphene samples. The existence of electrically tunable plasmons in stacked...... multilayer graphene nanoribbons was first experimentally verified by infrared microscopy. We find that the strength of the plasmonic resonance increases in DL-GNRs when compared to SL-GNRs. However, further increase was not observed in TL-GNRs when compared to DL-GNRs. We carried out systematic full......-wave simulations using a finite-element technique to validate and fit experimental results, and extract the carrier-scattering rate as a fitting parameter. The numerical simulations show remarkable agreement with experiments for an unpatterned SLG sheet, and a qualitative agreement for a patterned graphene sheet...

  16. Fano Factor in Strained Graphene Nanoribbon Nanodevices

    Institute of Scientific and Technical Information of China (English)

    Walid Soliman; Mina D.Asham; Adel H.Phillips

    2017-01-01

    We investigate the Fano factor in a strained armchair and zigzag graphene nanoribbon nanodevice under the effect of ac field in a wide range of frequencies at different temperatures (10 K T0 K).This nanodevice is modeled as follows:a graphene nanoribbon is connected to two metallic leads.These two metallic leads operate as a source and a drain.The conducting substance is the gate electrode in this three-terminal nanodevice.Another metallic gate is used to govern the electrostatics and the switching of the graphene nanoribbon channel The substances at the graphene nanoribbon/metal contact are controlled by the back gate.The photon-assisted tunneling probability is deduced by solving the Dirac eigenvalue differential equation in which the Fano factor is expressed in terms of this tunneling probability.The results show that for the investigated nanodevice,the Fano factor decreases as the frequency of the induced ac field increases,while it increases as the temperature increases.In general,the Fano factors for both strained armchair and zigzag graphene nanoribbons are different.This is due to the effect of the uniaxial strain.It is shown that the band structure parameters of graphene nanoribbons at the energy gap,the C-C bond length,the hopping integral,the Fermi energy and the width are modulated by uniaxial strain.This research gives us a promise of the present nanodevice being used for digital nanoelectronics and sensors.

  17. Oriented bottom-up growth of armchair graphene nanoribbons on germanium

    Science.gov (United States)

    Arnold, Michael Scott; Jacobberger, Robert Michael

    2016-03-15

    Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a scalable, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of the germanium is used to orient the graphene nanoribbon crystals along the [110] directions of the germanium.

  18. Two-Dimensional Model of Scrolled Packings of Molecular Nanoribbons

    Science.gov (United States)

    Savin, A. V.; Mazo, M. A.

    2018-04-01

    A simplified model of the in-plane molecular chain, allowing the description of folded and scrolled packings of molecular nanoribbons of different structures, is proposed. Using this model, possible steady states of single-layer nanoribbons scrolls of graphene, graphane, fluorographene, and fluorographane (graphene hydrogenated on the one side and fluorinated on the other side) are obtained. Their stability is demonstrated and their energy is calculated as a function of the nanoribbon length. It is shown that the scrolled packing is the most energetically favorable nanoribbon conformation at long lengths. The existences of scrolled packings for fluorographene nanoribbons and the existence of two different scroll types corresponding to left- and right-hand Archimedean spirals for fluorographane nanoribbons in the chain model are shown for the first time. The simplicity of the proposed model makes it possible to consider the dynamics of scrolls of rather long molecular nanoribbons at long enough time intervals.

  19. Carbon nanotube and graphene nanoribbon interconnects

    CERN Document Server

    Das, Debaprasad

    2014-01-01

    "The book, Caron Nanotube and Graphene Nanoribbon Interconnects, authored by Drs. Debapraad Das and Hafizur Rahaman serves as a good source of material on CNT and GNR interconnects for readers who wish to get into this area and also for practicing engineers who would like to be updated in advances of this field."-Prof. Ashok Srivastava, Louisiana State University, Baton Rouge, USA"Mathematical analysis included in each and every chapter is the main strength of the materials. ... The book is very precise and useful for those who are working in this area. ... highly focused, very compact, and easy to apply. ... This book depicts a detailed analysis and modelling of carbon nanotube and graphene nanoribbon interconnects. The book also covers the electrical circuit modelling of carbon nanotubes and graphene nanoribbons."-Prof. Chandan Kumar Sarkar, Jadavpur University, Kolkata, India.

  20. Resonant longitudinal Zitterbewegung in zigzag graphene nanoribbons

    KAUST Repository

    Ghosh, S.; Schwingenschlö gl, Udo; Manchon, Aurelien

    2015-01-01

    The Zitterbewegung of a wave packet in a zigzag graphene nanoribbon is theoretically investigated. The coupling between edge states and bulk states results in intriguing properties. Apart from the oscillation in position perpendicular to the direction of motion, we also observe an oscillation along the direction of propagation which is not present in semiconductor nanowires or infinite graphene sheets. We also observe a resonance of its amplitude with respect to the central momentum of the wave packet. We show here that this longitudinal Zitterbewegung is caused by the interplay between bulk and edge states, which is a unique property of a zigzag nanoribbon.

  1. Resonant longitudinal Zitterbewegung in zigzag graphene nanoribbons

    KAUST Repository

    Ghosh, S.

    2015-01-08

    The Zitterbewegung of a wave packet in a zigzag graphene nanoribbon is theoretically investigated. The coupling between edge states and bulk states results in intriguing properties. Apart from the oscillation in position perpendicular to the direction of motion, we also observe an oscillation along the direction of propagation which is not present in semiconductor nanowires or infinite graphene sheets. We also observe a resonance of its amplitude with respect to the central momentum of the wave packet. We show here that this longitudinal Zitterbewegung is caused by the interplay between bulk and edge states, which is a unique property of a zigzag nanoribbon.

  2. Grassy Silica Nanoribbons and Strong Blue Luminescence

    Science.gov (United States)

    Wang, Shengping; Xie, Shuang; Huang, Guowei; Guo, Hongxuan; Cho, Yujin; Chen, Jun; Fujita, Daisuke; Xu, Mingsheng

    2016-09-01

    Silicon dioxide (SiO2) is one of the key materials in many modern technological applications such as in metal oxide semiconductor transistors, photovoltaic solar cells, pollution removal, and biomedicine. We report the accidental discovery of free-standing grassy silica nanoribbons directly grown on SiO2/Si platform which is commonly used for field-effect transistors fabrication without other precursor. We investigate the formation mechanism of this novel silica nanostructure that has not been previously documented. The silica nanoribbons are flexible and can be manipulated by electron-beam. The silica nanoribbons exhibit strong blue emission at about 467 nm, together with UV and red emissions as investigated by cathodoluminescence technique. The origins of the luminescence are attributed to various defects in the silica nanoribbons; and the intensity change of the blue emission and green emission at about 550 nm is discussed in the frame of the defect density. Our study may lead to rational design of the new silica-based materials for a wide range of applications.

  3. Mechanical properties of graphene nanoribbons under uniaxial tensile strain

    Science.gov (United States)

    Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu

    2018-03-01

    Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.

  4. Selective scattering in a zigzag graphene nanoribbon

    International Nuclear Information System (INIS)

    Nakabayashi, Jun; Kurihara, Susumu

    2009-01-01

    Electric transport of a zigzag graphene nanoribbon through a step-like potential or a potential barrier is studied by using the recursive Green's function method. The results for a step-like potential show that scattering processes in a zigzag graphene nanoribbon obey a following selection rule: when the number of zigzag chains N is even, electrons in the band m are only scattered into the bands m+2n, where n is an integer. According to this selection rule, a step-like potential blocks the current when the potential height exceeds the incident energy as long as only the low-energy region is treated. Then, replacing a step-like potential with a potential barrier, we also show that it can play the role of a b and-selective filter .

  5. Spin transport in oxygen adsorbed graphene nanoribbon

    Science.gov (United States)

    Kumar, Vipin

    2018-04-01

    The spin transport properties of pristine graphene nanoribbons (GNRs) have been most widely studied using theoretical and experimental tools. The possibilities of oxidation of fabricated graphene based nano electronic devices may change the device characteristics, which motivates to further explore the properties of graphene oxide nanoribbons (GONRs). Therefore, we present a systematic computational study on the spin polarized transport in surface oxidized GNR in antiferromagnetic (AFM) spin configuration using density functional theory combined with non-equilibrium Green's function (NEGF) method. It is found that the conductance in oxidized GNRs is significantly suppressed in the valance band and the conduction band. A further reduction in the conductance profile is seen in presence of two oxygen atoms on the ribbon plane. This change in the conductance may be attributed to change in the surface topology of the ribbon basal plane due to presence of the oxygen adatoms, where the charge transfer take place between the ribbon basal plane and the oxygen atoms.

  6. Quantum conductance of zigzag graphene oxide nanoribbons

    International Nuclear Information System (INIS)

    Kan, Zhe; Nelson, Christopher; Khatun, Mahfuza

    2014-01-01

    The electronic properties of zigzag graphene oxide nanoribbons (ZGOR) are presented. The results show interesting behaviors which are considerably different from the properties of the perfect graphene nanoribbons (GNRs). The theoretical methods include a Huckel-tight binding approach, a Green's function methodology, and the Landauer formalism. The presence of oxygen on the edge results in band bending, a noticeable change in density of states and thus the conductance. Consequently, the occupation in the valence bands increase for the next neighboring carbon atom in the unit cell. Conductance drops in both the conduction and valence band regions are due to the reduction of allowed k modes resulting from band bending. The asymmetry of the energy band structure of the ZGOR is due to the energy differences of the atoms. The inclusion of a foreign atom's orbital energies changes the dispersion relation of the eigenvalues in energy space. These novel characteristics are important and valuable in the study of quantum transport of GNRs

  7. Phosphorene nanoribbon as a promising candidate for thermoelectric applications

    Science.gov (United States)

    Zhang, J.; Liu, H. J.; Cheng, L.; Wei, J.; Liang, J. H.; Fan, D. D.; Shi, J.; Tang, X. F.; Zhang, Q. J.

    2014-01-01

    In this work, the electronic properties of phosphorene nanoribbons with different width and edge configurations are studied by using density functional theory. It is found that the armchair phosphorene nanoribbons are semiconducting while the zigzag nanoribbons are metallic. The band gaps of armchair nanoribbons decrease monotonically with increasing ribbon width. By passivating the edge phosphorus atoms with hydrogen, the zigzag series also become semiconducting, while the armchair series exhibit a larger band gap than their pristine counterpart. The electronic transport properties of these phosphorene nanoribbons are then investigated using Boltzmann theory and relaxation time approximation. We find that all the semiconducting nanoribbons exhibit very large values of Seebeck coefficient and can be further enhanced by hydrogen passivation at the edge. Taking pristine armchair nanoribbons and hydrogen-passivated zigzag naoribbons with width N = 7, 8, 9 as examples, we calculate the lattice thermal conductivity with the help of phonon Boltzmann transport equation and evaluate the width-dependent thermoelectric performance. Due to significantly enhanced Seebeck coefficient and decreased thermal conductivity, we find that at least one type of phosphorene nanoribbons can be optimized to exhibit very high figure of merit (ZT values) at room temperature, which suggests their appealing thermoelectric applications. PMID:25245326

  8. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons

    International Nuclear Information System (INIS)

    Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Du, Shixuan; Gao, Hong-Jun; Lin, Xiao; Berger, Reinhard; Feng, Xinliang; Müllen, Klaus

    2014-01-01

    We have fabricated atomically precise nitrogen-doped chevron-type graphene nanoribbons by using the on-surface synthesis technique combined with the nitrogen substitution of the precursors. Scanning tunneling microscopy and spectroscopy indicate that the well-defined nanoribbons tend to align with the neighbors side-by-side with a band gap of 1.02 eV, which is in good agreement with the density functional theory calculation result. The influence of the high precursor coverage on the quality of the nanoribbons is also studied. We find that graphene nanoribbons with sufficient aspect ratios can only be fabricated at sub-monolayer precursor coverage. This work provides a way to construct atomically precise nitrogen-doped graphene nanoribbons.

  9. Graphene nanoribbon as an elastic damper

    Science.gov (United States)

    Evazzade, Iman; Lobzenko, Ivan P.; Saadatmand, Danial; Korznikova, Elena A.; Zhou, Kun; Liu, Bo; Dmitriev, Sergey V.

    2018-05-01

    Heterostructures composed of dissimilar two-dimensional nanomaterials can have nontrivial physical and mechanical properties which are potentially useful in many applications. Interestingly, in some cases, it is possible to create heterostructures composed of weakly and strongly stretched domains with the same chemical composition, as has been demonstrated for some polymer chains, DNA, and intermetallic nanowires supporting this effect of two-phase stretching. These materials, at relatively strong tension forces, split into domains with smaller and larger tensile strains. Within this region, average strain increases at constant tensile force due to the growth of the domain with the larger strain, at the expense of the domain with smaller strain. Here, the two-phase stretching phenomenon is described for graphene nanoribbons with the help of molecular dynamics simulations. This unprecedented feature of graphene that is revealed in our study is related to the peculiarities of nucleation and the motion of the domain walls separating the domains of different elastic strain. It turns out that the loading–unloading curves exhibit a hysteresis-like behavior due to the energy dissipation during the domain wall nucleation and motion. Here, we put forward the idea of implementing graphene nanoribbons as elastic dampers, efficiently converting mechanical strain energy into heat during cyclic loading–unloading through elastic extension where domains with larger and smaller strains coexist. Furthermore, in the regime of two-phase stretching, graphene nanoribbon is a heterostructure for which the fraction of domains with larger and smaller strain, and consequently its physical and mechanical properties, can be tuned in a controllable manner by applying elastic strain and/or heat.

  10. Stability analysis of zigzag boron nitride nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Hari Mohan, E-mail: rai.2208@gmail.com; Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R. [Indian Institute of Technology, Indore –452017 (India); Jaiswal, Neeraj K. [Discipline of Physics, PDPM- Indian Institute of Information Technology, Design and Manufacturing, Jabalpur – 482005 (India); Srivastava, Pankaj [Computational Nanoscience and Technology Lab. (CNTL), ABV- Indian Institute of Information Technology and Management, Gwalior – 474015 (India)

    2015-05-15

    We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)

  11. Plasmon resonance in single- and double-layer CVD graphene nanoribbons

    DEFF Research Database (Denmark)

    Wang, Di; Emani, Naresh K.; Chung, Ting Fung

    2015-01-01

    Dynamic tunability of the plasmonic resonance in graphene nanoribbons is desirable in the near-infrared. We demonstrated a constant blue shift of plasmonic resonances in double-layer graphene nanoribbons with respect to single-layer graphene nanoribbons. © OSA 2015.......Dynamic tunability of the plasmonic resonance in graphene nanoribbons is desirable in the near-infrared. We demonstrated a constant blue shift of plasmonic resonances in double-layer graphene nanoribbons with respect to single-layer graphene nanoribbons. © OSA 2015....

  12. Symmetries and band gaps in nanoribbons

    Science.gov (United States)

    Zhang, Zhiwei; Tian, Yiteng; Fernando, Gayanath; Kocharian, Armen

    In ideal graphene-like systems, time reversal and sublattice symmetries preserve the degeneracies at the Dirac point(s). We have examined such degeneracies in the band structure as well as the transport properties in various arm-twisted (graphene-related) nanoribbons. A twist angle is defined such that at 0 degrees the ribbon is a rectangular ribbon and at 60 degrees the ribbon is cut from a honeycomb lattice. Using model Hamiltonians and first principles calculations in these nanoribbons with Z2 topology, we have monitored the band structure as a function of the twist angle θ. In twisted ribbons, it turns out that the introduction of an extra hopping term leads to a gap opening. We have also calculated the size and temperature broadening effects in similar ribbons in addition to Rashba-induced transport properties. The authors acknowledge the computing facilities provided by the Center for Functional Nanomaterials, Brookhaven National Laboratory supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No.DE-AC02- 98CH10886.

  13. Atomic and electronic structures of divacancy in graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jun [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zeng Hui, E-mail: zenghui@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei Jianwei [School of Mathematics and Physics, Chongqing University of Technology, Chongqing 400054 (China)

    2012-01-15

    First principles calculations have been performed to investigate the electronic structures and transport properties of defective graphene nanoribbons (GNRs) in the presence of pentagon-octagon-pentagon (5-8-5) defects. Electronic band structure results reveal that 5-8-5 defects in the defective zigzag graphene nanoribbon (ZGNR) is unfavorable for electronic transport. However, such defects in the defective armchair graphene nanoribbon (AGNR) give rise to smaller band gap than that in the pristine AGNR, and eventually results in semiconductor to metal-like transition. The distinct roles of 5-8-5 defects in two kinds of edged-GNR are attributed to the different coupling between {pi}{sup Low-Asterisk} and {pi} subbands influenced by the defects. Our findings indicate the possibility of a new route to improve the electronic transport properties of graphene nanoribbons via tailoring the atomic structures by ion irradiation.

  14. Comparison on thermal transport properties of graphene and phosphorene nanoribbons

    Science.gov (United States)

    Peng, Xiao-Fang; Chen, Ke-Qiu

    2015-01-01

    We investigate ballistic thermal transport at low temperatures in graphene and phosphorene nanoribbons (PNRS) modulated with a double-cavity quantum structure. A comparative analysis for thermal transport in these two kinds of nanomaterials is made. The results show that the thermal conductance in PNRS is greater than that in graphene nanoribbons (GNRS). The ratio kG/kP (kG is the thermal conductivity in GNRS and kP is the thermal conductivity in PNRS) decreases with lower temperature or for narrower nanoribbons, and increases with higher temperature or for wider nanoribbons. The greater thermal conductance and thermal conductivity in PNRS originate from the lower cutoff frequencies of the acoustic modes. PMID:26577958

  15. Vertically aligned zinc selenide nanoribbon arrays: microstructure and field emission

    International Nuclear Information System (INIS)

    Zhao Lijuan; Pang Qi; Cai Yuan; Wang Ning; Ge Weikun; Wang Jiannong; Yang Shihe

    2007-01-01

    Uniform ZnSe precursor (ZnSe : 0.38en, en = ethylenediamine) nanoribbon arrays are grown vertically on Zn foils in ethylenediamine (en) using a solvothermal method. After the annealing treatment in N 2 , the ZnSe nanoribbon arrays can be obtained without an obvious morphology change and the crystallinity of ribbons is greatly improved. The microstructures of both individual ZnSe precursor and ZnSe nanoribbons are investigated. Field emission characteristics show that the onset field required drawing a current density of ∼0.1 μ A cm -2 from the ZnSe nanoribbons is 5.0 V μm -1 and the field enhancement factors are determined to be ∼1382

  16. Tunable pulse-shaping with gated graphene nanoribbons

    DEFF Research Database (Denmark)

    Prokopeva, Ludmila; Emani, Naresh K.; Boltasseva, Alexandra

    2014-01-01

    We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed.......We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed....

  17. Lithium Mediated Benzene Adsorption on Graphene and Graphene Nanoribbons

    OpenAIRE

    Krepel, Dana; Hod, Oded

    2013-01-01

    The anchoring of benzene molecules on lithium adsorption sites at the surface of graphene and nanoribbons thereof are investigated. The effects of adsorbate densities, specific adsorption locations, and spin states on the structural stability and electronic properties of the underlying graphene derivatives are revealed. At sufficiently high densities, bare lithium adsorption turns armchair graphene nanoribbons metallic and their zigzag counterparts half-metallic due to charge transfer from th...

  18. Electronic structures of the F-terminated AlN nanoribbons

    Indian Academy of Sciences (India)

    Using the first-principles calculations, electronic properties for the F-terminated AlN nanoribbons with both zigzag and armchair edges are studied. The results show that both the zigzag and armchair AlN nanoribbons are semiconducting and nonmagnetic, and the indirect band gap of the zigzag AlN nanoribbons and the ...

  19. Floquet edge states in germanene nanoribbons

    KAUST Repository

    Tahir, Muhammad

    2016-08-23

    We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude of the light and by applying a static electric field. For circularly polarized light the band gap in one valley is reduced and in the other enhanced, enabling single valley edge states. For linearly polarized light spin-split states are found for both valleys, being connected by time reversal symmetry. The effects of elliptically polarized light are similar to those of circularly polarized light. The transport properties of zigzag nanoribbons in the presence of disorder confirm a nontrivial nature of the edge states under circularly and elliptically polarized light.

  20. Magnetism of zigzag edge phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhili, E-mail: zlzhu@zzu.edu.cn, E-mail: jiayu@zzu.edu.cn; Li, Chong; Yu, Weiyang; Chang, Dahu; Sun, Qiang; Jia, Yu, E-mail: zlzhu@zzu.edu.cn, E-mail: jiayu@zzu.edu.cn [International Joint Research Laboratory for Quantum Functional Materials of Henan, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2014-09-15

    We have investigated, by means of ab initio calculations, the electronic and magnetic structures of zigzag edge phosphorene nanoribbons (ZPNRs) with various widths. The stable magnetic state was found in pristine ZPNRs by allowing the systems to be spin-polarized. The ground state of pristine ZPNRs prefers ferromagnetic order in the same edge but antiferromagnetic order between two opposite edges. The magnetism arises from the dangling bond states as well as edge localized π-orbital states. The presence of a dangling bond is crucial to the formation of the magnetism of ZPNRs. The hydrogenated ZPNRs get nonmagnetic semiconductors with a direct band gap. While, the O-saturated ZPNRs show magnetic ground states due to the weak P-O bond in the ribbon plane between the p{sub z}-orbitals of the edge O and P atoms.

  1. Phosphorene nanoribbons: Passivation effect on bandgap and effective mass

    International Nuclear Information System (INIS)

    Xu, Li-Chun; Song, Xian-Jiang; Yang, Zhi; Cao, Ling; Liu, Rui-Ping; Li, Xiu-Yan

    2015-01-01

    Highlights: • Hydrogenation and fluorination can passivate the metallic edge states of zPNRs. • The bandgap of each type of zPNRs decreases as the ribbon's width increases duo to the quantum confinement effect. • Two local configurations of passivated atoms can coexist in nanoribbons and affect the bandgap of narrow nanoribbons. • New passivation configuration can effectively reduce the effective mass of electrons. - Abstract: The edge passivation effect of phosphorene nanoribbons is systematically investigated using density functional theory. Hydrogen and fluorine atoms passivate the metallic edge states of nanoribbons and can open a bandgap up to 2.25 eV. The two configurations of passivated atoms can exist at two edges and affect the bandgap of narrow nanoribbons. The bandgap of each type of zPNRs decreases as the ribbon's width increases, which can be attributed to the quantum confinement effect. The new configuration, named C b , can effectively reduce the effective mass of electrons, which benefits the future design of phosphorene-based electronic devices

  2. Electronic states of graphene nanoribbons and analytical solutions

    Directory of Open Access Journals (Sweden)

    Katsunori Wakabayashi, Ken-ichi Sasaki, Takeshi Nakanishi and Toshiaki Enoki

    2010-01-01

    Full Text Available Graphene is a one-atom-thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion. The orientation of the graphene edge determines the energy spectrum of π-electrons. For example, zigzag edges possess localized edge states with energies close to the Fermi level. In this review, we investigate nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries. We also provide analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nanoribbons with their detailed derivation using wave mechanics based on the tight-binding model. The energy band structures of armchair nanoribbons can be obtained by making the transverse wavenumber discrete, in accordance with the edge boundary condition, as in the case of carbon nanotubes. However, zigzag nanoribbons are not analogous to carbon nanotubes, because in zigzag nanoribbons the transverse wavenumber depends not only on the ribbon width but also on the longitudinal wavenumber. The quantization rule of electronic conductance as well as the magnetic instability of edge states due to the electron–electron interaction are briefly discussed.

  3. Phosphorene nanoribbons: Passivation effect on bandgap and effective mass

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li-Chun, E-mail: xulichun@tyut.edu.cn; Song, Xian-Jiang; Yang, Zhi; Cao, Ling; Liu, Rui-Ping; Li, Xiu-Yan

    2015-01-01

    Highlights: • Hydrogenation and fluorination can passivate the metallic edge states of zPNRs. • The bandgap of each type of zPNRs decreases as the ribbon's width increases duo to the quantum confinement effect. • Two local configurations of passivated atoms can coexist in nanoribbons and affect the bandgap of narrow nanoribbons. • New passivation configuration can effectively reduce the effective mass of electrons. - Abstract: The edge passivation effect of phosphorene nanoribbons is systematically investigated using density functional theory. Hydrogen and fluorine atoms passivate the metallic edge states of nanoribbons and can open a bandgap up to 2.25 eV. The two configurations of passivated atoms can exist at two edges and affect the bandgap of narrow nanoribbons. The bandgap of each type of zPNRs decreases as the ribbon's width increases, which can be attributed to the quantum confinement effect. The new configuration, named C{sub b}, can effectively reduce the effective mass of electrons, which benefits the future design of phosphorene-based electronic devices.

  4. Edge eigen-stress and eigen-displacement of armchair molybdenum disulfide nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Quan; Li, Xi [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Volinsky, Alex A., E-mail: volinsky@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620 (United States); Su, Yanjing, E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China)

    2017-05-10

    Edge effects on mechanical properties of armchair molybdenum disulfide nanoribbons were investigated using first principles calculations. The edge eigen-stress model was applied to explain the relaxation process of forming molybdenum disulfide nanoribbon. Edge effects on surface atoms fluctuation degree were obtained from each fully relaxed nanoribbon with different width. Changes of the relaxed armchair molybdenum disulfide nanoribbons structure can be expressed using hexagonal perimeters pattern. Based on the thickness change, relaxed armchair molybdenum disulfide nanoribbons tensile/compression tests were simulated, providing intrinsic edge elastic parameters, such as eigen-stress, Young's modulus and Poisson's ratio. - Highlights: • Edge effects on mechanical properties of armchair MoS{sub 2} nanoribbons were investigated. • Structure changes of different width armchair MoS{sub 2} nanoribbons were obtained. • Tensile/compressive tests were conducted to determine elastic constants. • Mechanical properties are compared for two and three dimensional conditions.

  5. Tunable resonances due to vacancies in graphene nanoribbons

    Science.gov (United States)

    Bahamon, D. A.; Pereira, A. L. C.; Schulz, P. A.

    2010-10-01

    The coherent electron transport along zigzag and metallic armchair graphene nanoribbons in the presence of one or two vacancies is investigated. Having in mind atomic scale tunability of the conductance fingerprints, the primary focus is on the effect of the distance to the edges and intervacancies spacing. An involved interplay of vacancies sublattice location and nanoribbon edge termination, together with the spacing parameters lead to a wide conductance resonance line-shape modification. Turning on a magnetic field introduces a new length scale that unveils counterintuitive aspects of the interplay between purely geometric aspects of the system and the underlying atomic scale nature of graphene.

  6. Graphene nanoribbons epitaxy on boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaobo; Wang, Shuopei; Wu, Shuang; Chen, Peng; Zhang, Jing; Zhao, Jing; Meng, Jianling; Xie, Guibai; Wang, Duoming; Wang, Guole; Zhang, Ting Ting; Yang, Rong; Shi, Dongxia [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wei [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Laboratoire Pierre Aigrain, ENS-CNRS UMR 8551, Universités Pierre et Marie Curie and Paris-Diderot, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zhang, Guangyu, E-mail: gyzhang@aphy.iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-03-14

    In this letter, we report a pilot study on epitaxy of monolayer graphene nanoribbons (GNRs) on hexagonal boron nitride (h-BN). We found that GNRs grow preferentially from the atomic steps of h-BN, forming in-plane heterostructures. GNRs with well-defined widths ranging from ∼15 nm to ∼150 nm can be obtained reliably. As-grown GNRs on h-BN have high quality with a carrier mobility of ∼20 000 cm{sup 2} V{sup −1} s{sup −1} for ∼100-nm-wide GNRs at a temperature of 1.7 K. Besides, a moiré pattern induced quasi-one-dimensional superlattice with a periodicity of ∼15 nm for GNR/h-BN was also observed, indicating zero crystallographic twisting angle between GNRs and h-BN substrate. The superlattice induced band structure modification is confirmed by our transport results. These epitaxial GNRs/h-BN with clean surfaces/interfaces and tailored widths provide an ideal platform for high-performance GNR devices.

  7. Inner Surface Chirality of Single-Handed Twisted Carbonaceous Tubular Nanoribbons.

    Science.gov (United States)

    Liu, Dan; Li, Baozong; Guo, Yongmin; Li, Yi; Yang, Yonggang

    2015-11-01

    Single-handed twisted 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and single-layered nanoribbons were prepared by tuning the water/ethanol volume ratio in the reaction mixture at pH = 11.6 through a supramolecular templating approach. The single-layered nanoribbons were formed by shrinking tubular nanoribbons after the removal of the templates. In addition, solvent-induced handedness inversion was achieved. The handedness of the polybissilsesquioxanes could be controlled by changing the ethanol/water volume ratio in the reaction mixture. After carbonization at 900 °C for 4.0 h and removal of silica, single-handed twisted carbonaceous tubular nanoribbons and single-layered nanoribbons with micropores in the walls were obtained. X-ray diffraction and Raman spectroscopy analyses indicated that the carbon is predominantly amorphous. The circular dichroism spectra show that the twisted tubular nanoribbons exhibit optical activity, while the twisted single-layered nanoribbons do not. The results shown here indicate that chirality is transferred from the organic self-assemblies to the inner surfaces of the 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and subsequently to those of the carbonaceous tubular nanoribbons. © 2015 Wiley Periodicals, Inc.

  8. Electronic Structure and I- V Characteristics of InSe Nanoribbons

    Science.gov (United States)

    Yao, A.-Long; Wang, Xue-Feng; Liu, Yu-Shen; Sun, Ya-Na

    2018-04-01

    We have studied the electronic structure and the current-voltage ( I-V) characteristics of one-dimensional InSe nanoribbons using the density functional theory combined with the nonequilibrium Green's function method. Nanoribbons having bare or H-passivated edges of types zigzag (Z), Klein (K), and armchair (A) are taken into account. Edge states are found to play an important role in determining their electronic properties. Edges Z and K are usually metallic in wide nanoribbons as well as their hydrogenated counterparts. Transition from semiconductor to metal is observed in hydrogenated nanoribbons HZZH as their width increases, due to the strong width dependence of energy difference between left and right edge states. Nevertheless, electronic structures of other nanoribbons vary with the width in a very limited scale. The I-V characteristics of bare nanoribbons ZZ and KK show strong negative differential resistance, due to spatial mismatch of wave functions in energy bands around the Fermi energy. Spin polarization in these nanoribbons is also predicted. In contrast, bare nanoribbons AA and their hydrogenated counterparts HAAH are semiconductors. The band gaps of nanoribbons AA (HAAH) are narrower (wider) than that of two-dimensional InSe monolayer and increase (decrease) with the nanoribbon width.

  9. RKKY interaction in spin polarized armchair graphene nanoribbon

    Energy Technology Data Exchange (ETDEWEB)

    Rezania, Hamed, E-mail: rezania.hamed@gmail.com; Azizi, Farshad

    2016-11-01

    We present the Ruderman–Kittle–Kasuya–Yosida (RKKY) interaction in the presence of magnetic long range ordered armchair graphene nanoribbon. RKKY interaction as a function of distance between localized moments has been analyzed. It has been shown that a magnetic ordering along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. In order to calculate the exchange interaction along arbitrary direction between two magnetic moments, we should obtain the static spin susceptibilities of armchair graphene nanoribbon. The spin susceptibility components are calculated using Green's function approach for tight binding model Hamiltonian. The effects of spin polarization on the dependence of exchange interaction on distance between moments are investigated via calculating correlation function of spin density operators. Our results show that the chemical potential impacts the spatial behavior of RKKY interaction. - Highlights: • Theoretical calculation of RKKY interaction of armchair graphene nanoribbon. • The investigation of the effect of spin polarization on RKKY interaction. • The investigation of electronic concentration on RKKY interaction of armchair graphene nanoribbon.

  10. Quantum capacitance of the armchair-edge graphene nanoribbon

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 81; Issue 2. Quantum capacitance of the ... Abstract. The quantum capacitance, an important parameter in the design of nanoscale devices, is derived for armchair-edge single-layer graphene nanoribbon with semiconducting property. The quantum capacitance ...

  11. Controlled synthesis of graphene nanoribbons for field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun; Huang, Lihai [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 (China); Zhang, Yupeng, E-mail: ypzhang018@gmail.com [Department of Materials Engineering, Monash University, Victoria, 3800 (Australia); Xue, Yunzhou, E-mail: yunzhou.xue@monash.edu [Department of Materials Engineering, Monash University, Victoria, 3800 (Australia); Zhang, Erpan [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 (China); Wang, Hongbo [College of Automation, Hangzhou Dianzi University, Hangzhou, 310018 (China); Kong, Zhe; Xi, Junhua; Ji, Zhenguo [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 (China)

    2015-11-15

    In this work, a template CVD method to produce graphene nanoribbons (GNRs) was developed with Cu nanoribbons as catalyst. Appropriate temperature, growth time and cooling rate were investigated and displayed the great importance for obtaining GNRs. The morphology, thickness and crystalline quality of the GNRs were characterized by the SEM, AFM, TEM (HRTEM and TEM diffraction), and Raman spectroscopy respectively, which indicated the GNRs had much narrower width, less layer numbers, smooth edges and higher crystalline compared to previous ones. Moreover, the electrical properties of the GNRs were measured and the mobilities reach 80–300 cm{sup 2} V{sup −1} s{sup −1}. This research provides a new type of GNRs experimentally, which is of great importance for the graphene applications. - Graphical abstract: Graphene nanoribbons obtained via CVD method show high quality, small width and smooth edges and were used to fabricated FETs with extracted mobilities of 80–300 cm{sup 2} V{sup −1} s{sup −1}. Highlights: • Graphene nanoribbons (GNRs) were obtained via a template CVD method. • The GNRs have narrower width, less layer numbers and smooth edges. • The mobilities of the GNRs reach 80–300 cm{sup 2} V{sup −1} s{sup −1}.

  12. Zigzag graphene nanoribbon edge reconstruction with Stone-Wales defects

    DEFF Research Database (Denmark)

    Rodrigues, J. N. B.; Gonçalves, P. A. D; Rodrigues, N. F. G.

    2011-01-01

    In this paper, we study zigzag graphene nanoribbons with edges reconstructed with Stone-Wales defects, by means of an empirical (first-neighbor) tight-binding method, with parameters determined by ab initio calculations of very narrow ribbons. We explore the characteristics of the electronic band...

  13. Tuning the deposition of molecular graphene nanoribbons by surface functionalization

    Science.gov (United States)

    Konnerth, R.; Cervetti, C.; Narita, A.; Feng, X.; Müllen, K.; Hoyer, A.; Burghard, M.; Kern, K.; Dressel, M.; Bogani, L.

    2015-07-01

    We show that individual, isolated graphene nanoribbons, created with a molecular synthetic approach, can be assembled on functionalised wafer surfaces treated with silanes. The use of surface groups with different hydrophobicities allows tuning the density of the ribbons and assessing the products of the polymerisation process.

  14. Plasmons in spatially separated double-layer graphene nanoribbons

    International Nuclear Information System (INIS)

    Bagheri, Mehran; Bahrami, Mousa

    2014-01-01

    Motivated by innovative progresses in designing multi-layer graphene nanostructured materials in the laboratory, we theoretically investigate the Dirac plasmon modes of a spatially separated double-layer graphene nanoribbon system, made up of a vertically offset armchair and metallic graphene nanoribbon pair. We find striking features of the collective excitations in this novel Coulomb correlated system, where both nanoribbons are supposed to be either intrinsic (undoped/ungated) or extrinsic (doped/gated). In the former, it is shown the low-energy acoustical and the high-energy optical plasmon modes are tunable only by the inter-ribbon charge separation. In the later, the aforementioned plasmon branches are modified by the added doping factor. As a result, our model could be useful to examine the existence of a linear Landau-undamped low-energy acoustical plasmon mode tuned via the inter-ribbon charge separation as well as doping. This study might also be utilized for devising novel quantum optical waveguides based on the Coulomb coupled graphene nanoribbons

  15. Current-induced runaway vibrations in dehydrogenated graphene nanoribbons

    DEFF Research Database (Denmark)

    Christensen, Rasmus Bjerregaard; Lu, Jing Tao; Hedegard, Per

    2016-01-01

    We employ a semi-classical Langevin approach to study current-induced atomic dynamics in a partially dehydrogenated armchair graphene nanoribbon. All parameters are obtained from density functional theory. The dehydrogenated carbon dimers behave as effective impurities, whose motion decouples fro...

  16. Tunable spin waves in diluted magnetic semiconductor nanoribbon

    Science.gov (United States)

    Lyu, Pin; Zhang, Jun-Yi

    2018-01-01

    The spin wave excitation spectrum in diluted magnetic semiconductor (DMS) nanoribbons was calculated by taking account of the quantum confinement effect of carriers and spin waves. By introducing the boundary condition for the spin waves, we derived the spin wave dispersion using the path-integral formulation and Green's function method. It was shown that the spin wave excitation spectrum is discrete due to the confinement effect and strongly dependent on the carrier density, the magnetic ion density, and the width of the nanoribbon. When the width of the nanoribbon is beyond the typical nanoscales, the size effect on the excitation energies of the spin waves disappears in our calculation, which is in qualitative agreement with no obvious size effect observed in the as-made nanodevices of (Ga,Mn)As in this size regime. Our results provide a potential way to control the spin waves in the DMS nanoribbon not only by the carrier density and the magnetic ion density but also by the nanostructure geometry.

  17. Electron transport in edge-disordered graphene nanoribbons

    DEFF Research Database (Denmark)

    Saloriutta, Karri; Hancock, Y.; Karkkainen, Asta

    2011-01-01

    Ab initio methods are used to study the spin-resolved transport properties of graphene nanoribbons (GNRs) that have both chemical and structural edge disorder. Oxygen edge adsorbates on ideal and protruded ribbons are chosen as representative examples, with the protrusions forming the smallest...

  18. Current-induced runaway vibrations in dehydrogenated graphene nanoribbons

    DEFF Research Database (Denmark)

    Christensen, Rasmus Bjerregaard; Lu, Jing Tao; Hedegard, Per

    2016-01-01

    We employ a semi-classical Langevin approach to study current-induced atomic dynamics in a partially dehydrogenated armchair graphene nanoribbon. All parameters are obtained from density functional theory. The dehydrogenated carbon dimers behave as effective impurities, whose motion decouples from...

  19. Quantum Dots Embedded in Graphene Nanoribbons by Chemical Substitution

    DEFF Research Database (Denmark)

    Carbonell-Sanroma, Eduard; Brandimarte, Pedro; Balog, Richard

    2017-01-01

    Bottom-up chemical reactions of selected molecular precursors on a gold surface can produce high quality graphene nanoribbons (GNRs). Here, we report on the formation of quantum dots embedded in an armchair GNR by substitutional inclusion of pairs of boron atoms into the GNR backbone. The boron...

  20. Ferromagnetism controlled by electric field in tilted phosphorene nanoribbon

    Science.gov (United States)

    Farooq, M. Umar; Hashmi, Arqum; Hong, Jisang

    2016-01-01

    Study on phosphorene nanoribbon was mostly focused on zigzag and armchair structures and no ferromagnetic ground state was observed in these systems. Here, we investigated the magnetic property of tilted black phosphorene nanoribbons (TPNRs) affected by an external electric field. We also studied the edge passivation effect on the magnetism and thermal stability of the nanoribbons. The pure TPNR displayed an edge magnetic state, but it disappeared in the edge reconstructed TPNR due to the self-passivation. In addition, we found that the bare TPNR was mechanically unstable because an imaginary vibration mode was obtained. However, the imaginary vibration mode disappeared in the edge passivated TPNRs. No edge magnetism was observed in hydrogen and fluorine passivated TPRNs. In contrast, the oxygen passivated TPNR was more stable than the pure TPNR and the edge-to-edge antiferromagntic (AFM) ground state was obtained. We found that the magnetic ground state could be tuned by the electric field from antiferromagnetic (AFM) to ferromagnetic (FM) ground state. Interestingly, the oxygen passivated TPNR displayed a half-metallic state at a proper electric field in both FM and AFM states. This finding may provoke an intriguing issue for potential spintronics application using the phosphorene nanoribbons. PMID:27189417

  1. Evolution of graphene nanoribbons under low-voltage electron irradiation

    KAUST Repository

    Zhu, Wenpeng; Wang, Hongtao; Yang, Wei

    2012-01-01

    Though the all-semiconducting nature of ultrathin graphene nanoribbons (GNRs) has been demonstrated in field-effect transistors operated at room temperature with ∼105 on-off current ratios, the borderline for the potential of GNRs

  2. Theory of Magnetic Edge States in Chiral Graphene Nanoribbons

    Science.gov (United States)

    Capaz, Rodrigo; Yazyev, Oleg; Louie, Steven

    2011-03-01

    Using a model Hamiltonian approach including electron Coulomb interactions, we systematically investigate the electronic structure and magnetic properties of chiral graphene nanoribbons. We show that the presence of magnetic edge states is an intrinsic feature of any smooth graphene nanoribbons with chiral edges, and discover a number of structure-property relations. Specifically, we describe how the edge-state energy gap, zone-boundary edge-state energy splitting, and magnetic moment per edge length depend on the nanoribbon width and chiral angle. The role of environmental screening effects is also studied. Our results address a recent experimental observation of signatures of magnetic ordering at smooth edges of chiral graphene nanoribbons and provide an avenue towards tuning their properties via the structural and environmental degrees of freedom. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the ONR MURI program. RBC acknowledges financial support from Brazilian agencies CNPq, FAPERJ and INCT-Nanomateriais de Carbono.

  3. Structural, electronic, and magnetic properties of pristine and oxygen-adsorbed graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, R.H.; Veiga, R.G.A. [Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, CEP 38400-902, Uberlandia, MG (Brazil); Srivastava, G.P., E-mail: gps@excc.ex.ac.uk [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2010-07-15

    The structural, electronic and magnetic properties of pristine and oxygen-adsorbed (3,0) zigzag and (6,1) armchair graphene nanoribbons have been investigated theoretically, by employing the ab initio pseudopotential method within the density functional scheme. The zigzag nanoribbon is more stable with antiferromagnetically coupled edges, and is semiconducting. The armchair nanoribbon does not show any preference for magnetic ordering and is semiconducting. The oxygen molecule in its triplet state is adsorbed most stably at the edge of the zigzag nanoribbon. The Stoner metallic behaviour of the ferromagnetic nanoribbons and the Slater insulating (ground state) behaviour of the antiferromagnetic nanoribbons remain intact upon oxygen adsorption. However, the local magnetic moment of the edge carbon atom of the ferromagnetic zigzag ribbon is drastically reduced, due to the formation of a spin-paired C-O bond.

  4. Ferromagnetism regulated by edged cutting and optical identification in monolayer PtSe2 nanoribbons

    Science.gov (United States)

    Meng, Ming; Zhang, QiZhen; Wang, Lifen; Shan, Yun; Du, Yuandong; Qin, Nan; Liu, Lizhe

    2018-06-01

    Regulation of ferromagnetism and electronic structure in PtSe2 nanostructures has attracted much attention because of its potential in spintronics. The magnetic and optical properties of PtSe2 nanoribbons with different edge reconstruction and external deformations are calculated by density function theory. In 1 T phase PtSe2 nanoribbons, the ferromagnetism induced by spin polarization of exposed Pt or Se atoms is decreased with the reducing nanoribbon width. For smaller nanoribbon, the magnetism can be regulated by external strain more easily. However, the magnetism cannot occur in 1 H phase PtSe2 nanoribbon. The absorption spectra are suggested to identify the nanoribbon structural changes in detail. Our results suggest the use of edge reconstruction and strain engineering in spintronics applications.

  5. Influence of edge roughness on graphene nanoribbon resonant tunnelling diodes

    International Nuclear Information System (INIS)

    Liang Gengchiau; Khalid, Sharjeel Bin; Lam, Kai-Tak

    2010-01-01

    The edge roughness effects of graphene nanoribbons on their application in resonant tunnelling diodes with different geometrical shapes (S, H and W) were investigated. Sixty samples for each 5%, 10% and 15% edge roughness conditions of these differently shaped graphene nanoribbon resonant tunnelling diodes were randomly generated and studied. Firstly, it was observed that edge roughness in the barrier regions decreases the effective barrier height and thickness, which increases the broadening of the quantized states in the quantum well due to the enhanced penetration of the wave-function tail from the electrodes. Secondly, edge roughness increases the effective width of the quantum well and causes the lowering of the quantized states. Furthermore, the shape effects on carrier transport are modified by edge roughness due to different interfacial scattering. Finally, with the effects mentioned above, edge roughness has a considerable impact on the device performance in terms of varying the peak-current positions and degrading the peak-to-valley current ratio.

  6. Sc-Decorated WS_2 Nanoribbons as Hydrogen Storage Media

    International Nuclear Information System (INIS)

    Xu Bin; Wang Yu-Sheng; Zhang Jing; Song Na-Hong; Li Meng; Yi Lin

    2016-01-01

    The hydrogen storage behavior of Sc-decorated WS_2 monolayer and WS_2 nanoribbons is systematically studied by using first principles calculations based on the density functional theory. The present results indicate that an Sc-decorated WS_2 monolayer is not suitable for storing hydrogen due to the weak interaction between the monolayer WS_2 sheet and the Sc atoms. It is found that both the hybridization mechanism and the Coulomb attraction make the Sc atoms stably adsorb on the edges of WS_2 nanoribbons without clustering. The 2Sc/WS_2 NRs system can adsorb at most eight H_2 molecules with average adsorption energy of 0.20 eV/H_2. The results show that the desorption of H_2 is possible by lowering the pressure or by increasing the temperature. (paper)

  7. Graphene nanoribbon superlattices fabricated via He ion lithography

    International Nuclear Information System (INIS)

    Archanjo, Braulio S.; Fragneaud, Benjamin; Gustavo Cançado, Luiz; Winston, Donald; Miao, Feng; Alberto Achete, Carlos; Medeiros-Ribeiro, Gilberto

    2014-01-01

    Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel “defect” lines of ∼1 μm length and ≈5 nm width were written to form nanoribbon gratings down to 20 nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ∼ 2× smaller than do Ga ions, demonstrating that scanning-He + -beam lithography can texture graphene with less damage

  8. DNA origami-based nanoribbons: assembly, length distribution, and twist

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann, Ralf; Scheible, Max; Kuzyk, Anton; Pardatscher, Guenther; Simmel, Friedrich C [Lehrstuhl fuer Bioelektronik, Physik-Department and ZNN/WSI, Technische Universitaet Muenchen, Am Coulombwall 4a, 85748 Garching (Germany); Castro, Carlos E, E-mail: simmel@ph.tum.de [Labor fuer Biomolekulare Nanotechnologie, Physik-Department and ZNN/WSI, Technische Universitaet Muenchen, Am Coulombwall 4a, 85748 Garching (Germany)

    2011-07-08

    A variety of polymerization methods for the assembly of elongated nanoribbons from rectangular DNA origami structures are investigated. The most efficient method utilizes single-stranded DNA oligonucleotides to bridge an intermolecular scaffold seam between origami monomers. This approach allows the fabrication of origami ribbons with lengths of several micrometers, which can be used for long-range ordered arrangement of proteins. It is quantitatively shown that the length distribution of origami ribbons obtained with this technique follows the theoretical prediction for a simple linear polymerization reaction. The design of flat single layer origami structures with constant crossover spacing inevitably results in local underwinding of the DNA helix, which leads to a global twist of the origami structures that also translates to the nanoribbons.

  9. DNA origami-based nanoribbons: assembly, length distribution, and twist

    International Nuclear Information System (INIS)

    Jungmann, Ralf; Scheible, Max; Kuzyk, Anton; Pardatscher, Guenther; Simmel, Friedrich C; Castro, Carlos E

    2011-01-01

    A variety of polymerization methods for the assembly of elongated nanoribbons from rectangular DNA origami structures are investigated. The most efficient method utilizes single-stranded DNA oligonucleotides to bridge an intermolecular scaffold seam between origami monomers. This approach allows the fabrication of origami ribbons with lengths of several micrometers, which can be used for long-range ordered arrangement of proteins. It is quantitatively shown that the length distribution of origami ribbons obtained with this technique follows the theoretical prediction for a simple linear polymerization reaction. The design of flat single layer origami structures with constant crossover spacing inevitably results in local underwinding of the DNA helix, which leads to a global twist of the origami structures that also translates to the nanoribbons.

  10. Current-induced runaway vibrations in dehydrogenated graphene nanoribbons

    Directory of Open Access Journals (Sweden)

    Rasmus Bjerregaard Christensen

    2016-01-01

    Full Text Available We employ a semi-classical Langevin approach to study current-induced atomic dynamics in a partially dehydrogenated armchair graphene nanoribbon. All parameters are obtained from density functional theory. The dehydrogenated carbon dimers behave as effective impurities, whose motion decouples from the rest of carbon atoms. The electrical current can couple the dimer motion in a coherent fashion. The coupling, which is mediated by nonconservative and pseudo-magnetic current-induced forces, change the atomic dynamics, and thereby show their signature in this simple system. We study the atomic dynamics and current-induced vibrational instabilities using a simplified eigen-mode analysis. Our study illustrates how armchair nanoribbons can serve as a possible testbed for probing the current-induced forces.

  11. Graphene nanoribbon superlattices fabricated via He ion lithography

    Energy Technology Data Exchange (ETDEWEB)

    Archanjo, Braulio S., E-mail: bsarchanjo@inmetro.gov.br [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Fragneaud, Benjamin [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-330 (Brazil); Gustavo Cançado, Luiz [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123-970 (Brazil); Winston, Donald [Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States); Miao, Feng [Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States); National Laboratory of Solid State Microstructures, School of Physics, National Center of Microstructures and Quantum Manipulation, Nanjing University, Nanjing 210093 (China); Alberto Achete, Carlos [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de janeiro, Rio de Janeiro RJ 21941-972 (Brazil); Medeiros-Ribeiro, Gilberto [Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123-970 (Brazil); Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States)

    2014-05-12

    Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel “defect” lines of ∼1 μm length and ≈5 nm width were written to form nanoribbon gratings down to 20 nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ∼ 2× smaller than do Ga ions, demonstrating that scanning-He{sup +}-beam lithography can texture graphene with less damage.

  12. Strain modification on electronic transport of the phosphorene nanoribbon

    Directory of Open Access Journals (Sweden)

    Yawen Yuan

    2017-07-01

    Full Text Available We demonstrate theoretically how local strains can be tailored to control quantum transport of carriers on monolayer armchair and zigzag phosphorene nanoribbon. We find that the electron tunneling is forbidden when the in-plane strain exceeds a critical value. The critical strain is different for different crystal orientation of the ribbons, widths, and incident energies. By tuning the Fermi energy and strain, the channels can be transited from opaque to transparent. Moreover, for the zigzag-phosphorene nanoribbon, the two-fold degenerate quasi-flat edge band splits completely under certain strain. These properties provide us an efficient way to control the transport of monolayer phosphorene-based microstructure.

  13. Hierarchical On-Surface Synthesis of Deterministic Graphene Nanoribbon Heterojunctions

    OpenAIRE

    Bronner, Christopher; Durr, Rebecca A.; Rizzo, Daniel J.; Lee, Yea-Lee; Marangoni, Tomas; Kalayjian, Alin Miksi; Rodriguez, Henry; Zhao, William; Louie, Steven G.; Fischer, Felix R.; Crommie, Michael F.

    2017-01-01

    Bottom-up graphene nanoribbon (GNR) heterojunctions are nanoscale strips of graphene whose electronic structure abruptly changes across a covalently bonded interface. Their rational design offers opportunities for profound technological advancements enabled by their extraordinary structural and electronic properties. Thus far the most critical aspect of their synthesis, the control over sequence and position of heterojunctions along the length of a ribbon, has been plagued by randomness in mo...

  14. Theory of Electro-Optical Properties of Graphene Nanoribbons

    OpenAIRE

    Gundra, Kondayya; Shukla, Alok

    2010-01-01

    We present calculations of the optical absorption and electro-absorption spectra of graphene nanoribbons (GNRs) using a $\\pi-$electron approach, incorporating long-range Coulomb interactions within the Pariser-Parr-Pople (PPP) model Hamiltonian. The approach is carefully bench marked by computing quantities such as the band structure, electric-field driven half metallicity, and linear optical absorption spectra of GNRs of various types, and the results are in good agreement with those obtaine...

  15. Stability of edge states and edge magnetism in graphene nanoribbons

    OpenAIRE

    Kunstmann, Jens; Özdoğan, Cem; Quandt, Alexander; Fehske, Holger

    2010-01-01

    We critically discuss the stability of edge states and edge magnetism in zigzag edge graphene nanoribbons (ZGNRs). We point out that magnetic edge states might not exist in real systems, and show that there are at least three very natural mechanisms - edge reconstruction, edge passivation, and edge closure - which dramatically reduce the effect of edge states in ZGNRs or even totally eliminate them. Even if systems with magnetic edge states could be made, the intrinsic magnetism would not be ...

  16. Strain-tuning of edge magnetism in zigzag graphene nanoribbons.

    Science.gov (United States)

    Yang, Guang; Li, Baoyue; Zhang, Wei; Ye, Miao; Ma, Tianxing

    2017-09-13

    Using the determinant quantum Monte-Carlo method, we elucidate the strain tuning of edge magnetism in zigzag graphene nanoribbons. Our intensive numerical results show that a relatively weak Coulomb interaction may induce a ferromagnetic-like behaviour with a proper strain, and the edge magnetism can be enhanced greatly as the strain along the zigzag edge increases, which provides another way to control graphene magnetism even at room temperature.

  17. Electronic and magnetic properties of BNC nanoribbons: a detailed computational study

    International Nuclear Information System (INIS)

    Basheer, Ershaad Ahamed; Parida, Prakash; Pati, Swapan K

    2011-01-01

    Using density functional theory (DFT), we perform a systematic study of the electronic structure of zigzag edge BNC nanoribbons, which have an equal number of boron, carbon and nitrogen atoms. We study two nanoribbon structures. One of them is terminated by carbon and nitrogen atoms on opposite edges, whereas the other is terminated by carbon and boron atoms on opposite edges. We explore the effect of passivation of the edge atoms on the electronic and magnetic properties of the nanoribbons. We also evaluate the changes in these effects brought about by varying the width of the nanoribbons. Our results show that, for ribbons of small width, the ones with a boron edge show semiconducting behaviour regardless of the nature of edge passivation, whereas nitrogen-edged nanoribbons display a range of conduction properties including half-metallic, metallic and semiconducting properties depending on the nature of edge passivation. On the other hand, ribbons of larger width show metallic behaviour. We also study the effect of external electric fields on the band structure of both boron-edged and nitrogen-edged nanoribbons and the trends in these effects with varying width. We find that both boron- and nitrogen-edged nanoribbons retain their zero-field conduction properties even in the presence of an electric field directed from the boron/nitrogen edge to the carbon edge. Our transport study of hydrogen-passivated carbon- and nitrogen-edged zigzag BNC nanoribbons reveals strong spin-filter properties.

  18. Controllable spin-charge transport in strained graphene nanoribbon devices

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Guassi, Marcos R. [Institute of Physics, University of Brasília, 70919-970, Brasília-DF (Brazil); Qu, Fanyao [Institute of Physics, University of Brasília, 70919-970, Brasília-DF (Brazil); Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-09-21

    We theoretically investigate the spin-charge transport in two-terminal device of graphene nanoribbons in the presence of a uniform uniaxial strain, spin-orbit coupling, exchange field, and smooth staggered potential. We show that the direction of applied strain can efficiently tune strain-strength induced oscillation of band-gap of armchair graphene nanoribbon (AGNR). It is also found that electronic conductance in both AGNR and zigzag graphene nanoribbon (ZGNR) oscillates with Rashba spin-orbit coupling akin to the Datta-Das field effect transistor. Two distinct strain response regimes of electronic conductance as function of spin-orbit couplings magnitude are found. In the regime of small strain, conductance of ZGNR presents stronger strain dependence along the longitudinal direction of strain. Whereas for high values of strain shows larger effect for the transversal direction. Furthermore, the local density of states shows that depending on the smoothness of the staggered potential, the edge states of AGNR can either emerge or be suppressed. These emerging states can be determined experimentally by either spatially scanning tunneling microscope or by scanning tunneling spectroscopy. Our findings open up new paradigms of manipulation and control of strained graphene based nanostructure for application on novel topological quantum devices.

  19. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin

    2009-12-13

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport measurements. Recently, Bi2 Se3 and related materials have been proposed as three-dimensional topological insulators with a single Dirac cone on the surface, protected by time-reversal symmetry. The topological surface states have been observed by angle-resolved photoemission spectroscopy experiments. However, few transport measurements in this context have been reported, presumably owing to the predominance of bulk carriers from crystal defects or thermal excitations. Here we show unambiguous transport evidence of topological surface states through periodic quantum interference effects in layered single-crystalline Bi2 Se3 nanoribbons, which have larger surface-to-volume ratios than bulk materials and can therefore manifest surface effects. Pronounced Aharonov-Bohm oscillations in the magnetoresistance clearly demonstrate the coherent propagation of two-dimensional electrons around the perimeter of the nanoribbon surface, as expected from the topological nature of the surface states. The dominance of the primary h/e oscillation, where h is Plancks constant and e is the electron charge, and its temperature dependence demonstrate the robustness of these states. Our results suggest that topological insulator nanoribbons afford promising materials for future spintronic devices at room temperature.

  20. Study of magnetic properties of graphene nanostructures and graphene nanoribbons

    Directory of Open Access Journals (Sweden)

    F Fazileh

    2012-03-01

    Full Text Available The discovery of graphene and its remarkable electronic and magnetic properties has initiated great research interest in this material. Furthermore, there are many derivatives in these graphene related materials among which graphene nanoribbons and graphene nanofragments are candidates for future carbon-based nanoelectronics and spintronics. Theoretical studies have shown that magnetism can arise in various situations such as point defects, disorder and reduced dimensionality. Using a mean field Hubbard model, we studied the appearance of magnetic textures in zero-dimensional graphene nanofragments and one-dimensional graphene zigzag nanoribbons. Among nanofragments, triangular shape, bowtie and coronene were studied. We explain how the shape of these materials, the imbalance in the number of atoms belonging to the graphene sublattices, the existence of zero-energy states and the total and local magnetic moments were related. At the end, we focused on the effects of a model disorder potential (Anderson-type, and illustrate how density of states of zigzag nanoribbons was affected.

  1. The complex band structure for armchair graphene nanoribbons

    International Nuclear Information System (INIS)

    Zhang Liu-Jun; Xia Tong-Sheng

    2010-01-01

    Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N = 3M − 1. The band gap is almost unchanged for N = 3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nanoribbons, and is also classified into three classes

  2. Resonance induced spin-selective transport behavior in carbon nanoribbon/nanotube/nanoribbon heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang-Hua [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Department of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411101 (China); Wang, Ling-Ling, E-mail: llwang@hnu.edu.cn [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Li, Xiao-Fei, E-mail: xf.li@uestc.edu.cn [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Chen, Tong; Li, Quan [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China)

    2015-09-04

    Carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) are attractive in spintronics. Here, we propose GNR/CNT/GNR heterojunctions constructed by attaching zigzag-GNRs at the side-wall of CNT for spintronic devices. The thermal stability and electronic transport properties were explored using ab initio molecular dynamics simulations and nonequilibrium Green's function methods, respectively. Results demonstrate that the sp{sup 3}-hybridized contacts formed at the interface assure a good thermal stability of the system and make the CNT to be regarded as resonator. Only the electron of one spin-orientation and resonant energy is allowed to transport, resulting in the remarkable spin-selective transport behavior at the ferromagnetic state. - Highlights: • The new mechanism for spin-selective transport in molecular junction is proposed. • The two sp{sup 3} contacts formed between CNT and GNR can be regarded as electronic isolators. • The two isolators make the CNT act as a resonator. • Only the electron of one spin-orientation and resonant energy can form standing wave and transport through the whole junction.

  3. Pre-patterned ZnO nanoribbons on soft substrates for stretchable energy harvesting applications

    Science.gov (United States)

    Ma, Teng; Wang, Yong; Tang, Rui; Yu, Hongyu; Jiang, Hanqing

    2013-05-01

    Three pre-patterned ZnO nanoribbons in different configurations were studied in this paper, including (a) straight ZnO nanoribbons uniformly bonded on soft substrates that form sinusoidal buckles, (b) straight ZnO nanoribbons selectively bonded on soft substrates that form pop-up buckles, and (c) serpentine ZnO nanoribbons bonded on soft substrates via anchors. The nonlinear dynamics and random analysis were conducted to obtain the fundamental frequencies and to evaluate their performance in energy harvesting applications. We found that pop-up buckles and overhanging serpentine structures are suitable for audio frequency energy harvesting applications. Remarkably, almost unchanged fundamental natural frequency upon strain is achieved by properly patterning ZnO nanoribbons, which initiates a new and exciting direction of stretchable energy harvesting using nano-scale materials in audio frequency range.

  4. Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons

    International Nuclear Information System (INIS)

    Yu Huogen; Yu Jiaguo; Cheng Bei; Zhou Minghua

    2006-01-01

    Titanate nanoribbons were prepared via a hydrothermal treatment of rutile-type TiO 2 powders in a 10 M NaOH solution at 200 deg. C for 48 h. The as-prepared titanate nanoribbons were then hydrothermally post-treated at 150 deg. C for 12-36 h. The titanate nanoribbons before and after hydrothermal post-treatment were characterized with FESEM, XRD, TEM, UV-VIS and nitrogen adsorption-desorption isotherms. The results showed that the hydrothermal post-treatment not only promoted the phase transformation from titanate to anatase TiO 2 , but also was beneficial to the removal of Na + ions remained in the titanate nanoribbons. After hydrothermal post-treatment, the TiO 2 samples retained the one-dimensional structure feature of the titanate nanoribbons and showed an obvious increase in the specific surface area and the pore volume

  5. Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors

    International Nuclear Information System (INIS)

    Wang, Yang; Chen, Xiaolong; Ye, Weiguang; Wu, Zefei; Han, Yu; Han, Tianyi; He, Yuheng; Cai, Yuan; Wang, Ning

    2014-01-01

    High-quality BN-Graphene-BN nanoribbon capacitors with double side-gates of graphene have been experimentally realized. The double side-gates can effectively modulate the electronic properties of graphene nanoribbon capacitors. By applying anti-symmetric side-gate voltages, we observed significant upward shifting and flattening of the V-shaped capacitance curve near the charge neutrality point. Symmetric side-gate voltages, however, only resulted in tilted upward shifting along the opposite direction of applied gate voltages. These modulation effects followed the behavior of graphene nanoribbons predicted theoretically for metallic side-gate modulation. The negative quantum capacitance phenomenon predicted by numerical simulations for graphene nanoribbons modulated by graphene side-gates was not observed, possibly due to the weakened interactions between the graphene nanoribbon and side-gate electrodes caused by the Ga + beam etching process

  6. Closed-edged bilayer phosphorene nanoribbons producing from collapsing armchair phosphorene nanotubes

    Science.gov (United States)

    Liao, Xiangbiao; Xiao, Hang; Lu, Xiaobo; Chen, Youlong; Shi, Xiaoyang; Chen, Xi

    2018-02-01

    A new phosphorous allotrope, closed-edged bilayer phosphorene nanoribbon, is proposed via radially deforming armchair phosphorene nanotubes. Using molecular dynamics simulations, the transformation pathway from round PNTs falls into two types of collapsed structures: arc-like and sigmoidal bilayer nanoribbons, dependent on the number of phosphorene unit cells. The fabricated nanoribbions are energetically more stable than their parent nanotubes. It is also found via ab initio calculations that the band structure along tube axis substantially changes with the structural transformation. The direct-to-indirect transition of band gap is highlighted when collapsing into the arc-like nanoribbons but not the sigmoidal ones. Furthermore, the band gaps of these two types of nanoribbons show significant size-dependence of the nanoribbon width, indicative of wider tunability of their electrical properties.

  7. Transport characteristics of a silicene nanoribbon on Ag(110

    Directory of Open Access Journals (Sweden)

    Ryoichi Hiraoka

    2017-08-01

    Full Text Available We present the transport characteristics of individual silicene nanoribbons (SiNRs grown on Ag(110. By lifting up a single SiNR with a low-temperature scanning tunneling microscope tip, a nanojunction consisting of tip, SiNR and Ag is fabricated. In the differential conductance spectra of the nanojunctions fabricated by this methodology, a peak appears at the Fermi level which is not observed in the spectra measured either for the SiNRs before being lifted up or the clean Ag substrate. We discuss the origin of the peak as it relates to the SiNR.

  8. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions

    International Nuclear Information System (INIS)

    Xiao-Lan, Kong; Yong-Jian, Xiong

    2010-01-01

    We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction

  9. Strontium vanadate nanoribbons: Synthesis, characterization and detection of dopamine

    International Nuclear Information System (INIS)

    Zhou, Qing; Shao, Mingwang; Chen, Tao; Xu, Hongyan

    2010-01-01

    Large-scale, high-purity and uniform strontium vanadate (Sr 2 V 2 O 7 ) nanoribbons were easily synthesized via a hydrothermal process without any surfactants. The as-prepared products were up to hundreds of micrometers in length, 200-600 nm in width, and 20 nm in thickness. These nanomaterials were employed to modify glassy carbon electrode, which displayed excellent electrochemical sensitivity in detecting dopamine in the presence of ascorbic acid. A linear relationship between the concentrations of dopamine and its oxidation peak currents was obtained. The modified electrode exhibited high reproducibility and stability, which might be found potential application in the biosensors.

