WorldWideScience

Sample records for k14e6 transgenic mice

  1. The Human Papillomavirus Type 16 E6 Gene Alone Is Sufficient To Induce Carcinomas in Transgenic Animals

    Science.gov (United States)

    Song, Shiyu; Pitot, Henry C.; Lambert, Paul F.

    1999-01-01

    High-risk human papillomaviruses (HPVs) are the causative agents of certain human cancers. HPV type 16 (HPV16) is the papillomavirus most frequently associated with cervical cancer in women. The E6 and E7 genes of HPV are expressed in cells derived from these cancers and can transform cells in tissue culture. Animal experiments have demonstrated that E6 and E7 together cause tumors. We showed previously that E6 and E7 together or E7 alone could induce skin tumors in mice when these genes were expressed in the basal epithelia of the skin. In this study, we investigated the role that the E6 gene plays in carcinogenesis. We generated K14E6 transgenic mice, in which the HPV16 E6 gene was directed in its expression by the human keratin 14 promoter (hK14) to the basal layer of the epidermis. We found that E6 induced cellular hyperproliferation and epidermal hyperplasia and caused skin tumors in adult mice. Interestingly, the tumors derived from E6 were mostly malignant, as opposed to the tumors from E7 mice, which were mostly benign. This result leads us to hypothesize that E6 may contribute differently than E7 to HPV-associated carcinogenesis; whereas E7 primarily contributes to the early stages of carcinogenesis that lead to the formation of benign tumors, E6 primarily contributes to the late stages of carcinogenesis that lead to malignancy. PMID:10364340

  2. Dominant Role of HPV16 E7 in Anal Carcinogenesis

    Science.gov (United States)

    Thomas, Marie K.; Pitot, Henry C.; Liem, Amy; Lambert, Paul F.

    2011-01-01

    Ninety percent of anal cancer is associated with human papilloma viruses (HPVs). Using our previously established HPV transgenic mouse model for anal cancer, we tested the role of the individual oncogenes E6 and E7. K14E6 and K14E7 transgenic mice were treated with dimethylbenz[a]anthracene (DMBA) to the anal canal and compared to matched nontransgenic and doubly transgenic K14E6/E7 mice. K14E7 and K14E6/E7 transgenic mice developed anal tumors (papillomas, atypias and carcinomas combined) at significantly higher rates (88% and 100%, respectively) than either K14E6 or NTG mice (18% and 19%, respectively). Likewise, K14E7 and K14E6/E7 transgenic mice developed frank cancer (carcinomas) at significantly higher rates (85% and 85%, respectively) than either K14E6 or NTG mice (18% and 10%, respectively). These findings indicate that E7 is the more potent oncogene in anal cancer caused by HPVs. PMID:21999991

  3. High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7's induction of DNA damage through its inactivation of pocket proteins.

    Science.gov (United States)

    Park, Jung Wook; Shin, Myeong-Kyun; Pitot, Henry C; Lambert, Paul F

    2013-01-01

    Fanconi anemia (FA) patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs) is associated with 'high-risk' HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6's oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6) and HPV16 E6/E7-bi-transgenic mice (K14E6E7) on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7's induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs.

  4. High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7's induction of DNA damage through its inactivation of pocket proteins.

    Directory of Open Access Journals (Sweden)

    Jung Wook Park

    Full Text Available Fanconi anemia (FA patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs is associated with 'high-risk' HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6's oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6 and HPV16 E6/E7-bi-transgenic mice (K14E6E7 on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7's induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs.

  5. High Incidence of HPV-Associated Head and Neck Cancers in FA Deficient Mice Is Associated with E7’s Induction of DNA Damage through Its Inactivation of Pocket Proteins

    Science.gov (United States)

    Park, Jung Wook; Shin, Myeong-Kyun; Pitot, Henry C.; Lambert, Paul F.

    2013-01-01

    Fanconi anemia (FA) patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs) is associated with ‘high-risk’ HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6’s oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6) and HPV16 E6/E7-bi-transgenic mice (K14E6E7) on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7’s induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs. PMID:24086435

  6. The PDZ Ligand Domain of the Human Papillomavirus Type 16 E6 Protein Is Required for E6's Induction of Epithelial Hyperplasia In Vivo

    Science.gov (United States)

    Nguyen, Marie L.; Nguyen, Minh M.; Lee, Denis; Griep, Anne E.; Lambert, Paul F.

    2003-01-01

    Human papillomaviruses (HPVs) are the causative agent of warts. Infections with high-risk HPVs are associated with anogenital and head and neck cancers. One of the viral genes responsible for HPV's oncogenic activity is E6. Mice expressing the HPV-16 E6 protein in their epidermis (K14E6WT) develop epithelial hyperplasia and squamous carcinomas. Numerous cellular proteins interact with E6, some of which can be grouped based on common amino acid motifs in their E6-binding domains. One such group, the PDZ partners, including hDLG, hSCRIBBLE, MUPP1, and MAGI, bind to the carboxy-terminal four amino acids of E6 through their PDZ domains. E6's interaction with the PDZ partners leads to their degradation. Additionally, E6's binding to PDZ proteins has been correlated with its ability to transform baby rat kidney cells in tissue culture and to confer tumorigenicity onto cells in xenograft experiments. To address whether the ability of E6 to bind PDZ domain partners is necessary for E6 to confer epithelial hyperproliferation in vivo, we generated transgenic mice that express in stratified squamous epithelia a mutant of E6 lacking the last six amino acids at its carboxyl terminus, E6Δ146-151, from the human keratin 14 (K14) promoter. The K14E6Δ146-151 mice exhibit a radiation response similar to that of the K14E6WT mice, demonstrating that this protein, as predicted, retains an ability to inactivate p53. However, the K14E6Δ146-151 mice fail to display epithelial hyperplasia. These results indicate that an interaction of E6 with PDZ partners is necessary for its induction of epithelial hyperplasia. PMID:12768014

  7. Differential gene expression between skin and cervix induced by the E7 oncoprotein in a transgenic mouse model

    Science.gov (United States)

    Ibarra Sierra, E; Díaz Chávez, J; Cortés-Malagón, EM; Uribe-Figueroa, L; Hidalgo-Miranda, A; Lambert, PF; Gariglio, P

    2013-01-01

    HPV16 E7 oncoprotein expression in K14E7 transgenic mice induces cervical cancer after 6 months of treatment with the co-carcinogen 17β-estradiol. In untreated mice, E7 also induces skin tumors late in life albeit at low penetrance. These findings indicate that E7 alters cellular functions in cervix and skin so as to predispose these organs to tumorigenesis. Using microarrays, we determined the global genes expression profile in cervical and skin tissue of young adult K14E7 transgenic mice without estrogen treatment. In these tissues, the E7 oncoprotein altered the transcriptional pattern of genes involved in several biological processes including signal transduction, transport, metabolic process, cell adhesion, apoptosis, cell differentiation, immune response and inflammatory response. Among the E7-dysregulated genes were ones not previously known to be involved in cervical neoplasia including DMBT1, GLI1 and 17βHSD2 in cervix, as well as MMP2, 12, 14, 19 and 27 in skin. PMID:22980503

  8. In the absence of endogenous mouse apolipoprotein E, apolipoprotein E*2(Arg-158 → Cys) transgenic mice develop more severe hyperlipoproteinemia than apolipoprotein E*3-Leiden transgenic mice

    NARCIS (Netherlands)

    Vlijmen, B.J.M. van; Dijk, K.W. van; Hof, H.B. van 't; Gorp, P.J.J. van; Zee, A. van der; Boom, H. van der; Breuer, M.L.; Hofker, M.H.; Havekesf, L.M.

    1996-01-01

    Apolipoprotein E*2(Arg-155 → Cys) (APOE*2) transgenic mice were generated and compared to the previously generated apolipoprotein E*3- Leiden (APOE*3-Leiden) transgenic mice to study the variable expression of hyperlipoproteinemia associated with these two APOE variants. In the presence of the

  9. Beta-catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gülay Bulut

    Full Text Available Human papilloma virus (HPV is the principal etiological agent of cervical cancer in women, and its DNA is present in virtually all of these tumors. However, exposure to the high-risk HPV types alone is insufficient for tumor development. Identifying specific collaborating factors that will lead to cervical cancer remains an unanswered question, especially because millions of women are exposed to HPV. Our earlier work using an in vitro model indicated that activation of the canonical Wnt pathway in HPV-positive epithelial cells was sufficient to induce anchorage independent growth. We therefore hypothesized that constitutive activation of this pathway might function as the "second hit." To address this possibility, we developed two double-transgenic (DT mouse models, K14-E7/ΔN87βcat and K14-HPV16/ΔN87βcat that express either the proteins encoded by the E7 oncogene or the HPV16 early region along with constitutively active β-catenin, which was expressed by linking it to the keratin-14 (K14 promoter. We initiated tumor formation by treating all groups with estrogen for six months. Invasive cervical cancer was observed in 11% of the K14-ΔN87βcat mice, expressing activated β-catenin and in 50% of the animals expressing the HPV16 E7 oncogene. In double-transgenic mice, coexpression of β-catenin and HPV16 E7 induced invasive cervical cancer at about 7 months in 94% of the cases. We did not observe cervical cancer in any group unless the mice were treated with estrogen. In the second model, K14-HPV16 mice suffered cervical dysplasias, but this phenotype was not augmented in HPV16/ΔN87βcat mice. In summary, the phenotypes of the K14-E7/ΔN87βcat mice support the hypothesis that activation of the Wnt/β-catenin pathway in HPV-associated premalignant lesions plays a functional role in accelerating cervical carcinogenesis.

  10. Attenuation of 6-hydroxydopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice

    International Nuclear Information System (INIS)

    Cadet, J.L.; Hirata, H.; Asanuma, M.

    1998-01-01

    6-Hydroxydopamine is a neurotoxin that produces degeneration of the nigrostriatal dopaminergic pathway in rodents. Its toxicity is thought to involve the generation of superoxide anion secondary to its autoxidation. To examine the effects of the overexpression of Cu,Zn-superoxide dismutase activity on 6-hydroxydopamine-induced dopaminergic neuronal damage, we have measured the effects of 6-hydroxydopamine on striatal and nigral dopamine transporters and nigral tyrosine hydroxylase-immunoreactive neurons in Cu,Zn-superoxide dismutase transgenic mice. Intracerebroventricular injection of 6-hydroxydopamine (50 μg) in non-transgenic mice produced reductions in the size of striatal area and an enlargement of the cerebral ventricle on both sides of the brains of mice killed two weeks after the injection. In addition, 6-hydroxydopamine caused marked decreases in striatal and nigral [ 125 I]RTI-121-labelled dopamine transporters not only on the injected side but also on the non-injected side of non-transgenic mice; this was associated with decreased cell number and size of tyrosine hydroxylase-immunoreactive dopamine neurons in the substantia nigra pars compacta on both sides in these mice. In contrast, superoxide dismutase transgenic mice were protected against these neurotoxic effects of 6-hydroxydopamine, with the homozygous transgenic mice showing almost complete protection.These results provide further support for a role of superoxide anion in the toxic effects of 6-hydroxydopamine. They also provide further evidence that reactive oxygen species may be the main determining factors in the neurodegenerative effects of catecholamines. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Establishment and characterization of murine small cell lung carcinoma cell lines derived from HPV-16 E6/E7 transgenic mice.

    Science.gov (United States)

    Carraresi, Laura; Martinelli, Rosanna; Vannoni, Alessandro; Riccio, Massimo; Dembic, Maja; Tripodi, Sergio; Cintorino, Marcella; Santi, Spartaco; Bigliardi, Elisa; Carmellini, Mario; Rossini, Mara

    2006-01-08

    We have established two murine cell lines derived from Small Cell Lung Carcinomas (SCLCs) developed by HPV-E6/E7 transgenic mice. These cells named PPAP-9 and PPAP-10 were isolated from mice bearing tumors, 9 and 10 months old, respectively. The cells, 5 microm in diameter, express HPV oncoproteins and sustain tumor formation after subcutaneous injection in syngenic mice. A detailed analysis indicated the epithelial origin and the neuroendocrine differentiation of these cells. We showed by confocal immunofluorescence the expression of the epithelial marker cytokeratin 5, whose gene promoter was used to direct the expression of HPV E6/E. Cells express several neuroendocrine markers such as CGRP, MAP-2, Ash1, CgrA, Scg2. The neuroendocrine differentiation of these cells was further confirmed by electron microscopy demonstrating neuropeptides secreting granules in their cytoplasm. Furthermore, in agreement with the altered expression observed in the majority of human SCLC we showed in these cells the absence of both p53 and pRB and a dramatic reduction in the expression of Caveolin-1.

  12. Role of Human Na,K-ATPase alpha 4 in Sperm Function, Derived from Studies in Transgenic Mice

    Science.gov (United States)

    McDermott, Jeffrey; Sánchez, Gladis; Nangia, Ajay K.; Blanco, Gustavo

    2014-01-01

    SUMMARY Most of our knowledge on the biological role of the testis-specific Na,K-ATPase alpha 4 isoform derives from studies performed in non-human species. Here, we studied the function of human Na,K-ATPase alpha 4 after its expression in transgenic mice. Using a bacterial artificial chromosome (BAC) construct, containing the human ATP1A4 gene locus, we obtained expression of the human α4 transgene specifically in mouse sperm, enriched in the sperm flagellum. The expressed, human alpha 4 was active, and compared to wild-type sperm, those from transgenic mice displayed higher Na,K-ATPase alpha 4 activity and greater binding of fluorescently labeled ouabain, which is typical of the alpha 4 isoform. The expression and activity of endogenous alpha 4 and the other Na,K-ATPase alpha isoform present in sperm, alpha 1, remained unchanged. Male mice expressing the human ATP1A4 transgene exhibited similar testis size and morphology, normal sperm number and shape, and no changes in overall fertility compared to wild-type mice. Sperm carrying the human transgene exhibited enhanced total motility and an increase in multiple parameters of sperm movement, including higher sperm hyperactive motility. In contrast, no statistically significant changes in sperm membrane potential, protein tyrosine phosphorylation, or spontaneous acrosome reaction were found between wild-type and transgenic mice. Altogether, these results provide new genetic evidence for an important role of human Na,K-ATPase alpha 4 in sperm motility and hyperactivation, and establishes a new animal model for future studies of this isoform. PMID:25640246

  13. Increased Expression of the Na,K-ATPase alpha4 Isoform Enhances Sperm Motility in Transgenic Mice1

    Science.gov (United States)

    Jimenez, Tamara; Sanchez, Gladis; McDermott, Jeffrey P.; Nguyen, Anh-Nguyet; Kumar, T. Rajendra; Blanco, Gustavo

    2010-01-01

    The Na,K-ATPase alpha4 (ATP1A4) isoform is specifically expressed in male germ cells and is highly prevalent in spermatozoa. Although selective inhibition of alpha4 activity with ouabain has been shown to affect sperm motility, a more direct analysis of the role of this isoform in sperm movement has not yet been demonstrated. To establish this, we engineered transgenic mice that express the rat alpha4 isoform fused to green fluorescent protein in male germ cells, under the control of the mouse protamine 1 promoter. We showed that the rat Atp1a4 transgene is expressed in mouse spermatozoa and that it is localized to the sperm flagellum. In agreement with increased expression of the alpha4 isoform, sperm from transgenic mice displayed higher alpha4-specific Na,K-ATPase activity and binding of fluorescently labeled ouabain than wild-type mice. In contrast, expression and activity of ATP1A1 (alpha1), the other Na,K-ATPase alpha isoform present in sperm, remained unchanged. Similar to wild-type mice, mice expressing the alpha4 transgene exhibited normal testis and sperm morphology and no differences in fertility. However, compared to wild-type mice, sperm from transgenic mice displayed plasma membrane hyperpolarization and higher total and progressive motility. Other parameters of motility also increased, including straight-line, curvilinear, and average path velocities and amplitude of lateral head displacement. In addition, sperm from the transgenic mice showed enhanced sperm hyperactive motility, but no changes in progesterone-induced acrosome reaction. Altogether, these results provide new genetic evidence for the role of the ATP1A4 isoform in sperm motility, under both noncapacitating and capacitating conditions. PMID:20826726

  14. E2F-1-Induced p53-independent apoptosis in transgenic mice

    DEFF Research Database (Denmark)

    Holmberg, Christian Henrik; Helin, K.; Sehested, M.

    1998-01-01

    The E2F transcription factors are key targets for the retinoblastoma protein, pRB. By inactivation of E2Fs, pRB prevents progression to the S phase. To test proliferative functions of E2F, we generated transgenic mice expressing human E2F-1 and/or human DP-1. When the hydroxymethyl glutaryl...... involving increased apoptosis in the germinal epithelium. This effect was potentiated by simultaneous overexpression of DP-1. Testicular atrophy as a result of overexpression of E2F-1 and DP-1 is independent of functional p53, since p53-nullizygous transgenic mice overexpressing E2F-1 and DP-1 also suffered...

  15. Impaired growth of pancreatic exocrine cells in transgenic mice expressing human activin βE subunit

    International Nuclear Information System (INIS)

    Hashimoto, Osamu; Ushiro, Yuuki; Sekiyama, Kazunari; Yamaguchi, Osamu; Yoshioka, Kazuki; Mutoh, Ken-Ichiro; Hasegawa, Yoshihisa

    2006-01-01

    Activins, TGF-β superfamily members, have multiple functions in a variety of cells and tissues. Recently, additional activin β subunit genes, βC and βE, have been identified. To explore the role of activin E, we created transgenic mice overexpressing human activin βE subunit. There were pronounced differences in the pancreata of the transgenic animals as compared with their wild-type counterparts. Pancreatic weight, expressed relative to total body weight, was significantly reduced. Histologically, adipose replacement of acini in the exocrine pancreas was observed. There was a significant decrease in the number of PCNA-positive cells in the acinar cells, indicating reduced proliferation in the exocrine pancreas of the transgenic mice. However, quantitative pancreatic morphometry showed that the total number and mass of the islets of the transgenic mice were comparable with those of the nontransgenic control mice. Our findings suggest a role for activin E in regulating the proliferation of pancreatic exocrine cells

  16. Murine HPV16 E7-expressing transgenic skin effectively emulates the cellular and molecular features of human high-grade squamous intraepithelial lesions

    Directory of Open Access Journals (Sweden)

    Z.K. Tuong

    2018-06-01

    Full Text Available Currently available vaccines prevent HPV infection and development of HPV-associated malignancies, but do not cure existing HPV infections and dysplastic lesions. Persistence of infection(s in immunocompetent patients may reflect induction of local immunosuppressive mechanisms by HPV, providing a target for therapeutic intervention. We have proposed that a mouse, expressing HPV16 E7 oncoprotein under a Keratin 14 promoter (K14E7 mice, and which develops epithelial hyperplasia, may assist with understanding local immune suppression mechanisms that support persistence of HPV oncogene-induced epithelial hyperplasia. K14E7 skin grafts recruit immune cells from immunocompetent hosts, but consistently fail to be rejected. Here, we review the literature on HPV-associated local immunoregulation, and compare the findings with published observations on the K14E7 transgenic murine model, including comparison of the transcriptome of human HPV-infected pre-malignancies with that of murine K14E7 transgenic skin. We argue from the similarity of i the literature findings and ii the transcriptome profiles that murine K14E7 transgenic skin recapitulates the cellular and secreted protein profiles of high-grade HPV-associated lesions in human subjects. We propose that the K14E7 mouse may be an appropriate model to further study the immunoregulatory effects of HPV E7 expression, and can facilitate development and testing of therapeutic vaccines.

  17. The influence of chronic stress on anxiety-like behavior and cognitive function in different human GFAP-ApoE transgenic adult male mice.

    Science.gov (United States)

    Meng, Fan-Tao; Zhao, Jun; Fang, Hui; Liu, Ya-Jing

    2015-01-01

    The apolipoprotein E (ApoE) ɛ4 allele (ApoE4) is an important genetic risk factor for the pathogenesis of Alzheimer's disease (AD). In addition to genetic factors, environmental factors such as stress may play a critical role in AD pathogenesis. This study was designed to investigate the anxiety-like behavioral and cognitive changes in different human glial fibrillary acidic protein (GFAP)-ApoE transgenic adult male mice under chronic stress conditions. On the open field test, anxiety-like behavior was increased in the non-stressed GFAP-ApoE4 transgenic mice relative to the corresponding GFAP-ApoE3 (ApoE ɛ3 allele) mice. Anxiety-like behavior was increased in the stressed GFAP-ApoE3 mice relative to non-stressed GFAP-ApoE3 mice, but was unexpectedly decreased in the stressed GFAP-ApoE4 mice relative to non-stressed GFAP-ApoE4 mice. On the novel object recognition task, both GFAP-ApoE4 and GFAP-ApoE3 mice exhibited long-term non-spatial memory impairment after chronic stress. Interestingly, short-term non-spatial memory impairment (based on the novel object recognition task) was observed only in the stressed GFAP-ApoE4 male mice relative to non-stressed GFAP-ApoE4 transgenic mice. In addition, short-term spatial memory impairment was observed in the stressed GFAP-ApoE3 transgenic male mice relative to non-stressed GFAP-ApoE3 transgenic male mice; however, short-term spatial memory performance of GFAP-ApoE4 transgenic male mice was not reduced compared to non-stressed control mice based on the Y-maze task. In conclusion, our findings suggested that chronic stress affects anxiety-like behavior and spatial and non-spatial memory in GFAP-ApoE transgenic mice in an ApoE isoform-dependent manner.

  18. Transgenic mice for a tamoxifen-induced, conditional expression of the Cre recombinase in osteoclasts.

    Directory of Open Access Journals (Sweden)

    Maria Arantzazu Sanchez-Fernandez

    Full Text Available BACKGROUND: Studies on osteoclasts, the bone resorbing cells, have remained limited due to the lack of transgenic mice allowing the conditional knockout of genes in osteoclasts at any time during development or adulthood. METHODOLOGY/PRINCIPAL FINDING: We report here on the generation of transgenic mice which specifically express a tamoxifen-inducible Cre recombinase in osteoclasts. These mice, generated on C57BL/6 and FVB background, express a fusion Cre recombinase-ERT2 protein whose expression is driven by the promoter of cathepsin K (CtsK, a gene highly expressed in osteoclasts. We tested the cellular specificity of Cre activity in CtsKCreERT2 strains by breeding with Rosa26LacZ reporter mice. PCR and histological analyses of the CtsKCreERT2LacZ positive adult mice and E17.5 embryos show that Cre activity is restricted largely to bone tissue. In vitro, primary osteoclasts derived from the bone marrow of CtsKCreERT2+/-LacZ+/- adult mice show a Cre-dependent β-galactosidase activity after tamoxifen stimulation. CONCLUSIONS/SIGNIFICANCE: We have generated transgenic lines that enable the tamoxifen-induced, conditional deletion of loxP-flanked genes in osteoclasts, thus circumventing embryonic and postnatal gene lethality and avoiding gene deletion in other cell types. Such CtsKCreERT2 mice provide a convenient tool to study in vivo the different facets of osteoclast function in bone physiology during different developmental stages and adulthood of mice.