  10. Electronic transport for armchair graphene nanoribbons with a potential barrier

    International Nuclear Information System (INIS)

    Zhou Benliang; Zhou Benhu; Liao Wenhu; Zhou Guanghui

    2010-01-01

    We theoretically investigate the electronic transport properties through a rectangular potential barrier embedded in armchair-edge graphene nanoribbons (AGNRs) of various widths. Using the Landauer formula and Dirac equation with the continuity conditions for all segments of wave functions at the interfaces between regions inside and outside the barrier, we calculate analytically the conductance and Fano factor for the both metallic and semiconducting AGNRs, respectively. It is shown that, by some numerical examples, at Dirac point the both types of AGNRs own a minimum conductance associated with the maximum Fano factor. The results are discussed and compared with the previous relevant works.

  11. Graphene nanoribbons synthesized from molecular precursor polymerization on Au(110)

    Energy Technology Data Exchange (ETDEWEB)

    Massimi, Lorenzo; Ourdjini, Oualid; Della Pia, Ada; Mariani, Carlo; Betti, Maria Grazia [Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 2, I - 00185 Roma (Italy); Cavaliere, Emanuele; Gavioli, Luca [i-LAMP & Dipartimento di Matematica e Fisica, Università Cattolica, 25121 Brescia (Italy)

    2015-06-23

    A spectroscopic study of 10,10-dibromo-9,9 bianthracene (DBBA) molecules deposited on the Au(110) surface is presented, by means of ultraviolet and X-ray photoemission, and X-ray absorption spectroscopy. Through a thermally activated procedure, these molecular precursors polymerize and eventually form graphene nanoribbons (GNRs) with atomically controlled shape and width, very important building blocks for several technological applications. The GNRs observed by scanning tunneling microscopy (STM) appear as short segments on top of the gold surface reconstruction, pointing out the delicate balance among surface diffusion and surface corrugation in their synthesis on the Au(110) surface.

  12. Carbon Nanotubes and Graphene Nanoribbons: Potentials for Nanoscale Electrical Interconnects

    Directory of Open Access Journals (Sweden)

    Swastik Kar

    2013-08-01

    Full Text Available Carbon allotropes have generated much interest among different scientific communities due to their peculiar properties and potential applications in a variety of fields. Carbon nanotubes and more recently graphene have shown very interesting electrical properties along with the possibility of being grown and/or deposited at a desired location. In this Review, we will focus our attention on carbon-based nanostructures (in particular, carbon nanotubes and graphene nanoribbons which could play an important role in the technological quest to replace copper/low-k for interconnect applications. We will provide the reader with a number of possible architectures, including single-wall as well as multi-wall carbon nanotubes, arranged in horizontal and vertical arrays, regarded as individual objects as well as bundles. Modification of their functional properties in order to fulfill interconnect applications requirements are also presented. Then, in the second part of the Review, recently discovered graphene and in particular graphene and few-graphene layers nanoribbons are introduced. Different architectures involving nanostructured carbon are presented and discussed in light of interconnect application in terms of length, chirality, edge configuration and more.

  13. Electronic and magnetic properties of pristine and hydrogenated borophene nanoribbons

    Science.gov (United States)

    Meng, Fanchen; Chen, Xiangnan; Sun, Songsong; He, Jian

    2017-07-01

    The groundbreaking works in graphene and graphene nanoribbons (GNRs) over the past decade, and the very recent discovery of borophene naturally draw attention to the yet-to-be-explored borophene nanoribbons (BNRs). We herein report a density functional theory (DFT) study of the electronic and magnetic properties of BNRs. The foci are the impact of orientation (denoted as BxNRs and ByNRs with their respective periodic orientations along x- and y-axis), ribbon width (Nx, Ny=4-15), and hydrogenation effects on the geometric, electronic and magnetic properties of BNRs. We found that the anisotropic quasi-planar geometric structure of BNR and the edge states largely govern its electronic and magnetic properties. In particular, pristine ByNRs adopt a magnetic ground state, either anti-ferromagnetic (AFM) or ferromagnetic (FM) depending on the ribbon width, while pristine BxNRs are non-magnetic (NM). Upon hydrogenation, all BNRs exhibit NM. Interestingly, both pristine and hydrogenated ByNRs undergo a metal-semiconductor-metal transition at Ny=7, while all BxNRs remain metallic.

  14. Tuning of graphene nanoribbon Landau levels by a nanotube

    International Nuclear Information System (INIS)

    Li, T S; Chang, S C; Lin, M F

    2009-01-01

    We investigate theoretically the effects of a nanotube on the graphene nanoribbon Landau level spectrum utilizing the tight-binding model. The addition of a nanotube changes the original dispersionless Landau subbands into distorted parabolic ones, creates additional band-edge states, and modifies the subband spacings. Moreover, the dispersion relations rely sensitively on the nanotube location. The nanotube-ribbon couplings disrupt the Landau wavefunctions and lift their spatial symmetry, which will change the selection rule of optical transitions. The numbers, frequencies and heights of the density of states (DOS) peaks are found to be strongly dependent on the magnetic flux density and the nanotube location. The evolution of the DOS peak with the magnetic flux density is explored. The graphene nanoribbon Landau levels are shown to be modified in an unexpected fashion by the nanotube-ribbon interactions. These predictions can be validated by measuring the spectra of scanning tunneling experiments or magneto-optical experiments, and they are most observable by placing the nanotube at the electron wavefunction localization sites.

  15. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-08-07

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same as that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.

  16. Electromechanical field effect transistors based on multilayer phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.T., E-mail: jiangzhaotan@hotmail.com; Lv, Z.T.; Zhang, X.D.

    2017-06-21

    Based on the tight-binding Hamiltonian approach, we demonstrate that the electromechanical field effect transistors (FETs) can be realized by using the multilayer phosphorene nanoribbons (PNRs). The synergistic combination of the electric field and the external strains can establish the on–off switching since the electric field can shift or split the energy band, and the mechanical strains can widen or narrow the band widths. This kind of multilayer PNR FETs, much solider than the monolayer PNR one and more easily biased by different electric fields, has more transport channels consequently leading to the higher on–off current ratio or the higher sensitivity to the electric fields. Meanwhile, the strain-induced band-flattening will be beneficial for improving the flexibility in designing the electromechanical FETs. In addition, such electromechanical FETs can act as strain-controlled FETs or mechanical detectors for detecting the strains, indicating their potential applications in nano- and micro-electromechanical fields. - Highlights: • Electromechanical transistors are designed with multilayer phosphorene nanoribbons. • Electromechanical synergistic effect can establish the on–off switching more flexibly. • Multilayer transistors, solider and more easily biased, has more transport channels. • Electromechanical transistors can act as strain-controlled transistors or mechanical detectors.

  17. Modeling of the photodetector based on the multilayer graphene nanoribbons

    International Nuclear Information System (INIS)

    Liu, Haiyue; Niu, Yanxiong; Yin, Yiheng; Liu, Shuai

    2016-01-01

    Graphene nanoribbon (GNR), which has unique properties and advantages, is a crucial component of nanoelectornic devices, especially in the development of photoelectric detectors. In this work, an infrared photodetector based on the structure of stacked multiple-GNRs, which is separated by a little thick barrier layers (made of tungsten disulfide or related materials) to prevent tunneling current, is proposed and modeled. Operation of photoelectric detector is related to the electron cascaded radiative transition in the adjacent GNRs strengthened by the electrons heated due to the incident light. With a developed model, the working principle is analyzed and the relationships for the photocurrent and dark current as functions of the intensity of the incident radiation are derived. The spectral dependence of the responsivity and detectivity for graphene nanoribbons photodetector (GNRs-PT) with different Fermi energy, band gaps and numbers of GNRs layers are analyzed as well. The results demonstrate that the spectral characteristics depend on the GNRs band gap, which shows a potential on GNRs-PT application in the multi-wavelength systems. In addition, GNRs-PT has a better spectrum property and higher responsivity compared to photodetectors based on In_xGa_xAs in room temperature.

  18. Modeling of the photodetector based on the multilayer graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haiyue [Department of Instrumentation Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Beijing, 100191 (China); Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Niu, Yanxiong, E-mail: niuyx@buaa.edu.cn [Department of Instrumentation Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Beijing, 100191 (China); Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Precision Opto-mechatronics Technology Key Laboratory of Education Ministry, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Yin, Yiheng [Department of Instrumentation Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Beijing, 100191 (China); Liu, Shuai [Department of Instrumentation Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Beijing, 100191 (China); Precision Opto-mechatronics Technology Key Laboratory of Education Ministry, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China)

    2016-07-15

    Graphene nanoribbon (GNR), which has unique properties and advantages, is a crucial component of nanoelectornic devices, especially in the development of photoelectric detectors. In this work, an infrared photodetector based on the structure of stacked multiple-GNRs, which is separated by a little thick barrier layers (made of tungsten disulfide or related materials) to prevent tunneling current, is proposed and modeled. Operation of photoelectric detector is related to the electron cascaded radiative transition in the adjacent GNRs strengthened by the electrons heated due to the incident light. With a developed model, the working principle is analyzed and the relationships for the photocurrent and dark current as functions of the intensity of the incident radiation are derived. The spectral dependence of the responsivity and detectivity for graphene nanoribbons photodetector (GNRs-PT) with different Fermi energy, band gaps and numbers of GNRs layers are analyzed as well. The results demonstrate that the spectral characteristics depend on the GNRs band gap, which shows a potential on GNRs-PT application in the multi-wavelength systems. In addition, GNRs-PT has a better spectrum property and higher responsivity compared to photodetectors based on In{sub x}Ga{sub x}As in room temperature.

  19. Synthesis, characterization and photoluminescence of tin oxide nanoribbons and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M.A., E-mail: duraia_physics@yahoo.co [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Mansorov, Z.A. [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Tokmolden, S. [Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan)

    2009-11-15

    In this work we report the successful formation of tin oxide nanowires and tin oxide nanoribbons with high yield and by using simple cheap method. We also report the formation of curved nanoribbon, wedge-like tin oxide nanowires and star-like nanowires. The growth mechanism of these structures has been studied. Scanning electron microscope was used in the analysis and the EDX analysis showed that our samples is purely Sn and O with ratio 1:2. X-ray analysis was also used in the characterization of the tin oxide nanowire and showed the high crystallinity of our nanowires. The mechanism of the growth of our1D nanostructures is closely related to the vapor-liquid-solid (VLS) process. The photoluminescence PL measurements for the tin oxide nanowires indicated that there are three stable emission peaks centered at wavelengths 630, 565 and 395 nm. The nature of the transition may be attributed to nanocrystals inside the nanobelts or to Sn or O vacancies occurring during the growth which can induce trapped states in the band gap.

  20. Strain dependence of the heat transport properties of graphene nanoribbons

    International Nuclear Information System (INIS)

    Emmeline Yeo, Pei Shan; Loh, Kian Ping; Gan, Chee Kwan

    2012-01-01

    Using a combination of accurate density-functional theory and a nonequilibrium Green’s function method, we calculate the ballistic thermal conductance characteristics of tensile-strained armchair (AGNR) and zigzag (ZGNR) edge graphene nanoribbons, with widths between 3 and 50 Å. The optimized lateral lattice constants for AGNRs of different widths display a three-family behavior when the ribbons are grouped according to N modulo 3, where N represents the number of carbon atoms across the width of the ribbon. Two lowest-frequency out-of-plane acoustic modes play a decisive role in increasing the thermal conductance of AGNR-N at low temperatures. At high temperatures the effect of tensile strain is to reduce the thermal conductance of AGNR-N and ZGNR-N. These results could be explained by the changes in force constants in the in-plane and out-of-plane directions with the application of strain. This fundamental atomistic understanding of the heat transport in graphene nanoribbons paves a way to effect changes in their thermal properties via strain at various temperatures. (paper)

  1. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study

    KAUST Repository

    Bilić, A; Sanvito, S

    2013-01-01

    transmission with a continuum of conducting channels. In contrast, for the armchair nanoribbons a slow exponential attenuation of the conductance with the length has been found, due to their semiconducting nature. © 2013 IOP Publishing Ltd.

  2. Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges

    KAUST Repository

    Bilić, Ante; Sanvito, Stefano

    2013-01-01

    mechanism. The predicted trends are confirmed by the inclusion of self-interaction correction in the calculations. For both sets of nanoribbons the replacement of the strongly coupling thiol groups by weakly bonding phenathroline has been found to cause a

  3. Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups

    KAUST Repository

    Bilić, Ante; Sanvito, Stefano

    2012-01-01

    for longer members of the series. The oligoperylene nanoribbons, with dual amine groups at both terminals, show the potential to fully harness the highly conjugated system of π molecular orbitals across the junction. © 2012 American Physical Society.

  4. Electronic and magnetic properties of MoSe2 armchair nanoribbons controlled by the different edge structures

    Science.gov (United States)

    Zhang, Hui; Zhao, Xu; Gao, Yonghui; Wang, Haiyang; Wang, Tianxing; Wei, Shuyi

    2018-03-01

    Tow-dimensional materials obviously have potential applications in next-generation nanodevices because of their extraordinary physical and chemical properties and the demands of the market. Using first-principle calculation based on density functional theory, we explore electronic and magnetic properties of the different nanoribbons with various edge structures, namely, with hydrogenation or not. In addition, we also calculate the binding energy to analyze the stability of the nanoribbon. Our calculations tell us that the passivated nanoribbons have the positive binding energies, which indicates the passivated nanoribbons are relative stable and hydrogenation can improve the stability of the bare nanoribbons due to the reduction of the dangling bonds. Among of them, full hydrogenation has the highest stability. We find all the nanoribbons with full and without hydrogenation are nonmagnetic semiconductors. It is worth mentioning that hydrogenation can induce the bare nanoribbons to transform gradually from indirect band gap semiconductor to direct band gap semiconductor, even to half-metal. In addition, the magnetic moment of the bare nanoribbon change bit by bit as the rate of hydrogenation increases. When the edge atoms are fully hydrogenated, the magnetic moment return to zero. What's more, our research results still confirm that electronic and magnetic properties of the nanorribons without and with different edge passivation are mainly contributed by the atoms at the edges. These studies about MoSe2 nanoribbons will shed light on the further development of the relevant nanodevices in versatile applications, such as spintronics and energy harvesting.

  5. Structural, electronic and magnetic properties of chevron-type graphene, BN and BC{sub 2}N nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, T.; Azevedo, S. [Departamento de Física/CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900 João Pessoa, PB (Brazil); Kaschny, J.R. [Instituto Federal da Bahia-Campus Vitória da Conquista, Caixa Postal 3150, 45075-265 Vitória da Conquista, BA (Brazil)

    2017-04-15

    Graphene nanoribbons are predicted to be essential components in future nanoelectronics. The size, edge type, arrangement of atoms and width of nanoribbons drastically change their properties. Boronnitrogencarbon nanoribbons properties are not fully understood so far. In the present contribution it was investigated the structural, electronic and magnetic properties of chevron-type carbon, boron nitride and BC{sub 2}N nanoribbons, using first-principles calculations. The results indicate that the structural stability is closely related to the discrepancies in the bond lengths, which can induce structural deformations and stress. Such nanoribbons present a wide range of electronic behaviors, depending on their composition and particularities of the atomic arrangement. A net magnetic moment is found for structures that present carbon atoms at the nanoribbon borders. Nevertheless, the calculated magnetic moment depends on the peculiarities of the symmetric arrangement of atoms and imbalance of carbon atoms between different sublattices. It was found that all structures which have a significant energy gap do not present magnetic moment, and vice-versa. Such result indicates the strong correlation between the electronic and magnetic properties of the chevron-type nanoribbons. - Highlights: • Small discrepancies between distinct bond lengths can influence the formation energy of the BC{sub 2}N nanoribbons. • The electronic behavior of the BC{sub 2}N chevron-type nanoribbons depends on the atomic arrangement and structural symmetries. • There is a strong correlation between the electronic and magnetic properties for the BC{sub 2}N structures.

  6. Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension

    International Nuclear Information System (INIS)

    Lu, Qiang; Gao, Wei; Huang, Rui

    2011-01-01

    Atomistic simulations are performed to study the nonlinear mechanical behavior of graphene nanoribbons under quasistatic uniaxial tension, emphasizing the effects of edge structures (armchair and zigzag, without and with hydrogen passivation) on elastic modulus and fracture strength. The numerical results are analyzed within a theoretical model of thermodynamics, which enables determination of the bulk strain energy density, the edge energy density and the hydrogen adsorption energy density as nonlinear functions of the applied strain based on static molecular mechanics simulations. These functions can be used to describe mechanical behavior of graphene nanoribbons from the initial linear elasticity to fracture. It is found that the initial Young's modulus of a graphene nanoribbon depends on the ribbon width and the edge chirality. Furthermore, it is found that the nominal strain to fracture is considerably lower for graphene nanoribbons with armchair edges than for ribbons with zigzag edges. Molecular dynamics simulations reveal two distinct fracture nucleation mechanisms: homogeneous nucleation for the zigzag-edged graphene nanoribbons and edge-controlled heterogeneous nucleation for the armchair-edged ribbons. The modeling and simulations in this study highlight the atomistic mechanisms for the nonlinear mechanical behavior of graphene nanoribbons with the edge effects, which is potentially important for developing integrated graphene-based devices

  7. Self-Organized Graphene Nanoribbons on SiC(0001) Studied with Scanning Tunneling Microscopy

    Science.gov (United States)

    Torrance, David; Zhang, Baiqian; Hoang, Tien; First, Phillip

    2012-02-01

    Graphene nanoribbons grown directly on nanofacets of SiC(0001) offer an attractive union of top-down and bottom-up fabrication techniques. Nanoribbons have been shown to form on the facets of templated silicon carbide substrates,ootnotetextSprinkle et al., Nat. Nanotech. 5, 727 (2010). but also appear spontaneously along step-bunches on vicinal SiC(0001) miscut slightly towards . These self-organized graphene nanoribbons were characterized with low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES) in ultra-high vacuum. Our measurements indicate that the graphene forms a continuous ``buffer layer'' across the SiC(0001) terraces during nanoribbon formation, with the zigzag edge of the buffer layer aligned parallel to the step-bunched nanofacets. Scanning tunneling microscopy/spectroscopy (STM/STS) was used to characterize the topography and electrical characteristics of the graphene nanoribbons. These measurements indicate that the graphene nanoribbons are highly-crystalline with predominantly zigzag edges.

  8. Effect of room temperature lattice vibration on the electron transport in graphene nanoribbons

    Science.gov (United States)

    Liu, Yue-Yang; Li, Bo-Lin; Chen, Shi-Zhang; Jiang, Xiangwei; Chen, Ke-Qiu

    2017-09-01

    We observe directly the lattice vibration and its multifold effect on electron transport in zigzag graphene nanoribbons in simulation by utilizing an efficient combined method. The results show that the electron transport fluctuates greatly due to the incessant lattice vibration of the nanoribbons. More interestingly, the lattice vibration behaves like a double-edged sword that it boosts the conductance of symmetric zigzag nanoribbons (containing an even number of zigzag chains along the width direction) while weakens the conductance of asymmetric nanoribbons. As a result, the reported large disparity between the conductances of the two kinds of nanoribbons at 0 K is in fact much smaller at room temperature (300 K). We also find that the spin filter effect that exists in perfect two-dimensional symmetric zigzag graphene nanoribbons is destroyed to some extent by lattice vibrations. Since lattice vibrations or phonons are usually inevitable in experiments, the research is very meaningful for revealing the important role of lattice vibrations play in the electron transport properties of two-dimensional materials and guiding the application of ZGNRs in reality.

  9. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.

    Science.gov (United States)

    Hu, Jiuning; Ruan, Xiulin; Chen, Yong P

    2009-07-01

    We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to approximately 4 nm wide and approximately 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., approximately 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30 degrees gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.

  10. Edge-riched graphene nanoribbon for high capacity electrode materials

    International Nuclear Information System (INIS)

    Ping, Yunjie; Zhang, Yupeng; Gong, Youning; Cao, Bing; Fu, Qiang; Pan, Chunxu

    2017-01-01

    Highlights: •The graphene nanoribbon has been successfully synthesized by longitudinal unzipping of carbon nanotubes with oxidants KMnO 4 . •Compared with graphene oxide and carbon nanotubes, graphene nanoribbon shows the largest capacitance up to ∼202F/g at a scan rate of 5 mV/s. •The importance of the location of functional groups and the importance of the edge structure. •The pseudo-capacitance material should have high electron transfer and rapid ion diffusion. -- Abstract: Carbon materials have attracted great attention for their diversified applications in supercapacitors, and different structures of carbon have been reported to exhibit dissimilar electrochemical properties. In the past, activated carbons, carbon nanotubes (CNTs), carbon nanofibers and graphene have been shown to have excellent electrochemical performances, but it still remains a problem on how to improve the capacitance of carbon-based materials effectively from the viewpoint of their giant commercial potential. Noticing that connecting chemical groups to carbon can provide large pseudo-capacitance, we hereby demonstrated that the position of the chemical groups also plays an important role in the pseudo-capacitance. In our work, we synthesized graphene nanoribbon (GNR), graphene oxide (GO) and functional MWCNTs and showed that GNR has larger capacitance (calculated to be 202 F/g at a scan rate of 5 mV/s) and energy density compared to CNTs and GO when using as electrode materials. Furthermore, the supercapacitor device based on as-synthesized GNR exhibits excellent cycle stability and rate capability which evident is potential in high performance supercapacitor. Revealing the source of the capacitance, we found that though GNR has less oxygen-containing groups, it has larger pseudo-capacitance than GO and CNTs due to the remarkable edge-riched structure with high activity in electrochemical reactions. This finding highlights the importance of edge structure in carbon-based pseudo

  11. Band-selective filter in a zigzag graphene nanoribbon.

    Science.gov (United States)

    Nakabayashi, Jun; Yamamoto, Daisuke; Kurihara, Susumu

    2009-02-13

    Electric transport of a zigzag graphene nanoribbon through a steplike potential and a barrier potential is investigated by using the recursive Green's function method. In the case of the steplike potential, we demonstrate numerically that scattering processes obey a selection rule for the band indices when the number of zigzag chains is even; the electrons belonging to the "even" ("odd") bands are scattered only into the even (odd) bands so that the parity of the wave functions is preserved. In the case of the barrier potential, by tuning the barrier height to be an appropriate value, we show that it can work as the "band-selective filter", which transmits electrons selectively with respect to the indices of the bands to which the incident electrons belong. Finally, we suggest that this selection rule can be observed in the conductance by applying two barrier potentials.

  12. Electronic transport for armchair graphene nanoribbons with a potential barrier

    International Nuclear Information System (INIS)

    Ben-Hu, Zhou; Ben-Liang, Zhou; Guang-Hui, Zhou; Zi-Gang, Duan

    2010-01-01

    This paper studies the electronic transport property through a square potential barrier in armchair-edge graphene nanoribbon (AGNR). Using the Dirac equation with the continuity condition for wave functions at the interfaces between regions with and without a barrier, we calculate the mode-dependent transmission probability for both semiconducting and metallic AGNRs, respectively. It is shown that, by some numerical examples, the transmission probability is generally an oscillating function of the height and range of the barrier for both types of AGNRs. The main difference between the two types of systems is that the magnitude of oscillation for the semiconducting AGNR is larger than that for the metallic one. This fact implies that the electronic transport property for AGNRs depends sensitively on their widths and edge details due to the Dirac nature of fermions in the system

  13. Collective modes of massive Dirac fermions in armchair graphene nanoribbons

    International Nuclear Information System (INIS)

    Andersen, David R; Raza, Hassan

    2013-01-01

    We report the plasmon dispersion characteristics of intrinsic and extrinsic armchair graphene nanoribbons of atomic width N = 5 using a p z -orbital tight binding model with third-nearest-neighbor (3nn) coupling. The hopping parameters are obtained by fitting the 3nn dispersions to those of an extended Hückel theory. The resultant massive Dirac fermion system has a band gap E g ≈ 64 meV. The extrinsic plasmon dispersion relation is found to asymptotically approach a universal dispersion curve as the chemical potential μ increases, whereas the intrinsic plasmon dispersion relation is found to have both energy and momentum thresholds. We also report an analytical model for the extrinsic plasmon group velocity in the q → 0 limit.

  14. Anomalous friction of graphene nanoribbons on waved graphenes

    Directory of Open Access Journals (Sweden)

    Jun Fang

    2015-11-01

    Full Text Available Friction plays a critical role in the function and maintenance of small-scale structures, where the conventional Coulomb friction law often fails. To probe the friction at small scales, here we present a molecular dynamics study on the process of dragging graphene nanoribbons on waved graphene substrates. The simulation shows that the induced friction on graphene with zero waviness is ultra-low and closely related to the surface energy barrier. On waved graphenes, the friction generally increases with the amplitude of the wave at a fixed period, but anomalously increases and then decreases with the period at a fixed amplitude. These findings provide insights into the ultra-low friction at small scales, as well as some guidelines into the fabrication of graphene-based nano-composites with high performance.

  15. Relaxation of electron–hole spins in strained graphene nanoribbons

    International Nuclear Information System (INIS)

    Prabhakar, Sanjay; Melnik, Roderick

    2015-01-01

    We investigate the influence of magnetic field originating from the electromechanical effect on the spin-flip behaviors caused by electromagnetic field radiation in the strained graphene nanoribbons (GNRs). We show that the spin splitting energy difference (≈10 meV) due to pseudospin is much larger than the spin-orbit coupling effect (Balakrishnan et al 2013 Nat. Phys. 9 284) that might provide an evidence of broken symmetry of degeneracy. The induced spin splitting energy due to ripple waves can be further enhanced with increasing values of applied tensile edge stress for potential applications in straintronic devices. In particular, we show that the enhancement in the magnitude of the ripple waves due to externally applied tensile edge stress extends the tuning of spin-flip behaviors to larger widths of GNRs. (paper)

  16. Large negative differential resistance in graphene nanoribbon superlattices

    Science.gov (United States)

    Tseng, P.; Chen, C. H.; Hsu, S. A.; Hsueh, W. J.

    2018-05-01

    A graphene nanoribbon superlattice with a large negative differential resistance (NDR) is proposed. Our results show that the peak-to-valley ratio (PVR) of the graphene superlattices can reach 21 at room temperature with bias voltages between 90-220 mV, which is quite large compared with the one of traditional graphene-based devices. It is found that the NDR is strongly influenced by the thicknesses of the potential barrier. Therefore, the NDR effect can be optimized by designing a proper barrier thickness. The large NDR effect can be attributed to the splitting of the gap in transmission spectrum (segment of Wannier-Stark ladder) with larger thicknesses of barrier when the applied voltage increases.

  17. Spin-dependent transport through interacting graphene armchair nanoribbons

    International Nuclear Information System (INIS)

    Koller, Sonja; Mayrhofer, Leonhard; Grifoni, Milena

    2010-01-01

    We investigate spin effects in transport across fully interacting, finite-size graphene armchair nanoribbons (ACNs) contacted to collinearly spin-polarized leads. In such systems, the presence of short-range Coulomb interaction between bulk states and states localized at the ribbon ends leads to novel spin-dependent phenomena. Specifically, the total spin of the low-energy many-body states is conserved during tunneling but that of the bulk and end states is not. As a consequence, in the single-electron regime, dominated by Coulomb blockade phenomena, we find pronounced negative differential conductance features for ACNs contacted to parallel polarized leads. These features are, however, absent in an anti-parallel contact configuration, which in turn leads, within a certain gate and bias voltage region, to a negative tunneling magneto-resistance. Moreover, we analyze the changes in the transport characteristics under the influence of an external magnetic field.

  18. Strain-activated edge reconstruction of graphene nanoribbons

    KAUST Repository

    Cheng, Yingchun

    2012-02-17

    The edge structure and width of graphene nanoribbons (GNRs) are crucial factors for the electronic properties. A combination of experiment and first-principles calculations allows us to determine the mechanism of the hexagon-hexagon to pentagon-heptagon transformation. GNRs thinner than 2 nm have been fabricated by bombardment of graphene with high-energetic Au clusters. The edges of the GNRs are modified in situ by electron irradiation. Tensile strain along the edge decreases the transformation energy barrier. Antiferromagnetism and a direct band gap are found for a zigzag GNR, while a fully reconstructed GNR shows an indirect band gap. A GNR reconstructed on only one edge exhibits ferromagnetism. We propose that strain is an effective method to tune the edge and, therefore, the electronic structure of thin GNRs for graphene-based electronics.

  19. Large spin Seebeck effects in zigzag-edge silicene nanoribbons

    International Nuclear Information System (INIS)

    Yang, Xi-Feng; Liu, Yu-Shen; Feng, Jin-Fu; Wang, Xue-Feng

    2014-01-01

    Using the first-principles methods, we investigate the thermospin properties of a two-probe model based on zigzag-edge silicene nanoribbons (ZSiNRs). Compared with the odd-width ZSiNRs, the spin Seebeck coefficient of the even-width ZSiNRs is obviously enhanced at room temperature. This fact is attributed to a nearly perfect symmetry of the linear conductance gap with the different spin index with respect to the Fermi level induced by the different parity of the wave functions. More interestingly, the corresponding charge Seebeck coefficient is near zero. Therefore, when a thermal bias is presented in the even-width ZSiNRs, a nearly pure spin current is achieved. Meanwhile, the spin polarization of the current approaches infinite

  20. All-zigzag graphene nanoribbons for planar interconnect application

    Science.gov (United States)

    Chen, Po-An; Chiang, Meng-Hsueh; Hsu, Wei-Chou

    2017-07-01

    A feasible "lightning-shaped" zigzag graphene nanoribbon (ZGNR) structure for planar interconnects is proposed. Based on the density functional theory and non-equilibrium Green's function, the electron transport properties are evaluated. The lightning-shaped structure increases significantly the conductance of the graphene interconnect with an odd number of zigzag chains. This proposed technique can effectively utilize the linear I-V characteristic of asymmetric ZGNRs for interconnect application. Variability study accounting for width/length variation and the edge effect is also included. The transmission spectra, transmission eigenstates, and transmission pathways are analyzed to gain the physical insights. This lightning-shaped ZGNR enables all 2D material-based devices and circuits on flexible and transparent substrates.

  1. Morphology of a graphene nanoribbon encapsulated in a carbon nanotube

    Directory of Open Access Journals (Sweden)

    F. Furuhashi

    2013-09-01

    Full Text Available The morphologies of graphene nanoribbons (GNRs encapsulated in single-walled carbon nanotubes (SWNTs are investigated using molecular-dynamics (MD simulation. The GNRs are assumed to be hydrogen-terminated and formed by connecting polycyclic aromatic hydrocarbons, perylene or coronene molecules. The combined structures consisting of a GNR and an encapsulating SWNT are equilibrated at room temperature. It is shown that if the diameter of a SWNT is larger than the sum of the width of the GNR and twice the length of a C-H bond, a twisted GNR is obtained, whereas if the diameter of a SWNT is smaller than the sum of the two, the cross section of the SWNT cannot maintain its original circular shape and elliptically distorts, and a non-twisted GNR or a twisted GNR of long pitch is obtained. The estimated pitch of a regularly-twisted GNR agrees with the experimentally observed one in order of magnitude.

  2. Transforming graphene nanoribbons into nanotubes by use of point defects.

    Science.gov (United States)

    Sgouros, A; Sigalas, M M; Papagelis, K; Kalosakas, G

    2014-03-26

    Using molecular dynamics simulations with semi-empirical potentials, we demonstrate a method to fabricate carbon nanotubes (CNTs) from graphene nanoribbons (GNRs), by periodically inserting appropriate structural defects into the GNR crystal structure. We have found that various defect types initiate the bending of GNRs and eventually lead to the formation of CNTs. All kinds of carbon nanotubes (armchair, zigzag, chiral) can be produced with this method. The structural characteristics of the resulting CNTs, and the dependence on the different type and distribution of the defects, were examined. The smallest (largest) CNT obtained had a diameter of ∼ 5 Å (∼ 39 Å). Proper manipulation of ribbon edges controls the chirality of the CNTs formed. Finally, the effect of randomly distributed defects on the ability of GNRs to transform into CNTs is considered.

  3. Selective interface transparency in graphene nanoribbon based molecular junctions.

    Science.gov (United States)

    Dou, K P; Kaun, C C; Zhang, R Q

    2018-03-08

    A clear understanding of electrode-molecule interfaces is a prerequisite for the rational engineering of future generations of nanodevices that will rely on single-molecule coupling between components. With a model system, we reveal a peculiar dependence on interfaces in all graphene nanoribbon-based carbon molecular junctions. The effect can be classified into two types depending on the intrinsic feature of the embedded core graphene nanoflake (GNF). For metallic GNFs with |N A - N B | = 1, good/poor contact transparency occurs when the core device aligns with the center/edge of the electrode. The situation is reversed when a semiconducting GNF is the device, where N A = N B . These results may shed light on the design of real connecting components in graphene-based nanocircuits.

  4. Strain-activated edge reconstruction of graphene nanoribbons

    KAUST Repository

    Cheng, Yingchun; Han, Yu; Schwingenschlö gl, Udo; Wang, H. T.; Zhang, Xixiang; Zhu, Y. H.; Zhu, Zhiyong

    2012-01-01

    The edge structure and width of graphene nanoribbons (GNRs) are crucial factors for the electronic properties. A combination of experiment and first-principles calculations allows us to determine the mechanism of the hexagon-hexagon to pentagon-heptagon transformation. GNRs thinner than 2 nm have been fabricated by bombardment of graphene with high-energetic Au clusters. The edges of the GNRs are modified in situ by electron irradiation. Tensile strain along the edge decreases the transformation energy barrier. Antiferromagnetism and a direct band gap are found for a zigzag GNR, while a fully reconstructed GNR shows an indirect band gap. A GNR reconstructed on only one edge exhibits ferromagnetism. We propose that strain is an effective method to tune the edge and, therefore, the electronic structure of thin GNRs for graphene-based electronics.

  5. Carbon nanotube and graphene nanoribbon-coated conductive Kevlar fibers.

    Science.gov (United States)

    Xiang, Changsheng; Lu, Wei; Zhu, Yu; Sun, Zhengzong; Yan, Zheng; Hwang, Chi-Chau; Tour, James M

    2012-01-01

    Conductive carbon material-coated Kevlar fibers were fabricated through layer-by-layer spray coating. Polyurethane was used as the interlayer between the Kevlar fiber and carbon materials to bind the carbon materials to the Kevlar fiber. Strongly adhering single-walled carbon nanotube coatings yielded a durable conductivity of 65 S/cm without significant mechanical degradation. In addition, the properties remained stable after bending or water washing cycles. The coated fibers were analyzed using scanning electron microcopy and a knot test. The as-produced fiber had a knot efficiency of 23%, which is more than four times higher than that of carbon fibers. The spray-coating of graphene nanoribbons onto Kevlar fibers was also investigated. These flexible coated-Kevlar fibers have the potential to be used for conductive wires in wearable electronics and battery-heated armors. © 2011 American Chemical Society

  6. Nonsymmorphic symmetry-protected topological modes in plasmonic nanoribbon lattices

    Science.gov (United States)

    Zhang, Yong-Liang; Wu, Raymond P. H.; Kumar, Anshuman; Si, Tieyan; Fung, Kin Hung

    2018-04-01

    Using a dynamic eigenresponse theory, we study the topological edge plasmon modes in dispersive plasmonic lattices constructed by unit cells of multiple nanoribbons. In dipole approximation, the bulk-edge correspondence in the lattices made of dimerized unit cell and one of its square-root daughter with nonsymmorphic symmetry are demonstrated. Calculations with consideration of dynamic long-range effects and retardation are compared to those given by nearest-neighbor approximations. It is shown that nonsymmorphic symmetry opens up two symmetric gaps where versatile topological edge plasmon modes are found. Unprecedented spectral shifts of the edge states with respect to the zero modes due to long-range coupling are found. The proposed ribbon structure is favorable to electrical gating and thus could serve as an on-chip platform for electrically controllable subwavelength edge states at optical wavelengths. Our eigenresponse approach provides a powerful tool for the radiative topological mode analysis in strongly coupled plasmonic lattices.

  7. Confined States and Tunnelling in Gated Graphene Nanoribbons

    Science.gov (United States)

    Guilleminot, E.,; Meza-Montes, L.

    Graphene Quantum Dots (GQDs) are promising candidates for the development of quantum information processors. We propose a scheme to determine electronic states of GQDs as defined by voltage gates applied to armchair graphene nanoribbons. Using transfer matrix method based on the set of solutions proposed by Burkard et al ., we study confined states of double wells and the transmission of electrons through double barrier systems. Comparison with previous results for systems on the graphene sheet shows good agreement. Confined states of a double well turn out to be very sensitive to deformation of the potential profile, showing strong localization of the electron for asymmetric systems, which also depends on the considered state. Spikes of high transmission appeared for periodic values of the incident angle of the electron travelling through a double barrier and disappear as the systems approaches to a single barrier as one barrier vanishes. We remark effects not shown in usual semiconductor heterostructures. Partially supported by VIEP-BUAP, Mexico,.

  8. High quality sub-10 nm graphene nanoribbons by on-chip PS-b-PDMS block copolymer lithography

    DEFF Research Database (Denmark)

    Rasappa, Sozaraj; Caridad, Jose; Schulte, Lars

    2015-01-01

    block and the graphene under PS. Raman analysis supports the formation of graphene nanoribbons with an average distance between defects corresponding to the oxidized PDMS pitch, with no sign of defects generated in the ribbon channel. This suggests a high degree of protection of the nanoribbons...... by the hard oxidized PDMS mask formed in situ during oxygen plasma etching....

  9. Spontaneous high piezoelectricity in poly(vinylidene fluoride) nanoribbons produced by iterative thermal size reduction technique.

    Science.gov (United States)

    Kanik, Mehmet; Aktas, Ozan; Sen, Huseyin Sener; Durgun, Engin; Bayindir, Mehmet

    2014-09-23

    We produced kilometer-long, endlessly parallel, spontaneously piezoelectric and thermally stable poly(vinylidene fluoride) (PVDF) micro- and nanoribbons using iterative size reduction technique based on thermal fiber drawing. Because of high stress and temperature used in thermal drawing process, we obtained spontaneously polar γ phase PVDF micro- and nanoribbons without electrical poling process. On the basis of X-ray diffraction (XRD) analysis, we observed that PVDF micro- and nanoribbons are thermally stable and conserve the polar γ phase even after being exposed to heat treatment above the melting point of PVDF. Phase transition mechanism is investigated and explained using ab initio calculations. We measured an average effective piezoelectric constant as -58.5 pm/V from a single PVDF nanoribbon using a piezo evaluation system along with an atomic force microscope. PVDF nanoribbons are promising structures for constructing devices such as highly efficient energy generators, large area pressure sensors, artificial muscle and skin, due to the unique geometry and extended lengths, high polar phase content, high thermal stability and high piezoelectric coefficient. We demonstrated two proof of principle devices for energy harvesting and sensing applications with a 60 V open circuit peak voltage and 10 μA peak short-circuit current output.

  10. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.

    Science.gov (United States)

    Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S

    2014-09-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.

  11. Effects of quantum statistics of phonons on the thermal conductivity of silicon and germanium nanoribbons

    Science.gov (United States)

    Kosevich, Yuriy A.; Savin, Alexander V.; Cantarero, Andrés

    2013-01-01

    We present molecular dynamics simulation of phonon thermal conductivity of semiconductor nanoribbons with an account for phonon quantum statistics. In our semiquantum molecular dynamics simulation, dynamics of the system is described with the use of classical Newtonian equations of motion where the effect of phonon quantum statistics is introduced through random Langevin-like forces with a specific power spectral density (color noise). The color noise describes interaction of the molecular system with the thermostat. The thermal transport of silicon and germanium nanoribbons with atomically smooth (perfect) and rough (porous) edges are studied. We show that the existence of rough (porous) edges and the quantum statistics of phonon change drastically the low-temperature thermal conductivity of the nanoribbon in comparison with that of the perfect nanoribbon with atomically smooth edges and classical phonon dynamics and statistics. The rough-edge phonon scattering and weak anharmonicity of the considered lattice produce a weakly pronounced maximum of thermal conductivity of the nanoribbon at low temperature.

  12. Buckling-dependent switching behaviours in shifted bilayer germanene nanoribbons: A computational study

    Science.gov (United States)

    Arjmand, T.; Tagani, M. Bagheri; Soleimani, H. Rahimpour

    2018-01-01

    Bilayer germanene nanoribbons are investigated in different stacks like buckled and flat armchair and buckled zigzag germanene nanoribbons by performing theoretical calculations using the nonequilibrium Greens function method combined with density functional theory. In these bilayer types, the current oscillates with change of interlayer distances or intra-layer overlaps and is dependent on the type of the bilayer. Band gap of AA-stacked of shifted flat bilayer armchair germanene nanoribbon oscillates by change of interlayer distance which is in contrast to buckled bilayer armchair germanene nanoribbon. So, results show the buckling makes system tend to be a semiconductor with wide band gap. Therefore, AA-stacked of shifted flat bilayer armchair germanene nanoribbon has properties between zigzag and armchair edges, the higher current under bias voltages similar to zigzag edge and also oscillations in current like buckled armchair edges. Also, it is found that HOMO-LUMO band gap strongly affects oscillation in currents and their I-V characteristic. This kind of junction improves the switching properties at low voltages around the band gap.

  13. Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges

    KAUST Repository

    Bilić, Ante

    2013-01-01

    Charge transport through two sets of symmetric graphene nanoribbons with zigzag shaped edges in a two-terminal device has been investigated, using density functional theory combined with the non-equilibrium Green\\'s function method. The conductance has been explored as a function of nanoribbon length, bias voltage, and the strength of terminal coupling. The set of narrower nanoribbons, in the form of thiolated linear acenes, shows an anomalous length dependence of the conductance, which at first exhibits a drop and a minimum, followed by an evident rise. The length trend is shown to arise because of a gradual transformation in the transport mechanism, which changes from being governed by a continuum of out-of-plane π type and in-plane state channels to being fully controlled by a single, increasingly more resonant, occupied π state channel. For the set of nanoribbons with a wider profile, a steady increase is observed across the whole length range, owing to the absence of the former transport mechanism. The predicted trends are confirmed by the inclusion of self-interaction correction in the calculations. For both sets of nanoribbons the replacement of the strongly coupling thiol groups by weakly bonding phenathroline has been found to cause a strong attenuation with the length and a generally low conductance. © 2013 American Institute of Physics.

  14. Spin-polarized transport in a normal/ferromagnetic/normal zigzag graphene nanoribbon junction

    International Nuclear Information System (INIS)

    Tian Hong-Yu; Wang Jun

    2012-01-01

    We investigate the spin-dependent electron transport in single and double normal/ferromagnetic/normal zigzag graphene nanoribbon (NG/FG/NG) junctions. The ferromagnetism in the FG region originates from the spontaneous magnetization of the zigzag graphene nanoribbon. It is shown that when the zigzag-chain number of the ribbon is even and only a single transverse mode is actived, the single NG/FG/NG junction can act as a spin polarizer and/or a spin analyzer because of the valley selection rule and the spin-exchange field in the FG, while the double NG/FG/NG/FG/NG junction exhibits a quantum switching effect, in which the on and the off states switch rapidly by varying the cross angle between two FG magnetizations. Our findings may shed light on the application of magnetized graphene nanoribbons to spintronics devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges

    Directory of Open Access Journals (Sweden)

    Cristian Vacacela Gomez

    2017-01-01

    Full Text Available Recent experimental evidence for and the theoretical confirmation of tunable edge plasmons and surface plasmons in graphene nanoribbons have opened up new opportunities to scrutinize the main geometric and conformation factors, which can be used to modulate these collective modes in the infrared-to-terahertz frequency band. Here, we show how the extrinsic plasmon structure of regular planar arrays of graphene nanoribbons, with perfectly symmetric edges, is influenced by the width, chirality and unit-cell length of each ribbon, as well as the in-plane vacuum distance between two contiguous ribbons. Our predictions, based on time-dependent density functional theory, in the random phase approximation, are expected to be of immediate help for measurements of plasmonic features in nanoscale architectures of nanoribbon devices.

  16. Negative differential resistance behavior in phosphorus-doped armchair graphene nanoribbon junctions

    International Nuclear Information System (INIS)

    Zhou, Yuhong; Zhang, Daoli; Zhang, Jianbing; Miao, Xiangshui; Ye, Cong

    2014-01-01

    In this present work, we investigate the electronic transport properties of phosphorus-doped armchair graphene nanoribbon (AGNR) junctions by employing nonequilibrium Green's functions in combination with the density-function theory. Two phosphorus (P) atoms are considered to substitute the central carbon atom with the different width of AGNRs. The results indicate that the electronic transport behaviors are strongly dependent on the width of the P-doped graphene nanoribbons. The current-voltage characteristics of the doped AGNR junctions reveal an interesting negative differential resistance (NDR) and exhibit three distinct family (3 n, 3 n + 1, 3 n + 2) behaviors. These results display that P doping is a very good way to achieve NDR of the graphene nanoribbon devices

  17. Low-temperature growth and photoluminescence property of ZnS nanoribbons.

    Science.gov (United States)

    Zhang, Zengxing; Wang, Jianxiong; Yuan, Huajun; Gao, Yan; Liu, Dongfang; Song, Li; Xiang, Yanjuan; Zhao, Xiaowei; Liu, Lifeng; Luo, Shudong; Dou, Xinyuan; Mou, Shicheng; Zhou, Weiya; Xie, Sishen

    2005-10-06

    At a low temperature of 450 degrees C, ZnS nanoribbons have been synthesized on Si and KCl substrates by a simple chemical vapor deposition (CVD) method with a two-temperature-zone furnace. Zinc and sulfur powders are used as sources in the different temperature zones. X-ray diffraction (XRD), selected area electron diffraction (SEAD), and transmission electron microscopy (TEM) analysis show that the ZnS nanoribbons are the wurtzite structure, and there are two types-single-crystal and bicrystal nanoribbons. Photoluminescence (PL) spectrum shows that the spectrum mainly includes two parts: a purple emission band centering at about 390 nm and a blue emission band centering at about 445 nm with a weak green shoulder around 510 nm.

  18. Spin transport properties of partially edge-hydrogenated MoS2 nanoribbon heterostructure

    International Nuclear Information System (INIS)

    Peng, Li; Yao, Kailun; Zhu, Sicong; Ni, Yun; Zu, Fengxia; Wang, Shuling; Guo, Bin; Tian, Yong

    2014-01-01

    We report ab initio calculations of electronic transport properties of heterostructure based on MoS 2 nanoribbons. The heterostructure consists of edge hydrogen-passivated and non-passivated zigzag MoS 2 nanoribbons (ZMoS 2 NR-H/ZMoS 2 NR). Our calculations show that the heterostructure has half-metallic behavior which is independent of the nanoribbon width. The opening of spin channels of the heterostructure depends on the matching of particular electronic orbitals in the Mo-dominated edges of ZMoS 2 NR-H and ZMoS 2 NR. Perfect spin filter effect appears at small bias voltages, and large negative differential resistance and rectifying effects are also observed in the heterostructure.

  19. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons

    DEFF Research Database (Denmark)

    Sevincli, Haldun; Sevik, Cem; Cagin, Tahir

    2013-01-01

    We propose a hybrid nano-structuring scheme for tailoring thermal and thermoelectric transport properties of graphene nanoribbons. Geometrical structuring and isotope cluster engineering are the elements that constitute the proposed scheme. Using first-principles based force constants and Hamilto......We propose a hybrid nano-structuring scheme for tailoring thermal and thermoelectric transport properties of graphene nanoribbons. Geometrical structuring and isotope cluster engineering are the elements that constitute the proposed scheme. Using first-principles based force constants...... and Hamiltonians, we show that the thermal conductance of graphene nanoribbons can be reduced by 98.8% at room temperature and the thermoelectric figure of merit, ZT, can be as high as 3.25 at T = 800 K. The proposed scheme relies on a recently developed bottom-up fabrication method, which is proven to be feasible...

  20. Effect of triangular vacancy defect on thermal conductivity and thermal rectification in graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping, E-mail: yangpingdm@ujs.edu.cn [Laboratory of Advanced Manufacturing and Reliability for MEMS/NEMS/OEDS, Jiangsu University, Zhenjiang 212013 (China); Li, Xialong; Zhao, Yanfan [Laboratory of Advanced Manufacturing and Reliability for MEMS/NEMS/OEDS, Jiangsu University, Zhenjiang 212013 (China); Yang, Haiying [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Shuting, E-mail: wangst@mail.hust.edu.cn [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2013-11-01

    We investigate the thermal transport properties of armchair graphene nanoribbons (AGNRs) possessing various sizes of triangular vacancy defect within a temperature range of 200–600 K by using classical molecular dynamics simulation. The results show that the thermal conductivities of the graphene nanoribbons decrease with increasing sizes of triangular vacancy defects in both directions across the whole temperature range tested, and the presence of the defect can decrease the thermal conductivity by more than 40% as the number of removed cluster atoms is increased to 25 (1.56% for vacancy concentration) owing to the effect of phonon–defect scattering. In the meantime, we find the thermal conductivity of defective graphene nanoribbons is insensitive to the temperature change at higher vacancy concentrations. Furthermore, the dependence of temperatures and various sizes of triangular vacancy defect for the thermal rectification ration are also detected. This work implies a possible route to achieve thermal rectifier for 2D materials by defect engineering.

  1. A Robust Highly Aligned DNA Nanowire Array-Enabled Lithography for Graphene Nanoribbon Transistors.

    Science.gov (United States)

    Kang, Seok Hee; Hwang, Wan Sik; Lin, Zhiqun; Kwon, Se Hun; Hong, Suck Won

    2015-12-09

    Because of its excellent charge carrier mobility at the Dirac point, graphene possesses exceptional properties for high-performance devices. Of particular interest is the potential use of graphene nanoribbons or graphene nanomesh for field-effect transistors. Herein, highly aligned DNA nanowire arrays were crafted by flow-assisted self-assembly of a drop of DNA aqueous solution on a flat polymer substrate. Subsequently, they were exploited as "ink" and transfer-printed on chemical vapor deposited (CVD)-grown graphene substrate. The oriented DNA nanowires served as the lithographic resist for selective removal of graphene, forming highly aligned graphene nanoribbons. Intriguingly, these graphene nanoribbons can be readily produced over a large area (i.e., millimeter scale) with a high degree of feature-size controllability and a low level of defects, rendering the fabrication of flexible two terminal devices and field-effect transistors.

  2. Tuning Infrared Plasmon Resonance of Black Phosphorene Nanoribbon with a Dielectric Interface.

    Science.gov (United States)

    Debu, Desalegn T; Bauman, Stephen J; French, David; Churchill, Hugh O H; Herzog, Joseph B

    2018-02-19

    We report on the tunable edge-plasmon-enhanced absorption of phosphorene nanoribbons supported on a dielectric substrate. Monolayer anisotropic black phosphorous (phosphorene) nanoribbons are explored for light trapping and absorption enhancement on different dielectric substrates. We show that these phosphorene ribbons support infrared surface plasmons with high spatial confinement. The peak position and bandwidth of the calculated phosphorene absorption spectra are tunable with low loss over a wide wavelength range via the surrounding dielectric environment of the periodic nanoribbons. Simulation results show strong edge plasmon modes and enhanced absorption as well as a red-shift of the peak resonance wavelength. The periodic Fabry-Perot grating model was used to analytically evaluate the absorption resonance arising from the edge of the ribbons for comparison with the simulation. The results show promise for the promotion of phosphorene plasmons for both fundamental studies and potential applications in the infrared spectral range.

  3. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jiafeng; Si, M. S., E-mail: sims@lzu.edu.cn; Yang, D. Z.; Zhang, Z. Y.; Xue, D. S. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2014-08-21

    Based on first-principles calculations, we present a quantum confinement mechanism for the band gaps of blue phosphorene nanoribbons (BPNRs) as a function of their widths. The BPNRs considered have either armchair or zigzag shaped edges on both sides with hydrogen saturation. Both the two types of nanoribbons are shown to be indirect semiconductors. An enhanced energy gap of around 1 eV can be realized when the ribbon's width decreases to ∼10 Å. The underlying physics is ascribed to the quantum confinement effect. More importantly, the parameters to describe quantum confinement are obtained by fitting the calculated band gaps with respect to their widths. The results show that the quantum confinement in armchair nanoribbons is stronger than that in zigzag ones. This study provides an efficient approach to tune the band gap in BPNRs.

  4. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.

    Science.gov (United States)

    Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali

    2013-01-30

    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.

  5. Electronic and magnetic properties of MoS2 nanoribbons with sulfur line vacancy defects

    International Nuclear Information System (INIS)

    Han, Yang; Zhou, Jian; Dong, Jinming

    2015-01-01

    Highlights: • We performed DFT calculations on Sulfur line defects embedded MoS 2 . • The defects induced bond strains are larger in the zigzag (ZZ) edge ones. • The ZZ ones are metals, having two degenerate ground states FM and AFM. • The armchair ones are nonmagnetic semiconductors. • The defects can induce some defect states in the electronic structures. - Abstract: Motivated by the recent experimental result that single sulfur vacancies in monolayer MoS 2 are mobile under the electron beam and easily agglomerate into the sulfur line vacancy defects [Physical Review B 88, 035301(2013)] , the structural, electronic and magnetic properties of one dimensional zigzag (ZZ) and armchair (AC) edge MoS 2 nanoribbons with single or double staggered sulfur line vacancy defects (hereafter, abbreviated as SV or DV, respectively), parallel to their edges, have been investigated systematically by density functional theory calculations. It is very interesting to find that the bond strains induced by the sulfur line vacancy defect can cause a much larger out-of plane distortions in the ZZ edge MoS 2 nanoribbon than in the AC edge counterpart. Besides, the defective ZZ edge MoS 2 nanoribbons with SV or DV are both metals, having their two respective degenerate ground states with the same energy, among which one is ferromagnetic (FM “ + +”) and the other is antiferromagnetic (AFM “ + −”). But the AC edge MoS 2 nanoribbons with SV or DV are both nonmagnetic semiconductors, having very different gap values. Finally, the sulfur line vacancy defects would induce some defect states in the electronic structures of the defective MoS 2 nanoribbons. All these important results could provide a new route of tuning the electronic properties of MoS 2 nanoribbons and its derivatives for their promising applications in nanoelectronics and optoelectronics

  6. Electronic and magnetic properties of MoS{sub 2} nanoribbons with sulfur line vacancy defects

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yang [Group of Computational Condensed Matter Physics, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Zhou, Jian [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Dong, Jinming, E-mail: jdong@nju.edu.cn [Group of Computational Condensed Matter Physics, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2015-08-15

    Highlights: • We performed DFT calculations on Sulfur line defects embedded MoS{sub 2}. • The defects induced bond strains are larger in the zigzag (ZZ) edge ones. • The ZZ ones are metals, having two degenerate ground states FM and AFM. • The armchair ones are nonmagnetic semiconductors. • The defects can induce some defect states in the electronic structures. - Abstract: Motivated by the recent experimental result that single sulfur vacancies in monolayer MoS{sub 2} are mobile under the electron beam and easily agglomerate into the sulfur line vacancy defects [Physical Review B 88, 035301(2013)] , the structural, electronic and magnetic properties of one dimensional zigzag (ZZ) and armchair (AC) edge MoS{sub 2} nanoribbons with single or double staggered sulfur line vacancy defects (hereafter, abbreviated as SV or DV, respectively), parallel to their edges, have been investigated systematically by density functional theory calculations. It is very interesting to find that the bond strains induced by the sulfur line vacancy defect can cause a much larger out-of plane distortions in the ZZ edge MoS{sub 2} nanoribbon than in the AC edge counterpart. Besides, the defective ZZ edge MoS{sub 2} nanoribbons with SV or DV are both metals, having their two respective degenerate ground states with the same energy, among which one is ferromagnetic (FM “ + +”) and the other is antiferromagnetic (AFM “ + −”). But the AC edge MoS{sub 2} nanoribbons with SV or DV are both nonmagnetic semiconductors, having very different gap values. Finally, the sulfur line vacancy defects would induce some defect states in the electronic structures of the defective MoS{sub 2} nanoribbons. All these important results could provide a new route of tuning the electronic properties of MoS{sub 2} nanoribbons and its derivatives for their promising applications in nanoelectronics and optoelectronics.

  7. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.

    Science.gov (United States)

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; Shi, Wu; Lee, Kyunghoon; Wu, Shuang; Yong Choi, Byung; Braganza, Rohit; Lear, Jordan; Kau, Nicholas; Choi, Wonwoo; Chen, Chen; Pedramrazi, Zahra; Dumslaff, Tim; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus; Fischer, Felix; Zettl, Alex; Ruffieux, Pascal; Yablonovitch, Eli; Crommie, Michael; Fasel, Roman; Bokor, Jeffrey

    2017-09-21

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch  ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on  > 1 μA at V d  = -1 V) and high I on /I off  ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.Graphene nanoribbons show promise for high-performance field-effect transistors, however they often suffer from short lengths and wide band gaps. Here, the authors use a bottom-up synthesis approach to fabricate 9- and 13-atom wide ribbons, enabling short-channel transistors with 10 5 on-off current ratio.

  8. Pressure-induced phase transitions in single-crystalline Cu4Bi4S9 nanoribbons

    International Nuclear Information System (INIS)

    Hu Jing-Yu; Li Jing; Zhao Qing; Shi Li-Jie; Zou Bing-Suo; Zhang Si-Jia; Zhao Hao-Fei; Zhang Qing-Hua; Yao Yuan; Zhu Ke; Liu Yu-Long; Jin Chang-Qing; Yu Ri-Cheng; Li Yan-Chun; Li Xiao-Dong; Liu Jing

    2013-01-01

    In situ angle dispersive synchrotron X-ray diffraction and Raman scattering measurements under pressure are employed to study the structural evolution of Cu 4 Bi 4 S 9 nanoribbons, which are fabricated by using a facile solvothermal method. Both experiments show that a structural phase transition occurs near 14.5 GPa, and there is a pressure-induced reversible amorphization at about 25.6 GPa. The electrical transport property of a single Cu 4 Bi 4 S 9 nanoribbon under different pressures is also investigated

  9. Realizing stable fully spin polarized transport in SiC nanoribbons with dopant

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Xixi; Wang, Xianlong; Zheng, Xiaohong, E-mail: xhzheng@theory.issp.ac.cn; Zeng, Zhi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Hao, Hua [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-06-06

    Intrinsic half-metallicity recently reported in zigzag edged SiC nanoribbons is basically undetectable due to negligible energy difference between the antiferromagnetic (AFM) and ferromagnetic (FM) configurations. In this Letter, by density functional theory calculations, we demonstrate a scheme of N doping at the carbon edge to selectively close the edge state channel at this edge and achieve 100% spin filtering, no matter whether it is in an AFM state or FM state. This turns SiC nanoribbon into a promising material for obtaining stable and completely spin polarized transport and may find application in spintronic devices.

  10. Identification of pristine and defective graphene nanoribbons by phonon signatures in the electron transport characteristics

    DEFF Research Database (Denmark)

    Christensen, Rasmus Bjerregaard; Frederiksen, Thomas; Brandbyge, Mads

    2015-01-01

    Inspired by recent experiments where electron transport was measured across graphene nanoribbons (GNRs) suspended between a metal surface and the tip of a scanning tunneling microscope [Koch, Nat. Nanotechnol.7, 713 (2012)], we present detailed first-principles simulations of inelastic electron...... tunneling spectroscopy (IETS) of long pristine and defective armchair and zigzag nanoribbons under a range of charge carrier conditions. For the armchair ribbons we find two robust IETS signals around 169 and 196 mV corresponding to the D and G modes of Raman spectroscopy as well as additional fingerprints...

  11. The effect of electron-electron interaction induced dephasing on electronic transport in graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Kahnoj, Sina Soleimani; Touski, Shoeib Babaee [School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395-515, Tehran (Iran, Islamic Republic of); Pourfath, Mahdi, E-mail: pourfath@ut.ac.ir, E-mail: pourfath@iue.tuwien.ac.at [School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395-515, Tehran (Iran, Islamic Republic of); Institute for Microelectronics, TU Wien, Gusshausstrasse 27–29/E360, 1040 Vienna (Austria)

    2014-09-08

    The effect of dephasing induced by electron-electron interaction on electronic transport in graphene nanoribbons is theoretically investigated. In the presence of disorder in graphene nanoribbons, wavefunction of electrons can set up standing waves along the channel and the conductance exponentially decreases with the ribbon's length. Employing the non-equilibrium Green's function formalism along with an accurate model for describing the dephasing induced by electron-electron interaction, we show that this kind of interaction prevents localization and transport of electrons remains in the diffusive regime where the conductance is inversely proportional to the ribbon's length.

  12. The electrical and thermal transport properties of hybrid zigzag graphene-BN nanoribbons

    Science.gov (United States)

    Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang

    2017-06-01

    The electron and phonon transport in hybrid graphene-BN zigzag nanoribbons are investigated by the nonequilibrium Green’s function method combined with density functional theory calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. The phonon transport calculations show that the ratio of C-chain number to BN-chain number will modify the thermal conductance of the hybrid nanoribbon in a complicated manner.

  13. The electrical and thermal transport properties of hybrid zigzag graphene-BN nanoribbons

    International Nuclear Information System (INIS)

    Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang

    2017-01-01

    The electron and phonon transport in hybrid graphene-BN zigzag nanoribbons are investigated by the nonequilibrium Green’s function method combined with density functional theory calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. The phonon transport calculations show that the ratio of C-chain number to BN-chain number will modify the thermal conductance of the hybrid nanoribbon in a complicated manner. (paper)

  14. Atomistic switch of giant magnetoresistance and spin thermopower in graphene-like nanoribbons

    Science.gov (United States)

    Zhai, Ming-Xing; Wang, Xue-Feng

    2016-01-01

    We demonstrate that the giant magnetoresistance can be switched off (on) in even- (odd-) width zigzag graphene-like nanoribbons by an atomistic gate potential or edge disorder inside the domain wall in the antiparallel (ap) magnetic configuration. A strong magneto-thermopower effect is also predicted that the spin thermopower can be greatly enhanced in the ap configuration while the charge thermopower remains low. The results extracted from the tight-binding model agree well with those obtained by first-principles simulations for edge doped graphene nanoribbons. Analytical expressions in the simplest case are obtained to facilitate qualitative analyses in general contexts. PMID:27857156

  15. Rectifying performance in zigzag graphene nanoribbon heterojunctions with different edge hydrogenations

    International Nuclear Information System (INIS)

    Cao, Can; Chen, Ling-Na; Long, Meng-Qiu; Xu, Hui

    2013-01-01

    Using nonequilibrium Green's functions in combination with the density functional theory, we investigated the electronic transport behaviors of zigzag graphene nanoribbon (ZGNR) heterojunctions with different edge hydrogenations. The results show that electronic transport properties of ZGNR heterojunctions can be modulated by hydrogenations, and prominent rectification effects can be observed. We propose that the edge dihydrogenation leads to a blocking of electronic transfer, as well as the changes of the distribution of the frontier orbital at negative/positive bias might be responsible for the rectification effects. These results may be helpful for designing practical devices based on graphene nanoribbons.

  16. Edge effects on the electronic properties of phosphorene nanoribbons

    International Nuclear Information System (INIS)

    Peng, Xihong; Copple, Andrew; Wei, Qun

    2014-01-01

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p z orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.

  17. Evolution of graphene nanoribbons under low-voltage electron irradiation

    KAUST Repository

    Zhu, Wenpeng

    2012-01-01

    Though the all-semiconducting nature of ultrathin graphene nanoribbons (GNRs) has been demonstrated in field-effect transistors operated at room temperature with ∼105 on-off current ratios, the borderline for the potential of GNRs is still untouched. There remains a great challenge in fabricating even thinner GNRs with precise width, known edge configurations and specified crystallographic orientations. Unparalleled to other methods, low-voltage electron irradiation leads to a continuous reduction in width to a sub-nanometer range until the occurrence of structural instability. The underlying mechanisms have been investigated by the molecular dynamics method herein, combined with in situ aberration-corrected transmission electron microscopy and density functional theory calculations. The structural evolution reveals that the zigzag edges are dynamically more stable than the chiral ones. Preferential bond breaking induces atomic rings and dangling bonds as the initial defects. The defects grow, combine and reconstruct to complex edge structures. Dynamic recovery is enhanced by thermal activation, especially in cooperation with electron irradiation. Roughness develops under irradiation and reaches a plateau less than 1 nm for all edge configurations after longtime exposure. These features render low-voltage electron irradiation an attractive technique in the fabrication of ultrathin GNRs for exploring the ultimate electronic properties. © 2012 The Royal Society of Chemistry.