  19. Human papillomavirus E6/E7 oncogenes promote mouse ear regeneration by increasing the rate of wound re-epithelization and epidermal growth.

    Science.gov (United States)

    Valencia, Concepción; Bonilla-Delgado, José; Oktaba, Katarzyna; Ocádiz-Delgado, Rodolfo; Gariglio, Patricio; Covarrubias, Luis

    2008-12-01

    Mammals have limited regeneration capacity. We report here that, in transgenic mice (Tg(bK6-E6/E7)), the expression of the E6/E7 oncogenes of human papilloma virus type 16 (HPV16) under the control of the bovine keratin 6 promoter markedly improves the mouse's capacity to repair portions of the ear after being wounded. Increased repair capacity correlates with an increased number of epidermal proliferating cells. In concordance with the expected effects of the E6 and E7 oncogenes, levels of p53 decreased and those of p16 in epidermal cells increased. In addition, we observed that wound re-epithelization proceeded faster in transgenic than in wild-type animals. After the initial re-epithelization, epidermal cell migration from the intact surrounding tissue appears to be a major contributor to the growing epidermis, especially in the repairing tissue of transgenic mice. We also found that there is a significantly higher number of putative epidermal stem cells in Tg(bK6-E6/E7) than in wild-type mice. Remarkably, hair follicles and cartilage regenerated within the repaired ear tissue, without evidence of tumor formation. We propose that the ability to regenerate ear portions is limited by the capacity of the epidermis to repair itself and grow.

  20. Canolol inhibits gastric tumors initiation and progression through COX-2/PGE2 pathway in K19-C2mE transgenic mice.

    Directory of Open Access Journals (Sweden)

    Donghui Cao

    Full Text Available 4-Vinyl-2, 6-dimethoxyphenol (canolol is an antioxidant phenolic compound extracted from crude canola oil. In current research, K19-C2mE transgenic mice, developing hyperplastic tumors spontaneously in the glandular stomach, were used to study the mechanisms involved in the anti-inflammation and anti-tumor effects of canolol. Tg mice receiving canolol diet had a reduced tumor incidence, to 41.2%, compared with Non-treatment Tg mice, 77.8% of which had gastric tumor (P=0.002. Besides that, the mean tumor diameter was decreased from 6.5 mm to 4.5 mm (P<0.001 after canolol administration. COX-2/PGE2 pathway is known to play pivotal role in inflammation-induced gastric tumorigenesis. The neutrophils and lymphocytes infiltration was suppressed significantly, and the mRNA levels of the proinflammatory cytokines COX-2, IL-1β and IL-12b were also downregulated in gastric mucosa. Additionally, immunohistochemical analysis showed that COX-2, EP2, Gαs and β-catenin, key factors involving in PGE2 signal transduction, were positive staining with higher H scores in Non-treatment Tg mice, while the expressions were suppressed significantly by 0.1% canolol (P<0.001. In addition, tumor-suppressor miR-7 was reactivated after canolol administration, and COX-2 was showed to be a functional target of miR-7 to suppress the tumor progression. In conclusion, canolol could inhibit the gastritis-related tumor initiation and progression, and the suppression effect was correlated with the blocking up of canonical COX-2/PGE2 signaling pathway and might be regulated by miR-7.

  1. Short-term carcinogenicity testing of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f] quinoline (IQ) in E mu-pim-1 transgenic mice

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin; Mortensen, Alicja; Kristiansen, E.

    1996-01-01

    The usefulness of transgenic E mu-pim-1 mice over-expressing the pim-1 oncogene in lymphoid tissues, as sensitive test organisms was studied in a short-term carcinogenicity study. The mice were fed standard diet Altromin 1314 supplemented either with 0.03% 2-amino-1-methyl-6-phenylimidazo[4,5-b......]pyridine (PhIP) for 7 months or with 0.03% 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) for 6 months, PhIP and IQ are heterocyclic amines formed during cooking of meat and fish and are mutagenic to bacteria and cultured mammalian cells, PhIP is a potent mouse lymphomagen, while IQ is a liver carcinogen...... to non-transgenic mice. Our results suggest that the transgenic E mu-pim-1 mouse may be a useful model for short-term carcinogenicity screening of potential genotoxic carcinogens having the lymphoid system as target tissue, The carcinogen IQ which does not have the lymphoid system as a target...

  2. A Novel 1,4-Dihydropyridine Derivative Improves Spatial Learning and Memory and Modifies Brain Protein Expression in Wild Type and Transgenic APPSweDI Mice.

    Directory of Open Access Journals (Sweden)

    Baiba Jansone

    Full Text Available Ca2+ blockers, particularly those capable of crossing the blood-brain barrier (BBB, have been suggested as a possible treatment or disease modifying agents for neurodegenerative disorders, e.g., Alzheimer's disease. The present study investigated the effects of a novel 4-(N-dodecyl pyridinium group-containing 1,4-dihydropyridine derivative (AP-12 on cognition and synaptic protein expression in the brain. Treatment of AP-12 was investigated in wild type C57BL/6J mice and transgenic Alzheimer's disease model mice (Tg APPSweDI using behavioral tests and immunohistochemistry, as well as mass spectrometry to assess the blood-brain barrier (BBB penetration. The data demonstrated the ability of AP-12 to cross the BBB, improve spatial learning and memory in both mice strains, induce anxiolytic action in transgenic mice, and increase expression of hippocampal and cortical proteins (GAD67, Homer-1 related to synaptic plasticity. The compound AP-12 can be seen as a prototype molecule for use in the design of novel drugs useful to halt progression of clinical symptoms (more specifically, anxiety and decline in memory of neurodegenerative diseases, particularly Alzheimer's disease.

  3. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice.

    Science.gov (United States)

    Radford, N B; Fina, M; Benjamin, I J; Moreadith, R W; Graves, K H; Zhao, P; Gavva, S; Wiethoff, A; Sherry, A D; Malloy, C R; Williams, R S

    1996-03-19

    Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart.

  4. Generation of Human Immunosuppressive Myeloid Cell Populations in Human Interleukin-6 Transgenic NOG Mice

    Directory of Open Access Journals (Sweden)

    Asami Hanazawa

    2018-02-01

    Full Text Available The tumor microenvironment contains unique immune cells, termed myeloid-derived suppressor cells (MDSCs, and tumor-associated macrophages (TAMs that suppress host anti-tumor immunity and promote tumor angiogenesis and metastasis. Although these cells are considered a key target of cancer immune therapy, in vivo animal models allowing differentiation of human immunosuppressive myeloid cells have yet to be established, hampering the development of novel cancer therapies. In this study, we established a novel humanized transgenic (Tg mouse strain, human interleukin (hIL-6-expressing NOG mice (NOG-hIL-6 transgenic mice. After transplantation of human hematopoietic stem cells (HSCs, the HSC-transplanted NOG-hIL-6 Tg mice (HSC-NOG-hIL-6 Tg mice showed enhanced human monocyte/macrophage differentiation. A significant number of human monocytes were negative for HLA-DR expression and resembled immature myeloid cells in the spleen and peripheral blood from HSC-NOG-hIL-6 Tg mice, but not from HSC-NOG non-Tg mice. Engraftment of HSC4 cells, a human head and neck squamous cell carcinoma-derived cell line producing various factors including IL-6, IL-1β, macrophage colony-stimulating factor (M-CSF, and vascular endothelial growth factor (VEGF, into HSC-NOG-hIL-6 Tg mice induced a significant number of TAM-like cells, but few were induced in HSC-NOG non-Tg mice. The tumor-infiltrating macrophages in HSC-NOG-hIL-6 Tg mice expressed a high level of CD163, a marker of immunoregulatory myeloid cells, and produced immunosuppressive molecules such as arginase-1 (Arg-1, IL-10, and VEGF. Such cells from HSC-NOG-hIL-6 Tg mice, but not HSC-NOG non-Tg mice, suppressed human T cell proliferation in response to antigen stimulation in in vitro cultures. These results suggest that functional human TAMs can be developed in NOG-hIL-6 Tg mice. This mouse model will contribute to the development of novel cancer immune therapies targeting immunoregulatory

  5. Nuclear Expression of a Mitochondrial DNA Gene: Mitochondrial Targeting of Allotopically Expressed Mutant ATP6 in Transgenic Mice

    Directory of Open Access Journals (Sweden)

    David A. Dunn

    2012-01-01

    Full Text Available Nuclear encoding of mitochondrial DNA transgenes followed by mitochondrial targeting of the expressed proteins (allotopic expression; AE represents a potentially powerful strategy for creating animal models of mtDNA disease. Mice were created that allotopically express either a mutant (A6M or wildtype (A6W mt-Atp6 transgene. Compared to non-transgenic controls, A6M mice displayed neuromuscular and motor deficiencies (wire hang, pole, and balance beam analyses; P0.05. This study illustrates a mouse model capable of circumventing in vivo mitochondrial mutations. Moreover, it provides evidence supporting AE as a tool for mtDNA disease research with implications in development of DNA-based therapeutics.

  6. Lymphoma induction by heterocyclic amines in Eu-pim-1 transgenic mice

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin; Kristiansen, E.; Mortensen, Alicja

    1997-01-01

    The usefulness of transgenic E mu-pim-1 mice bearing in their genome the pim-1 oncogene supplemented with an upstream immunoglobulin enhancer and a downstream murine leukaemia virus long terminal repeat, as sensitive test organisms was studied in two short-term carcinogenicity studies. The mice...... to bacteria and cultured mammalian cells. PhIP is a potent mouse lymphomagen, while IQ is a liver, lung and forestomach carcinogen in mice. We found that transgenic E mu-pim-1 mice are highly susceptible to PhIP induced lymphomagenesis but do not respond to IQ treatment. PhIP feeding of E mu-pim-1 mice...... not only increased the total number of T-cell lymphomas but also decreased the latency time compared to either transgenic or wild-type controls. The effect was most pronounced in the treated female E mu-pim-1 mice, which showed a higher incidence of PhIP induced T-cell lymphomas than transgenic males...

  7. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    Science.gov (United States)

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  8. Metallothionein-I overexpression decreases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin-6

    DEFF Research Database (Denmark)

    Molinero, Amalia; Penkowa, Milena; Hernández, Joaquín

    2003-01-01

    in this report support the idea that the upregulation of MT-I observed in GFAP-IL6 mice is an important mechanism for coping with brain damage. Thus, GFAP-IL6 mice that were crossed with TgMTI transgenic mice (GFAP-IL6xTgMTI) and overexpressed MT-I in the brain showed a decreased upregulation of cytokines...... such as IL-6 and a diminished recruitment and activation of macrophages and T cells throughout the CNS but mainly in the cerebellum. The GFAP-IL6 mice showed clear evidence of increased oxidative stress, which was significantly decreased by MT-I overexpression. Interestingly, MT-I overexpression increased...

  9. Case Study: Polycystic Livers in a Transgenic Mouse Line

    Energy Technology Data Exchange (ETDEWEB)

    Lovaglio, Jamie A.; Artwohl, James E.; Ward, Christopher J.; Diekwisch, Thomas G. H.; Ito, Yoshihiro; Fortman, Jeffrey D.

    2014-04-01

    Three mice (2 male, 1 female; age, 5 to 16 mo) from a mouse line transgenic for keratin 14 (K14)-driven LacZ expression and on an outbred Crl:CD1(ICR) background, were identified as having distended abdomens and livers that were diffusely enlarged by numerous cysts (diameter, 0.1 to 2.0 cm). Histopathology revealed hepatic cysts lined by biliary type epithelium and mild chronic inflammation, and confirmed the absence of parasites. Among 21 related mice, 5 additional affected mice were identified via laparotomy. Breeding of these 5 mice (after 5 mo of age) did not result in any offspring; the K14 mice with olycystic livers failed to reproduce. Affected male mice had degenerative testicular lesions, and their sperm was immotile. Nonpolycystic K14 control male mice bred well, had no testicular lesions, and had appropriate sperm motility. Genetic analysis did not identify an association of this phenotype with the transgene or insertion site.

  10. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Feng, Hui-Li; Dang, Hui-Zi; Fan, Hui; Chen, Xiao-Pei; Rao, Ying-Xue; Ren, Ying; Yang, Jin-Duo; Shi, Jing; Wang, Peng-Wen; Tian, Jin-Zhou

    2016-12-01

    Deficits in glucose, impaired insulin signalling and brain insulin resistance are common in the pathogenesis of Alzheimer's disease (AD); therefore, some scholars even called AD type 3 diabetes mellitus. Curcumin can reduce the amyloid pathology in AD. Moreover, it is a well-known fact that curcumin has anti-oxidant and anti-inflammatory properties. However, whether or not curcumin could regulate the insulin signal transduction pathway in AD remains unclear. In this study, we used APPswe/PS1dE9 double transgenic mice as the AD model to investigate the mechanisms and the effects of curcumin on AD. Immunohistochemical (IHC) staining and a western blot analysis were used to test the major proteins in the insulin signal transduction pathway. After the administration of curcumin for 6 months, the results showed that the expression of an insulin receptor (InR) and insulin receptor substrate (IRS)-1 decreased in the hippocampal CA1 area of the APPswe/PS1dE9 double transgenic mice, while the expression of phosphatidylinositol-3 kinase (PI3K), phosphorylated PI3K (p-PI3K), serine-threonine kinase (AKT) and phosphorylated AKT (p-AKT) increased. Among the curcumin groups, the medium-dose group was the most effective one. Thus, we believe that curcumin may be a potential therapeutic agent that can regulate the critical molecules in brain insulin signalling pathways. Furthermore, curcumin could be adopted as one of the AD treatments to improve a patient's learning and memory ability. © The Author(s) 2016.

  11. Immune selection of tumor cells in TCR β-chain transgenic mice.

    Science.gov (United States)

    Silaeva, Yulia Yu; Grinenko, Tatyana S; Vagida, Murad S; Kalinina, Anastasia A; Khromykh, Ludmila M; Kazansky, Dmitry B

    2014-10-01

    The concept of immunological surveillance implies that immunogenic variants of tumor cells arising in the organism can be recognized by the immune system. Tumor progression is provided by somatic evolution of tumor cells under the pressure of the immune system. The loss of MHC Class I molecules on the surface of tumor cells is one of the most known outcomes of immune selection. This study developed a model of immune selection based on the immune response of TCR 1d1 single β-chain transgenic B10.D2(R101) (K(d)I(d)D(b)) mice to allogeneic EL4 (H-2(b)) thymoma cells. In wild-type B10.D2(R101) mice, immunization with EL4 cells induced a vigorous CTL response targeted to the H-2K(b) molecule and results in full rejection of the tumor cells. In contrast, transgenic mice developed a compromised proliferative response in mixed-lymphocyte response assays and were unable to reject transplanted allogeneic EL4 cells. During the immune response to EL4 cells, CD8(+) T-lymphocytes with endogenous β-chains accumulated predominantly in the spleen of transgenic mice and only a small part of the T-lymphocytes expressing transgenic β-chains became CD8(+)CD44(+)CD62L(-) effectors. Then, instead of a full elimination of tumor cells as in wild-type mice, a reproducible prolonged equilibrium phase and subsequent escape was observed in transgenic mice that resulted in death of 90% of the mice in 40-60 days after grafting. Prolonged exposure of tumor cells to the pressure of the immune system in transgenic mice in vivo resulted in a stable loss of H-2K(b) molecules on the EL4 cell surface. Genetic manipulation of the T-lymphocyte repertoire was sufficient to reproduce the classic pattern of interactions between tumor cells and the immune system, usually observed in reliable syngeneic models of anti-tumor immunity. This newly-developed model could be used in further studies of immunoregulatory circuits common for transplantational and anti-tumor immune responses.

  12. Resistance to organophosphorus agent toxicity in transgenic mice expressing the G117H mutant of human butyrylcholinesterase

    International Nuclear Information System (INIS)

    Wang Yuxia; Ticu Boeck, Andreea; Duysen, Ellen G.; Van Keuren, Margaret; Saunders, Thomas L.; Lockridge, Oksana

    2004-01-01

    Organophosphorus toxicants (OP) include chemical nerve agents and pesticides. The goal of this work was to find out whether an animal could be made resistant to OP toxicity by genetic engineering. The human butyrylcholinesterase (BChE) mutant G117H was chosen for study because it has the unusual ability to hydrolyze OP as well as acetylcholine, and it is resistant to inhibition by OP. Human G117H BChE, under the control of the ROSA26 promoter, was expressed in all tissues of transgenic mice. A stable transgenic mouse line expressed 0.5 μg/ml of human G117H BChE in plasma as well as 2 μg/ml of wild-type mouse BChE. Intestine, kidneys, stomach, lungs, heart, spleen, liver, brain, and muscle expressed 0.6-0.15 μg/g of G117H BChE. Transgenic mice were normal in behavior and fertility. The LD50 dose of echothiophate for wild-type mice was 0.1 mg/kg sc. This dose caused severe cholinergic signs of toxicity and lethality in wild-type mice, but caused no deaths and only mild toxicity in transgenic animals. The mechanism of protection was investigated by measuring acetylcholinesterase (AChE) and BChE activity. It was found that AChE and endogenous BChE were inhibited to the same extent in echothiophate-treated wild type and transgenic mice. This led to the hypothesis that protection against echothiophate toxicity was not explained by hydrolysis of echothiophate. In conclusion, the transgenic G117H BChE mouse demonstrates the factors required to achieve protection from OP toxicity in a vertebrate animal

  13. K-RasV14I recapitulates Noonan syndrome in mice

    Science.gov (United States)

    Hernández-Porras, Isabel; Fabbiano, Salvatore; Schuhmacher, Alberto J.; Aicher, Alexandra; Cañamero, Marta; Cámara, Juan Antonio; Cussó, Lorena; Desco, Manuel; Heeschen, Christopher; Mulero, Francisca; Bustelo, Xosé R.; Guerra, Carmen; Barbacid, Mariano

    2014-01-01

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. NS also is associated with a risk for developing myeloproliferative disorders (MPD), including juvenile myelomonocytic leukemia (JMML). Mutations responsible for NS occur in at least 11 different loci including KRAS. Here we describe a mouse model for NS induced by K-RasV14I, a recurrent KRAS mutation in NS patients. K-RasV14I–mutant mice displayed multiple NS-associated developmental defects such as growth delay, craniofacial dysmorphia, cardiac defects, and hematologic abnormalities including a severe form of MPD that resembles human JMML. Homozygous animals had perinatal lethality whose penetrance varied with genetic background. Exposure of pregnant mothers to a MEK inhibitor rescued perinatal lethality and prevented craniofacial dysmorphia and cardiac defects. However, Mek inhibition was not sufficient to correct these defects when mice were treated after weaning. Interestingly, Mek inhibition did not correct the neoplastic MPD characteristic of these mutant mice, regardless of the timing at which the mice were treated, thus suggesting that MPD is driven by additional signaling pathways. These genetically engineered K-RasV14I–mutant mice offer an experimental tool for studying the molecular mechanisms underlying the clinical manifestations of NS. Perhaps more importantly, they should be useful as a preclinical model to test new therapies aimed at preventing or ameliorating those deficits associated with this syndrome. PMID:25359213

  14. A Mouse Model for Human Anal Cancer

    Science.gov (United States)

    Stelzer, Marie K.; Pitot, Henry C.; Liem, Amy; Schweizer, Johannes; Mahoney, Charles; Lambert, Paul F.

    2010-01-01

    Human anal cancers are associated with high-risk human papillomaviruses (HPVs) that cause other anogenital cancers and head and neck cancers. As with other cancers, HPV16 is the most common high-risk HPV in anal cancers. We describe the generation and characterization of a mouse model for human anal cancer. This model makes use of K14E6 and K14E7 transgenic mice in which the HPV16 E6 and E7 genes are directed in their expression to stratified squamous epithelia. HPV16 E6 and E7 possess oncogenic properties including but not limited to their capacity to inactivate the cellular tumor suppressors p53 and pRb, respectively. Both E6 and E7 were found to be functionally expressed in the anal epithelia of K14E6/K14E7 transgenic mice. To assess the susceptibility of these mice to anal cancer, mice were treated topically with dimethylbenz[a]anthracene (DMBA), a chemical carcinogen that is known to induce squamous cell carcinomas in other sites. Nearly 50% of DMBA-treated HPV16 E6/E7 transgenic mice showed overt signs of tumors; whereas, none of the like treated non-transgenic mice showed tumors. Histopathological analyses confirmed that the HPV16 transgenic mice were increased in their susceptibility to anal cancers and precancerous lesions. Biomarker analyses demonstrated that these mouse anal cancers exhibit properties that are similar to those observed in HPV-positive precursors to human anal cancer. This is the first mouse model for investigating the contributions of viral and cellular factors in anal carcinogenesis, and should provide a platform for assessing new therapeutic modalities for treating and/or preventing this type of cancer. PMID:20947489

  15. Behavioral phenotype and BDNF differences related to apoE isoforms and sex in young transgenic mice

    DEFF Research Database (Denmark)

    Reverte, Ingrid; Klein, Anders Bue; Ratner, Cecilia

    2012-01-01

    , very little information is available on apoE2 genotype. In the present study, we have characterized behavioral and learning phenotypes in young transgenic mice apoE2, apoE3 and apoE4 of both sexes. We have also determined the levels of brain-derived neurotrophic factor (BDNF) and its receptor Trk...

  16. Differential effects of amlodipine and atorvastatin treatment and their combination on atherosclerosis in ApoE*3-Leiden transgenic mice

    NARCIS (Netherlands)

    Delsing, D.J.; Jukema, J.W.; van de Wiel, M.A.; Emeis, J.; van der Laarse, A.; Havekes, L.M.; Princen, H.M.G.

    2003-01-01

    This study was designed to investigate the potential antiatherosclerotic effects of the calcium antagonist amlodipine as compared with the HMG-CoA reductase inhibitor atorvastatin and the combination of both in ApoE*3-Leiden transgenic mice. Four groups of 15 ApoE*3-Leiden mice were put on a

  17. Localization and expression of substance P in transgenic mice overexpressing human APP751 with the London (V717I) and Swedish (K670M/N671L) mutations.