  18. Twin lead ballistic conductor based on nanoribbon edge transport

    Science.gov (United States)

    Konôpka, Martin; Dieška, Peter

    2018-03-01

    If a device like a graphene nanoribbon (GNR) has all its four corners attached to electric current leads, the device becomes a quantum junction through which two electrical circuits can interact. We study such system theoretically for stationary currents. The 4-point energy-dependent conductance matrix of the nanostructure and the classical resistors in the circuits are parameters of the model. The two bias voltages in the circuits are the control variables of the studied system while the electrochemical potentials at the device's terminals are non-trivially dependent on the voltages. For the special case of the linear-response regime analytical formulae for the operation of the coupled quantum-classical device are derived and applied. For higher bias voltages numerical solutions are obtained. The effects of non-equilibrium Fermi levels are captured using a recursive algorithm in which self-consistency between the electrochemical potentials and the currents is reached within few iterations. The developed approach allows to study scenarios ranging from independent circuits to strongly coupled ones. For the chosen model of the GNR with highly conductive zigzag edges we determine the regime in which the single device carries two almost independent currents.

  19. Graphene nanoribbons on gold: understanding superlubricity and edge effects

    Science.gov (United States)

    Gigli, L.; Manini, N.; Benassi, A.; Tosatti, E.; Vanossi, A.; Guerra, R.

    2017-12-01

    We address the atomistic nature of the longitudinal static friction against sliding of graphene nanoribbons (GNRs) deposited on gold, a system whose structural and mechanical properties have been recently the subject of intense experimental investigation. By means of numerical simulations and modeling we show that the GNR interior is structurally lubric (‘superlubric’) so that the static friction is dominated by the front/tail regions of the GNR, where the residual uncompensated lateral forces arising from the interaction with the underneath gold surface opposes the free sliding. As a result of this edge pinning the static friction does not grow with the GNR length, but oscillates around a fairly constant mean value. These friction oscillations are explained in terms of the GNR-Au(111) lattice mismatch: at certain GNR lengths close to an integer number of the beat (or moiré) length there is good force compensation and superlubric sliding; whereas close to half odd-integer periods there is significant pinning of the edge with larger friction. These results make qualitative contact with recent state-of-the-art atomic force microscopy experiment, as well as with the sliding of other different incommensurate systems.

  20. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges

    Science.gov (United States)

    Wu, Shuang; Liu, Bing; Shen, Cheng; Li, Si; Huang, Xiaochun; Lu, Xiaobo; Chen, Peng; Wang, Guole; Wang, Duoming; Liao, Mengzhou; Zhang, Jing; Zhang, Tingting; Wang, Shuopei; Yang, Wei; Yang, Rong; Shi, Dongxia; Watanabe, Kenji; Taniguchi, Takashi; Yao, Yugui; Wang, Weihua; Zhang, Guangyu

    2018-05-01

    The determination of the electronic structure by edge geometry is unique to graphene. In theory, an evanescent nonchiral edge state is predicted at the zigzag edges of graphene. Up to now, the approach used to study zigzag-edged graphene has mostly been limited to scanning tunneling microscopy. The transport properties have not been revealed. Recent advances in hydrogen plasma-assisted "top-down" fabrication of zigzag-edged graphene nanoribbons (Z-GNRs) have allowed us to investigate edge-related transport properties. In this Letter, we report the magnetotransport properties of Z-GNRs down to ˜70 nm wide on an h -BN substrate. In the quantum Hall effect regime, a prominent conductance peak is observed at Landau ν =0 , which is absent in GNRs with nonzigzag edges. The conductance peak persists under perpendicular magnetic fields and low temperatures. At a zero magnetic field, a nonlocal voltage signal, evidenced by edge conduction, is detected. These prominent transport features are closely related to the observable density of states at the hydrogen-etched zigzag edge of graphene probed by scanning tunneling spectroscopy, which qualitatively matches the theoretically predicted electronic structure for zigzag-edged graphene. Our study gives important insights for the design of new edge-related electronic devices.

  1. Tunable phonon-induced transparency in bilayer graphene nanoribbons.

    Science.gov (United States)

    Yan, Hugen; Low, Tony; Guinea, Francisco; Xia, Fengnian; Avouris, Phaedon

    2014-08-13

    In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited coupling to the electromagnetic radiation and possesses relatively longer lifetime. Plasmon-induced transparency not only leads to light transmission at otherwise opaque frequency regions but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this article, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active Γ-point optical phonon, whose function here is similar to that of the dark plasmon mode in the plasmon-induced transparency. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm(-1), based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon nonlinear optics and slow light in this novel two-dimensional material.

  2. Graphene oxide nanoribbons and their applications in supercapacitors

    Directory of Open Access Journals (Sweden)

    Mohammad Fathi

    2014-12-01

    Full Text Available We report the enhanced capacitance of the Multi-Walled Carbon NanoTubes (MWCNTs after a chemical unzipping process in concentrated sulfuric acid (H2SO4 and potassium permanganate (KMnO4. The effects of the test duration and temperature were investigated on the unzipping process of the MWCNTs to synthesize the graphene oxide nanoribbons. The SEM and TEM studies were carried out on untreated and unzipped MWCNTs samples to investigate the cutting and unzipping of the MWCNTs. The results confirmed that the efficient tube unzipping with improved effective surface area was obtained from the 1h treatment at 60°C, at which most of the tubes were opened without any tube annihilation. The graphite plate deposited with the untreated and unzipped MWCNTs samples was investigated by electrochemical studies. Cyclic voltammetry studies showed that the MWCNTs after 1h unzipping at 60°C had better electrochemical behavior than the other samples. Galvanostatic charging/discharging measurements were carried out on the untreated and unzipped MWCNTs samples. A remarkable specific capacitance of 33 Fg-1 was obtained for the unzipped MWCNTs at a current density of 1 Ag-1 in 0.5 M KCl solution compared with 8 Fg-1 for pristine MWCNTs, again confirming the enhanced effective surface area and increased defect density in the tube surfaces after the unzipping process. These results make the unzipped MWCNTs a promising electrode material for all energy storage applications.

  3. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor

    Science.gov (United States)

    Nguyen, Giang D.; Tsai, Hsin-Zon; Omrani, Arash A.; Marangoni, Tomas; Wu, Meng; Rizzo, Daniel J.; Rodgers, Griffin F.; Cloke, Ryan R.; Durr, Rebecca A.; Sakai, Yuki; Liou, Franklin; Aikawa, Andrew S.; Chelikowsky, James R.; Louie, Steven G.; Fischer, Felix R.; Crommie, Michael F.

    2017-11-01

    The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.

  4. Quantum transport in defective phosphorene nanoribbons: Effects of atomic vacancies

    Science.gov (United States)

    Li, L. L.; Peeters, F. M.

    2018-02-01

    Defects are almost inevitably present in realistic materials and defective materials are expected to exhibit very different properties than their nondefective (perfect) counterparts. Here, using a combination of the tight-binding approach and the scattering matrix formalism, we investigate the electronic transport properties of defective phosphorene nanoribbons (PNRs) containing atomic vacancies. We find that for both armchair PNRs (APNRs) and zigzag PNRs (ZPNRs), single vacancies can create quasilocalized states, which can affect their conductance. With increasing vacancy concentration, three different transport regimes are identified: ballistic, diffusive, and Anderson localized ones. In particular, ZPNRs that are known to be metallic due to the presence of edge states become semiconducting: edge conductance vanishes and transport gap appears due to Anderson localization. Moreover, we find that for a fixed vacancy concentration, both APNRs and ZPNRs of narrower width and/or longer length are more sensitive to vacancy disorder than their wider and/or shorter counterparts, and that for the same ribbon length and width, ZPNRs are more sensitive to vacancy disorder than APNRs.

  5. Edge effects on the electronic properties of phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xihong, E-mail: xihong.peng@asu.edu [School of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States); Copple, Andrew [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Wei, Qun [School of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States); School of Physics and Optoelectronic Engineering, Xidian University, Xi' an 710071 (China)

    2014-10-14

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.

  6. First-principles calculations of graphene nanoribbons in gaseous environments: Structural and electronic properties

    DEFF Research Database (Denmark)

    Vanin, Marco; Gath, Jesper; Thygesen, Kristian Sommer

    2010-01-01

    The stability of graphene nanoribbons in the presence of typical atmospheric molecules is systematically investigated by means of density-functional theory. We calculate the edge formation free energy of five different edge configurations passivated by H, H-2, O, O-2, N-2, CO, CO2, and H2O...

  7. Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect

    Science.gov (United States)

    Wu, Meng; Shi, Jun-jie; Zhang, Min; Ding, Yi-min; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang; Zhu, Yao-hui

    2018-05-01

    Quite recently, the two-dimensional (2D) InSe nanosheet has become a hot material with great promise for advanced functional nano-devices. In this work, for the first time, we perform first-principles calculations on the structural, electronic, magnetic and transport properties of 1D InSe nanoribbons with/without hydrogen or halogen saturation. We find that armchair ribbons, with various edges and distortions, are all nonmagnetic semiconductors, with a direct bandgap of 1.3 (1.4) eV for bare (H-saturated) ribbons, and have the same high electron mobility of about 103 cm2V‑1s‑1 as the 2D InSe nanosheet. Zigzag InSe nanoribbons exhibit metallic behavior and diverse intrinsic ferromagnetic properties, with the magnetic moment of 0.5–0.7 μ B per unit cell, especially for their single-edge spin polarization. The edge spin orientation, mainly dominated by the unpaired electrons of the edge atoms, depends sensitively on the edge chirality. Hydrogen or halogen saturation can effectively recover the structural distortion, and modulate the electronic and magnetic properties. The binding energy calculations show that the stability of InSe nanoribbons is analogous to that of graphene and better than in 2D InSe nanosheets. These InSe nanoribbons, with novel electronic and magnetic properties, are thus very promising for use in electronic, spintronic and magnetoresistive nano-devices.

  8. Negative differential resistance and rectifying performance induced by doped graphene nanoribbons p–n device

    International Nuclear Information System (INIS)

    Zhou, Yuhong; Qiu, Nianxiang; Li, Runwei; Guo, Zhansheng; Zhang, Jian; Fang, Junfeng; Huang, Aisheng; He, Jian; Zha, Xianhu; Luo, Kan; Yin, Jingshuo; Li, Qiuwu; Bai, Xiaojing; Huang, Qing; Du, Shiyu

    2016-01-01

    Employing nonequilibrium Green's Functions in combination with density functional theory, the electronic transport properties of armchair graphene nanoribbon (GNR) devices with various widths are investigated in this work. In the adopted model, two semi-infinite graphene electrodes are periodically doped with boron or nitrogen atoms. Our calculations reveal that these devices have a striking nonlinear feature and show notable negative differential resistance (NDR). The results also indicate the diode-like properties are reserved and the rectification ratios are high. It is found the electronic transport properties are strongly dependent on the width of doped nanoribbons and the positions of dopants and three distinct families are elucidated for the current armchair GNR devices. The NDR as well as rectifying properties can be well explained by the variation of transmission spectra and the relative shift of discrete energy states with applied bias voltage. These findings suggest that the doped armchair GNR is a promising candidate for the next generation nanoscale device. - Highlights: • The negative differential resistance (NDR) and rectification phenomena have been observed for the B- and N-doping armchair graphene nanoribbon (GNR) devices. • The electronic transport properties are strongly dependent on the width of doped nanoribbons and exhibit three distinct families. • The NDR as well as rectifying properties can be well explained by the variation of transmission spectra and the relative shift of discrete energy states with applied bias voltage.

  9. Topographic and spectroscopic characterization of electronic edge states in CVD grown graphene nanoribbons.

    Science.gov (United States)

    Pan, Minghu; Girão, E Costa; Jia, Xiaoting; Bhaviripudi, Sreekar; Li, Qing; Kong, Jing; Meunier, V; Dresselhaus, Mildred S

    2012-04-11

    We used scanning tunneling microscopy and spectroscopy (STM/S) techniques to analyze the relationships between the edge shapes and the electronic structures in as-grown chemical vapor deposition (CVD) graphene nanoribbons (GNRs). A rich variety of single-layered graphene nanoribbons exhibiting a width of several to 100 nm and up to 1 μm long were studied. High-resolution STM images highlight highly crystalline nanoribbon structures with well-defined and clean edges. Theoretical calculations indicate clear spin-split edge states induced by electron-electron Coulomb repulsion. The edge defects can significantly modify these edge states, and different edge structures for both sides of a single ribbon produce asymmetric electronic edge states, which reflect the more realistic features of CVD grown GNRs. Three structural models are proposed and analyzed to explain the observations. By comparing the models with an atomic resolution image at the edge, a pristine (2,1) structure was ruled out in favor of a reconstructed edge structure composed of 5-7 member rings, showing a better match with experimental results, and thereby suggesting the possibility of a defective morphology at the edge of CVD grown nanoribbons. © 2012 American Chemical Society

  10. Negative differential resistance and rectifying performance induced by doped graphene nanoribbons p–n device

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuhong; Qiu, Nianxiang; Li, Runwei [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); Guo, Zhansheng [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai 200072 (China); Zhang, Jian; Fang, Junfeng; Huang, Aisheng [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); He, Jian [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zha, Xianhu; Luo, Kan; Yin, Jingshuo; Li, Qiuwu; Bai, Xiaojing; Huang, Qing [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China); Du, Shiyu, E-mail: dushiyu@nimte.ac.cn [Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-03-06

    Employing nonequilibrium Green's Functions in combination with density functional theory, the electronic transport properties of armchair graphene nanoribbon (GNR) devices with various widths are investigated in this work. In the adopted model, two semi-infinite graphene electrodes are periodically doped with boron or nitrogen atoms. Our calculations reveal that these devices have a striking nonlinear feature and show notable negative differential resistance (NDR). The results also indicate the diode-like properties are reserved and the rectification ratios are high. It is found the electronic transport properties are strongly dependent on the width of doped nanoribbons and the positions of dopants and three distinct families are elucidated for the current armchair GNR devices. The NDR as well as rectifying properties can be well explained by the variation of transmission spectra and the relative shift of discrete energy states with applied bias voltage. These findings suggest that the doped armchair GNR is a promising candidate for the next generation nanoscale device. - Highlights: • The negative differential resistance (NDR) and rectification phenomena have been observed for the B- and N-doping armchair graphene nanoribbon (GNR) devices. • The electronic transport properties are strongly dependent on the width of doped nanoribbons and exhibit three distinct families. • The NDR as well as rectifying properties can be well explained by the variation of transmission spectra and the relative shift of discrete energy states with applied bias voltage.

  11. Nucleobase-functionalized grapheme nanoribbons for accurate high-speed DNA sequencing

    NARCIS (Netherlands)

    Paulechka, Eugene; Wassenaar, Tsjerk; Kroenlein, Kenneth; Kazakov, Andrei; Smolyanitsky, Alex

    2016-01-01

    We propose a water-immersed nucleobase-functionalized suspended graphene nanoribbon as an intrinsically selective device for nucleotide detection. The proposed sensing method combines Watson–Crick selective base pairing with graphene's capacity for converting anisotropic lattice strain to changes in

  12. Electronic transport in helium-ion-beam etched encapsulated graphene nanoribbons

    NARCIS (Netherlands)

    Nanda, G.; Hlawacek, Gregor; Goswami, S.; Watanabe, Kenji; Taniguchi, Takashi; Alkemade, P.F.A.

    2017-01-01

    We report the etching of and electronic transport in nanoribbons of graphene sandwiched between atomically flat hexagonal boron nitride (h-BN). The etching of ribbons of varying width was achieved with a focused beam of 30 keV He+ ions. Using in-situ electrical measurements, we

  13. From Kondo to local singlet state in graphene nanoribbons with magnetic impurities

    Science.gov (United States)

    Diniz, G. S.; Luiz, G. I.; Latgé, A.; Vernek, E.

    2018-03-01

    A detailed analysis of the Kondo effect of a magnetic impurity in a zigzag graphene nanoribbon is addressed. An adatom is coupled to the graphene nanoribbon via a hybridization amplitude Γimp in a hollow- or top-site configuration. In addition, the adatom is also weakly coupled to a metallic scanning tunnel microscope (STM) tip by a hybridization function Γtip that provides a Kondo screening of its magnetic moment. The entire system is described by an Anderson-like Hamiltonian whose low-temperature physics is accessed by employing the numerical renormalization-group approach, which allows us to obtain the thermodynamic properties used to compute the Kondo temperature of the system. We find two screening regimes when the adatom is close to the edge of the zigzag graphene nanoribbon: (1) a weak-coupling regime (Γimp≪Γtip ), in which the edge states produce an enhancement of the Kondo temperature TK, and (2) a strong-coupling regime (Γimp≫Γtip ), in which a local singlet is formed, to the detriment of the Kondo screening by the STM tip. These two regimes can be clearly distinguished by the dependence of their characteristic temperature T* on the coupling between the adatom and the carbon sites of the graphene nanoribbon Vimp. We observe that in the weak-coupling regime T* increases exponentially with Vimp2. Differently, in the strong-coupling regime, T* increases linearly with Vimp2.

  14. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons.

    Science.gov (United States)

    Correa, Julián David; Orellana, Pedro Alejandro; Pacheco, Mónica

    2017-03-20

    The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon-fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.

  15. Magnetic Doping and Kondo Effect in Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Cha, Judy J.; Williams, James R.; Kong, Desheng; Meister, Stefan; Peng, Hailin; Bestwick, Andrew J.; Gallagher, Patrick; Goldhaber-Gordon, David; Cui, Yi

    2010-01-01

    A simple surface band structure and a large bulk band gap have allowed Bi2Se3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surfaceto-volume ratio, which enhances effects from the surface states; recently reported Aharonov-Bohm oscillation in topological insulator nanoribbons by some of us is a good example. Theoretically, introducing magnetic impurities in topological insulators is predicted to open a small gap in the surface states by breaking time-reversal symmetry. Here, we present synthesis of magnetically doped Bi 2Se3 nanoribbons by vapor-liquid-solid growth using magnetic metal thin films as catalysts. Although the doping concentration is less than ∼2 %. low-temperature transport measurements of the Fe-doped Bi2Se3 nanoribbon devices show a clear Kondo effect at temperatures below 30 K, confirming the presence of magnetic impurities in the Bi2Se3 nanoribbons. The capability to dope topological insulator nanostructures magnetically opens up exciting opportunities for spintronics. © 2010 American Chemical Society.

  16. Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups

    KAUST Repository

    Bilić, Ante

    2012-09-06

    Two sets of aromatic nanoribbons, based around a common hexagonal scaffolding, with single and dual terminal amine groups have been considered as potential molecular wires in a junction formed by gold leads. Charge transport through the two-terminal device has been modeled using density functional theory (with and without self-interaction correction) and the nonequilibrium Green\\'s function method. The effects of wire length, multiple terminal contacts, and pathways across the junction have been investigated. For nanoribbons with the oligopyrene motif and conventional single amine terminal groups, an increase in the wire length causes an exponential drop in the conductance. In contrast, for the nanoribbons with the oligoperylene motif and dual amine anchoring groups the predicted conductance rises with the wire length over the whole range of investigated lengths. Only when the effects of self-interaction correction are taken into account, the conductance of the oligoperylene ribbons exhibits saturation for longer members of the series. The oligoperylene nanoribbons, with dual amine groups at both terminals, show the potential to fully harness the highly conjugated system of π molecular orbitals across the junction. © 2012 American Physical Society.

  17. Electronic structure of graphene nanoribbons doped with nitrogen atoms: a theoretical insight.

    Science.gov (United States)

    Torres, A E; Fomine, S

    2015-04-28

    The electronic structure of graphene nanoribbons doped with a graphitic type of nitrogen atoms has been studied using B3LYP, B2PLYP and CAS methods. In all but one case the restricted B3LYP solutions were unstable and the CAS calculations provided evidence for the multiconfigurational nature of the ground state with contributions from two dominant configurations. The relative stability of the doped nanoribbons depends mostly on the mutual position of the dopant atoms and notably less on the position of nitrogen atoms within the nanoribbon. N-graphitic doping affects cationic states much more than anionic ones due the participation of the nitrogen atoms in the stabilization of the positive charge, resulting in a drop in ionization energies (IPs) for N-graphitic doped systems. Nitrogen atoms do not participate in the negative charge stabilization of anionic species and, therefore, the doping does not affect the electron affinities (EAs). The unrestricted B3LYP method is the method of choice for the calculation of IPs and EAs. Restricted B3LYP and B2PLYP produces unreliable results for both IPs and EAs while CAS strongly underestimates the electron affinities. This is also true for the reorganization energies where restricted B3LYP produces qualitatively incorrect results. Doping changes the reorganization energy of the nanoribbons; the hole reorganization energy is generally higher than the corresponding electron reorganization energy due to the participation of nitrogen atoms in the stabilization of the positive charge.

  18. Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons

    Science.gov (United States)

    Koop, Cornelie; Wessel, Stefan

    2017-10-01

    We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.

  19. Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons with Atomically Smooth Edges

    Energy Technology Data Exchange (ETDEWEB)

    Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Terrones, M. [Universidad Carlos III, Madrid, Spain; Endo, M [Shinshu University; Munoz-Sandoval, Emilio [IPICyT; Kim, Y A [Shinshu University; Morelos-Bomez, Aaron [Shinshu University; Vega-Diaz, Sofia [Shinshu University

    2012-01-01

    We report a novel physicochemical route to produce highly crystalline nitrogen-doped graphene nanoribbons. The technique consists of an abrupt N2 gas expansion within the hollow core of nitrogen-doped multiwalled carbon nanotubes (CNx-MWNTs) when exposed to a fast thermal shock. The multiwalled nanotube unzipping mechanism is rationalized using molecular dynamics and density functional theory simulations, which highlight the importance of open-ended nanotubes in promoting the efficient introduction of N2 molecules by capillary action within tubes and surface defects, thus triggering an efficient and atomically smooth unzipping. The so-produced nanoribbons could be few-layered (from graphene bilayer onward) and could exhibit both crystalline zigzag and armchair edges. In contrast to methods developed previously, our technique presents various advantages: (1) the tubes are not heavily oxidized; (2) the method yields sharp atomic edges within the resulting nanoribbons; (3) the technique could be scaled up for the bulk production of crystalline nanoribbons from available MWNT sources; and (4) this route could eventually be used to unzip other types of carbon nanotubes or intercalated layered materials such as BN, MoS2, WS2, etc.

  20. Template-free synthesis of fully collapsed carbon nanotubes and graphene nanoribbons by chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhang, Yong-Xing; Jia, Yong

    2015-01-01

    Highlights: • Commercial Fe 2 O 3 and Al 2 O 3 powders were chosen to prepare Fe 2 O 3 /Al 2 O 3 catalyst. • Fully collapsed carbon nanotubes and graphene nanoribbons were synthesized through the catalytic decomposition of methane at 900 °C. • The formation mechanism of the fully collapsed carbon nanotubes was revealed. - Abstract: Fe 2 O 3 /Al 2 O 3 catalyst was prepared by simply calcining the mixture of commercial Fe 2 O 3 and Al 2 O 3 powders at 1000 °C. The obtained Fe 2 O 3 /Al 2 O 3 catalyst shows high efficiency for the synthesis of fully collapsed carbon nanotubes and graphene nanoribbons through the catalytic decomposition of methane at 900 °C. The yield of the fully collapsed carbon nanotubes and graphene nanoribbons was 19.5 wt%. Field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and thermal gravimetric analysis were used to characterize the products. A tip-growth mechanism for the fully collapsed carbon nanotubes was suggested based on the SEM and TEM images of products produced at the initial stage. The break through of the catalyst particle from graphite layers resulted in the crack and then cut open of the fully collapsed carbon nanotubes, which further resulted in the formation of the graphene nanoribbons.

  1. Defect- and dopant-controlled carbon nanotubes fabricated by self-assembly of graphene nanoribbons

    Institute of Scientific and Technical Information of China (English)

    Cun Zhang and Shaohua Chen

    2015-01-01

    Molecular dynamics simulations showed that a basal carbon nanotube can activate and guide the fabrication of single-walled carbon nanotubes (CNTs) on its internal surface by self-assembly of edge-unpassivated graphene nanoribbons with defects. Furthermore, the distribution of defects on self-assembled CNTs is controllable. The system temperature and defect fraction are two main factors that influence the success of self-assembly. Due to possible joint flaws formed at the boundaries under a relatively high constant temperature, a technique based on increasing the temperature is adopted. Self-assembly is always successful for graphene nanoribbons with relatively small defect fractions, while it will fail in cases with relatively large ones. Similar to the self-assembly of graphene nanoribbons with defects, graphene nanoribbons with different types of dopants can also be self-assembled into carbon nanotubes. The finding provides a possible fabrication technique not only for carbon nanotubes with metallic or semi-con- ductive properties but also for carbon nanotubes with electromagnetic induction characteristics.

  2. Self-assembled polyaniline nanotubes and nanoribbons/titanium dioxide nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Radoičic, M.; Šaponjic, Z.; Nedeljkovic, J.; Ciric-Marjanovic, G.; Stejskal, Jaroslav

    2010-01-01

    Roč. 160, 11-12 (2010), s. 1325-1334 ISSN 0379-6779 R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : nanocomposites * nanoribbons * nanostructures Subject RIV: JI - Composite Materials Impact factor: 1.871, year: 2010

  3. Symmetrical metallic and magnetic edge states of nanoribbon from semiconductive monolayer PtS2

    Science.gov (United States)

    Liu, Shan; Zhu, Heyu; Liu, Ziran; Zhou, Guanghui

    2018-03-01

    Transition metal dichalcogenides (TMD) MoS2 or graphene could be designed to metallic nanoribbons, which always have only one edge show metallic properties due to symmetric protection. In present work, a nanoribbon with two parallel metallic and magnetic edges was designed from a noble TMD PtS2 by employing first-principles calculations based on density functional theory (DFT). Edge energy, bonding charge density, band structure, density of states (DOS) and simulated scanning tunneling microscopy (STM) of four possible edge states of monolayer semiconductive PtS2 were systematically studied. Detailed calculations show that only Pt-terminated edge state among four edge states was relatively stable, metallic and magnetic. Those metallic and magnetic properties mainly contributed from 5d orbits of Pt atoms located at edges. What's more, two of those central symmetric edges coexist in one zigzag nanoribbon, which providing two atomic metallic wires thus may have promising application for the realization of quantum effects, such as Aharanov-Bohm effect and atomic power transmission lines in single nanoribbon.

  4. Magnetic Doping and Kondo Effect in Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Cha, Judy J.

    2010-03-10

    A simple surface band structure and a large bulk band gap have allowed Bi2Se3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surfaceto-volume ratio, which enhances effects from the surface states; recently reported Aharonov-Bohm oscillation in topological insulator nanoribbons by some of us is a good example. Theoretically, introducing magnetic impurities in topological insulators is predicted to open a small gap in the surface states by breaking time-reversal symmetry. Here, we present synthesis of magnetically doped Bi 2Se3 nanoribbons by vapor-liquid-solid growth using magnetic metal thin films as catalysts. Although the doping concentration is less than ∼2 %. low-temperature transport measurements of the Fe-doped Bi2Se3 nanoribbon devices show a clear Kondo effect at temperatures below 30 K, confirming the presence of magnetic impurities in the Bi2Se3 nanoribbons. The capability to dope topological insulator nanostructures magnetically opens up exciting opportunities for spintronics. © 2010 American Chemical Society.

  5. Iodine versus Bromine Functionalization for Bottom-Up Graphene Nanoribbon Growth

    DEFF Research Database (Denmark)

    Bronner, Christopher; Marangoni, Tomas; Rizzo, Daniel J.

    2017-01-01

    Deterministic bottom-up approaches for synthesizing atomically well-defined graphene nanoribbons (GNRs) largely rely on the surface-catalyzed activation of selected labile bonds in a molecular precursor followed by step-growth polymerization and cyclodehydrogenation. While the majority of success...

  6. Densely Aligned Graphene Nanoribbon Arrays and Bandgap Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Su, Justin [Stanford Univ., CA (United States); Chen, Changxin [Stanford Univ., CA (United States); Gong, Ming [Stanford Univ., CA (United States); Kenney, Michael [Stanford Univ., CA (United States)

    2017-01-04

    Graphene has attracted great interest for future electronics due to its high mobility and high thermal conductivity. However, a two-dimensional graphene sheet behaves like a metal, lacking a bandgap needed for the key devices components such as field effect transistors (FETs) in digital electronics. It has been shown that, partly due to quantum confinement, graphene nanoribbons (GNRs) with ~2 nm width can open up sufficient bandgaps and evolve into semiconductors to exhibit high on/off ratios useful for FETs. However, a challenging problem has been that, such ultra-narrow GNRs (~2 nm) are difficult to fabricate, especially for GNRs with smooth edges throughout the ribbon length. Despite high on/off ratios, these GNRs show very low mobility and low on-state conductance due to dominant scattering effects by imperfections and disorders at the edges. Wider GNRs (>5 nm) show higher mobility, higher conductance but smaller bandgaps and low on/off ratios undesirable for FET applications. It is highly desirable to open up bandgaps in graphene or increase the bandgaps in wide GNRs to afford graphene based semiconductors for high performance (high on-state current and high on/off ratio) electronics. Large scale ordering and dense packing of such GNRs in parallel are also needed for device integration but have also been challenging thus far. It has been shown theoretically that uniaxial strains can be applied to a GNR to engineer its bandgap. The underlying physics is that under uniaxial strain, the Dirac point moves due to stretched C-C bonds, leading to an increase in the bandgap of armchair GNRs by up to 50% of its original bandgap (i.e. bandgap at zero strain). For zigzag GNRs, due to the existence of the edge states, changes of bandgap are smaller under uniaxial strain and can be increased by ~30%. This work proposes a novel approach to the fabrication of densely aligned graphene nanoribbons with highly smooth edges afforded by anisotropic etching and uniaxial strain for

  7. Graphene Nanoribbons @ Vanadium Oxide Nanostrips for Supercapacitive Energy Storage

    International Nuclear Information System (INIS)

    Sahu, Vikrant; Goel, Shubhra; Kumar Tomar, Anuj; Singh, Gurmeet; Sharma, Raj Kishore

    2017-01-01

    Highlights: • ∼15 wt% GNR in VOS@GNRnanocompositeplaysacrucialroleinminimizationtheiR-drop. (*). • VOS@GNR shows high capacitance 335.8 F g −1 at 1 A g −1 . • High cycling stability with ∼98.5% capacitance retention & high workable current density. • V 2 O 5 over GNR, improved conductivity and ionic accessibility leading to low iR-drop. - Abstract: Nanocomposite GNR@VOS composed of V 2 O 5 nanostrips (VOS) embedded over graphene nanoribbons (GNR) is synthesized by facile hydrothermal route and examined as supercapacitor electrode. GNR as support in mere ∼15 wt% plays an important role in patterning the nanocomposite growth as a template. Selective formation of VOS leads to ordered growth and at the same time channelizes the microstructural (shape/size, porosity) as well electrochemical characteristics of the nanocomposite. GNR@VOS so formed is highly accessible electrode matrix in which the underlying GNR acts as conducting support to efficiently minimize the internal resistance (iR-drop) of the electrode. The study suggests that the conductive properties of VOS can be enhanced by integration with GNR displaying increased solid-state conductivity by two orders (bare VOS: 4.2 × 10 −4 S m −1 and GNR@VOS: 1.4 × 10 −2 S m −1 ). These attributes result in high energy density for GNR@VOS as 42.09 Wh kg −1 at power density 475 W kg −1 . The enhanced performance of GNR@VOS supercapacitor cell from low (1 A g −1 ) to high current density (20 A g −1 ) is attributed to the balanced ionic and electronic conduction.

  8. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Emanuela Mari

    2016-11-01

    Full Text Available Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2 and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS, mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  9. Simulation of 50-nm Gate Graphene Nanoribbon Transistors

    Directory of Open Access Journals (Sweden)

    Cedric Nanmeni Bondja

    2016-01-01

    Full Text Available An approach to simulate the steady-state and small-signal behavior of GNR MOSFETs (graphene nanoribbon metal-semiconductor-oxide field-effect transistor is presented. GNR material parameters and a method to account for the density of states of one-dimensional systems like GNRs are implemented in a commercial device simulator. This modified tool is used to calculate the current-voltage characteristics as well the cutoff frequency fT and the maximum frequency of oscillation fmax of GNR MOSFETs. Exemplarily, we consider 50-nm gate GNR MOSFETs with N = 7 armchair GNR channels and examine two transistor configurations. The first configuration is a simplified MOSFET structure with a single GNR channel as usually studied by other groups. Furthermore, and for the first time in the literature, we study in detail a transistor structure with multiple parallel GNR channels and interribbon gates. It is shown that the calculated fT of GNR MOSFETs is significantly lower than that of GFETs (FET with gapless large-area graphene channel with comparable gate length due to the mobility degradation in GNRs. On the other hand, GNR MOSFETs show much higher fmax compared to experimental GFETs due the semiconducting nature of the GNR channels and the resulting better saturation of the drain current. Finally, it is shown that the gate control in FETs with multiple parallel GNR channels is improved while the cutoff frequency is degraded compared to single-channel GNR MOSFETs due to parasitic capacitances of the interribbon gates.

  10. Spin thermopower and thermoconductance in a ferromagnetic graphene nanoribbon

    International Nuclear Information System (INIS)

    Cheng Shuguang

    2012-01-01

    The spin thermoelectric properties of a zigzag edged ferromagnetic (FM) graphene nanoribbon are studied theoretically by using the non-equilibrium Green’s function method combined with the Landauer-Büttiker formula. By applying a temperature gradient along the ribbon, under closed boundary conditions, there is a spin voltage ΔV s inside the terminal as the response to the temperature difference ΔT between two terminals. Meanwhile, the heat current ΔQ is accompanied from the ‘hot’ terminal to the ‘cold’ terminal. The spin thermopower S = ΔV s /ΔT and thermoconductance κ = ΔQ/ΔT are obtained. When there is no magnetic field, S versus E R curves show peaks and valleys as a result of band selective transmission and Klein tunneling with E R being the on-site energy of the right terminal. The results are in agreement with the semi-classical Mott relation. When |E R | R | > M, the quantized value of κ=π 2 k B 2 T/3 h appears. In the quantum Hall regime, because Klein tunneling is suppressed, S peaks are eliminated and the quantized value of κ is much clearer. We also investigate how the thermoelectric properties are affected by temperature, FM exchange split energy and Anderson disorder. The results indicate that S and κ are sensitive to disorder. S is suppressed for even small disorder strengths. For small disorder strengths, κ is enhanced and for moderate disorder strengths, κ shows quantized values.

  11. In situ immobilized, magnetite nanoplatelets over holey graphene nanoribbons for high performance solid state supercapacitor

    International Nuclear Information System (INIS)

    Lalwani, Shubra; Sahu, Vikrant; Marichi, Ram Bhagat; Singh, Gurmeet; Sharma, Raj Kishore

    2017-01-01

    Highlights: • Hexagonal platelet morphology of magnetite offers efficient material utilization. • Enhanced electronic conductivity of Fe 3 O 4 /GNR nanocomposites via GNR-GNR network. • Exploring the best optimized 30 wt. (%) Fe 3 O 4 on GNR as solid state supercapacitor. - ABSTRACT: Among major phases of iron oxide, magnetite (Fe 3 O 4 ) is potential candidate for pseudocapacitors. Yet, the clustering of magnetite nanoparticles confines them from being exploited as charge storage material. Herein, magnetite hexagonal nanoplatelets are synthesized on holey graphene nanoribbons (GNRs) by hydrothermal route and tested for charge storage performance in solid-state supercapacitor incorporating gel electrolyte (PVA-H 2 SO 4 ). GNR besides providing large surface for adsorption of magnetite platelets also improved the charge collection ability of nanocomposite through interconnected nanoribbon network. Mass loading over GNR is optimized to a maximum of 30 wt. (%) by ensuring mono dispersion of magnetite nanoplatelets and high conductivity (14.0 S m −1 ) of nanocomposite. Above 50 wt. (%) magnetite loading, structural identity of nanoribbon is tempered and as a consequence increased network resistivity depletion in charge storage capacity is observed. Mass loading of magnetite over nanoribbon showed an inverse relationship with ion diffusion and electronic conduction. Balanced ionic and electronic conduction in 30 wt. (%) magnetite loaded nanoribbon results in a supercapacitor cell delivering 1241.5 W kg −1 while maintaining 26.9 Wh kg −1 energy density. About 95% capacitance retention over 3000 charge discharge cycles at 2.3 A g −1 demonstrate magnetite as a high performance supercapacitor electrode.

  12. Characterization of Chiral Carbonaceous Nanotubes Prepared from Four Coiled Tubular 4,4'-biphenylene-silica Nanoribbons

    Directory of Open Access Journals (Sweden)

    Shuwei Lin

    2014-04-01

    Full Text Available Four dipeptides derived from phenylalanine were synthesized, which can self-assemble into twisted nanoribbon in deionized water. The handedness of the organic self-assemblies was controlled by the chirality of the phenylalanine at the terminals. Coiled 4,4'-biphenylene bridged polybissilsesquioxane tubular nanoribbons were prepared using the organic self-assemblies as the templates. The circular dichroism spectra indicated that the biphenylene rings preferred to twist in one-handedness within the walls of the samples. After carbonization and removal of silica, single-handed coiled carbonaceous tubular nanoribbons were obtained. The Raman spectra indicated that the carbon was amorphous. The diffuse reflectance circular dichroism spectra indicated the tubular carbonaceous nanoribbons exhibited optical activity.

  13. Transformation of hydrogen titanate nanoribbons to TiO2 nanoribbons and the influence of the transformation strategies on the photocatalytic performance

    Directory of Open Access Journals (Sweden)

    Melita Rutar

    2015-03-01

    Full Text Available The influence of the reaction conditions during the transformation of hydrogen titanate nanoribbons to TiO2 nanoribbons on the phase composition, the morphology, the appearance of the nanoribbon surfaces and their optical properties was investigated. The transformations were performed (i through a heat treatment in oxidative and reductive atmospheres in the temperature range of 400–650 °C, (ii through a hydrothermal treatment in neutral and basic environments at 160 °C, and (iii through a microwave-assisted hydrothermal treatment in a neutral environment at 200 °C. Scanning electron microscopy investigations showed that the hydrothermal processing significantly affected the nanoribbon surfaces, which became rougher, while the transformations based on calcination in either oxidative or reductive atmospheres had no effect on the morphology or on the surface appearance of the nanoribbons. The transformations performed in the reductive atmosphere, an NH3(g/Ar(g flow, and in the ammonia solution led to nitrogen doping. The nitrogen content increased with an increasing calcination temperature, as was determined by X-ray photoelectron spectroscopy. According to electron paramagnetic resonance measurements the calcination in the reductive atmosphere also resulted in a partial reduction of Ti4+ to Ti3+. The photocatalytic performance of the derived TiO2 NRs was estimated on the basis of the photocatalytic oxidation of isopropanol. After calcinating in air, the photocatalytic performance of the investigated TiO2 NRs increased with an increased content of anatase. In contrast, the photocatalytic performance of the N-doped TiO2 NRs showed no dependence on the calcination temperature. An additional comparison showed that the N-doping significantly suppressed the photocatalytic performance of the TiO2 NRs, i.e., by 3 to almost 10 times, in comparison with the TiO2 NRs derived by calcination in air. On the other hand, the photocatalytic performance of the

  14. Tuning carrier mobility of phosphorene nanoribbons by edge passivation and strain

    International Nuclear Information System (INIS)

    Zhang, Xiaoou; Li, Qingfang; Xu, Bo; Wan, Bo; Yin, Jiang; Wan, X.G.

    2016-01-01

    Using first-principles calculations, we have studied the effects of different edge passivation groups on the carrier mobility of the phosphorene nanoribbons (PNRs) and strain effect on the transport property in passivated PNRs. The numerical results show that the size-dependent carrier mobility of passivated PNRs is not very sensitive to the different passivation groups, such as hydrogen (H), fluorine (F) and chlorine (Cl), but strongly associated with the orientation of nanoribbons. Passivated armchair-PNR has much larger carrier mobility than passivated zigzag-PNR at the similar ribbon width. With increasing ribbon width, the electron mobility of passivated PNRs can be further enhanced. We also find that the anisotropy of carrier mobility in passivated PNRs can be reversed by applying tensile strain resulting from order switching of the conduction bands around Fermi level.

  15. Spin current pumped by a rotating magnetic field in zigzag graphene nanoribbons

    International Nuclear Information System (INIS)

    Wang, J; Chan, K S

    2010-01-01

    We study electron spin resonance in zigzag graphene nanoribbons by applying a rotating magnetic field on the system without any bias. By using the nonequilibrium Green's function technique, the spin-resolved pumped current is explicitly derived in a rotating reference frame. The pumped spin current density increases with the system size and the intensity of the transverse rotating magnetic field. For graphene nanoribbons with an even number of zigzag chains, there is a nonzero pumped charge current in addition to the pumped spin current owing to the broken spatial inversion symmetry of the system, but its magnitude is much smaller than the spin current. The short-ranged static disorder from either impurities or defects in the ribbon can depress the spin current greatly due to the localization effect, whereas the long-ranged disorder from charge impurities can avoid inter-valley scattering so that the spin current can survive in the strong disorder for the single-energy mode.

  16. Magnetization and spin-polarized conductance of asymmetrically hydrogenated graphene nanoribbons: significance of sigma bands

    International Nuclear Information System (INIS)

    Honda, Syuta; Inuzuka, Kouhei; Inoshita, Takeshi; Ota, Norio; Sano, Nobuyuki

    2014-01-01

    The magnetization and spin transport of asymmetric zigzag-edge graphene nanoribbons, terminated by hydrogen on one edge while unterminated on the other edge, were investigated by a combination of first-principles calculations and a tight-binding approach. At the unterminated edge, a spin-polarized σ edge state of minority spin appears near the Fermi level and contributes to spin transport. This state enters the band gap for ribbon widths of less than 15 chains, dominating the spin-polarized current. This indicates the importance of the σ edge states in the design of spintronic devices using graphene nanoribbons. We also examined the case where the ‘unterminated’ edge is partially terminated by hydrogen. (paper)

  17. Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons

    International Nuclear Information System (INIS)

    De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Quaresima, Claudio; Cricenti, Antonio; Olivieri, Bruno; Dávila, Maria E; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy

    2013-01-01

    The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.

  18. Electronic states of zigzag graphene nanoribbons with edges reconstructed with topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Pincak, R., E-mail: pincak@saske.sk [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 043 53 Kosice (Slovakia); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation); Smotlacha, J., E-mail: smota@centrum.cz [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Brehova 7, 110 00 Prague (Czech Republic); Osipov, V.A., E-mail: osipov@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2015-10-15

    The energy spectrum and electronic density of states (DOS) of zigzag graphene nanoribbons with edges reconstructed with topological defects are investigated within the tight-binding method. In case of the Stone–Wales zz(57) edge the low-energy spectrum is markedly changed in comparison to the pristine zz edge. We found that the electronic DOS at the Fermi level is different from zero at any width of graphene nanoribbons. In contrast, for ribbons with heptagons only at one side and pentagons at another one the energy gap at the Fermi level is open and the DOS is equal to zero. The reason is the influence of uncompensated topological charges on the localized edge states, which are topological in nature. This behavior is similar to that found for the structured external electric potentials along the edges.

  19. Electronic structure and transport properties of zigzag MoS2 nanoribbons

    Science.gov (United States)

    Sharma, Uma Shankar; Shah, Rashmi; Mishra, Pankaj Kumar

    2018-05-01

    In present study, electronic and transport properties of the 8zigzag MoS2 nanoribbons (8ZMoS2NRs) are investigated using ab-initio density functional theory [DFT]. The calculations were performed using nonequilibrium Green's function (NEGF) formalism based on DFT as implemented in the TranSiesta code. Results show that the defect can introduces few extra states into the energy gap, which lead nanoribbons to reveal a metallic characteristic. The voltage-current (VI) graph of 8ZMoS2NRs show a threshold current increases after introducing Mo defect in the devices. when introducing a Mo vacancy under low biases, the current will be suppressed—whereas under high biases, the current through the defected 8ZMoS2NRs will increases rapidly, due to the other channel being opened, that make possibility of 8ZMoS2NRs application in electronic devices such as voltage regulation.

  20. First-principles investigation on structural and electronic properties of antimonene nanoribbons and nanotubes

    Science.gov (United States)

    Nagarajan, V.; Chandiramouli, R.

    2018-03-01

    The electronic properties of antimonene nanotubes and nanoribbons hydrogenated along the zigzag and armchair borders are investigated with the help of density functional theory (DFT) method. The structural stability of antimonene nanostructures is confirmed with the formation energy. The electronic properties of hydrogenated zigzag and armchair antimonene nanostructures are studied in terms of highest occupied molecular orbital (HOMO) & lowest unoccupied molecular orbital (LUMO) gap and density of states (DOS) spectrum. Moreover, due to the influence of buckled orientation, hydrogen passivation and width of antimonene nanostructures, the HOMO-LUMO gap widens in the range of 0.15-0.41 eV. The findings of the present study confirm that the electronic properties of antimonene nanostructures can be tailored with the influence of width, orientation of the edges, passivation with hydrogen and morphology of antimonene nanostructures (nanoribbons, nanotubes), which can be used as chemical sensor and for spintronic devices.

  1. Effect of disorder with long-range correlation on transport in graphene nanoribbon

    International Nuclear Information System (INIS)

    Zhang, G P; Gao, M; Shangguan, M H; Zhang, Y Y; Liu, N; Qin, Z J

    2012-01-01

    Transport in disordered armchair graphene nanoribbons (AGR) with long-range correlation between quantum wire contacts is investigated by a transfer matrix combined with Landauer’s formula. The metal-insulator transition is induced by disorder in neutral AGR. Therein, the conductance is one conductance quantum for the metallic phase and exponentially decays otherwise, when the length of AGR approaches infinity and far longer than its width. Similar to the case of long-range disorder, the conductance of neutral AGR first increases and then decreases while the conductance of doped AGR monotonically decreases, as the disorder strength increases. In the presence of strong disorder, the conductivity depends monotonically and non-monotonically on the aspect ratio for heavily doped and slightly doped AGR, respectively. For edge disordered graphene nanoribbon, the conductance increases with the disorder strength of long-range correlated disordered while no delocalization exists, since the edge disorder induces localization. (paper)

  2. Effects of edge magnetism on the Kohn anomalies of zigzag graphene nanoribbons

    International Nuclear Information System (INIS)

    Culchac, F J; Capaz, Rodrigo B

    2016-01-01

    The effects of edge magnetism on the Kohn anomaly (KA) of the G-band phonons of zigzag graphene nanoribbons (ZGNRs) are studied using a combination of the tight-binding and mean-field Hubbard models. We show that the opening of an energy gap, induced by magnetic ordering, significantly changes the KA effects, particularly for narrow ribbons in which the gap is larger than the phonon energy. Therefore, the G-band phonon frequency and lifetime are altered for a magnetically-ordered edge state with respect to an unpolarized edge state. The effects of temperature, ZGNR width, doping and transverse electric fields are systematically investigated. We propose using this effect to probe the magnetic order of edge states in graphene nanoribbons using Raman spectroscopy. (paper)

  3. Structural and electronic properties of a single C chain doped zigzag BN nanoribbons

    International Nuclear Information System (INIS)

    Wu, Ping; Wang, Qianwen; Cao, Gengyu; Tang, Fuling; Huang, Min

    2014-01-01

    The effects of single C-chain on the stability, structural and electronic properties of zigzag BN nanoribbons (ZBNNRs) were investigated by first-principles calculations. C-chain was expected to dope at B-edge for all the ribbon widths N z considered. The band gaps of C-chain doped N z -ZBNNR are narrower than that of perfect ZBNNR due to new localized states induced by C-chain. The band gaps of N z -ZBNNR-C(n) are direct except for the case of C-chain position n=2. Band gaps of BN nanoribbons are tunable by C-chain and its position n, which may endow the potential applications of BNNR in electronics.

  4. From diffusive to ballistic transport in etched graphene constrictions and nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Somanchi, Sowmya; Peiro, Julian; Staggenborg, Maximilian; Beschoten, Bernd [JARA-FIT and 2nd Institute of Physics, RWTH Aachen University (Germany); Terres, Bernat; Stampfer, Christoph [JARA-FIT and 2nd Institute of Physics, RWTH Aachen University (Germany); Peter Gruenberg Institute (PGI-9), Forschungszentrum Juelich (Germany); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, Tsukuba (Japan)

    2017-11-15

    Graphene nanoribbons and constrictions are envisaged as fundamental components of future carbon-based nanoelectronic and spintronic devices. At nanoscale, electronic effects in these devices depend heavily on the dimensions of the active channel and the nature of edges. Hence, controlling both these parameters is crucial to understand the physics in such systems. This review is about the recent progress in the fabrication of graphene nanoribbons and constrictions in terms of low temperature quantum transport. In particular, recent advancements using encapsulated graphene allowing for quantized conductance and future experiments towards exploring spin effects in these devices are presented. The influence of charge carrier inhomogeneity and the important length scales which play a crucial role for transport in high quality samples are also discussed. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors

    Science.gov (United States)

    Hur, Ji-Hyun; Kim, Deok-Kee

    2018-05-01

    In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green’s function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.

  6. Semiconductor-metal transition induced by giant Stark effect in blue phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Peng-Yu; Chen, Shi-Zhang; Zhou, Wu-Xing; Chen, Ke-Qiu, E-mail: keqiuchen@hnu.edu.cn

    2017-06-28

    The electronic structures and transport properties in monolayer blue phosphorene nanoribbons (BPNRs) with transverse electric field have been studied by using density functional theory and nonequilibrium Green's functions method. The results show that the band gaps of BPNRs with both armchair and zigzag edges are linearly decreased with the increasing of the strength of transverse electric field. A semiconductor-metal transition occurs when the electric field strength reaches to 5 V/nm. The Stark coefficient presents a linear dependency on BPNRs widths, and the slopes of both zBPNRs and aBPNRs are 0.41 and 0.54, respectively, which shows a giant Stark effect occurs. Our studies show that the semiconductor-metal transition originates from the giant Stark effect. - Highlights: • The electronic transport in blue phosphorene nanoribbons. • Semiconductor-metal transition can be observed. • The semiconductor-metal transition originates from the giant Stark effect.

  7. Tuning carrier mobility of phosphorene nanoribbons by edge passivation and strain

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoou [National Laboratory of Solid State Microstructures, College of Physics, Nanjing University, Nanjing 210093 (China); Li, Qingfang, E-mail: qingfangli@nuist.edu.cn [National Laboratory of Solid State Microstructures, College of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Xu, Bo, E-mail: xubonju@gmail.com [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Wan, Bo [National Laboratory of Solid State Microstructures, College of Physics, Nanjing University, Nanjing 210093 (China); Yin, Jiang [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Wan, X.G. [National Laboratory of Solid State Microstructures, College of Physics, Nanjing University, Nanjing 210093 (China)

    2016-02-05

    Using first-principles calculations, we have studied the effects of different edge passivation groups on the carrier mobility of the phosphorene nanoribbons (PNRs) and strain effect on the transport property in passivated PNRs. The numerical results show that the size-dependent carrier mobility of passivated PNRs is not very sensitive to the different passivation groups, such as hydrogen (H), fluorine (F) and chlorine (Cl), but strongly associated with the orientation of nanoribbons. Passivated armchair-PNR has much larger carrier mobility than passivated zigzag-PNR at the similar ribbon width. With increasing ribbon width, the electron mobility of passivated PNRs can be further enhanced. We also find that the anisotropy of carrier mobility in passivated PNRs can be reversed by applying tensile strain resulting from order switching of the conduction bands around Fermi level.

  8. Manipulation of strain state in silicon nanoribbons by top-down approach

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Zhiqiang; Zhang, Miao; Xue, Zhongying; Sun, Gaodi; Guo, Qinglei; Chen, Da; Di, Zengfeng, E-mail: zfdi@mail.sim.ac.cn; Wang, Xi [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Huang, Gaoshan; Mei, Yongfeng [Department of Materials Science, Fudan University, Shanghai 200433 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-04-27

    Tensile strain is often utilized to enhance the electron mobility and luminescent characteristics of semiconductors. A top-down approach in conjunction with roll-up technology is adopted to produce high tensile strain in Si nanoribbons by patterning and releasing of the bridge-like structures. The tensile strain can be altered between uniaxial state and biaxial state by adjusting the dimensions of the patterns and can be varied controllably up to 3.2% and 0.9% for the uniaxial- and biaxial-strained Si nanoribbons, respectively. Three-dimensional finite element analysis is performed to investigate the mechanism of strain generation during patterning and releasing of the structure. Since the process mainly depends on the geometrical factors, the technique can be readily extended to other types of mechanical, electrical, and optical membranes.

  9. Rectification induced in N2AA-doped armchair graphene nanoribbon device

    International Nuclear Information System (INIS)

    Chen, Tong; Wang, Ling-Ling; Luo, Kai-Wu; Xu, Liang; Li, Xiao-Fei

    2014-01-01

    By using non-equilibrium Green function formalism in combination with density functional theory, we investigated the electronic transport properties of armchair graphene nanoribbon devices in which one lead is undoped and the other is N 2 AA -doped with two quasi-adjacent substitutional nitrogen atoms incorporating pairs of neighboring carbon atoms in the same sublattice A. Two kinds of N 2 AA -doped style are considered, for N dopants substitute the center or the edge carbon atoms. Our results show that the rectification behavior with a large rectifying ratio can be found in these devices and the rectifying characteristics can be modulated by changing the width of graphene nanoribbons or the position of the N 2 AA dopant. The mechanisms are revealed to explain the rectifying behaviors.

  10. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Sanjay, E-mail: sprabhakar@wlu.ca [M 2NeT Laboratory, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5 (Canada); Melnik, Roderick [M 2NeT Laboratory, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5 (Canada); Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Bonilla, Luis L. [Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Raynolds, James E. [Drinker Biddle and Reath LLP, Washington, DC 20005 (United States)

    2013-12-02

    We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges.

  11. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices

    International Nuclear Information System (INIS)

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis L.; Raynolds, James E.

    2013-01-01

    We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges

  12. Template-free synthesis of fully collapsed carbon nanotubes and graphene nanoribbons by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong-Xing [School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Jia, Yong, E-mail: yjiaahedu@163.com [School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012 (China)

    2015-12-01

    Highlights: • Commercial Fe{sub 2}O{sub 3} and Al{sub 2}O{sub 3} powders were chosen to prepare Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3} catalyst. • Fully collapsed carbon nanotubes and graphene nanoribbons were synthesized through the catalytic decomposition of methane at 900 °C. • The formation mechanism of the fully collapsed carbon nanotubes was revealed. - Abstract: Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3} catalyst was prepared by simply calcining the mixture of commercial Fe{sub 2}O{sub 3} and Al{sub 2}O{sub 3} powders at 1000 °C. The obtained Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3} catalyst shows high efficiency for the synthesis of fully collapsed carbon nanotubes and graphene nanoribbons through the catalytic decomposition of methane at 900 °C. The yield of the fully collapsed carbon nanotubes and graphene nanoribbons was 19.5 wt%. Field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and thermal gravimetric analysis were used to characterize the products. A tip-growth mechanism for the fully collapsed carbon nanotubes was suggested based on the SEM and TEM images of products produced at the initial stage. The break through of the catalyst particle from graphite layers resulted in the crack and then cut open of the fully collapsed carbon nanotubes, which further resulted in the formation of the graphene nanoribbons.

  13. Thermally induced spin-dependent current based on Zigzag Germanene Nanoribbons

    Science.gov (United States)

    Majidi, Danial; Faez, Rahim

    2017-02-01

    In this paper, using first principle calculation and non-equilibrium Green's function, the thermally induced spin current in Hydrogen terminated Zigzag-edge Germanene Nanoribbon (ZGeNR-H) is investigated. In this model, because of the difference between the source and the drain temperature of ZGeNR device, the spin up and spin down currents flow in the opposite direction with two different threshold temperatures (Tth). Hence, a pure spin polarized current which belongs to spin down is obtained. It is shown that, for temperatures above the threshold temperature spin down current increases with the increasing temperature up to 75 K and then decreases. But spin up current rises steadily and in the high temperature we can obtain polarized spin up current. In addition, we show an acceptable spin current around the room temperature for ZGeNR. The transmission peaks in ZGeNR which are closer to the Fermi level rather than Zigzag Graphene Nanoribbon (ZGNRS) which causes ZGeNR to have spin current at higher temperatures. Finally, it is indicated that by tuning the back gate voltage, the spin current can be completely modulated and polarized. Simulation results verify the Zigzag Germanene Nanoribbon as a promising candidate for spin caloritronics devices, which can be applied in future low power consumption technology.

  14. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.

    Science.gov (United States)

    Alaal, Naresh; Medhekar, Nikhil; Shukla, Alok

    2018-04-18

    We employ a first-principles calculations based density-functional-theory (DFT) approach to study the electronic properties of partially and fully edge-hydrogenated armchair boron-nitrogen-carbon (BNC) nanoribbons (ABNCNRs), with widths between 0.85 nm to 2.3 nm. Due to the partial passivation of edges, the electrons, which do not participate in the bonding, form new energy states located near the Fermi-level. Because of these additional bands, some ABNCNRs exhibit metallic behavior, which is quite uncommon in armchair nanoribbons. Our calculations reveal that metallic behavior is observed for the following passivation patterns: (i) when the B atom from one edge and the N atom from another edge are unpassivated. (ii) when the N atoms from both the edges are unpassivated. (iii) when the C atom from one edge and the N atom from another edge are unpassivated. Furthermore, spin-polarization is also observed for certain passivation schemes, which is also quite uncommon for armchair nanoribbons. Thus, our results suggest that the ABNCNRs exhibit a wide range of electronic and magnetic properties in that the fully edge-hydrogenated ABNCNRs are direct band gap semiconductors, while the partially edge-hydrogenated ones are either semiconducting, or metallic, while simultaneously exhibiting spin polarization, based on the nature of passivation. We also find that the ribbons with larger widths are more stable as compared to the narrower ones.

  15. Ultrathin Topological Insulator Bi 2 Se 3 Nanoribbons Exfoliated by Atomic Force Microscopy

    KAUST Repository

    Hong, Seung Sae; Kundhikanjana, Worasom; Cha, Judy J.; Lai, Keji; Kong, Desheng; Meister, Stefan; Kelly, Michael A.; Shen, Zhi-Xun; Cui, Yi

    2010-01-01

    Ultrathin topological insulator nanostructures, in which coupling between top and bottom surface states takes place, are of great intellectual and practical importance. Due to the weak van der Waals interaction between adjacent quintuple layers (QLs), the layered bismuth selenide (Bi2Se 3), a single Dirac-cone topological insulator with a large bulk gap, can be exfoliated down to a few QLs. In this paper, we report the first controlled mechanical exfoliation of Bi2Se3 nanoribbons (>50 QLs) by an atomic force microscope (AFM) tip down to a single QL. Microwave impedance microscopy is employed to map out the local conductivity of such ultrathin nanoribbons, showing drastic difference in sheet resistance between 1-2 QLs and 4-5 QLs. Transport measurement carried out on an exfoliated (>5 QLs) Bi2Se3 device shows nonmetallic temperature dependence of resistance, in sharp contrast to the metallic behavior seen in thick (>50 QLs) ribbons. These AFM-exfoliated thin nanoribbons afford interesting candidates for studying the transition from quantum spin Hall surface to edge states. © 2010 American Chemical Society.

  16. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Julián David Correa

    2017-03-01

    Full Text Available The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.

  17. Controlled Synthesis of Sb 2 O 3 Nanoparticles, Nanowires, and Nanoribbons

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Sb 2 O 3 nanoparticles, nanowires, and nanoribbons have been selectively synthesized in a controlled manner under mild conditions by using CTAB as a soft template. By adopting Sb ( OH 4 − as an inorganic precursor and the concentration of CTAB as an adjusting parameter, morphologies of Sb 2 O 3 nanostructures can be selectively controlled. Typically, C CTAB <0.15 mmol favors the formation of nanoparticles (product one or short form P1; when the concentration of CATB is in the range 0.15–2.0 mmol, nanowires (P2 dominate the products; nanoribbons (P3 form above the concentration of 2.0 mmol, and when the concentration of CTAB goes further higher, treelike bundles of nanoribbons could be achieved. The method in the present study has potential advantages of easy handling, relatively low-cost, and large-scale production. The facile and large-scale synthesis of varied Sb 2 O 3 nanostructures is believed to be useful for the application of catalysis and flame retardance.

  18. Magnetoelectric control of valley and spin in a silicene nanoribbon modulated by the magnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    An, Xing-Tao, E-mail: anxt@hku.hk

    2015-03-20

    The control of valley and spin degrees of freedom and the transport properties of electrons in a zigzag silicene nanoribbon modulated by the magnetic superlattices are investigated theoretically. Due to the valley–spin locking effect in silicene, the valley degree of freedom can be controlled by magnetic means. The valley or/and spin selection induced by the exchange field result in the perfect spin–valley filter and tunneling magnetoresistance effect in the double ferromagnetic barriers on the surface of the silicene nanoribbon. It is more interesting that there are valley-resolved minigaps and minibands in the zigzag silicene nanoribbon modulated by the magnetic superlattices which give rise to the periodically modulated spin (or/and valley) polarization and tunneling magnetoresistance. The results obtained may have certain practical significance in applications for future valleytronic and spintronic devices. - Highlights: • The valley can be controlled by a magnetic field in silicene. • The valley-resolved miniband transport is studied in the silicene superlattices. • There are the perfect spin–valley filter and tunneling magnetoresistance effect.

  19. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study.

    Science.gov (United States)

    Bilić, A; Sanvito, S

    2013-07-10

    Pyrene, the smallest two-dimensional mesh of aromatic rings, with various terminal thiol substitutions, has been considered as a potential molecular interconnect. Charge transport through two terminal devices has been modeled using density functional theory (with and without self interaction correction) and the non-equilibrium Green's function method. A tetra-substituted pyrene, with dual thiol terminal groups at opposite ends, has been identified as an excellent candidate, owing to its high conductance, virtually independent of bias voltage. The two possible extensions of its motif generate two series of graphene nanoribbons, with zigzag and armchair edges and with semimetallic and semiconducting electron band structure, respectively. The effects related to the wire length and the bias voltage on the charge transport have been investigated for both sets. The conductance of the nanoribbons with a zigzag edge does not show either length or voltage dependence, owing to an almost perfect electron transmission with a continuum of conducting channels. In contrast, for the armchair nanoribbons a slow exponential attenuation of the conductance with the length has been found, due to their semiconducting nature.

  20. On the buckling of hexagonal boron nitride nanoribbons via structural mechanics

    Science.gov (United States)

    Giannopoulos, Georgios I.

    2018-03-01

    Monolayer hexagonal boron nitride nanoribbons have similar crystal structure as graphene nanoribbons, have excellent mechanical, thermal insulating and dielectric properties and additionally present chemical stability. These allotropes of boron nitride can be used in novel applications, in which graphene is not compatible, to achieve remarkable performance. The purpose of the present work is to provide theoretical estimations regarding the buckling response of hexagonal boron nitride monolayer under compressive axial loadings. For this reason, a structural mechanics method is formulated which employs the exact equilibrium atomistic structure of the specific two-dimensional nanomaterial. In order to represent the interatomic interactions appearing between boron and nitrogen atoms, the Dreiding potential model is adopted which is realized by the use of three-dimensional, two-noded, spring-like finite elements of appropriate stiffness matrices. The critical compressive loads that cause the buckling of hexagonal boron nitride nanoribbons are computed with respect to their size and chirality while some indicative buckled shapes of them are illustrated. Important conclusions arise regarding the effect of the size and chirality on the structural stability of the hexagonal boron nitride monolayers. An analytical buckling formula, which provides good fitting of the numerical outcome, is proposed.

  1. Current & Heat Transport in Graphene Nanoribbons: Role of Non-Equilibrium Phonons

    Science.gov (United States)

    Pennington, Gary; Finkenstadt, Daniel

    2010-03-01

    The conducting channel of a graphitic nanoscale device is expected to experience a larger degree of thermal isolation when compared to traditional inversion channels of electronic devices. This leads to enhanced non-equilibrium phonon populations which are likely to adversely affect the mobility of graphene-based nanoribbons due to enhanced phonon scattering. Recent reports indicating the importance of carrier scattering with substrate surface polar optical phonons in carbon nanotubes^1 and graphene^2,3 show that this mechanism may allow enhanced heat removal from the nanoribbon channel. To investigate the effects of hot phonon populations on current and heat conduction, we solve the graphene nanoribbon multiband Boltzmann transport equation. Monte Carlo transport techniques are used since phonon populations may be tracked and updated temporally.^4 The electronic structure is solved using the NRL Tight-Binding method,^5 where carriers are scattered by confined acoustic, optical, edge and substrate polar optical phonons. [1] S. V. Rotkin et al., Nano Lett. 9, 1850 (2009). [2] J. H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhrer, Nature Nanotech. 3, 206 (2008). [3] V. Perebeinos and P. Avouris, arXiv:0910.4665v1 [cond-mat.mes-hall] (2009). [4] P. Lugli et al., Appl. Phys. Lett. 50, 1251 (1987). [5] D. Finkenstadt, G. Pennington & M.J. Mehl, Phys. Rev. B 76, 121405(R) (2007).

  2. Biomolecule detection using a silicon nanoribbon: accumulation mode versus inversion mode

    International Nuclear Information System (INIS)

    Elfstroem, Niklas; Linnros, Jan

    2008-01-01

    Silicon nanoribbons were fabricated using standard optical lithography from silicon on insulator material with top silicon layer thicknesses of 100, 60 and 45 nm. Electrically these work as Schottky-barrier field-effect transistors and, depending on the substrate voltage, electron or hole injection is possible. The current through the nanoribbon is extremely sensitive to charge changes at the oxidized top surface and can be used for biomolecule detection in a liquid. We show that for detection of streptavidin molecules the response is larger in the accumulation mode than in the inversion mode, although not leading to higher detection sensitivity due to increased noise. The effect is attributed to the location in depth of the conducting channel, which for holes is closer to the screened surface charges of the biomolecules. Furthermore, the response increases for decreasing silicon thickness in both the accumulation mode and the inversion mode. The results are verified qualitatively and quantitatively through a two-dimensional simulation model on a cross section along the nanoribbon device

  3. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study

    KAUST Repository

    Bilić, A

    2013-06-14

    Pyrene, the smallest two-dimensional mesh of aromatic rings, with various terminal thiol substitutions, has been considered as a potential molecular interconnect. Charge transport through two terminal devices has been modeled using density functional theory (with and without self interaction correction) and the non-equilibrium Green\\'s function method. A tetra-substituted pyrene, with dual thiol terminal groups at opposite ends, has been identified as an excellent candidate, owing to its high conductance, virtually independent of bias voltage. The two possible extensions of its motif generate two series of graphene nanoribbons, with zigzag and armchair edges and with semimetallic and semiconducting electron band structure, respectively. The effects related to the wire length and the bias voltage on the charge transport have been investigated for both sets. The conductance of the nanoribbons with a zigzag edge does not show either length or voltage dependence, owing to an almost perfect electron transmission with a continuum of conducting channels. In contrast, for the armchair nanoribbons a slow exponential attenuation of the conductance with the length has been found, due to their semiconducting nature. © 2013 IOP Publishing Ltd.

  4. Spin density waves predicted in zigzag puckered phosphorene, arsenene and antimonene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaohua; Zhang, Xiaoli; Wang, Xianlong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zeng, Zhi, E-mail: zzeng@theory.issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China)

    2016-04-15

    The pursuit of controlled magnetism in semiconductors has been a persisting goal in condensed matter physics. Recently, Vene (phosphorene, arsenene and antimonene) has been predicted as a new class of 2D-semiconductor with suitable band gap and high carrier mobility. In this work, we investigate the edge magnetism in zigzag puckered Vene nanoribbons (ZVNRs) based on the density functional theory. The band structures of ZVNRs show half-filled bands crossing the Fermi level at the midpoint of reciprocal lattice vectors, indicating a strong Peierls instability. To remove this instability, we consider two different mechanisms, namely, spin density wave (SDW) caused by electron-electron interaction and charge density wave (CDW) caused by electron-phonon coupling. We have found that an antiferromagnetic Mott-insulating state defined by SDW is the ground state of ZVNRs. In particular, SDW in ZVNRs displays several surprising characteristics:1) comparing with other nanoribbon systems, their magnetic moments are antiparallelly arranged at each zigzag edge and almost independent on the width of nanoribbons; 2) comparing with other SDW systems, its magnetic moments and band gap of SDW are unexpectedly large, indicating a higher SDW transition temperature in ZVNRs; 3) SDW can be effectively modified by strains and charge doping, which indicates that ZVNRs have bright prospects in nanoelectronic device.

  5. Spin density waves predicted in zigzag puckered phosphorene, arsenene and antimonene nanoribbons

    Directory of Open Access Journals (Sweden)

    Xiaohua Wu

    2016-04-01

    Full Text Available The pursuit of controlled magnetism in semiconductors has been a persisting goal in condensed matter physics. Recently, Vene (phosphorene, arsenene and antimonene has been predicted as a new class of 2D-semiconductor with suitable band gap and high carrier mobility. In this work, we investigate the edge magnetism in zigzag puckered Vene nanoribbons (ZVNRs based on the density functional theory. The band structures of ZVNRs show half-filled bands crossing the Fermi level at the midpoint of reciprocal lattice vectors, indicating a strong Peierls instability. To remove this instability, we consider two different mechanisms, namely, spin density wave (SDW caused by electron-electron interaction and charge density wave (CDW caused by electron-phonon coupling. We have found that an antiferromagnetic Mott-insulating state defined by SDW is the ground state of ZVNRs. In particular, SDW in ZVNRs displays several surprising characteristics:1 comparing with other nanoribbon systems, their magnetic moments are antiparallelly arranged at each zigzag edge and almost independent on the width of nanoribbons; 2 comparing with other SDW systems, its magnetic moments and band gap of SDW are unexpectedly large, indicating a higher SDW transition temperature in ZVNRs; 3 SDW can be effectively modified by strains and charge doping, which indicates that ZVNRs have bright prospects in nanoelectronic device.

  6. Ultrathin Topological Insulator Bi 2 Se 3 Nanoribbons Exfoliated by Atomic Force Microscopy

    KAUST Repository

    Hong, Seung Sae

    2010-08-11

    Ultrathin topological insulator nanostructures, in which coupling between top and bottom surface states takes place, are of great intellectual and practical importance. Due to the weak van der Waals interaction between adjacent quintuple layers (QLs), the layered bismuth selenide (Bi2Se 3), a single Dirac-cone topological insulator with a large bulk gap, can be exfoliated down to a few QLs. In this paper, we report the first controlled mechanical exfoliation of Bi2Se3 nanoribbons (>50 QLs) by an atomic force microscope (AFM) tip down to a single QL. Microwave impedance microscopy is employed to map out the local conductivity of such ultrathin nanoribbons, showing drastic difference in sheet resistance between 1-2 QLs and 4-5 QLs. Transport measurement carried out on an exfoliated (>5 QLs) Bi2Se3 device shows nonmetallic temperature dependence of resistance, in sharp contrast to the metallic behavior seen in thick (>50 QLs) ribbons. These AFM-exfoliated thin nanoribbons afford interesting candidates for studying the transition from quantum spin Hall surface to edge states. © 2010 American Chemical Society.

  7. Design lithium storage materials by lithium adatoms adsorption at the edges of zigzag silicene nanoribbon: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Gang [Hunan Key Laboratory for Micro–Nano Energy Materials and Devices, School of Physics and Optoelectronic Engineering, Xiangtan University, Hunan, 411105 (China); Mao, Yuliang, E-mail: ylmao@xtu.edu.cn [Hunan Key Laboratory for Micro–Nano Energy Materials and Devices, School of Physics and Optoelectronic Engineering, Xiangtan University, Hunan, 411105 (China); Zhong, Jianxin [Hunan Key Laboratory for Micro–Nano Energy Materials and Devices, School of Physics and Optoelectronic Engineering, Xiangtan University, Hunan, 411105 (China); Yuan, Jianmei [Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University, Hunan, 411105 (China); Zhao, Hongquan, E-mail: hqzhao@cigit.ac.cn [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 401120 (China)

    2017-06-01

    Highlights: • Edge-adsorption of Li adatoms on zigzag silicene nanoribbon is preferred in energy to form new type lithium storage materials. • Significant charge transfer from Li adatoms to Si atoms is found, indicating the main ionic interactions. • The band structures of zigzag silicene nanoribbon are sensitive with the variation of sites of Li adatoms at the two edges. • The local magnetic moments at the two edges of zigzag silicene nanoribbon are suppressed by the adsorptions of Li adatoms. - Abstract: First-principles spin-polarized calculations are performed to design lithium storage materials using the active edges of zigzag silicene nanoribbon (ZSiNR). We predict that edge-adsorption of Li adatoms on zigzag silicene nanoribbon is preferred in energy to form new type lithium storage materials. Significant charge transfer from Li adatoms to Si atoms at the edges of ZSiNR is found, indicating the main ionic interactions. It is found that the band structures of ZSiNR with Li adsorptions are sensitive with the variation of sites of adatoms at the two edges. Ferro-magnetic to antiferro-magnetic change is found in ZSiNR with symmetrical adsorption of Li adatoms at its two edges. Other unsymmetrical Li adsorptions at the edges of ZSiNR prefer to stay in ferro-magnetic state as that in narrow pristine ZSiNR.

  8. Exploring the formation and electronic structure properties of the g-C3N4 nanoribbon with density functional theory.

    Science.gov (United States)

    Wu, Hong-Zhang; Zhong, Qing-Hua; Bandaru, Sateesh; Liu, Jin; Lau, Woon Ming; Li, Li-Li; Wang, Zhenling

    2018-04-18

    The optical properties and condensation degree (structure) of polymeric g-C 3 N 4 depend strongly on the process temperature. For polymeric g-C 3 N 4 , its structure and condensation degree depend on the structure of molecular strand(s). Here, the formation and electronic structure properties of the g-C 3 N 4 nanoribbon are investigated by studying the polymerization and crystallinity of molecular strand(s) employing first-principle density functional theory. The calculations show that the width of the molecular strand has a significant effect on the electronic structure of polymerized and crystallized g-C 3 N 4 nanoribbons, a conclusion which would be indirect evidence that the electronic structure depends on the structure of g-C 3 N 4 . The edge shape also has a distinct effect on the electronic structure of the crystallized g-C 3 N 4 nanoribbon. Furthermore, the conductive band minimum and valence band maximum of the polymeric g-C 3 N 4 nanoribbon show a strong localization, which is in good agreement with the quasi-monomer characters. In addition, molecular strands prefer to grow along the planar direction on graphene. These results provide new insight on the properties of the g-C 3 N 4 nanoribbon and the relationship between the structure and properties of g-C 3 N 4 .

  9. Properties of Fe{sub 8−N}Co{sub N} nanoribbons and nanowires: A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Francisco [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024 (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Altbir, D. [Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Departamento de Física, Universidad de Santiago (Chile); Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024 (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Morán-López, J.L. [Departamento de Física, Laboratorio Interdisciplinario, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, D.F. (Mexico)

    2013-08-15

    The structural configurations and magnetic properties of zig-zag nanoribbons and nanowires of Fe{sub 8−N}Co{sub N}, for 0≤N≤8, are calculated within the density functional theory. Both, for the zig-zag nanoribbons and the nanowires, there is a tendency towards forming Fe–Co bonds, while segregation of the Fe and Co is energetically unfavorable. For the nanowire structures a transition from bcc Fe to hcp Co spatial arrangements is observed when N is increased from 4 to 6, in spite of the small size of the systems under investigation. The energy minimization was performed taking into consideration the electronic and magnetic structures, since for each crystalline structure, chemical composition, and short range order, particular magnetic properties of these systems do correspond. The magnetocrystalline anisotropy energy is calculated, and it is found that the easy axis changes from a transverse direction in Fe-rich systems, to the axial direction as the Co concentration increases. It is also found that although there are important variations of the local magnetic moment of the components, and their particular location in the system, the average magnetic moment is an almost linear function of N. - Highlights: ► Properties of Fe{sub 8−N}Co{sub N} nanoribbons and nanowires are calculated ab initio. ► Structural and magnetic properties of nanoribbons and nanowires are calculated. ► Shape and crystalline anisotropies of nanoribbons and nanowires are contrasted.

  10. Design lithium storage materials by lithium adatoms adsorption at the edges of zigzag silicene nanoribbon: A first principle study

    International Nuclear Information System (INIS)

    Guo, Gang; Mao, Yuliang; Zhong, Jianxin; Yuan, Jianmei; Zhao, Hongquan

    2017-01-01

    Highlights: • Edge-adsorption of Li adatoms on zigzag silicene nanoribbon is preferred in energy to form new type lithium storage materials. • Significant charge transfer from Li adatoms to Si atoms is found, indicating the main ionic interactions. • The band structures of zigzag silicene nanoribbon are sensitive with the variation of sites of Li adatoms at the two edges. • The local magnetic moments at the two edges of zigzag silicene nanoribbon are suppressed by the adsorptions of Li adatoms. - Abstract: First-principles spin-polarized calculations are performed to design lithium storage materials using the active edges of zigzag silicene nanoribbon (ZSiNR). We predict that edge-adsorption of Li adatoms on zigzag silicene nanoribbon is preferred in energy to form new type lithium storage materials. Significant charge transfer from Li adatoms to Si atoms at the edges of ZSiNR is found, indicating the main ionic interactions. It is found that the band structures of ZSiNR with Li adsorptions are sensitive with the variation of sites of adatoms at the two edges. Ferro-magnetic to antiferro-magnetic change is found in ZSiNR with symmetrical adsorption of Li adatoms at its two edges. Other unsymmetrical Li adsorptions at the edges of ZSiNR prefer to stay in ferro-magnetic state as that in narrow pristine ZSiNR.

  11. Scalable Patterning of MoS2 Nanoribbons by Micromolding in Capillaries.

    Science.gov (United States)

    Hung, Yu-Han; Lu, Ang-Yu; Chang, Yung-Huang; Huang, Jing-Kai; Chang, Jeng-Kuei; Li, Lain-Jong; Su, Ching-Yuan

    2016-08-17

    In this study, we report a facile approach to prepare dense arrays of MoS2 nanoribbons by combining procedures of micromolding in capillaries (MIMIC) and thermolysis of thiosalts ((NH4)2MoS4) as the printing ink. The obtained MoS2 nanoribbons had a thickness reaching as low as 3.9 nm, a width ranging from 157 to 465 nm, and a length up to 2 cm. MoS2 nanoribbons with an extremely high aspect ratio (length/width) of ∼7.4 × 10(8) were achieved. The MoS2 pattern can be printed on versatile substrates, such as SiO2/Si, sapphire, Au film, FTO/glass, and graphene-coated glass. The degree of crystallinity of the as-prepared MoS2 was discovered to be adjustable by varying the temperature through postannealing. The high-temperature thermolysis (1000 °C) results in high-quality conductive samples, and field-effect transistors based on the patterned MoS2 nanoribbons were demonstrated and characterized, where the carrier mobility was comparable to that of thin-film MoS2. In contrast, the low-temperature-treated samples (170 °C) result in a unique nanocrystalline MoSx structure (x ≈ 2.5), where the abundant and exposed edge sites were obtained from highly dense arrays of nanoribbon structures by this MIMIC patterning method. The patterned MoSx was revealed to have superior electrocatalytic efficiency (an overpotential of ∼211 mV at 10 mA/cm(2) and a Tafel slope of 43 mV/dec) in the hydrogen evolution reaction (HER) when compared to the thin-film MoS2. The report introduces a new concept for rapidly fabricating cost-effective and high-density MoS2/MoSx nanostructures on versatile substrates, which may pave the way for potential applications in nanoelectronics/optoelectronics and frontier energy materials.

  12. Scalable Patterning of MoS2Nanoribbons by Micromolding in Capillaries

    KAUST Repository

    Hung, Yu-Han

    2016-07-27

    In this study, we report a facile approach to prepare dense arrays of MoS2 nanoribbons by combining procedures of micromolding in capillaries (MIMIC) and thermolysis of thiosalts ((NH4)2MoS4) as the printing ink. The obtained MoS2 nanoribbons had a thickness reaching as low as 3.9 nm, a width ranging from 157 to 465 nm, and a length up to 2 cm. MoS2 nanoribbons with an extremely high aspect ratio (length/width) of ∼7.4 × 108 were achieved. The MoS2 pattern can be printed on versatile substrates, such as SiO2/Si, sapphire, Au film, FTO/glass, and graphene-coated glass. The degree of crystallinity of the as-prepared MoS2 was discovered to be adjustable by varying the temperature through postannealing. The high-temperature thermolysis (1000 °C) results in high-quality conductive samples, and field-effect transistors based on the patterned MoS2 nanoribbons were demonstrated and characterized, where the carrier mobility was comparable to that of thin-film MoS2. In contrast, the low-temperature-treated samples (170 °C) result in a unique nanocrystalline MoSx structure (x ≈ 2.5), where the abundant and exposed edge sites were obtained from highly dense arrays of nanoribbon structures by this MIMIC patterning method. The patterned MoSx was revealed to have superior electrocatalytic efficiency (an overpotential of ∼211 mV at 10 mA/cm2 and a Tafel slope of 43 mV/dec) in the hydrogen evolution reaction (HER) when compared to the thin-film MoS2. The report introduces a new concept for rapidly fabricating cost-effective and high-density MoS2/MoSx nanostructures on versatile substrates, which may pave the way for potential applications in nanoelectronics/optoelectronics and frontier energy materials. © 2016 American Chemical Society.

  13. Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons.

    Science.gov (United States)

    Passi, Vikram; Gahoi, Amit; Senkovskiy, Boris V; Haberer, Danny; Fischer, Felix R; Grüneis, Alexander; Lemme, Max C

    2018-03-28

    We report on the experimental demonstration and electrical characterization of N = 7 armchair graphene nanoribbon (7-AGNR) field effect transistors. The back-gated transistors are fabricated from atomically precise and highly aligned 7-AGNRs, synthesized with a bottom-up approach. The large area transfer process holds the promise of scalable device fabrication with atomically precise nanoribbons. The channels of the FETs are approximately 30 times longer than the average nanoribbon length of 30 nm to 40 nm. The density of the GNRs is high, so that transport can be assumed well-above the percolation threshold. The long channel transistors exhibit a maximum I ON / I OFF current ratio of 87.5.

  14. First-principles investigation of quantum transport in GeP3 nanoribbon-based tunneling junctions

    Science.gov (United States)

    Wang, Qiang; Li, Jian-Wei; Wang, Bin; Nie, Yi-Hang

    2018-06-01

    Two-dimensional (2D) GeP3 has recently been theoretically proposed as a new low-dimensional material [ Nano Lett. 17(3), 1833 (2017)]. In this manuscript, we propose a first-principles calculation to investigate the quantum transport properties of several GeP3 nanoribbon-based atomic tunneling junctions. Numerical results indicate that monolayer GeP3 nanoribbons show semiconducting behavior, whereas trilayer GeP3 nanoribbons express metallic behavior owing to the strong interaction between each of the layers. This behavior is in accordance with that proposed in two-dimensional GeP3 layers. The transmission coefficient T( E) of tunneling junctions is sensitive to the connecting formation between the central monolayer GeP3 nanoribbon and the trilayer GeP3 nanoribbon at both ends. The T( E) value of the bottom-connecting tunneling junction is considerably larger than those of the middle-connecting and top-connecting ones. With increases in gate voltage, the conductances increase for the bottom-connecting and middle-connecting tunneling junctions, but decrease for the top-connecting tunneling junctions. In addition, the conductance decreases exponentially with respect to the length of the central monolayer GeP3 nanoribbon for all the tunneling junctions. I-V curves show approximately linear behavior for the bottom-connecting and middle-connecting structures, but exhibit negative differential resistance for the top-connecting structures. The physics of each phenomenon is analyzed in detail.

  15. Fabrication of amorphous silicon nanoribbons by atomic force microscope tip-induced local oxidation for thin film device applications

    International Nuclear Information System (INIS)

    Pichon, L; Rogel, R; Demami, F

    2010-01-01

    We demonstrate the feasibility of induced local oxidation of amorphous silicon by atomic force microscopy. The resulting local oxide is used as a mask for the elaboration of a thin film silicon resistor. A thin amorphous silicon layer deposited on a glass substrate is locally oxidized following narrow continuous lines. The corresponding oxide line is then used as a mask during plasma etching of the amorphous layer leading to the formation of a nanoribbon. Such an amorphous silicon nanoribbon is used for the fabrication of the resistor

  16. On the channel width-dependence of the thermal conductivity in ultra-narrow graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Karamitaheri, Hossein [Department of Electrical Engineering, University of Kashan, Kashan 87317-53153 (Iran, Islamic Republic of); Neophytou, Neophytos, E-mail: N.Neophytou@warwick.ac.uk [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-08-08

    The thermal conductivity of low-dimensional materials and graphene nanoribbons, in particular, is limited by the strength of line-edge-roughness scattering. One way to characterize the roughness strength is the dependency of the thermal conductivity on the channel's width in the form W{sup β}. Although in the case of electronic transport, this dependency is very well studied, resulting in W{sup 6} for nanowires and quantum wells and W{sup 4} for nanoribbons, in the case of phonon transport it is not yet clear what this dependence is. In this work, using lattice dynamics and Non-Equilibrium Green's Function simulations, we examine the width dependence of the thermal conductivity of ultra-narrow graphene nanoribbons under the influence of line edge-roughness. We show that the exponent β is in fact not a single well-defined number, but it is different for different parts of the phonon spectrum depending on whether phonon transport is ballistic, diffusive, or localized. The exponent β takes values β < 1 for semi-ballistic phonon transport, values β ≫ 1 for sub-diffusive or localized phonons, and β = 1 only in the case where the transport is diffusive. The overall W{sup β} dependence of the thermal conductivity is determined by the width-dependence of the dominant phonon modes (usually the acoustic ones). We show that due to the long phonon mean-free-paths, the width-dependence of thermal conductivity becomes a channel length dependent property, because the channel length determines whether transport is ballistic, diffusive, or localized.

  17. Tunable Schottky diodes fabricated from crossed electrospun SnO{sub 2}/PEDOT-PSSA nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Carrasquillo, Katherine V. [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00792 (Puerto Rico); Pinto, Nicholas J., E-mail: nicholas.pinto@upr.edu [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00792 (Puerto Rico)

    2012-06-25

    Graphical abstract: Crossed SnO{sub 2}/PEDOT-PSSA nanoribbon Schottky diodes. Highlight: Black-Right-Pointing-Pointer An inexpensive electrospinning technique is used to fabricate crossed nanoribbons of n-doped tin oxide and p-PEDOT. Black-Right-Pointing-Pointer Each intersection is a localized Schottky diode that is completely exposed to the environment after electrodes deposition. Black-Right-Pointing-Pointer This makes it useful as a gas and light sensor. Black-Right-Pointing-Pointer In addition, the ability to tune the diode parameters via a back gate truly makes this device multifunctional. Black-Right-Pointing-Pointer A half wave rectifier has been demonstrated with this device under UV illumination. - Abstract: Schottky diodes have been fabricated on doped Si/SiO{sub 2} substrates in air, by simply crossing individual electrospun tin oxide (SnO{sub 2}) and poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT-PSSA) nanoribbons. The conductivity of PEDOT-PSSA was {approx}6 S/cm with no observable field effect, while SnO{sub 2} exhibited n-doped field effect behavior with a charge mobility of {approx}3.1 cm{sup 2}/V-s. The diodes operate in air or in vacuum, under ambient illumination or in the dark, with low turn-on voltages and device parameters that are tunable via a back gate bias or a UV light source. Their unique design involves a highly localized active region that is completely exposed to the surrounding environment, making them potentially attractive for use as sensors. The standard thermionic emission model of a Schottky junction was applied to analyze the forward bias diode characteristics and was successfully tested as a half wave rectifier.

  18. Atomic scale investigations of the gate controlled tunneling effect in graphyne nanoribbon

    International Nuclear Information System (INIS)

    Yang, Wen; Wang, Lu-Hao; Geng, Yang; Sun, Qing-Qing; Zhou, Peng; Ding, Shi-Jing; Wei Zhang, David

    2013-01-01

    Configuration and transport properties of zigzag graphyne nanoribbon (n = 2) are investigated by means of the first-principles calculations and non-equilibrium Green's function in this work. We demonstrated the controllability of the graphyne's conductivity by gate bias, and the tunneling behavior induced by gate and drain voltages was investigated systemically. The characteristics of I d -V d , I d -V g , as well as the evolutions of current with electron temperature elevation were explored. The device exhibits a tunneling ratio around 10 3 , and the state art of tunneling operations of the tunneling field effect transistor in this split-new material was achieved

  19. Mechanical failure of zigzag graphene nanoribbons under tensile strain induced by edge reconstruction

    KAUST Repository

    Cheng, Yingchun

    2012-10-01

    The structural and mechanical properties of graphene nanoribbons (GNRs) under uniaxial tensile strain are studied by density functional theory. The ideal strength of a zigzag GNR (120 GPa) is close to that of pristine graphene. However, for a GNR with both edges reconstructed to pentagon–heptagon pairs (from hexagon–hexagon pairs) it decreases to 94 GPa and the maximum tensile strain is reduced to 15%. Our results constitute a comprehensive picture of the edge structure effect on the mechanical properties of GNRs.

  20. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.; Cha, Judy J.; Reed, Bryan W.; Wessells, Colin D.; Kong, Desheng; Cui, Yi

    2012-01-01

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  1. Tunable spin-charge conversion through topological phase transitions in zigzag nanoribbons

    KAUST Repository

    Li, Hang

    2016-06-29

    We study spin-orbit torques and charge pumping in magnetic quasi-one-dimensional zigzag nanoribbons with a hexagonal lattice, in the presence of large intrinsic spin-orbit coupling. Such a system experiences a topological phase transition from a trivial band insulator to a quantum spin Hall insulator by tuning of either the magnetization direction or the intrinsic spin-orbit coupling. We find that the spin-charge conversion efficiency (i.e., spin-orbit torque and charge pumping) is dramatically enhanced at the topological transition, displaying a substantial angular anisotropy.

  2. Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning

    Science.gov (United States)

    Du, Lin; Nguyen, Tam N.; Gilman, Ari; Muniz, André R.; Maroudas, Dimitrios

    2017-12-01

    We report a systematic analysis of pore-edge interactions in graphene nanoribbons (GNRs) and their outcomes based on first-principles calculations and classical molecular-dynamics simulations. We find a strong attractive interaction between nanopores and GNR edges that drives the pores to migrate toward and coalesce with the GNR edges, which can be exploited to form GNR edge patterns that impact the GNR electronic band structure and tune the GNR band gap. Our analysis introduces a viable physical processing strategy for modifying GNR properties by combining defect engineering and thermal annealing.

  3. Pure spin current induced by adiabatic quantum pumping in zigzag-edged graphene nanoribbons

    International Nuclear Information System (INIS)

    Souma, Satofumi; Ogawa, Matsuto

    2014-01-01

    We show theoretically that pure spin current can be generated in zigzag edged graphene nanoribbons through the adiabatic pumping by edge selective pumping potentials. The origin of such pure spin current is the spin splitting of the edge localized states, which are oppositely spin polarized at opposite edges. In the proposed device, each edge of the ribbon is covered by two independent time-periodic local gate potentials with a definite phase difference, inducing the edge spin polarized current. When the pumping phase difference is opposite in sign between two edges, the total charge currents is zero and the pure edge spin current is generated

  4. Lifted graphene nanoribbons on gold: from smooth sliding to multiple stick-slip regimes

    OpenAIRE

    Gigli, Lorenzo; Manini, Nicola; Tosatti, Erio; Guerra, Roberto; Vanossi, Andrea

    2018-01-01

    Graphene nanoribbons (GNRs) physisorbed on a Au(111) surface can be picked up, lifted at one end, and made slide by means of the tip of an atomic-force microscope. The dynamical transition from smooth sliding to multiple stick-slip regimes, the pushing/pulling force asymmetry, the presence of pinning, and its origin are real frictional processes in a nutshell, in need of a theoretical description. To this purpose, we conduct classical simulations of frictional manipulations for GNRs up to 30 ...

  5. Narrowband noise study of sliding charge density waves in NbSe3 nanoribbons

    Science.gov (United States)

    Onishi, Seita; Jamei, Mehdi; Zettl, Alex

    2017-02-01

    Transport properties (dc electrical resistivity, threshold electric field, and narrow-band noise) are reported for nanoribbon specimens of NbSe3 with thicknesses as low as 18 nm. As the sample thickness decreases, the resistive anomalies characteristic of the charge density wave (CDW) state are suppressed and the threshold fields for nonlinear CDW conduction apparently diverge. Narrow-band noise measurements allow determination of the concentration of carriers condensed in the CDW state n c , reflective of the CDW order parameter Δ. Although the CDW transition temperatures are relatively independent of sample thickness, in the lower CDW state Δ decreases dramatically with decreasing sample thickness.

  6. Effect of increasing length on the electronic transport of an armchair graphene nano-ribbons

    Directory of Open Access Journals (Sweden)

    Sh Aghamiri Esfahani

    2015-12-01

    Full Text Available In this research, we have investigated the effect of increasing length on the electronic transport of an armchair graphene nano-ribbons with nitrogen atom impurity and without impurity. The semi-infinite, one-dimensional molecular systems are connected to two electrodes and the electron-electron interaction is ignored. The system is described by a simple tight binding model. All calculations are based on the Green's function and Landauer–Buttiker approach, and the electrodes are described in a wide band approximation.

  7. Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions

    International Nuclear Information System (INIS)

    Zhang, Xiang-Hua; Li, Xiao-Fei; Wang, Ling-Ling; Xu, Liang; Luo, Kai-Wu

    2014-01-01

    Carbon-nanotube/graphene-nanoribbon junctions were recently fabricated by the controllable etching of single-walled carbon-nanotubes [Wei et al., Nat. Commun. 4, 1374 (2013)] and their electronic transport properties were studied here. First principles results reveal that the transmission function of the junctions show a heavy dependence on the shape of contacts, but rectifying is an inherent property which is insensitive to the details of contacts. Interestingly, the rectifying ratio is largely enhanced in the junction with a realistic contact and the enhancement is insensitive to the details of contact structures. The stability of rectifying suggests a significant feasibility to manufacture realistic all-carbon rectifiers in nanoelectronics

  8. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.

    2012-05-09

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  9. Phonon scattering and thermal conductance properties in two coupled graphene nanoribbons modulated with bridge atoms

    International Nuclear Information System (INIS)

    Tan, Shi-Hua; Tang, Li-Ming; Chen, Ke-Qiu

    2014-01-01

    The phonon scattering and thermal conductance properties have been studied in two coupled graphene nanoribbons connected by different bridge atoms by using density functional theory in combination with non-equilibrium Green's function approach. The results show that a wide range of thermal conductance tuning can be realized by changing the chemical bond strength and atom mass of the bridge atoms. It is found that the chemical bond strength (bridge atom mass) plays the main role in phonon scattering at low (high) temperature. A simple equation is presented to describe the relationship among the thermal conductance, bridge atom, and temperature.

  10. Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors.

    Science.gov (United States)

    Li, Lei; Raji, Abdul-Rahman O; Fei, Huilong; Yang, Yang; Samuel, Errol L G; Tour, James M

    2013-07-24

    A facile and cost-effective approach to the fabrication of a nanocomposite material of polyaniline (PANI) and graphene nanoribbons (GNRs) has been developed. The morphology of the composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron microscopy, and X-ray diffraction analysis. The resulting composite has a high specific capacitance of 340 F/g and stable cycling performance with 90% capacitance retention over 4200 cycles. The high performance of the composite results from the synergistic combination of electrically conductive GNRs and highly capacitive PANI. The method developed here is practical for large-scale development of pseudocapacitor electrodes for energy storage.

  11. Electronic properties of phosphorene and graphene nanoribbons with edge vacancies in magnetic field

    Science.gov (United States)

    Smotlacha, J.; Pincak, R.

    2018-03-01

    The graphene and phosphorene nanostructures have a big potential application in a large area of today's research in physics. However, their methods of synthesis still don't allow the production of perfect materials with an intact molecular structure. In this paper, the occurrence of atomic vacancies was considered in the edge structure of the zigzag phosphorene and graphene nanoribbons. For different concentrations of these edge vacancies, their influence on the metallic properties was investigated. The calculations were performed for different sizes of the unit cell. Furthermore, for a smaller size, the influence of a uniform magnetic field was added.

  12. Zigzag phosphorene nanoribbons: one-dimensional resonant channels in two-dimensional atomic crystals

    Science.gov (United States)

    Páez, Carlos J; Pereira, Ana L C; Schulz, Peter A

    2016-01-01

    We theoretically investigate phosphorene zigzag nanoribbons as a platform for constriction engineering. In the presence of a constriction at one of the edges, quantum confinement of edge-protected states reveals conductance peaks, if the edge is uncoupled from the other edge. If the constriction is narrow enough to promote coupling between edges, it gives rise to Fano-like resonances as well as antiresonances in the transmission spectrum. These effects are shown to mimic an atomic chain like behavior in a two dimensional atomic crystal. PMID:28144546

  13. Zigzag phosphorene nanoribbons: one-dimensional resonant channels in two-dimensional atomic crystals

    Directory of Open Access Journals (Sweden)

    Carlos. J. Páez

    2016-12-01

    Full Text Available We theoretically investigate phosphorene zigzag nanoribbons as a platform for constriction engineering. In the presence of a constriction at one of the edges, quantum confinement of edge-protected states reveals conductance peaks, if the edge is uncoupled from the other edge. If the constriction is narrow enough to promote coupling between edges, it gives rise to Fano-like resonances as well as antiresonances in the transmission spectrum. These effects are shown to mimic an atomic chain like behavior in a two dimensional atomic crystal.

  14. Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.J. [Academia Sinica, Beijing, BJ (China). Inst. of Physics; Northwestern Polytechnical Univ., Xian, SN (China). Dept. of Materials Science and Engineering; Chen, X.L.; Tu, Q.Y.; Yang, Z.; Xu, Y.P.; Hu, B.Q. [Academia Sinica, Beijing, BJ (China). Inst. of Physics; Li, H.J. [Northwestern Polytechnical Univ., Xian, SN (China). Dept. of Materials Science and Engineering

    2001-05-01

    Low-dimensional GaN materials, including nanorings, nanoribbons and smooth nanowires have been synthesized by reacting gallium and ammonia using Ag particles as a catalyst on the substrate of MgO single crystals. They were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). EDX, XRD indicated that the low-dimensional nanomaterials were wurtzite GaN. New features are found in Raman scatterings for these low-dimensional GaN materials, which are different from the previous observations of GaN materials. (orig.)

  15. Mechanical failure of zigzag graphene nanoribbons under tensile strain induced by edge reconstruction

    KAUST Repository

    Cheng, Yingchun; Schwingenschlö gl, Udo; Zhu, Zhiyong

    2012-01-01

    The structural and mechanical properties of graphene nanoribbons (GNRs) under uniaxial tensile strain are studied by density functional theory. The ideal strength of a zigzag GNR (120 GPa) is close to that of pristine graphene. However, for a GNR with both edges reconstructed to pentagon–heptagon pairs (from hexagon–hexagon pairs) it decreases to 94 GPa and the maximum tensile strain is reduced to 15%. Our results constitute a comprehensive picture of the edge structure effect on the mechanical properties of GNRs.

  16. Tunable spin-charge conversion through topological phase transitions in zigzag nanoribbons

    KAUST Repository

    Li, Hang; Manchon, Aurelien

    2016-01-01

    We study spin-orbit torques and charge pumping in magnetic quasi-one-dimensional zigzag nanoribbons with a hexagonal lattice, in the presence of large intrinsic spin-orbit coupling. Such a system experiences a topological phase transition from a trivial band insulator to a quantum spin Hall insulator by tuning of either the magnetization direction or the intrinsic spin-orbit coupling. We find that the spin-charge conversion efficiency (i.e., spin-orbit torque and charge pumping) is dramatically enhanced at the topological transition, displaying a substantial angular anisotropy.

  17. First principle study of structural, electronic and magnetic properties of zigzag boron nitride nanoribbon: Role of vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arun [Department of Physics, Govt. College Banjar, Kullu, Himanchal Pradesh, 175123 India (India); Bahadur, Amar, E-mail: abr.phys@gmail.com [Department of Physics, Kamla Nehru Institute of Physical and Social Sciences, Sultanpur, Uttar Pradesh, 228118 India (India); Mishra, Madhukar [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031 India (India); Vasudeva, Neena [Department of Physics, S. V. G. College, Ghumarwin, Bilaspur, Himanchal Pradesh, 1714021 India (India)

    2015-05-15

    We study the effect of vacancies on the structural, electronic and magnetic properties of zigzag boron nitride nanoribbon (ZBNNR) by using first principle calculations. We find that the shift of the vacancies with respect to the ribbon edges causes change in the structural geometry, electronic structure and magnetization of ZBNNR. These vacancies also produce band gap modulation and consequently results the magnetization of ZBNNR.

  18. Equilibrium Molecular Dynamics (MD Simulation Study of Thermal Conductivity of Graphene Nanoribbon: A Comparative Study on MD Potentials

    Directory of Open Access Journals (Sweden)

    Asir Intisar Khan

    2015-12-01

    Full Text Available The thermal conductivity of graphene nanoribbons (GNRs has been investigated using equilibrium molecular dynamics (EMD simulation based on Green-Kubo (GK method to compare two interatomic potentials namely optimized Tersoff and 2nd generation Reactive Empirical Bond Order (REBO. Our comparative study includes the estimation of thermal conductivity as a function of temperature, length and width of GNR for both the potentials. The thermal conductivity of graphene nanoribbon decreases with the increase of temperature. Quantum correction has been introduced for thermal conductivity as a function of temperature to include quantum effect below Debye temperature. Our results show that for temperatures up to Debye temperature, thermal conductivity increases, attains its peak and then falls off monotonically. Thermal conductivity is found to decrease with the increasing length for optimized Tersoff potential. However, thermal conductivity has been reported to increase with length using 2nd generation REBO potential for the GNRs of same size. Thermal conductivity, for the specified range of width, demonstrates an increasing trend with the increase of width for both the concerned potentials. In comparison with 2nd generation REBO potential, optimized Tersoff potential demonstrates a better modeling of thermal conductivity as well as provides a more appropriate description of phonon thermal transport in graphene nanoribbon. Such comparative study would provide a good insight for the optimization of the thermal conductivity of graphene nanoribbons under diverse conditions.

  19. Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao Singamaneni

    2014-04-01

    Full Text Available Electronic spin transport properties of graphene nanoribbons (GNRs are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element spin-sensitive techniques such as electron spin resonance (ESR spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW, pulse and hyperfine sublevel correlation (HYSCORE ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs, which were subsequently chemically converted (CCGNRs with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH3 adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns and fast (39 ns components. HYSCORE ESR data demonstrate the explicit presence of protons and 13C atoms. With the provided identification of intrinsic point magnetic defects such as proton and 13C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic-based transport properties of CCGNRs.

  20. Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu [INPAC – Institute for Nanoscale Physics and Chemistry, Semiconductor Physics Laboratory, K.U. Leuven, Celestijnenlaan 200D, B–3001 Leuven (Belgium); Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Stesmans, Andre [INPAC – Institute for Nanoscale Physics and Chemistry, Semiconductor Physics Laboratory, K.U. Leuven, Celestijnenlaan 200D, B–3001 Leuven (Belgium); Tol, Johan van [National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310 (United States); Kosynkin, D. V. [Department of Chemistry, Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States); Tour, James M. [Department of Chemistry, Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States); Department of Mechanical Engineering and Materials Science, Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005 (United States); Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005, USA. (United States)

    2014-04-15

    Electronic spin transport properties of graphene nanoribbons (GNRs) are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element) spin-sensitive techniques such as electron spin resonance (ESR) spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW), pulse and hyperfine sublevel correlation (HYSCORE) ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs), which were subsequently chemically converted (CCGNRs) with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH{sub 3} adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns) and fast (39 ns) components. HYSCORE ESR data demonstrate the explicit presence of protons and {sup 13}C atoms. With the provided identification of intrinsic point magnetic defects such as proton and {sup 13}C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic)-based transport properties of CCGNRs.

  1. Edge passivation induced single-edge ferromagnetism of zigzag MoS_2 nanoribbons

    International Nuclear Information System (INIS)

    Wang, Rui; Sun, Hui; Ma, Ben; Hu, Jingguo; Pan, Jing

    2017-01-01

    We performed density functional theory study on electronic structure, magnetic properties and stability of zigzag MoS_2 nanoribbons (ZMoS_2NRs) with and without oxygen (O) passivation. The bare ZMoS_2NRs are magnetic metal with ferromagnetic edge states, edge passivation decreases their magnetism because of the decrease of edge unsaturated electrons. Obviously, the electronic structure and magnetic properties of ZMoS_2NRs greatly depend on edge states. When both edges are passivated by O atoms, ZMoS_2NRs are nonmagnetic metals. When either edge is passivated by O atoms, the systems exhibit single-edge ferromagnetism and magnetism concentrates on the non-passivated edge. Edge passivation can not only tune the magnetism of ZMoS_2NRs, but also enhance their stability by eliminating dangling bonds. These interesting findings on ZMoS_2NRs may open the possibility of their application in nanodevices and spintronics. - Highlights: • Edge passivation for tuning magnetism of zigzag MoS_2 nanoribbons (ZMoS_2NRs) is proposed. • Edge passivation can tune ZMoS_2NRs from nonmagnetic metal to ferromagnetic metal. • When either edge is passivated, the systems exhibit single-edge ferromagnetic states. • These findings may inspire great interest in the community of ZMoS_2NRs and motivate numerous experimental researches.

  2. Structural and electronic properties of armchair graphene nanoribbons under uniaxial strain

    Science.gov (United States)

    Qu, Li-Hua; Zhang, Jian-Min; Xu, Ke-Wei; Ji, Vincent

    2014-02-01

    We theoretically investigate the structures, relative stabilities and electronic properties of the armchair graphene nanoribbons (AGNRs) under uniaxial strain via first-principles calculations. The results show that, although each bond length decreases (increases) with increasing compression (tension) strain especially for the axial bonds a1, a4 and a7, the ribbon geometrical width d increases (decreases) with increasing compression (tension) strain due to the rotation of the zigzag bonds a2, a3, a5 and a6. For each nanoribbon, as expected, the lowest average energy corresponds to the unstrained state and the larger contract (elongate) deformation corresponds to the higher average energy. At a certain strain, the average energy increases with decreasing the ribbon width n. The average energy increases quadratically with the absolute value of the uniaxial strain, showing an elastic behavior. The dependence of the band gap on the strain is sensitive to the ribbon width n which can be classified into three distinct families n=3I, 3I+1 and 3I+2, where I is an integer. The ribbon width leads to oscillatory band gaps due to quantum confinement effect.

  3. Chemical Makeup and Hydrophilic Behavior of Graphene Oxide Nanoribbons after Low-Temperature Fluorination.

    Science.gov (United States)

    Romero Aburto, Rebeca; Alemany, Lawrence B; Weldeghiorghis, Thomas K; Ozden, Sehmus; Peng, Zhiwei; Lherbier, Aurélien; Botello Méndez, Andrés Rafael; Tiwary, Chandra Sekhar; Taha-Tijerina, Jaime; Yan, Zheng; Tabata, Mika; Charlier, Jean-Christophe; Tour, James M; Ajayan, Pulickel M

    2015-07-28

    Here we investigated the fluorination of graphene oxide nanoribbons (GONRs) using H2 and F2 gases at low temperature, below 200 °C, with the purpose of elucidating their structure and predicting a fluorination mechanism. The importance of this study is the understanding of how fluorine functional groups are incorporated in complex structures, such as GONRs, as a function of temperature. The insight provided herein can potentially help engineer application-oriented materials for several research and industrial sectors. Direct (13)C pulse magic angle spinning (MAS) nuclear magnetic resonance (NMR) confirmed the presence of epoxy, hydroxyl, ester and ketone carbonyl, tertiary alkyl fluorides, as well as graphitic sp(2)-hybridized carbon. Moreover, (19)F-(13)C cross-polarization MAS NMR with (1)H and (19)F decoupling confirmed the presence of secondary alkyl fluoride (CF2) groups in the fluorinated graphene oxide nanoribbon (FGONR) structures fluorinated above 50 °C. First-principles density functional theory calculations gained insight into the atomic arrangement of the most dominant chemical groups. The fluorinated GONRs present atomic fluorine percentages in the range of 6-35. Interestingly, the FGONRs synthesized up to 100 °C, with 6-19% of atomic fluorine, exhibit colloidal similar stability in aqueous environments when compared to GONRs. This colloidal stability is important because it is not common for materials with up to 19% fluorine to have a high degree of hydrophilicity.

  4. Characteristics of CVD graphene nanoribbon formed by a ZnO nanowire hardmask

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Goo; Kang, Jang Won; Lee, Seung Yong; Hwang, Hyeon Jun; Lee, Young Gon; Park, Seong-Ju; Lee, Byoung Hun [School of Material Science and Engineering, Gwangju Institute of Science and Technology, Oryong-dong 1, Buk-gu, Gwangju, 500-712 (Korea, Republic of); Lee, Sang Kyung; Cho, Chun Hum [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Oryong-dong 1, Buk-gu, Gwangju, 500-712 (Korea, Republic of); Heo, Jinseong; Chung, Hyun-Jong; Yang, Heejun [Semiconductor Devices Lab, Samsung Advanced Institute of Technology, Yongin (Korea, Republic of); Seo, Sunae [Department of Physics, Sejong University, Gunja-Dong, Kwanggin-gu, Seoul (Korea, Republic of); Ko, Ki Young; Ahn, Jinho, E-mail: bhl@gist.ac.kr [Division of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul, 133-791 (Korea, Republic of)

    2011-07-22

    A graphene nanoribbon (GNR) is an important basic structure to open a bandgap in graphene. The GNR processes reported in the literature are complex, time-consuming, and expensive; moreover, the device yield is relatively low. In this paper, a simple new process to fabricate a long and straight graphene nanoribbon with a high yield has been proposed. This process utilizes CVD graphene substrate and a ZnO nanowire as the hardmask for patterning. 8 {mu}m long and 50-100 nm wide GNRs were successfully demonstrated in high density without any trimming, and {approx} 10% device yield was realized with a top-down patterning process. After passivating the surfaces of the GNRs using a low temperature atomic layer deposition (ALD) of Al{sub 2}O{sub 3}, high performance GNR MOSFETs with symmetric drain-current-gate-voltage (I{sub d}-V{sub g}) curves were demonstrated and a field effect mobility up to {approx} 1200 cm{sup 2} V{sup -1} s{sup -1} was achieved at V{sub d} = 10 mV.

  5. Transformation from Nanofibers to Nanoribbons in Poly(3-hexylthiophene) Solution by Adding Alkylthiols.

    Science.gov (United States)

    Pan, Shuang; Zhu, Mingjing; He, Luze; Zhang, Hongdong; Qiu, Feng; Lin, Zhiqun; Peng, Juan

    2018-05-10

    An intriguing morphological transition from poly(3-hexylthiophene) (P3HT) 1D nanofibers to 2D nanoribbons enabled by the addition of a series of alkylthiols is reported. First, P3HT 1D nanofibers are formed due to strong anisotropic π-π stacking between planar rigid backbones. Upon the addition of alkylthiols, P3HT nanofibers are transformed into nanoribbons associated with the crystallographic transition from edge-on orientation to flat-on orientation. The content of alkylthiols has a great influence on the P3HT morphology in the solution. The mechanism of such a morphological transformation is discussed based on the interaction between alkylthiols and P3HT chains. This work offers an effective strategy to tailor the crystal morphology and dimension of P3HT, which not only improves the understanding of P3HT crystallization but also may enable such discovery into conjugated polymer-based optoelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Molecular dynamics simulation on double-elastic deformation of zigzag graphene nanoribbons at low temperature

    International Nuclear Information System (INIS)

    Sun, Y.J.; Huang, Y.H.; Ma, F.; Ma, D.Y.; Hu, T.W.; Xu, K.W.

    2014-01-01

    Highlights: • Molecular dynamics simulation was performed to study the deformation behaviors of Zigzag Graphene Nano-Ribbons (ZGNRs). • The “phase transformation” from hexagonal to quasi-rectangular and the subsequent second elastic deformation were observed. • Related thermal effects model was built to predict fracture strain of ZGNRs, and was consistent with simulation results. -- Abstract: Molecular dynamics simulation was performed to study the deformation behaviors of Zigzag Graphene Nano-Ribbons (ZGNRs) 150 Å × 150 Å in size, and double-elastic deformation was observed at temperatures lower than 90 K. Essentially, at such a low temperature, the lattice vibration was significantly weakened and thus the lifetime of C-C bonds was prolonged considerably. Moreover, it was difficult for broken bonds to accumulate and resulted in the destructive fracture of ZGNRs at low temperature. As a result, the “phase transformation” from hexagonal to quasi-rectangular and subsequently the second elastic deformation took place. However, at higher temperatures, says, 300 K, brittle fracture was observed and the fracture strength decreased with temperature, which was consistent with previously reported results. Additionally at higher strain rate, the atoms could not respond to the external loading in time, the fracture strain and fracture strength were enhanced

  7. Thermal expansion producing easier formation of a black phosphorus nanotube from nanoribbon on carbon nanotube

    Science.gov (United States)

    Cao, Jing; Cai, Kun

    2018-02-01

    As a novel one-dimensional material having excellent electrical properties, a black phosphorus (BP) nanotube has wide potential applications in nanodevices. A BP nanotube has not yet, however, been discovered in experiments or fabricated via chemical synthesis. In this study, the feasibility of forming a nanotube from a parallelogram nanoribbon upon a carbon nanotube (CNT) at different temperatures is discussed through the use of molecular dynamics simulations. Results obtained demonstrate that an ideal BP nanotube from the same nanoribbon can be obtained via self-assembly on a CNT at 50 K or lower temperature. At temperatures between 50-100 K, the BP nanotube formed from a single ribbon has defects at both ends. When the temperature is higher than 100 K, it is difficult to obtain a BP nanotube of high quality. It is discovered that when the ribbon can only wind upon the same CNT at low temperature, it may form into an ideal nanotube by increasing the temperature of the system. The reason is that the BP ribbon has a higher thermal expansion than the CNT under the same temperature difference.

  8. Energy gap of extended states in SiC-doped graphene nanoribbon: Ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoshi; Wu, Yong [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Shanghai Key Lab of Modern Optical System, Shanghai 200093 (China); Li, Zhongyao, E-mail: lizyusst@gmail.com [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Shanghai Key Lab of Modern Optical System, Shanghai 200093 (China); Gao, Yong [School of Science, Shanghai Second Polytechnic University, Shanghai 201209 (China)

    2017-04-01

    Highlights: • The gap of isolated ribbon is inversely proportional to the width of ribbon. • The gap of doped ribbon cannot be modeled by effective width approximation. • The fitted energy gap can match the experimental observations. • The doping results in a spin-polarized metallic-like band structure. - Abstract: The energy gap of extended states in zigzag graphene nanoribbons (ZGNRs) was examined on the basis of density-functional theory. In isolated ZGNRs, the energy gap is inversely proportional to the width of ribbon. It agrees well with the results from the Dirac equation in spin-unpolarized ZGNRs, although the considered ZGNRs have spin-polarized edges. However, the energy gap in SiC-doped ZGNRs cannot be modeled by effective width approximation. The doping also lifts the spin-degenerate of edge states and results in a metallic-like band structure near the Fermi level in SiC-doped ZGNRs. Our calculations may be helpful for understanding the origin of the reported single-channel ballistic transport in epitaxial graphene nanoribbons.

  9. Inducing half-metallicity with enhanced stability in zigzag graphene nanoribbons via fluorine passivation

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Neeraj K., E-mail: neerajkjaiswal@gmail.com [Discipline of Physics, Indian Institute of Information Technology Design & Manufacturing, Jabalpur 482005 (India); Tyagi, Neha [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Kumar, Amit [Discipline of Physics, Indian Institute of Information Technology Design & Manufacturing, Jabalpur 482005 (India); Srivastava, Pankaj [Nanomaterials Research Group, ABV-Indian Institute of Information Technology & Management, Gwalior 474015 (India)

    2017-02-28

    Highlights: • F passivated zigzag graphene nanoribbon (F-ZGNR) are more favorable than pristine ones. • External electric field induces half metallicity in F-ZGNR. • The observed half metallicity is independent of ribbon widths. • Enhanced stability makes F-ZGNR preferable over pristine ribbon. - Abstract: Half metals are the primary ingredients for the realization of novel spintronic devices. In the present work, by employing density functional theory based first-principles calculation, we predict half metallic behavior in fluorine passivated zigzag graphene nanoribbons (F-ZGNR). Four different structures have been investigated viz. one edge F passivated ZGNR (F-ZGNR-1), both edges F passivated ZGNR (F-ZGNR-2), F passivation on alternate sites in first configuration (alt-1) and F passivation on alternate sites in second configuration (alt-2). Interestingly, it is noticed that F passivation is analogous to H passivation (pristine), however, F-ZGNR are reckoned energetically more stable than pristine ones. An spin induced band gap is noticed for all F-ZGNR irrespective of their widths although its magnitude is slightly less than the pristine counterparts. With an external transverse electric field, ribbons undergo semiconducting to half metallic transformation. The observed half metallic character with enhanced stability present F-ZGNR as a better candidate than pristine ZGNR towards the realization of upcoming spintronic devices.

  10. Electronic structure and transport properties of hydrogenated graphene and graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Choe, D H; Bang, Junhyeok; Chang, K J, E-mail: kchang@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2010-12-15

    The band gap opening is one of the important issues in applications of graphene and graphene nanoribbons (GNRs) to nanoscale electronic devices. As hydrogen strongly interacts with graphene and creates short-range disorder, the electronic structure is significantly modified by hydrogenation. Based on first-principles and tight-binding calculations, we investigate the electronic and transport properties of hydrogenated graphene and GNRs. In disordered graphene with low doses of H adsorbates, the low-energy states near the neutrality point are localized, and the degree of localization extends to high-energy states with increasing adsorbate density. To characterize the localization of eigenstates, we examine the inverse participation ratio and find that the localization is greatly enhanced for the defect levels, which are accumulated around the neutrality point. Our calculations support the previous result that even with a low dose of H adsorbates, graphene undergoes a metal-insulator transition. In GNRs, relaxations of the edge C atoms play a role in determining the edge structure and the hydrocarbon conformation at low and high H concentrations, respectively. In disordered nanoribbons, we find that the energy states near the neutrality point are localized and conductances through low-energy channels decay exponentially with sample size, similar to disordered graphene. For a given channel energy, the localization length tends to decrease as the adsorbate density increases. Moreover, the energy range of localization exceeds the intrinsic band gap.

  11. Giant rectification in graphene nanoflake molecular devices with asymmetric graphene nanoribbon electrodes

    International Nuclear Information System (INIS)

    Ji, Xiao-Li; Xie, Zhen; Zuo, Xi; Zhang, Guang-Ping; Li, Zong-Liang; Wang, Chuan-Kui

    2016-01-01

    By applying density functional theory based nonequilibrium Green's function method, we theoretically investigate the electron transport properties of a zigzag-edged trigonal graphene nanoflake (ZTGNF) sandwiched between two asymmetric zigzag graphene nanoribbon (zGNR) and armchair graphene nanoribbon (aGNR) electrodes with carbon atomic chains (CACs) as the anchoring groups. Significant rectifying effects have been observed for these molecular devices in low bias voltage regions. Interestingly, the rectifying performance of molecular devices can be optimized by changing the width of the aGNR electrode and the number of anchoring CACs. Especially, the molecular device displays giant rectification ratios up to the order of 10"4 when two CACs are used as the anchoring group between the ZTGNF and the right aGNR electrode. Further analysis indicates that the asymmetric shift of the perturbed molecular energy levels and the spatial parity of the electron wavefunctions in the electrodes around the Fermi level play key roles in determining the rectification performance. And the spatial distributions of tunneling electron wavefunctions under negative bias voltages can be modified to be very localized by changing the number of anchoring CACs, which is found to be the origin of the giant rectification ratios. - Highlights: • The rectification properties of triangular Graphene nanoflakes are investigated. • The rectifying performance can be optimized by changing the width of the right arm-chaired GNR electrode. • The rectifying performance can also be tuned by varying the number of anchoring carbon atomic chains.

  12. Optical Properties of a Single Carbon Chain-Doped Silicene Nanoribbon

    Science.gov (United States)

    Lu, Dao-Bang; Song, Yu-Ling; Huang, Xiao-yu; Wang, Chong

    2018-05-01

    Using first-principles spin polarization density function theory calculations, we have studied the electronic and optical properties of zigzag-edge silicene nanoribbons (ZSiNRs) doped with a single carbon chain. Because of the doped carbon chain, there are several defect states in the band structures of ZSiNRs across the Fermi level, and the ferromagnetic ground state is metallic. The dielectric functions in all three dimensions are completely different from each other, and thus the system exhibits strong optical anisotropism. The carbon chain influenced the dielectric functions most at low energy. The first peak in the E//x direction of the dielectric spectrum exhibits a significant blueshift, and its value has changed as well. The main absorption wavelength depends on the polarization direction of the incident light, but occurs within the UV region for all polarization directions. The peaks of the energy loss spectra correspond to the trailing edges in the reflectivity spectrum, and the highest peak corresponds to a plasmon frequency. Our results could be useful for investigating nanodevices based on silicene nanoribbons.

  13. Sub-5 nm, globally aligned graphene nanoribbons on Ge(001)

    Energy Technology Data Exchange (ETDEWEB)

    Kiraly, Brian; Mannix, Andrew J. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Building 440, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208 (United States); Jacobberger, Robert M.; Arnold, Michael S. [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Fisher, Brandon L.; Guisinger, Nathan P., E-mail: nguisinger@anl.gov, E-mail: m-hersam@northwestern.edu [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Building 440, Argonne, Illinois 60439 (United States); Hersam, Mark C., E-mail: nguisinger@anl.gov, E-mail: m-hersam@northwestern.edu [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208 (United States)

    2016-05-23

    Graphene nanoribbons (GNRs) hold great promise for future electronics because of their edge and width dependent electronic bandgaps and exceptional transport properties. While significant progress toward GNR devices has been made, the field has been limited by difficulties achieving narrow widths, global alignment, and atomically pristine GNR edges on technologically relevant substrates. A recent advance has challenged these limits by using Ge(001) substrates to direct the bottom-up growth of GNRs with nearly pristine armchair edges and widths near ∼10 nm via atmospheric pressure chemical vapor deposition. In this work, the growth of GNRs on Ge(001) is extended to ultra-high vacuum conditions, resulting in the realization of GNRs with widths narrower than 5 nm. Armchair graphene nanoribbons oriented along Ge 〈110〉 surface directions are achieved with excellent width control and relatively large bandgaps. The bandgap magnitude and electronic uniformity of these sub-5 nm GNRs are well-suited for emerging nanoelectronic applications.

  14. Scaling Effect of Phosphorene Nanoribbon - Uncovering the Origin of Asymmetric Current Transport

    Science.gov (United States)

    Lv, Yawei; Chang, Sheng; Huang, Qijun; Wang, Hao; He, Jin

    2016-01-01

    In this paper, phosphorene nanoribbons (PNRs) are theoretically studied using a multiscale simulation flow from the ab initio level to the tight binding (TB) level. The scaling effects of both armchair PNRs (aPNRs) and zigzag PNRs (zPNRs) from material properties to device properties are explored. The much larger effective mass of holes compared to that of electrons in zPNR is responsible for its asymmetric transport. However, in aPNR, not only the effective mass difference but also the non-equal density of state (DOS) distributions near valence band maximum (VBM) and conduction band minimum (CBM) lead to the asymmetric transport. This non-equal distribution phenomenon is caused by energy band degeneracies near the VBM. Based on these two different mechanisms, PNRs’ asymmetric transport characteristics at the device level are explained, and it is shown that this behaviour can be ameliorated well by reducing the ribbon width in an aPNR MOSFET. Calculation results also indicate that aPNR’s effective mass is comparable to that of a graphene nanoribbon (GNR) at the same bandgap; however, aPNR’s band gap variation is more stable and regular than that of GNR, making it a good candidate for use in low-dimensional nano devices. PMID:27897230

  15. Unexpected Magnetic Semiconductor Behavior in Zigzag Phosphorene Nanoribbons Driven by Half-Filled One Dimensional Band

    Science.gov (United States)

    Du, Yongping; Liu, Huimei; Xu, Bo; Sheng, Li; Yin, Jiang; Duan, Chun-Gang; Wan, Xiangang

    2015-01-01

    Phosphorene, as a novel two-dimensional material, has attracted a great interest due to its novel electronic structure. The pursuit of controlled magnetism in Phosphorene in particular has been persisting goal in this area. In this paper, an antiferromagnetic insulating state has been found in the zigzag phosphorene nanoribbons (ZPNRs) from the comprehensive density functional theory calculations. Comparing with other one-dimensional systems, the magnetism in ZPNRs display several surprising characteristics: (i) the magnetic moments are antiparallel arranged at each zigzag edge; (ii) the magnetism is quite stable in energy (about 29 meV/magnetic-ion) and the band gap is big (about 0.7 eV); (iii) the electronic and magnetic properties is almost independent on the width of nanoribbons; (iv) a moderate compressive strain will induce a magnetic to nonmagnetic as well as semiconductor to metal transition. All of these phenomena arise naturally due to one unique mechanism, namely the electronic instability induced by the half-filled one-dimensional bands which cross the Fermi level at around π/2a. The unusual electronic and magnetic properties in ZPNRs endow them possible potential for the applications in nanoelectronic devices. PMID:25747727

  16. Spin-Related Micro-Photoluminescence in Fe3+ Doped ZnSe Nanoribbons

    Directory of Open Access Journals (Sweden)

    Lipeng Hou

    2016-12-01

    Full Text Available Spin-related emission properties have important applications in the future information technology; however, they involve microscopic ferromagnetic coupling, antiferromagnetic or ferrimagnetic coupling between transition metal ions and excitons, or d state coupling with phonons is not well understood in these diluted magnetic semiconductors (DMS. Fe3+ doped ZnSe nanoribbons, as a DMS example, have been successfully prepared by a thermal evaporation method. Their power-dependent micro-photoluminescence (PL spectra and temperature-dependent PL spectra of a single ZnSe:Fe nanoribbon have been obtained and demonstrated that alio-valence ion doping diminishes the exciton magnetic polaron (EMP effect by introducing exceeded charges. The d-d transition emission peaks of Fe3+ assigned to the 4T2 (G → 6A1 (S transition at 553 nm and 4T1 (G → 6A1 (S transition at 630 nm in the ZnSe lattice have been observed. The emission lifetimes and their temperature dependences have been obtained, which reflected different spin–phonon interactions. There exists a sharp decrease of PL lifetime at about 60 K, which hints at a magnetic phase transition. These spin–spin and spin–phonon interaction related PL phenomena are applicable in the future spin-related photonic nanodevices.

  17. Half metallicity in bare BC{sub 2}N nanoribbons with zigzag edges

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong, E-mail: lihong@ncut.edu.cn [College of Mechanical and Material Engineering, North China University of Technology, Beijing 100144 (China); Xiao, Xiang; Tie, Jun [College of Mechanical and Material Engineering, North China University of Technology, Beijing 100144 (China); Lu, Jing [State Key Laboratory of Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China)

    2017-06-09

    We study the electronic and magnetic properties of bare zigzag BC{sub 2}N nanoribbons (ZBC{sub 2}NNRs) by using first principles calculations. The ZBC{sub 2}NNRs which we studied are assigned to four edge types, and we carefully examine the size effect and edge magnetic coupling orders. We find that the N edge and the C edge adjacent to N atoms have a ferromagnetic coupling, while the B edge and the C edge adjacent to B atoms have an anti-ferromagnetic coupling. These novel properties arise from the unsaturated edge with specific edge determined magnetic moment distribution. All the investigated ribbons exhibit magnetic ground states with room-temperature accessible half-metallic character, irrespective of the ribbon width. Our results suggest that ZBC{sub 2}NNRs can have potential applications in spintronics. - Highlights: • DFT study on bare zigzag BC{sub 2}N nanoribbons (ZBC{sub 2}NNRs). • All the studied bare ZBC{sub 2}NNRs are half-metals at room temperature. • The half-metal characters come from specific spin couplings on the edge atoms. • We predict bare ZBC{sub 2}NNRs as practical candidate for spintronics.

  18. Analysis of Simulated Output Characteristics of Gas Sensor Based on Graphene Nanoribbon

    Directory of Open Access Journals (Sweden)

    A. Mahmoudi

    2016-01-01

    Full Text Available This work presents simulated output characteristics of gas sensor transistors based on graphene nanoribbon (GNRFET. The device studied in this work is a new generation of gas sensing devices, which are easy to use, ultracompact, ultrasensitive, and highly selective. We will explain how the exposure to the gas changes the conductivity of graphene nanoribbon. The equations of the GNRFET gas sensor model include the Poisson equation in the weak nonlocality approximation with proposed sensing parameters. As we have developed this model as a platform for a gas detection sensor, we will analyze the current-voltage characteristics after exposure of the GNRFET nanosensor device to NH3 gas. A sensitivity of nearly 2.7% was indicated in our sensor device after exposure of 1 ppm of NH3. The given results make GNRFET the right candidate for use in gas sensing/measuring appliances. Thus, we will investigate the effect of the channel length on the ON- and OFF-current.