    Science.gov (United States)

    Willis, Michael; Hutter-Paier, Birgit; Wietzorrek, Georg; Windisch, Manfred; Humpel, Christian; Knaus, Hans Günther; Marksteiner, Josef

    2007-04-27

    Substance P-like immunoreactivity (-LI) is found in neuritic plaques, and is reduced in patients suffering from Alzheimer disease (AD). In this study, we examined the distribution and expression of substance P in transgenic mice overexpressing human amyloid precursor protein (hAPP) APP751 with the London (V717I) and Swedish (K670M/N671L) mutations. Immunohistochemistry was performed to localize substance P- and glial fibrillary acidic protein-LI by confocal microscopy. In hAPP transgenic mice, the number of beta-amyloid plaques significantly increased from 6 to 12 months. About 5% of beta-amyloid plaques were substance P-immunoreactive. In transgenic mice, the morphology of substance P-immunoreactive structures changed by consisting of swollen and dystrophic neurites mostly associated with beta-amyloid plaques. The overall localization and the relative substance P densities were not different between wild type and transgenic mice at 6 and 12 months. At month 12, a dramatic change in the distribution pattern of substance P-LI was observed as it was now expressed in a high number of reactive astrocytes. This expression of substance P in astrocytes was mainly found in the hippocampal formation and thalamic nuclei with a preferential association with beta-amyloid plaques, whereas in cortical regions only faintly substance P-immunoreactive astrocytes were observed. This study indicates that substance P undergoes complex changes in this animal Alzheimer disease model. Future experiments including substance P antagonists are necessary to further explore the interaction between beta-amyloid deposits and substance P.

  18. Bacterial magnetic particles improve testes-mediated transgene efficiency in mice.

    Science.gov (United States)

    Wang, Chao; Sun, Guanghong; Wang, Ye; Kong, Nana; Chi, Yafei; Yang, Leilei; Xin, Qiliang; Teng, Zhen; Wang, Xu; Wen, Yujun; Li, Ying; Xia, Guoliang

    2017-11-01

    Nano-scaled materials have been proved to be ideal DNA carriers for transgene. Bacterial magnetic particles (BMPs) help to reduce the toxicity of polyethylenimine (PEI), an efficient gene-transferring agent, and assist tissue transgene ex vivo. Here, the effectiveness of the BMP-PEI complex-conjugated foreign DNAs (BPDs) in promoting testes-mediated gene transfer (TMGT) in mouse was compared with that of liposome-conjugated foreign DNAs. The results proved that through testes injection, the clusters of BPDs successfully reached the cytoplasm and the nuclear of spermatogenesis cell, and expressed in testes of transgene founder mice. Additionally, the ratio of founder mice obtained from BPDs (88%) is about 3 times higher than the control (25%) (p mice from BPD group were significantly improved, as compared with the control (p mice within the first filial was significantly higher in BPDs compared with the control (73.8% versus 11.6%, p mice in vivo.

  19. Conditional E2F1 activation in transgenic mice causes testicular atrophy and dysplasia mimicking human CIS

    DEFF Research Database (Denmark)

    Agger, Karl; Santoni-Rugiu, Eric; Holmberg, Christian

    2005-01-01

    E2F1 is a crucial downstream effector of the retinoblastoma protein (pRB) pathway. To address the consequences of short-term increase in E2F1 activity in adult tissues, we generated transgenic mice expressing the human E2F1 protein fused to the oestrogen receptor (ER) ligand-binding domain...

  20. [Chromosomal localization of foreign genes in transgenic mice using dual-color fluorescence in situ hybridization].

    Science.gov (United States)

    Lin, Dan; Gong, Xiu-li; Li, Wei; Guo, Xin-bing; Zhu, Yi-wen; Huang, Ying

    2008-02-01

    To establish a highly sensitive and specific dual-color fluorescence in situ hybridization (D-FISH) method used for chromosomal localization of foreign genes in double transgenic mice. Two strains of double transgenic mice were used in this experiment, one was integrated with the herpes simplex virus thymidine kinase (HSV-tk) and the enhanced green fluorescence protein (eGFP), the other was with the short hairpin RNA interference(RNAi) and beta(654). Splenic cells cultured in vitro were arrested in metaphase by colchicine and hybridized with digoxigenin-labeled and biotinylated DNA probes, then detected by rhodamine-conjugated avidin and FITC-conjugated anti-digoxigenin. Dual-color fluorescence signals were detected on the same metaphase in both transgenic mice strains. In HSV-tk/eGFP double transgenic mice, strong green fluorescence for HSV-tk and red for eGFP were observed and localized at 2E5-G3 and 8A2-A4 respectively. In beta(654)/RNAi mice, beta(654) was detected as red fluorescence on chromosome 7D3-E2, and RNAi showed random integration on chromosomes. It was detected as green fluorescence on chromosome 12B1 in one mouse, while on 1E2.3-1F and 3A3 in the other. Highly sensitive and specific D-FISH method was established using the self-prepared DNA probes, and chromosomal localization of the foreign genes was also performed in combination with G-banding in double transgenic mice. This technology will facilitate the researches in transgenic animals and gene therapy models.

  1. Stable Skin-specific Overexpression of Human CTLA4-Ig in Transgenic Mice through Seven Generations

    Institute of Scientific and Technical Information of China (English)

    Yong WANG; Yong NI; Hong WEI; Feng-Chao WANG; Liang-Peng GE; Xiang GAO

    2006-01-01

    Skin graft rejection is a typical cellular immune response, mainly mediated by T cells. Cytotoxic T lymphocyte associated antigen 4-immunoglobin (CTLA4-Ig) extends graft survival by blocking the T cell co-stimulation pathway and inhibiting T cell activation. To investigate the efficacy of CTLA4-Ig in prolonging skin graft survival, human CTLA4-Ig (hCTLA4-Ig) was engineered to overexpress in mouse skin by transgenesis using the K14 promoter. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay indicated that the expression of CTLA4-Ig remained skin-specific and relatively constant compared to the internal control protein, AKT, through seven generations. The presence and concentration of the hCTLA4-Ig protein in transgenic mouse sera was determined by enzyme-linked immunosorbent assay (ELISA), and the results indicated that the serum CTLA4-Ig concentration also remained constant through generations. Survival of transgenic mouse skins grafted onto rat wounds was remarkably prolonged compared to that of wild-type skins from the same mouse strain, and remained comparable among all seven generations. This suggested that the bioactive hCTLA4-Ig protein was stably expressed in transgenical mice through at least seven generations, which was consistent with the stable skin-specific CTLA4-Ig expression.The results demonstrated that the transgenic expression of hCTLA4-Ig in skin driven by the K14 promoter remained constant through generations, and a transgenic line can be established to provide transgenic skin with extended survival reproducibly.

  2. Progression and regression of atherosclerosis in APOE3-Leiden transgenic mice : An immunohistochemical study

    NARCIS (Netherlands)

    Gijbels, M.J.J.; Cammen, M. van der; Laan, L.J.W. van der; Emeis, J.J.; Havekes, L.M.; Hofker, M.H.; Kraal, G.

    1999-01-01

    Apolipoprotein E3-Leiden (APOE3-Leiden) transgenic mice develop hyperlipidemia and are highly susceptible to diet-induced atherosclerosis. We have studied the progression and regression of atherosclerosis using immunohistochemistry. Female transgenic mice were fed a moderate fat diet to study

  3. L-type calcium channel CaV 1.2 in transgenic mice overexpressing human AbetaPP751 with the London (V717I) and Swedish (K670M/N671L) mutations.

    Science.gov (United States)

    Willis, Michael; Kaufmann, Walter A; Wietzorrek, Georg; Hutter-Paier, Birgit; Moosmang, Sven; Humpel, Christian; Hofmann, Franz; Windisch, Manfred; Knaus, Hans-Günther; Marksteiner, Josef

    2010-01-01

    Cumulative evidence indicates that amyloid-beta peptides exert some of their neurodegenerative effects through modulation of L-type voltage gated calcium channels, which play key roles in a diverse range of CNS functions. In this study we examined the expression of CaV1.2 L-type voltage gated calcium channels in transgenic mice overexpressing human AbetaPP751 with the London (V717I) and Swedish (K670M/N671L) mutations by immunohistochemistry in light and electron microscopy. In hippocampal layers of wild type and transgenic mice, CaV1.2 channels were predominantly localized to somato-dendritic domains of neurons, and to astrocytic profiles with an age-dependent increase in labeling density. In transgenic animals, CaV1.2-like immunoreactive clusters were found in neuronal profiles in association with amyloid-beta plaques. Both the number and density of these clusters depended upon age of animals and number of plaques. The most striking difference between wild type and transgenic mice was the age-dependent expression of CaV1.2 channels in reactive astrocytes. At the age of 6 month, CaV1.2 channels were rarely detected in reactive astrocytes of transgenic mice, but an incremental number of CaV1.2 expressing reactive astrocytes was found with increasing age of animals and number of amyloid-beta plaques. This study demonstrates that CaV1.2 channels are highly expressed in reactive astrocytes of 12-months of age transgenic mice, which might be a consequence of the increasing amyloid burden. Further studies should clarify which functional implications are associated with the higher availability of CaV1.2 channels in late stage Alzheimer's disease.

  4. Huperzine A alleviates synaptic deficits and modulates amyloidogenic and nonamyloidogenic pathways in APPswe/PS1dE9 transgenic mice.

    Science.gov (United States)

    Wang, Ying; Tang, Xi Can; Zhang, Hai Yan

    2012-02-01

    Huperzine A (HupA) is a potent acetylcholinesterase inhibitor (AChEI) used in the treatment of Alzheimer's disease (AD). Recently, HupA was shown to be active in modulating the nonamyloidogenic metabolism of β-amyloid precursor protein (APP) in APP-transfected human embryonic kidney cell line (HEK293swe). However, in vivo research concerning the mechanism of HupA in APP transgenic mice has not yet been fully elucidated. The present study indicates that the loss of dendritic spine density and synaptotagmin levels in the brain of APPswe/presenilin-1 (PS1) transgenic mice was significantly ameliorated by chronic HupA treatment and provides evidence that this neuroprotection was associated with reduced amyloid plaque burden and oligomeric β-amyloid (Aβ) levels in the cortex and hippocampus of APPswe/PS1dE9 transgenic mice. Our findings further demonstrate that the amelioration effect of HupA on Aβ deposits may be mediated, at least in part, by regulation of the compromised expression of a disintegrin and metalloprotease 10 (ADAM10) and excessive membrane trafficking of β-site APP cleavage enzyme 1 (BACE1) in these transgenic mice. In addition, extracellular signal-regulated kinases 1/2 (Erk1/2) phosphorylation may also be partially involved in the effect of HupA on APP processing. In conclusion, our work for the first time demonstrates the neuroprotective effect of HupA on synaptic deficits in APPswe/PS1dE9 transgenic mice and further clarifies the potential pharmacological targets for this protective effect, in which modulation of nonamyloidogenic and amyloidogenic APP processing pathways may be both involved. These findings may provide adequate evidence for the clinical and experimental benefits gained from HupA treatment. Copyright © 2011 Wiley Periodicals, Inc.

  5. Neuronal erythropoietin overexpression protects mice against age-related hearing loss (presbycusis).

    Science.gov (United States)

    Monge Naldi, Arianne; Belfrage, Celina; Jain, Neha; Wei, Eric T; Canto Martorell, Belén; Gassmann, Max; Vogel, Johannes

    2015-12-01

    So far, typical causes of presbycusis such as degeneration of hair cells and/or primary auditory (spiral ganglion) neurons cannot be treated. Because erythropoietin's (Epo) neuroprotective potential has been shown previously, we determined hearing thresholds of juvenile and aged mice overexpressing Epo in neuronal tissues. Behavioral audiometry revealed in contrast to 5 months of age, that 11-month-old Epo-transgenic mice had up to 35 dB lower hearing thresholds between 1.4 and 32 kHz, and at the highest frequencies (50-80 kHz), thresholds could be obtained in aged Epo-transgenic only but not anymore in old C57BL6 control mice. Click-evoked auditory brainstem response showed similar results. Numbers of spiral ganglion neurons in aged C57BL6 but not Epo-transgenic mice were dramatically reduced mainly in the basal turn, the location of high frequencies. In addition, there was a tendency to better preservation of inner and outer hair cells in Epo-transgenic mice. Hence, Epo's known neuroprotective action effectively suppresses the loss of spiral ganglion cells and probably also hair cells and, thus, development of presbycusis in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Dispersion of repolarization and refractoriness are determinants of arrhythmia phenotype in transgenic mice with long QT.

    Science.gov (United States)

    London, Barry; Baker, Linda C; Petkova-Kirova, Polina; Nerbonne, Jeanne M; Choi, Bum-Rak; Salama, Guy

    2007-01-01

    Enhanced dispersion of repolarization (DR) and refractoriness may be a unifying mechanism central to arrhythmia genesis in the long QT (LQT) syndrome. The role of DR in promoting arrhythmias was investigated in several strains of molecularly engineered mice: (a) Kv4.2 dominant negative transgenic (Kv4.2DN) that lacks the fast component of the transient outward current, I(to,f), have action potential (AP) and QT prolongation, but no spontaneous arrhythmias, (b) Kv1.4 targeted mice (Kv1.4-/-) that lack the slow component of I(to) (I(to,s)), have no QT prolongation and no spontaneous arrhythmias, and (c) double transgenic (Kv4.2DN x Kv1.4-/-) mice that lack both I(to,f) and I(to,s), have AP and QT prolongation, and spontaneous ventricular tachyarrhythmias. Hearts were perfused, stained with di-4-ANEPPS and optically mapped. Activation patterns and conduction velocities were similar between the strains but AP duration at 75% recovery (APD75) was longer in Kv4.2DN (28.0 +/- 2.5 ms, P mice than controls (20.3 +/- 1.0 ms, n = 5). Dispersion of refractoriness between apex and base was markedly reduced in Kv4.2DN (0.3 +/- 0.5 ms, n = 6, P mice compared with controls (10 +/- 2 ms, n = 5). A premature pulse elicited ventricular tachycardia (VT) in Kv1.4-/- (n = 4/5) and Kv4.2DN x Kv1.4-/- hearts (n = 5/5) but not Kv4.2DN hearts (n = 0/6). Voltage-clamp recordings showed that I(to,f) was 30% greater in myocytes from the apex than base which may account for the absence of DR in Kv4.2DN mice. Thus, dispersion of repolarization (DR) appears to be an important determinant of arrhythmia vulnerability.

  7. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo.

    Directory of Open Access Journals (Sweden)

    Gary P Brennan

    Full Text Available 14-3-3 proteins are ubiquitous molecular chaperones that are abundantly expressed in the brain where they regulate cell functions including metabolism, the cell cycle and apoptosis. Brain levels of several 14-3-3 isoforms are altered in diseases of the nervous system, including epilepsy. The 14-3-3 zeta (ζ isoform has been linked to endoplasmic reticulum (ER function in neurons, with reduced levels provoking ER stress and increasing vulnerability to excitotoxic injury. Here we report that transgenic overexpression of 14-3-3ζ in mice results in selective changes to the unfolded protein response pathway in the hippocampus, including down-regulation of glucose-regulated proteins 78 and 94, activating transcription factors 4 and 6, and Xbp1 splicing. No differences were found between wild-type mice and transgenic mice for levels of other 14-3-3 isoforms or various other 14-3-3 binding proteins. 14-3-3ζ overexpressing mice were potently protected against cell death caused by intracerebroventricular injection of the ER stressor tunicamycin. 14-3-3ζ overexpressing mice were also potently protected against neuronal death caused by prolonged seizures. These studies demonstrate that increased 14-3-3ζ levels protect against ER stress and seizure-damage despite down-regulation of the unfolded protein response. Delivery of 14-3-3ζ may protect against pathologic changes resulting from prolonged or repeated seizures or where injuries provoke ER stress.

  8. Autologous neural progenitor cell transplantation into newborn mice modeling for E200K genetic prion disease delays disease progression.

    Science.gov (United States)

    Frid, Kati; Binyamin, Orli; Fainstein, Nina; Keller, Guy; Ben-Hur, Tamir; Gabizon, Ruth

    2018-05-01

    TgMHu2ME199K mice, a transgenic line mimicking genetic prion disease, are born healthy and gradually deteriorate to a terminal neurological condition concomitant with the accumulation of disease-related PrP. To investigate whether transplantation of neural progenitor cells (NPCs) to these mice can delay disease aggravation, we first tested the properties of mutant PrP in homogenates and enriched NPCs from TgMHu2ME199K embryos, as compared to PrP in sick TgMHu2ME199K brains. Next, we tested the clinical effect of NPCs transplantation into newborn TgMHu2ME199K mice. We show that mutant PrP does not convert into a disease-related isoform while in progenitor cells. Most important, transplantation of both wild type and transgenic NPCs significantly delayed the progression of spontaneous prion disease in TgMHu2ME199K mice. While the strong clinical effect was not accompanied by a reduced accumulation of disease-related PrP, treated mouse brains presented a significant reduction in amyloid glycosaminoglycans and preservation of neurogenesis levels, indicating a strong neuroprotective effect. These results may encourage the investigation of new pathways for treatment in these terrible diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Age-related changes in body composition of bovine growth hormone transgenic mice.

    Science.gov (United States)

    Palmer, Amanda J; Chung, Min-Yu; List, Edward O; Walker, Jennifer; Okada, Shigeru; Kopchick, John J; Berryman, Darlene E

    2009-03-01

    GH has a significant impact on body composition due to distinct anabolic and catabolic effects on lean and fat mass, respectively. Several studies have assessed body composition in mice expressing a GH transgene. Whereas all studies report enhanced growth of transgenic mice as compared with littermate controls, there are inconsistencies in terms of the relative proportion of lean mass to fat mass in these animals. The purpose of this study was to characterize the accumulation of adipose and lean mass with age and according to gender in a bovine (b) GH transgenic mouse line. Weight and body composition measurements were assessed in male and female bGH mice with corresponding littermate controls in the C57BL/6J genetic background. Body composition measurements began at 6 wk and continued through 1 yr of age. At the conclusion of the study, tissue weights were determined and triglyceride content was quantified in liver and kidney. Although body weights for bGH mice were significantly greater than their corresponding littermate controls at all time points, body composition measurements revealed an unexpected transition midway through analyses. That is, younger bGH mice had relatively more fat mass than nontransgenic littermates, whereas bGH mice became significantly leaner than controls by 4 months in males and 6 months in females. These results reveal the importance in timing and gender when conducting studies related to body composition or lean and fat tissue in GH transgenic mice or in other genetically manipulated mouse strains in which body composition may be impacted.

  10. Non-motor and motor features in LRRK2 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Zoë Bichler

    Full Text Available Non-motor symptoms are increasingly recognized as important features of Parkinson's disease (PD. LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models.Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms.We investigated the onset of motor and non-motor phenotypes on the LRRK2(R1441G BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction, and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls.LRRK2(R1441G BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.

  11. Vascular dysfunctions in the isolated aorta of double-transgenic hypertensive mice developing aortic aneurysm

    DEFF Research Database (Denmark)

    Waeckel, L.; Badier-Commander, C.; Damery, T.

    2015-01-01

    Angiotensin-II and oxidative stress are involved in the genesis of aortic aneurysms, a phenomenon exacerbated by endothelial nitric oxide synthase (eNOS) deletion or uncoupling. The purpose of this work was to study the endothelial function in wild-type C57BL/6 (BL) and transgenic mice expressing...

  12. Anxiety-like behavior in transgenic mice with brain expression of neuropeptide Y.

    Science.gov (United States)

    Inui, A; Okita, M; Nakajima, M; Momose, K; Ueno, N; Teranishi, A; Miura, M; Hirosue, Y; Sano, K; Sato, M; Watanabe, M; Sakai, T; Watanabe, T; Ishida, K; Silver, J; Baba, S; Kasuga, M

    1998-01-01

    Neuropeptide Y (NPY), one of the most abundant peptide transmitters in the mammalian brain, is assumed to play an important role in behavior and its disorders. To understand the long-term modulation of neuronal functions by NPY, we raised transgenic mice created with a novel central nervous system (CNS) neuron-specific expression vector of human Thy- gene fragment linked to mouse NPY cDNA. In situ hybridization analysis demonstrated transgene-derived NPY expression in neurons (e.g., in the hippocampus, cerebral cortex, and the arcuate nucleus of the hypothalamus) in the transgenic mice. The modest increase of NPY protein in the brain was demonstrated by semiquantitative immunohistochemical analysis and by radioreceptor assay (115% in transgenic mice compared to control littermates). Double-staining experiments indicated colocalization of the transgene-derived NPY message and NPY protein in the same neurons, such as in the arcuate nucleus. The transgenic mice displayed behavioral signs of anxiety and hypertrophy of adrenal zona fasciculata cells, but no change in food intake was observed. The anxiety-like behavior of transgenic mice was reversed, at least in part, by administration of corticotropin-releasing factor (CRF) antagonists, alpha-helical CRF9-41, into the third cerebral ventricle. These results suggest that NPY has a role in anxiety and behavioral responses to stress partly via the CRF neuronal system. This genetic model may provide a unique opportunity to study human anxiety and emotional disorders.

  13. DNA adducts, mutant frequencies and mutation spectra in λlacZ transgenic mice treated with N-nitrosodimethylamine

    NARCIS (Netherlands)

    Souliotis, V.L.; Delft, J.H.M. van; Steenwinkel, M.-J.S.T.; Baan, R.A.; Kyrtopoulos, S.A.

    1998-01-01

    Groups of λlacZ transgenic mice were treated i.p. with N-nitrosodimethylamine (NDMA) as single doses of 5 mg/kg or 10 mg/kg or as 10 daily doses of 1 mg/kg and changes in DNA N7- or O6-methylguanine or the repair enzyme O6-alkylguanine-DNA alkyltransferase (AGT) were followed for up to 14 days in

  14. Overexpression of IGF-I in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy

    Science.gov (United States)

    Criswell, D. S.; Booth, F. W.; DeMayo, F.; Schwartz, R. J.; Gordon, S. E.; Fiorotto, M. L.

    1998-01-01

    This study examined the association between local insulin-like growth factor I (IGF-I) overexpression and atrophy in skeletal muscle. We hypothesized that endogenous skeletal muscle IGF-I mRNA expression would decrease with hindlimb unloading (HU) in mice, and that transgenic mice overexpressing human IGF-I (hIGF-I) specifically in skeletal muscle would exhibit less atrophy after HU. Male transgenic mice and nontransgenic mice from the parent strain (FVB) were divided into four groups (n = 10/group): 1) transgenic, weight-bearing (IGF-I/WB); 2) transgenic, hindlimb unloaded (IGF-I/HU); 3) nontransgenic, weight-bearing (FVB/WB); and 4) nontransgenic, hindlimb unloaded (FVB/HU). HU groups were hindlimb unloaded for 14 days. Body mass was reduced (P < 0.05) after HU in both IGF-I (-9%) and FVB mice (-13%). Contrary to our hypothesis, we found that the relative abundance of mRNA for the endogenous rodent IGF-I (rIGF-I) was unaltered by HU in the gastrocnemius (GAST) muscle of wild-type FVB mice. High-level expression of hIGF-I peptide and mRNA was confirmed in the GAST and tibialis anterior (TA) muscles of the transgenic mice. Nevertheless, masses of the GAST and TA muscles were reduced (P < 0.05) in both FVB/HU and IGF-I/HU groups compared with FVB/WB and IGF-I/WB groups, respectively, and the percent atrophy in mass of these muscles did not differ between FVB and IGF-I mice. Therefore, skeletal muscle atrophy may not be associated with a reduction of endogenous rIGF-I mRNA level in 14-day HU mice. We conclude that high local expression of hIGF-I mRNA and peptide in skeletal muscle alone cannot attenuate unloading-induced atrophy of fast-twitch muscle in mice.