  19. Tunable SnO2 Nanoribbon by Electric Fields and Hydrogen Passivation

    Directory of Open Access Journals (Sweden)

    Xin-Lian Chen

    2017-01-01

    Full Text Available Under external transverse electronic fields and hydrogen passivation, the electronic structure and band gap of tin dioxide nanoribbons (SnO2NRs with both zigzag and armchair shaped edges are studied by using the first-principles projector augmented wave (PAW potential with the density function theory (DFT framework. The results showed that the electronic structures of zigzag and armchair edge SnO2NRs exhibit an indirect semiconducting nature and the band gaps demonstrate a remarkable reduction with the increase of external transverse electronic field intensity, which demonstrate a giant Stark effect. The value of the critical electric field for bare Z-SnO2NRs is smaller than A-SnO2NRs. In addition, the different hydrogen passivation nanoribbons (Z-SnO2NRs-2H and A-SnO2NRs-OH show different band gaps and a slightly weaker Stark effect. The band gap of A-SnO2NRs-OH obviously is enhanced while the Z-SnO2NRs-2H reduce. Interestingly, the Z-SnO2NRs-OH presented the convert of metal-semiconductor-metal under external transverse electronic fields. In the end, the electronic transport properties of the different edges SnO2NRs are studied. These findings provide useful ways in nanomaterial design and band engineering for spintronics.

  20. Quantum effect enhanced magnetism of C-doped phosphorene nanoribbons: first-principles calculations.

    Science.gov (United States)

    Cai, Xiaolin; Niu, Chunyao; He, Yuan-Yao; Wang, Jianjun; Zhu, Zhili; Zhang, Liwei; Jia, Yu

    2017-10-25

    Manipulating magnetism of low-dimensional materials is of great importance for their practical applications. Here, using first-principles calculations, we report a systematic investigation of the magnetic properties of C-doped H saturated zigzag phosphorene nanoribbons (H-ZPNRs), which are rather different from those of 2D periodic systems due to the quantum size effect. First of all, we observed a greatly enhanced magnetic moment locating mainly on the C atom and also slightly on its surrounding P atoms. Our results also indicated a strong dependence of the magnetic moment of the C atom on its location, which decays from the edge to the center site of the nanoribbons with an odd-even oscillating behavior originating from Friedel oscillation in low-dimensional materials. As for the C atom on a specific location, its magnetic moment decreases gradually with increasing width of H-ZPNRs, degenerating to the 2D case. What is more, we found that both the magnitude and the oscillating behavior of the magnetic moment on the C atom can be tuned by the edge saturation atoms. In addition, the case of two C atoms co-doping H-ZPNRs was also studied, showing non-magnetic (NM), ferromagnetic (FM) and antiferromagnetic (AFM) states depending on the locations of the two C atoms. Our findings suggest a plausible route for manipulating magnetism of the sp element doped H-ZPNRs, which are expected to have potential applications in spintronics.

  1. Edge magnetism impact on electrical conductance and thermoelectric properties of graphenelike nanoribbons

    Science.gov (United States)

    Krompiewski, Stefan; Cuniberti, Gianaurelio

    2017-10-01

    Edge states in narrow quasi-two-dimensional nanostructures determine, to a large extent, their electric, thermoelectric, and magnetic properties. Nonmagnetic edge states may quite often lead to topological-insulator-type behavior. However, another scenario develops when the zigzag edges are magnetic and the time reversal symmetry is broken. In this work we report on the electronic band structure modifications, electrical conductance, and thermoelectric properties of narrow zigzag nanoribbons with spontaneously magnetized edges. Theoretical studies based on the Kane-Mele-Hubbard tight-binding model show that for silicene, germanene, and stanene both the Seebeck coefficient and the thermoelectric power factor are strongly enhanced for energies close to the charge neutrality point. A perpendicular gate voltage lifts the spin degeneracy of energy bands in the ground state with antiparallel magnetized zigzag edges and makes the electrical conductance significantly spin polarized. Simultaneously the gate voltage worsens the thermoelectric performance. Estimated room-temperature figures of merit for the aforementioned nanoribbons can exceed a value of 3 if phonon thermal conductances are adequately reduced.

  2. Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron

    Science.gov (United States)

    Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun

    2018-03-01

    Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.

  3. Facile longitudinal unzipping of carbon nanotubes to graphene nanoribbons and their effects on LiMn2O4 cathodes in rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Ilango, P. Robert; Prasanna, K.; Subburaj, T.; Jo, Yong Nam; Lee, Chang Woo

    2015-01-01

    Highlights: • The graphene nanoribbons are successfully synthesized by chemical unzipping method. • The LiMn 2 O 4 is surface modified with graphene nanoribbons via ultrasonic-assisted wet-coating. • The electrochemical effects of graphene nanoribbons on LiMn 2 O 4 are studied. • The modified LiMn 2 O 4 shows the good electronic conductivity and improved capacity. - Abstract: A LiMn 2 O 4 cathode has been surface-modified with carbon nanotubes and graphene nanoribbons via an ultrasonic-assisted wet-coating method. The structural stability of the surface-modified LiMn 2 O 4 and the amorphous nature of the coated carbon materials are confirmed using X-ray diffraction (XRD). Field emission scanning electron microscopy (FE-SEM) reveals the strong and uniform distribution of graphene nanoribbons over the LiMn 2 O 4 in comparison to the carbon nanotubes-coated LiMn 2 O 4 . Furthermore, field emission transmission electron microscopy (FE-TEM) confirms the strong adhesion of a smooth, sheet-like graphene nanoribbons layer over the LiMn 2 O 4 surface, whereas the carbon nanotubes are observed to have weak and/or irregular contact with LiMn 2 O 4 . Electrochemical studies have been carried out by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and a galvanostatic cycler. The graphene nanoribbons-modified LiMn 2 O 4 cathode shows better electrochemical properties in terms of a suppressed charge transfer resistance, high current density, negative shift in polarization, longer calendar life, and high rate capabilities. In addition, the graphene nanoribbons-modified LiMn 2 O 4 delivered 90% of the retention capacity after 50 cycles at a rate of 1 C with the potential limits of 3.0–4.5 V vs. Li/Li + .

  4. Modulation of electronic transport properties in armchair phosphorene nanoribbons by doping and edge passivation.

    Science.gov (United States)

    Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang

    2017-10-09

    The electronic structures and transport properties of group IV atoms (C, Si, Ge)-doped armchair phosphorene nanoribbons (APNRs) are investigated using first-principles calculations, considering different edge passivation. The results show that the C, Si, Ge dopants can induce the transition occur from semiconductor to metal in the APNRs. The negative differential resistance (NDR) behavior in the doped APNR system is robust with respect to the doping concentration and edge passivation type. However, their current peak positions and peak-to-valley ratio (PVR) values are correlated with doping concentration and edge passivation type. In particular, for the C, Si-doped APNRs, the low bias NDR behavior with the PVR (10 5 -10 8 ) can be observed when doping concentration is low in the APNRs with the F and H edge passivation. These results may play an important role for the fabrication of future low power consumption nano-electronic devices.

  5. Electronic transport in armchair graphene nanoribbon under double magnetic barrier modulation

    Science.gov (United States)

    Wang, Haiyan; Wu, Chao; Xie, Fang; Zhang, Xiaojiao; Zhou, Guanghui

    2018-03-01

    We present a theoretical investigation of the transport properties and the magnetoresistance effect in armchair graphene nanoribbons (AGNRs) under modulation by two magnetic barriers. The energy levels are found to be degenerate for a metallic AGNR but are not degenerate for a semiconducting AGNR. However, the conductance characteristics show quantized plateaus in both the metallic and semiconducting cases. When the magnetization directions of the barriers change from parallel to antiparallel, the conductance plateau in the metallic AGNR shows a degenerate feature due to matching between the transport modes in different regions. As the barrier height increases, the conductance shows more oscillatory behavior with sharp peaks and troughs. Specifically, the initial position of nonzero conductance for the metallic AGNR system moves towards a higher energy regime, which indicates that an energy gap has been opened. In addition, the magnetoresistance ratio also shows plateau structures in certain specific energy regions. These results may be useful in the design of electron devices based on AGNR nanostructures.

  6. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    Science.gov (United States)

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  7. Time Domain Analysis of Graphene Nanoribbon Interconnects Based on Transmission Line ‎Model

    Directory of Open Access Journals (Sweden)

    S. Haji Nasiri

    2012-03-01

    Full Text Available Time domain analysis of multilayer graphene nanoribbon (MLGNR interconnects, based on ‎transmission line modeling (TLM using a six-order linear parametric expression, has been ‎presented for the first time. We have studied the effects of interconnect geometry along with ‎its contact resistance on its step response and Nyquist stability. It is shown that by increasing ‎interconnects dimensions their propagation delays are increased and accordingly the system ‎becomes relatively more stable. In addition, we have compared time responses and Nyquist ‎stabilities of MLGNR and SWCNT bundle interconnects, with the same external dimensions. ‎The results show that under the same conditions, the propagation delays for MLGNR ‎interconnects are smaller than those of SWCNT bundle interconnects are. Hence, SWCNT ‎bundle interconnects are relatively more stable than their MLGNR rivals.‎

  8. Quasi-free-standing bilayer graphene nanoribbons probed by electronic transport

    Science.gov (United States)

    Miccoli, Ilio; Aprojanz, Johannes; Baringhaus, Jens; Lichtenstein, Timo; Galves, Lauren A.; Lopes, Joao Marcelo J.; Tegenkamp, Christoph

    2017-01-01

    Direct growth of graphene nanostructures by using concepts of self-assembly and intercalation without further lithography and transfer processes is beneficial for their integration into device applications. In this letter, we report on bilayer graphene nanoribbons, typically 100 nm in width, grown along step edges of SiC(0001) substrates. The ribbons are electrically decoupled from the substrate by an oxygen treatment. By means of a 4-tip STM system, the microscopic structure and transport properties were comprehensively studied. The ribbons reveal a robust hole concentration of around 1 × 1013 cm-2 and mobilities up to 700 cm2/Vs at room temperature. The comparably high mobilities are a consequence of interlayer hopping of the charge carriers. The transport is not limited by the step roughness; thus, this scalable process can be easily extended to arbitrarily shaped structures.

  9. Tailoring atomic structure to control the electronic transport in zigzag graphene nanoribbon

    International Nuclear Information System (INIS)

    Zeng, Hui; Zhao, Jun; Wei, Jianwei; Zeng, Xianliang; Xu, Yang

    2012-01-01

    We have performed ab initio density functional theory calculation to study the electronic transport properties of the tailored zigzag-edged graphene nanoribbon (ZGNR) with particular electronic transport channels. Our results demonstrated that tailoring the atomic structure had significantly influenced the electronic transport of the defective nanostructures, and could lead to the metal-semiconducting transition when sufficient atoms are tailored. The asymmetric I–V characteristics as a result of symmetry breaking have been exhibited, which indicates the route to utilize GNR as a basic component for novel nanoelectronics. -- Highlights: ► M–S transition induced by tailoring nanostructure. ► Asymmetric I–V curve due to symmetry breaking. ► Controllable electron transport by designing nanofiguration.

  10. Role of nitrogen distribution in asymmetric stone-wales defects on electronic transport of graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Hui; Zhao, Jun; Xu, Dahai [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei, Jianwei [College of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China)

    2012-01-15

    The authors performed first principles calculation to investigate the influences of nitrogen dopant distribution in the asymmetric Stone-Wales (SW) defect on the electronic transport of zigzag-edged graphene nanoribbon (ZGNR). The stability of doped configurations are evaluated in terms of total energies. It is found that the dopant placed near the edge of the ribbon is the most energetically favorable site. Our results reveal that the doped nanostructures can be substantially modulated as a result of modifications on electronic bands induced by substitutional dopant. Moreover, the individual dopant gives rise to one or two complete electron backscattering centers associated with impurity states in the doped configurations, and the location is determined by the dopant site. Schematics of the atomic structure after asymmetric Stone-Wales defects introduced and different nitrogen substitutional sites. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. First Principles Study of Electronic and Magnetic Properties of Co-Doped Armchair Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Biao Li

    2015-01-01

    Full Text Available Using the first principles calculations, we have studied the atomic and electronic structures of single Co atom incorporated with divacancy in armchair graphene nanoribbon (AGNR. Our calculated results show that the Co atom embedded in AGNR gives rise to significant impacts on the band structures and the FM spin configuration is the ground state. The presence of the Co doping could introduce magnetic properties. The calculated results revealed the arising of spin gapless semiconductor characteristics with doping near the edge in both ferromagnetic (FM and antiferromagnetic (AFM magnetic configurations, suggesting the robustness for potential application of spintronics. Moreover, the electronic structures of the Co-doped AGNRs are strongly dependent on the doping sites and the edge configurations.

  12. Atomistic simulations of divacancy defects in armchair graphene nanoribbons: Stability, electronic structure, and electron transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zeng, Hui, E-mail: zenghui@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei, Jianwei [College of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Li, Biao; Xu, Dahai [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China)

    2014-01-17

    Using the first principles calculations associated with nonequilibrium Green's function, we have studied the electronic structures and quantum transport properties of defective armchair graphene nanoribbon (AGNR) in the presence of divacancy defects. The triple pentagon–triple heptagon (555–777) defect in the defective AGNR is energetically more favorable than the pentagon–octagon–pentagon (5–8–5) defect. Our calculated results reveal that both 5–8–5-like defect and 555–777-like defect in AGNR could improve the electron transport. It is anticipated that defective AGNRs can exhibit large range variations in transport behaviors, which are strongly dependent on the distributions of the divacancy defect.

  13. Tailoring atomic structure to control the electronic transport in zigzag graphene nanoribbon

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Hui [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zhao, Jun, E-mail: zhaojun@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei, Jianwei [College of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Zeng, Xianliang [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Xu, Yang [Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2012-10-01

    We have performed ab initio density functional theory calculation to study the electronic transport properties of the tailored zigzag-edged graphene nanoribbon (ZGNR) with particular electronic transport channels. Our results demonstrated that tailoring the atomic structure had significantly influenced the electronic transport of the defective nanostructures, and could lead to the metal-semiconducting transition when sufficient atoms are tailored. The asymmetric I–V characteristics as a result of symmetry breaking have been exhibited, which indicates the route to utilize GNR as a basic component for novel nanoelectronics. -- Highlights: ► M–S transition induced by tailoring nanostructure. ► Asymmetric I–V curve due to symmetry breaking. ► Controllable electron transport by designing nanofiguration.

  14. A computational study of a novel graphene nanoribbon field effect transistor

    Science.gov (United States)

    Ghoreishi, Seyed Saleh; Yousefi, Reza

    2017-04-01

    In this paper, using gate structure engineering and modification of channel dopant profile, we propose a new double gate graphene nanoribbon field effect transistor (DG-GNRFET) mainly to suppress the band-to-band tunneling (BTBT) of carriers. In the new device, the intrinsic part of the channel is replaced by an intrinsic-lightly doped-intrinsic (I -N--I) configuration in a way that only the intrinsic parts are covered by the gate contact. Transport characteristics of the device are investigated theoretically using the nonequilibrium Green’s function (NEGF) formalism. Numerical simulations show that off-current, ambipolar behavior, on/off-current ratio and the switching characteristics such as intrinsic delay and power-delay product are improved. In addition, the new device demonstrates better sub-threshold swing and less drain-induced barrier lowering (DIBL).

  15. Conductance oscillation in graphene-nanoribbon-based electronic Fabry-Perot resonators

    International Nuclear Information System (INIS)

    Zhang Yong; Han Mei; Shen Linjiang

    2010-01-01

    By using the tight-binding approximation and the Green's function method, the quantum conductance of the Fabry-Perot-like electronic resonators composed of zigzag and metallic armchair edge graphene nanoribbons (GNRs) was studied numerically. Obtained results show that due to Fabry-Perot-like electronic interference, the conductance of the GNR resonators oscillates periodically with the Fermi energy. The effects of disorders and coupling between the electrodes and the GNR on conductance oscillations were explored. It is found that the conductance oscillations appear at the strong coupling and become resonant peaks as the coupling is very weak. It is also found that the strong disorders in the GNR can smear the conductance oscillation periods. In other words, the weak coupling and the strong disorders all can blur the conductance oscillations, making them unclearly distinguished.

  16. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors.

    Science.gov (United States)

    Hwang, Suk-Won; Lee, Chi Hwan; Cheng, Huanyu; Jeong, Jae-Woong; Kang, Seung-Kyun; Kim, Jae-Hwan; Shin, Jiho; Yang, Jian; Liu, Zhuangjian; Ameer, Guillermo A; Huang, Yonggang; Rogers, John A

    2015-05-13

    Transient electronics represents an emerging class of technology that exploits materials and/or device constructs that are capable of physically disappearing or disintegrating in a controlled manner at programmed rates or times. Inorganic semiconductor nanomaterials such as silicon nanomembranes/nanoribbons provide attractive choices for active elements in transistors, diodes and other essential components of overall systems that dissolve completely by hydrolysis in biofluids or groundwater. We describe here materials, mechanics, and design layouts to achieve this type of technology in stretchable configurations with biodegradable elastomers for substrate/encapsulation layers. Experimental and theoretical results illuminate the mechanical properties under large strain deformation. Circuit characterization of complementary metal-oxide-semiconductor inverters and individual transistors under various levels of applied loads validates the design strategies. Examples of biosensors demonstrate possibilities for stretchable, transient devices in biomedical applications.

  17. Topological Phases in Graphene Nanoribbons: Junction States, Spin Centers, and Quantum Spin Chains

    Science.gov (United States)

    Cao, Ting; Zhao, Fangzhou; Louie, Steven G.

    2017-08-01

    We show that semiconducting graphene nanoribbons (GNRs) of different width, edge, and end termination (synthesizable from molecular precursors with atomic precision) belong to different electronic topological classes. The topological phase of GNRs is protected by spatial symmetries and dictated by the terminating unit cell. We have derived explicit formulas for their topological invariants and shown that localized junction states developed between two GNRs of distinct topology may be tuned by lateral junction geometry. The topology of a GNR can be further modified by dopants, such as a periodic array of boron atoms. In a superlattice consisting of segments of doped and pristine GNRs, the junction states are stable spin centers, forming a Heisenberg antiferromagnetic spin 1 /2 chain with tunable exchange interaction. The discoveries here not only are of scientific interest for studies of quasi-one-dimensional systems, but also open a new path for design principles of future GNR-based devices through their topological characters.

  18. Thermal conductance of suspended nanoribbons: interplay between strain and interatomic potential nonlinearity

    Science.gov (United States)

    Barreto, Roberto; Florencia Carusela, M.; Monastra, Alejandro G.

    2017-10-01

    We investigate the role that nonlinearity in the interatomic potential has on the thermal conductance of a suspended nanoribbon when it is subjected to a longitudinal strain. To focus on the first cubic and quartic nonlinear terms of a general potential, we propose an atomic system based on an α-β Fermi-Pasta-Ulam nearest neighbor interaction. We perform classical molecular dynamics simulations to investigate the contribution of longitudinal, transversal and flexural modes to the thermal conductance as a function of the α-β parameters and the applied strain. We compare the cases where atoms are allowed to vibrate only in plane (2D) with the case of vibrations in and out of plane (3D). We find that the dependence of conductance on α and β relies on a crossover phenomenon between linear/nonlinear delocalized/localized flexural and transversal modes, driven by an on/off switch of the strain.

  19. Conductance growth in metallic bilayer graphene nanoribbons with disorder and contact scattering

    International Nuclear Information System (INIS)

    Xu, N; Ding, J W

    2008-01-01

    By using a decomposition elimination method for Green's function matrix, we explore the effects of both disorder and contact scattering on electronic transport in metallic bilayer graphene nanoribbons (BGNRs) and related structures, in the limit of phase-coherent transport. Due to the inter-layer interaction, a conductance gap is observed at Fermi energy in primary metallic zigzag BGNRs. It is found that the fashion of the conductance variations with disorder depends strongly on the type of disorder and contact scattering. In the edge disordered BGNR, the conductance decreases monotonically with the disorder increasing and finally tends to disappear, while a nonmonotonic behavior is obtained in the single-layer disordered BGNR, first decreasing then increasing. In the presence of contact scattering, especially, an abnormal growth of the conductance appears at much lower disorder in both edge and single-layer disordered BGNRs, which may be due to the destruction of coherence by the introduction of disorder.

  20. Asymmetrical edges induced strong current-polarization in embedded graphene nanoribbons

    Science.gov (United States)

    Li, Kuanhong; Zhang, Xiang-Hua

    2018-05-01

    We investigate the electronic structures and transport properties of the embedded zigzag graphene nanoribbon (E-ZGNR) in hexagonal boron nitride trenches, which are achievable in recent experiments. Our first principles results show that the E-ZGNR has a significant enhanced conductivity relative to common ZGNRs due to the existence of asymmetrical edge structures. Moreover, only one spin-orientation electrons possess a widely opened band gap at the magnetic ground state with anti-ferromagnetic configuration, resulting in a full current-polarization at low bias region. Our findings indicate that the state-of-the-art embedding technology is quite useful for tuning the electronic structure of ZGNR and building possible spin injection and spin filter devices in spintronics.

  1. On the role of disorder on graphene and graphene nanoribbon-based vertical tunneling transistors

    International Nuclear Information System (INIS)

    Ghobadi, Nayereh; Pourfath, Mahdi

    2014-01-01

    In this work, the characteristics of vertical tunneling field-effect transistors based on graphene (VTGFET) and graphene nanoribbon heterostructure (VTGNRFET) in the presence of disorder are theoretically investigated. An statistical analysis based on an atomistic tight-binding model for the electronic bandstructure along with the non-equilibrium Green's function formalism are employed. We study the dependence of the averaged density of states, transmission probability, on- and off-state conductances, on/off conductance ratio, and transfer characteristics on the substrate induced potential fluctuations and vacancies. In addition, the variabilities of the device characteristics due to the presence of disorder are evaluated. It can be inferred from the results that while introducing vacancies cause a relatively modest suppression of the transmission probability, potential fluctuations lead to the significant increase of transmission probability and conductance of the device. Moreover, the results show that the transport properties of VTGFET are more robust against disorder compared to VTGNRFET

  2. Semiconducting states and transport in metallic armchair-edged graphene nanoribbons

    International Nuclear Information System (INIS)

    Chen Xiongwen; Wang Haiyan; Wan Haiqing; Zhou Guanghui; Song Kehui

    2011-01-01

    Based on the nonequilibrium Green's function method within the tight-binding approximation scheme, through a scanning tunneling microscopy (STM) model, we study the low-energy electronic states and transport properties of carbon chains in armchair-edged graphene nanoribbons (AGNRs). We show that semiconducting AGNRs possess only semiconducting chains, while metallic ones possess not only metallic chains but also unconventional semiconducting chains located at the 3jth (j≠0) column from the edge (the first chain) due to the vanishing of the metallic component in the electron wavefunction. The two types of states for carbon chains in a metallic AGNR system are demonstrated by different density of states and STM tunneling currents. Moreover, a similar phenomenon is predicted in the edge region of very wide AGNRs. However, there is remarkable difference in the tunneling current between narrow and wide ribbons.

  3. Spin Current Switching and Spin-Filtering Effects in Mn-Doped Boron Nitride Nanoribbons

    Directory of Open Access Journals (Sweden)

    G. A. Nemnes

    2012-01-01

    Full Text Available The spin transport properties are investigated by means of the first principle approach for boron nitride nanoribbons with one or two substitutional Mn impurities, connected to graphene electrodes. The spin current polarization is evaluated using the nonequilibrium Green’s function formalism for each structure and bias. The structure with one Mn impurity reveals a transfer characteristics suitable for a spin current switch. In the case of two Mn impurities, the system behaves as an efficient spin-filter device, independent on the ferromagnetic or antiferromagnetic configurations of the magnetic impurities. The experimental availability of the building blocks as well as the magnitudes of the obtained spin current polarizations indicates a strong potential of the analyzed structures for future spintronic devices.

  4. Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes.

    Science.gov (United States)

    Chernov, Alexander I; Fedotov, Pavel V; Talyzin, Alexandr V; Suarez Lopez, Inma; Anoshkin, Ilya V; Nasibulin, Albert G; Kauppinen, Esko I; Obraztsova, Elena D

    2013-07-23

    We report the photoluminescence (PL) from graphene nanoribbons (GNRs) encapsulated in single-walled carbon nanotubes (SWCNTs). New PL spectral features originating from GNRs have been detected in the visible spectral range. PL peaks from GNRs have resonant character, and their positions depend on the ribbon geometrical structure in accordance with the theoretical predictions. GNRs were synthesized using confined polymerization and fusion of coronene molecules. GNR@SWCNTs material demonstrates a bright photoluminescence both in infrared (IR) and visible regions. The photoluminescence excitation mapping in the near-IR spectral range has revealed the geometry-dependent shifts of the SWCNT peaks (up to 11 meV in excitation and emission) after the process of polymerization of coronene molecules inside the nanotubes. This behavior has been attributed to the strain of SWCNTs induced by insertion of the coronene molecules.

  5. Controlling Short-Range Interactions by Tuning Surface Chemistry in HDPE/Graphene Nanoribbon Nanocomposites.

    Science.gov (United States)

    Sadeghi, Soheil; Zehtab Yazdi, Alireza; Sundararaj, Uttandaraman

    2015-09-03

    Unique dispersion states of nanoparticles in polymeric matrices have the potential to create composites with enhanced mechanical, thermal, and electrical properties. The present work aims to determine the state of dispersion from the melt-state rheological behavior of nanocomposites based on carbon nanotube and graphene nanoribbon (GNR) nanomaterials. GNRs were synthesized from nitrogen-doped carbon nanotubes via a chemical route using potassium permanganate and some second acids. High-density polyethylene (HDPE)/GNR nanocomposite samples were then prepared through a solution mixing procedure. Different nanocomposite dispersion states were achieved using different GNR synthesis methods providing different surface chemistry, interparticle interactions, and internal compartments. Prolonged relaxation of flow induced molecular orientation was observed due to the presence of both carbon nanotubes and GNRs. Based on the results of this work, due to relatively weak interactions between the polymer and the nanofillers, it is expected that short-range interactions between nanofillers play the key role in the final dispersion state.

  6. Structural and electronic properties of zigzag InP nanoribbons with Stone–Wales type defects

    International Nuclear Information System (INIS)

    Longo, R C; Carrete, J; Varela, L M; Gallego, L J

    2016-01-01

    By means of density-functional-theoretic calculations, we investigate the structural and electronic properties of a hexagonal InP sheet and of hydrogen-passivated zigzag InP nanoribbons (ZInPNRs) with Stone–Wales (SW)-type defects. Our results show that the influence of this kind of defect is not limited to the defected region but it leads to the formation of ripples that extend across the systems, in keeping with the results obtained recently for graphene and silicene sheets. The presence of SW defects in ZInPNRs causes an appreciable broadening of the band gap and transforms the indirect-bandgap perfect ZInPNR into a direct-bandgap semiconductor. An external transverse electric field, regardless of its direction, reduces the gap in both the perfect and defective ZInPNRs. (paper)

  7. Composites of Graphene Nanoribbon Stacks and Epoxy for Joule Heating and Deicing of Surfaces.

    Science.gov (United States)

    Raji, Abdul-Rahman O; Varadhachary, Tanvi; Nan, Kewang; Wang, Tuo; Lin, Jian; Ji, Yongsung; Genorio, Bostjan; Zhu, Yu; Kittrell, Carter; Tour, James M

    2016-02-10

    A conductive composite of graphene nanoribbon (GNR) stacks and epoxy is fabricated. The epoxy is filled with the GNR stacks, which serve as a conductive additive. The GNR stacks are on average 30 nm thick, 250 nm wide, and 30 μm long. The GNR-filled epoxy composite exhibits a conductivity >100 S/m at 5 wt % GNR content. This permits application of the GNR-epoxy composite for deicing of surfaces through Joule (voltage-induced) heating generated by the voltage across the composite. A power density of 0.5 W/cm(2) was delivered to remove ∼1 cm-thick (14 g) monolith of ice from a static helicopter rotor blade surface in a -20 °C environment.

  8. Functionalization and migration of bromine adatoms on zigzag graphene nanoribbons: A first-principles study

    Science.gov (United States)

    Jaiswal, Neeraj K.; Kumar, Amit; Patel, Chandrabhan

    2018-05-01

    Tailoring the electronic band gap of graphene nanoribbons (GNR) through edge functionalization and understanding the adsorption of guest adatoms on GNR is crucial for realization of upcoming organic devices. In the present work, we have investigated the structural stability and electronic property of bromine (Br) termination at the edges of zigzag GNR (ZGNR). The migration pathways of Br adatom on ZGNR have also been discussed along four different diffusion paths. It is revealed that Br termination induces metallicity in ZGNR and caused upward shifting of Fermi level. Further, the migration is predicted to take place preferable along the ribbon edges whereas across the ribbon width, migration is least probable to take place due to sufficiently higher migration barrier of ˜160 meV.

  9. Synthesis of Y-Tip Graphitic Nanoribbons from Alcohol Catalytic Chemical Vapor Deposition on Piezoelectric Substrate

    Directory of Open Access Journals (Sweden)

    Zainab Yunusa

    2015-01-01

    Full Text Available We report the synthesis of Graphitic Nanoribbons (GNRs using Alcohol Catalytic Chemical Vapor Deposition (ACCVD. Bulk GNR was synthesized directly on a piezoelectric substrate using one-step ACCVD. The synthesized GNRs were characterized by X-Ray Diffraction (XRD, Scanning Electron Microscope (SEM, Transmission Electron Microscope (TEM, Energy Dispersive X-Ray (EDX, Atomic Force Microscopy (AFM, and Raman spectroscopy. The characterization results showed Y-tip morphology of bulk and filamentous as-grown GNR having varying width that lies between tens and hundreds of nm and length of several microns. Based on the thickness obtained from the AFM and the analysis from the Raman spectroscopy, it was concluded that the synthesized GNRs are multiple-layered and graphitic in nature. With the direct synthesis of GNR on a piezoelectric substrate, it could have applications in the sensor industries, while the Y-tip GNR could have potentialities in semiconductor applications.

  10. Understanding and tuning the quantum-confinement effect and edge magnetism in zigzag graphene nanoribbon.

    Science.gov (United States)

    Huang, Liang Feng; Zhang, Guo Ren; Zheng, Xiao Hong; Gong, Peng Lai; Cao, Teng Fei; Zeng, Zhi

    2013-02-06

    The electronic structure of zigzag graphene nanoribbon (ZGNR) is studied using density functional theory. The mechanisms underlying the quantum-confinement effect and edge magnetism in ZGNR are systematically investigated by combining the simulated results and some useful analytic models. The quantum-confinement effect and the inter-edge superexchange interaction can be tuned by varying the ribbon width, and the spin polarization and direct exchange splitting of the edge states can be tuned by varying their electronic occupations. The two edges of ZGNR can be equally or unequally tuned by charge doping or Li adsorption, respectively. The Li adatom has a site-selective adsorption on ZGNR, and it is a nondestructive and memorable approach to effectively modify the edge states in ZGNR. These systematic understanding and effective tuning of ZGNR electronics presented in this work are helpful for further investigation and application of ZGNR and other magnetic graphene systems.

  11. Penetration depth and nonlocal manipulation of quantum spin hall edge states in chiral honeycomb nanoribbons.

    Science.gov (United States)

    Xu, Yong; Uddin, Salah; Wang, Jun; Wu, Jiansheng; Liu, Jun-Feng

    2017-08-08

    We have studied numerically the penetration depth of quantum spin hall edge states in chiral honeycomb nanoribbons based on the Green's function method. The changing of edge orientation from armchair to zigzag direction decreases the penetration depth drastically. The penetration depth is used to estimate the gap opened for the finite-size effect. Beside this, we also proposed a nonlocal transistor based on the zigzag-like chiral ribbons in which the current is carried at one edge and the manipulation is by the edge magnetization at the other edge. The difficulty that the edge magnetization is unstable in the presence of a ballistic current can be removed by this nonlocal manipulation.

  12. Edge modulation of electronics and transport properties of cliff-edge phosphorene nanoribbons

    Science.gov (United States)

    Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang

    2017-12-01

    Based on the first-principles calculations, we study the electronic structures and transport properties of cliff-like edge phosphorene nanoribbons (CPNRs), considering different types of edge passivation. The band structures of bare CPNRs possess the metallic features; while hydrogen (H), fluorine (F), chlorine (Cl) and oxygen (O) atoms-passivated CPNRs are semiconductor materials, and the band gap values monotonically decrease when the ribbon width increases. Moreover, the H and F-passivated CPNRs exhibit the direct band gap characteristics, while the Cl and O-passivated cases show the features of indirect band gap. In addition, the edge passivated CPNRs are more energetically stable than bare edge case. Meanwhile, our results also show that the transport properties of the CPNRs can be obviously influenced by the different edge passivation.

  13. Monitoring the on-surface synthesis of graphene nanoribbons by mass spectrometry

    KAUST Repository

    Zhang, Wen

    2017-06-14

    We present a mass spectrometric approach to monitor and characterize the intermediates of graphene nanoribbon (GNR) formation by chemical vapor deposition (CVD) on top of Au(111) surfaces. Information regarding the repeating units, lengths, and termini can be obtained directly from the surface sample by a modified matrix assisted laser desorption/ionization (MALDI) method. The mass spectrometric results reveal ample oxidative side reactions under CVD conditions which can, however, be diminished drastically by introduction of protective H2 gas at ambient pressure. Simultaneously, addition of hydrogen extends the lengths of the oligophenylenes and thus the final GNRs. Moreover, the prematurely formed cyclodehydrogenation products during the oligomer growth can be assigned by the mass spectrometric method. The obtained mechanistic insights provide valuable information for optimizing and upscaling the bottom-up fabrication of GNRs. Given the important role of GNRs as semiconductors, the mass spectrometric characterization provides a readily available tool to improve and characterize their structural perfection.

  14. Quantum transport model for zigzag molybdenum disulfide nanoribbon structures : A full quantum framework

    International Nuclear Information System (INIS)

    Chen, Chun-Nan; Shyu, Feng-Lin; Chung, Hsien-Ching; Lin, Chiun-Yan; Wu, Jhao-Ying

    2016-01-01

    Mainly based on non-equilibrium Green’s function technique in combination with the three-band model, a full atomistic-scale and full quantum method for solving quantum transport problems of a zigzag-edge molybdenum disulfide nanoribbon (zMoSNR) structure is proposed here. For transport calculations, the relational expressions of a zMoSNR crystalline solid and its whole device structure are derived in detail and in its integrity. By adopting the complex-band structure method, the boundary treatment of this open boundary system within the non-equilibrium Green’s function framework is so straightforward and quite sophisticated. The transmission function, conductance, and density of states of zMoSNR devices are calculated using the proposed method. The important findings in zMoSNR devices such as conductance quantization, van Hove singularities in the density of states, and contact interaction on channel are presented and explored in detail.

  15. Quantum transport model for zigzag molybdenum disulfide nanoribbon structures : A full quantum framework

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Nan, E-mail: quantum@mail.tku.edu.tw, E-mail: ccn1114@kimo.com [Quantum Engineering Laboratory, Department of Physics, Tamkang University, Tamsui, New Taipei 25137, Taiwan (China); Shyu, Feng-Lin [Department of Physics, R.O.C. Military Academy, Kaohsiung 830, Taiwan (China); Chung, Hsien-Ching; Lin, Chiun-Yan [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Jhao-Ying [Center of General Studies, National Kaohsiung Marine University, Kaohsiung 811, Taiwan (China)

    2016-08-15

    Mainly based on non-equilibrium Green’s function technique in combination with the three-band model, a full atomistic-scale and full quantum method for solving quantum transport problems of a zigzag-edge molybdenum disulfide nanoribbon (zMoSNR) structure is proposed here. For transport calculations, the relational expressions of a zMoSNR crystalline solid and its whole device structure are derived in detail and in its integrity. By adopting the complex-band structure method, the boundary treatment of this open boundary system within the non-equilibrium Green’s function framework is so straightforward and quite sophisticated. The transmission function, conductance, and density of states of zMoSNR devices are calculated using the proposed method. The important findings in zMoSNR devices such as conductance quantization, van Hove singularities in the density of states, and contact interaction on channel are presented and explored in detail.

  16. Strain effect on graphene nanoribbon carrier statistic in the presence of non-parabolic band structure

    International Nuclear Information System (INIS)

    Izuani Che Rosid, N A; Ahmadi, M T; Ismail, Razali

    2016-01-01

    The effect of tensile uniaxial strain on the non-parabolic electronic band structure of armchair graphene nanoribbon (AGNR) is investigated. In addition, the density of states and the carrier statistic based on the tight-binding Hamiltonian are modeled analytically. It is found that the property of AGNR in the non-parabolic band region is varied by the strain. The tunable energy band gap in AGNR upon strain at the minimum energy is described for each of n-AGNR families in the non-parabolic approximation. The behavior of AGNR in the presence of strain is attributed to the breakable AGNR electronic band structure, which varies the physical properties from its normality. The linear relation between the energy gap and the electrical properties is featured to further explain the characteristic of the deformed AGNR upon strain. (paper)

  17. Magnetoexcitons and Faraday rotation in single-walled carbon nanotubes and graphene nanoribbons

    Science.gov (United States)

    Have, Jonas; Pedersen, Thomas G.

    2018-03-01

    The magneto-optical response of single-walled carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) is studied theoretically, including excitonic effects. Both diagonal and nondiagonal response functions are obtained and employed to compute Faraday rotation spectra. For single-walled CNTs in a parallel field, the results show field-dependent splitting of the exciton absorption peaks caused by brightening a dark exciton state. Similarly, for GNRs in a perpendicular magnetic field, we observe a field-dependent shift of the exciton peaks and the emergence of an absorption peak above the energy gap. Results show that excitonic effects play a significant role in the optical response of both materials, particularly for the off-diagonal tensor elements.

  18. Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins

    International Nuclear Information System (INIS)

    Zeimpekis, I; Sun, K; Hu, C; Ditshego, N M J; De Planque, M R R; Chong, H M H; Morgan, H; Ashburn, P; Thomas, O

    2016-01-01

    We demonstrate the advantages of dual-gate polysilicon nanoribbon biosensors with a comprehensive evaluation of different measurement schemes for pH and protein sensing. In particular, we compare the detection of voltage and current changes when top- and bottom-gate bias is applied. Measurements of pH show that a large voltage shift of 491 mV pH"−"1 is obtained in the subthreshold region when the top-gate is kept at a fixed potential and the bottom-gate is varied (voltage sweep). This is an improvement of 16 times over the 30 mV pH"−"1 measured using a top-gate sweep with the bottom-gate at a fixed potential. A similar large voltage shift of 175 mV is obtained when the protein avidin is sensed using a bottom-gate sweep. This is an improvement of 20 times compared with the 8.8 mV achieved from a top-gate sweep. Current measurements using bottom-gate sweeps do not deliver the same signal amplification as when using bottom-gate sweeps to measure voltage shifts. Thus, for detecting a small signal change on protein binding, it is advantageous to employ a double-gate transistor and to measure a voltage shift using a bottom-gate sweep. For top-gate sweeps, the use of a dual-gate transistor enables the current sensitivity to be enhanced by applying a negative bias to the bottom-gate to reduce the carrier concentration in the nanoribbon. For pH measurements, the current sensitivity increases from 65% to 149% and for avidin sensing it increases from 1.4% to 2.5%. (paper)

  19. Prospects of asymmetrically H-terminated zigzag germanene nanoribbons for spintronic application

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Varun, E-mail: varun@iiitm.ac.in [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015 (India); Srivastava, Pankaj [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015 (India); Jaiswal, Neeraj K. [Discipline of Physics, Indian Institute of Information Technology, Design & Manufacturing, Jabalpur, Dumna Airport Road, Jabalpur 482005 (India)

    2017-02-28

    Highlights: • Asymmetric hydrogen termination of Zigzag Germanene Nanoribbons (ZGeNR) is presented with their plausible spintronic device application. • It is revealed that asymmetric terminations are energetically more favourable compared to symmetric terminations. • The magnetic moment analysis depicts that asymmetric ZGeNR have a magnetic ground state with a preferred ferromagnetic (FM) coupling. • Presented doped asymmetric ZGeNR exhibits a half-metallic character which makes them qualify for spin-filtering device. - Abstract: First-principles investigations have been performed to explore the spin based electronic and transport properties of asymmetrically H-terminated zigzag germanene nanoribbons (2H−H ZGeNR). Investigations reveal a significant formation energy difference (ΔE{sub F} = E{sub F(2H-H)} − E{sub F(H-H)} ∼ −0.49 eV), highlighting more energetic stability for asymmetric edge termination compared to symmetric edge termination, irrespective of the ribbon width. Further, magnetic moment analysis and total energy calculations were performed to unveil that these structures have a magnetic ground state with preferred ferromagnetic (FM) coupling. The calculated E-k structures project a unique bipolar semiconducting behaviour for 2H−H ZGeNR which is contrast to H-terminated ZGeNR. Half-metallic transformation has also been revealed via suitable p-type or n-type doping for these structures. Finally, transport calculations were performed to highlight the selective contributions of spin-down (spin-up) electrons in the I–V characteristics of the doped 2H−H ZGeNR, suggesting their vitality for spintronic device applications.

  20. Li4Ti5O12/graphene nanoribbons composite as anodes for lithium ion batteries.

    Science.gov (United States)

    Medina, P A; Zheng, H; Fahlman, B D; Annamalai, P; Swartbooi, A; le Roux, L; Mathe, M K

    2015-01-01

    In this paper, we report the synthesis of a Li4Ti5O12/Graphene Nanoribbons (LTO/GNRs) composite using a solid-coating method. Electron microscope images of the LTO/GNRs composite have shown that LTO particles were wrapped around graphene nanoribbons. The introduction of GNRs was observed to have significantly improved the rate performance of LTO/GNTs. The specific capacities determined of the obtained composite at rates of 0.2, 0.5, 1, 2, and 5 C are 206.5, 200.9, 188, 178.1 and 142.3 mAh·g(-1), respectively. This is significantly higher than those of pure LTO (169.1, 160, 150, 106 and 71.1 mAh·g(-1), respectively) especially at high rate (2 and 5 C). The LTO/GNRs also shows better cycling stability at high rates. Enhanced conductivity of LTO/GNRs contributed from the GNR frameworks accelerated the kinetics of lithium intercalation/deintercalation in LIBs that also leads to excellent rate capacity of LTO/GNRs. This is attributed to its lower charge-transfer resistance (Rct = 23.38 Ω) compared with LTO (108.05 Ω), and higher exchange current density (j = 1.1 × 10(-3) mA cm(-2))-about 20 times than those of the LTO (j = 2.38 × 10(-4) mA cm(-2)).

  1. Design lithium storage materials by lithium adatoms adsorption at the edges of zigzag silicene nanoribbon: A first principle study

    Science.gov (United States)

    Guo, Gang; Mao, Yuliang; Zhong, Jianxin; Yuan, Jianmei; Zhao, Hongquan

    2017-06-01

    First-principles spin-polarized calculations are performed to design lithium storage materials using the active edges of zigzag silicene nanoribbon (ZSiNR). We predict that edge-adsorption of Li adatoms on zigzag silicene nanoribbon is preferred in energy to form new type lithium storage materials. Significant charge transfer from Li adatoms to Si atoms at the edges of ZSiNR is found, indicating the main ionic interactions. It is found that the band structures of ZSiNR with Li adsorptions are sensitive with the variation of sites of adatoms at the two edges. Ferro-magnetic to antiferro-magnetic change is found in ZSiNR with symmetrical adsorption of Li adatoms at its two edges. Other unsymmetrical Li adsorptions at the edges of ZSiNR prefer to stay in ferro-magnetic state as that in narrow pristine ZSiNR.

  2. Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates

    Directory of Open Access Journals (Sweden)

    Wan Sik Hwang

    2015-01-01

    Full Text Available We report the realization of top-gated graphene nanoribbon field effect transistors (GNRFETs of ∼10 nm width on large-area epitaxial graphene exhibiting the opening of a band gap of ∼0.14 eV. Contrary to prior observations of disordered transport and severe edge-roughness effects of graphene nanoribbons (GNRs, the experimental results presented here clearly show that the transport mechanism in carefully fabricated GNRFETs is conventional band-transport at room temperature and inter-band tunneling at low temperature. The entire space of temperature, size, and geometry dependent transport properties and electrostatics of the GNRFETs are explained by a conventional thermionic emission and tunneling current model. Our combined experimental and modeling work proves that carefully fabricated narrow GNRs behave as conventional semiconductors and remain potential candidates for electronic switching devices.

  3. Mechanical properties and electronic structure of edge-doped graphene nanoribbons with F, O, and Cl atoms.

    Science.gov (United States)

    Piriz, Sebastián; Fernández-Werner, Luciana; Pardo, Helena; Jasen, Paula; Faccio, Ricardo; Mombrú, Álvaro W

    2017-08-16

    In this study, we present the structural, electronic, and mechanical properties of edge-doped zigzag graphene nanoribbons (ZGNRs) doped with fluorine, oxygen, and chlorine atoms. To the best of our knowledge, to date, no experimental results concerning the mechanical properties of graphene-derived nanoribbons have been reported in the literature. Simulations indicate that Cl- and F-doped ZGNRs present an equivalent 2-dimensional Young's modulus E 2D , which seems to be higher than those of graphene and H-doped ZGNRs. This is a consequence of the electronic structure of the system, particularly originating from strong interactions between the dopant atoms localized at the edges. The interaction between dopant atoms located at the edges is higher for Cl and lower for F and O atoms. This is the origin of the observed trend, in which E > E > E for all the analyzed ZGNRs.

  4. First principles calculations of optical properties of the armchair SiC nanoribbons with O, F and H termination

    Science.gov (United States)

    Lu, Dao-Bang; Song, Yu-Ling

    2018-03-01

    Based on density functional theory, we perform first-principles investigations to study the optical properties of the O-, F- and H-terminated SiC nanoribbons with armchair edges (ASiCNRs). By irradiating with an external electromagnetic field, we calculate the dielectric function, reflection spectra, energy loss coefficient and the real part of the conductance. It is demonstrated that the optical constants are sensitive to the low-energy range, different terminal atoms do not make much difference in the shape of the curves of the optical constants for the same-width ASiCNR, and the optical constants of wider nanoribbons usually have higher peaks than that of the narrower ones in low energy range. We hope that our study helps in experimental technology of fabricating high-quality SiC-based nanoscale photoelectric device.

  5. Effect of uniaxial strain on the tunnel magnetoresistance of T-shaped graphene nanoribbon based spin-valve

    Science.gov (United States)

    Fouladi, A. Ahmadi

    2016-07-01

    We theoretically investigated the spin-dependent transport through a T-shaped graphene nanoribbon (TsGNR) based spin-valve consisting of armchair graphene sandwiched between two semi-infinite ferromagnetic armchair graphene nanoribbon leads in the presence of an applied uniaxial strain. Based on a tight-binding model and standard nonequilibrium Green's function technique, it is demonstrated that the tunnel magnetoresistance (TMR) for the system can be increased about 98% by tuning the uniaxial strain. Our results show that the absolute values of TMR around the zero bias voltage for compressive strain are larger than tensile strain. In addition, the TMR of the system can be nicely controlled by GNR width.

  6. Charge transfer of edge states in zigzag silicene nanoribbons with Stone–Wales defects from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Xie [College of Mathematics and Statistics, Chongqing University, Chongqing 401331 (China); School of Mathematics and Statistic, Chongqing University of Technology, Chongqing 400054 (China); Rui, Wang, E-mail: rcwang@cqu.edu.cn [Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Shaofeng, Wang [Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400044 (China); Xiaozhi, Wu, E-mail: xiaozhiwu@cqu.edu.cn [Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400044 (China)

    2016-10-15

    Highlights: • The properties of SW defects in silicene and ZSNRs are obtained. • The SW defects at the edge of ZSNRs induce a sizable gap. • The charge transfer of edge states is resulted from SW defects in ZSNRS. - Abstract: Stone–Wales (SW) defects are favorably existed in graphene-like materials with honeycomb lattice structure and potentially employed to change the electronic properties in band engineering. In this paper, we investigate structural and electronic properties of SW defects in silicene sheet and its nanoribbons as a function of their concentration using the methods of periodic boundary conditions with first-principles calculations. We first calculate the formation energy, structural properties, and electronic band structures of SW defects in silicene sheet, with dependence on the concentration of SW defects. Our results show a good agreement with available values from the previous first-principles calculations. The energetics, structural aspects, and electronic properties of SW defects with dependence on defect concentration and location in edge-hydrogenated zigzag silicene nanoribbons are obtained. For all calculated concentrations, the SW defects prefer to locate at the edge due to the lower formation energy. The SW defects at the center of silicene nanoribbons slightly influence on the electronic properties, whereas the SW defects at the edge of silicene nanoribbons split the degenerate edge states and induce a sizable gap, which depends on the concentration of defects. It is worth to find that the SW defects produce a perturbation repulsive potential, which leads the decomposed charge of edge states at the side with defect to transfer to the other side without defect.

  7. Electron doping effects on the electrical conductivity of zigzag carbon nanotubes and corresponding unzipped armchair graphene nanoribbons

    Science.gov (United States)

    Mousavi, Hamze; Jalilvand, Samira; Kurdestany, Jamshid Moradi; Grabowski, Marek

    2017-10-01

    The Kubo formula is used to extract the electrical conductivity (EC) of different diameters of doped zigzag carbon nanotubes and their corresponding unzipped armchair graphene nanoribbons, as a function of temperature and chemical potential, within the tight-binding Hamiltonian model and Green's functions approach. The results reveal more sensitivity to temperature for semiconducting systems in addition to a decrease in EC of all systems with increasing cross-sections.

  8. Effects of the edge shape and the width on the structural and electronic properties of silicene nanoribbons

    International Nuclear Information System (INIS)

    Song Yuling; Zhang Yan; Zhang Jianmin; Lu Daobang

    2010-01-01

    Under the generalized gradient approximation (GGA), the structural and electronic properties are studied for H-terminated silicene nanoribbons (SiNRs) with either zigzag edge (ZSiNRs) or armchair edge (ASiNRs) by using the first-principles projector-augmented wave potential within the density function theory (DFT) framework. The results show that the length of the Si-H bond is always 1.50 A, but the edge Si-Si bonds are shorter than the inner ones with identical orientation, implying a contraction relaxation of edge Si atoms. An edge state appears at the Fermi level E F in broader ZSiNRs, but does not appear in all ASiNRs due to their dimer Si-Si bond at edge. With increasing width of ASiNRs, the direct band gaps exhibit not only an oscillation behavior, but also a periodic feature of Δ 3n > Δ 3n+1 > Δ 3n+2 for a certain integer n. The charge density contours analysis shows that the Si-H bond is an ionic bond due to a relative larger electronegativity of H atom. However, all kinds of the Si-Si bonds display a typical covalent bonding feature, although their strength depends on not only the bond orientation but also the bond position. That is, the larger deviation of the Si-Si bond orientation from the nanoribbon axis as well as the closer of the Si-Si bond to the nanoribbon edge, the stronger strength of the Si-Si bond. Besides the contraction of the nanoribbon is mainly in its width direction especially near edge, the addition contribution from the terminated H atoms may be the other reason.

  9. Ab-initio investigation of spin-dependent transport properties in Fe-doped armchair graphyne nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    GolafroozShahri, S.; Roknabadi, M.R., E-mail: roknabad@um.ac.ir; Shahtahmasebi, N.; Behdani, M.

    2016-12-15

    An ab-initio study on the spin-polarized transport properties of H-passivated Fe-doped graphyne nanoribbons is presented. All the calculations were based on density functional theory (DFT). Doping single magnetic atom on graphyne nanoribbons leads to metallicity which can significantly improve the conductivity. The currents are not degenerate for both up and down spin electrons and they are considerably spin-polarized. Therefore a relatively good spin-filtering can be expected. For configurations with geometric symmetry spin-rectifying is also observed. Therefore they can be applied as a dual spin-filter or a dual spin-diode in spintronic equipment. - Highlights: • The existence of Fe additional electrons lead to metallicity. • Doping magnetic atom on studied n-AGyNRs, has improved the conductance of nanoribbons. • The current for both spin electrons is considerably spin-polarized. • Threshold voltage decreased by increasing the width of ribbon. • For configurations with geometric symmetry spin-rectifying effect was also observed.

  10. Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles.

    Science.gov (United States)

    Goh, Madeline Shuhua; Pumera, Martin

    2011-01-01

    The detection of explosives in seawater is of great interest. We compared response single-, few-, and multilayer graphene nanoribbons and graphite microparticle-based electrodes toward the electrochemical reduction of 2,4,6-trinitrotoluene (TNT). We optimized parameters such as accumulation time, accumulation potential, and pH. We found that few-layer graphene exhibits about 20% enhanced signal for TNT after accumulation when compared to multilayer graphene nanoribbons. However, graphite microparticle-modified electrode provides higher sensitivity, and there was no significant difference in the performance of single-, few-, and multilayer graphene nanoribbons and graphite microparticles for the electrochemical detection of TNT. We established the limit of detection of TNT in untreated seawater at 1 μg/mL.

  11. Si Nanoribbons on Ag(110) Studied by Grazing-Incidence X-Ray Diffraction, Scanning Tunneling Microscopy, and Density-Functional Theory: Evidence of a Pentamer Chain Structure.

    Science.gov (United States)

    Prévot, Geoffroy; Hogan, Conor; Leoni, Thomas; Bernard, Romain; Moyen, Eric; Masson, Laurence

    2016-12-30

    We report a combined grazing incidence x-ray diffraction (GIXD), scanning tunneling microscopy (STM), and density-functional theory (DFT) study which clearly elucidates the atomic structure of the Si nanoribbons grown on the missing-row reconstructed Ag(110) surface. Our study allows us to discriminate between the theoretical models published in the literature, including the most stable atomic configurations and those based on a missing-row reconstructed Ag(110) surface. GIXD measurements unambiguously validate the pentamer model grown on the reconstructed surface, obtained from DFT. This pentamer atomistic model accurately matches the high-resolution STM images of the Si nanoribbons adsorbed on Ag(110). Our study closes the long-debated atomic structure of the Si nanoribbons grown on Ag(110) and definitively excludes a honeycomb structure similar to that of freestanding silicene.

  12. Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts.

    Science.gov (United States)

    Walia, Gurleen Kaur; Randhawa, Deep Kamal Kaur

    2018-03-16

    The adsorption behavior of sulfur-based toxic gases (H 2 S and SO 2 ) on armchair silicene nanoribbons (ASiNRs) was investigated using first-principles density functional theory (DFT). Being a zero band gap material, application of bulk silicene is limited in nanoelectronics, despite its high carrier mobility. By restricting its dimensions into one dimension, construction of nanoribbons, and by introduction of a defect, its band gap can be tuned. Pristine armchair silicene nanoribbons (P-ASiNRs) have a very low sensitivity to gas molecules. Therefore, a defect was introduced by removal of one Si atom, leading to increased sensitivity. To deeply understand the impact of the aforementioned gases on silicene nanoribbons, electronic band structures, density of states, charge transfers, adsorption energies, electron densities, current-voltage characteristics and most stable adsorption configurations were calculated. H 2 S is dissociated completely into HS and H species when adsorbed onto defective armchair silicene nanoribbons (D-ASiNRs). Thus, D-ASiNR is a likely catalyst for dissociation of the H 2 S gas molecule. Conversely, upon SO 2 adsorption, P-ASiNR acts as a suitable sensor, whereas D-ASiNR provides enhanced sensitivity compared with P-ASiNR. On the basis of these results, D-ASiNR can be expected to be a disposable sensor for SO 2 detection as well as a catalyst for H 2 S reduction. Graphical abstract Comparison of I-V characteristics of pristine and defective armchair silicene nanoribbons with H 2 S and SO 2 adsorbed on them.

  13. Synthesis, characterization and magnetic properties of NiFe{sub 2−x}Ce{sub x}O{sub 4} nanoribbons by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianan; Jing, Panpan; Zhang, Xinlei; Cao, Derang; Wei, Jinwu; Pan, Lining [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Zhenlin [Analysis and researching center of Gansu province, Lanzhou 730000 (China); Wang, Jianbo [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Key Laboratory for Special Function Materials and Structural Design of the Ministry of the Education, Lanzhou University, Lanzhou 730000 (China); Liu, Qingfang, E-mail: liuqf@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2017-03-01

    NiFe{sub 2−x}Ce{sub x}O{sub 4} (x = 0–0.03) nanoribbons have been successfully fabricated using electrospinning technique and followed by calcining in air at 500 °C. The crystalline, morphologies and compositions of NiFe{sub 2−x}Ce{sub x}O{sub 4} nanoribbons are characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscope, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy (EDX). The results show that the components, mean crystallite sizes and morphologies change along with the content of Ce{sup 3+}. A formation mechanism of NiFe{sub 2-x}Ce{sub x}O{sub 4} nanoribbons is proposed. The magnetic hysteresis loops of NiFe{sub 2−x}Ce{sub x}O{sub 4} nanoribbons reveals that the coercivity changes from 165 Oe to 64 Oe and saturation magnetizations change from 40.97 emu/g to 25.05 emu/g at room temperature. Morevover, the Mössbauer spectra of {sup 57}Fe in NiFe{sub 2−x}Ce{sub x}O{sub 4} nanoribbons is discussed in detail. It is believed that this work will play important role in magnetic application with the advantage of excellent magnetic properties, efficient functionalization and relatively low cost. - Highlights: • The NiFe{sub 2−x}Ce{sub x}O{sub 4} nanoribbons have been fabricated using electrospinning technique. • Ce{sup 3+} ions occupy B sites by replacing Fe{sup 3+} ions. • The coercivity changes from 165 Oe to 64 Oe. • The saturation magnetizations change from 40.97 emu/g to 25.05 emu/g.

  14. Enhanced microwave absorption properties of MnO{sub 2} hollow microspheres consisted of MnO{sub 2} nanoribbons synthesized by a facile hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Han, Bingqian; Chen, Nan; Deng, Dongyang; Guan, Hongtao [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Wang, Yude, E-mail: ydwang@ynu.edu.cn [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091, Kunming (China)

    2016-08-15

    MnO{sub 2} hollow microspheres consisted of nanoribbons were successfully fabricated via a facile hydrothermal method with SiO{sub 2} sphere templates. The crystal structure, morphology and microwave absorption properties in X and Ku band of the as-synthesized samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and a vector network analyzer. The results show that the three-dimensional (3D) hollow microspheres are assembled by ultra thin and narrow one-dimensional (1D) nanoribbons. A rational process for the formation of hollow microspheres is proposed. The 3D MnO{sub 2} hollow microspheres possess improved dielectric and magnetic properties than the 1D nanoribbons prepared by the same procedures with the absence of SiO{sub 2} hard templates, which are closely related to their special nanostructures. The MnO{sub 2} microspheres also show much better microwave absorption properties in X (8–12 GHz) and Ku (12–18 GHz) microwave band compared with 1D MnO{sub 2} nanoribbons. The minimum reflection loss of −40 dB for hollow microsphere can be observed at 14.2 GHz and reflection loss below −10 dB is 3.5 GHz with a thickness of only 4 mm. The possible mechanism for the enhanced microwave absorption properties is also discussed. - Graphical abstract: MnO{sub 2} hollow microspheres composed of nanoribbons show the excellent microwave absorption properties in X and Ku band. - Highlights: • MnO{sub 2} hollow microspheres consisted of MnO{sub 2} nanoribbons were successfully prepared. • MnO{sub 2} hollow microspheres possess good microwave absorption performances. • The excellent microwave absorption properties are in X and Ku microwave band. • Electromagnetic impedance matching is great contribution to absorption properties.

  15. Intercalation assembly of Li{sub 3}VO{sub 4} nanoribbons/graphene sandwich-structured composites with enhanced oxygen reduction catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K.; Ling, Q.N.; Huang, C.H.; Bi, K. [State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wang, W.J.; Yang, T.Z. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Lu, Y.K. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Liu, J., E-mail: liujun4982004@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Zhang, R.; Fan, D.Y.; Wang, Y.G. [State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Lei, Ming, E-mail: mlei@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2015-10-15

    Novel sandwich-like nanocomposites of alternative stacked ultrathin Li{sub 3}VO{sub 4} nanoribbons and graphene sheets (LVO-G) were successfully developed by a facile intercalation assembly method with a post heating treatment. The characterization results demonstrate that the average size of the Li{sub 3}VO{sub 4} nanoribbons with a non-layered crystal structure is a few micrometers in length, 50–100 nm in width and a few atomic layers in height. The addition of graphene sheets can modify the preferred orientation of the Li{sub 3}VO{sub 4} nanoribbons from (110) to (011) plane and restrict the growth of impurity phase at the same time. In addition, EIS analysis has also verified the reduced resistance and thus the enhance conductivity of LVO-G nanocomposites compared with bare Li{sub 3}VO{sub 4} nanoribbons. What's more, the electrocatalytic performances of these novel LVO-G nanocomposites for oxygen reduction reaction (ORR) in alkaline solution are further investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test. It is found that the enhanced activity and stability of LVO-G can be attributed to the synergistic effect between the Li{sub 3}VO{sub 4} nanoribbons and graphene sheets with a larger reduction current density and a smaller onset potential value for LVO-G25 compared with LVO-G50 due to the change of components. - Highlights: • Novel sandwich-structured LVO-G by a facile intercalation assembly method. • Addition of G sheets can modify the preferred orientation of Li{sub 3}VO{sub 4} nanoribbon. • Enhanced ORR activity and stability due to synergistic effect are demonstrated.

  16. Core-shell structure of polypyrrole grown on V{sub 2}O{sub 5} nanoribbon as high performance anode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Qunting [New Energy and Materials Laboratory (NEML), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai (China); School of Energy, Soochow University, Suzhou, Jiangsu (China); Zhu, Yusong; Gao, Xiangwen; Wu, Yuping [New Energy and Materials Laboratory (NEML), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai (China)

    2012-08-15

    A core-shell structure of polypyrrole grown on V{sub 2}O{sub 5} nanoribbons as a high performance anode material for supercapacitors is fabricated using anionic dodecylbenzenesulfonate (DBS{sup -}) as surfactant. Benefiting from the nanoribbon morphology of V{sub 2}O{sub 5}, the improved charge-transfer and polymeric coating effect of PPy, PPy rate at V{sub 2}O{sub 5} nanocomposites exhibits high energy density, and excellent cycling and rate capability in K{sub 2}SO{sub 4} aqueous electrolyte. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Discontinuous Galerkin Time-Domain Modeling of Graphene Nano-Ribbon Incorporating the Spatial Dispersion Effects

    KAUST Repository

    Li, Ping; Jiang, Li Jun; Bagci, Hakan

    2018-01-01

    It is well known that graphene demonstrates spatial dispersion properties, i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this paper, to account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, are presented.

  18. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries.

    Science.gov (United States)

    Lin, Jian; Peng, Zhiwei; Xiang, Changsheng; Ruan, Gedeng; Yan, Zheng; Natelson, Douglas; Tour, James M

    2013-07-23

    A composite made from graphene nanoribbons (GNRs) and tin oxide (SnO2) nanoparticles (NPs) is synthesized and used as the anode material for lithium ion batteries (LIBs). The conductive GNRs, prepared using sodium/potassium unzipping of multiwall carbon nanotubes, can boost the lithium storage performance of SnO2 NPs. The composite, as an anode material for LIBs, exhibits reversible capacities of over 1520 and 1130 mAh/g for the first discharge and charge, respectively, which is more than the theoretical capacity of SnO2. The reversible capacity retains ~825 mAh/g at a current density of 100 mA/g with a Coulombic efficiency of 98% after 50 cycles. Further, the composite shows good power performance with a reversible capacity of ~580 mAh/g at the current density of 2 A/g. The high capacity, good power performance and retention can be attributed to uniformly distributed SnO2 NPs along the high-aspect-ratio GNRs. The GNRs act as conductive additives that buffer the volume changes of SnO2 during cycling. This work provides a starting point for exploring the composites made from GNRs and other transition metal oxides for lithium storage applications.

  19. Density functional study of manganese atom adsorption on hydrogen-terminated armchair boron nitride nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Abdullahi, Yusuf Zuntu [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Physics, Faculty of Science, Kaduna State University, P.M.B. 2339, Kaduna State (Nigeria); Rahman, Md. Mahmudur, E-mail: mahmudur@upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Shuaibu, Alhassan [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Physics, Faculty of Science, Nigerian Defence Academy, P.M.B 2109 Kaduna (Nigeria); Abubakar, Shamsu [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Physics, Faculty of Science, Yobe State University, P.M.B. 1144, Yobe State (Nigeria); Zainuddin, Hishamuddin [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Muhida, Rifki [Department of Physics-Energy Engineering, Surya University, Gedung 01 Scientia Business Park, Jl. Boulevard Gading Serpong Blok O/1, Summarecon Serpong, Tangerang 15810, Banten (Indonesia); Setiyanto, Henry [Analytical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132 (Indonesia)

    2014-08-15

    In this paper, we have investigated stable structural, electric and magnetic properties of manganese (Mn) atom adsorption on armchair hydrogen edge-terminated boron nitride nanoribbon (A-BNNRs) using first principles method based on density-functional theory with the generalized gradient approximation. Calculation shows that Mn atom situated on the ribbons of A-BNNRs is the most stable configuration, where the bonding is more pronounced. The projected density of states (PDOS) of the favored configuration has also been computed. It has been found that the covalent bonding of boron (B), nitrogen (N) and Mn is mainly contributed by s, d like-orbitals of Mn and partially occupied by the 2p like-orbital of N. The difference in energy between the inner and the edge adsorption sites of A-BNNRs shows that Mn atoms prefer to concentrate at the edge sites. The electronic structures of the various configurations are wide, narrow-gap semiconducting and half-metallic, and the magnetic moment of Mn atoms are well preserved in all considered configurations. This has shown that the boron nitride (BN) sheet covered with Mn atoms demonstrates additional information on its usefulness in future spintronics, molecular magnet and nanoelectronics devices.