  15. Transcervical Inoculation with Chlamydia trachomatis Induces Infertility in HLA-DR4 Transgenic and Wild-Type Mice.

    Science.gov (United States)

    Pal, Sukumar; Tifrea, Delia F; Zhong, Guangming; de la Maza, Luis M

    2018-01-01

    Chlamydia trachomatis is the leading cause of infection-induced infertility in women. Attempts to control this epidemic with screening programs and antibiotic therapy have failed. Currently, a vaccine to prevent C. trachomatis infections is not available. In order to develop an animal model for evaluating vaccine antigens that can be applied to humans, we used C. trachomatis serovar D (strain UW-3/Cx) to induce infertility in mice whose major histocompatibility complex class II antigen was replaced with the human leukocyte antigen DR4 (HLA-DR4). Transcervical inoculation of medroxyprogesterone-treated HLA-DR4 transgenic mice with 5 × 10 5 C. trachomatis D inclusion forming units (IFU) induced a significant reduction in fertility, with a mean number of embryos/mouse of 4.4 ± 1.3 compared to 7.8 ± 0.5 for the uninfected control mice ( P < 0.05). A similar fertility reduction was elicited in the wild-type (WT) C57BL/6 mice (4.3 ± 1.4 embryos/mouse) compared to the levels of the WT controls (9.1 ± 0.4 embryos/mouse) ( P < 0.05). Following infection, WT mice mounted more robust humoral and cellular immune responses than HLA-DR4 mice. As determined by vaginal shedding, HLA-DR4 mice were more susceptible to a transcervical C. trachomatis D infection than WT mice. To assess if HLA-DR4 transgenic and WT mice could be protected by vaccination, 10 4 IFU of C. trachomatis D was delivered intranasally, and mice were challenged transcervically 6 weeks later with 5 × 10 5 IFU of C. trachomatis D. As determined by severity and length of vaginal shedding, WT C57BL/6 and HLA-DR4 mice were significantly protected by vaccination. The advantages and limitations of the HLA-DR4 transgenic mouse model for evaluating human C. trachomatis vaccine antigens are discussed. Copyright © 2017 American Society for Microbiology.

  16. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy.

    Science.gov (United States)

    Marzuca-Nassr, Gabriel Nasri; Murata, Gilson Masahiro; Martins, Amanda Roque; Vitzel, Kaio Fernando; Crisma, Amanda Rabello; Torres, Rosângela Pavan; Mancini-Filho, Jorge; Kang, Jing Xuan; Curi, Rui

    2017-10-06

    The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively), muscle isotonic and tetanic force (by 29% and 18%, respectively), CSA of the soleus muscle (by 36%), and soleus muscle fibers (by 45%). Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio as compared with C57BL/6 wild-type mice (56%, p Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.

  17. [Neuroprotective effect of curcumin to Aβ of double transgenic mice with Alzheimer's disease].

    Science.gov (United States)

    Feng, Hui-Li; Fan, Hui; Dang, Hui-Zi; Chen, Xiao-Pei; Ren, Ying; Yang, Jin-Duo; Wang, Peng-Wen

    2014-10-01

    To observe the changes in Aβ40, Aβ42 and ADDLs in brains of 3 month-old APPswe/PS1dE9 double transgenic mice after six-month intervention with curcumin, in order to discuss the neuroprotective effect of curcumin. APPswe/PS1dE9dtg mice were randomly divided into the model group, the Rosiglitazone group (10 mg x kg(-1) x d(-1)) and curcumin high (400 mg x kg9-1) x d(-1)), medium (200 mg x kg(-1) x d(-1)) and low (100 mg x kg(-1) x d(-1)) dosage groups, with C57/BL6J mice of the same age and the same background in the normal control group. After 6 months, the immunohistochemical staining (IHC) and the Western blot method were used to observe the changes in positive cell of Aβ40, Aβ42 and ADDLs in hippocampal CA1 area, their distribution and protein expressions. Both of the immunohistochemical staining and the Western blot method showed more positive cell of Aβ40, Aβ42 and ADDLs in hippocampal CA1 area and higher protein expressions in the model group than the normal group (P curcumin high group, the medium group showed a significant decrease (P curcumin can significantly reduce the expressions of hippocampal Aβ40, Aβ42 and ADDLs in brains of APPswe/PS1dE9 double transgenic mice. Whether curcumin can impact Aβ cascade reaction by down-regulating expressions of Aβ40, Aβ42 and ADDLs and show the neuroprotective effect needs further studies.

  18. Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice

    International Nuclear Information System (INIS)

    Hufbauer, M.; Lazic, D.; Akguel, B.; Brandsma, J.L.; Pfister, H.; Weissenborn, S.J.

    2010-01-01

    Human papillomavirus 8 (HPV8) is involved in skin cancer development in epidermodysplasia verruciformis patients. Transgenic mice expressing HPV8 early genes (HPV8-CER) developed papillomas, dysplasias and squamous cell carcinomas. UVA/B-irradiation and mechanical wounding of HPV8-CER mouse skin led to prompt papilloma induction in about 3 weeks. The aim of this study was to analyze the kinetics and level of transgene expression in response to skin irritations. Transgene expression was already enhanced 1 to 2 days after UVA/B-irradiation or tape-stripping and maintained during papilloma development. The enhanced transgene expression could be assigned to UVB and not to UVA. Papilloma development was thus always paralleled by an increased transgene expression irrespective of the type of skin irritation. A knock-down of E6 mRNA by tattooing HPV8-E6-specific siRNA led to a delay and a lower incidence of papilloma development. This indicates that the early increase of viral oncogene expression is crucial for induction of papillomatosis.

  19. Neuron and neuroblast numbers and cytogenesis in the dentate gyrus of aged APP(swe)/PS1(dE9) transgenic mice

    DEFF Research Database (Denmark)

    Olesen, Louise Orum; Sivasaravanaparan, Mithula; Severino, Maurizio

    2017-01-01

    Altered neurogenesis may influence hippocampal functions such as learning and memory in Alzheimer's disease. Selective serotonin reuptake inhibitors enhance neurogenesis and have been reported to reduce cerebral amyloidosis in both humans and transgenic mice. We have used stereology to assess the...... working memory, independent of changes in total granular neurons. Furthermore, while long-term paroxetine treatment may be able to reduce hippocampal amyloidosis, it appears to have no effect on total number of granular neurons or spatial working memory....... the longitudinal changes in the number of doublecortin-expressing neuroblasts and number of granular neurons in the dentate gyrus of APPswe/PS1dE9 transgenic mice. Furthermore, we investigated the effect of long-term paroxetine treatment on the number of neuroblasts and granular neurons, hippocampal amyloidosis......Altered neurogenesis may influence hippocampal functions such as learning and memory in Alzheimer's disease. Selective serotonin reuptake inhibitors enhance neurogenesis and have been reported to reduce cerebral amyloidosis in both humans and transgenic mice. We have used stereology to assess...

  20. Conditional expression of the dominant-negative TGF-β receptor type II elicits lingual epithelial hyperplasia in transgenic mice.

    Science.gov (United States)

    Li, Feng; Zhou, Mingliang

    2013-05-01

    The transforming growth factor-β (TGF-β) signaling pathway is generally believed to be a potent inhibitor of proliferation. However, many epithelia lacking the essential Tgfbr2 gene still maintain normal tissue homeostasis. Here, transgenic mice expressing rtTA from the human keratin 14 (K14) promoter were used to generate an inducible dominant-negative TGF-β receptor type II (Tgfbr2) mutant model, which allowed us to distinguish between the primary and secondary effects of TGF-β signaling disruption by Doxycycline treatment in K14+ epithelial stem cells. We showed that in mice lacking TGF-β signaling in K14+ cells, invasive carcinomas developed on the ventral surface of the tip of the tongue, while filiform papillae on the dorsal surface showed different pathological changes from the tip to the posterior of the tongue. In addition, acetylation levels of histone H4 and histone H3 rapidly increased, while pMAPK activity was enhanced and Jagged2 inactivated in lingual epithelia after disruption of TGF-β signaling. Our results contribute to the understanding of TGF-β signaling in regulating homeostasis and carcinogenesis in lingual epithelia. Copyright © 2013 Wiley Periodicals, Inc.

  1. α-Lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice

    International Nuclear Information System (INIS)

    Lee, Young; Naseem, R. Haris; Park, Byung-Hyun; Garry, Daniel J.; Richardson, James A.; Schaffer, Jean E.; Unger, Roger H.

    2006-01-01

    α-Lipoic acid (α-LA) mimics the hypothalamic actions of leptin on food intake, energy expenditure, and activation of AMP-activated protein kinase (AMPK). To determine if, like leptin, α-LA protects against cardiac lipotoxicity, α-LA was fed to transgenic mice with cardiomyocyte-specific overexpression of the acyl CoA synthase (ACS) gene. Untreated ACS-transgenic mice died prematurely with increased triacylglycerol content and dilated cardiomyopathy, impaired systolic function and myofiber disorganization, apoptosis, and interstitial fibrosis on microscopy. In α-LA-treated ACS-transgenic mice heart size, echocardiogram and TG content were normal. Plasma TG fell 50%, hepatic-activated phospho-AMPK rose 6-fold, sterol regulatory element-binding protein-1c declined 50%, and peroxisome proliferator-activated receptor-γ cofactor-1α mRNA rose 4-fold. Since food restriction did not prevent lipotoxicity, we conclude that α-LA treatment, like hyperleptinemia, protects the heart of ACS-transgenic mice from lipotoxicity

  2. Chromosomal localisation of the CD4cre transgene in B6·Cg-Tg(Cd4-cre)1Cwi mice.

    Science.gov (United States)

    Westendorf, Kerstin; Durek, Pawel; Ayew, Samia; Mashreghi, Mir-Farzin; Radbruch, Andreas

    2016-09-01

    The B6·Cg-Tg(Cd4-cre)1Cwi line expresses CRE recombinase under the control of the promoter and regulatory elements of the Cd4 gene. Here we show that CRE recombinase expression reduces the number and frequencies of CD4 positive subsets in a dose-dependent manner and localize the integration site of the transgenic construct to position 60335693-60341285 (qD) of chromosome 3. The insert contains at least 15 complete sequential copies of the transgenic construct. Based on this information we describe a novel PCR assay for genetic typing of transgenic mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Human Papillomavirus Type 16 E6 and E7 Oncoproteins Act Synergistically to Cause Head and Neck Cancer in Mice

    Science.gov (United States)

    Jabbar, Sean; Strati, Katerina; Shin, Myeong Kyun; Pitot, Henry C.; Lambert, Paul F.

    2010-01-01

    High-risk human papillomaviruses (HPVs) contribute to cervical and other anogenital cancers, and they are also linked etiologically to a subset of head and neck squamous cell carcinomas (HNSCC). We previously established a model for HPV-associated HNSCC in which we treated transgenic mice expressing the papillomaviral oncoproteins with the chemical carcinogen 4-nitroquinoline-1-oxide (4-NQO). We found that the HPV-16 E7 oncoprotein was highly potent in causing HNSCC, and its dominance masked any potential oncogenic contribution of E6, a second papillomaviral oncoprotein commonly expressed in human cancers. In the current study, we shortened the duration of treatment with 4-NQO to reduce the incidence of cancers and discovered a striking synergy between E6 and E7 in causing HNSCC. Comparing the oncogenic properties of wild-type versus mutant E6 genes in this model for HNSCC uncovered a role for some but not other cellular targets of E6 previously shown to contribute to cervical cancer. PMID:20797753

  4. Generation of transgenic mice producing fungal xylanase in the ...

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    express exogenous digestive enzymes, since a single- stomached animal, such as a pig, can secret .... transgenic founder mice; 1 to15 are fifteen wild-type founder mice; M, marke; β-actin, endogenous control. (C) Identification of transgenic mice by ... 61.48±0.34%), gross energy digestibility (WT vs. TG = 68.79±0.51% vs.

  5. Magnetic biomineralisation in Huntington's disease transgenic mice

    International Nuclear Information System (INIS)

    Beyhum, W; Hautot, D; Dobson, J; Pankhurst, Q A

    2005-01-01

    The concentration levels of biogenic magnetite nanoparticles in transgenic R6/2 Huntington's disease (HD) mice have been investigated, using seven control and seven HD mice each from an 8 week-old litter and from a 12 week-old litter. Hysteresis and isothermal remnant magnetisation data were collected on a SQUID magnetometer, and analysed using a model comprising dia/paramagnetic, ferrimagnetic and superparamagnetic contributions, to extract the magnetite and ferritin concentrations present. It was found that magnetite was present in both superparamagnetic and blocked states. A larger spread and higher concentration of magnetite levels was found in the diseased mice for both the 8 week-old and 12 week-old batches, compared to the controls

  6. A negative search of acute canine distemper virus infection in DogSLAM transgenic C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Somporn Techangamsuwan

    2010-12-01

    Full Text Available Canine distemper is a highly contagious and immunosuppressive viral disease caused by canine distemper virus(CDV, an enveloped RNA virus of the family Paramyxoviridae. The susceptible host spectrum of CDV is broad andincludes all families of the order Carnivora. To accomplish the infection, CDV requires an expression of signaling lymphocyteactivation molecule (SLAM functioning as a cellular receptor which generally presents in a variety of different lymphoid cellsubpopulations, including immature thymocytes, primary B cells, activated T cells, memory T cells, macrophages and maturedendritic cells. The distribution of SLAM-presenting cells is in accordance with the lymphotropism and immunosuppressionfollowing morbillivirus infection. In the present study, the C57BL/6 mice engrafted with dog-specific SLAM sequence(DogSLAM were used. The weanling (3-week-old transgenic offspring C57BL/6 mice were infected with CDV Snyder Hill(CDV-SH strain via the intranasal (n=6, intracerebral (n=6 and intraperitoneal (n=5 routes. Clinical signs, hematology,histopathology, immunohistochemistry, virus isolation and RT-PCR were observed for two weeks post infection. Resultsshowed that CDV-SH-inoculated transgenic mice displayed mild-to-moderate congestion of various organs (brain, lung,spleen, kidney, lymph node, and adrenal gland. By means of immunohistochemistry, virus isolation and RT-PCR, CDV couldnot be detected. The evidence of CDV infection in this study could not be demonstrated in acute phase. Even though thetransgenic mouse is not a suitable animal model for CDV, or a longer incubation period is prerequisite, it needs to be clarifiedin a future study.

  7. Chromogranin B and Secretogranin II in transgenic mice overexpressing human APP751 with the London (V717I) and Swedish (K670M/N671L) mutations and in Alzheimer patients.

    Science.gov (United States)

    Willis, Michael; Prokesch, Manuela; Hutter-Paier, Birgit; Windisch, Manfred; Stridsberg, Mats; Mahata, Sushil K; Kirchmair, Rudolf; Wietzorrek, Georg; Knaus, Hans-Günther; Jellinger, Kurt; Humpel, Christian; Marksteiner, Josef

    2008-03-01

    Chromogranin B and secretogranin II are major soluble constituents of large dense core vesicles of presynaptic structures and have been found in neuritic plaques of Alzheimer patients. We examined the distribution and expression of these peptides in both transgenic mice over expressing human amyloid-beta protein precursor APP751 with the London (V717I) and Swedish (K670M/N671L) mutations and in human post-mortem brain. In transgenic mice, the number of amyloid-beta plaques and chromogranin immunopositive plaques increased from 6 to 12 months. About 60% of amyloid-beta plaques were associated with chromogranin B and about 40% with secretogranin II. Chromogranin immunoreactivity appeared mainly as swollen dystrophic neurites. Neither synaptophysin- nor glial fibrillary acidic protein- immunoreactivity was expressed in chromogranin immunoreactive structures at any timepoint. Density of chromogranin peptides in hippocampal structures did not change in transgenic animals at any timepoint, even though animals had a poorer performance in the Morris water maze task. In conclusion, our findings in transgenic animals partly resembled findings in Alzheimer patients. Chromogranin peptides were associated with amyloid-beta plaques, but were not reduced in specific brain areas as previously reported by our group. Therefore specific changes of chromogranin peptides observed in Alzheimer patients can be related to amyloid-beta pathology only.

  8. Cervical Cancers Require the Continuous Expression of the Human Papillomavirus Type 16 E7 Oncoprotein Even in the Presence of the Viral E6 Oncoprotein

    Science.gov (United States)

    Jabbar, Sean F.; Park, Soyeong; Schweizer, Johannes; Berard-Bergery, Marthe; Pitot, Henry C.; Lee, Denis; Lambert, Paul F.

    2012-01-01

    High-risk human papillomaviruses (HPV), such as HPV-16, are etiologic agents of a variety of anogenital and oral malignancies, including nearly all cases of cervical cancer. Cervical cancers arising in transgenic mice that express HPV-16 E7 in an inducible manner require the continuous expression of E7 for their maintenance. However, in HPV-associated cancers in vivo, E6 and E7 invariably are co-expressed. In this study, we investigated whether cervical cancers rely on the continuous expression of E7 in the context of constitutively expressed E6. We placed the inducible HPV-16 E7 transgene onto a background in which HPV-16 E6 was constitutively expressed. In transgenic mice with high-grade cervical dysplastic lesions and cervical cancer, repressing the expression of E7 led to the regression of all cancers and the vast majority of high-grade dysplastic lesions. In addition, cervical cancers were occasionally observed in transgenic mice in which E7 was repressed and then re-expressed. Our findings therefore indicate that even in the presence of constitutively expressed E6, the continuous expression of E7 is required for the maintenance of cervical cancers and most precancerous lesions. These data have important implications for the potential clinical use of drugs designed to inhibit the expression and/or function of E7 to treat HPV-associated cancers. PMID:22700879

  9. Hepatic steatosis in transgenic mice overexpressing human histone deacetylase 1

    International Nuclear Information System (INIS)

    Wang, Ai-Guo; Seo, Sang-Beom; Moon, Hyung-Bae; Shin, Hye-Jun; Kim, Dong Hoon; Kim, Jin-Man; Lee, Tae-Hoon; Kwon, Ho Jeong; Yu, Dae-Yeul; Lee, Dong-Seok

    2005-01-01

    It is generally thought that histone deacetylases (HDACs) play important roles in the transcriptional regulation of genes. However, little information is available concerning the specific functions of individual HDACs in disease states. In this study, two transgenic mice lines were established which harbored the human HDAC1 gene. Overexpressed HDAC1 was detected in the nuclei of transgenic liver cells, and HDAC1 enzymatic activity was significantly higher in the transgenic mice than in control littermates. The HDAC1 transgenic mice exhibited a high incidence of hepatic steatosis and nuclear pleomorphism. Molecular studies showed that HDAC1 may contribute to nuclear pleomorphism through the p53/p21 signaling pathway

  10. Hepatitis C virus core protein targets 4E-BP1 expression and phosphorylation and potentiates Myc-induced liver carcinogenesis in transgenic mice.

    Science.gov (United States)

    Abdallah, Cosette; Lejamtel, Charlène; Benzoubir, Nassima; Battaglia, Serena; Sidahmed-Adrar, Nazha; Desterke, Christophe; Lemasson, Matthieu; Rosenberg, Arielle R; Samuel, Didier; Bréchot, Christian; Pflieger, Delphine; Le Naour, François; Bourgeade, Marie-Françoise

    2017-08-22

    Hepatitis C virus (HCV) is a leading cause of liver diseases including the development of hepatocellular carcinoma (HCC). Particularly, core protein has been involved in HCV-related liver pathologies. However, the impact of HCV core on signaling pathways supporting the genesis of HCC remains largely elusive. To decipher the host cell signaling pathways involved in the oncogenic potential of HCV core, a global quantitative phosphoproteomic approach was carried out. This study shed light on novel differentially phosphorylated proteins, in particular several components involved in translation. Among the eukaryotic initiation factors that govern the translational machinery, 4E-BP1 represents a master regulator of protein synthesis that is associated with the development and progression of cancers due to its ability to increase protein expression of oncogenic pathways. Enhanced levels of 4E-BP1 in non-modified and phosphorylated forms were validated in human hepatoma cells and in mouse primary hepatocytes expressing HCV core, in the livers of HCV core transgenic mice as well as in HCV-infected human primary hepatocytes. The contribution of HCV core in carcinogenesis and the status of 4E-BP1 expression and phosphorylation were studied in HCV core/Myc double transgenic mice. HCV core increased the levels of 4E-BP1 expression and phosphorylation and significantly accelerated the onset of Myc-induced tumorigenesis in these double transgenic mice. These results reveal a novel function of HCV core in liver carcinogenesis potentiation. They position 4E-BP1 as a tumor-specific target of HCV core and support the involvement of the 4E-BP1/eIF4E axis in hepatocarcinogenesis.