  20. Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme.

    Science.gov (United States)

    Chowdhury, Sayan Mullick; Surhland, Cassandra; Sanchez, Zina; Chaudhary, Pankaj; Suresh Kumar, M A; Lee, Stephen; Peña, Louis A; Waring, Michael; Sitharaman, Balaji; Naidu, Mamta

    2015-01-01

    We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24h. However, their uptake was ~38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251 but showed little/no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. Cell death in U251 was necrotic, probably due to oxidative degradation of APE-1. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The role of defects and doping in 2D graphene sheets and 1D nanoribbons.

    Science.gov (United States)

    Terrones, Humberto; Lv, Ruitao; Terrones, Mauricio; Dresselhaus, Mildred S

    2012-06-01

    Defects are usually seen as imperfections in materials that could significantly degrade their performance. However, at the nanoscale, defects could be extremely useful since they could be exploited to generate novel, innovative and useful materials and devices. Graphene and graphene nanoribbons are no exception. This review therefore tries to categorize defects, emphasize their importance, introduce the common routes to study and identify them and to propose new ways to construct novel devices based on 'defective' graphene-like materials. In particular, we will discuss defects in graphene-like systems including (a) structural (sp(2)-like) defects, (b) topological (sp(2)-like) defects, (c) doping or functionalization (sp(2)- and sp(3)-like) defects and (d) vacancies/edge type defects (non-sp(2)-like). It will be demonstrated that defects play a key role in graphene physicochemical properties and could even be critical to generate biocompatible materials. There are numerous challenges in this emerging field, and we intend to provide a stimulating account which could trigger new science and technological developments based on defective graphene-like materials that could be introduced into other atomic layered materials, such as BN, MoS(2) and WS(2), not discussed in this review.

  2. Unified Drain Current Model of Armchair Graphene Nanoribbons with Uniaxial Strain and Quantum Effect

    Directory of Open Access Journals (Sweden)

    EngSiew Kang

    2014-01-01

    Full Text Available A unified current-voltage I-V model of uniaxial strained armchair graphene nanoribbons (AGNRs incorporating quantum confinement effects is presented in this paper. The I-V model is enhanced by integrating both linear and saturation regions into a unified and precise model of AGNRs. The derivation originates from energy dispersion throughout the entire Brillouin zone of uniaxial strained AGNRs based on the tight-binding approximation. Our results reveal the modification of the energy band gap, carrier density, and drain current upon strain. The effects of quantum confinement were investigated in terms of the quantum capacitance calculated from the broadening density of states. The results show that quantum effect is greatly dependent on the magnitude of applied strain, gate voltage, channel length, and oxide thickness. The discrepancies between the classical calculation and quantum calculation were also measured and it has been found to be as high as 19% drive current loss due to the quantum confinement. Our finding which is in good agreement with the published data provides significant insight into the device performance of uniaxial strained AGNRs in nanoelectronic applications.

  3. First principles design of divacancy defected graphene nanoribbon based rectifying and negative differential resistance device

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Soubhik; Wasey, A. H. M. Abdul; Das, G. P., E-mail: msgpd@iacs.res.in, E-mail: ranjit.t@res.srmuniv.ac.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India); Thapa, Ranjit, E-mail: msgpd@iacs.res.in, E-mail: ranjit.t@res.srmuniv.ac.in [SRM Research Institute, SRM University, Kattankulathur - 603203, Tamil Nadu (India)

    2015-08-15

    We have studied using density functional theory and non-equilibrium Green’s function based approach, the electronic structures of 555-777 divacancy (DV) defected armchair edged graphene nanoribbons (AGNR) as well as the transport properties of AGNR based two-terminal devices constructed with one defected electrode and one N doped electrode. Introduction of 555-777 DV defect into AGNR results in shifting of the π and π∗ bands towards the higher energy value indicating a downward shift of the Fermi level. Formation of a potential barrier, analogous to that of conventional p-n junction, has been observed across the junction of defected and N-doped AGNR. The two terminal devices show diode like property with high rectifying efficiency for a wide range of bias voltages. The devices also show robust negative differential resistance with very high peak-to-valley ratio. Shift of the electrode energy states and modification of the transmission function with applied bias have been analyzed, in order to gain an insight into the nonlinear and asymmetric behavior of the current-voltage characteristics. Variation of the transport properties on the width of the ribbons has also been discussed.

  4. Structural, electronic and magnetic properties of transition-metal embedded zigzag-edged graphene nanoribbons

    International Nuclear Information System (INIS)

    Yu Guodong; Lü Xiaoling; Jiang Liwei; Gao Wenzhu; Zheng Yisong

    2013-01-01

    By means of ab initio calculations within density-functional theory, the structural, electronic and magnetic properties of a zigzag-edged graphene nanoribbon (ZGNR) with 3d transition-metal atoms (TMAs) (Sc–Zn) embedded in the periodically distributed single vacancies are systematically studied. Different from the pristine ZGNR, all of these composite structures show the subband structures with nontrivial spin polarizations, regardless of the type and the embedding position of the TMA. Embedding one kind of these atoms (V, Cr, Ni, Cu or Zn) near one ribbon edge can cause a notable edge distortion. Except for the cases of Sc, Fe and Co doping, other kinds of TMAs embedded near an edge of the ribbon can suppress the inherent magnetism of the zigzag edge. By further analysis, we find that two effects are responsible for the suppression of edge magnetism. One is the variation of the occupied spin-polarized subbands due to the hybridization of the edge state of the ZGNR and 3d atomic states of the dopant. The other is the delocalization of the edge state caused by the exotic TMA. The unilateral magnetism of these TMA-embedded ZGNRs can be utilized to realize the spin-polarized electronic transport, which is the key electronic property in the context of spintronics applications of carbon-based materials. (paper)

  5. Origin of spin-polarization in edge boron doped zigzag graphene nanoribbon: a potential spin filter.

    Science.gov (United States)

    Chakrabarty, Soubhik; Wasey, A H M Abdul; Thapa, Ranjit; Das, Gour Prasad

    2018-06-04

    To realize the graphene based spintronic device the prime challenge is to control the electronic structure of edges. In this work we find the origin of spin filtering property in edge boron doped zigzag graphene nanoribbon (ZGNRs) and provide a guide to prepare the graphene based next generation spin filter based device. Here we unveil the role of orbital (p-electron) to tune the electronic, magnetic and transport properties of the edge B doped ZGNRs. When all the edge carbon atoms at one of the edges of ZGNRs are replaced by B (100% edge B-doping), the system undergoes semiconductor to metal transition. The role of passivation of the edge with single/double atomic hydrogen on the electronic properties and its relation with the p electron is correlated in-depth. 50% edge B-doped ZGNRs (50% of the edge C atoms at one of the edges are replaced by B) also shows half-metallicity when the doped edge is left unpassivated. The half-metallic systems show 100% spin-filtering efficiency for a wide range of bias voltages. Zero bias transmission function of the other configurations shows asymmetric behavior for the up and down spin channels, thereby indicating their possible application potential in nano-spintronics. © 2018 IOP Publishing Ltd.

  6. Bondonic effects in group-IV honeycomb nanoribbons with Stone-Wales topological defects.

    Science.gov (United States)

    Putz, Mihai V; Ori, Ottorino

    2014-04-03

    This work advances the modeling of bondonic effects on graphenic and honeycomb structures, with an original two-fold generalization: (i) by employing the fourth order path integral bondonic formalism in considering the high order derivatives of the Wiener topological potential of those 1D systems; and (ii) by modeling a class of honeycomb defective structures starting from graphene, the carbon-based reference case, and then generalizing the treatment to Si (silicene), Ge (germanene), Sn (stannene) by using the fermionic two-degenerate statistical states function in terms of electronegativity. The honeycomb nanostructures present η-sized Stone-Wales topological defects, the isomeric dislocation dipoles originally called by authors Stone-Wales wave or SWw. For these defective nanoribbons the bondonic formalism foresees a specific phase-transition whose critical behavior shows typical bondonic fast critical time and bonding energies. The quantum transition of the ideal-to-defect structural transformations is fully described by computing the caloric capacities for nanostructures triggered by η-sized topological isomerisations. Present model may be easily applied to hetero-combinations of Group-IV elements like C-Si, C-Ge, C-Sn, Si-Ge, Si-Sn, Ge-Sn.

  7. Bondonic Effects in Group-IV Honeycomb Nanoribbons with Stone-Wales Topological Defects

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2014-04-01

    Full Text Available This work advances the modeling of bondonic effects on graphenic and honeycomb structures, with an original two-fold generalization: (i by employing the fourth order path integral bondonic formalism in considering the high order derivatives of the Wiener topological potential of those 1D systems; and (ii by modeling a class of honeycomb defective structures starting from graphene, the carbon-based reference case, and then generalizing the treatment to Si (silicene, Ge (germanene, Sn (stannene by using the fermionic two-degenerate statistical states function in terms of electronegativity. The honeycomb nanostructures present η-sized Stone-Wales topological defects, the isomeric dislocation dipoles originally called by authors Stone-Wales wave or SWw. For these defective nanoribbons the bondonic formalism foresees a specific phase-transition whose critical behavior shows typical bondonic fast critical time and bonding energies. The quantum transition of the ideal-to-defect structural transformations is fully described by computing the caloric capacities for nanostructures triggered by η-sized topological isomerisations. Present model may be easily applied to hetero-combinations of Group-IV elements like C-Si, C-Ge, C-Sn, Si-Ge, Si-Sn, Ge-Sn.

  8. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling.

    Science.gov (United States)

    Wakai, Taiga; Sakamoto, Shoichi; Tomiya, Mitsuyoshi

    2018-07-04

    We present the first principle calculations of the electrical properties of graphene sheet/h-BN heterojunction (GS/h-BN) and 11-armchair graphene nanoribbon/h-BN heterojunction (11-AGNR/h-BN), which are carried out using the density functional theory (DFT) method and the non-equilibrium Green's function (NEGF) technique. Since 11-AGNR belongs to the conductive (3n-1)-family of AGNR, both are metallic nanomaterials with two transverse arrays of h-BN, which is a wide-gap semi-conductor. The two h-BN arrays act as double barriers. The transmission functions (TF) and I-[Formula: see text] characteristics of GS/h-BN and 11-AGNR/h-BN are calculated by DFT and NEGF, and they show that quantum double barrier tunneling occurs. The TF becomes very spiky in both materials, and it leads to step-wise I-[Formula: see text] characteristics rather than negative resistance, which is the typical behavior of double barriers in semiconductors. The results of our first principle calculations are also compared with 1D Dirac equation model for the double barrier system. The model explains most of the peaks of the transmission functions nearby the Fermi energy quite well. They are due to quantum tunneling.

  9. Double gate graphene nanoribbon field effect transistor with single halo pocket in channel region

    Science.gov (United States)

    Naderi, Ali

    2016-01-01

    A new structure for graphene nanoribbon field-effect transistors (GNRFETs) is proposed and investigated using quantum simulation with a nonequilibrium Green's function (NEGF) method. Tunneling leakage current and ambipolar conduction are known effects for MOSFET-like GNRFETs. To minimize these issues a novel structure with a simple change of the GNRFETs by using single halo pocket in the intrinsic channel region, "Single Halo GNRFET (SH-GNRFET)", is proposed. An appropriate halo pocket at source side of channel is used to modify potential distribution of the gate region and weaken band to band tunneling (BTBT). In devices with materials like Si in channel region, doping type of halo and source/drain regions are different. But, here, due to the smaller bandgap of graphene, the mentioned doping types should be the same to reduce BTBT. Simulations have shown that in comparison with conventional GNRFET (C-GNRFET), an SH-GNRFET with appropriately halo doping results in a larger ON current (Ion), smaller OFF current (Ioff), a larger ON-OFF current ratio (Ion/Ioff), superior ambipolar characteristics, a reduced power-delay product and lower delay time.

  10. Discontinuous Galerkin Time-Domain Modeling of Graphene Nano-Ribbon Incorporating the Spatial Dispersion Effects

    KAUST Repository

    Li, Ping

    2018-04-13

    It is well known that graphene demonstrates spatial dispersion properties, i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this paper, to account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, are presented.

  11. The electronic transport properties of defected bilayer sliding armchair graphene nanoribbons

    Science.gov (United States)

    Mohammadi, Amin; Haji-Nasiri, Saeed

    2018-04-01

    By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of perfect and defected bilayer armchair graphene nanoribbons (BAGNRs) under finite bias. Two typical defects which are placed in the middle of top layer (i.e. single vacancy (SV) and stone wale (SW) defects) are examined. The results reveal that in both perfect and defected bilayers, the maximum current refers to β-AB, AA and α-AB stacking orders, respectively, since the intermolecular interactions are stronger in them. Moreover it is observed that a SV decreases the current in all stacking orders, but the effects of a SW defect is nearly unpredictable. Besides, we introduced a sequential switching behavior and the effects of defects on the switching performance is studied as well. We found that a SW defect can significantly improve the switching behavior of a bilayer system. Transmission spectrum, band structure, molecular energy spectrum and molecular projected self-consistent Hamiltonian (MPSH) are analyzed subsequently to understand the electronic transport properties of these bilayer devices which can be used in developing nano-scale bilayer systems.

  12. Switching from Reactant to Substrate Engineering in the Selective Synthesis of Graphene Nanoribbons.

    Science.gov (United States)

    Merino-Díez, Néstor; Lobo-Checa, Jorge; Nita, Pawel; Garcia-Lekue, Aran; Basagni, Andrea; Vasseur, Guillaume; Tiso, Federica; Sedona, Francesco; Das, Pranab K; Fujii, Jun; Vobornik, Ivana; Sambi, Mauro; Pascual, José Ignacio; Ortega, J Enrique; de Oteyza, Dimas G

    2018-04-27

    The challenge of synthesizing graphene nanoribbons (GNRs) with atomic precision is currently being pursued along a one-way road, based on the synthesis of adequate molecular precursors that react in predefined ways through self-assembly processes. The synthetic options for GNR generation would multiply by adding a new direction to this readily successful approach, especially if both of them can be combined. We show here how GNR synthesis can be guided by an adequately nanotemplated substrate instead of by the traditionally designed reactants. The structural atomic precision, unachievable to date through top-down methods, is preserved by the self-assembly process. This new strategy's proof-of-concept compares experiments using 4,4''-dibromo-para-terphenyl as a molecular precursor on flat Au(111) and stepped Au(322) substrates. As opposed to the former, the periodic steps of the latter drive the selective synthesis of 6 atom-wide armchair GNRs, whose electronic properties have been further characterized in detail by scanning tunneling spectroscopy, angle resolved photoemission, and density functional theory calculations.

  13. Thermal conductivity of graphene nanoribbons accounting for phonon dispersion and polarization

    International Nuclear Information System (INIS)

    Wang, Yingjun; Xie, Guofeng

    2015-01-01

    The relative contribution to heat conduction by different phonon branches is still an intriguing and open question in phonon transport of graphene nanoribbons (GNRs). By incorporating the direction–dependent phonon–boundary scattering into the linearized phonon Boltzmann transport equation, we find that because of lower Grüneisen parameter, the TA phonons have the major contribution to thermal conductivity of GNRs, and in the case of smooth edge and micron–length of GNRS, the relative contribution of TA branch to thermal conductivity is over 50%. The length and edge roughness of GNRs have distinct influences on the relative contribution of different polarization branches to thermal conductivity. The contribution of TA branch to thermal conductivity increases with increasing the length or decreasing the edge roughness of GNRs. On the contrary, the contribution of ZA branch to thermal conductivity increases with decreasing the length or increasing the edge roughness of GNRs. The contribution of LA branch is length and roughness insensitive. Our findings are helpful for understanding and engineering the thermal conductivity of GNRs.

  14. Simulations of Propane and Butane Gas Sensor Based on Pristine Armchair Graphene Nanoribbon

    Science.gov (United States)

    Rashid, Haroon; Koel, Ants; Rang, Toomas

    2018-05-01

    Over the last decade graphene and its derivatives have gained a remarkable place in research field. As silicon technology is approaching to its geometrical limits so there is a need of alternate that can replace it. Graphene has emerged as a potential candidate for future nano-electronics applications due to its exceptional and extraordinary chemical, optical, electrical and mechanical properties. Graphene based sensors have gained significance for a wide range of sensing applications like detection of biomolecules, chemicals and gas molecules. It can be easily used to make electrical contacts and manipulate them according to the requirements as compared to the other nanomaterials. The intention of the work presented in this article is to contribute in this field by simulating a novel and cheap graphene nanoribbon sensor for the household gas leakage detection. QuantumWise Atomistix (ATK) software is used for the simulations of propane and butane gas sensor. Projected device density of the states (PDDOS) and the transmission spectrum of the device in the proximity of gas molecules are calculated and discussed. The change in the electric current through the device in the presence of the gas molecules is used as a gas detection mechanism for the simulated sensor.

  15. Edge reconstruction in armchair phosphorene nanoribbons revealed by discontinuous Galerkin density functional theory.

    Science.gov (United States)

    Hu, Wei; Lin, Lin; Yang, Chao

    2015-12-21

    With the help of our recently developed massively parallel DGDFT (Discontinuous Galerkin Density Functional Theory) methodology, we perform large-scale Kohn-Sham density functional theory calculations on phosphorene nanoribbons with armchair edges (ACPNRs) containing a few thousands to ten thousand atoms. The use of DGDFT allows us to systematically achieve a conventional plane wave basis set type of accuracy, but with a much smaller number (about 15) of adaptive local basis (ALB) functions per atom for this system. The relatively small number of degrees of freedom required to represent the Kohn-Sham Hamiltonian, together with the use of the pole expansion the selected inversion (PEXSI) technique that circumvents the need to diagonalize the Hamiltonian, results in a highly efficient and scalable computational scheme for analyzing the electronic structures of ACPNRs as well as their dynamics. The total wall clock time for calculating the electronic structures of large-scale ACPNRs containing 1080-10,800 atoms is only 10-25 s per self-consistent field (SCF) iteration, with accuracy fully comparable to that obtained from conventional planewave DFT calculations. For the ACPNR system, we observe that the DGDFT methodology can scale to 5000-50,000 processors. We use DGDFT based ab initio molecular dynamics (AIMD) calculations to study the thermodynamic stability of ACPNRs. Our calculations reveal that a 2 × 1 edge reconstruction appears in ACPNRs at room temperature.

  16. Isothermal folding of a light-up bio-orthogonal RNA origami nanoribbon.

    Science.gov (United States)

    Torelli, Emanuela; Kozyra, Jerzy Wieslaw; Gu, Jing-Ying; Stimming, Ulrich; Piantanida, Luca; Voïtchovsky, Kislon; Krasnogor, Natalio

    2018-05-03

    RNA presents intringuing roles in many cellular processes and its versatility underpins many different applications in synthetic biology. Nonetheless, RNA origami as a method for nanofabrication is not yet fully explored and the majority of RNA nanostructures are based on natural pre-folded RNA. Here we describe a biologically inert and uniquely addressable RNA origami scaffold that self-assembles into a nanoribbon by seven staple strands. An algorithm is applied to generate a synthetic De Bruijn scaffold sequence that is characterized by the lack of biologically active sites and repetitions larger than a predetermined design parameter. This RNA scaffold and the complementary staples fold in a physiologically compatible isothermal condition. In order to monitor the folding, we designed a new split Broccoli aptamer system. The aptamer is divided into two nonfunctional sequences each of which is integrated into the 5' or 3' end of two staple strands complementary to the RNA scaffold. Using fluorescence measurements and in-gel imaging, we demonstrate that once RNA origami assembly occurs, the split aptamer sequences are brought into close proximity forming the aptamer and turning on the fluorescence. This light-up 'bio-orthogonal' RNA origami provides a prototype that can have potential for in vivo origami applications.

  17. A multichannel model for the self-consistent analysis of coherent transport in graphene nanoribbons.

    Science.gov (United States)

    Mencarelli, Davide; Pierantoni, Luca; Farina, Marco; Di Donato, Andrea; Rozzi, Tullio

    2011-08-23

    In this contribution, we analyze the multichannel coherent transport in graphene nanoribbons (GNRs) by a scattering matrix approach. We consider the transport properties of GNR devices of a very general form, involving multiple bands and multiple leads. The 2D quantum transport over the whole GNR surface, described by the Schrödinger equation, is strongly nonlinear as it implies calculation of self-generated and externally applied electrostatic potentials, solutions of the 3D Poisson equation. The surface charge density is computed as a balance of carriers traveling through the channel at all of the allowed energies. Moreover, formation of bound charges corresponding to a discrete modal spectrum is observed and included in the model. We provide simulation examples by considering GNR configurations typical for transistor devices and GNR protrusions that find an interesting application as cold cathodes for X-ray generation. With reference to the latter case, a unified model is required in order to couple charge transport and charge emission. However, to a first approximation, these could be considered as independent problems, as in the example. © 2011 American Chemical Society

  18. Chirality of Single-Handed Twisted Titania Tubular Nanoribbons Prepared Through Sol-gel Transcription.

    Science.gov (United States)

    Wang, Sibing; Zhang, Chuanyong; Li, Yi; Li, Baozong; Yang, Yonggang

    2015-08-01

    Single-handed twisted titania tubular nanoribbons were prepared through sol-gel transcription using a pair of enantiomers. Handedness was controlled by that of the template. The obtained samples were characterized using field-emission electron microscopy, transmission electron microscopy, diffuse reflectance circular dichroism (DRCD), and X-ray diffraction. The DRCD spectra indicated that the titania nanotubes exhibit optical activity. Although the tubular structure was destroyed after being calcined at 700 °C for 2.0 h, DRCD signals were still identified. However, the DRCD signals disappeared after being calcined at 1000 °C for 2.0 h. The optical activity of titania was proposed to be due to chiral defects. Previous results showed that straight titania tubes could be used as asymmetric autocatalysts, indicating that titania exhibit chirality at the angstrom level. Herein, it was found that they also exhibit DRCD signals, indicating that there are no obvious relationships between morphology at the nano level and chirality at the angstrom level. The nanotube chirality should originate from the chiral defects on the nanotube inner surface. The Fourier transform infrared spectra indicated that the chirality of the titania was transferred from the gelators through the hydrogen bonding between N-H and Ti-OH. © 2015 Wiley Periodicals, Inc.

  19. First principles design of divacancy defected graphene nanoribbon based rectifying and negative differential resistance device

    Directory of Open Access Journals (Sweden)

    Soubhik Chakrabarty

    2015-08-01

    Full Text Available We have studied using density functional theory and non-equilibrium Green’s function based approach, the electronic structures of 555-777 divacancy (DV defected armchair edged graphene nanoribbons (AGNR as well as the transport properties of AGNR based two-terminal devices constructed with one defected electrode and one N doped electrode. Introduction of 555-777 DV defect into AGNR results in shifting of the π and π∗ bands towards the higher energy value indicating a downward shift of the Fermi level. Formation of a potential barrier, analogous to that of conventional p-n junction, has been observed across the junction of defected and N-doped AGNR. The two terminal devices show diode like property with high rectifying efficiency for a wide range of bias voltages. The devices also show robust negative differential resistance with very high peak-to-valley ratio. Shift of the electrode energy states and modification of the transmission function with applied bias have been analyzed, in order to gain an insight into the nonlinear and asymmetric behavior of the current-voltage characteristics. Variation of the transport properties on the width of the ribbons has also been discussed.

  20. Dibenzothiophene adsorption at boron doped carbon nanoribbons studied within density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    López-Albarrán, P. [Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Santiago Tapia 403, CP 58000, Morelia, Michoacán (Mexico); Navarro-Santos, P., E-mail: pnavarrosa@conacyt.mx [Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Santiago Tapia 403, CP 58000, Morelia, Michoacán (Mexico); Garcia-Ramirez, M. A. [Research Centre for Innovation in Aeronautical Engineering, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, CP 66451 Nuevo León (Mexico); Ricardo-Chávez, J. L. [Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Lomas 4" asección, CP 78216, San Luis Potosí, S. L. P. (Mexico)

    2015-06-21

    The adsorption of dibenzothiophene (DBT) on bare and boron-doped armchair carbon nanoribbons (ACNRs) is being investigated in the framework of the density functional theory by implementing periodic boundary conditions that include corrections from dispersion interactions. The reactivity of the ACNRs is characterized by using the Fukui functions as well as the electrostatic potential as local descriptors. Non-covalent adsorption mechanism is found when using the local Perdew-Becke-Ernzerhof functional, regardless of the DBT orientation and adsorption location. The dispersion interactions addition is a milestone to describe the adsorption process. The charge defects introduced in small number (i.e., by doping with B atoms), within the ACNRs increases the selectivity towards sulfur mainly due to the charge depletion at B sites. The DBT magnitude in the adsorption energy shows non-covalent interactions. As a consequence, the configurations where the DBT is adsorbed on a BC{sub 3} island increase the adsorption energy compared to random B arrangements. The stability of these configurations can be explained satisfactorily in terms of dipole interactions. Nevertheless, from the charge-density difference analysis and the weak Bader charge-distribution interactions cannot be ruled out completely. This is why the electronic properties of the ribbons are analyzed in order to elucidate the key role played by the B and DBT states in the adsorbed configurations.

  1. Third nearest neighbor parameterized tight binding model for graphene nano-ribbons

    Directory of Open Access Journals (Sweden)

    Van-Truong Tran

    2017-07-01

    Full Text Available The existing tight binding models can very well reproduce the ab initio band structure of a 2D graphene sheet. For graphene nano-ribbons (GNRs, the current sets of tight binding parameters can successfully describe the semi-conducting behavior of all armchair GNRs. However, they are still failing in reproducing accurately the slope of the bands that is directly associated with the group velocity and the effective mass of electrons. In this work, both density functional theory and tight binding calculations were performed and a new set of tight binding parameters up to the third nearest neighbors including overlap terms is introduced. The results obtained with this model offer excellent agreement with the predictions of the density functional theory in most cases of ribbon structures, even in the high-energy region. Moreover, this set can induce electron-hole asymmetry as manifested in results from density functional theory. Relevant outcomes are also achieved for armchair ribbons of various widths as well as for zigzag structures, thus opening a route for multi-scale atomistic simulation of large systems that cannot be considered using density functional theory.

  2. Influence of quasi-particle density over polaron mobility in armchair graphene nanoribbons.

    Science.gov (United States)

    Silva, Gesiel Gomes; da Cunha, Wiliam Ferreira; de Sousa Junior, Rafael Timóteo; Almeida Fonseca, Antonio Luciano; Ribeiro Júnior, Luiz Antônio; E Silva, Geraldo Magela

    2018-06-20

    An important aspect concerning the performance of armchair graphene nanoribbons (AGNRs) as materials for conceiving electronic devices is related to the mobility of charge carriers in these systems. When several polarons are considered in the system, a quasi-particle wave function can be affected by that of its neighbor provided the two are close enough. As the overlap may affect the transport of the carrier, the question concerning how the density of polarons affect its mobility arises. In this work, we investigate such dependence for semiconducting AGNRs in the scope of nonadiabatic molecular dynamics. Our results unambiguously show an impact of the density on both the stability and average velocity of the quasi-particles. We have found a phase transition between regimes where increasing density stops inhibiting and starts promoting mobility; densities higher than 7 polarons per 45 Å present increasing mean velocity with increasing density. We have also established three different regions relating electric field and average velocity. For the lowest electric field regime, surpassing the aforementioned threshold results in overcoming the 0.3 Å fs-1 limit, thus representing a transition between subsonic and supersonic regimes. For the highest of the electric fields, density effects alone are responsible for a stunning difference of 1.5 Å fs-1 in the mean carrier velocity.

  3. Spin currents and filtering behavior in zigzag graphene nanoribbons with adsorbed molybdenum chains

    International Nuclear Information System (INIS)

    García-Fuente, A; Gallego, L J; Vega, A

    2015-01-01

    By means of density-functional-theoretic calculations, we investigated the structural, electronic and transport properties of hydrogen-passivated zigzag graphene nanoribbons (ZGNRs) on which a one-atom-thick Mo chain was adsorbed (with or without one or two missing atoms), or in which the passivating hydrogen atoms were replaced by Mo atoms. Mo-passivated ZGNRs proved to be nonmagnetic. ZGNRs with an adsorbed defect-free Mo chain were most stable with the Mo atoms forming dimers above edge bay sites, which suppressed the magnetic moments of the C atoms in that half of the ribbon; around the Fermi level of these systems, each spin component had a transmission channel via the Mo sp z band and one had an additional channel created by polarization of the ZGNR π * band, leading to a net spin current. The absence of an Mo dimer from an Mo chain adsorbed at the ZGNR edge made the system a perfect spin filter at low voltage bias by suppressing the Mo sp z band channels. Thus this last kind of hybrid system is a potential spin valve. (paper)

  4. Density functional study of manganese atom adsorption on hydrogen-terminated armchair boron nitride nanoribbons

    International Nuclear Information System (INIS)

    Abdullahi, Yusuf Zuntu; Rahman, Md. Mahmudur; Shuaibu, Alhassan; Abubakar, Shamsu; Zainuddin, Hishamuddin; Muhida, Rifki; Setiyanto, Henry

    2014-01-01

    In this paper, we have investigated stable structural, electric and magnetic properties of manganese (Mn) atom adsorption on armchair hydrogen edge-terminated boron nitride nanoribbon (A-BNNRs) using first principles method based on density-functional theory with the generalized gradient approximation. Calculation shows that Mn atom situated on the ribbons of A-BNNRs is the most stable configuration, where the bonding is more pronounced. The projected density of states (PDOS) of the favored configuration has also been computed. It has been found that the covalent bonding of boron (B), nitrogen (N) and Mn is mainly contributed by s, d like-orbitals of Mn and partially occupied by the 2p like-orbital of N. The difference in energy between the inner and the edge adsorption sites of A-BNNRs shows that Mn atoms prefer to concentrate at the edge sites. The electronic structures of the various configurations are wide, narrow-gap semiconducting and half-metallic, and the magnetic moment of Mn atoms are well preserved in all considered configurations. This has shown that the boron nitride (BN) sheet covered with Mn atoms demonstrates additional information on its usefulness in future spintronics, molecular magnet and nanoelectronics devices.

  5. Adsorption of CO2 on Fe-doped graphene nano-ribbons: Investigation of transport properties

    Science.gov (United States)

    Othman, W.; Fahed, M.; Hatim, S.; Sherazi, A.; Berdiyorov, G.; Tit, N.

    2017-07-01

    Density functional theory combined with the non-equilibrium Green’s function formalism is used to study the conductance response of Fe-doped graphene nano-ribbons (GNRs) to CO2 gas adsorption. A single Fe atom is either adsorbed on GNR’s surface (aFe-graphene) or it substitutes the carbon atom (sFe-graphene). Metal atom doping reduces the electronic transmission of pristine graphene due to the localization of electronic states near the impurity site. Moreover, the aFe-graphene is found to be less sensitive to the CO2 molecule attachment as compared to the sFe-graphene system. These behaviours are not only consolidated but rather confirmed by calculating the IV characteristics from which both surface resistance and its sensitivity to the gas are estimated. Since the change in the conductivity is one of the main outputs of sensors, our findings will be useful in developing efficient graphene-based solid-state gas sensors.

  6. Tuning the electronic properties of armchair carbon nanoribbons by a selective boron doping

    International Nuclear Information System (INIS)

    Navarro-Santos, P; Ricardo-Chavez, J L; Lopez-Sandoval, R; Reyes-Reyes, M; Rivera, J L

    2010-01-01

    Armchair carbon nanoribbons (ACNRs) substitutionally doped with boron atoms are investigated in the framework of first-principles density functional theory. Different boron-boron arrangements and concentrations are considered in order to simulate possible aggregation patterns, their structural stability and electronic behavior are determined as a function of ribbon size. In agreement with previous studies, our results show that the dopant atoms have in general a preference for edge sites, but specific effects appear as a function of concentration that importantly modify the properties of the ribbons compared to the pristine case. Interesting tendencies are discovered as a function of dopant concentration that significantly affect the electronic properties of the ribbons. We have found that BC 3 island formation and edge doping are the most important factors for the structural stabilization of the ribbons with high boron concentration (>7%) whereas for the cases of low boron concentrations ( 3 island patterns give rise to highly localized B states on top of the Fermi level, resulting in semiconducting behavior. On the other hand, when the average distance between the B atoms increases beyond island stoichiometry, the localization of their states is reduced and the ribbons may become metallic due to a band crossing caused by the lowering of the Fermi level resulting from the positive charge doping. Thus, tuning the dopant interaction would be an appropriate way to tailor the electronic properties of the ribbons in a convenient manner in view of potential technological applications.

  7. CO2 adsorption on Fe-doped graphene nanoribbons: First principles electronic transport calculations

    Directory of Open Access Journals (Sweden)

    G. R. Berdiyorov

    2016-12-01

    Full Text Available Decoration of graphene with metals and metal-oxides is known to be one of the effective methods to enhance gas sensing and catalytic properties of graphene. We use density functional theory in combination with the nonequilibrium Green’s function formalism to study the conductance response of Fe-doped graphene nanoribbons to CO2 gas adsorption. A single Fe atom is either adsorbed on graphene’s surface (aFe-graphene or it substitutes the carbon atom (sFe-graphene. Metal atom doping reduces the electronic transmission of pristine graphene due to the localization of electronic states near the impurities. The reduction in the transmission is more pronounced in the case of aFe-graphene. In addition, the aFe-graphene is found to be less sensitive to the CO2 molecule attachment as compared to the sFe-graphene system. Pristine graphene is also found to be less sensitive to the molecular adsorption. Since the change in the conductivity is one of the main outputs of sensors, our findings will be useful in developing graphene-based solid-state gas sensors.

  8. Magnetic adatoms in two and four terminal graphene nanoribbons: A comparison between their spin polarized transport

    Science.gov (United States)

    Ganguly, Sudin; Basu, Saurabh

    2018-04-01

    We study the charge and spin transport in two and four terminal graphene nanoribbons (GNR) decorated with random distribution of magnetic adatoms. The inclusion of the magnetic adatoms generates only the z-component of the spin polarized conductance via an exchange bias in the absence of Rashba spin-orbit interaction (SOI), while in presence of Rashba SOI, one is able to create all the three (x, y and z) components. This has important consequences for possible spintronic applications. The charge conductance shows interesting behaviour near the zero of the Fermi energy. Where in presence of magnetic adatoms the familiar plateau at 2e2 / h vanishes, thereby transforming a quantum spin Hall insulating phase to an ordinary insulator. The local charge current and the local spin current provide an intuitive idea on the conductance features of the system. We found that, the local charge current is independent of Rashba SOI, while the three components of the local spin currents are sensitive to Rashba SOI. Moreover the fluctuations of the spin polarized conductance are found to be useful quantities as they show specific trends, that is, they enhance with increasing adatom densities. A two terminal GNR device seems to be better suited for possible spintronic applications.

  9. Electronic structure and transport of a carbon chain between graphene nanoribbon leads

    International Nuclear Information System (INIS)

    Zhang, G P; Fang, X W; Yao, Y X; Wang, C Z; Ho, K M; Ding, Z J

    2011-01-01

    The electronic structure and transport property of a carbon chain between two graphene nanoribbon leads are studied using an ab initio tight-binding (TB) model and Landauer's formalism combined with a non-equilibrium Green's function. The TB Hamiltonian and overlap matrices are extracted from first-principles density functional calculations through the quasi-atomic minimal basis orbital scheme. The accuracy of the TB model is demonstrated by comparing the electronic structure from the TB model with that from first-principles density functional theory. The results of electronic transport on a carbon atomic chain connected to armchair and zigzag graphene ribbon leads, such as different transport characters near the Fermi level and at most one quantized conductance, reveal the effect of the electronic structure of the leads and the scattering from the atomic chain. In addition, bond length alternation and an interesting transmission resonance are observed in the atomic chain connected to zigzag graphene ribbon leads. Our approach provides a promising route to quantitative investigation of both the electronic structure and transport property of large systems.

  10. Zepto-molar electrochemical detection of Brucella genome based on gold nanoribbons covered by gold nanoblooms

    Science.gov (United States)

    Rahi, Amid; Sattarahmady, Naghmeh; Heli, Hossein

    2015-12-01

    Gold nanoribbons covered by gold nanoblooms were sonoelectrodeposited on a polycrystalline gold surface at -1800 mV (vs. AgCl) with the assistance of ultrasound and co-occurrence of the hydrogen evolution reaction. The nanostructure, as a transducer, was utilized to immobilize a Brucella-specific probe and fabrication of a genosensor, and the process of immobilization and hybridization was detected by electrochemical methods, using methylene blue as a redox marker. The proposed method for detection of the complementary sequence, sequences with base-mismatched (one-, two- and three-base mismatches), and the sequence of non-complementary sequence was assayed. The fabricated genosensor was evaluated for the assay of the bacteria in the cultured and human samples without polymerase chain reactions (PCR). The genosensor could detect the complementary sequence with a calibration sensitivity of 0.40 μA dm3 mol-1, a linear concentration range of 10 zmol dm-3 to 10 pmol dm-3, and a detection limit of 1.71 zmol dm-3.

  11. Raman spectroscopy of lithographically defined graphene nanoribbons - influence of size and defects

    Energy Technology Data Exchange (ETDEWEB)

    Kampmann, Felix; Scheuschner, Nils [Institut fuer Festkoerperphysik, Technical University Berlin (Germany); Terres, Bernat; Stampfer, Christoph [JARA-FIT and 2nd Institute of Physics, RWTH Aachen University (Germany); Peter Gruenberg Institute (PGI), Forschungszentrum Juelich (Germany); Joerger, Danny [JARA-FIT and 2nd Institute of Physics, RWTH Aachen University (Germany); Maultzsch, Janina [Institut fuer Festkoerperphysik, Technical University Berlin (Germany); Lehrstuhl fuer Experimentalphysik, Department Physik, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (Germany)

    2017-11-15

    Graphene nanostructures are an important building block to make use of the properties of graphene for applications in integrated devices. It is important to study edge roughness and defects in such nanostructures for further device improvement as they become important when downscaling structures. Recent Raman studies focused mainly on the D mode to characterize the defects in graphene and graphene nanoribbons (GNR) whereas not much attention has been paid to the D' mode that is smaller in Raman intensity. In this work we show by comparison with AFM measurements of the GNR width that both defect-induced Raman modes have different scattering length scales. Furthermore the size and quality of lithographically defined GNRs can be estimated by a close analysis of the defect-induced Raman modes and the width of the well-studied 2D mode of graphene. The findings are explained by the different vibration pattern for both Raman modes and the differences in the matrix elements determining the Raman intensity, i.e. the electron-phonon coupling and the phonon density of states. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Structural analysis, electronic properties, and band gaps of a graphene nanoribbon: A new 2D materials

    Science.gov (United States)

    Dass, Devi

    2018-03-01

    Graphene nanoribbon (GNR), a new 2D carbon nanomaterial, has some unique features and special properties that offer a great potential for interconnect, nanoelectronic devices, optoelectronics, and nanophotonics. This paper reports the structural analysis, electronic properties, and band gaps of a GNR considering different chirality combinations obtained using the pz orbital tight binding model. In structural analysis, the analytical expressions for GNRs have been developed and verified using the simulation for the first time. It has been found that the total number of unit cells and carbon atoms within an overall unit cell and molecular structure of a GNR have been changed with the change in their chirality values which are similar to the values calculated using the developed analytical expressions thus validating both the simulation as well as analytical results. Further, the electronic band structures at different chirality values have been shown for the identification of metallic and semiconductor properties of a GNR. It has been concluded that all zigzag edge GNRs are metallic with very small band gaps range whereas all armchair GNRs show both the metallic and semiconductor nature with very small and high band gaps range. Again, the total number of subbands in each electronic band structure is equal to the total number of carbon atoms present in overall unit cell of the corresponding GNR. The semiconductors GNRs can be used as a channel material in field effect transistor suitable for advanced CMOS technology whereas the metallic GNRs could be used for interconnect.

  13. Spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons

    International Nuclear Information System (INIS)

    Zhang, Z L; Chen, Y P; Xie, Y E; Zhang, M; Zhong, J X

    2011-01-01

    The spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons (ZGNRs) are investigated using the density-functional theory in combination with the nonequilibrium Green's function method. We find that the Fe chain has drastic effects on spin-polarized transport properties of ZGNRs compared with a single Fe atom adsorbed on the ZGNRs. When the Fe chain is adsorbed on the centre of the ZGNR, the original semiconductor transforms into metal, showing a very wide range of spin-polarized transport. Particularly, the spin polarization around the Fermi level is up to 100%. This is because the adsorbed Fe chain not only induces many localized states but also has effects on the edge states of ZGNR, which can effectively modulate the spin-polarized transports. The spin polarization of ZGNRs is sensitive to the adsorption site of the Fe chain. When the Fe chain is adsorbed on the edge of ZGNR, the spin degeneracy of conductance is completely broken. The spin polarization is found to be more pronounced because the edge state of one edge is destroyed by the additional Fe chain. These results have direct implications for the control of the spin-dependent conductance in ZGNRs with the adsorption of Fe chains.

  14. On the possibility of electrochemical unzipping of multiwalled carbon nanotubes to produce graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zehtab Yazdi, Alireza; Roberts, Edward P.L.; Sundararaj, Uttandaraman, E-mail: u.sundararaj@ucalgary.ca

    2016-08-15

    Highlights: • MWCNTs synthesized and electrochemically oxidized to study the formation of GNR • HRTEM, Raman and XPS confirmed no successful unzipping occurred after oxidation • Electrochemical oxidation very unlikely facilitate formation of intercalated MWCNTs - Abstract: Multiwalled carbon nanotubes (MWCNTs) with different geometrical characteristics and chemical doping have been synthesized and electrochemically oxidized to study the possibility of unzipping, and creating graphene nanoribbon (GNR) nanostructures. Modified glassy carbon electrodes of the MWCNTs have been tested in an aqueous electrolyte via anodic scans in a wide range of potentials, followed by keeping at the maximum potential for different times. The microstructural features, structural defects, and functional groups and their elements have been then studied using high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), respectively. All results have confirmed that no successful unzipping occurs in the MWCNTs after electrochemical oxidation, even for the nitrogen-doped MWCNTs (CN{sub x}-MWCNTs) with reactive nitrogen groups and defective bamboo structures. In contrast to the report by Shinde et al. (J. Am. Chem. Soc. 2011, 133, 4168–4171), it has been concluded that the electrochemical oxidation in aqueous electrolytes is very unlikely to facilitate sufficient incorporation of the intercalated molecules among the walls of the MWCNTs. These molecules are, however, responsible for unzipping of MWCNTs.

  15. Molecular dynamics simulation of square graphene-nanoflake oscillator on graphene nanoribbon.

    Science.gov (United States)

    Kang, Jeong Won; Lee, Kang Whan

    2014-12-01

    Graphene nanoflakes (GNFs) have been of interest for a building block in order to develop electromechanical devices on a nanometer scale. Here, we present the oscillation motions of a square GNF oscillator on graphene nanoribbon (GNR) in the retracting-motions by performing classical molecular dynamics simulations. The simulation results showed that the GNF oscillators can be considered as a building block for nanoelectromechanical systems such as carbon-nanotube (CNT) oscillators. The oscillation dynamics of the GNF oscillator were similar to those of the CNT oscillators. When the square GNF had an initial velocity as impulse dynamics, its oscillation motions on the GNR were achieved from its self-retracting van der Waals force. For low initial velocity, its translational motions were dominant in its motions rather than its rotational motions. The kinetic energy damping ratio rapidly decreased as initial velocity increased and the kinetic energy for the translational motion of the GNF oscillator rapidly transferred into that for its rotational motion. The oscillation frequency of the GNF oscillator was dependent on its initial velocity.

  16. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation

    Science.gov (United States)

    Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon

    2017-01-01

    Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications. PMID:28120921

  17. Modeling of cross-plane interface thermal conductance between graphene nano-ribbons

    International Nuclear Information System (INIS)

    Varshney, Vikas; Lee, Jonghoon; Farmer, Barry L; Voevodin, Andrey A; Roy, Ajit K

    2014-01-01

    Using non-equilibrium molecular dynamics for thermal energy transfer, we investigate the interfacial thermal conductance between non-covalently interacting graphene nano-ribbons (GNRs) of varying lengths and widths in a cross-contact (x-shaped) geometry. Our results show that the out-of-plane conductance between GNRs can vary significantly (up to a factor of 4) depending upon their geometric parameters. We observe that when plotted against aspect ratio, the predicted interface thermal conductance values fit excellently on a single master-plot with a logarithmic scaling, suggesting the importance of GNR aspect ratio towards thermal conductance. We propose a model based on incorporating different thermal conductance characteristics of edge and inner interacting regions which predicts the observed logarithmic dependence on aspect ratio. We also study the effect of graphene edge roughness, temperature, and strain on out-of-plane thermal conductance and discuss the observed results based on local vibrational characteristics of atoms within interacting region, number of interacting phonons, and the degree to which they interact across the interaction zone. (paper)

  18. Raman spectroscopy of lithographically defined graphene nanoribbons - influence of size and defects

    International Nuclear Information System (INIS)

    Kampmann, Felix; Scheuschner, Nils; Terres, Bernat; Stampfer, Christoph; Joerger, Danny; Maultzsch, Janina

    2017-01-01

    Graphene nanostructures are an important building block to make use of the properties of graphene for applications in integrated devices. It is important to study edge roughness and defects in such nanostructures for further device improvement as they become important when downscaling structures. Recent Raman studies focused mainly on the D mode to characterize the defects in graphene and graphene nanoribbons (GNR) whereas not much attention has been paid to the D' mode that is smaller in Raman intensity. In this work we show by comparison with AFM measurements of the GNR width that both defect-induced Raman modes have different scattering length scales. Furthermore the size and quality of lithographically defined GNRs can be estimated by a close analysis of the defect-induced Raman modes and the width of the well-studied 2D mode of graphene. The findings are explained by the different vibration pattern for both Raman modes and the differences in the matrix elements determining the Raman intensity, i.e. the electron-phonon coupling and the phonon density of states. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons.

    Science.gov (United States)

    Hu, Wei; Lin, Lin; Zhang, Ruiqi; Yang, Chao; Yang, Jinlong

    2017-11-01

    Two-dimensional phosphorene with desirable optoelectronic properties (ideal band gap, high carrier mobility, and strong visible light absorption) is a promising metal-free photocatalyst for water splitting. However, the band edge positions of the valence band maximum (VBM) and conduction band maximum (CBM) of phosphorene are higher than the redox potentials in photocatalytic water splitting reactions. Thus, phosphorene can only be used as the photocathode for hydrogen evolution reaction as a low-efficiency visible-light-driven photocatalyst for hydrogen production in solar water splitting cells. Here, we propose a new mechanism to improve the photocatalytic efficiency of phosphorene nanoribbons (PNRs) by modifying their edges for full reactions in photocatalytic water splitting. By employing first-principles density functional theory calculations, we find that pseudohalogen (CN and OCN) passivated PNRs not only show desired VBM and CBM band edge positions induced by edge electric dipole layer, but also possess intrinsic optoelectronic properties of phosphorene, for both water oxidation and hydrogen reduction in photocatalytic water splitting without using extra energy. Furthermore, our calculations also predict that the maximum energy conversion efficiency of heterojunction solar cells consisting of different edge-modified PNRs can be as high as 20% for photocatalytic water splitting.

  20. Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons

    Science.gov (United States)

    Kaur, Sumandeep; Kumar, Ashok; Srivastava, Sunita; Pandey, Ravindra; Tankeshwar, K.

    2018-04-01

    Few-layer black phosphorene has recently attracted significant interest in the scientific community. In this paper, we consider several polymorphs of phosphorene nanoribbons (PNRs) and employ deformation potential theory within the effective mass approximation, together with density functional theory, to investigate their structural, mechanical and electronic properties. The results show that the stability of a PNR strongly depends on the direction along which it can be cut from its 2D counterpart. PNRs also exhibit a wide range of line stiffnesses ranging from 6 × 1010 eV m-1 to 18 × 1011 eV m-1, which has little dependence on the edge passivation. Likewise, the calculated electronic properties of PNRs show them to be either a narrow-gap semiconductor (E g 1 eV). The carrier mobility of PNRs is found to be comparable to that of black phosphorene. Some of the PNRs show an n-type (p-type) semiconducting character owing to their higher electron (hole) mobility. Passivation of the edges leads to n-type ↔ p-type transition in many of the PNRs considered. The predicted novel characteristics of PNRs, with a wide range of mechanical and electronic properties, make them potentially suitable for use in nanoscale devices.

  1. The giant Stark effect in armchair-edge phosphorene nanoribbons under a transverse electric field

    Science.gov (United States)

    Zhou, Benliang; Zhou, Benhu; Liu, Pu; Zhou, Guanghui

    2018-01-01

    We study the variation of electronic properties for armchair-edge phosphorene nanoribbons (APNRs) modulated by a transverse electric field. Within the tight-binding model Hamiltonian, and by solving the differential Schrödinger equation, we find that a band gap closure appears at the critical field due to the giant Stark effect for an APNR. The gap closure has no field polarity, and the gap varies quadratically for small fields but becomes linear for larger ones. We attribute the giant Stark effect to the broken edge degeneracy, i.e., the charge redistributions of the conduction band minimum and valence band maximum states localized at opposite edges induced by the field. By combined with the Green's function approach, it is shown that in the presence of the critical field a gap of density of states (DOS) disappears and a high value DOS turns up at the energy position of the band gap closure. Finally, as the field increases, we find the band gap decreases more rapidly and the gap closure occurs at smaller fields for wider ribbons. Both the band gap and DOS variations with the field show an insulator-metal transition induced by a transverse electric field for the APNR. Our results show that wider APNRs are more appreciable to design field-effect transistors.

  2. Tunable magnetic states on the zigzag edges of hydrogenated and halogenated group-IV nanoribbons

    Science.gov (United States)

    Chuang, Feng-Chuan; Wang, Tzu-Cheng; Hsu, Chia-Hsiu; Huang, Zhi-Quan; Su, Wan-Sheng; Guo, Guang-Yu

    The magnetic and electronic properties of hydrogenated and halogenated group-IV zigzag nanoribbons (ZNRs) are investigated by first-principles density functional calculations. Fascinatingly, we find that all the ZNRs have magnetic edges with a rich variety of electronic and magnetic properties tunable by selecting the parent and passivating elements as well as controlling the magnetization direction and external strain. In particular, the electric property of the edge band structure can be tuned from the conducting to insulating with a band gap up to 0.7 eV, depending on the parent and passivating elements as well as the applied strain, magnetic configuration and magnetization orientation. The last controllability would allow us to develop magnetic on-off nano-switches. Furthermore, ZNRs such as SiI, Ge, GeI and SnH, have fully spin-polarized metallic edge states and thus are promising materials for spintronics. The calculated magnetocrystalline anisotropy energy can be as large as 9 meV/edge-site, being 2000 time greater than that of bulk Ni and Fe ( 5 μeV/atom), and thus has great potential for high density magneto-electric data-storage devices. Finally, the calculated exchange coupling strength and thus magnetic transition temperature increases as the applied strain goes from -5 % to 5 %. Our findings thus show that these ZNRs would have exciting applications in next-generation electronic and spintronic nano-devices.

  3. Magneto-induced tunability of thermo-spin current in deformed zigzag graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Adinehloo, Davoud, E-mail: davood-adineloo@ut.ac.ir; Fathipour, Morteza [School of Electrical and Computer Engineering, University of Tehran, Tehran 14395-515 (Iran, Islamic Republic of)

    2015-12-21

    The aim of this report is to unfold how the thermo-electric spin-polarized current in a transverse-biased zigzag graphene nanoribbon changes in the presence of uniaxial deformations and uniform perpendicular magnetic field. Employing the two-parameter Hubbard model along with the non-equilibrium Green's function formalism, we found that both uniaxial strain and magnetic field can significantly modulate the bandgap, local distribution of edge states, and the critical transverse electric field needed to achieve the half-metallic phase in the ribbon. Our analysis shows a significant enhancement of the maximum attainable spin-polarized current as functions of both source temperature and contacts temperature difference, with increasing the magnetic field or applying any magnitude of compressive strain. Furthermore, it is shown that the magneto-resistance ratio of the device, can be drastically tuned via strain engineering, reaching values as high as 2 × 10{sup 4}% for compressive strains of 5% magnitude.

  4. A gate-induced switch in zigzag graphene nanoribbons and charging effects

    International Nuclear Information System (INIS)

    Cheraghchi, Hosein; Esmailzade, Hanyieh

    2010-01-01

    Using the non-equilibrium Green's function formalism, we investigate nonlinear transport and charging effects of gated graphene nanoribbons (GNRs) with an even number of zigzag chains. We find a negative differential resistance (NDR) over a wide range of gate voltages with an on/off ratio ∼ 10 6 for narrow enough ribbons. This NDR originates from the parity selection rule and also prohibition of transport between discontinuous energy bands. Since the external field is well screened close to the contacts, the NDR is robust against the electrostatic potential. However, for voltages higher than the NDR threshold, due to charge transfer through the edges of the zigzag GNR (ZGNR), screening is reduced such that the external potential can penetrate inside the ribbon giving rise to smaller values of off-current. Furthermore, the on/off ratio of the current depends on the aspect ratio of the length/width and also edge impurity. Moreover, the on/off ratio displays a power law behavior as a function of ribbon length.

  5. Spin-dependent electronic transport properties of transition metal atoms doped α-armchair graphyne nanoribbons

    Science.gov (United States)

    Fotoohi, Somayeh; Haji-Nasiri, Saeed

    2018-04-01

    Spin-dependent electronic transport properties of single 3d transition metal (TM) atoms doped α-armchair graphyne nanoribbons (α-AGyNR) are investigated by non-equilibrium Green's function (NEGF) method combined with density functional theory (DFT). It is found that all of the impurity atoms considered in this study (Fe, Co, Ni) prefer to occupy the sp-hybridized C atom site in α-AGyNR, and the obtained structures remain planar. The results show that highly localized impurity states are appeared around the Fermi level which correspond to the 3d orbitals of TM atoms, as can be derived from the projected density of states (PDOS). Moreover, Fe, Co, and Ni doped α-AGyNRs exhibit magnetic properties due to the strong spin splitting property of the energy levels. Also for each case, the calculated current-voltage characteristic per super-cell shows that the spin degeneracy in the system is obviously broken and the current becomes strongly spin dependent. Furthermore, a high spin-filtering effect around 90% is found under the certain bias voltages in Ni doped α-AGyNR. Additionally, the structure with Ni impurity reveals transfer characteristic that is suitable for designing a spin current switch. Our findings provide a high possibility to design the next generation spin nanodevices with novel functionalities.

  6. Boron, nitrogen, and nickel impurities in GeC nanoribbons: A first-principles investigation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhuo; Li, Yangping, E-mail: liyp@nwpu.edu.cn; Liu, Zhengtang

    2017-07-01

    Highlights: • The impurities preferentially substitutes the Ge atom at the ribbon edge. • The impurities could result in a reduction of the band gap of 7-AGeCNR. • The impurities turns the metallic behavior of 4-ZGeCNR into semiconductor. • The impurities could change the magnetic moment of 4-ZGeCNR. • The impurities could introduce magnetic moments into the non-magnetic 7-AGeCNR. - Abstract: Using first-principles calculations based on the density functional theory we investigated the structural, electronic and magnetic properties of substitutional boron, nitrogen, and nickel impurities in germanium carbide (GeC) nanoribbons. Hydrogen terminated GeC ribbons with armchair and zigzag edges are considered here. We observed that all three impurities preferentially substitutes the Ge atom at the ribbon edge. In addition, the electronic band structures of the doped systems indicate that (i) the impurities could introduce impurity bands in the band gap and resulting in a reduction of the band gap of 7-AGeCNR, (ii) the metallic behavior of 4-ZGeCNR turns into semiconductor because of the incorporation of the impurities, (iii) the impurities could change the magnetic moment of 4-ZGeCNR and even introduce magnetic moment into the non-magnetic 7-AGeCNR.

  7. Impact of vacancies on the thermal conductivity of graphene nanoribbons: A molecular dynamics simulation study

    Directory of Open Access Journals (Sweden)

    Maliha Noshin

    2017-01-01

    Full Text Available Equilibrium molecular dynamics simulation using 2nd generation Reactive Bond Order interatomic potential has been performed to model the thermal transport of nanometer sized zigzag defected graphene nanoribbons (GNRs containing several types of vacancies. We have investigated the thermal conductivity of defected GNRs as a function of vacancy concentration within a range of 0.5% to 5% and temperature ranging from 300K to 600K, along with a comparative analysis of those for pristine GNRs. We find that, a vacancy concentration of 0.5% leads to over 90% reduction in the thermal conductivity of GNRs. At low defect concentration, the decay rate is faster but ceases gradually at higher defect concentration. With the increasing temperature, thermal conductivity of defected GNRs decreases but shows less variation in comparison with that of pristine GNRs at higher temperatures. Such comprehensive study on several vacancy type defects in GNRs can provide further insight to tune up the thermal transport characteristics of low dimensional carbon nanostructures. This eventually would encourage the characterization of more stable thermal properties in thermal devices at an elevated temperature as well as the potential applicability of GNRs as thermoelectrics.

  8. Thermal transport characterization of hexagonal boron nitride nanoribbons using molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Asir Intisar Khan

    2017-10-01

    Full Text Available Due to similar atomic bonding and electronic structure to graphene, hexagonal boron nitride (h-BN has broad application prospects such as the design of next generation energy efficient nano-electronic devices. Practical design and efficient performance of these devices based on h-BN nanostructures would require proper thermal characterization of h-BN nanostructures. Hence, in this study we have performed equilibrium molecular dynamics (EMD simulation using an optimized Tersoff-type interatomic potential to model the thermal transport of nanometer sized zigzag hexagonal boron nitride nanoribbons (h-BNNRs. We have investigated the thermal conductivity of h-BNNRs as a function of temperature, length and width. Thermal conductivity of h-BNNRs shows strong temperature dependence. With increasing width, thermal conductivity increases while an opposite pattern is observed with the increase in length. Our study on h-BNNRs shows considerably lower thermal conductivity compared to GNRs. To elucidate these aspects, we have calculated phonon density of states for both h-BNNRs and GNRs. Moreover, using EMD we have explored the impact of different vacancies, namely, point vacancy, edge vacancy and bi-vacancy on the thermal conductivity of h-BNNRs. With varying percentages of vacancies, significant reduction in thermal conductivity is observed and it is found that, edge and point vacancies are comparatively more destructive than bi-vacancies. Such study would contribute further into the growing interest for accurate thermal transport characterization of low dimensional nanostructures.

  9. Competition of edge effects on the electronic properties and excitonic effects in short graphene nanoribbons

    International Nuclear Information System (INIS)

    Lu, Yan; Wei, Sheng; Jin, Jing; Wang, Li; Lu, Wengang

    2016-01-01

    We explore the electronic properties and exciton effects in short graphene nanoribbons (SGNRs), which have two armchair edges and two zigzag edges. Our results show that both of these two types of edges have profound effects on the electronic properties and exciton effects. Both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) states are alternatively changed between the bulk and the edge states as the lengths of the zigzag edges increase, due to the competition between the states of the two types of edges. The energy gaps, as a function of the lengths of the armchair edges, will then induce two kinds of trends. Furthermore, two kinds of exciton energies and exciton binding energies are found, which can be understood through the two kinds of HOMO and LUMO states in SGNRs. In addition, we find that the three triplet exciton states are not totally energy degenerate in SGNRs due to the spin-polarized states on the zigzag edges. (paper)

  10. Carbon-doping-induced negative differential resistance in armchair phosphorene nanoribbons

    Science.gov (United States)

    Guo, Caixia; Xia, Congxin; Wang, Tianxing; Liu, Yufang

    2017-03-01

    By using a combined method of density functional theory and non-equilibrium Green’s function formalism, we investigate the electronic transport properties of carbon-doped armchair phosphorene nanoribbons (APNRs). The results show that C atom doping can strongly affect the electronic transport properties of the APNR and change it from semiconductor to metal. Meanwhile, obvious negative differential resistance (NDR) behaviors are obtained by tuning the doping position and concentration. In particular, with reducing doping concentration, NDR peak position can enter into mV bias range. These results provide a theoretical support to design the related nanodevice by tuning the doping position and concentration in the APNRs. Project supported by the National Natural Science Foundation of China (No. 11274096), the University Science and Technology Innovation Team Support Project of Henan Province (No. 13IRTSTHN016), the University key Science Research Project of Henan Province (No.16A140043). The calculation about this work was supported by the High Performance Computing Center of Henan Normal University.

  11. Carbon doping induced giant low bias negative differential resistance in boron nitride nanoribbon

    International Nuclear Information System (INIS)

    Liu, N.; Liu, J.B.; Gao, G.Y.; Yao, K.L.

    2014-01-01

    By applying nonequilibrium Green's function combined with density functional theory, we investigated the electronic transport properties of carbon-doped armchair boron nitride nanoribbons. Obvious negative differential resistance (NDR) behavior with giant peak-to-valley ratio up to the order of 10 4 –10 6 is found by tuning the doping position and concentration. Especially, with the reduction of doping concentration, NDR peak position can enter into mV bias range and even can be expected lower than mV bias. The negative differential resistance behavior is explained by the evolution of the transmission spectra and band structures with applied bias. - Highlights: • Negative differential resistance (NDR) behavior with giant peak-to-valley ratio is found. • Doping concentration changes the NDR peak position significantly. • NDR peak position can enter into mV bias range and even lower than mV bias. • The results are explained by the bias-dependent transmission spectra and band structures

  12. The magneto-optical properties of non-uniform graphene nanoribbons

    Science.gov (United States)

    Chung, Hsien-Ching; Lin, Ming-Fa

    2015-03-01

    When synthesizing few-layer graphene nanoribbons (GNRs), non-uniform GNRs would be made simultaneously. Recently, the non-uniform GNRs, which is a stack of two GNRs with unequal widths, have been fabricated by mechanically exfoliated from bulk graphite. Some theoretical predictions have been reported, such as gap opening and transport properties. Under the influence of magnetic fields, magnetic quantization takes place and drastically changes the electronic properties. By tuning the geometric configuration, four categories of magneto-electronic spectra are exhibited. (1) The spectrum is mostly contributed by quasi-Landau levels (QLLs) of monolayer GNRs. (2) The spectrum displays two groups of QLLs, and the non-uniform GNR behaves like a bilayer one. (3) An intermediate category, the spectrum is composite disordered. (4) The spectrum presents the coexistence of monolayer and bilayer spectra. In this work, the magneto-electronic and optical properties for different geometric configurations are given, such as energy dispersions, density of states, wave functions, and magneto-absorption spectra are presented. Furthermore, the transformation between monolayer and bilayer spectra as well as the coexistence of monolayer and bilayer spectra are discussed in detail. One of us (Hsien-Ching Chung) thanks Ming-Hui Chung and Su-Ming Chen for financial support. This work was supported in part by the National Science Council of Taiwan under Grant Number 98-2112-M-006-013-MY4.

  13. Self-standing nanoribbons of antimony selenide and antimony sulfide with well-defined size and band gap

    International Nuclear Information System (INIS)

    Vadapoo, Rajasekarakumar; Krishnan, Sridevi; Yilmaz, Hulusi; Marin, Carlos

    2011-01-01

    Sub-10 nm semiconducting nanostructures are crucial for the realization of nanoscale devices. Fabrication of nanostructures at this scale with homogeneous properties is challenging. Using ab initio calculations, we show that self-standing ribbons of antimony selenide and antimony sulfide of width 1.1 nm exhibit well-defined bandgaps of 1.66 and 2.16 eV, respectively. Molecular dynamics studies show that these ribbons are stable at 500 K. The one-dimensional (1D) heterostructure of these nanoribbons (Sb 2 Se 3 /Sb 2 S 3 ) along the [001] direction shows a straddling type behavior.

  14. Time-dependent density-functional theory simulation of local currents in pristine and single-defect zigzag graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    He, Shenglai, E-mail: shenglai.he@vanderbilt.edu; Russakoff, Arthur; Li, Yonghui; Varga, Kálmán, E-mail: kalman.varga@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)

    2016-07-21

    The spatial current distribution in H-terminated zigzag graphene nanoribbons (ZGNRs) under electrical bias is investigated using time-dependent density-functional theory solved on a real-space grid. A projected complex absorbing potential is used to minimize the effect of reflection at simulation cell boundary. The calculations show that the current flows mainly along the edge atoms in the hydrogen terminated pristine ZGNRs. When a vacancy is introduced to the ZGNRs, loop currents emerge at the ribbon edge due to electrons hopping between carbon atoms of the same sublattice. The loop currents hinder the flow of the edge current, explaining the poor electric conductance observed in recent experiments.