  11. Characterization of gastric adenocarcinoma cell lines established from CEA424/SV40 T antigen-transgenic mice with or without a human CEA transgene

    International Nuclear Information System (INIS)

    Nöckel, Jessica; Engel, Natasja K van den; Winter, Hauke; Hatz, Rudolf A; Zimmermann, Wolfgang; Kammerer, Robert

    2006-01-01

    Gastric carcinoma is one of the most frequent cancers worldwide. Patients with gastric cancer at an advanced disease stage have a poor prognosis, due to the limited efficacy of available therapies. Therefore, the development of new therapies, like immunotherapy for the treatment of gastric cancer is of utmost importance. Since the usability of existing preclinical models for the evaluation of immunotherapies for gastric adenocarcinomas is limited, the goal of the present study was to establish murine in vivo models which allow the stepwise improvement of immunotherapies for gastric cancer. Since no murine gastric adenocarcinoma cell lines are available we established four cell lines (424GC, mGC3, mGC5, mGC8) from spontaneously developing tumors of CEA424/SV40 T antigen (CEA424/Tag) mice and three cell lines derived from double-transgenic offsprings of CEA424/Tag mice mated with human carcinoembryonic antigen (CEA)-transgenic (CEA424/Tag-CEA) mice (mGC2 CEA , mGC4 CEA , mGC11 CEA ). CEA424/Tag is a transgenic C57BL/6 mouse strain harboring the Tag under the control of a -424/-8 bp CEA gene promoter which leads to the development of invasive adenocarcinoma in the glandular stomach. Tumor cell lines established from CEA424/Tag-CEA mice express the well defined tumor antigen CEA under the control of its natural regulatory elements. The epithelial origin of the tumor cells was proven by morphological criteria including the presence of mucin within the cells and the expression of the cell adhesion molecules EpCAM and CEACAM1. All cell lines consistently express the transgenes CEA and/or Tag and MHC class I molecules leading to their susceptibility to lysis by Tag-specific CTL in vitro. Despite the presentation of CTL-epitopes derived from the transgene products the tumor cell lines were tumorigenic when grafted into C57BL/6, CEA424/Tag or CEA424/Tag-CEA-transgenic hosts and no significant differences in tumor take and tumor growth were observed in the different hosts

  12. Characterization of somatostatin receptors and associated signaling pathways in pancreas of R6/2 transgenic mice.

    Science.gov (United States)

    Somvanshi, Rishi K; Jhajj, Amrit; Heer, Michael; Kumar, Ujendra

    2018-02-01

    The present study describes the status of somatostatin receptors (SSTRs) and their colocalization with insulin (β), glucagon (α) and somatostatin (δ) producing cells in the pancreatic islets of 11weeks old R6/2 Huntington's Disease transgenic (HD tg) and age-matched wild type (wt) mice. We also determined expression of tyrosine hydroxylase (TH), glutamic acid decarboxylase (GAD) and presynaptic marker synaptophysin (SYP) in addition to signal transduction pathways associated with diabetes. In R6/2 mice, islets are relatively smaller in size, exhibit enhanced expression and nuclear inclusion of mHtt along with the loss of insulin, glucagon and somatostatin expression. In comparison to wt, R6/2 mice display enhanced mRNA for all SSTRs except SSTR2. In the pancreatic lysate, SSTR1, 4 and 5 immunoreactivity decreases whereas SSTR3 immunoreactivity increases with no discernible changes in SSTR2 immunoreactivity. Furthermore, at the cellular level, R6/2 mice exhibit a receptor specific distributional pattern of SSTRs like immunoreactivity and colocalization with β, α and δ cells. While GAD expression is increased, TH and SYP immunoreactivity was decreased in R6/2 mice, anticipating a cross-talk between the CNS and pancreas in diabetes pathophysiology. We also dissected out the changes in signaling pathway and found decreased activation and expression of PKA, AKT, ERK1/2 and STAT3 in R6/2 mice pancreas. These findings suggest that the impaired organization of SSTRs within islets may lead to perturbed hormonal regulation and signaling. These interconnected complex events might shed new light on the pathogenesis of diabetes in neurodegenerative diseases and the role of SSTRs in potential therapeutic intervention. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy

    Directory of Open Access Journals (Sweden)

    Gabriel Nasri Marzuca-Nassr

    2017-10-01

    Full Text Available The consequences of two-week hindlimb suspension (HS on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA, and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2 and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1 were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively, muscle isotonic and tetanic force (by 29% and 18%, respectively, CSA of the soleus muscle (by 36%, and soleus muscle fibers (by 45%. Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs ratio as compared with C57BL/6 wild-type mice (56%, p < 0.001. Fat-1 mice had lower soleus muscle dry mass loss (by 10% and preserved absolute isotonic force (by 17% and CSA of the soleus muscle (by 28% after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70% and MuRF-1 content decreased (by 50% in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.

  14. Plasma and liver lipidomics response to an intervention of rimonabant in ApoE*3Leiden.CETP transgenic mice.

    Directory of Open Access Journals (Sweden)

    Chunxiu Hu

    Full Text Available Lipids are known to play crucial roles in the development of life-style related risk factors such as obesity, dyslipoproteinemia, hypertension and diabetes. The first selective cannabinoid-1 receptor blocker rimonabant, an anorectic anti-obesity drug, was frequently used in conjunction with diet and exercise for patients with a body mass index greater than 30 kg/m(2 with associated risk factors such as type II diabetes and dyslipidaemia in the past. Less is known about the impact of this drug on the regulation of lipid metabolism in plasma and liver in the early stage of obesity.We designed a four-week parallel controlled intervention on apolipoprotein E3 Leiden cholesteryl ester transfer protein (ApoE*3Leiden.CETP transgenic mice with mild overweight and hypercholesterolemia. A liquid chromatography-linear ion trap-Fourier transform ion cyclotron resonance-mass spectrometric approach was employed to investigate plasma and liver lipid responses to the rimonabant intervention. Rimonabant was found to induce a significant body weight loss (9.4%, p<0.05 and a significant plasma total cholesterol reduction (24%, p<0.05. Six plasma and three liver lipids in ApoE*3Leiden.CETP transgenic mice were detected to most significantly respond to rimonabant treatment. Distinct lipid patterns between the mice were observed for both plasma and liver samples in rimonabant treatment vs. non-treated controls. This study successfully applied, for the first time, systems biology based lipidomics approaches to evaluate treatment effects of rimonabant in the early stage of obesity.The effects of rimonabant on lipid metabolism and body weight reduction in the early stage obesity were shown to be moderate in ApoE*3Leiden.CETP mice on high-fat diet.

  15. Overexpression of BID in thyroids of transgenic mice increases sensitivity to iodine-induced autoimmune thyroiditis

    Science.gov (United States)

    2014-01-01

    Background BID functions as a bridge molecule between death-receptor and mitochondrial related apoptotic pathways to amplify apoptotic signaling. Our previous studies have demonstrated a substantial increase in BID expression in primary normal thyroid epithelia cells treated with inflammatory cytokines, including the combination of IFNγ and IL-1β or IFNγ and TNFα. The aim of this study was to determine whether an increase in BID expression in thyroid can induce autoimmune thyroiditis. Methods A transgenic mouse line that expresses human BID in thyroid cells was established by fusing a mouse thyroglobulin (Tg) promoter upstream of human BID (Tg-BID). We tested whether the increased expression of pro-apoptotic BID in thyroid would induce autoimmune thyroiditis, both in the presence and absence of 0.3% iodine water. Results Our data show that Tg-BID mice in a CBA/J (H-2 k) background do not spontaneously develop autoimmune thyroiditis for over a year. However, upon ingestion of iodine in the drinking water, autoimmune thyroiditis does develop in Tg-BID transgenic mice, as shown by a significant increase in anti-Tg antibody and mononuclear cell infiltration in the thyroid glands in 30% of mice tested. Serum T4 levels, however, were similar between iodine-treated Tg-BID transgenic mice and the wild type mice. Conclusions Our data demonstrate that increased thyroid expression of BID facilitates the development of autoimmune thyroiditis induced by iodine uptake. However, the overexpression of BID itself is not sufficient to initiate thyroiditis in CBA/J (H-2 k) mice. PMID:24957380

  16. Immunological Prevention of Spontaneous Mammary Carcinoma in Transgenic Mice

    Science.gov (United States)

    2001-08-01

    developed more slowly by transgenic FVB Anatomia Patologica, Ospedale S.S. Annunziata, Via Valignani, 66100 female mice carrying the wild-type proto...coopted (Pezzella et al., 1997). Anatomia Patologica. Ospedale SS. Annunziata, Via Valignani, 66100 Chieti, Italy. Fax: 39 0871 330471. E-mail: musiani...lo Studio e la Cura dei Tumori, Milan, Italy; and Reprints: Piero Musiani, G. d’ Annunzio University of Chieti, Anatomia Department of Experimental

  17. Creating Transgenic shRNA Mice by Recombinase-Mediated Cassette Exchange

    Science.gov (United States)

    Premsrirut, Prem K.; Dow, Lukas E.; Park, Youngkyu; Hannon, Gregory J.; Lowe, Scott W.

    2014-01-01

    RNA interference (RNAi) enables sequence-specific, experimentally induced silencing of virtually any gene by tapping into innate regulatory mechanisms that are conserved among most eukaryotes. The principles that enable transgenic RNAi in cell lines can also be used to create transgenic animals, which express short-hairpin RNAs (shRNAs) in a regulated or tissue-specific fashion. However, RNAi in transgenic animals is somewhat more challenging than RNAi in cultured cells. The activities of promoters that are commonly used for shRNA expression in cell culture can vary enormously in different tissues, and founder lines also typically vary in transgene expression due to the effects of their single integration sites. There are many ways to produce mice carrying shRNA transgenes and the method described here uses recombinase-mediated cassette exchange (RMCE). RMCE permits insertion of the shRNA transgene into a well-characterized locus that gives reproducible and predictable expression in each founder and enhances the probability of potent expression in many cell types. This procedure is more involved and complex than simple pronuclear injection, but if even a few shRNA mice are envisioned, for example, to probe the functions of several genes, the effort of setting up the processes outlined below are well worthwhile. Note that when creating a transgenic mouse, one should take care to use the most potent shRNA possible. As a rule of thumb, the sequence chosen should provide >90% knockdown when introduced into cultured cells at single copy (e.g., on retroviral infection at a multiplicity of ≤0.3). PMID:24003198

  18. Neuron and neuroblast numbers and cytogenesis in the dentate gyrus of aged APPswe/PS1dE9 transgenic mice: Effect of long-term treatment with paroxetine.

    Science.gov (United States)

    Olesen, Louise Ørum; Sivasaravanaparan, Mithula; Severino, Maurizio; Babcock, Alicia A; Bouzinova, Elena V; West, Mark J; Wiborg, Ove; Finsen, Bente

    2017-08-01

    Altered neurogenesis may influence hippocampal functions such as learning and memory in Alzheimer's disease. Selective serotonin reuptake inhibitors enhance neurogenesis and have been reported to reduce cerebral amyloidosis in both humans and transgenic mice. We have used stereology to assess the longitudinal changes in the number of doublecortin-expressing neuroblasts and number of granular neurons in the dentate gyrus of APP swe /PS1 dE9 transgenic mice. Furthermore, we investigated the effect of long-term paroxetine treatment on the number of neuroblasts and granular neurons, hippocampal amyloidosis, and spontaneous alternation behaviour, a measure of spatial working memory, in transgenic mice. We observed no difference in granular neurons between transgenic and wild type mice up till 18months of age, and no differences with age in wild type mice. The number of neuroblasts and the performance in the spontaneous alternation task was reduced in aged transgenic mice. Paroxetine treatment from 9 to 18months of age reduced hippocampal amyloidosis without affecting the number of neuroblasts or granular neurons. These findings suggest that the amyloidosis affects the differentiation of neuroblasts and spatial working memory, independent of changes in total granular neurons. Furthermore, while long-term paroxetine treatment may be able to reduce hippocampal amyloidosis, it appears to have no effect on total number of granular neurons or spatial working memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice.

    Science.gov (United States)

    Wu, Xiaorong; Tuzun, Erdem; Saini, Shamsher S; Wang, Jun; Li, Jing; Aguilera-Aguirre, Leopoldo; Huda, Ruksana; Christadoss, Premkumar

    2015-12-01

    Extraocular muscles (EOM) are preferentially involved in myasthenia gravis (MG) and acetylcholine receptor (AChR) antibody positive MG patients may occasionally present with isolated ocular symptoms. Although experimental autoimmune myasthenia gravis (EAMG) induced by whole AChR immunization closely mimics clinical and immunopathological aspects of MG, EOM are usually not affected. We have previously developed an EAMG model, which imitates EOM symptoms of MG by immunization of human leukocyte antigen (HLA) transgenic mice with α or γ-subunits of human AChR (H-AChR). To investigate the significance of the ϵ-subunit in ocular MG, we immunized HLA-DR3 and HLA-DQ8 transgenic mice with recombinant H-AChR ϵ-subunit expressed in Escherichia coli. HLA-DR3 transgenic mice showed significantly higher clinical ocular and generalized MG severity scores and lower grip strength values than HLA-DQ8 mice. H-AChR ϵ-subunit-immunized HLA-DR3 transgenic mice had higher serum anti-AChR antibody (IgG, IgG1, IgG2b, IgG2c and IgM) levels, neuromuscular junction IgG and complement deposit percentages than ϵ-subunit-immunized HLA-DQ8 transgenic mice. Control mice immunized with E. coli extract or complete Freund adjuvant (CFA) did not show clinical and immunopathological features of ocular and generalized EAMG. Lymph node cells of ϵ-subunit-immunized HLA-DR3 mice showed significantly higher proliferative responses than those of ϵ-subunit-immunized HLA-DQ8 mice, crude E. coli extract-immunized and CFA-immunized transgenic mice. Our results indicate that the human AChR ϵ-subunit is capable of inducing myasthenic muscle weakness. Diversity of the autoimmune responses displayed by mice expressing different HLA class II molecules suggests that the interplay between HLA class II alleles and AChR subunits might have a profound impact on the clinical course of MG. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  20. Redox regulation of mast cell histamine release in thioredoxin-1 (TRX) transgenic mice.

    Science.gov (United States)

    Son, Aoi; Nakamura, Hajime; Kondo, Norihiko; Matsuo, Yoshiyuki; Liu, Wenrui; Oka, Shin-ichi; Ishii, Yasuyuki; Yodoi, Junji

    2006-02-01

    Thioredoxin-1 (TRX) is a stress-inducible redox-regulatory protein with antioxidative and anti-inflammatory effects. Here we show that the release of histamine from mast cells elicited by cross-linking of high-affinity receptor for IgE (FcepsilonRI) was significantly suppressed in TRX transgenic (TRX-tg) mice compared to wild type (WT) mice. Intracellular reactive oxygen species (ROS) of mast cells stimulated by IgE and antigen was also reduced in TRX-tg mice compared to WT mice. Whereas there was no difference in the production of cytokines (IL-6 and TNF-alpha) from mast cells in response to 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) stimulation in TRX-tg and WT mice. Immunological status of TRX-tg mice inclined to T helper (Th) 2 dominant in primary immune response, although there was no difference in the population of dendritic cells (DCs) and regulatory T cells. We conclude that the histamine release from mast cells in TRX-tg mice is suppressed by inhibition of ROS generation. As ROS are involved in mast cell activation and facilitate mediator release, TRX may be a key signaling molecule regulating the early events in the IgE signaling in mast cells and the allergic inflammation.

  1. The transient outward current in mice lacking the potassium channel gene Kv1.4

    Science.gov (United States)

    London, Barry; Wang, Dao W; Hill, Joseph A; Bennett, Paul B

    1998-01-01

    The transient outward current (Ito) plays a prominent role in the repolarization phase of the cardiac action potential. Several K+ channel genes, including Kv1.4, are expressed in the heart, produce rapidly inactivating currents when heterologously expressed, and may be the molecular basis of Ito.We engineered mice homozygous for a targeted disruption of the K+ channel gene Kv1.4 and compared Ito in wild-type (Kv1.4+/+), heterozygous (Kv1.4+/-) and homozygous ‘knockout’ (Kv1.4−/−) mice. Kv1.4 RNA was truncated in Kv1.4−/− mice and protein expression was absent.Adult myocytes isolated from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice had large rapidly inactivating outward currents. The peak current densities at 60 mV (normalized by cellular capacitance, in pA pF−1; means ± s.e.m.) were 53.8 ± 5.3, 45.3 ± 2.2 and 44.4 ± 2.8 in cells from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice, respectively (P mice.The voltage dependence and time course of inactivation were not changed by targeted disruption of Kv1.4. The mean best-fitting V½ (membrane potential at 50 % inactivation) values for myocytes from Kv1.4 +/+, Kv1.4+/− and Kv1.4−/− mice were -53.5 ± 3.7, -51.1 ± 2.6 and -54.2 ± 2.4 mV, respectively. The slope factors (k) were -10.1 ± 1.4, -8.8 ± 1.4 and -9.5 ± 1.2 mV, respectively. The fast time constants for development of inactivation at -30 mV were 27.8 ± 2.2, 26.2 ± 5.1 and 19.6 ± 2.1 ms in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes, respectively. At +30 mV, they were 35.5 ± 2.6, 30.0 ± 2.1 and 28.7 ± 1.6 ms, respectively. The time constants for the rapid phase of recovery from inactivation at -80 mV were 32.5 ± 8.2, 23.3 ± 1.8 and 39.0 ± 3.7 ms, respectively.Nearly the entire inactivating component as well as more than 60 % of the steady-state outward current was eliminated by 1 mm 4-aminopyridine in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes.Western blot analysis of heart membrane extracts showed no significant

  2. Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Padmesh S Rajput

    Full Text Available Selective degeneration of medium spiny neurons and preservation of medium sized aspiny interneurons in striatum has been implicated in excitotoxicity and pathophysiology of Huntington's disease (HD. However, the molecular mechanism for the selective sparing of medium sized aspiny neurons and vulnerability of projection neurons is still elusive. The pathological characteristic of HD is an extensive reduction of the striatal mass, affecting caudate putamen. Somatostatin (SST positive neurons are selectively spared in HD and Quinolinic acid/N-methyl-D-aspartic acid induced excitotoxicity, mimic the model of HD. SST plays neuroprotective role in excitotoxicity and the biological effects of SST are mediated by five somatostatin receptor subtypes (SSTR1-5.To delineate subtype selective biological responses we have here investigated changes in SSTR1 and 5 double knockout mice brain and compared with HD transgenic mouse model (R6/2. Our study revealed significant loss of dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32 and comparable changes in SST, N-methyl-D-aspartic acid receptors subtypes, calbindin and brain nitric oxide synthase expression as well as in key signaling proteins including calpain, phospho-extracellular-signal-regulated kinases1/2, synapsin-IIa, protein kinase C-α and calcineurin in SSTR1/5(-/- and R6/2 mice. Conversely, the expression of somatostatin receptor subtypes, enkephalin and phosphatidylinositol 3-kinases were strain specific. SSTR1/5 appears to be important in regulating NMDARs, DARPP-32 and signaling molecules in similar fashion as seen in HD transgenic mice.This is the first comprehensive description of disease related changes upon ablation of G- protein coupled receptor gene. Our results indicate that SST and SSTRs might play an important role in regulation of neurodegeneration and targeting this pathway can provide a novel insight in understanding the pathophysiology of Huntington's disease.

  3. Transgenic mice with astrocyte-targeted production of interleukin-6 are resistant to high-fat diet-induced increases in body weight and body fat

    DEFF Research Database (Denmark)

    Hidalgo, Juan; Florit, Sergi; Giralt, Mercedes

    2010-01-01

    Interleukin-6 (IL-6) is a major cytokine involved in both normal physiological brain functions and underlying significant neuropathology. IL-6 has been suggested to play a role in the control of body weight but the results are somewhat controversial. In this study we have challenged transgenic mice...... with astrocyte-targeted IL-6 expression (GFAP-IL6 mice) with a high-fat diet (55% kcal from fat) versus a control diet (10%). The results demonstrate that the GFAP-IL6 mice are resistant to high-fat diet-induced increases in body weight and body fat, apparently without altering food intake and with no evidences...... of increased sympathetic tone. The high-fat diet-induced impaired responses to an insulin tolerance test (ITT), and to an oral glucose tolerance test (OGTT) in both genotypes. The GFAP-IL6 mice did not differ from littermate wild-type (WT) mice in ITT, but they were more glucose intolerant following the high...

  4. Quantitative Comparison of Dense-Core Amyloid Plaque Accumulation in Amyloid-β Precursor Protein Transgenic Mice

    Science.gov (United States)

    Liu, Peng; Reichl, John H.; Rao, Eshaan R.; McNellis, Brittany M.; Huang, Eric S.; Hemmy, Laura S.; Forster, Colleen L.; Kuskowski, Michael A.; Borchelt, David R.; Vassar, Robert; Ashe, Karen H.; Zahs, Kathleen R.

    2016-01-01

    There exist several dozen lines of transgenic mice that express human amyloid-β precursor protein (AβPP) with Alzheimer’s disease (AD)-linked mutations. AβPP transgenic mouse lines differ in the types and amounts of Aβ that they generate and in their spatiotemporal patterns of expression of Aβ assemblies, providing a toolkit to study Aβ amyloidosis and the influence of Aβ aggregation on brain function. More complete quantitative descriptions of the types of Aβ assemblies present in transgenic mice and in humans during disease progression should add to our understanding of how Aβ toxicity in mice relates to the pathogenesis of AD. Here, we provide a direct quantitative comparison of amyloid plaque burdens and plaque sizes in four lines of AβPP transgenic mice. We measured the fraction of cortex and hippocampus occupied by dense-core plaques, visualized by staining with Thioflavin S, in mice from young adulthood through advanced age. We found that the plaque burdens among the transgenic lines varied by an order of magnitude: at 15 months of age, the oldest age studied, the median cortical plaque burden in 5XFAD mice was already ~4.5 times that of 21-month Tg2576 mice and ~15 times that of 21–24-month rTg9191 mice. Plaque-size distributions changed across the lifespan in a line- and region-dependent manner. We also compared the dense-core plaque burdens in the mice to those measured in a set of pathologically-confirmed AD cases from the Nun Study. Cortical plaque burdens in Tg2576, APPSwePS1ΔE9, and 5XFAD mice eventually far exceeded those measured in the human cohort. PMID:28059792

  5. Quantitative Comparison of Dense-Core Amyloid Plaque Accumulation in Amyloid-β Protein Precursor Transgenic Mice.

    Science.gov (United States)

    Liu, Peng; Reichl, John H; Rao, Eshaan R; McNellis, Brittany M; Huang, Eric S; Hemmy, Laura S; Forster, Colleen L; Kuskowski, Michael A; Borchelt, David R; Vassar, Robert; Ashe, Karen H; Zahs, Kathleen R

    2017-01-01

    There exist several dozen lines of transgenic mice that express human amyloid-β protein precursor (AβPP) with Alzheimer's disease (AD)-linked mutations. AβPP transgenic mouse lines differ in the types and amounts of Aβ that they generate and in their spatiotemporal patterns of expression of Aβ assemblies, providing a toolkit to study Aβ amyloidosis and the influence of Aβ aggregation on brain function. More complete quantitative descriptions of the types of Aβ assemblies present in transgenic mice and in humans during disease progression should add to our understanding of how Aβ toxicity in mice relates to the pathogenesis of AD. Here, we provide a direct quantitative comparison of amyloid plaque burdens and plaque sizes in four lines of AβPP transgenic mice. We measured the fraction of cortex and hippocampus occupied by dense-core plaques, visualized by staining with Thioflavin S, in mice from young adulthood through advanced age. We found that the plaque burdens among the transgenic lines varied by an order of magnitude: at 15 months of age, the oldest age studied, the median cortical plaque burden in 5XFAD mice was already ∼4.5 times that of 21-month-old Tg2576 mice and ∼15 times that of 21-24-month-old rTg9191 mice. Plaque-size distributions changed across the lifespan in a line- and region-dependent manner. We also compared the dense-core plaque burdens in the mice to those measured in a set of pathologically-confirmed AD cases from the Nun Study. Cortical plaque burdens in Tg2576, APPSwePS1ΔE9, and 5XFAD mice eventually far exceeded those measured in the human cohort.

  6. Thy1.2 driven expression of transgenic His₆-SUMO2 in the brain of mice alters a restricted set of genes.

    Science.gov (United States)

    Rossner, Moritz J; Tirard, Marilyn

    2014-08-05

    Protein SUMOylation is a post-translational protein modification with a key regulatory role in nerve cell development and function, but its function in mammals in vivo has only been studied cursorily. We generated two new transgenic mouse lines that express His6-tagged SUMO1 and SUMO2 driven by the Thy1.2 promoter. The brains of mice of the two lines express transgenic His6-SUMO peptides and conjugate them to substrates in vivo but cytoarchitecture and synaptic organization of adult transgenic mouse brains are indistinguishable from the wild-type situation. We investigated the impact of transgenic SUMO expression on gene transcription in the hippocampus by performing genome wide analyses using microarrays. Surprisingly, no changes were observed in Thy1.2::His6-SUMO1 transgenic mice and only a restricted set of genes were upregulated in Thy1.2::His6-SUMO2 mice. Among these, Penk1 (Preproenkephalin 1), which encodes Met-enkephalin neuropeptides, showed the highest degree of alteration. Accordingly, a significant increase in Met-enkephalin peptide levels in the hippocampus of Thy1.2::His6-SUMO2 was detected, but the expression levels and cellular localization of Met-enkephalin receptors were not changed. Thus, transgenic neuronal expression of His6-SUMO1 or His6-SUMO2 only induces very minor phenotypical changes in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Erinacine A-enriched Hericium erinaceus mycelium ameliorates Alzheimer's disease-related pathologies in APPswe/PS1dE9 transgenic mice.

    Science.gov (United States)

    Tsai-Teng, Tzeng; Chin-Chu, Chen; Li-Ya, Lee; Wan-Ping, Chen; Chung-Kuang, Lu; Chien-Chang, Shen; Chi-Ying, Huang F; Chien-Chih, Chen; Shiao, Young-Ji

    2016-06-27

    The fruiting body of Hericium erinaceus has been demonstrated to possess anti-dementia activity in mouse model of Alzheimer's disease and people with mild cognitive impairment. However, the therapeutic potential of Hericium erinaceus mycelia on Alzheimer's disease remains unclear. In this study, the effects of erinacine A-enriched Hericium erinaceus mycelia (HE-My) on the pathological changes in APPswe/PS1dE9 transgenic mouse model of Alzheimer's disease are studied. After a 30 day oral administration to 5 month-old female APPswe/PS1dE9 transgenic mice, we found that HE-My and its ethanol extracts (HE-Et) attenuated cerebral Aβ plaque burden. It's worth noting that the attenuated portion of a plaque is the non-compact structure. The level of insulin-degrading enzyme was elevated by both HE-My and HE-Et in cerebral cortex. On the other hand, the number of plaque-activated microglia and astrocytes in cerebral cortex and hippocampus were diminished, the ratio of nerve growth factor (NGF) to NGF precursor (proNGF) was increased and hippocampal neurogenesis was promoted after these administrations. All the mentioned benefits of these administrations may therefore improve the declined activity of daily living skill in APPswe/PS1dE9 transgenic mice. These results highlight the therapeutic potential of HE-My and HE-Et on Alzheimer's disease. Therefore, the effective components of HE-My and HE-Et are worth to be developed to become a therapeutic drug for Alzheimer's disease.

  8. Overexpression of ubiquitous 6-phosphofructo-2-kinase in the liver of transgenic mice results in weight gain

    International Nuclear Information System (INIS)

    Duran, Joan; Navarro-Sabate, Aurea; Pujol, Anna; Perales, Jose C.; Manzano, Anna; Obach, Merce; Gomez, Marta; Bartrons, Ramon

    2008-01-01

    Fructose 2,6-bisphosphate (Fru-2,6-P 2 ) is an important metabolite that controls glycolytic and gluconeogenic pathways in several cell types. Its synthesis and degradation are catalyzed by the bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK-2). Four genes, designated Pfkfb1-4, codify the different PFK-2 isozymes. The Pfkfb3 gene product, ubiquitous PFK-2 (uPFK-2), has the highest kinase/bisphosphatase activity ratio and is associated with proliferation and tumor metabolism. A transgenic mouse model that overexpresses uPFK-2 under the control of the phosphoenolpyruvate carboxykinase promoter was designed to promote sustained and elevated Fru-2,6-P 2 levels in the liver. Our results demonstrate that in diet-induced obesity, high Fru-2,6-P 2 levels in transgenic livers caused changes in hepatic gene expression profiles for key gluconeogenic and lipogenic enzymes, as well as an accumulation of lipids in periportal cells, and weight gain

  9. Characterization of pancreatic lesions from MT-tgf alpha, Ela-myc and MT-tgf alpha/Ela-myc single and double transgenic mice.

    Science.gov (United States)

    Liao, Dezhong Joshua; Wang, Yong; Wu, Jiusheng; Adsay, Nazmi Volkan; Grignon, David; Khanani, Fayyaz; Sarkar, Fazlul H

    2006-07-05

    In order to identify good animal models for investigating therapeutic and preventive strategies for pancreatic cancer, we analyzed pancreatic lesions from several transgenic models and made a series of novel findings. Female MT-tgf alpha mice of the MT100 line developed pancreatic proliferation, acinar-ductal metaplasia, multilocular cystic neoplasms, ductal adenocarcinomas and prominent fibrosis, while the lesions in males were less severe. MT-tgf alpha-ES transgenic lines of both sexes developed slowly progressing lesions that were similar to what was seen in MT100 males. In both MT100 and MT-tgf alpha-ES lines, TGF alpha transgene was expressed mainly in proliferating ductal cells. Ela-myc transgenic mice with a mixed C57BL/6, SJL and FVB genetic background developed pancreatic tumors at 2-7 months of age, and half of the tumors were ductal adenocarcinomas, similar to what was reported originally by Sandgren et al 1. However, in 20% of the mice, the tumors metastasized to the liver. MT100/Ela-myc and MT-tgf alpha-ES/Ela-myc double transgenic mice developed not only acinar carcinomas and mixed carcinomas as previously reported but also various ductal-originated lesions, including multilocular cystic neoplasms and ductal adenocarcinomas. The double transgenic tumors were more malignant and metastasized to the liver at a higher frequency (33%) compared with the Ela-myc tumors. Sequencing of the coding region of p16ink4, k-ras and Rb cDNA in small numbers of pancreatic tumors did not identify mutations. The short latency for tumor development, the variety of tumor morphology and the liver metastases seen in Ela-myc and MT-tgf alpha/Ela-myc mice make these animals good models for investigating new therapeutic and preventive strategies for pancreatic cancer.

  10. K-Ras(V14I) -induced Noonan syndrome predisposes to tumour development in mice.

    Science.gov (United States)

    Hernández-Porras, Isabel; Schuhmacher, Alberto J; Garcia-Medina, Raquel; Jiménez, Beatriz; Cañamero, Marta; de Martino, Alba; Guerra, Carmen

    2016-06-01

    The Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. A significant proportion of NS patients may also develop myeloproliferative disorders (MPDs), including juvenile myelomonocytic leukaemia (JMML). Surprisingly, scarce information is available in relation to other tumour types in these patients. We have previously developed and characterized a knock-in mouse model that carries one of the most frequent KRAS-NS-related mutations, the K-Ras(V14I) substitution, which recapitulates most of the alterations described in NS patients, including MPDs. The K-Ras(V14I) mutation is a mild activating K-Ras protein; thus, we have used this model to study tumour susceptibility in comparison with mice expressing the classical K-Ras(G12V) oncogene. Interestingly, our studies have shown that these mice display a generalized tumour predisposition and not just MPDs. In fact, we have observed that the K-Ras(V14I) mutation is capable of cooperating with the p16Ink4a/p19Arf and Trp53 tumour suppressors, as well as with other risk factors such as pancreatitis, thereby leading to a higher cancer incidence. In conclusion, our results illustrate that the K-Ras(V14I) activating protein is able to induce cancer, although at a much lower level than the classical K-Ras(G12V) oncogene, and that it can be significantly modulated by both genetic and non-genetic events. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. β-asarone improves learning and memory and reduces Acetyl Cholinesterase and Beta-amyloid 42 levels in APP/PS1 transgenic mice by regulating Beclin-1-dependent autophagy.

    Science.gov (United States)

    Deng, Minzhen; Huang, Liping; Ning, Baile; Wang, Nanbu; Zhang, Qinxin; Zhu, Caixia; Fang, Yongqi

    2016-12-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly, and studies have suggested that β-asarone has pharmacological effects on beta-amyloid (Aβ) injected in the rat hippocampus. However, the effect of β-asarone on autophagy in the APP/PS1 transgenic mouse is unreported. APP/PS1 transgenic mice were randomly divided into six groups (n=10/group): an untreated group, an Aricept-treated group, a 3-MA-treated group, a rapamycin-treated group, an LY294002-treated group, a β-asarone-treated group. The control group consisted of wild-type C57BL/6 mice. All treatments were administered to the mice for 30 days. Spatial learning and memory were assessed by water maze, passive avoidance, and step-down tests. AChE and Aβ 42 levels in the hippocampus were determined by ELISA. p-Akt, p-mTOR, and LC3B expression were detected by flow cytometry. The expression of p-Akt, p-mTOR, Beclin-1, and p62 proteins was assessed by western blot. Changes in autophagy were viewed using a transmission electron microscope. APP and Beclin-1 mRNA levels were measured by Real-Time PCR. The learning and memory of APP/PS1 transgenic mice were improved significantly after β-asarone treatment compared with the untreated group. In addition, β-asarone treatment reduced AChE and Aβ 42 levels, increased p-mTOR and p62 expression, decreased p-Akt, Beclin-1, and LC3B expression, decreased the number of autophagosomes and reduced APP mRNA and Beclin-1 mRNA levels compared with the untreated group. That is, β-asarone treatment can improve the learning and memory abilities of APP/PS1 transgenic mouse by inhibiting Beclin-1-dependent autophagy via the PI3K/Akt/mTOR pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Increased glucose tolerance despite low adiponectin levels in obesity-resistent aP2-Ucp1 transgenic mice fed a high-fat diet

    Czech Academy of Sciences Publication Activity Database

    Rossmeisl, Martin; Jeleník, Tomáš; Ogston, N. C.; Slámová, Kristýna; Mohamed-Ali, V.; Kopecký, Jan

    2006-01-01

    Roč. 49, Suppl. 1 (2006), s. 755-755 ISSN 0012-186X. [Annual Meeting of the European Association for the Study of Diabetes /42./. 14.09.2006-17.09.2006, Copenhagen-Malmoe] R&D Projects: GA MŠk(CZ) 1M0520; GA ČR(CZ) GA303/05/2580 Institutional research plan: CEZ:AV0Z50110509 Keywords : adiponectin * transgenic mice * obesity * mitochondria * glucose tolerance * hyperinsulinemic-euglycemic clamp Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  13. M2 Macrophages Play Critical Roles in Progression of Inflammatory Liver Disease in Hepatitis C Virus Transgenic Mice.

    Science.gov (United States)

    Ohtsuki, Takahiro; Kimura, Kiminori; Tokunaga, Yuko; Tsukiyama-Kohara, Kyoko; Tateno, Chise; Hayashi, Yukiko; Hishima, Tsunekazu; Kohara, Michinori

    2016-01-01

    Macrophages in liver tissue are widely defined as important inflammatory cells in chronic viral hepatitis due to their proinflammatory activity. We reported previously that interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) play significant roles in causing chronic hepatitis in hepatitis C virus (HCV) transgenic mice (S. Sekiguchi et al., PLoS One 7:e51656, 2012, http://dx.doi.org/10.1371/journal.pone.0051656). In addition, we showed that recombinant vaccinia viruses expressing an HCV nonstructural protein (rVV-N25) could protect against the progression of chronic hepatitis by suppression of macrophage activation. Here, we focus on the role of macrophages in liver disease progression in HCV transgenic mice and examine characteristic features of macrophages following rVV-N25 treatment. The number of CD11b(+) F4/80(+) CD11c(-) CD206(+) (M2) macrophages in the liver of HCV transgenic mice was notably increased compared to that of age-matched control mice. These M2 macrophages in the liver produced elevated levels of IL-6 and TNF-α. rVV-N25 infection suppressed the number and activation of M2 macrophages in liver tissue. These results suggested that inflammatory cytokines produced by M2-like macrophages contribute to the induction of chronic liver inflammation in HCV transgenic mice. Moreover, the therapeutic effect of rVV-N25 might be induced by the suppression of the number and activation of hepatic macrophages. HCV causes persistent infections that can lead to chronic liver diseases, liver fibrosis, and hepatocellular carcinoma; the search for an HCV curative is the focus of ongoing research. Recently, effective anti-HCV drugs have been developed; however, vaccine development still is required for the prevention and therapy of infection by this virus. We demonstrate here that M2 macrophages are important for the pathogenesis of HCV-caused liver diseases and additionally show that M2 macrophages contribute to the therapeutic mechanism observed following r

  14. Expression of the human growth hormone variant gene in cultured fibroblasts and transgenic mice

    International Nuclear Information System (INIS)

    Selden, R.F.; Wagner, T.E.; Blethen, S.; Yun, J.S.; Rowe, M.E.; Goodman, H.M.

    1988-01-01

    The nucleotide sequence of the human growth hormone variant gene, one of the five members of the growth hormone gene family, predicts that it encodes a growth hormone-like protein. As a first step in determining whether this gene is functional in humans, the authors have expressed a mouse methallothionein I/human growth hormone variant fusion gene in mouse L cells and in transgenic mice. The growth hormone variant protein expressed in transiently transfected L cells is distinct from growth hormone itself with respect to reactivity with anti-growth hormone monoclonal antibodies, behavior during column chromatography, and isoelectric point. Transgenic mice expressing the growth hormone variant protein are 1.4- to 1.9-fold larger than nontransgenic controls, suggesting that the protein has growth-promoting properties

  15. Epidermal dysplasia and abnormal hair follicles in transgenic mice overexpressing homeobox gene MSX-2.

    Science.gov (United States)

    Jiang, T X; Liu, Y H; Widelitz, R B; Kundu, R K; Maxson, R E; Chuong, C M

    1999-08-01

    The homeobox gene Msx-2 is expressed specifically in sites of skin appendage formation. To explore its part in skin morphogenesis, we produced transgenic mice expressing Msx-2 under the control of the cytomegalovirus promoter. The skin of these transgenic mice was flaky, exhibiting desquamation and shorter hairs. Histologic analysis showed thickened epidermis with hyperproliferation, which was restricted to the basal layer. Hyperkeratosis was also evident. A wide zone of suprabasal cells were misaligned and coexpressed keratins 14 and 10. There was reduced expression of integrin beta 1 and DCC in the basal layer. Hair follicles were misaligned with a shrunken matrix region. The dermis showed increased cellularity and empty vacuoles. We suggest that Msx-2 is involved in the growth control of skin and skin appendages.

  16. Hyperlipidemia and cutaneous abnormalities in transgenic mice overexpressing human apolipoprotein C1

    NARCIS (Netherlands)

    Jong, M. C.; Gijbels, M. J.; Dahlmans, V. E.; Gorp, P. J.; Koopman, S. J.; Ponec, M.; Hofker, M. H.; Havekes, L. M.

    1998-01-01

    Transgenic mice were generated with different levels of human apolipoprotein C1 (APOC1) expression in liver and skin. At 2 mo of age, serum levels of cholesterol, triglycerides (TG), and FFA were strongly elevated in APOC1 transgenic mice compared with wild-type mice. These elevated levels of serum

  17. Polycythemia in transgenic mice expressing the human erythropoietin gene

    International Nuclear Information System (INIS)

    Semenza, G.L.; Traystman, M.D.; Gearhart, J.D.; Antonarakis, S.E.

    1989-01-01

    Erythropoietin is a glycoprotein hormone that regulates mammalian erythropoiesis. To study the expression of the human erythropoietin gene, EPO, 4 kilobases of DNA encompassing the gene with 0.4 kilobase of 5' flanking sequence and 0.7 kilobase of 3' flanking sequence was microinjected into fertilized mouse eggs. Transgenic mice were generated that are polycythemic, with increased erythrocytic indices in peripheral blood, increased numbers of erythroid precursors in hematopoietic tissue, and increased serum erythropoietin levels. Transgenic homozygotes show a greater degree of polycythemia than do heterozygotes as well as striking extramedullary erythropoiesis. Human erythropoietin RNA was found not only in fetal liver, adult liver, and kidney but also in all other transgenic tissues analyzed. Anemia induced increased human erythropoietin RNA levels in liver but not kidney. These transgenic mice represent a unique model of polycythemia due to increased erythropoietin levels

  18. Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome

    International Nuclear Information System (INIS)

    Epstein, C.J.; Avraham, K.B.; Lovett, M.; Smith, S.; Elroy-Stein, O.; Rotman, G.; Bry, C.; Groner, Y.

    1987-01-01

    Down syndrome, the phenotypic expression of human trisomy 21, is presumed to result from a 1.5-fold increase in the expression of the genes on human chromosome 21. As an approach to the development of an animal model for Down syndrome, several strains of transgenic mice that carry the human Cu/Zn-superoxide dismutase gene have been prepared. The animals express the transgene in a manner similar to that of humans, with 0.9- and 0.7-kilobase transcripts in a 1:4 ratio, and synthesize the human enzyme in an active form capable of forming human-mouse enzyme heterodimers. Cu/Zn-superoxide dismutase activity is increased from 1.6- to 6.0-fold in the brains of four transgenic strains and to an equal or lesser extent in several other tissues. These animals provide a unique system for studying the consequences of increased dosage of the Cu/Zn-superoxide dismutase gene in Down syndrome and the role of this enzyme in a variety of other pathological processes

  19. High blood pressure in transgenic mice carrying the rat angiotensinogen gene.

    Science.gov (United States)

    Kimura, S; Mullins, J J; Bunnemann, B; Metzger, R; Hilgenfeldt, U; Zimmermann, F; Jacob, H; Fuxe, K; Ganten, D; Kaling, M

    1992-01-01

    Transgenic mice were generated by injecting the entire rat angiotensinogen gene into the germline of NMRI mice. The resulting transgenic animals were characterized with respect to hemodynamics, parameters of the renin angiotension system, and expression of the transgene. The transgenic line TGM(rAOGEN)123 developed hypertension with a mean arterial blood pressure of 158 mmHg in males and 132 mmHg in females. In contrast, the transgenic line TGM(rAOGEN)92 was not hypertensive. Rat angiotensinogen was detectable only in plasma of animals of line 123. Total plasma angiotensinogen and plasma angiotensin II concentrations were about three times as high as those of negative control mice. In TGM(rAOGEN)123 the transgene was highly expressed in liver and brain. Transcripts were also detected in heart, kidney and testis. In TGM(rAOGEN)92 the brain was the main expressing organ. In situ hybridization revealed an mRNA distribution in the brain of TGM(rAOGEN)123 similar to the one in rat. In TGM(rAOGEN)92 the expression pattern in the brain was aberrant. These data indicate that overexpression of the angiotensinogen gene in liver and brain leads to the development of hypertension in transgenic mice. The TGM(rAOGEN)123 constitutes a high angiotensin II type of hypertension and may provide a new experimental animal model to study the kinetics and function of the renin angiotensin system. Images PMID:1547785

  20. In Vivo Zinc Finger Nuclease-mediated Targeted Integration of a Glucose-6-phosphatase Transgene Promotes Survival in Mice With Glycogen Storage Disease Type IA

    Science.gov (United States)

    Landau, Dustin J; Brooks, Elizabeth Drake; Perez-Pinera, Pablo; Amarasekara, Hiruni; Mefferd, Adam; Li, Songtao; Bird, Andrew; Gersbach, Charles A; Koeberl, Dwight D

    2016-01-01

    Glycogen storage disease type Ia (GSD Ia) is caused by glucose-6-phosphatase (G6Pase) deficiency in association with severe, life-threatening hypoglycemia that necessitates lifelong dietary therapy. Here we show that use of a zinc-finger nuclease (ZFN) targeted to the ROSA26 safe harbor locus and a ROSA26-targeting vector containing a G6PC donor transgene, both delivered with adeno-associated virus (AAV) vectors, markedly improved survival of G6Pase knockout (G6Pase-KO) mice compared with mice receiving the donor vector alone (P Ia, as compared with normal littermates, at 8 months following vector administration (P Ia. PMID:26865405

  1. Effect of aging and Alzheimer's disease-like pathology on brain monoamines in mice

    DEFF Research Database (Denmark)

    Von Linstow, C. U.; Severino, Maurizio; Metaxas, Athanasios

    2017-01-01

    , but these can both be age- and/or disease-related. We examined whether brain monoamine levels change as part of physiological aging and/or AD-like disease in APPSWE/PS1δE9 (APP/PS1) transgenic mice. The neocortex, hippocampus, striatum, brainstem and cerebellum of 6-, 12-, 18- and 24-month-old B6C3 wild......-type (WT) mice and of 18-month old APP/PS1 and WT mice were analysed for 5-HT, DA and NA contents by high pressure liquid chromatography (HPLC), along with neocortex from 14-month-old APP/PS1 and WT mice. While, we observed no aging effect in WT mice, we detected region-specific changes in the levels...... of all monoamines in 18-month-old transgenic compared with WT mice. This included reductions in 5-HT (-30%), DA (-47%) and NA (-32%) levels in the neocortex and increases of 5-HT in the brainstem (+18%). No changes were observed in any of the monoamines in the neocortex from 14-month-old APP/PS1 mice...

  2. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    Directory of Open Access Journals (Sweden)

    Zagozdzon Agnieszka M

    2012-05-01

    Full Text Available Abstract Background Numerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study. Results A new mouse strain (MMTV-Luc2 mice expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal. Conclusions We have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  3. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    LENUS (Irish Health Repository)

    Zagozdzon, Agnieszka M

    2012-05-30

    AbstractBackgroundNumerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study.ResultsA new mouse strain (MMTV-Luc2 mice) expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal.ConclusionsWe have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and\\/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  4. Chronic cannabidiol treatment improves social and object recognition in double transgenic APPswe/PS1∆E9 mice.