  15. First-principles study of stability, electronic structure and magnetic properties of Be{sub 2}C nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianmin; Xu, Chunyan; Zheng, Huiling; Du, Xiaobo; Yan, Yu, E-mail: yanyu@jlu.edu.cn

    2017-02-01

    Highlights: • H passivation at the edge greatly enhances the stability of Be{sub 2}C nanoribbons. • Stable bare Be{sub 2}C nanoribbons are all nonmagnetic semiconductors. • H passivated b-Be{sub 2}C-NR with C site terminated edge is half-metallic. • Ground state of H passivated b-Be{sub 2}C-NR with C site terminated edge is ferromagnetic. - Abstract: First-principles calculations are carried out to investigate the stability, electronic structure and magnetic properties of Be{sub 2}C nanoribbons (Be{sub 2}C-NRs) with their ribbon axis along the a and b axes. It is found that except for b-Be{sub 2}C-NR with the C site terminated edge, a-Be{sub 2}C-NRs and other b-Be{sub 2}C-NRs possess good structural stabilities at room temperature. In addition, H passivation enables b-Be{sub 2}C-NR with C site terminated edge to stabilize at room temperature by saturating the dangling bonds at edges. Furthermore, stable a-Be{sub 2}C-NRs and b-Be{sub 2}C-NRs are all nonmagnetic semiconductors and their band gaps are significantly dependent on the edge configuration and the ribbon width. In contrast, H passivated b-Be{sub 2}C-NR with C site terminated edge is half-metallic with a magnetic ground state, irrespective of the ribbon width. In particular, H passivated b-Be{sub 2}C-NR with C site terminated edge has a strong intra-edge ferromagnetic coupling interaction in the ground state, and an inter-edge ferromagnetic interaction is found in small-width H passivated nanoribbon. The calculated density of states and the spin density distribution show that the p–p hybridization interaction involving polarized electrons is responsible for intra-edge and inter-edge ferromagnetic coupling.

  16. First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes

    DEFF Research Database (Denmark)

    Nikolic, Branislav K.; Saha, Kamal K.; Markussen, Troels

    2012-01-01

    to two metallic zigzag graphene nanoribbons (ZGNRs) via highly transparent contacts. Such contacts make possible injection of evanescent wavefunctions from the ZGNR electrodes, so that their overlap within the molecular region generates a peak in the electronic transmission around the Fermi energy......We overview the nonequilibrium Green function combined with density functional theory (NEGF-DFT) approach to modeling of independent electronic and phononic quantum transport in nanoscale thermoelectrics with examples focused on a new class of devices where a single organic molecule is attached...

  17. One-step oxidation preparation of unfolded and good soluble graphene nanoribbons by longitudinal unzipping of carbon nanotubes

    Science.gov (United States)

    Hu, Xiaolin; Hu, Yizhen; Huang, Jindan; Zhou, Ning; Liu, Yuhan; Wei, Lin; Chen, Xin; Zhuang, Naifeng

    2018-04-01

    A simple one-step method to prepare graphene nanoribbon (GNR) is reported in this paper. Compared with water steam etching, the oxidation and co-etching of dilute sulfuric acid can result in the more complete longitudinal unzipping of carbon nanotube, although there is no other strong oxidant. As-prepared GNRs are more flat and have more oxygenated functional groups along the edge. Moreover, they can steadily disperse in a water system. These make them suitable as a carrier for supporting palladium (Pd) nanoparticles. The Pd/GNR composite exhibits a superior electrocatalytic activity for ethanol oxidation.

  18. Counterions control whether self-assembly leads to formation of stable and well-defined unilamellar nanotubes or nanoribbons and nanorods

    DEFF Research Database (Denmark)

    Shi, Dong; Schwall, Christian; Sfintes, George

    2014-01-01

    Self-assembly of the amphiphilic π-conjugated carbenium ion ATOTA-1(+) in aqueous solution selectively leads to discrete and highly stable nanotubes or nanoribbons and nanorods, depending on the nature of the counterion (Cl(-) vs. PF6(-), respectively). The nanotubes formed by the Cl(-) salt...

  19. A Novel “Off-On” Fluorescent Probe Based on Carbon Nitride Nanoribbons for the Detection of Citrate Anion and Live Cell Imaging

    Directory of Open Access Journals (Sweden)

    Yanling Hu

    2018-04-01

    Full Text Available A novel fluorescent “off-on” probe based on carbon nitride (C3N4 nanoribbons was developed for citrate anion (C6H5O73− detection. The fluorescence of C3N4 nanoribbons can be quenched by Cu2+ and then recovered by the addition of C6H5O73−, because the chelation between C6H5O73− and Cu2+ blocks the electron transfer between Cu2+ and C3N4 nanoribbons. The turn-on fluorescent sensor using this fluorescent “off-on” probe can detect C6H5O73− rapidly and selectively, showing a wide detection linear range (1~400 μM and a low detection limit (0.78 μM in aqueous solutions. Importantly, this C3N4 nanoribbon-based “off-on” probe exhibits good biocompatibility and can be used as fluorescent visualizer for exogenous C6H5O73− in HeLa cells.

  20. Tuning the electronic properties of armchair carbon nanoribbons by a selective boron doping

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Santos, P; Ricardo-Chavez, J L; Lopez-Sandoval, R [Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San Jose 2055, San Luis Potosi 78216 (Mexico); Reyes-Reyes, M [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi 78000 (Mexico); Rivera, J L, E-mail: sandov@ipicyt.edu.m [Facultad de Ingenieria Quimica, Universidad Michoacana de San Nicolas de Hidalgo, Santiago Tapia 403, Morelia, Michoacan, 58000 (Mexico)

    2010-12-22

    Armchair carbon nanoribbons (ACNRs) substitutionally doped with boron atoms are investigated in the framework of first-principles density functional theory. Different boron-boron arrangements and concentrations are considered in order to simulate possible aggregation patterns, their structural stability and electronic behavior are determined as a function of ribbon size. In agreement with previous studies, our results show that the dopant atoms have in general a preference for edge sites, but specific effects appear as a function of concentration that importantly modify the properties of the ribbons compared to the pristine case. Interesting tendencies are discovered as a function of dopant concentration that significantly affect the electronic properties of the ribbons. We have found that BC{sub 3} island formation and edge doping are the most important factors for the structural stabilization of the ribbons with high boron concentration (>7%) whereas for the cases of low boron concentrations (<5%) the structural stabilities are similar. For all the doped cases, we have found that the BC{sub 3} island patterns give rise to highly localized B states on top of the Fermi level, resulting in semiconducting behavior. On the other hand, when the average distance between the B atoms increases beyond island stoichiometry, the localization of their states is reduced and the ribbons may become metallic due to a band crossing caused by the lowering of the Fermi level resulting from the positive charge doping. Thus, tuning the dopant interaction would be an appropriate way to tailor the electronic properties of the ribbons in a convenient manner in view of potential technological applications.

  1. Weak Antilocalization in Bi 2 (Se x Te 1– x ) 3 Nanoribbons and Nanoplates

    KAUST Repository

    Cha, Judy J.; Kong, Desheng; Hong, Seung-Sae; Analytis, James G.; Lai, Keji; Cui, Yi

    2012-01-01

    Studying the surface states of Bi 2Se 3 and Bi 2Te 3 topological insulators has proven challenging due to the high bulk carrier density that masks the surface states. Ternary compound Bi 2(Se xTe 1-x) 3 may present a solution to the current materials challenge by lowering the bulk carrier mobility significantly. Here, we synthesized Bi 2(Se xTe 1-x) 3 nanoribbons and nanoplates via vapor-liquid-solid and vapor-solid growth methods where the atomic ratio x was controlled by the molecular ratio of Bi 2Se 3 to Bi 2Te 3 in the source mixture and ranged between 0 and 1. For the whole range of x, the ternary nanostructures are single crystalline without phase segregation, and their carrier densities decrease with x. However, the lowest electron density is still high (∼10 19 cm -3) and the mobility low, suggesting that the majority of these carriers may come from impurity states. Despite the high carrier density, weak antilocalization (WAL) is clearly observed. Angle-dependent magnetoconductance study shows that an appropriate magnetic field range is critical to capture a true, two-dimensional (2D) WAL effect, and a fit to the 2D localization theory gives α of -0.97, suggesting its origin may be the topological surface states. The power law dependence of the dephasing length on temperature is ∼T -0.49 within the appropriate field range (∼0.3 T), again reflecting the 2D nature of the WAL. Careful analysis on WAL shows how the surface states and the bulk/impurity states may interact with each other. © 2012 American Chemical Society.

  2. Graphene nanoribbon field effect transistor for nanometer-size on-chip temperature sensor

    Science.gov (United States)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    Graphene has been extensively investigated as a promising material for various types of high performance sensors due to its large surface-to-volume ratio, remarkably high carrier mobility, high carrier density, high thermal conductivity, extremely high mechanical strength and high signal-to-noise ratio. The power density and the corresponding die temperature can be tremendously high in scaled emerging technology designs, urging the on-chip sensing and controlling of the generated heat in nanometer dimensions. In this paper, we have explored the feasibility of a thin oxide graphene nanoribbon (GNR) as nanometer-size temperature sensor for detecting local on-chip temperature at scaled bias voltages of emerging technology. We have introduced an analytical model for GNR FET for 22nm technology node, which incorporates both thermionic emission of high-energy carriers and band-to-band-tunneling (BTBT) of carriers from drain to channel regions together with different scattering mechanisms due to intrinsic acoustic phonons and optical phonons and line-edge roughness in narrow GNRs. The temperature coefficient of resistivity (TCR) of GNR FET-based temperature sensor shows approximately an order of magnitude higher TCR than large-area graphene FET temperature sensor by accurately choosing of GNR width and bias condition for a temperature set point. At gate bias VGS = 0.55 V, TCR maximizes at room temperature to 2.1×10-2 /K, which is also independent of GNR width, allowing the design of width-free GNR FET for room temperature sensing applications.

  3. Graphene nanoribbon field-effect transistors fabricated by etchant-free transfer from Au(788)

    Science.gov (United States)

    Ohtomo, Manabu; Sekine, Yoshiaki; Hibino, Hiroki; Yamamoto, Hideki

    2018-01-01

    We report etching-free and iodine-free transfer of highly aligned array of armchair-edge graphene nanoribbons (ACGNRs) and their field-effect transistor (FET) characteristics. They were prepared by on-surface polymerization on Au(788) templates. The ACGNRs were mechanically delaminated and transferred onto insulating substrates with the aid of a nano-porous support layer composed of hydrogen silsesquioxane (HSQ). The key process in the mechanical delamination is the intercalation of octanethiol self-assembled monolayers (SAMs), which penetrate the HSQ layer and intercalate between the ACGNRs and Au(788). After the transfer, the octanethiol SAMs were removed with Piranha solution, enabling the reuse of the Au single crystals. The FETs fabricated with the transferred ACGNR array showed ambipolar behavior when the channel length was as long as 60 nm. Quasi-one-dimensional conductivity was observed, which implies a good alignment of GNRs after the transfer. In contrast, short-channel ACGNR FETs (channel length ˜20 nm) suffer from a geometry-dependent short-channel effect. This effect is more severe in the FETs with ACGNRs parallel to the channel, which is an ideal geometry, than in ones perpendicular to the channel. Since the ID-VD curve is well fitted by the power-law model, the short-channel effect likely stems from the space-charge limited current effect, while the wide charge-transfer region in the GNR channel can be another possible cause for the short-channel effect. These results provide us with important insights into the designing short-channel GNR-FETs with improved performance.

  4. Edge reconstruction effect in pristine and H-passivated zigzag silicon carbide nanoribbons.

    Science.gov (United States)

    Lou, Ping

    2011-10-14

    The edge reconstruction effect of the zigzag silicon carbide nanoribbons (zz SiC NRs) to a stable line of alternatively fused seven and five membered rings without and with H passivation have been studied using first principles density functional theory (DFT). The both side's edges of the pristine SiC are respectively terminated by Si and C atoms and are called the Si-edge and the C-edge, respectively. In the un-passivated systems, the C-edge reconstructed (Crc) could effectively lower the edge energy of the system, while the Si-edge reconstructed (Sirc) could raise the edge energy of the system. Thus, the Crc edge is the best edge for the edge reconstruction of the system, while the both edge reconstructed (brc) system is the metastability. Moreover, the brc system has a nonmagnetic metallic state, whereas the Crc system, as well as Sirc system, has a ferromagnetic metallic state. The edge reconstructed destroys the magnetic moment of the corresponding edge atoms. The magnetic moment arises from the unreconstructed zigzag edges. The pristine zz edge system has a ferrimagnetic metallic state. However, in the H-passivated systems, the unreconstructed zigzag edge (zz-H) is the best edge. The Crc-H system is the metastability. The Sirc-H system has only slightly higher energy than the Crc-H system, whereas the brc-H system of the pristine SiC NR has the highest edge energy. Thus, the H passivation would prevent the occurrence of edge reconstruction. Moreover, H passivation induces a metal-semiconductor transition in the zz and brc SiC NRs. Additionally, except for brc-H system which has non-magnetic semiconducting state, the zz-H, Crc-H, and Sirc-H systems have the magnetic state.

  5. Weak Antilocalization in Bi 2 (Se x Te 1– x ) 3 Nanoribbons and Nanoplates

    KAUST Repository

    Cha, Judy J.

    2012-02-08

    Studying the surface states of Bi 2Se 3 and Bi 2Te 3 topological insulators has proven challenging due to the high bulk carrier density that masks the surface states. Ternary compound Bi 2(Se xTe 1-x) 3 may present a solution to the current materials challenge by lowering the bulk carrier mobility significantly. Here, we synthesized Bi 2(Se xTe 1-x) 3 nanoribbons and nanoplates via vapor-liquid-solid and vapor-solid growth methods where the atomic ratio x was controlled by the molecular ratio of Bi 2Se 3 to Bi 2Te 3 in the source mixture and ranged between 0 and 1. For the whole range of x, the ternary nanostructures are single crystalline without phase segregation, and their carrier densities decrease with x. However, the lowest electron density is still high (∼10 19 cm -3) and the mobility low, suggesting that the majority of these carriers may come from impurity states. Despite the high carrier density, weak antilocalization (WAL) is clearly observed. Angle-dependent magnetoconductance study shows that an appropriate magnetic field range is critical to capture a true, two-dimensional (2D) WAL effect, and a fit to the 2D localization theory gives α of -0.97, suggesting its origin may be the topological surface states. The power law dependence of the dephasing length on temperature is ∼T -0.49 within the appropriate field range (∼0.3 T), again reflecting the 2D nature of the WAL. Careful analysis on WAL shows how the surface states and the bulk/impurity states may interact with each other. © 2012 American Chemical Society.

  6. Electronic properties and relative stabilities of heterogeneous edge-decorated zigzag boron nitride nanoribbons

    International Nuclear Information System (INIS)

    Li, L.L.; Yu, X.F.; Yang, X.J.; Zhang, X.H.; Xu, X.W.; Jin, P.; Zhao, J.L.; Wang, X.X.; Tang, C.C.

    2015-01-01

    The wide band gap of boron nitride (BN) materials has been a major bottleneck for a wider application of BN in electronics. In this work, density functional theory computations were used to study the band structure of zigzag BN nanoribbons (BNNRs). Due to the ionic origin of the BN band gap, a heterogeneous edge decoration is an effective way to modulate the electronic band structure of BNNRs. This study demonstrates that a metallic behavior and magnetism can be realized by applying a NO 2 –NH 2 pair edge decoration. Although the lone electron pair of the NH 2 group is partly responsible for the metallic behavior, the effective potential difference induced by the donor–acceptor pair is also crucial for metallic behavior. Furthermore, these newly formed BNNRs were found to be more stable than H-passivated BNNRs. This simple chemical modification method offers great opportunities for the development of future BNNR-based electronic devices. - Graphical abstract: Due to the ionic origin of a BN band gap, heterogeneous edge decoration is an effective way to modulate its electronic structures. Metallicity and magnetism can be realized by NO 2 –NH 2 pair decoration. Although the N lone pair electrons in NH 2 group are responsible for the metallicity, the effective potential difference induced by a donor–acceptor pair is crucial for the formation of metallicity. - Highlights: • Heterogeneous edge decoration is effective for tuning BNNRs' electronic structures. • NO 2 –NH 2 pair decoration can lead to metallic behavior and magnetism for BNNRs. • The effective potential difference is crucial for the formation of metallicity. • NO 2 –NH 2 pair decorated BNNRs is more stable than H-passivated ones

  7. Transport properties and device-design of Z-shaped MoS2 nanoribbon planar junctions

    Science.gov (United States)

    Zhang, Hua; Zhou, Wenzhe; Liu, Qi; Yang, Zhixiong; Pan, Jiangling; Ouyang, Fangping; Xu, Hui

    2017-09-01

    Based on MoS2 nanoribbons, metal-semiconductor-metal planar junction devices were constructed. The electronic and transport properties of the devices were studied by using density function theory (DFT) and nonequilibrium Green's functions (NEGF). It is found that a band gap about 0.4 eV occurs in the planar junction. The electron and hole transmissions of the devices are mainly contributed by the Mo atomic orbitals. The electron transport channel is located at the edge of armchair MoS2 nanoribbon, while the hole transport channel is delocalized in the channel region. The I-V curve of the two-probe device shows typical transport behavior of Schottky barrier, and the threshold voltage is of about 0.2 V. The field effect transistors (FET) based on the planar junction turn out to be good bipolar transistors, the maximum current on/off ratio can reach up to 1 × 104, and the subthreshold swing is 243 mV/dec. It is found that the off-state current is dependent on the length and width of the channel, while the on-state current is almost unaffected. The switching performance of the FET is improved with increasing the length of the channel, and shows oscillation behavior with the change of the channel width.

  8. Comparative structural and electronic studies of hydrogen interaction with isolated versus ordered silicon nanoribbons grown on Ag(110)

    International Nuclear Information System (INIS)

    Dávila, M E; Montero, I; Marele, A; Gómez-Rodríguez, J M; De Padova, P; Hennies, F; Pietzsch, A; Shariati, M N; Le Lay, G

    2012-01-01

    We have investigated the geometry and electronic structure of two different types of self-aligned silicon nanoribbons (SiNRs), forming either isolated SiNRs or a self-assembled 5 × 2/5 × 4 grating on an Ag(110) substrate, by scanning tunnelling microscopy and high resolution x-ray photoelectron spectroscopy. At room temperature we further adsorb on these SiNRs either atomic or molecular hydrogen. The hydrogen absorption process and hydrogenation mechanism are similar for isolated or 5 × 2/5 × 4 ordered SiNRs and are not site selective; the main difference arises from the fact that the isolated SiNRs are more easily attacked and destroyed faster. In fact, atomic hydrogen strongly interacts with any Si atoms, modifying their structural and electronic properties, while molecular hydrogen has first to dissociate. Hydrogen finally etches the Si nanoribbons and their complete removal from the Ag(110) surface could eventually be expected. (paper)

  9. Top-down Fabrication and Enhanced Active Area Electronic Characteristics of Amorphous Oxide Nanoribbons for Flexible Electronics.

    Science.gov (United States)

    Jang, Hyun-June; Joong Lee, Ki; Jo, Kwang-Won; Katz, Howard E; Cho, Won-Ju; Shin, Yong-Beom

    2017-07-18

    Inorganic amorphous oxide semiconductor (AOS) materials such as amorphous InGaZnO (a-IGZO) possess mechanical flexibility and outstanding electrical properties, and have generated great interest for use in flexible and transparent electronic devices. In the past, however, AOS devices required higher activation energies, and hence higher processing temperatures, than organic ones to neutralize defects. It is well known that one-dimensional nanowires tend to have better carrier mobility and mechanical strength along with fewer defects than the corresponding two-dimensional films, but until now it has been difficult, costly, and impractical to fabricate such nanowires in proper alignments by either "bottom-up" growth techniques or by "top-down" e-beam lithography. Here we show a top-down, cost-effective, and scalable approach for the fabrication of parallel, laterally oriented AOS nanoribbons based on lift-off and nano-imprinting. High mobility (132 cm 2 /Vs), electrical stability, and transparency are obtained in a-IGZO nanoribbons, compared to the planar films of the same a-IGZO semiconductor.

  10. A novel graphene nanoribbon FET with an extra peak electric field (EFP-GNRFET) for enhancing the electrical performances

    Energy Technology Data Exchange (ETDEWEB)

    Akbari Eshkalak, Maedeh [Young Researchers and Elite Club, Lahijan Branch, Islamic Azad University, Lahijan (Iran, Islamic Republic of); Anvarifard, Mohammad K., E-mail: m.anvarifard@guilan.ac.ir [Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah (Iran, Islamic Republic of)

    2017-04-25

    This work has provided an efficient technique to improve the electrical performance for the Graphene Nanoribbon Field Effect Transistors (GNRFETs) successfully. The physical gate length is divided into two gates named as the original gate and the other one as the virtual gate. We have applied a voltage source between these gates to control the channel of the GNRFETs. This technique has created an extra peak electric field in the middle of the channel resulting in the redistribution of surface potential profile. The proposed structure named as EFP-GNRFET has been compared with a simple GNRFET and has shown many improvements in terms of the critical parameters such as short channel effects, leakage current, subthreshold swing, ON-state to OFF-state current ratio, transconductance, output conductance and voltage gain. The structures under the study in this paper benefits from the Non-Equilibrium Green Function (NEGF) approach for solving Schrödinger equation coupled with the two-dimensional (2D) Poisson equation in a self-consistent manner. - Highlights: • Proposal of a novel graphene nanoribbon FET. • Creation of an extra peak in electric field. • Modification of the channel potential with the help of virtual gate. • Considerable improvement on electrical performances.

  11. Development of Self-Assembled Nanoribbon Bound Peptide-Polyaniline Composite Scaffolds and Their Interactions with Neural Cortical Cells

    Directory of Open Access Journals (Sweden)

    Andrew M. Smith

    2018-01-01

    Full Text Available Degenerative neurological disorders and traumatic brain injuries cause significant damage to quality of life and often impact survival. As a result, novel treatments are necessary that can allow for the regeneration of neural tissue. In this work, a new biomimetic scaffold was designed with potential for applications in neural tissue regeneration. To develop the scaffold, we first prepared a new bolaamphiphile that was capable of undergoing self-assembly into nanoribbons at pH 7. Those nanoribbons were then utilized as templates for conjugation with specific proteins known to play a critical role in neural tissue growth. The template (Ile-TMG-Ile was prepared by conjugating tetramethyleneglutaric acid with isoleucine and the ability of the bolaamphiphile to self-assemble was probed at a pH range of 4 through 9. The nanoribbons formed under neutral conditions were then functionalized step-wise with the basement membrane protein laminin, the neurotropic factor artemin and Type IV collagen. The conductive polymer polyaniline (PANI was then incorporated through electrostatic and π–π stacking interactions to the scaffold to impart electrical properties. Distinct morphology changes were observed upon conjugation with each layer, which was also accompanied by an increase in Young’s Modulus as well as surface roughness. The Young’s Modulus of the dried PANI-bound biocomposite scaffolds was found to be 5.5 GPa, indicating the mechanical strength of the scaffold. Thermal phase changes studied indicated broad endothermic peaks upon incorporation of the proteins which were diminished upon binding with PANI. The scaffolds also exhibited in vitro biodegradable behavior over a period of three weeks. Furthermore, we observed cell proliferation and short neurite outgrowths in the presence of rat neural cortical cells, confirming that the scaffolds may be applicable in neural tissue regeneration. The electrochemical properties of the scaffolds were also

  12. Development of Self-Assembled Nanoribbon Bound Peptide-Polyaniline Composite Scaffolds and Their Interactions with Neural Cortical Cells

    Science.gov (United States)

    Smith, Andrew M.; Pajovich, Harrison T.; Banerjee, Ipsita A.

    2018-01-01

    Degenerative neurological disorders and traumatic brain injuries cause significant damage to quality of life and often impact survival. As a result, novel treatments are necessary that can allow for the regeneration of neural tissue. In this work, a new biomimetic scaffold was designed with potential for applications in neural tissue regeneration. To develop the scaffold, we first prepared a new bolaamphiphile that was capable of undergoing self-assembly into nanoribbons at pH 7. Those nanoribbons were then utilized as templates for conjugation with specific proteins known to play a critical role in neural tissue growth. The template (Ile-TMG-Ile) was prepared by conjugating tetramethyleneglutaric acid with isoleucine and the ability of the bolaamphiphile to self-assemble was probed at a pH range of 4 through 9. The nanoribbons formed under neutral conditions were then functionalized step-wise with the basement membrane protein laminin, the neurotropic factor artemin and Type IV collagen. The conductive polymer polyaniline (PANI) was then incorporated through electrostatic and π–π stacking interactions to the scaffold to impart electrical properties. Distinct morphology changes were observed upon conjugation with each layer, which was also accompanied by an increase in Young’s Modulus as well as surface roughness. The Young’s Modulus of the dried PANI-bound biocomposite scaffolds was found to be 5.5 GPa, indicating the mechanical strength of the scaffold. Thermal phase changes studied indicated broad endothermic peaks upon incorporation of the proteins which were diminished upon binding with PANI. The scaffolds also exhibited in vitro biodegradable behavior over a period of three weeks. Furthermore, we observed cell proliferation and short neurite outgrowths in the presence of rat neural cortical cells, confirming that the scaffolds may be applicable in neural tissue regeneration. The electrochemical properties of the scaffolds were also studied by

  13. Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons

    KAUST Repository

    Fan, Zhanxi; Chen, Ye; Zhu, Yihan; Wang, Jie; Li, Bing; Zong, Yun; Han, Yu; Zhang, Hua

    2016-01-01

    Metal nanomaterials normally adopt the same crystal structure as their bulk counterparts. Herein, for the first time, the unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures have been synthesized on 4H Au nanoribbons (NRBs) via solution-phase epitaxial growth under ambient conditions. Interestingly, the 4H Au NRBs undergo partial phase transformation from 4H to face-centered cubic (fcc) structures after the metal coating. As a result, a series of polytypic 4H/fcc bimetallic Au@M (M = Ir, Rh, Os, Ru and Cu) core-shell NRBs has been obtained. We believe that the rational crystal structure-controlled synthesis of metal nanomaterials will bring new opportunities for exploring their phase-dependent physicochemical properties and promising applications.

  14. Quantum transport behavior of Ni-based dinuclear complexes in presence of zigzag graphene nanoribbon as electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sunandan; Pramanik, Anup; Sarkar, Pranab, E-mail: pranab.sarkar@visva-bharati.ac.in

    2016-10-20

    Highlights: • Quantum transport properties of some Ni-based dinuclear complexes are investigated. • The materials show various spin dependent properties like NDR, spin filtering, etc. • These are occurred by the influence of edge states of zGNR. • Proper tuning of these materials can alter these phenomena. - Abstract: Quantum transport properties of some Ni-based dinuclear complexes with different polydentate organic ligands have been studied by applying abinitio density functional theory along with nonequilibrium Green’s function formulations. It is demonstrated that these materials are capable of showing multifunctional spin dependent properties by the influence of edge states of zigzag edged graphene nanoribbons. The current–voltage characteristics of these materials show spin dependent negative differential resistance behavior, spin filtering effect, and also voltage rectifying property. Proper tuning of these materials can alter these effects which may be utilized in various spintronic devices.

  15. Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons

    KAUST Repository

    Fan, Zhanxi

    2016-09-12

    Metal nanomaterials normally adopt the same crystal structure as their bulk counterparts. Herein, for the first time, the unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures have been synthesized on 4H Au nanoribbons (NRBs) via solution-phase epitaxial growth under ambient conditions. Interestingly, the 4H Au NRBs undergo partial phase transformation from 4H to face-centered cubic (fcc) structures after the metal coating. As a result, a series of polytypic 4H/fcc bimetallic Au@M (M = Ir, Rh, Os, Ru and Cu) core-shell NRBs has been obtained. We believe that the rational crystal structure-controlled synthesis of metal nanomaterials will bring new opportunities for exploring their phase-dependent physicochemical properties and promising applications.

  16. Generating Tunable Magnetism in AlN Nanoribbons Using Anion/Cation Vacancies:a First-Principles Prediction

    Science.gov (United States)

    Chegeni, Mahdieh; Beiranvand, Razieh; Valedbagi, Shahoo

    2017-04-01

    Using first-principles approach, we theoretically study the effect of anion/cation vacancies on structural and electro-magnetic properties of zigzag AlN nanoribbons (ZAlNNRs). Calculations were performed using a full spin-polarized method within the density functional theory (DFT). Our findings shed light on how the edge states combined with vacancy engineering can affect electro-magnetic properties of ZAlNNRs. We found that depending on the nature and number of vacancies, ZAlNNRs can design as half-metal or semiconductor. Our results reveal a significant amount of spin magnetic moment for ZAlNNR with Al vacancies (VAl). These results may open new applications of AlN nano-materials in spintronics.

  17. Manganese Dioxide Coated Graphene Nanoribbons Supported Palladium Nanoparticles as an Efficient Catalyst for Ethanol Electrooxidation in Alkaline Media

    International Nuclear Information System (INIS)

    Liu, Qi; Jiang, Kun; Fan, Jinchen; Lin, Yan; Min, Yulin; Xu, Qunjie; Cai, Wen-Bin

    2016-01-01

    Design of appropriate supporting materials is an alternative route to yield efficient Pt-free catalysts for ethanol oxidation reaction, which in practice may determine the conversion efficiency of direct alkaline ethanol fuel cells. In this work, graphene nanoribbons (GNRs) coated with MnO_2 are used as a unique supporting material for loading and dispersing Pd nanoparticles. XRD, TEM and XPS are applied to characterize the structure of as-synthesized Pd/MnO_2/GNRs nanocomposite catalyst, revealing a good dispersion as well as a modification of electronic property of Pd nanoparticles. Electrochemical measurements demonstrate that the as-synthesized nanocomposite displays largely enhanced electrocatalytic activity and durability toward ethanol oxidation in alkaline media as compared to the other tested Pd-based catalysts with various supports.

  18. Field effect transistors based on phosphorene nanoribbon with selective edge-adsorption: A first-principles study

    Science.gov (United States)

    Hu, Mengli; Yang, Zhixiong; Zhou, Wenzhe; Li, Aolin; Pan, Jiangling; Ouyang, Fangping

    2018-04-01

    By using density functional theory (DFT) and nonequilibrium Green's function (NEGF), field effect transistor (FET) based on zigzag shaped phosphorene nanoribbons (ZPNR) are investigated. The FETs are constructed with bare-edged ZPNRs as electrodes and H, Cl or OH adsorbed ZPNRs as channel. It is found FETs with the three kinds of channel show similar transport properties. The FET is p-type with a maximum current on/off ratio of 104 and a minimum off-current of 1 nA. The working mode of FETs is dependent on the parity of channel length. It can be either enhancement mode or depletion mode and the off-state current shows an even-odd oscillation. The current oscillations are interpreted with density of states (DOS) analysis and methods of evolution operator and tight-binding Hamiltonian. Operating mechanism of the designed FETs is also presented with projected local density of states and band diagrams.

  19. A facile and sensitive peptide-modulating graphene oxide nanoribbon catalytic nanoplasmon analytical platform for human chorionic gonadotropin

    Directory of Open Access Journals (Sweden)

    Liang A

    2017-12-01

    Full Text Available Aihui Liang,1,2,* Chongning Li,1,2,* Dan Li,1,2,* Yanghe Luo,1–3 Guiqing Wen,1,2 Zhiliang Jiang1,2 1Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, 2Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 3School of Food and Bioengineering, Hezhou University, Hezhou, China *These authors contributed equally to this work Abstract: The nanogold reaction between HAuCl4 and citrate is very slow, and the catalyst graphene oxide nanoribbon (GONR enhanced the nanoreaction greatly to produce gold nanoparticles (AuNPs that exhibited strong surface plasmon resonance (SPR absorption (Abs at 550 nm and resonance Rayleigh scattering (RRS at 550 nm. Upon addition of the peptide of human chorionic gonadotropin (hCG, the peptide could adsorb on the GONR surface, which inhibited the catalysis. When hCG was added, peptides were separated from the GONR surface due to the formation of stable peptide–hCG complex, which led to the activation of GONR catalytic effect. With the increase in hCG concentration, the RRS and Abs signal enhanced linearly. The enhanced RRS value showed a good linear relationship with hCG concentration in the range of 0.2–20 ng/mL, with a detection limit of 70 pg/mL. Accordingly, two new GONR catalytic RRS/Abs methods were established for detecting hCG in serum samples. Keywords: nanocatalysis, graphene oxide nanoribbon, peptide regulation, hCG, RRS

  20. Finite-size effects on electronic structure and local properties in passivated AA -stacked bilayer armchair-edge graphene nanoribbons

    International Nuclear Information System (INIS)

    Chen, Xiongwen; Shi, Zhengang; Xiang, Shaohua; Song, Kehui; Zhou, Guanghui

    2017-01-01

    Based on the tight-binding model and dual-probe scanning tunneling microscopy technology, we theoretically investigate the electronic structure and local property in the passivated AA -stacked bilayer armchair-edge graphene nanoribbons (AABLAGNRs). We show that they are highly sensitive to the size of the ribbons, which is evidently different from the single-layer armchair-edge graphene nanoribbons. The ‘3 p ’ rule only applies to the narrow AABLGNRs. Namely, in the passivated 3 p - and (3 p   +  1)-AABLGNRs, the narrow ribbons are semiconducting while the medium and wide ribbons are metallic. Although the passivated (3 p   +  2)-AABLGNRs are metallic, the ‘3 j ’ rule only applies to the narrow and medium ribbons. Namely, electrons are in the semiconducting states at sites of line 3 j while they are in the metallic states at other sites. This induces a series of parallel and discrete metallic channels, consisting of lines 3 j   −  1 and 3 j   −  2, for the low-energy electronic transports. In the passivated wide (3 p   +  2)-AABLGNRs, all electrons are in the metallic states. Additionally, the ‘3 p ’ and ‘3 j ’ rules are controllable to disappear and reappear by applying an external perpendicular electric field. Resultantly, an electric filed-driven current switch can be realized in the passivated narrow and medium (3 p   +  2)-AABLGNRs. (paper)

  1. Spin-exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon.

    Science.gov (United States)

    Hou, Lipeng; Zhou, Weichang; Zou, Bingsuo; Zhang, Yu; Han, Junbo; Yang, Xinxin; Gong, Zhihong; Li, Jingbo; Xie, Sishen; Shi, Li-Jie

    2017-03-10

    For their spintronic applications the magnetic and optical properties of diluted magnetic semiconductors (DMS) have been studied widely. However, the exact relationships between the magnetic interactions and optical emission behaviors in DMS are not well understood yet due to their complicated microstructural and compositional characters from different growth and preparation techniques. Manganese (Mn) doped ZnSe nanoribbons with high quality were obtained by using the chemical vapor deposition (CVD) method. Successful Mn ion doping in a single ZnSe nanoribbon was identified by elemental energy-dispersive x-ray spectroscopy mapping and micro-photoluminescence (PL) mapping of intrinsic d-d optical transition at 580 nm, i.e. the transition of 4 T 1 ( 4 G) →  6 A 1 ( 6 s),. Besides the d-d transition PL peak at 580 nm, two other PL peaks related to Mn ion aggregates in the ZnSe lattice were detected at 664 nm and 530 nm, which were assigned to the d-d transitions from the Mn 2+ -Mn 2+ pairs with ferromagnetic (FM) coupling and antiferromagnetic (AFM) coupling, respectively. Moreover, AFM pair formation goes along with strong coupling with acoustic phonon or structural defects. These arguments were supported by temperature-dependent PL spectra, power-dependent PL lifetimes, and first-principle calculations. Due to the ferromagnetic pair existence, an exciton magnetic polaron (EMP) is formed and emits at 460 nm. Defect existence favors the AFM pair, which also can account for its giant enhancement of spin-orbital coupling and the spin Hall effect observed in PRL 97, 126603(2006) and PRL 96, 196404(2006). These emission results of DMS reflect their relation to local sp-d hybridization, spin-spin magnetic coupling, exciton-spin or phonon interactions covering structural relaxations. This kind of material can be used to study the exciton-spin interaction and may find applications in spin-related photonic devices besides spintronics.

  2. Enhanced field emission properties of tilted graphene nanoribbons on aggregated TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Shang-Chao, E-mail: schung99@gmail.com [Department of Information Technology & Communication, Shih Chien University Kaohsiung Campus, Neimen, Kaohsiung 845, Taiwan (China); Chen, Yu-Jyun [Graduate Institute of Electro-Optical Engineering & Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China)

    2016-07-15

    Highlights: • Graphene nanoribbons (GNBs) slanted on aggregate TiO{sub 2} nanotube (A-TNTs) as field-emitters. • Turn-on electric field and field enhancement factor β are dependent on the substrate morphology. • Various quantities of GNRs are deposited on top of A-TNTs (GNRs/A-TNTs) with different morphologies. • With an increase of GNBs compositions, the specimens' turn-on electric field is reduced to 2.8 V/μm. • The field enhancement factor increased rapidly to about 1964 with the addition of GNRs. - Abstract: Graphene nanoribbons (GNRs) slanted on aggregate TiO{sub 2} nanotube arrays (A-TNTs) with various compositions as field-emitters are reported. The morphology, crystalline structure, and composition of the as-obtained specimens were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Raman spectrometry. The dependence of the turn-on electric field and the field enhancement factor β on substrate morphology was studied. An increase of GNRs reduces the specimens’ turn-on electric field to 2.8 V/μm and the field enhancement factor increased rapidly to about 1964 with the addition of GNRs. Results show a strong dependence of the field emission on GNR composition aligned with the gradient on the top of the A-TNT substrate. Enhanced FE properties of the modified TNTs can be mainly attributed to their improved electrical properties and rougher surface morphology.

  3. Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study

    International Nuclear Information System (INIS)

    Peng Xihong; Tang Fu; Copple, Andrew

    2012-01-01

    First principles density functional theory calculations were performed to study the effects of strain, edge passivation, and surface functional species on the structural and electronic properties of armchair graphene nanoribbons (AGNRs), with a particular focus on the work function. The work function was found to increase with uniaxial tensile strain and decrease with compression. The variation of the work function under strain is primarily due to the shift of the Fermi energy with strain. In addition, the relationship between the work function variation and the core level shift with strain is discussed. Distinct trends of the core level shift under tensile and compressive strain were discovered. For AGNRs with the edge carbon atoms passivated by oxygen, the work function is higher than for nanoribbons with the edge passivated by hydrogen under a moderate strain. The difference between the work functions in these two edge passivations is enlarged (reduced) under a sufficient tensile (compressive) strain. This has been correlated to a direct-indirect bandgap transition for tensile strains of about 4% and to a structural transformation for large compressive strains at about - 12%. Furthermore, the effect of the surface species decoration, such as H, F, or OH with different covering density, was investigated. It was found that the work function varies with the type and coverage of surface functional species. Decoration with F and OH increases the work function while H decreases it. The surface functional species were decorated on either one side or both sides of AGNRs. The difference in the work functions between one-sided and two-sided decorations was found to be relatively small, which may suggest an introduced surface dipole plays a minor role. (paper)

  4. TiO2-B Nanoribbons Anchored with NiO Nanosheets as Hybrid Anode Materials for Rechargeable Lithium ion Batteries

    DEFF Research Database (Denmark)

    Zhang, J. Y.; Shen, J.X.; Wang, T.L.

    2015-01-01

    A new type of TiO2-B nanoribbon anchored with NiO nanosheets (TiO2@NiO) is synthesized via a hydrothermal process and a subsequent homogeneous precipitation method. XRD analysis indicates that TiO2-B and cubic NiO phases exist in the composites. According to SEM images, the morphology of the TiO2...

  5. From fused aromatics to graphene-like nanoribbons: The effects of multiple terminal groups, length and symmetric pathways on charge transport

    KAUST Repository

    Bilić, Ante

    2011-11-17

    A class of molecular ribbons, with almost-ideal charge transmission, that is weakly dependent on the anchoring structure or electrode crystalline orientation and easy to synthesize has been identified. Charge transport through two sets of aromatic nanoribbons, based on the pyrene and perylene motifs, has been investigated using density functional theory combined with the nonequilibrium Green\\'s function method. The effects of wire length and multiple terminal thiolate groups at the junction with gold leads have been examined. For the oligopyrene series, an exponential drop in the conductance with the increase of the wire length is found. In contrast, the oligoperylene series of nanoribbons, with dual thiolate groups, exhibits no visible length dependence, indicating that the contacts are the principal source of the resistance. Between the Au(001) leads, the transmission spectra of the oligoperylenes display a continuum of highly conducting channels and the resulting conductance is nearly independent of the bias. The predictions are robust against artefacts from the exchange-correlation potential, as evidenced from the self-interaction corrected calculations. Therefore, oligoperylene nanoribbons show the potential to be the almost-ideal wires for molecular circuitry. © 2011 American Physical Society.

  6. Chemical functionalization and edge doping of zigzag graphene nanoribbon with L-(+)-leucine and group IB elements-A DFT study

    Science.gov (United States)

    Janani, K.; John Thiruvadigal, D.

    2017-10-01

    First-principles based density functional theory (DFT) calculations have been carried out on the chemically functionalized pure and Cu, Ag and Au doped zigzag graphene nanoribbon (ZGNR(6,0)) with the use of the branched chain amino acid L-(+)-Leucine named as LLZGNR(6,0), LLCuZGNR(6,0), LLAgZGNR(6,0) and LLAuZGNR(6,0) respectively. The structural stability for minimum total energy was confirmed by perturbating the geometry of the relaxed structures. The physical and chemical properties, such as band gap, chemical potential, transmission spectrum, charge transfer, bonding character and Gibb's free energy of solvation were analysed for all the four systems. It has been observed that the edge doping assisted functionalized systems (LLCuZGNR(6,0), LLAgZGNR(6,0) and LLAuZGNR(6,0)) without the inclusion of spin polarisation are semiconducting in nature. Whereas, barely functionalized system is found to be semi-metallic. An effective space charge polarisation in functionalized graphene nanoribbon has been revealed through charge transfer studies. Hence, it signifies the effective solubility of the nanoribbon in aqueous media. The results indicate the possibility of using such system as nanocarriers in targeted drug delivery applications.

  7. Invalidity of the Fermi liquid theory and magnetic phase transition in quasi-1D dopant-induced armchair-edged graphene nanoribbons

    Science.gov (United States)

    Hoi, Bui Dinh; Davoudiniya, Masoumeh; Yarmohammadi, Mohsen

    2018-04-01

    Based on theoretically tight-binding calculations considering nearest neighbors and Green's function technique, we show that the magnetic phase transition in both semiconducting and metallic armchair graphene nanoribbons with width ranging from 9.83 Å to 69.3 Å would be observed in the presence of injecting electrons by doping. This transition is explained by the temperature-dependent static charge susceptibility through calculation of the correlation function of charge density operators. This work showed that charge concentration of dopants in such system plays a crucial role in determining the magnetic phase. A variety of multicritical points such as transition temperatures and maximum susceptibility are compared in undoped and doped cases. Our findings show that there exist two different transition temperatures and maximum susceptibility depending on the ribbon width in doped structures. Another remarkable point refers to the invalidity (validity) of the Fermi liquid theory in nanoribbons-based systems at weak (strong) concentration of dopants. The obtained interesting results of magnetic phase transition in such system create a new potential for magnetic graphene nanoribbon-based devices.

  8. From fused aromatics to graphene-like nanoribbons: The effects of multiple terminal groups, length and symmetric pathways on charge transport

    KAUST Repository

    Bilić, Ante; Gale, Julian D.; Sanvito, Stefano

    2011-01-01

    A class of molecular ribbons, with almost-ideal charge transmission, that is weakly dependent on the anchoring structure or electrode crystalline orientation and easy to synthesize has been identified. Charge transport through two sets of aromatic nanoribbons, based on the pyrene and perylene motifs, has been investigated using density functional theory combined with the nonequilibrium Green's function method. The effects of wire length and multiple terminal thiolate groups at the junction with gold leads have been examined. For the oligopyrene series, an exponential drop in the conductance with the increase of the wire length is found. In contrast, the oligoperylene series of nanoribbons, with dual thiolate groups, exhibits no visible length dependence, indicating that the contacts are the principal source of the resistance. Between the Au(001) leads, the transmission spectra of the oligoperylenes display a continuum of highly conducting channels and the resulting conductance is nearly independent of the bias. The predictions are robust against artefacts from the exchange-correlation potential, as evidenced from the self-interaction corrected calculations. Therefore, oligoperylene nanoribbons show the potential to be the almost-ideal wires for molecular circuitry. © 2011 American Physical Society.

  9. Effects of V-shaped edge defect and H-saturation on spin-dependent electronic transport of zigzag MoS2 nanoribbons

    International Nuclear Information System (INIS)

    Li, Xin-Mei; Long, Meng-Qiu; Cui, Li-Ling; Xiao, Jin; Zhang, Xiao-Jiao; Zhang, Dan; Xu, Hui

    2014-01-01

    Based on nonequilibrium Green's function in combination with density functional theory calculations, the spin-dependent electronic transport properties of one-dimensional zigzag molybdenum disulfide (MoS 2 ) nanoribbons with V-shaped defect and H-saturation on the edges have been studied. Our results show that the spin-polarized transport properties can be found in all the considered zigzag MoS 2 nanoribbons systems. The edge defects, especially the V-shaped defect on the Mo edge, and H-saturation on the edges can suppress the electronic transport of the systems. Also, the spin-filtering and negative differential resistance behaviors can be observed obviously. The mechanisms are proposed for these phenomena. - Highlights: • The spin-dependent electronic transport of zigzag MoS 2 nanoribbons. • The effects of V-shaped edge defect and H-saturation. • The effects of spin-filter and negative differential resistance can be observed

  10. A facile and sensitive peptide-modulating graphene oxide nanoribbon catalytic nanoplasmon analytical platform for human chorionic gonadotropin.

    Science.gov (United States)

    Liang, Aihui; Li, Chongning; Li, Dan; Luo, Yanghe; Wen, Guiqing; Jiang, Zhiliang

    2017-01-01

    The nanogold reaction between HAuCl 4 and citrate is very slow, and the catalyst graphene oxide nanoribbon (GONR) enhanced the nanoreaction greatly to produce gold nanoparticles (AuNPs) that exhibited strong surface plasmon resonance (SPR) absorption (Abs) at 550 nm and resonance Rayleigh scattering (RRS) at 550 nm. Upon addition of the peptide of human chorionic gonadotropin (hCG), the peptide could adsorb on the GONR surface, which inhibited the catalysis. When hCG was added, peptides were separated from the GONR surface due to the formation of stable peptide-hCG complex, which led to the activation of GONR catalytic effect. With the increase in hCG concentration, the RRS and Abs signal enhanced linearly. The enhanced RRS value showed a good linear relationship with hCG concentration in the range of 0.2-20 ng/mL, with a detection limit of 70 pg/mL. Accordingly, two new GONR catalytic RRS/Abs methods were established for detecting hCG in serum samples.

  11. How to realize a spin-dependent Seebeck diode effect in metallic zigzag γ-graphyne nanoribbons?

    Science.gov (United States)

    Wu, Dan-Dan; Liu, Qing-Bo; Fu, Hua-Hua; Wu, Ruqian

    2017-11-30

    The spin-dependent Seebeck effect (SDSE) is one of the core topics of spin caloritronics. In the traditional device designs of spin-dependent Seebeck rectifiers and diodes, finite spin-dependent band gaps of materials are required to realize the on-off characteristic in thermal spin currents, and nearly zero charge current should be achieved to reduce energy dissipation. Here, we propose that two ferromagnetic zigzag γ-graphyne nanoribbons (ZγGNRs) without any spin-dependent band gaps around the Fermi level can not only exhibit the SDSE, but also display rectifier and diode effects in thermal spin currents characterized by threshold temperatures, which originates from the compensation effect occurring in spin-dependent transmissions but not from the spin-splitting band gaps in materials. The metallic characteristics of ZγGNRs bring about an advantage that the gate voltage is an effective route to adjust the symmetry of spin-splitting bands to obtain pure thermal spin currents. The results provide a new mechanism to realize spin-Seebeck rectifier and diode effects in 2D materials and expand material candidates towards spin-Seebeck device applications.

  12. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors

    Science.gov (United States)

    Liu, Mingkai; Miao, Yue-E.; Zhang, Chao; Tjiu, Weng Weei; Yang, Zhibin; Peng, Huisheng; Liu, Tianxi

    2013-07-01

    A three dimensional (3D) polyaniline (PANI)-graphene nanoribbon (GNR)-carbon nanotube (CNT) composite, PANI-GNR-CNT, has been prepared via in situ polymerization of an aniline monomer on the surface of a GNR-CNT hybrid. Here, the 3D GNR-CNT hybrid has been conveniently prepared by partially unzipping the pristine multi-walled CNTs, while the residual CNTs act as ``bridges'' connecting different GNRs. The morphology and structure of the resulting hybrid materials have been characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffraction (XRD). Electrochemical tests reveal that the hierarchical PANI-GNR-CNT composite based on the two-electrode cell possesses much higher specific capacitance (890 F g-1) than the GNR-CNT hybrid (195 F g-1) and neat PANI (283 F g-1) at a discharge current density of 0.5 A g-1. At the same time, the PANI-GNR-CNT composite displays good cycling stability with a retention ratio of 89% after 1000 cycles, suggesting that this novel PANI-GNR-CNT composite is a promising candidate for energy storage applications.

  13. Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors.

    Science.gov (United States)

    Zhang, Chenguang; Peng, Zhiwei; Lin, Jian; Zhu, Yu; Ruan, Gedeng; Hwang, Chih-Chau; Lu, Wei; Hauge, Robert H; Tour, James M

    2013-06-25

    Potassium vapor was used to longitudinally split vertically aligned multiwalled carbon nanotubes carpets (VA-CNTs). The resulting structures have a carpet of partially split MWCNTs and graphene nanoribbons (GNRs). The split structures were characterized by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. When compared to the original VA-CNTs carpet, the split VA-CNTs carpet has enhanced electrochemical performance with better specific capacitance in a supercapacitor. Furthermore, the split VA-CNTs carpet has excellent cyclability as a supercapacitor electrode material. There is a measured maximum power density of 103 kW/kg at an energy density of 5.2 Wh/kg and a maximum energy density of 9.4 Wh/kg. The superior electrochemical performances of the split VA-CNTs can be attributed to the increased surface area for ion accessibility after splitting, and the lasting conductivity of the structure with their vertical conductive paths based on the preserved GNR alignment.

  14. Symmetry-Dependent Spin Transport Properties and Spin-Filter Effects in Zigzag-Edged Germanene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Can Cao

    2015-01-01

    Full Text Available We performed the first-principles calculations to investigate the spin-dependent electronic transport properties of zigzag-edged germanium nanoribbons (ZGeNRs. We choose of ZGeNRs with odd and even widths of 5 and 6, and the symmetry-dependent transport properties have been found, although the σ mirror plane is absent in ZGeNRs. Furthermore, even-N and odd-N ZGeNRs have very different current-voltage relationships. We find that the even 6-ZGeNR shows a dual spin-filter effect in antiparallel (AP magnetism configuration, but the odd 5-ZGeNR behaves as conventional conductors with linear current-voltage dependence. It is found that when the two electrodes are in parallel configuration, the 6-ZGeNR system is in a low resistance state, while it can switch to a much higher resistance state when the electrodes are in AP configuration, and the magnetoresistance of 270% can be observed.

  15. Simultaneously improving the mechanical and electrical properties of poly(vinyl alcohol) composites by high-quality graphitic nanoribbons.

    Science.gov (United States)

    Yang, Ming; Weng, Lin; Zhu, Hanxing; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2017-12-07

    Although carbon nanotubes (CNTs) have shown great potential for enhancing the performance of polymer matrices, their reinforcement role still needs to be further improved. Here we implement a structural modification of multi-walled CNTs (MWCNTs) to fully utilize their fascinating mechanical and electrical properties via longitudinal splitting of MWCNTs into graphitic nanoribbons (GNRs). This nanofiller design strategy is advantageous for surface functionalization, strong interface adhesion as well as boosting the interfacial contact area without losing the intrinsic graphitic structure. The obtained GNRs have planar geometry, quasi-1D structure and high-quality crystallinity, which outperforms their tubular counterparts, delivering a superior load-bearing efficiency and conductive network for realizing a synchronous improvement of the mechanical and electrical properties of a PVA-based composite. Compared to PVA/CNTs, the tensile strength, Young's modulus and electrical conductivity of the PVA/GNR composite at a filling concentration of 3.6 vol.% approach 119.1 MPa, 5.3 GPa and 2.4 × 10 -4 S m -1 , with increases of 17%, 32.5% and 5.9 folds, respectively. The correlated mechanics is further rationalized by finite element analysis, the generalized shear-lag theory and the fracture mechanisms.

  16. One-step synthesis of graphene nanoribbon-MnO₂ hybrids and their all-solid-state asymmetric supercapacitors.

    Science.gov (United States)

    Liu, Mingkai; Tjiu, Weng Weei; Pan, Jisheng; Zhang, Chao; Gao, Wei; Liu, Tianxi

    2014-04-21

    Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO₂) of graphene nanoribbons (GNR) and MnO₂ nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO₂ nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO₂ hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the desirable porous structure, excellent electrical conductivity, as well as high rate capability and specific capacitances of both the GNR and GNR-MnO₂ hybrid, the optimized GNR//GNR-MnO₂ asymmetric supercapacitor can be cycled reversibly in an enlarged potential window of 0-2.0 V. In addition, the fabricated GNR//GNR-MnO₂ asymmetric supercapacitor exhibits a significantly enhanced maximum energy density of 29.4 W h kg(-1) (at a power density of 12.1 kW kg(-1)), compared with that of the symmetric cells based on GNR-MnO₂ hybrids or GNR sheets. This greatly enhanced energy storage ability and high rate capability can be attributed to the homogeneous dispersion and excellent pseudocapacitive performance of MnO₂ nanoparticles and the high electrical conductivity of the GNRs.

  17. Negative differential resistance and rectification effects in zigzag graphene nanoribbon heterojunctions: Induced by edge oxidation and symmetry concept

    Science.gov (United States)

    Nazirfakhr, Maryam; Shahhoseini, Ali

    2018-03-01

    By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of H-terminated zigzag graphene nanoribbon (H/ZGNR) and O-terminated ZGNR/H-terminated ZGNR (O/ZGNR-H/ZGNR) heterostructure under finite bias. Moreover, the effect of width and symmetry on the electronic transport properties of both models is also considered. The results reveal that asymmetric H/ZGNRs have linear I-V characteristics in whole bias range, but symmetric H-ZGNRs show negative differential resistance (NDR) behavior which is inversely proportional to the width of the H/ZGNR. It is also shown that the I-V characteristic of O/ZGNR-H/ZGNR heterostructure shows a rectification effect, whether the geometrical structure is symmetric or asymmetric. The fewer the number of zigzag chains, the bigger the rectification ratio. It should be mentioned that, the rectification ratios of symmetric heterostructures are much bigger than asymmetric one. Transmission spectrum, density of states (DOS), molecular projected self-consistent Hamiltonian (MPSH) and molecular eigenstates are analyzed subsequently to understand the electronic transport properties of these ZGNR devices. Our findings could be used in developing nanoscale rectifiers and NDR devices.

  18. Spin-dependent transport and current-induced spin transfer torque in a disordered zigzag silicene nanoribbon

    International Nuclear Information System (INIS)

    Zhou, Benliang; Zhou, Benhu; Liu, Guang; Guo, Dan; Zhou, Guanghui

    2016-01-01

    We study theoretically the spin-dependent transport and the current-induced spin transfer torque (STT) for a zigzag silicene nanoribbon (ZSiNR) with Anderson-type disorders between two ferromagnetic electrodes. By using the nonequilibrium Green's function method, it is predicted that the transport property and STT through the junction depend sensitively on the disorder, especially around the Dirac point. As a result, the conductance decreases and increases for two electrode in parallel and antiparallel configurations, respectively. Due to the disorder, the magnetoresistance (MR) decreases accordingly even within the energy regime for the perfect plateau without disorders. In addition, the conductance versus the relative angle of the magnetization shows a cosine-like behavior. The STT per unit of the bias voltage versus the angle of the magnetization exhibits a sine-like behavior, and versus the Fermi energy is antisymmetrical to the Dirac point and exhibits sharp peaks. Furthermore, the peaks of the STT are suppressed much as the disorder strength increases, especially around the Dirac point. The results obtained here may provide a valuable suggestion to experimentally design spin valve devices based on ZSiNR.

  19. Adsorption of gas molecules on armchair AlN nanoribbons with a dangling bond defect by using density functional theory

    International Nuclear Information System (INIS)

    Sun, Guodong; Zhao, Peng; Zhang, Wenxue; Li, Hui; He, Cheng

    2017-01-01

    In this paper, the adsorption of gas molecules (CO, NO, O_2, CO_2, and NO_2) on armchair aluminum nitride nanoribbons (AAlNNRs) with a dangling bond defect has been investigated by density functional theory. For all the studied systems, the adsorption geometries, adsorption energies, charge transfer, and electronic structures are discussed. The adsorption energies of O_2, NO_2, and CO_2 are -1.53, -2.24, and -2.88 eV, respectively, corresponding to strong chemisorption. While for CO and NO, the adsorptions are between weak chemisorption and strong physisorption. Moreover, the magnetic property of defective AAlNNR are sensitive to the adsorption of NO_2. Therefore, based on the obtained results, AAlNNRs with a dangling bond defect is promising for using in gas sensor devices to detect NO_2. - Highlights: • The adsorption properties of gas molecules on defective AAlNNRs are performed by DFT. • The adsorption of O_2, NO_2, and CO_2 on defective AAlNNRs are strong chemisorption. • The magnetic property of defective AAlNNRs are sensitive to the adsorption of NO_2. • The defective AAlNNRs is promising in gas sensor devices to detect and capture NO_2.

  20. On the theoretical analysis of the lowest many-electron states for cyclic zigzag graphene nano-ribbons

    International Nuclear Information System (INIS)

    Álvarez-Collado, José R; Cantarero, Andrés

    2014-01-01

    We have calculated the optical and magnetic properties of the four lowest many-body states for cyclic zigzag graphene nano-ribbons (GNRs). The results have been obtained within the semi-empirical restricted frozen Hartree–Fock approximation. Firstly, we obtained one-determinant numerical and analytical coincident results. We detected the existence of two degenerate open-shell molecular orbitals (MOs) o, o’. Due to this degeneracy, some of the mentioned results do depend on any (arbitrary) orthogonal transformation between these two MOs. We have improved these preliminary results by using linear combinations of two determinants, which are eigenfunctions of the operators, which commute with the electronic Hamiltonian. These eigenfunctions represent properly the wave functions of these four electronic states. These calculations show that there are two degenerate ground states. One of them is ferromagnetic and the other state is non magnetic. Finally, we have calculated these four states to full configuration interaction level studying the dependence of their properties on the size of the GNRs. (paper)

  1. On the theoretical analysis of the lowest many-electron states for cyclic zigzag graphene nano-ribbons

    Science.gov (United States)

    Álvarez-Collado, José R.; Cantarero, Andrés

    2014-09-01

    We have calculated the optical and magnetic properties of the four lowest many-body states for cyclic zigzag graphene nano-ribbons (GNRs). The results have been obtained within the semi-empirical restricted frozen Hartree-Fock approximation. Firstly, we obtained one-determinant numerical and analytical coincident results. We detected the existence of two degenerate open-shell molecular orbitals (MOs) o, o’. Due to this degeneracy, some of the mentioned results do depend on any (arbitrary) orthogonal transformation between these two MOs. We have improved these preliminary results by using linear combinations of two determinants, which are eigenfunctions of the operators, which commute with the electronic Hamiltonian. These eigenfunctions represent properly the wave functions of these four electronic states. These calculations show that there are two degenerate ground states. One of them is ferromagnetic and the other state is non magnetic. Finally, we have calculated these four states to full configuration interaction level studying the dependence of their properties on the size of the GNRs.

  2. Electronic properties of pure and p-type doped hexagonal sheets and zigzag nanoribbons of InP

    International Nuclear Information System (INIS)

    Longo, R C; Carrete, J; Alemany, M M G; Gallego, L J

    2013-01-01

    Unlike graphene, a hexagonal InP sheet (HInPS) cannot be obtained by mechanical exfoliation from the native bulk InP, which crystallizes in the zinc blende structure under ambient conditions. However, by ab initio density functional theory calculations we found that a slightly buckled HInPS is stable both in pristine form and when doped with Zn atoms; the same occurred for hydrogen-passivated zigzag InP nanoribbons (ZInPNRs), quasi-one-dimensional versions of the quasi-two-dimensional material. We investigated the electronic properties of both nanostructures, in the latter case also in the presence of an external transverse electric field, and the results are compared with those of hypothetical planar HInPS and ZInPNRs. The band gaps of planar ZInPNRs were found to be tunable by the choice of strength of this field, and to show an asymmetric behavior under weak electric fields, by which the gap can either be increased or decreased depending on their direction; however, this effect is absent from slightly buckled ZInPNRs. The binding energies of the acceptor impurity states of Zn-doped HInPS and ZInPNRs were found to be similar and much larger than that of Zn-doped bulk InP. These latter findings show that the reduction of the dimensionality of these materials limits the presence of free carriers. (paper)

  3. Electronic structure and transport properties of monatomic Fe chains in a vacuum and anchored to a graphene nanoribbon

    International Nuclear Information System (INIS)

    Nguyen, N B; Lebon, A; Vega, A; García-Fuente, A; Gallego, L J

    2012-01-01

    The electronic structure and transport properties of monatomic Fe wires of different characteristics are studied within the density functional theory. In both equidistant and dimerized (more stable) isolated wires, magnetism plays an important role since it leads to different shapes of the transmission coefficients for each spin component. In equidistant wires, electron localization around the Fermi level leads to symmetry breaking between d xy and d x 2 -y 2 bands. The main effect of the structural dimerization is to decrease the number of channels available for the minority spin component. When anchored to the edges of a graphene nanoribbon, the dimerization of the chain is preserved, despite the hybridization of the d states of Fe with the C atoms which gives way to a reduction in the number of d channels around the Fermi level. Most conduction is then led by an electronic channel from the ribbon and the sp z bands from the Fe wires. Suggestions to improve the spintronic ability of Fe wires are proposed.

  4. Even–odd effect on the edge states for zigzag phosphorene nanoribbons under a perpendicular electric field

    International Nuclear Information System (INIS)

    Zhou, Benliang; Zhou, Guanghui; Zhou, Benhu; Zhou, Xiaoying

    2017-01-01

    We study the variation of electronic property for zigzag-edge phosphorene nanoribbons (ZPNRs) under a perpendicular electric field (PEF). Using the tight-binding Hamiltonian combined with the surface lattice Green’s function (GF) approach, we show that the response of edge states to PEF for a N -ZPNR with even- or odd- N (number of zigzag chains) is qualitatively different. The field opens a gap between two edge bands near the Fermi energy for even- N ribbons, but for odd- N ones where the two edge bands are always nearly degenerated. This difference is originally from that the Stark-effect-induced energies at the upper and lower edges for even- and odd- N ZPNRs are different due to the peculiar lattice structure of phosphorene. In consequence, the electronic densities are more localized at the edges driven by the field for even- N ZPNRs but not for odd- N ones. This even–odd effect is also reflected in conductance, which indicates that the odd- N ZPNRs may be more suitable for the usage of field-effect transistor. (paper)

  5. Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.

    Science.gov (United States)

    Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua

    2017-10-11

    By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.

  6. Insulator-semimetallic transition in quasi-1D charged impurity-infected armchair boron-nitride nanoribbons

    Science.gov (United States)

    Dinh Hoi, Bui; Yarmohammadi, Mohsen

    2018-04-01

    We address control of electronic phase transition in charged impurity-infected armchair-edged boron-nitride nanoribbons (ABNNRs) with the local variation of Fermi energy. In particular, the density of states of disordered ribbons produces the main features in the context of pretty simple tight-binding model and Green's functions approach. To this end, the Born approximation has been implemented to find the effect of π-band electron-impurity interactions. A modulation of the π-band depending on the impurity concentrations and scattering potentials leads to the phase transition from insulator to semimetallic. We present here a detailed physical meaning of this transition by studying the treatment of massive Dirac fermions. From our findings, it is found that the ribbon width plays a crucial role in determining the electronic phase of disordered ABNNRs. The obtained results in controllable gap engineering are useful for future experiments. Also, the observations in this study have also fueled interest in the electronic properties of other 2D materials.

  7. Impact of tensile strain on the thermal transport of zigzag hexagonal boron nitride nanoribbon: An equilibrium molecular dynamics study

    Science.gov (United States)

    Navid, Ishtiaque Ahmed; Intisar Khan, Asir; Subrina, Samia

    2018-02-01

    The thermal conductivity of single layer strained hexagonal boron nitride nanoribbon (h-BNNR) has been computed using the Green—Kubo formulation of Equilibrium Molecular Dynamics (EMD) simulation. We have investigated the impact of strain on thermal transport of h-BNNR by varying the applied tensile strain from 1% upto 5% through uniaxial loading. The thermal conductivity of h-BNNR decreases monotonically with the increase of uniaxial tensile strain keeping the sample size and temperature constant. The thermal conductivity can be reduced upto 86% for an applied uniaxial tensile strain of 5%. The impact of temperature and width variation on the thermal conductivity of h-BNNR has also been studied under different uniaxial tensile strain conditions. With the increase in temperature, the thermal conductivity of strained h-BNNR exhibits a decaying characteristics whereas it shows an opposite pattern with the increasing width. Such study would provide a good insight on the strain tunable thermal transport for the potential device application of boron nitride nanostructures.

  8. Spin-dependent transport and current-induced spin transfer torque in a disordered zigzag silicene nanoribbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Benliang [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Synergetic Innovation Center for Quantum Effects and Applications of Hunan, Hunan Normal University, Changsha 410081 (China); Zhou, Benhu [Department of Physics, Shaoyang University, Shaoyang 422001 (China); Liu, Guang; Guo, Dan [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Synergetic Innovation Center for Quantum Effects and Applications of Hunan, Hunan Normal University, Changsha 410081 (China); Zhou, Guanghui, E-mail: ghzhou@hunnu.edu.cn [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Synergetic Innovation Center for Quantum Effects and Applications of Hunan, Hunan Normal University, Changsha 410081 (China)

    2016-11-01

    We study theoretically the spin-dependent transport and the current-induced spin transfer torque (STT) for a zigzag silicene nanoribbon (ZSiNR) with Anderson-type disorders between two ferromagnetic electrodes. By using the nonequilibrium Green's function method, it is predicted that the transport property and STT through the junction depend sensitively on the disorder, especially around the Dirac point. As a result, the conductance decreases and increases for two electrode in parallel and antiparallel configurations, respectively. Due to the disorder, the magnetoresistance (MR) decreases accordingly even within the energy regime for the perfect plateau without disorders. In addition, the conductance versus the relative angle of the magnetization shows a cosine-like behavior. The STT per unit of the bias voltage versus the angle of the magnetization exhibits a sine-like behavior, and versus the Fermi energy is antisymmetrical to the Dirac point and exhibits sharp peaks. Furthermore, the peaks of the STT are suppressed much as the disorder strength increases, especially around the Dirac point. The results obtained here may provide a valuable suggestion to experimentally design spin valve devices based on ZSiNR.

  9. High-Rate Long-Life Pored Nanoribbon VNb9O25 Built by Interconnected Ultrafine Nanoparticles as Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Qian, Shangshu; Yu, Haoxiang; Yan, Lei; Zhu, Haojie; Cheng, Xing; Xie, Ying; Long, Nengbing; Shui, Miao; Shu, Jie

    2017-09-13

    VNb 9 O 25 is a novel lithium storage material, which has not been systematically investigated so far. Via electrospinning technology, VNb 9 O 25 samples with two different morphologies, pored nanoribbon and rodlike nanoparticles, are prepared in relatively low temperature and time-saving calcination conditions. It is found that the formation process of different morphologies depends on the control of self-aggregation of the precursor by using different sample collectors. Compared with rodlike VNb 9 O 25 (RL-VNb 9 O 25 ), pored nanoribbon VNb 9 O 25 (PR-VNb 9 O 25 ) can deliver a higher specific capacity, lower capacity loss, and better cyclability. Even cycled at 1000 mA g -1 , the reversible capacity of 132.3 mAh g -1 is maintained by PR-VNb 9 O 25 after 500 cycles, whereas RL-VNb 9 O 25 only exhibits a capacity of 102.7 mAh g -1 . The enhancement should be attributed to the pored nanoribbon structure with large specific surface area and shorter pathway for lithium ions transport. Furthermore, the lithium ions insertion/extraction process is verified from refinement results of in situ X-ray diffraction data, which is associated with a lithium occupation process in type III and VI cavities through tunnels I, II, and III. In addition, high structural stability and electrochemical reversibility are also demonstrated. All of these advantages suggest that PR-VNb 9 O 25 is a promising anode material for lithium-ion batteries.

  10. Model of a tunneling current in a p-n junction based on armchair graphene nanoribbons - an Airy function approach and a transfer matrix method

    International Nuclear Information System (INIS)

    Suhendi, Endi; Syariati, Rifki; Noor, Fatimah A.; Khairurrijal; Kurniasih, Neny

    2014-01-01

    We modeled a tunneling current in a p-n junction based on armchair graphene nanoribbons (AGNRs) by using an Airy function approach (AFA) and a transfer matrix method (TMM). We used β-type AGNRs, in which its band gap energy and electron effective mass depends on its width as given by the extended Huckel theory. It was shown that the tunneling currents evaluated by employing the AFA are the same as those obtained under the TMM. Moreover, the calculated tunneling current was proportional to the voltage bias and inversely with temperature

  11. Electronic ferroelectricity in carbon-based systems: from reality of organic conductors to promises of polymers and graphene nano-ribbons

    International Nuclear Information System (INIS)

    Kirova, Natasha; Brazovskii, Serguei

    2014-01-01

    Ferroelectricity is a rising demand in fundamental and applied solid state physics. Ferroelectrics are used in microelectronics as active gate materials, in capacitors, electro-optical-acoustic modulators, etc. There is a particular demand for plastic ferroelectrics, e.g. as a sensor for acoustic imaging in medicine and beyond, in shapeable capacitors, etc. Microscopic mechanisms of ferroelectric polarization in traditional materials are typically ionic. In this talk we discuss the electronic ferroelectrics – carbon-based materials: organic crystals, conducting polymers and graphene nano-ribbons. The motion of walls, separating domains with opposite electric polarisation, can be influenced and manipulated by terahertz and infra-red range optics

  12. WO3 nano-ribbons: their phase transformation from tungstite (WO3·H2O) to tungsten oxide (WO3)

    DEFF Research Database (Denmark)

    Ahmadi, Majid; Sahoo, Satyaprakash; Younesi, Reza

    2014-01-01

    Tungsten oxide (WO3) nano-ribbons (NRs) were obtained by annealing tungstite (WO3·H2O) NRs. The latter was synthesized below room temperature using a simple, environmentally benign, and low cost aging treatment of precursors made by adding hydrochloric acid to diluted sodium tungstate solutions (...

  13. One-step synthesis of graphene nanoribbon-MnO2 hybrids and their all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Liu, Mingkai; Tjiu, Weng Weei; Pan, Jisheng; Zhang, Chao; Gao, Wei; Liu, Tianxi

    2014-03-01

    Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO2) of graphene nanoribbons (GNR) and MnO2 nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO2 nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO2 hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the desirable porous structure, excellent electrical conductivity, as well as high rate capability and specific capacitances of both the GNR and GNR-MnO2 hybrid, the optimized GNR//GNR-MnO2 asymmetric supercapacitor can be cycled reversibly in an enlarged potential window of 0-2.0 V. In addition, the fabricated GNR//GNR-MnO2 asymmetric supercapacitor exhibits a significantly enhanced maximum energy density of 29.4 W h kg-1 (at a power density of 12.1 kW kg-1), compared with that of the symmetric cells based on GNR-MnO2 hybrids or GNR sheets. This greatly enhanced energy storage ability and high rate capability can be attributed to the homogeneous dispersion and excellent pseudocapacitive performance of MnO2 nanoparticles and the high electrical conductivity of the GNRs.Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO2) of graphene nanoribbons (GNR) and MnO2 nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO2 nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO2 hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the

  14. Electric field effect on the magnetic properties of zigzag MoS2 nanoribbons with different edge passivation.

    Science.gov (United States)

    Nam, Yeonsig; Cho, Daeheum; Lee, Jin Yong

    2017-11-22

    Electrical control of magnetic exchange coupling interactions is central to designing magnetic materials. In this study, we performed density functional theory calculations to investigate the magnetic spin configuration, magnetic moment, and magnetic coupling strength of zigzag MoS 2 nanoribbons (zMoS 2 NRs) with different edge passivation, that is, pristine (Pristine), hydrogen termination (H-tem), sulfur termination (S-term), and sulfhydryl termination (SH-term). Further, we investigated the influence of an external electric field (F Ext ) on the magnetic properties. Pristine and H-term showed an AFM ground configuration with considerably weak magnetic coupling strength while S-term and SH-term showed a single edge FM ground configuration in the absence of the electric field. When the external electric field was applied, the positive field intensified the original spin configuration, thus increasing the magnetic moment of the system while the negative field weakened the original spin configuration, thus decreasing the magnetic moment and further reversed the spin configuration from AFM to FM and vice versa in most systems. The magnetic coupling strength of the system increased for both Pristine and H-term regardless of the direction of the field. However, the extent of increase was much higher in Pristine due to the existence of relatively easily transferable dangling electrons compared with the constrained electrons of H-term restricted to chemical bonds. Our results demonstrate a possibility of reversible spin control from AFM to FM and vice versa by applying an electric field and the enhancement of the magnetic coupling strength of zMoS 2 NRs.

  15. Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO{sub 3} nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Zhen-dong [Department of Physics, Tsinghua University, Beijing 100084 (China); Wang, Jia-jun [Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444 (China); Wang, Liang, E-mail: wangl@shu.edu.cn [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444 (China); Yang, Xiong-yu; Xu, Gang [Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444 (China); Tang, Liang, E-mail: tang1liang@shu.edu.cn [Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444 (China)

    2016-07-15

    Highlights: • A novel heterojunction photocatalyst, GQD/AgVO{sub 3} was prepared. • The morphology of GQD/AgVO{sub 3} was well characterized. • Ibuprofen was easily decomposed using GQD/AgVO{sub 3} under visible-light irradiation. • The degradation pathway of ibuprofen was also suggested. - Abstract: Single crystalline, non-toxicity, and long-term stability graphene quantum dots (GQDs) were modified onto the AgVO{sub 3} nanoribbons by a facile hydrothermal and sintering technique which constructs a unique heterojunction photocatalyst. Characterization results indicate that GQDs are well dispersed on the surface of AgVO{sub 3} nanoribbons and GQD/AgVO{sub 3} heterojunctions are formed, which can greatly promote the separation efficiency of photogenerated electron-hole pairs under visible light irradiation. By taking advantage of this feature, the GQD/AgVO{sub 3} heterojunctions exhibit considerable improvement on the photocatalytic activities for the degradation of ibuprofen (IBP) under visible light irradiation as compared to pure AgVO{sub 3}. The photocatalytic activity of GQD/AgVO{sub 3} heterojunctions is relevant with GQD ratio and the optimal activity is obtained at 3 wt% with the highest separation efficiency of photogenerated electron-hole pairs. Integrating the physicochemical and photocatalytic properties, the factors controlling the photocatalytic activity of GQD/AgVO{sub 3} heterojunctions are discussed in detail. Moreover, potential photocatalytic degradation mechanisms of IBP via GQD/AgVO{sub 3} heterojunctions under visible light are proposed.

  16. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons

    KAUST Repository

    Hong, Seung Sae; Cha, Judy J.; Kong, Desheng; Cui, Yi

    2012-01-01

    A topological insulator is the state of quantum matter possessing gapless spin-locking surface states across the bulk band gap, which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state by electron transport measurements. Here we report the surface-state-dominant transport in antimony-doped, zinc oxide-encapsulated Bi2Se3 nanoribbons with suppressed bulk electron concentration. In the nanoribbon with sub-10-nm thickness protected by a zinc oxide layer, we position the Fermi levels of the top and bottom surfaces near the Dirac point by electrostatic gating, achieving extremely low two-dimensional carrier concentration of 2×10 11cm-2. The zinc oxide-capped, antimony-doped Bi 2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications. © 2012 Macmillan Publishers Limited. All rights reserved.

  17. The role of electronic dopant on full band in-plane RKKY coupling in armchair graphene nanoribbons-magnetic impurity system

    Science.gov (United States)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen

    2018-05-01

    Motivated by the growing interest in solving the obstacles of spintronics applications, we study the Ruderman-Kittel-Kasuya-Yosida (RKKY) effective pairwise interaction between magnetic impurities interacting through the π -electrons embedded in both electronically doped-semiconducting and metallic armchair graphene nanoribbons. In terms of the Green's function formalism, treated in a tight-binding approximation with hopping beyond Dirac cone approximation, the RKKY coupling is an attraction or a repulsion depending on the magnetic impurities distances. Our results show that the RKKY coupling in semiconducting nanoribbons is much more affected by doping than metallic ones. Furthermore, we found that the RKKY coupling increases with ribbon width, while there exist some critical electronic concentrations in RKKY interaction oscillations. On the other hand, we find an unusual incoming wave-vector direction for electrons which describes more clearly the ferro- and antiferromagnetic spin configurations in such system. Also, the RKKY coupling at low and high-temperature regions has been addressed for both ferro- and antiferromagnetic spin arrangements.

  18. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons

    KAUST Repository

    Hong, Seung Sae

    2012-03-27

    A topological insulator is the state of quantum matter possessing gapless spin-locking surface states across the bulk band gap, which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state by electron transport measurements. Here we report the surface-state-dominant transport in antimony-doped, zinc oxide-encapsulated Bi2Se3 nanoribbons with suppressed bulk electron concentration. In the nanoribbon with sub-10-nm thickness protected by a zinc oxide layer, we position the Fermi levels of the top and bottom surfaces near the Dirac point by electrostatic gating, achieving extremely low two-dimensional carrier concentration of 2×10 11cm-2. The zinc oxide-capped, antimony-doped Bi 2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications. © 2012 Macmillan Publishers Limited. All rights reserved.

  19. Germanene nanoribbon tunneling field effect transistor (GeNR-TFET) with a 10 nm channel length: analog performance, doping and temperature effects

    International Nuclear Information System (INIS)

    Bayani, Amir Hossein; Vali, Mehran; Dideban, Daryoosh; Moezi, Negin

    2016-01-01

    In this paper, a scheme of the germanene nanoribbon tunneling field effect transistor (GeNR-TFET) is proposed. The characteristics and analog performance of the device were theoretically investigated by exploiting the electrical properties of a germanene nanoribbon and applying the doping concentration in the source and drain regions at 300 K and 4 K temperatures. The device parameters were obtained using a non-equilibrium Green’s function (NEGF) method within the tight binding (TB) Hamiltonian. The TB Hamiltonian was extracted from the density functional theory (DFT) through the Wannier function. We find that by increasing the doping concentration the I on current increases which leads to an improvement of the I on /I off ratio to 10 5 . Moreover, decreasing the temperature from 300 K to 4 K causes the I off to become ten times smaller. We find that the device output characteristic displays a negative differential conductance with a good peak-to-valley ratio which is improved by increasing the doping concentration. The analog performance of the device is also investigated in the subthreshold regime of operation by varying the doping concentration. It is observed that by increasing the device doping concentration, the analog figures of merit can be improved. (paper)

  20. Hydrothermal preparation of blue molybdenum bronze nanoribbons: structural changes in mother crystals, related to solid-state conversion and crystallite splitting to nanomorphology

    Science.gov (United States)

    Nishida, Takamasa; Eda, Kazuo

    2018-02-01

    Hydrothermal syntheses of alkali-metal blue molybdenum bronze nanoribbons, which are expected to exhibit unique properties induced by a combined effect of extrinsic and intrinsic low-dimensionalities, from hydrated-alkali-metal molybdenum bronzes were investigated. Nanoribbons grown along the quasi-one-dimensional (1D) conductive direction of Cs0.3MoO3, which is difficult to prepare by the conventional methods, were first synthesized. The nanomorphology formation is achieved by a solid-state conversion (or crystallite splitting) and subsequent crystallite growth, and the structural changes of the starting material related to the conversion were first observed by powder X-ray diffraction and scanning transmission electron microscopy as a result of finely tuned reaction system and preparation conditions. The structural changes were analyzed by model simulations and were attributed to the structural modulations that were concerned with the intralayer packing disorder and with two-dimensional long-range ordered structure, formed in MoO3 sheets of the hydrated molybdenum bronze. Moreover, the modulations were related to displacement defects of the Mo-O framework units generated along the [100] direction in the hydrated molybdenum bronze. Then, it was suggested that the solid-state conversion into blue molybdenum bronze and the crystallite splitting to nanomorphology were initiated by the breaking of the Mo-O-Mo bonds at the defects. [Figure not available: see fulltext.

  1. Synthesis of ultrasmall CsPbBr3 nanoclusters and their transformation to highly deep-blue-emitting nanoribbons at room temperature.

    Science.gov (United States)

    Xu, Yibing; Zhang, Qiang; Lv, Longfei; Han, Wenqian; Wu, Guanhong; Yang, Dong; Dong, Angang

    2017-11-16

    Discretely sized semiconductor clusters have attracted considerable attention due to their intriguing optical properties and self-assembly behaviors. While lead halide perovskite nanostructures have been recently intensively explored, few studies have addressed perovskite clusters and their self-assembled superstructures. Here, we report the room-temperature synthesis of sub-2 nm CsPbBr 3 clusters and present strong evidence that these ultrasmall perovskite species, obtained under a wide range of reaction conditions, possess a specific size, with optical properties and self-assembly characteristics resembling those of well-known II-VI semiconductor magic-sized clusters. Unlike conventional CsPbBr 3 nanocrystals, the as-synthesized CsPbBr 3 nanoclusters spontaneously self-assemble into a hexagonally packed columnar mesophase in solution, which can be further converted to single-crystalline CsPbBr 3 quantum nanoribbons with bright deep-blue emission at room temperature. Such a conversion of CsPbBr 3 nanoclusters to nanoribbons is found to be driven by a ligand-destabilization-induced crystallization and mesophase transition process. Our study will facilitate the investigation of perovskite nanoclusters and offer new possibilities in the low-temperature synthesis of anisotropic perovskite nanostructures.

  2. Multiple signal amplified electrochemiluminescent immunoassay for brombuterol detection using gold nanoparticles and polyamidoamine dendrimers-silver nanoribbon

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Tiantian; Hu, Liuyi; Zhao, Kang; Deng, Anping, E-mail: denganping@suda.edu.cn; Li, Jianguo, E-mail: lijgsd@suda.edu.cn

    2016-11-16

    Electrochemiluminescent (ECL) immunosensor with multiple signal amplification was designed based on gold nanoparticles (AuNPs), polyamidoamine dendrimers (PAMAM) and silver-cysteine hybrid nanoribbon (SNR). Low toxic L-cysteine capped CdSe QDs was chosen as the ECL signal probe. To verify the proposed ultrasensitive ECL immunosensor for β-adrenergic agonists (β-AA), we detected Brombuterol (Brom) as a proof-of-principle analyte. Therein, AuNPs as the substrate can simplify the experiment process, accelerate the electron transfer rate, and carry more coating antigen (Ag-OVA) to enlarge ECL signal. On one hand, SNR on the surface of electrode can avoid the aggregation of AuNPs, and SNR-PAMAM-AuNPs also can be acted as a good accelerator for electron transfer. On the other hand, PAMAM (16 -NH{sub 2}) functionalized SNR (SNR-PAMAM) with numerous amino groups could be employed to bond abundant actived QDs to further amplify ECL signal. The new immunosensor can offer a simple, reliable, rapid, and selective detection for Brom, which have a dynamic range of 0.005–700 ng mL{sup −1} with a low detection limit at 1.5 pg mL{sup −1}. The proposed biosensor will extend the application of nanomaterials in ECL immunoassays and open a new road for the detection of Brom and other β-AA in the future. - Highlights: • A multiple signal amplification ECL immunosensor of eco-friendly CdSe QDs for brombuterol determination was developed. • Besides substrates, AuNPs and PAMAM-SNR were creatively used to accelerate the electron transport between electrode and QDs. • SNR-PAMAM with numerous amino groups also could be employed to bond abundant actived QDs to amplify ECL signal. • Competitive immunoassay was performed with ECL to detect small molecules of brombuterol. • It provided a method for detecting Brom and enlarged the usage of QDs, AuNPs and SNR-PAMAM in ECL biosensing.

  3. Multiple signal amplified electrochemiluminescent immunoassay for brombuterol detection using gold nanoparticles and polyamidoamine dendrimers-silver nanoribbon

    International Nuclear Information System (INIS)

    Dong, Tiantian; Hu, Liuyi; Zhao, Kang; Deng, Anping; Li, Jianguo

    2016-01-01

    Electrochemiluminescent (ECL) immunosensor with multiple signal amplification was designed based on gold nanoparticles (AuNPs), polyamidoamine dendrimers (PAMAM) and silver-cysteine hybrid nanoribbon (SNR). Low toxic L-cysteine capped CdSe QDs was chosen as the ECL signal probe. To verify the proposed ultrasensitive ECL immunosensor for β-adrenergic agonists (β-AA), we detected Brombuterol (Brom) as a proof-of-principle analyte. Therein, AuNPs as the substrate can simplify the experiment process, accelerate the electron transfer rate, and carry more coating antigen (Ag-OVA) to enlarge ECL signal. On one hand, SNR on the surface of electrode can avoid the aggregation of AuNPs, and SNR-PAMAM-AuNPs also can be acted as a good accelerator for electron transfer. On the other hand, PAMAM (16 -NH_2) functionalized SNR (SNR-PAMAM) with numerous amino groups could be employed to bond abundant actived QDs to further amplify ECL signal. The new immunosensor can offer a simple, reliable, rapid, and selective detection for Brom, which have a dynamic range of 0.005–700 ng mL"−"1 with a low detection limit at 1.5 pg mL"−"1. The proposed biosensor will extend the application of nanomaterials in ECL immunoassays and open a new road for the detection of Brom and other β-AA in the future. - Highlights: • A multiple signal amplification ECL immunosensor of eco-friendly CdSe QDs for brombuterol determination was developed. • Besides substrates, AuNPs and PAMAM-SNR were creatively used to accelerate the electron transport between electrode and QDs. • SNR-PAMAM with numerous amino groups also could be employed to bond abundant actived QDs to amplify ECL signal. • Competitive immunoassay was performed with ECL to detect small molecules of brombuterol. • It provided a method for detecting Brom and enlarged the usage of QDs, AuNPs and SNR-PAMAM in ECL biosensing.

  4. Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons

    Science.gov (United States)

    Xue, Qingzhong; Pan, Xinglong; Li, Xiaofang; Zhang, Jianqiang; Guo, Qikai

    2017-02-01

    Novel core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons (MWCNT@GONRs) nanohybrids were successfully prepared using a modified chemical longitudinal unzipping method. Subsequently, the MWCNT@GONRs nanohybrids were used as fillers to enhance the gas separation performance of polyimide based mixed matrix membranes (MMMs). It is found that MMMs concurrently exhibited higher gas selectivity and higher gas permeability compared to pristine polyimide. The high gas selectivity could be attributed to the GONRs shell, which provided a selective barrier and large gas adsorbed area, while the high gas permeability resulted from the hollow structured MWCNTs core with smooth internal surface, which acted as a rapid transport channel. MWCNT@GONRs could be promising candidates to improve gas separation performance of MMMs due to the unique microstructures, ease of synthesis and low filling loading.

  5. Two-dimensional square ternary Cu2MX4 (M = Mo, W; X = S, Se) monolayers and nanoribbons predicted from density functional theory

    KAUST Repository

    Gan, Liyong

    2014-03-19

    Two-dimensional (2D) materials often adopt a hexagonal lattice. We report on a class of 2D materials, Cu2MX4 (M = Mo, W; X = S, Se), that has a square lattice. Up to three monolayers, the systems are kinetically stable. All of them are semiconductors with band gaps from 2.03 to 2.48 eV. Specifically, the states giving rise to the valence band maximum are confined to the Cu and X atoms, while those giving rise to the conduction band minimum are confined to the M atoms, suggesting that spontaneous charge separation occurs. The semiconductive nature makes the materials promising for transistors, optoelectronics, and solar energy conversion. Moreover, the ferromagnetism on the edges of square Cu2MX4 nanoribbons opens applications in spintronics.

  6. The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni) molecular devices based on zigzag graphene nanoribbon electrodes

    Science.gov (United States)

    Li, Dongde; Wu, Di; Zhang, Xiaojiao; Zeng, Bowen; Li, Mingjun; Duan, Haiming; Yang, Bingchu; Long, Mengqiu

    2018-05-01

    The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni; dcdmp = 2,3-dicyano-5,6-dimercaptopyrazyne) molecular devices based on zigzag graphene nanoribbon (ZGNR) electrodes were investigated by density functional theory combined nonequilibrium Green's function method (DFT-NEGF). Our results show that the spin-dependent transport properties of the M(dcdmp)2 molecular devices can be controlled by the spin configurations of the ZGNR electrodes, and the central 3d-transition metal atom can introduce a larger magnetism than that of the nonferrous metal one. Moreover, the perfect spin filtering effect, negative differential resistance, rectifying effect and magnetic resistance phenomena can be observed in our proposed M(dcdmp)2 molecular devices.

  7. A glassy carbon electrode modified with a multiwalled carbon nanotube-reduced graphene oxide nanoribbon core-shell structure for electrochemical sensing of p-dihydroxybenzene

    International Nuclear Information System (INIS)

    Zhu, Gangbing; Yi, Yinhui; Liu, Zhenjiang; Sun, Jianfan; Wu, Xiangyang; Zou, Bin

    2015-01-01

    Multiwalled carbon nanotubes (MWCNT) were covered with reduced graphene oxide nanoribbons (rGONR) to give a material with a core-shell heterostructure of the type MWCNT-rGONR. It was obtained by (a) longitudinal partial unzipping of MWCNT to form MWCNT-GONR, and (b) subsequent chemical reduction with hydrazine to give MWCNT-rGONR. The MWCNT-rGONR heterostructure was used to modify a glassy carbon electrode (GCE) to obtain an electrochemical sensor for p-dihydroxybenzene (DHB). The synergistic effects of the MWCNT and the rGONR results in a distinctly improved redox current towards DHB compared to a bare GCE, an MWCNT/GCE, and an MWCNT-GONR/GCE. At the working voltage range from −1 00 to 400 mV, it displays a linear response to DHB in the 80 to 3000 nM concentration range with a 20 nM detection limit. (author)

  8. Two-dimensional square ternary Cu2MX4 (M = Mo, W; X = S, Se) monolayers and nanoribbons predicted from density functional theory

    KAUST Repository

    Gan, Liyong; Schwingenschlö gl, Udo

    2014-01-01

    Two-dimensional (2D) materials often adopt a hexagonal lattice. We report on a class of 2D materials, Cu2MX4 (M = Mo, W; X = S, Se), that has a square lattice. Up to three monolayers, the systems are kinetically stable. All of them are semiconductors with band gaps from 2.03 to 2.48 eV. Specifically, the states giving rise to the valence band maximum are confined to the Cu and X atoms, while those giving rise to the conduction band minimum are confined to the M atoms, suggesting that spontaneous charge separation occurs. The semiconductive nature makes the materials promising for transistors, optoelectronics, and solar energy conversion. Moreover, the ferromagnetism on the edges of square Cu2MX4 nanoribbons opens applications in spintronics.

  9. Monolayer WS{sub 2} crossed with an electro-spun PEDOT-PSS nano-ribbon: Fabricating a Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Deliris N.; Vedrine, Josee [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00791 (United States); Pinto, Nicholas J., E-mail: nicholas.pinto@upr.edu [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00791 (United States); Naylor, Carl H.; Charlie Johnson, A.T. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2016-12-15

    Highlights: • First report on a Schottky diode formed from monolayer WS{sub 2} and PEDOT-PSSA nano-ribbon. • Straightforward and unique fabrication technique. • Diode operation is stable in air. - Abstract: WS{sub 2} and PEDOT-PSS were individually characterized with the goal of analyzing charge transport across a hetero-junction formed by these two materials. In thermal equilibrium electron flow from the WS{sub 2} conduction band into the polymer LUMO level leads to band bending that creates a potential barrier preventing further current. The measured current-voltage (I{sub DS}-V{sub DS}) curve across the hetero-junction was non-linear and asymmetric similar to a diode, with a turn-on voltage of 1.4 V and a rectification ratio of 12. The device I–V data were analyzed using the standard thermionic emission model of a Schottky junction and yielded an ideality parameter of 1.9 and a barrier height of 0.58 eV. This facile technique is the first report on a nano-diode fabricated using WS{sub 2} and PEDOT-PSS, opening up the possibility of extending this work to include other layered transition metal dichalcogenides and conducting polymers.

  10. M3C (M: Fe, Co, Ni) Nanocrystals Encased in Graphene Nanoribbons: An Active and Stable Bifunctional Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions.

    Science.gov (United States)

    Fan, Xiujun; Peng, Zhiwei; Ye, Ruquan; Zhou, Haiqing; Guo, Xia

    2015-07-28

    Transition metal carbide nanocrystalline M3C (M: Fe, Co, Ni) encapsulated in graphitic shells supported with vertically aligned graphene nanoribbons (VA-GNRs) are synthesized through a hot filament chemical vapor deposition (HF-CVD) method. The process is based on the direct reaction between iron group metals (Fe, Co, Ni) and carbon source, which are facilely get high purity carbide nanocrystals (NCs) and avoid any other impurity at relatively low temperature. The M3C-GNRs exhibit superior enhanced electrocatalystic activity for oxygen reduction reaction (ORR), including low Tafel slope (39, 41, and 45 mV dec(-1) for Fe3C-GNRs, Co3C-GNRs, and Ni3C-GNRs, respectively), positive onset potential (∼0.8 V), high electron transfer number (∼4), and long-term stability (no obvious drop after 20 000 s test). The M3C-GNRs catalyst also exhibits remarkable hydrogen evolution reaction (HER) activity with a large cathodic current density of 166.6, 79.6, and 116.4 mA cm(-2) at an overpotential of 200 mV, low onset overpotential of 32, 41, and 35 mV, small Tafel slope of 46, 57, and 54 mV dec(-1) for Fe3C-GNRs, Co3C-GNRs, and Ni3C-GNRs, respectively, as well as an excellent stability in acidic media.

  11. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites.

    Science.gov (United States)

    Fei, Airong; Liu, Qian; Huan, Juan; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun

    2015-08-15

    Gold nanoparticles (Au NPs) decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon (Au/MWCNT-rGONR) composites were synthesized by a one-pot reaction. By employing the resulting Au/MWCNT-rGONR composites as the support for aptamer immobilization, we developed an ultrasensitive label-free electrochemical impedimetric aptasensor for acetamiprid detection, which was based on that the variation of electron transfer resistance was relevant to the formation of acetamiprid-aptamer complex at the modified electrode surface. Compared with pure Au NPs and MWCNT-rGONR, the Au/MWCNT-rGONR composites modified electrode was the most sensitive aptasensing platform for the determination of acetamiprid. The proposed aptasensor displayed a linear response for acetamiprid in the range from 5×10(-14) M to 1×10(-5) M with an extremely low detection limit of 1.7×10(-14) M (S/N=3). In addition, this impedimetric aptasensor possessed great advantages including the simple operation process, low-cost, selectivity and sensitivity, which provided a promising model for the aptamer-based detection with a direct impedimetric method. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. First-principles investigation on defect-induced silicene nanoribbons - A superior media for sensing NH3, NO2 and NO gas molecules

    Science.gov (United States)

    Walia, Gurleen Kaur; Randhawa, Deep Kamal Kaur

    2018-04-01

    In this paper, the electronic and transport properties of armchair silicene nanoribbons (ASiNRs) are analyzed for their application as highly selective and sensitive gas molecule sensors. The study is focused on sensing three nitrogen based gases; ammonia (NH3), nitrogen dioxide (NO2) and nitric oxide (NO), which depending upon their adsorption energy and charge transfer, form bonds of varying strength with ASiNRs. The negligible band gap of ASiNRs is tuned by adding a defect in ASiNRs. Adsorption of NH3 leads to the opening of band gap whereas on adsorption of NO2 and NO, ASiNRs exhibit metallic nature. Distinctly divergent electronic and transport properties of ASiNRs are observed and on adsorption of NH3, NO2 and NO, renders them suitable for sensing them. All gas molecules show stronger adsorption on defective ASiNRs (D-ASiNRs) as compared to pristine ASiNRs (P-ASiNRs). The work reveals that introduction of defect can drastically improve the sensitivity of ASiNRs.

  13. Improvement in the performance of graphene nanoribbon p-i-n tunneling field effect transistors by applying lightly doped profile on drain region

    Science.gov (United States)

    Naderi, Ali

    2017-12-01

    In this paper, an efficient structure with lightly doped drain region is proposed for p-i-n graphene nanoribbon field effect transistors (LD-PIN-GNRFET). Self-consistent solution of Poisson and Schrödinger equation within Nonequilibrium Green’s function (NEGF) formalism has been employed to simulate the quantum transport of the devices. In proposed structure, source region is doped by constant doping density, channel is an intrinsic GNR, and drain region contains two parts with lightly and heavily doped doping distributions. The important challenge in tunneling devices is obtaining higher current ratio. Our simulations demonstrate that LD-PIN-GNRFET is a steep slope device which not only reduces the leakage current and current ratio but also enhances delay, power delay product, and cutoff frequency in comparison with conventional PIN GNRFETs with uniform distribution of impurity and with linear doping profile in drain region. Also, the device is able to operate in higher drain-source voltages due to the effectively reduced electric field at drain side. Briefly, the proposed structure can be considered as a more reliable device for low standby-power logic applications operating at higher voltages and upper cutoff frequencies.

  14. Infrared to near-ultraviolet optical response for zigzag-edge silicene nanoribbons under the irradiation of an external electromagnetic field

    Science.gov (United States)

    Liao, Wenhu; Bao, Hairui; Zhang, Xincheng; Zuo, Min; Yang, Hong

    2018-01-01

    We investigate theoretically the width-dependent electronic structure and optical spectrum for intrinsic zigzag-edge silicene nanoribbons with N silicon atoms of the A and B sublattice ( N-ZSiNRs) under the irradiation of an external electromagnetic field at low temperatures. Based on the method of the tight-binding approximation, we have derived a width-dependent dispersion relation and wave function for N-ZSiNRs under the hard-wall boundary condition. By way of the dipole-transition theorem for semiconductors, both the 8- and 16-ZSiNRs have been observed to exhibit broad values (0.30-3.20 eV) of optical conductivity, dielectric function and electron energy loss spectrum in the range of infrared to near-ultraviolet. The optical spectra for 8- and 16-ZSiNRs have been manifested to be transitions between the valence and conduction bands with the same subband indices, as well as the resonances between the edge state and bulk state subbands, while the optical transitions among the different indexed bulk subbands should be forbidden owing to the non-conserved momentum. The obtained results are believed to be of importance in exploring new effects and optoelectronic applications of the silicene-based electron devices.

  15. Electrochemical characteristics of graphene nanoribbon/polypyrrole composite prepared via oxidation polymerization in the presence of poly-(sodium 4-styrenesulfonate)

    International Nuclear Information System (INIS)

    Hsu, Feng-Hao; Huang, Jyun-Wei; Wu, Tzong-Ming

    2015-01-01

    Graphene nanoribbon (GNR)/polypyrrole (PPy) composite is synthesized via in situ chemical oxidation polymerization in presence of poly-(sodium 4-styrenesulfonate) (PSS) as a surfactant. The morphology of GNR/PPy composites is observed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The electrochemical properties are characterized using galvanostatic charge–discharge and cycle voltammetry (CV). The specific capacitance of GNR/PPy composites shows the highest value of 881 F g −1 that in presence of 9 wt% GNR at a current density of 0.5 A g −1 . The GNR/PPy composite also demonstrates the good cycle stability with only 16% decay of initial capacitance that much lower than 64% decay of pure PPy after 1000 cycles. - Highlights: • PPy/GNR nanocomposites are synthesized using in situ chemical polymerization. • The notable specific capacitance of 881 F g −1 at a current density of 0.5 A g −1 is obtained. • Excellent cyclic stability of PPy/GNR nanocomposites is achieved

  16. Vertical heterostructures of MoS2 and graphene nanoribbons grown by two-step chemical vapor deposition for high-gain photodetectors.

    Science.gov (United States)

    Yunus, Rozan Mohamad; Endo, Hiroko; Tsuji, Masaharu; Ago, Hiroki

    2015-10-14

    Heterostructures of two-dimensional (2D) layered materials have attracted growing interest due to their unique properties and possible applications in electronics, photonics, and energy. Reduction of the dimensionality from 2D to one-dimensional (1D), such as graphene nanoribbons (GNRs), is also interesting due to the electron confinement effect and unique edge effects. Here, we demonstrate a bottom-up approach to grow vertical heterostructures of MoS2 and GNRs by a two-step chemical vapor deposition (CVD) method. Single-layer GNRs were first grown by ambient pressure CVD on an epitaxial Cu(100) film, followed by the second CVD process to grow MoS2 over the GNRs. The MoS2 layer was found to grow preferentially on the GNR surface, while the coverage could be further tuned by adjusting the growth conditions. The MoS2/GNR nanostructures show clear photosensitivity to visible light with an optical response much higher than that of a 2D MoS2/graphene heterostructure. The ability to grow a novel 1D heterostructure of layered materials by a bottom-up CVD approach will open up a new avenue to expand the dimensionality of the material synthesis and applications.

  17. Electrochemical characteristics of graphene nanoribbon/polypyrrole composite prepared via oxidation polymerization in the presence of poly-(sodium 4-styrenesulfonate)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Feng-Hao; Huang, Jyun-Wei; Wu, Tzong-Ming, E-mail: tmwu@dragon.nchu.edu.tw

    2015-07-01

    Graphene nanoribbon (GNR)/polypyrrole (PPy) composite is synthesized via in situ chemical oxidation polymerization in presence of poly-(sodium 4-styrenesulfonate) (PSS) as a surfactant. The morphology of GNR/PPy composites is observed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The electrochemical properties are characterized using galvanostatic charge–discharge and cycle voltammetry (CV). The specific capacitance of GNR/PPy composites shows the highest value of 881 F g{sup −1} that in presence of 9 wt% GNR at a current density of 0.5 A g{sup −1}. The GNR/PPy composite also demonstrates the good cycle stability with only 16% decay of initial capacitance that much lower than 64% decay of pure PPy after 1000 cycles. - Highlights: • PPy/GNR nanocomposites are synthesized using in situ chemical polymerization. • The notable specific capacitance of 881 F g{sup −1} at a current density of 0.5 A g{sup −1} is obtained. • Excellent cyclic stability of PPy/GNR nanocomposites is achieved.

  18. Highly sensitive and simultaneous electrochemical determination of 2-aminophenol and 4-aminophenol based on poly(l-arginine)-β-cyclodextrin/carbon nanotubes@graphene nanoribbons modified electrode.

    Science.gov (United States)

    Yi, Yinhui; Zhu, Gangbing; Wu, Xiangyang; Wang, Kun

    2016-03-15

    Owing to the similar characteristics and physiochemical property of 2-aminophenol (2-AP) and 4-aminophenol (4-AP), the highly sensitive simultaneous electrochemical determination of 2- and 4-AP is a great challenge. In this paper, by electropolymerizing β-cyclodextrin (β-CD) and l-arginine (l-Arg) on the surface of carbon nanotubes@graphene nanoribbons (CNTs@GNRs) core-shell heterostructure, a P-β-CD-l-Arg/CNTs@GNRs nanohybrid modified electrode was prepared successfully, and it could exhibit the synergetic effects of β-CD (high host-guest recognition and enrichment ability), l-Arg (excellent electrocatalytic activity) and CNTs@GNRs (prominent electrochemical properties and large surface area), the P-β-CD-l-Arg/CNTs@GNRs modified electrode was used in the electrochemical determination of 2- and 4-AP, the results demonstrated that the highly sensitive and simultaneous determination of 2- and 4-AP is successfully achieved and the modified electrode has a linear response range of 25.0-1300.0 nM for both 2- and 4-AP, and the detection limits of 2- and 4-AP obtained in this work are 6.2 and 3.5 nM, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core-shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure.

    Science.gov (United States)

    Zhu, Gangbing; Yi, Yinhui; Han, Zhixiang; Wang, Kun; Wu, Xiangyang

    2014-10-03

    Being awfully harmful to the environment and human health, the qualitative and quantitative determinations of polycyclic aromatic amines (PAAs) are of great significance. In this paper, a novel core-shell heterostructure of multiwalled carbon nanotubes (MWCNTs) as the core and graphene oxide nanoribbons (GONRs) as the shell (MWCNTs@GONRs) was produced from longitudinal partially unzipping of MWCNTs side walls using a simple wet chemical strategy and applied for electrochemical determination of three kinds of PAAs (1-aminopyrene (1-AP), 1-aminonaphthalene and 3,3'-diaminobiphenyl). Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis and electrochemical methods were used to characterize the as-prepared MWCNTs@GONRs. Due to the synergistic effects from MWCNTs and GONRs, the oxidation currents of PAAs at the MWCNTs@GONRs modified glassy carbon (GC) electrode are much higher than that at the MWCNTs/GC, graphene/GC and bare GC electrodes. 1-AP was used as the representative analyte to demonstrate the sensing performance of the MWCNTs@GONRs/GC electrode, and the proposed modified electrode has a linear response range of 8.0-500.0 nM with a detection limit of 1.5 nM towards 1-AP. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Electric field and substrate–induced modulation of spin-polarized transport in graphene nanoribbons on A3B5 semiconductors

    International Nuclear Information System (INIS)

    Ilyasov, Victor V.; Nguyen, Chuong V.; Ershov, Igor V.; Hieu, Nguyen N.

    2015-01-01

    In this work, we present the density functional theory calculations of the effect of an oriented electric field on the electronic structure and spin-polarized transport in a one dimensional (1D) zigzag graphene nanoribbon (ZGNR) channel placed on a wide bandgap semiconductor of the A3B5 type. Our calculations show that carrier mobility in the 1D semiconductor channel of the ZGNR/A3B5(0001) type is in the range from 1.7×10 4 to 30.5×10 4 cm 2 /Vs and can be controlled by an electric field. In particular, at the critical value of the positive potential, even though hole mobility in an one-dimensional 8-ZGNR/h-BN semiconductor channel for spin down electron subsystems is equal to zero, hole mobility can be increased to 4.1×10 5 cm 2 /Vs for spin up electron subsystems. We found that band gap and carrier mobility in a 1D semiconductor channel of the ZGNR/A3B5(0001) type depend strongly on an external electric field. With these extraordinary properties, ZGNR/A3B5(0001) can become a promising materials for application in nanospintronic devices

  1. Enhanced Device and Circuit-Level Performance Benchmarking of Graphene Nanoribbon Field-Effect Transistor against a Nano-MOSFET with Interconnects

    Directory of Open Access Journals (Sweden)

    Huei Chaeng Chin

    2014-01-01

    Full Text Available Comparative benchmarking of a graphene nanoribbon field-effect transistor (GNRFET and a nanoscale metal-oxide-semiconductor field-effect transistor (nano-MOSFET for applications in ultralarge-scale integration (ULSI is reported. GNRFET is found to be distinctly superior in the circuit-level architecture. The remarkable transport properties of GNR propel it into an alternative technology to circumvent the limitations imposed by the silicon-based electronics. Budding GNRFET, using the circuit-level modeling software SPICE, exhibits enriched performance for digital logic gates in 16 nm process technology. The assessment of these performance metrics includes energy-delay product (EDP and power-delay product (PDP of inverter and NOR and NAND gates, forming the building blocks for ULSI. The evaluation of EDP and PDP is carried out for an interconnect length that ranges up to 100 μm. An analysis, based on the drain and gate current-voltage (Id-Vd and Id-Vg, for subthreshold swing (SS, drain-induced barrier lowering (DIBL, and current on/off ratio for circuit implementation is given. GNRFET can overcome the short-channel effects that are prevalent in sub-100 nm Si MOSFET. GNRFET provides reduced EDP and PDP one order of magnitude that is lower than that of a MOSFET. Even though the GNRFET is energy efficient, the circuit performance of the device is limited by the interconnect capacitances.

  2. Dual-Mode Gas Sensor Composed of a Silicon Nanoribbon Field Effect Transistor and a Bulk Acoustic Wave Resonator: A Case Study in Freons

    Directory of Open Access Journals (Sweden)

    Ye Chang

    2018-01-01

    Full Text Available In this paper, we develop a novel dual-mode gas sensor system which comprises a silicon nanoribbon field effect transistor (Si-NR FET and a film bulk acoustic resonator (FBAR. We investigate their sensing characteristics using polar and nonpolar organic compounds, and demonstrate that polarity has a significant effect on the response of the Si-NR FET sensor, and only a minor effect on the FBAR sensor. In this dual-mode system, qualitative discrimination can be achieved by analyzing polarity with the Si-NR FET and quantitative concentration information can be obtained using a polymer-coated FBAR with a detection limit at the ppm level. The complementary performance of the sensing elements provides higher analytical efficiency. Additionally, a dual mixture of two types of freons (CFC-113 and HCFC-141b is further analyzed with the dual-mode gas sensor. Owing to the small size and complementary metal-oxide semiconductor (CMOS-compatibility of the system, the dual-mode gas sensor shows potential as a portable integrated sensing system for the analysis of gas mixtures in the future.

  3. Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core–shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Gangbing, E-mail: zhgb1030@ujs.edu.cn [School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Yi, Yinhui; Han, Zhixiang [School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kun [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wu, Xiangyang, E-mail: wuxy@ujs.edu.cn [School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2014-10-03

    Highlights: • A core–shell heterostructure MWCNTs@GONRs was produced from unzipping MWCNTs. • A new electrochemical sensor for PAAs was developed based on MWCNTs@GONRs hybrids. • The sensor shows good analytical performance for PAAs detection. - Abstract: Being awfully harmful to the environment and human health, the qualitative and quantitative determinations of polycyclic aromatic amines (PAAs) are of great significance. In this paper, a novel core–shell heterostructure of multiwalled carbon nanotubes (MWCNTs) as the core and graphene oxide nanoribbons (GONRs) as the shell (MWCNTs@GONRs) was produced from longitudinal partially unzipping of MWCNTs side walls using a simple wet chemical strategy and applied for electrochemical determination of three kinds of PAAs (1-aminopyrene (1-AP), 1-aminonaphthalene and 3,3′-diaminobiphenyl). Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis and electrochemical methods were used to characterize the as-prepared MWCNTs@GONRs. Due to the synergistic effects from MWCNTs and GONRs, the oxidation currents of PAAs at the MWCNTs@GONRs modified glassy carbon (GC) electrode are much higher than that at the MWCNTs/GC, graphene/GC and bare GC electrodes. 1-AP was used as the representative analyte to demonstrate the sensing performance of the MWCNTs@GONRs/GC electrode, and the proposed modified electrode has a linear response range of 8.0–500.0 nM with a detection limit of 1.5 nM towards 1-AP.

  4. Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core–shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure

    International Nuclear Information System (INIS)

    Zhu, Gangbing; Yi, Yinhui; Han, Zhixiang; Wang, Kun; Wu, Xiangyang

    2014-01-01

    Highlights: • A core–shell heterostructure MWCNTs@GONRs was produced from unzipping MWCNTs. • A new electrochemical sensor for PAAs was developed based on MWCNTs@GONRs hybrids. • The sensor shows good analytical performance for PAAs detection. - Abstract: Being awfully harmful to the environment and human health, the qualitative and quantitative determinations of polycyclic aromatic amines (PAAs) are of great significance. In this paper, a novel core–shell heterostructure of multiwalled carbon nanotubes (MWCNTs) as the core and graphene oxide nanoribbons (GONRs) as the shell (MWCNTs@GONRs) was produced from longitudinal partially unzipping of MWCNTs side walls using a simple wet chemical strategy and applied for electrochemical determination of three kinds of PAAs (1-aminopyrene (1-AP), 1-aminonaphthalene and 3,3′-diaminobiphenyl). Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis and electrochemical methods were used to characterize the as-prepared MWCNTs@GONRs. Due to the synergistic effects from MWCNTs and GONRs, the oxidation currents of PAAs at the MWCNTs@GONRs modified glassy carbon (GC) electrode are much higher than that at the MWCNTs/GC, graphene/GC and bare GC electrodes. 1-AP was used as the representative analyte to demonstrate the sensing performance of the MWCNTs@GONRs/GC electrode, and the proposed modified electrode has a linear response range of 8.0–500.0 nM with a detection limit of 1.5 nM towards 1-AP

  5. The localization-delocalization matrix and the electron-density-weighted connectivity matrix of a finite graphene nanoribbon reconstructed from kernel fragments.

    Science.gov (United States)

    Timm, Matthew J; Matta, Chérif F; Massa, Lou; Huang, Lulu

    2014-11-26

    Bader's quantum theory of atoms in molecules (QTAIM) and chemical graph theory, merged in the localization-delocalization matrices (LDMs) and the electron-density-weighted connectivity matrices (EDWCM), are shown to benefit in computational speed from the kernel energy method (KEM). The LDM and EDWCM quantum chemical graph matrices of a 66-atom C46H20 hydrogen-terminated armchair graphene nanoribbon, in 14 (2×7) rings of C2v symmetry, are accurately reconstructed from kernel fragments. (This includes the full sets of electron densities at 84 bond critical points and 19 ring critical points, and the full sets of 66 localization and 4290 delocalization indices (LIs and DIs).) The average absolute deviations between KEM and directly calculated atomic electron populations, obtained from the sum of the LIs and half of the DIs of an atom, are 0.0012 ± 0.0018 e(-) (∼0.02 ± 0.03%) for carbon atoms and 0.0007 ± 0.0003 e(-) (∼0.01 ± 0.01%) for hydrogen atoms. The integration errors in the total electron population (296 electrons) are +0.0003 e(-) for the direct calculation (+0.0001%) and +0.0022 e(-) for KEM (+0.0007%). The accuracy of the KEM matrix elements is, thus, probably of the order of magnitude of the combined precision of the electronic structure calculation and the atomic integrations. KEM appears capable of delivering not only the total energies with chemical accuracy (which is well documented) but also local and nonlocal properties accurately, including the DIs between the fragments (crossing fragmentation lines). Matrices of the intact ribbon, the kernels, the KEM-reconstructed ribbon, and errors are available as Supporting Information .

  6. All-MXene-Based Integrated Electrode Constructed by Ti3C2 Nanoribbon Framework Host and Nanosheet Interlayer for High-Energy-Density Li-S Batteries.

    Science.gov (United States)

    Dong, Yanfeng; Zheng, Shuanghao; Qin, Jieqiong; Zhao, Xuejun; Shi, Haodong; Wang, Xiaohui; Chen, Jian; Wu, Zhong-Shuai

    2018-03-27

    High-energy-density lithium-sulfur (Li-S) batteries hold promise for next-generation portable electronic devices, but are facing great challenges in rational construction of high-performance flexible electrodes and innovative cell configurations for actual applications. Here we demonstrated an all-MXene-based flexible and integrated sulfur cathode, enabled by three-dimensional alkalized Ti 3 C 2 MXene nanoribbon (a-Ti 3 C 2 MNR) frameworks as a S/polysulfides host (a-Ti 3 C 2 -S) and two-dimensional delaminated Ti 3 C 2 MXene (d-Ti 3 C 2 ) nanosheets as interlayer on a polypropylene (PP) separator, for high-energy and long-cycle Li-S batteries. Notably, an a-Ti 3 C 2 MNR framework with open interconnected macropores and an exposed surface area guarantees high S loading and fast ionic diffusion for prompt lithiation/delithiation kinetics, and the 2D d-Ti 3 C 2 MXene interlayer remarkably prevents the shuttle effect of lithium polysulfides via both chemical absorption and physical blocking. As a result, the integrated a-Ti 3 C 2 -S/d-Ti 3 C 2 /PP electrode was directly used for Li-S batteries, without the requirement of a metal current collector, and exhibited a high reversible capacity of 1062 mAh g -1 at 0.2 C and enhanced capacity of 632 mAh g -1 after 50 cycles at 0.5 C, outperforming the a-Ti 3 C 2 -S/PP electrode (547 mAh g -1 ) and conventional a-Ti 3 C 2 -S on an Al current collector (a-Ti 3 C 2 -S/Al) (597 mAh g -1 ). Furthermore, the all-MXene-based integrated cathode displayed outstanding rate capacity of 288 mAh g -1 at 10 C and long-life cyclability. Therefore, this proposed strategy of constructing an all-MXene-based cathode can be readily extended to assemble a large number of MXene-derived materials, from a group of 60+ MAX phases, for applications such as various batteries and supercapacitors.

  7. Efficient spin-filtering, magnetoresistance and negative differential resistance effects of a one-dimensional single-molecule magnet Mn(dmit2-based device with graphene nanoribbon electrodes

    Directory of Open Access Journals (Sweden)

    N. Liu

    2017-12-01

    Full Text Available We present first-principle spin-dependent quantum transport calculations in a molecular device constructed by one single-molecule magnet Mn(dmit2 and two graphene nanoribbon electrodes. Our results show that the device could generate perfect spin-filtering performance in a certain bias range both in the parallel configuration (PC and the antiparallel configuration (APC. At the same time, a magnetoresistance effect, up to a high value of 103%, can be realized. Moreover, visible negative differential resistance phenomenon is obtained for the spin-up current of the PC. These results suggest that our one-dimensional molecular device is a promising candidate for multi-functional spintronics devices.

  8. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng; Randel, Jason C.; Peng, Hailin; Cha, Judy J.; Meister, Stefan; Lai, Keji; Chen, Yulin; Shen, Zhi-Xun; Manoharan, Hari C.; Cui, Yi

    2010-01-01

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive

  9. Amplified solid-state electrochemiluminescence detection of cholesterol in near-infrared range based on CdTe quantum dots decorated multiwalled carbon nanotubes@reduced graphene oxide nanoribbons.

    Science.gov (United States)

    Huan, Juan; Liu, Qian; Fei, Airong; Qian, Jing; Dong, Xiaoya; Qiu, Baijing; Mao, Hanping; Wang, Kun

    2015-11-15

    An amplified solid-state electrochemiluminescence (ECL) biosensor for detection of cholesterol in near-infrared (NIR) range was constructed based on CdTe quantum dots (QDs) decorated multiwalled carbon nanotubes@reduced graphene nanoribbons (CdTe-MWCNTs@rGONRs), which were prepared by electrostatic interactions. The CdTe QDs decorated on the MWCNTs@rGONRs resulted in the amplified ECL intensity by ~4.5 fold and decreased onset potential by ~100 mV. By immobilization of the cholesterol oxidase (ChOx) and NIR CdTe-MWCNTs@rGONRs on the electrode surface, a solid-state ECL biosensor for cholesterol detection was constructed. When cholesterol was added to the detection solution, the immobilized ChOx catalyzed the oxidation of cholesterol to generate H2O2, which could be used as the co-reactant in the ECL system of CdTe-MWCNTs@rGONRs. The as-prepared biosensor exhibited good performance for cholesterol detection including good reproducibility, selectivity, and acceptable linear range from 1 μM to 1mM with a relative low detection limit of 0.33 μM (S/N=3). The biosensor was successfully applied to the determination of cholesterol in biological fluid and food sample, which would open a new possibility for development of solid-state ECL biosensors with NIR emitters. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorine-free route and topotactic transformation.

    Science.gov (United States)

    Wang, Changhua; Zhang, Xintong; Liu, Yichun

    2014-05-21

    In this work, we report a novel approach to fabricate hierarchical TiO2 microspheres (HTMS) assembled by ultrathin nanoribbons where an anatase/TiO2(B) heterojunction and high energy facet coexist. The as-adopted approach involves (1) nonaqueous solvothermal treatment of a mixture of tetrabutyl titanate and acetic acid and (2) topotactical transformation into HTMS via thermal annealing. By this approach, the TiO2(B) phase usually synthesized from an alkaline treatment route could be initially formed. Subsequently, phase transition from TiO2(B) to anatase TiO2 occurs upon thermal treatment. It is demonstrated that such phase transition is accompanied by crystallographic orientation along the c-axis of anatase and TiO2(B) crystals, resulting in not only a coherent interface between two phases but also oriented attachment of anatase mesocrystals along the [001] direction, and finally high-energy (001) facet exposure. Interestingly, this work provides an alternative fluorine-free route for the synthesis of TiO2 crystals with high-energy (001) facet exposure. The structural analysis reveals that lattice-match induced topotactic transformation from TiO2(B) to anatase is the sole reason for the (001) facet exposure of anatase TiO2. The photocatalytic test for acetaldehyde decomposition shows that HTMS with anatase/TiO2(B) heterojunction and high-energy (001) facet exhibits superior photocatalytic efficiency compared with the relevant commercial product P25, which can be ascribed to the synergistic effect of large surface area, anatase/TiO2(B) heterojunction as well as high-energy facet exposure.

  11. Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorine-free route and topotactic transformation

    Science.gov (United States)

    Wang, Changhua; Zhang, Xintong; Liu, Yichun

    2014-04-01

    In this work, we report a novel approach to fabricate hierarchical TiO2 microspheres (HTMS) assembled by ultrathin nanoribbons where an anatase/TiO2(B) heterojunction and high energy facet coexist. The as-adopted approach involves (1) nonaqueous solvothermal treatment of a mixture of tetrabutyl titanate and acetic acid and (2) topotactical transformation into HTMS via thermal annealing. By this approach, the TiO2(B) phase usually synthesized from an alkaline treatment route could be initially formed. Subsequently, phase transition from TiO2(B) to anatase TiO2 occurs upon thermal treatment. It is demonstrated that such phase transition is accompanied by crystallographic orientation along the c-axis of anatase and TiO2(B) crystals, resulting in not only a coherent interface between two phases but also oriented attachment of anatase mesocrystals along the [001] direction, and finally high-energy (001) facet exposure. Interestingly, this work provides an alternative fluorine-free route for the synthesis of TiO2 crystals with high-energy (001) facet exposure. The structural analysis reveals that lattice-match induced topotactic transformation from TiO2(B) to anatase is the sole reason for the (001) facet exposure of anatase TiO2. The photocatalytic test for acetaldehyde decomposition shows that HTMS with anatase/TiO2(B) heterojunction and high-energy (001) facet exhibits superior photocatalytic efficiency compared with the relevant commercial product P25, which can be ascribed to the synergistic effect of large surface area, anatase/TiO2(B) heterojunction as well as high-energy facet exposure.

  12. Fluorescent "on-off-on" switching sensor based on CdTe quantum dots coupled with multiwalled carbon nanotubes@graphene oxide nanoribbons for simultaneous monitoring of dual foreign DNAs in transgenic soybean.

    Science.gov (United States)

    Li, Yaqi; Sun, Li; Qian, Jing; Long, Lingliang; Li, Henan; Liu, Qian; Cai, Jianrong; Wang, Kun

    2017-06-15

    With the increasing concern of potential health and environmental risk, it is essential to develop reliable methods for transgenic soybean detection. Herein, a simple, sensitive and selective assay was constructed based on homogeneous fluorescence resonance energy transfer (FRET) between CdTe quantum dots (QDs) and multiwalled carbon nanotubes@graphene oxide nanoribbons (MWCNTs@GONRs) to form the fluorescent "on-off-on" switching for simultaneous monitoring dual target DNAs of promoter cauliflower mosaic virus 35s (P35s) and terminator nopaline synthase (TNOS) from transgenic soybean. The capture DNAs were immobilized with corresponding QDs to obtain strong fluorescent signals (turning on). The strong π-π stacking interaction between single-stranded DNA (ssDNA) probes and MWCNTs@GONRs led to minimal background fluorescence due to the FRET process (turning off). The targets of P35s and TNOS were recognized by dual fluorescent probes to form double-stranded DNA (dsDNA) through the specific hybridization between target DNAs and ssDNA probes. And the dsDNA were released from the surface of MWCNTs@GONRs, which leaded the dual fluorescent probes to generate the strong fluorescent emissions (turning on). Therefore, this proposed homogeneous assay can be achieved to detect P35s and TNOS simultaneously by monitoring the relevant fluorescent emissions. Moreover, this assay can distinguish complementary and mismatched nucleic acid sequences with high sensitivity. The constructed approach has the potential to be a tool for daily detection of genetically modified organism with the merits of feasibility and reliability. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Huge Trionic Effects in Graphene Nanoribbons

    DEFF Research Database (Denmark)

    Deilmann, Thorsten; Rohlfing, Michael

    2017-01-01

    V for widths of 14.6-3.6 Å. Both for the trions and for the excitons, we observe an almost linear dependency of their binding energies on the band gap. We observe several trion states with different character derived from the corresponding excitons. Because of the large bindings energies, this opens a route...

  14. Energetics of edge oxidization of graphene nanoribbons

    Science.gov (United States)

    Yasuma, Airi; Yamanaka, Ayaka; Okada, Susumu

    2018-06-01

    On the basis of the density functional theory, we studied the geometries and energetics of O atoms adsorbed on graphene edges for simulating the initial stage of the edge oxidization of graphene. Our calculations showed that oxygen atoms are preferentially adsorbed onto the graphene edges with the zigzag portion, resulting in a large adsorption energy of about 5 eV. On the other hand, the edges with armchair shape are rarely oxidized, or the oxidization causes substantial structural reconstructions, because of the stable covalent bond at the armchair edge with the triple bond nature. Furthermore, the energetics sensitively depends on the edge angles owing to the inhomogeneity of the charge density at the edge atomic sites.

  15. Floquet edge states in germanene nanoribbons

    KAUST Repository

    Tahir, Muhammad; Zhang, Qingyun; Schwingenschlö gl, Udo

    2016-01-01

    We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude

  16. Modelling of Graphene Nanoribbon Fermi Energy

    International Nuclear Information System (INIS)

    Johari, Z.; Ahmadi, M.T.; Chek, D.C.Y.; Amin, N.A.; Ismail, R.

    2010-01-01

    Graphene nano ribbon (GNR) is a promising alternative to carbon nano tube (CNT) to overcome the chirality challenge as a nano scale device channel. Due to the one-dimensional behavior of plane GNR, the carrier statistic study is attractive. Research works have been done on carrier statistic study of GNR especially in the parabolic part of the band structure using Boltzmann approximation (nondegenerate regime). Based on the quantum confinement effect, we have improved the fundamental study in degenerate regime for both the parabolic and non parabolic parts of GNR band energy. Our results demonstrate that the band energy of GNR near to the minimum band energy is parabolic. In this part of the band structure, the Fermi-Dirac integrals are sufficient for the carrier concentration study. The Fermi energy showed the temperature-dependent behavior similar to any other one-dimensional device in nondegenerate regime. However in the degenerate regime, the normalized Fermi energy with respect to the band edge is a function of carrier concentration. The numerical solution of Fermi-Dirac integrals for non parabolic region, which is away from the minimum energy band structure of GNR, is also presented.

  17. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin; Lai, Keji; Kong, Desheng; Meister, Stefan; Chen, Yulin; Qi, Xiao-Liang; Zhang, Shou-Cheng; Shen, Zhi-Xun; Cui, Yi

    2009-01-01

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport

  18. Semiconductor Nanowire and Nanoribbon Thermoelectrics: A Comprehensive Computational Study

    Science.gov (United States)

    2013-05-01

    August 17-20, 2010). Available online through IEEE Xplore . http://dx.doi.org/10.1109/NANO.2010.5698047 4. Z. Aksamija and I. Knezevic...Korea (August 17-20, 2010). Available online through IEEE Xplore . http://dx.doi.org/10.1109/NANO.2010.5697827 5. D. Vasileska, K. Raleva, S. M...IWCE 2010) Available online through IEEE Xplore , http://dx.doi.org/10.1109/IWCE.2010.5677916 6. E. B. Ramayya and I. Knezevic, “Ultrascaled

  19. Defect-based graphene nanoribbon photodetectors: A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Zarei, M. H.; Sharifi, M. J., E-mail: m-j-sharifi@sbu.ac.ir [Department of Electrical Engineering, Shahid Beheshti University, Tehran 1983963113 (Iran, Islamic Republic of)

    2016-06-07

    Recently, some photodetectors based on graphene have been proposed. In all of these works, current generation was carried out by separation of photo-excited carriers using an electric field, either internal or external. In this work, a new method of producing current which is based on different transmission coefficients for electrons and holes when they travel toward any of the two contacts is proposed. To this end, a single Stone–Wales defect close to one of the two contacts was used to break the channel symmetry. In order to confirm the idea, the non-equilibrium Green's function formalism in real space in conjunction with the tight binding method was used in simulations. In addition, to clarify the results, we present a classical model in which different diffusion constants are assumed for the left going and the right going carriers. Additional simulations for different positions of the defect, different lengths of the ribbon, and different bias voltages were performed, and the results are included in this study.

  20. Ultrafast Photoconductivity of Graphene Nanoribbons and Carbon Nanotubes

    DEFF Research Database (Denmark)

    Jensen, Søren A.; Ulbricht, Ronald; Narita, Akimitsu

    2013-01-01

    carbon nanotubes (CNTs) with a similar bandgap energy. Transient photoconductivities of both materials were measured using time-resolved terahertz spectroscopy, allowing for contact-free measurements of complex-valued photoconductivity spectra with subpicosecond time-resolution. We show that, while...