    Science.gov (United States)

    Cheng, David; Low, Jac Kee; Logge, Warren; Garner, Brett; Karl, Tim

    2014-08-01

    Patients suffering from Alzheimer's disease (AD) exhibit a decline in cognitive abilities including an inability to recognise familiar faces. Hallmark pathological changes in AD include the aggregation of amyloid-β (Aβ), tau protein hyperphosphorylation as well as pronounced neurodegeneration, neuroinflammation, neurotoxicity and oxidative damage. The non-psychoactive phytocannabinoid cannabidiol (CBD) exerts neuroprotective, anti-oxidant and anti-inflammatory effects and promotes neurogenesis. CBD also reverses Aβ-induced spatial memory deficits in rodents. Thus we determined the therapeutic-like effects of chronic CBD treatment (20 mg/kg, daily intraperitoneal injections for 3 weeks) on the APPswe/PS1∆E9 (APPxPS1) transgenic mouse model for AD in a number of cognitive tests, including the social preference test, the novel object recognition task and the fear conditioning paradigm. We also analysed the impact of CBD on anxiety behaviours in the elevated plus maze. Vehicle-treated APPxPS1 mice demonstrated impairments in social recognition and novel object recognition compared to wild type-like mice. Chronic CBD treatment reversed these cognitive deficits in APPxPS1 mice without affecting anxiety-related behaviours. This is the first study to investigate the effect of chronic CBD treatment on cognition in an AD transgenic mouse model. Our findings suggest that CBD may have therapeutic potential for specific cognitive impairments associated with AD.

  5. Multifunctional Effects of Mangosteen Pericarp on Cognition in C57BL/6J and Triple Transgenic Alzheimer’s Mice

    Directory of Open Access Journals (Sweden)

    Hei-Jen Huang

    2014-01-01

    Full Text Available Mangosteen- (Garcinia mangostana- based nutraceutical compounds have long been reported to possess multiple health-promoting properties. The current study investigated whether mangosteen pericarp (MP could attenuate cognitive dysfunction. First, we found that treatment with MP significantly reduced the cell death and increased the brain-derived neurotrophic factor (BDNF level in an organotypic hippocampal slice culture (OHSC. We then investigated the effects of age and MP diet on the cognitive function of male C57BL/6J (B6 mice. After 8-month dietary supplementation, the MP diet (5000 ppm significantly attenuated the cognitive impairment associated with anti-inflammation, increasing BDNF level and decreasing p-tau (phospho-tau S202 in older B6 mice. We further applied MP dietary supplementation to triple transgenic Alzheimer’s disease (3×Tg-AD mice from 5 to 13 months old. The MP diet exerted neuroprotective, antioxidative, and anti-inflammatory effects and reduced the Aβ deposition and p-tau (S202/S262 levels in the hippocampus of 3×Tg-AD mice, which might further attenuate the deficit in spatial memory retrieval. Thus, these results revealed that the multifunctional properties of MP might offer a promising supplementary diet to attenuate cognitive dysfunction in AD.

  6. Fatal Prion Disease in a Mouse Model of Genetic E200K Creutzfeldt-Jakob Disease

    Science.gov (United States)

    Friedman-Levi, Yael; Meiner, Zeev; Canello, Tamar; Frid, Kati; Kovacs, Gabor G.; Budka, Herbert; Avrahami, Dana; Gabizon, Ruth

    2011-01-01

    Genetic prion diseases are late onset fatal neurodegenerative disorders linked to pathogenic mutations in the prion protein-encoding gene, PRNP. The most prevalent of these is the substitution of Glutamate for Lysine at codon 200 (E200K), causing genetic Creutzfeldt-Jakob disease (gCJD) in several clusters, including Jews of Libyan origin. Investigating the pathogenesis of genetic CJD, as well as developing prophylactic treatments for young asymptomatic carriers of this and other PrP mutations, may well depend upon the availability of appropriate animal models in which long term treatments can be evaluated for efficacy and toxicity. Here we present the first effective mouse model for E200KCJD, which expresses chimeric mouse/human (TgMHu2M) E199KPrP on both a null and a wt PrP background, as is the case for heterozygous patients and carriers. Mice from both lines suffered from distinct neurological symptoms as early as 5–6 month of age and deteriorated to death several months thereafter. Histopathological examination of the brain and spinal cord revealed early gliosis and age-related intraneuronal deposition of disease-associated PrP similarly to human E200K gCJD. Concomitantly we detected aggregated, proteinase K resistant, truncated and oxidized PrP forms on immunoblots. Inoculation of brain extracts from TgMHu2ME199K mice readily induced, the first time for any mutant prion transgenic model, a distinct fatal prion disease in wt mice. We believe that these mice may serve as an ideal platform for the investigation of the pathogenesis of genetic prion disease and thus for the monitoring of anti-prion treatments. PMID:22072968

  7. Fatal prion disease in a mouse model of genetic E200K Creutzfeldt-Jakob disease.

    Directory of Open Access Journals (Sweden)

    Yael Friedman-Levi

    2011-11-01

    Full Text Available Genetic prion diseases are late onset fatal neurodegenerative disorders linked to pathogenic mutations in the prion protein-encoding gene, PRNP. The most prevalent of these is the substitution of Glutamate for Lysine at codon 200 (E200K, causing genetic Creutzfeldt-Jakob disease (gCJD in several clusters, including Jews of Libyan origin. Investigating the pathogenesis of genetic CJD, as well as developing prophylactic treatments for young asymptomatic carriers of this and other PrP mutations, may well depend upon the availability of appropriate animal models in which long term treatments can be evaluated for efficacy and toxicity. Here we present the first effective mouse model for E200KCJD, which expresses chimeric mouse/human (TgMHu2M E199KPrP on both a null and a wt PrP background, as is the case for heterozygous patients and carriers. Mice from both lines suffered from distinct neurological symptoms as early as 5-6 month of age and deteriorated to death several months thereafter. Histopathological examination of the brain and spinal cord revealed early gliosis and age-related intraneuronal deposition of disease-associated PrP similarly to human E200K gCJD. Concomitantly we detected aggregated, proteinase K resistant, truncated and oxidized PrP forms on immunoblots. Inoculation of brain extracts from TgMHu2ME199K mice readily induced, the first time for any mutant prion transgenic model, a distinct fatal prion disease in wt mice. We believe that these mice may serve as an ideal platform for the investigation of the pathogenesis of genetic prion disease and thus for the monitoring of anti-prion treatments.

  8. Reduced basal and novelty-induced levels of activity-regulated cytoskeleton associated protein (Arc) and c-Fos mRNA in the cerebral cortex and hippocampus of APPswe/PS1ΔE9 transgenic mice

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2013-01-01

    to a novel open field environment was compromised in different neocortical areas and the hippocampal formation in APP/PS1ΔE9 transgenic mice characterized by pronounced accumulation and deposition of beta amyloid (Aβ). Notably, the basal level of Arc and c-fos mRNA in the neocortex was significantly lower...... in APP/PS1ΔE9 compared to wild-type mice. Novelty exposure induced an increase in Arc and c-Fos mRNA in the medial prefrontal cortex (mPFC), parietal cortex, and hippocampal formation in both APP/PS1ΔE9 transgenic and wild-type mice. However, novelty-induced IEG expression did not reach the same levels...... in a transgenic mouse model of Alzheimer's disease, which is most pronounced in cortical regions, indicating that a decreased functional response in IEG expression could be partly responsible for the cognitive deficits observed in patients with Alzheimer's disease....

  9. Regional registration of [6-14C]glucose metabolism during brain activation of α-syntrophin knockout mice

    Science.gov (United States)

    Cruz, Nancy F.; Ball, Kelly K.; Froehner, Stanley C.; Adams, Marvin E.; Dienel, Gerald A.

    2013-01-01

    α-Syntrophin is a component of the dystrophin scaffold-protein complex that serves as an adaptor for recruitment of key proteins to the cytoplasmic side of plasma membranes. α-Syntrophin knockout (KO) causes loss of the polarized localization of aquaporin4 (AQP4) at astrocytic endfeet and interferes with water and K+ homeostasis. During brain activation, release of ions and metabolites from endfeet is anticipated to increase perivascular fluid osmolarity, AQP4-mediated osmotic water flow from endfeet, and metabolite washout from brain. This study tests the hypothesis that reduced levels of endfoot AQP4 increase retention of [14C]metabolites during sensory stimulation. Conscious KO and wildtype mice were pulse-labeled with [6-14C]glucose during unilateral acoustic stimulation or bilateral acoustic plus whisker stimulation, and label retention was assayed by computer-assisted brain imaging or analysis of [14C]metabolites in extracts, respectively. High-resolution autoradiographic assays detected a 17% side-to-side difference (P<0.05) in inferior colliculus of KO mice, not wildtype mice. However, there were no labeling differences between KO and wildtype mice for five major HPLC fractions from four dissected regions, presumably due to insufficient anatomical resolution. The results suggest a role for AQP4-mediated water flow in support of washout of metabolites, and underscore the need for greater understanding of astrocytic water and metabolite fluxes. PMID:23346911

  10. Hemizygous Le-Cre Transgenic Mice Have Severe Eye Abnormalities on Some Genetic Backgrounds in the Absence of LoxP Sites

    Science.gov (United States)

    Dorà, Natalie J.; Collinson, J. Martin; Hill, Robert E.; West, John D.

    2014-01-01

    Eye phenotypes were investigated in Le-CreTg/−; Pax6fl/+ mice, which were expected to show tissue-specific reduction of Pax6 in surface ectoderm derivatives. To provide a better comparison with our previous studies of Pax6+/− eye phenotypes, hemizygous Le-CreTg/− and heterozygous Pax6fl/+mice were crossed onto the CBA/Ca genetic background. After the Le-Cre transgene had been backcrossed to CBA/Ca for seven generations, significant eye abnormalities occurred in some hemizygous Le-CreTg/−; Pax6+/+ controls (without a floxed Pax6fl allele) as well as experimental Le-CreTg/−; Pax6fl/+ mice. However, no abnormalities were seen in Le-Cre−/−; Pax6fl/+ or Le-Cre−/−; Pax6+/+ controls (without the Le-Cre transgene). The severity and frequency of the eye abnormalities in Le-CreTg/−; Pax6+/+ control mice diminished after backcrossing Le-CreTg/− mice to the original FVB/N strain for two generations, showing that the effect was reversible. This genetic background effect suggests that the eye abnormalities are a consequence of an interaction between the Le-Cre transgene and alleles of unknown modifier genes present in certain genetic backgrounds. The abnormalities were also ameliorated by introducing additional Pax6 gene copies on a CBA/Ca background, suggesting involvement of Pax6 depletion in Le-CreTg/−; Pax6+/+ mice rather than direct action of Cre recombinase on cryptic pseudo-loxP sites. One possibility is that expression of Cre recombinase from the Pax6-Le regulatory sequences in the Le-Cre transgene depletes cofactors required for endogenous Pax6 gene expression. Our observation that eye abnormalities can occur in hemizygous Le-CreTg/−; Pax6+/+ mice, in the absence of a floxed allele, demonstrates the importance of including all the relevant genetic controls in Cre-loxP experiments. PMID:25272013

  11. Application of Echocardiography on Transgenic Mice with Cardiomyopathies

    Directory of Open Access Journals (Sweden)

    G. Chen

    2012-01-01

    Full Text Available Cardiomyopathies are common cardiac disorders that primarily affect cardiac muscle resulting in cardiac dysfunction and heart failure. Transgenic mouse disease models have been developed to investigate the cellular mechanisms underlying heart failure and sudden cardiac death observed in cardiomyopathy cases and to explore the therapeutic outcomes in experimental animals in vivo. Echocardiography is an essential diagnostic tool for accurate and noninvasive assessment of cardiac structure and function in experimental animals. Our laboratory has been among the first to apply high-frequency research echocardiography on transgenic mice with cardiomyopathies. In this work, we have summarized our and other studies on assessment of systolic and diastolic dysfunction using conventional echocardiography, pulsed Doppler, and tissue Doppler imaging in transgenic mice with various cardiomyopathies. Estimation of embryonic mouse hearts has been performed as well using this high-resolution echocardiography. Some technical considerations in mouse echocardiography have also been discussed.

  12. TL transgenic mouse strains

    International Nuclear Information System (INIS)

    Obata, Y.; Matsudaira, Y.; Hasegawa, H.; Tamaki, H.; Takahashi, T.; Morita, A.; Kasai, K.

    1993-01-01

    As a result of abnormal development of the thymus of these mice, TCR αβ lineage of the T cell differentiation is disturbed and cells belonging to the TCR γδ CD4 - CD8 - double negative (DN) lineage become preponderant. The γδ DN cells migrate into peripheral lymphoid organs and constitute nearly 50% of peripheral T cells. Immune function of the transgenic mice is severely impaired, indicating that the γδ cells are incapable of participating in these reactions. Molecular and serological analyses of T-cell lymphomas reveal that they belong to the γδ lineage. Tg.Tla a -3-1 mice should be useful in defining the role of TL in normal and abnormal T cell differentiation as well as in the development of T-cell lymphomas, and further they should facilitate studies on the differentiation and function of γδ T cells. We isolated T3 b -TL gene from B6 mice and constructed a chimeric gene in which T3 b -TL is driven by the promoter of H-2K b . With the chimeric gene, two transgenic mouse strains, Tg. Con.3-1 and -2 have been derived in C3H background. Both strains express TL antigen in various tissues including skin. The skin graft of transgenic mice on C3H and (B6 X C3H)F 1 mice were rejected. In the mice which rejected the grafts, CD8 + TCRαβ cytotoxic T cells (CTL) against TL antigens were recognized. The recognition of TL by CTL did not require the antigen presentation by H-2 molecules. The results indicated that TL antigen in the skin becomes a transplantation antigen and behaves like a typical allogeneic MHC class I antigen. The facts that (B6 X C3H)F 1 mice rejected the skin expressing T3 b -TL antigen and induced CTL that killed TL + lymphomas of B6 origin revealed that TL antigen encoded by T3 b -TL is recognized as non-self in B6 mice. Experiments are now extended to analyze immune responses to TL antigen expressed on autochthonous T cell lymphomas. (J.P.N.)

  13. Dose response evaluation of gene expression profiles in the skin of K6/ODC mice exposed to sodium arsenite

    International Nuclear Information System (INIS)

    Ahlborn, Gene J.; Nelson, Gail M.; Ward, William O.; Knapp, Geremy; Allen, James W.; Ouyang Ming; Roop, Barbara C.; Chen Yan; O'Brien, Thomas; Kitchin, Kirk T.; Delker, Don A.

    2008-01-01

    Chronic drinking water exposure to inorganic arsenic and its metabolites increases tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, we characterized gene expression profiles from analysis of K6/ODC mice administered 0, 0.05, 0.25, 1.0 and 10 ppm sodium arsenite in their drinking water for 4 weeks. Following exposure, total RNA was isolated from mouse skin and processed to biotin-labeled cRNA for microarray analyses. Skin gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 GeneChips (registered) , and pathway analysis was conducted with DAVID (NIH), Ingenuity (registered) Systems and MetaCore's GeneGo. Differential expression of several key genes was verified through qPCR. Only the highest dose (10 ppm) resulted in significantly altered KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including MAPK, regulation of actin cytoskeleton, Wnt, Jak-Stat, Tight junction, Toll-like, phosphatidylinositol and insulin signaling pathways. Approximately 20 genes exhibited a dose response, including several genes known to be associated with carcinogenesis or tumor progression including cyclin D1, CLIC4, Ephrin A1, STAT3 and DNA methyltransferase 3a. Although transcription changes in all identified genes have not previously been linked to arsenic carcinogenesis, their association with carcinogenesis in other systems suggests that these genes may play a role in the early stages of arsenic-induced skin carcinogenesis and can be considered potential biomarkers

  14. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wen-Ta [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Li, Hui-Chun [Department of Biochemistry, Tzu Chi University, Hualien, Taiwan (China); Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Lo, Shih-Yen, E-mail: losylo@mail.tcu.edu.tw [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China)

    2013-05-24

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.

  15. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    International Nuclear Information System (INIS)

    Hu, Wen-Ta; Li, Hui-Chun; Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling; Lo, Shih-Yen

    2013-01-01

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway

  16. Immunoglobulin gene expression and regulation of rearrangement in kappa transgenic mice

    International Nuclear Information System (INIS)

    Ritchie, K.A.

    1986-01-01

    Transgenic mice were produced by microinjection of the functionally rearranged immunoglobulin kappa gene from the myeloma MOPC-21 into the male pronucleus of fertilized mouse eggs, and implantation of the microinjected embryos into foster mothers. Mice that integrated the injected gene were detected by hybridizing tail DNA dots with radioactively labelled pBR322 plasmid DNA, which detects pBR322 sequences left as a tag on the microinjected DNA. Mice that integrated the injected gene (six males) were mated and the DNA, RNA and serum kappa chains of their offspring were analyzed. A rabbit anti-mouse kappa chain antiserum was also produced for use in detection of mouse kappa chains on protein blots. Hybridomas were produced from the spleen cells of these kappa transgenic mice to immortalize representative B cells and to investigate expression of the transgenic kappa gene, its effect on allelic exclusion, and its effect on the control of light chain gene rearrangement and expression. The results show that the microinjected DNA is integrated as concatamers in unique single or, rarely, two separate sites in the genome. The concatamers are composed of several copies (16 to 64) of injected DNA arranged in a head to tail fashion. The transgene is expressed into protein normally and in a tissue specific fashion. For the first time in these transgenic mice, all tissues contain a functionally rearranged and potentially expressible immunoglobulin gene. The transgene is expressed only in B cells and not in hepatocytes, for example. This indicates that rearrangement of immunoglobulin genes is necessary but not sufficient for the tissue specific expression of these genes by B cells

  17. Cytokeratin 19 promoter directs the expression of Cre recombinase in various epithelia of transgenic mice.

    Science.gov (United States)

    Zhao, Gui-Feng; Zhao, Shuang; Liu, Jia-Jie; Wu, Ji-Cheng; He, Hao-Yu; Ding, Xiao-Qing; Yu, Xue-Wen; Huang, Ke-Qiang; Li, Zhi-Jie; Zheng, Hua-Chuan

    2017-03-14

    Cytokeratin 19 (K19) is expressed in various differentiated cells, including gastric, intestinal and bronchial epithelial cells, and liver duct cells. Here, we generated a transgenic mouse line, K19-Cre, in which the expression of Cre recombinase was controlled by the promoter of K19. To test the tissue distribution and excision activity of Cre recombinase, K19-Cre transgenic mice were bred with Rosa26 reporter strain and a mouse strain that carries PTEN conditional alleles (PTENLoxp/Loxp). At mRNA level, Cre was strongly expressed in the stomach, lung and intestine, while in stomach, lung, and liver at protein level. The immunoreactivity to Cre was strongly observed the cytoplasm of gastric, bronchial and intestinal epithelial cells. Cre activity was detectable in gastric, bronchial and intestinal epithelial cells, according to LacZ staining. In K19-Cre/PTEN Loxp/Loxp mice, PTEN was abrogated in stomach, intestine, lung, liver and breast, the former two of which were verified by in situ PCR. There appeared breast cancer with PTEN loss. These data suggest that K19 promoter may be a useful tool to study the pathophysiological functions of cytokeratin 19-positive cells, especially gastrointestinal epithelial cells. Cell specificity of neoplasia is not completely attributable to the cell-specific expression of oncogenes and cell-specific loss of tumor suppressor genes.

  18. Podocyte changes upon induction of albuminuria in Thy-1.1 transgenic mice.

    NARCIS (Netherlands)

    Smeets, B.; Dijkman, H.B.P.M.; Loeke, N. te; Son, J.P.H.F. van; Steenbergen, E.; Assmann, K.J.M.; Wetzels, J.F.M.; Groenen, P.J.T.A.

    2003-01-01

    BACKGROUND: Thy-1.1 transgenic mice, characterized by ectopic expression of the Thy-1.1 protein on podocytes, spontaneously develop proteinuria and focal glomerulosclerosis (FGS). Injection of a monoclonal antibody (mAb) directed against the Thy-1.1 protein in young transgenic mice induces a massive

  19. Two structure types based on Si6O15 rings: synthesis and structural and spectroscopic characterisation of Cs1.86K1.14DySi6O15 and Cs1.6K1.4SmSi6O15

    International Nuclear Information System (INIS)

    Wierzbicka-Wieczorek, Maria; Goeckeritz, Martin; Kolitsch, Uwe; Lenz, Christoph; Giester, Gerald

    2015-01-01

    The silicate Cs 1.86 K 1.14 DySi 6 O 15 represents a mixed tetrahedral-octahedral framework structure type based on roughly circular Si 6 O 15 rings and isolated DyO 6 octahedra. The silicate Cs 1.6 K 1.4 SmSi 6 O 15 has a layered atomic arrangement built from corrugated Si 6 O 15 layers containing four-, six- and eight-membered rings. The layers are connected by isolated SmO 6 octahedra to form a mixed tetrahedral-octahedral framework. This structure shows a close structural relationship to β-K 3 NdSi 6 O 15 and a less close one to dehydrated elpidite (Na 2 ZrSi 6 O 15 ). In both structures, Cs/K atoms occupy large voids. The silicates were obtained through high-temperature flux syntheses. Their crystal structures have been determined from single-crystal X-ray diffraction data. Cs 1.86 K 1.14 DySi 6 O 15 crystallises in R32 (no. 155) with a = 13.896(2), c = 35.623(7) Aa and V = 5957.2(17) Aa 3 , whereas Cs 1.6 K 1.4 SmSi 6 O 15 crystallises in Cmca (no. 64) with a = 14.474(3), b = 14.718(3), c = 15.231(3) Aa and V = 3244.7(11) Aa 3 . The Dy 3+ and Sm 3+ cations present in the silicates cause PL emission bands in the visible yellow-to-orange spectral range. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Podocyte changes upon induction of albuminuria in Thy-1.1 transgenic mice.

    Science.gov (United States)

    Smeets, Bart; Dijkman, Henry B P M; te Loeke, Nathalie A J M; van Son, Jacco P H F; Steenbergen, Eric J; Assmann, Karel J M; Wetzels, Jack F M; Groenen, Patricia J T A

    2003-12-01

    Thy-1.1 transgenic mice, characterized by ectopic expression of the Thy-1.1 protein on podocytes, spontaneously develop proteinuria and focal glomerulosclerosis (FGS). Injection of a monoclonal antibody (mAb) directed against the Thy-1.1 protein in young transgenic mice induces a massive albuminuria that is followed by an accelerated FGS within 3 weeks. This albuminuria is complement and leukocyte independent. The time course of proteinuria, the pathogenesis of the acute proteinuria and the dose dependency of FGS are unknown. Albuminuria was measured in Thy-1.1 transgenic mice after injection of different doses of anti-Thy-1.1 mAb and at different time points within the first 24 h after injection. Podocytic foot processes and slit pore diameter were quantitated by electron microscopy. Changes in expression of slit pore constituents (podocin, CD2AP, nephrin and ZO-1), cytoskeleton-associated proteins (actin, alpha-actinin, ezrin and synaptopodin), the GDH-podocyte adhesion molecules alpha(3)-integrin, and heparan sulfate were studied by immunofluorescence. FGS was scored by light microscopy at 3 weeks after induction of albuminuria. Albuminuria in Thy-1.1 transgenic mice was observed within 10 min after anti-Thy-1.1 mAb injection. This rapid development of albuminuria was accompanied by a reduction in number of podocytic foot processes from 20.0 +/- 0.7/10 microm glomerular basement membrane (GBM) in saline-treated transgenic mice to 8.0 +/- 0.5 and 2.2 +/- 0.2 in anti-Thy-1.1-treated mice, at 10 min and 8 h after treatment, respectively. In addition, we observed a significant decrease in width of remaining slit pores, from 32.7 +/- 1.1 to 26.8 +/- 1.4 nm at 10 min after mAb injection. By immunofluorescence, we did not observe major changes in the expression pattern of any of the proteins studied. There was no correlation between the injected dose of the anti-Thy-1.1 mAb and the acute albuminuria. In contrast, the percentage of FGS at 3 weeks correlated with the

  1. Scavenger receptor deficiency leads to more complex atherosclerotic lesions in APOE3Leiden transgenic mice

    NARCIS (Netherlands)

    Winther, M.P.J. de; Gijbels, M.J.J.; Dijk, K.W. van; Gorp, P.J.J. van; Suzuki, H.; Kodama, T.; Frants, R.R.; Havekes, L.M.; Hofker, M.H.

    1999-01-01

    Apolipoprotein (apo) E3Leiden is a dysfunctional apo E variant associated with familial dysbetalipoproteinemia in humans. Transgenic mice carrying the APOE3Leiden gene develop hyperlipidemia and are highly susceptible to diet-induced atherosclerosis. An early step in atherosclerosis is foam cell

  2. SAP Suppresses the Development of Experimental Autoimmune Encephalomyelitis in C57BL6 Mice

    Science.gov (United States)

    Ji, Zhe; Ke, Zun-Ji; Geng, Jian-Guo

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated disease of the CNS. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report SAP transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35–55 in CFA, SAP transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However in SAP-KO mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild-type to SAP transgenic mice or transfer of SAP transgenic Ag-restimulated T cells to control mice induced milder EAE. T cells from MOG-primed SAP transgenic mice showed weak proliferative responses. Furthermore, in SAP transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of IL-2 stimulated by P-selectin, and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin. PMID:21647172

  3. p53-stabilizing Agent CP-31398 Prevents Growth and Invasion of Urothelial Cancer of the Bladder in Transgenic UPII-SV40T Mice

    Directory of Open Access Journals (Sweden)

    Venkateshwar Madka

    2013-08-01

    Full Text Available The high prevalence of bladder cancer and its recurrence make it an important target for chemoprevention. About half of invasive urothelial tumors have mutations in p53. We determined the chemopreventive efficacy of a p53-stabilizing agent, CP-31398, in a transgenic UPII-SV40T mouse model of bladder transitional cell carcinoma (TCC that strongly resembles human TCC. After genotyping, six-week-old UPII-SV40T mice (n = 30/group were fed control (AIN-76A or experimental diets containing 150 or 300 ppm of CP-31398 for 34 weeks. Progression of bladder cancer growth was monitored by magnetic resonance imaging. At 40 weeks of age, all mice were killed; urinary bladders were collected to determine weights, tumor incidence, and histopathology. There was a significant increase in bladder weights of transgenic versus wild-type mice (male: 140.2 mg vs 27.3 mg, P < .0001; female: 34.2 mg vs 14.8 mg, P < .0001. A significant decrease in the bladder tumor weights (by 68.6–80.2%, P < .0001 in males and by 36.9–55.3%, P < .0001 in females was observed in CP-31398-treated mice. Invasive papillary TCC incidence was 100% in transgenic mice fed control diet. Both male and female mice exposed to CP-31398 showed inhibition of invasive TCC. CP-31398 (300 ppm completely blocked invasion in female mice. Molecular analysis of the bladder tumors showed an increase in apoptosis markers (p53, p21, Bax, and Annexin V with a decrease in vascular endothelial growth factor in transgenic mice fed CP-31398. These results suggest that p53-modulating agents can serve as potential chemopreventive agents for bladder TCC.

  4. Human papillomavirus type 16 E6-specific antitumor immunity is induced by oral administration of HPV16 E6-expressing Lactobacillus casei in C57BL/6 mice.

    Science.gov (United States)

    Lee, Tae-Young; Kim, Yang-Hyun; Lee, Kyung-Soon; Kim, Jeong-Ki; Lee, Il-Han; Yang, Jai-Myung; Sung, Moon-Hee; Park, Jong-Sup; Poo, Haryoung

    2010-11-01

    Given that local cell-mediated immunity (CMI) against the human papillomavirus type 16 E6 (HPV16 E6) protein is important for eradication of HPV16 E6-expressing cancer cells in the cervical mucosa, the HPV16 E6 protein may be a target for the mucosal immunotherapy of cervical cancer. Here, we expressed the HPV16 E6 antigen on Lactobacillus casei (L. casei) and investigated E6-specific CMI following oral administration of the L. casei-PgsA-E6 to mice. Surface expression of HPV16 E6 antigens was confirmed and mice were orally inoculated with the L. casei-PgsA or the L. casei-PgsA-E6. Compared to the L. casei-PgsA-treated mice, significantly higher levels of serum IgG and mucosal IgA were observed in L. casei-PgsA-E6-immunized mice; these differences were significantly enhanced after boost. Consistent with this, systemic and local CMI were significantly increased after the boost, as shown by increased counts of IFN-gamma-secreting cells in splenocytes, mesenteric lymph nodes (MLN), and vaginal samples. Furthermore, in the TC-1 tumor model, animals receiving the orally administered L. casei-PgsA-E6 showed reduced tumor size and increased survival rate versus mice receiving control (L. casei-PgsA) immunization. We also found that L. casei-PgsA-E6-induced antitumor effect was decreased by in vivo depletion of CD4(+) or CD8(+) T cells. Collectively, these results indicate that the oral administration of lactobacilli bearing the surface-displayed E6 protein induces T cell-mediated cellular immunity and antitumor effects in mice.

  5. Transgenic mice expressing constitutive active MAPKAPK5 display gender-dependent differences in exploration and activity

    Directory of Open Access Journals (Sweden)

    Moens Ugo

    2007-11-01

    Full Text Available Abstract Background The mitogen-activated protein kinases, MAPKs for short, constitute cascades of signalling pathways involved in the regulation of several cellular processes that include cell proliferation, differentiation and motility. They also intervene in neurological processes like fear conditioning and memory. Since little remains known about the MAPK-Activated Protein Kinase, MAPKAPK5, we constructed the first MAPKAPK knockin mouse model, using a constitutive active variant of MAPKAPK5 and analyzed the resulting mice for changes in anxiety-related behaviour. Methods We performed primary SHIRPA observations during background breeding into the C57BL/6 background and assessed the behaviour of the background-bred animals on the elevated plus maze and in the light-dark test. Our results were analyzed using Chi-square tests and homo- and heteroscedatic T-tests. Results Female transgenic mice displayed increased amounts of head dips and open arm time on the maze, compared to littermate controls. In addition, they also explored further into the open arm on the elevated plus maze and were less active in the closed arm compared to littermate controls. Male transgenic mice displayed no differences in anxiety, but their locomotor activity increased compared to non-transgenic littermates. Conclusion Our results revealed anxiety-related traits and locomotor differences between transgenic mice expressing constitutive active MAPKAPK5 and control littermates.

  6. Cognitive abilities of Alzheimer's disease transgenic mice are modulated by social context and circadian rhythm.

    Science.gov (United States)

    Kiryk, Anna; Mochol, Gabriela; Filipkowski, Robert K; Wawrzyniak, Marcin; Lioudyno, Victoria; Knapska, Ewelina; Gorkiewicz, Tomasz; Balcerzyk, Marcin; Leski, Szymon; Leuven, Fred Van; Lipp, Hans-Peter; Wojcik, Daniel K; Kaczmarek, Leszek

    2011-12-01

    In the present study, we used a new training paradigm in the intelliCage automatic behavioral assessment system to investigate cognitive functions of the transgenic mice harboring London mutation of the human amyloid precursor protein (APP.V717I). Three groups of animals: 5-, 12- and 18-24-month old were subjected to both Water Maze training and the IntelliCage-based appetitive conditioning. The spatial memory deficit was observed in all three groups of transgenic mice in both behavioral paradigms. However, the APP mice were capable to learn normally when co-housed with the wild-type (WT) littermates, in contrast to clearly impaired learning observed when the transgenic mice were housed alone. Furthermore, in the transgenic mice kept in the Intellicage alone, the cognitive deficit of the young animals was modulated by the circadian rhythm, namely was prominent only during the active phase of the day. The novel approach to study the transgenic mice cognitive abilities presented in this paper offers new insight into cognitive dysfunctions of the Alzheimer's disease mouse model.

  7. Focal glomerulosclerosis in proviral and c-fms transgenic mice links Vpr expression to HIV-associated nephropathy

    International Nuclear Information System (INIS)

    Dickie, Peter; Roberts, Amanda; Uwiera, Richard; Witmer, Jennifer; Sharma, Kirti; Kopp, Jeffrey B.

    2004-01-01

    Clinical and morphologic features of human immunodeficiency virus (HIV)-associated nephropathy (HIVAN), such as proteinuria, sclerosing glomerulopathy, tubular degeneration, and interstitial disease, have been modeled in mice bearing an HIV proviral transgene rendered noninfectious through a deletion in gag/pol. Exploring the genetic basis of HIVAN, HIV transgenic mice bearing mutations in either or both of the accessory genes nef and vpr were created. Proteinuria and focal glomerulosclerosis (FGS) only developed in mice with an intact vpr gene. Transgenic mice bearing a simplified proviral DNA (encoding only Tat and Vpr) developed renal disease characterized by FGS in which Vpr protein was localized to glomerular and tubular epithelia by immunohistochemistry. The dual transgenic progeny of HIV[Tat/Vpr] mice bred to HIV[ΔVpr] proviral transgenic mice displayed a more severe nephropathy with no apparent increase in Vpr expression, implying that multiple viral genes contribute to HIVAN. However, the unique contribution of macrophage-specific Vpr expression in the development of glomerular disease was underscored by the induction of FGS in multiple murine lines bearing a c-fms/vpr transgene

  8. Identification of Cells at Early and Late Stages of Polarization During Odontoblast Differentiation Using pOBCol3.6GFP and pOBCol2.3GFP Transgenic Mice

    Science.gov (United States)

    Balic, Anamaria; Aguila, H. Leonardo; Mina, Mina

    2010-01-01

    Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stage of differentiation along a lineage. In the present study we used primary cell cultures derived from the dental pulp from pOBCol3.6GFP and pOBCol2.3GFP transgenic mice as a model to develop markers for early stages of odontoblast differentiation from progenitor cells. We analyzed the temporal and spatial expression of 2.3-GFP and 3.6-GFP during in vitro mineralization. Using FACS to separate cells based on GFP expression, we obtained relatively homogenous sub-populations of cells and analyzed their dentinogenic potentials and their progression into odontoblasts. Our observations showed that these transgenes were activated before the onset of matrix deposition and in cells at different stages of polarization. The 3.6-GFP transgene was activated in cells in early stages of polarization whereas the 2.3-GFP transgene was activated at a later stage of polarization just before or at the time of formation of secretory odontoblast. PMID:20728593

  9. Estrogen and progesterone receptors have distinct roles in the establishment of the hyperplastic phenotype in PR-A transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Simian, Marina; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Shyamala, Gopalan

    2009-05-11

    Expression of the A and B forms of progesterone receptor (PR) in an appropriate ratio is critical for mammary development. Mammary glands of PR-A transgenic mice, carrying an additional A form of PR as a transgene, exhibit morphological features associated with the development of mammary tumors. Our objective was to determine the roles of estrogen (E) and progesterone (P) in the genesis of mammary hyperplasias/preneoplasias in PR-A transgenics. We subjected PR-A mice to hormonal treatments and analyzed mammary glands for the presence of hyperplasias and used BrdU incorporation to measure proliferation. Quantitative image analysis was carried out to compare levels of latency-associated peptide and transforming growth factor beta 1 (TGF{beta}1) between PR-A and PR-B transgenics. Basement membrane disruption was examined by immunofluorescence and proteolytic activity by zymography. The hyperplastic phenotype of PR-A transgenics is inhibited by ovariectomy, and is reversed by treatment with E + P. Studies using the antiestrogen ICI 182,780 or antiprogestins RU486 or ZK 98,299 show that the increase in proliferation requires signaling through E/estrogen receptor alpha but is not sufficient to give rise to hyperplasias, whereas signaling through P/PR has little impact on proliferation but is essential for the manifestation of hyperplasias. Increased proliferation is correlated with decreased TGF{beta}1 activation in the PR-A transgenics. Analysis of basement membrane integrity showed loss of laminin-5, collagen III and collagen IV in mammary glands of PR-A mice, which is restored by ovariectomy. Examination of matrix metalloproteases (MMPs) showed that total levels of MMP-2 correlate with the steady-state levels of PR, and that areas of laminin-5 loss coincide with those of activation of MMP-2 in PR-A transgenics. Activation of MMP-2 is dependent on treatment with E and P in ovariectomized wild-type mice, but is achieved only by treatment with P in PR-A mice. These data

  10. Pituitary adenomas in mice transgenic for growth hormone-releasing hormone

    DEFF Research Database (Denmark)

    Asa, S L; Kovacs, K; Stefaneanu, L

    1992-01-01

    It has been shown that mice transgenic for human GH-releasing hormone (GRH) develop hyperplasia of pituitary somatotrophs, lactotrophs, and mammosomatotrophs, cells capable of producing both GH and PRL, by 8 months of age. We now report that GRH transgenic mice 10-24 months of age develop pituitary...... adenomas, which we characterized by histology, immunohistochemistry, in situ hybridization, and electron microscopy. Of 13 animals examined, all developed GH-immunoreactive neoplasms that had diffuse positivity for GH mRNA by in situ hybridization. Eleven also contained PRL immunoreactivity; in situ...

  11. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice

    International Nuclear Information System (INIS)

    Fujimura, Juri; Ogawa, Rei; Mizuno, Hiroshi; Fukunaga, Yoshitaka; Suzuki, Hidenori

    2005-01-01

    Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders

  12. Quantitative analysis of lentiviral transgene expression in mice over seven generations.

    Science.gov (United States)

    Wang, Yong; Song, Yong-tao; Liu, Qin; Liu, Cang'e; Wang, Lu-lu; Liu, Yu; Zhou, Xiao-yang; Wu, Jun; Wei, Hong

    2010-10-01

    Lentiviral transgenesis is now recognized as an extremely efficient and cost-effective method to produce transgenic animals. Transgenes delivered by lentiviral vectors exhibited inheritable expression in many species including those which are refractory to genetic modification such as non-human primates. However, epigenetic modification was frequently observed in lentiviral integrants, and transgene expression found to be inversely correlated with methylation density. Recent data showed that about one-third lentiviral integrants exhibited hypermethylation and low expression, but did not demonstrate whether those integrants with high expression could remain constant expression and hypomethylated during long term germline transmission. In this study, using lentiviral eGFP transgenic mice as the experimental animals, lentiviral eGFP expression levels and its integrant numbers in genome were quantitatively analyzed by fluorescent quantitative polymerase-chain reaction (FQ-PCR), using the house-keeping gene ribosomal protein S18 (Rps18) and the single copy gene fatty acid binding protein of the intestine (Fabpi) as the internal controls respectively. The methylation densities of the integrants were quantitatively analyzed by bisulfite sequencing. We found that the lentiviral integrants with high expression exhibited a relative constant expression level per integrant over at least seven generations. Besides, the individuals containing these integrants exhibited eGFP expression levels which were positively and almost linearly correlated with the integrant numbers in their genomes, suggesting that no remarkable position effect on transgene expression of the integrants analyzed was observed. In addition, over seven generations the methylation density of these integrants did not increase, but rather decreased remarkably, indicating that these high expressing integrants were not subjected to de novo methylation during at least seven generations of germline transmission. Taken

  13. Acetaminophen-induced acute liver injury in HCV transgenic mice

    International Nuclear Information System (INIS)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U.; Tech, Katherine; Macdonald, Jeffrey M.; Boorman, Gary A.; Chatterjee, Saurabh; Mason, Ronald P.; Melnyk, Stepan B.; Tryndyak, Volodymyr P.; Pogribny, Igor P.; Rusyn, Ivan

    2013-01-01

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  14. Acetaminophen-induced acute liver injury in HCV transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tech, Katherine; Macdonald, Jeffrey M. [Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Boorman, Gary A. [Covance, Chantilly, VA 20151 (United States); Chatterjee, Saurabh; Mason, Ronald P. [Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, RTP, NC 27713 (United States); Melnyk, Stepan B. [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72201 (United States); Tryndyak, Volodymyr P.; Pogribny, Igor P. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2013-01-15

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  15. EVIDENCE THAT INTESTINAL IGA PLASMA-CELLS IN MU,CHI TRANSGENIC MICE ARE DERIVED FROM B-1 (LY-1 B) CELLS

    NARCIS (Netherlands)

    KROESE, FGM; AMMERLAAN, WAM; KANTOR, AB

    1993-01-01

    B6-Sp6 transgenic mice carry fully rearranged (BALB/c-derived. Igh-C(a) allotype) mu heavy chain and kappa light chain transgenes, specific for trinitrophenyl, on a C57BL background (Igh-C(b) allotype). FACS analyses show that the majority of B cells in peripheral lymphoid organs and bone marrow

  16. Overexpression of TIMP-1 under the MMP-9 promoter interferes with wound healing in transgenic mice

    OpenAIRE

    Salonurmi, T.; Parikka, M.; Kontusaari, S.; Pirila, E.; Munaut, Carine; Salo, T.; Tryggvason, K.

    2004-01-01

    We have generated transgenic mice harboring the murine matrix metalloproteinase 9 (MMP-9) promoter cloned in front of human TIMP-1 cDNA. The transgenic mice were viable and fertile and exhibited normal growth and general development. During wound healing the mice were shown to express human TIMP-1 in keratinocytes that normally express MMP-9. However, the healing of skin wounds was significantly retarded with slow migration of keratinocytes over the wound in transgenic mice. In situ zymograph...

  17. Spontaneous retinopathy in HLA-A29 transgenic mice

    Science.gov (United States)

    Szpak, Yann; Vieville, Jean-Claude; Tabary, Thierry; Naud, Marie-Christine; Chopin, Martine; Edelson, Catherine; Cohen, Jacques H. M.; Dausset, Jean; de Kozak, Yvonne; Pla, Marika

    2001-01-01

    Humans who have inherited the class I major histocompatibility allele HLA-A29 have a markedly increased relative risk of developing the eye disease termed birdshot chorioretinopathy. This disease affecting adults is characterized by symmetrically scattered, small, cream-colored spots in the fundus associated with retinal vasculopathy and inflammatory signs causing damage to the ocular structures, leading regularly to visual loss. To investigate the role of HLA-A29 in this disease, we introduced the HLA-A29 gene into mice. Aging HLA-A29 transgenic mice spontaneously developed retinopathy, showing a striking resemblance to the HLA-A29-associated chorioretinopathy. These results strongly suggest that HLA-A29 is involved in the pathogenesis of this disease. Elucidation of the role of HLA-A29 should be assisted by this transgenic model. PMID:11226280

  18. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice

    Directory of Open Access Journals (Sweden)

    LaFerla Frank M

    2005-10-01

    Full Text Available Abstract Background Alzheimer's disease is a complex neurodegenerative disorder characterized pathologically by a temporal and spatial progression of beta-amyloid (Aβ deposition, neurofibrillary tangle formation, and synaptic degeneration. Inflammatory processes have been implicated in initiating and/or propagating AD-associated pathology within the brain, as inflammatory cytokine expression and other markers of inflammation are pronounced in individuals with AD pathology. The current study examines whether inflammatory processes are evident early in the disease process in the 3xTg-AD mouse model and if regional differences in inflammatory profiles exist. Methods Coronal brain sections were used to identify Aβ in 2, 3, and 6-month 3xTg-AD and non-transgenic control mice. Quantitative real-time RT-PCR was performed on microdissected entorhinal cortex and hippocampus tissue of 2, 3, and 6-month 3xTg-AD and non-transgenic mice. Microglial/macrophage cell numbers were quantified using unbiased stereology in 3xTg-AD and non-transgenic entorhinal cortex and hippocampus containing sections. Results We observed human Aβ deposition at 3 months in 3xTg-AD mice which is enhanced by 6 months of age. Interestingly, we observed a 14.8-fold up-regulation of TNF-α and 10.8-fold up-regulation of MCP-1 in the entorhinal cortex of 3xTg-AD mice but no change was detected over time in the hippocampus or in either region of non-transgenic mice. Additionally, this increase correlated with a specific increase in F4/80-positive microglia and macrophages in 3xTg-AD entorhinal cortex. Conclusion Our data provide evidence for early induction of inflammatory processes in a model that develops amyloid and neurofibrillary tangle pathology. Additionally, our results link inflammatory processes within the entorhinal cortex, which represents one of the earliest AD-affected brain regions.

  19. HPV16-E7-Specific Activated CD8 T Cells in E7 Transgenic Skin and Skin Grafts

    Directory of Open Access Journals (Sweden)

    Seyed Davoud Jazayeri

    2017-05-01

    Full Text Available Human papillomavirus (HPV 16 E7 (E7 protein expression in skin promotes epithelial hyperproliferation and transformation to malignancy. Grafts of murine skin expressing E7 protein as a transgene in keratinocytes are not rejected from immunocompetent recipients, whereas grafts expressing ovalbumin (OVA, with or without coexpression of E7 protein, are promptly rejected, demonstrating that E7-associated non-antigen-specific local immunosuppression is not a major determinant of lack of rejection of E7 transgenic skin. To determine whether failure of rejection of E7 skin grafts is due to failure to attract E7-specific effector T cells, E7- and OVA-specific effector CD8+ T cells, activated in vitro, were transferred to animals bearing E7 transgenic skin grafts. Three days after T cell transfer, E7-specific T cells were present in significantly greater numbers than OVA-specific T cells in the grafted skin on animals bearing recently placed or healed E7 grafts, without graft rejection, and also in the ear skin of E7 transgenic animals, without obvious pathology. E7 and OVA-specific T cells were present in lesser numbers in healed E7 grafts than in recently placed grafts and in lesser numbers in recently placed E7 transgenic epidermal grafts without E7-associated hyperproliferation, derived from E7 transgenic mice with a mutated retinoblastoma gene. These data demonstrate that effector T cells are to some extent attracted to E7 transgenic skin specifically by E7 expression, but in large measure non-specifically by the epithelial proliferation associated with E7 expression, and by the local inflammation produced by grafting. Failure of E7 graft rejection was observed despite trafficking of E7-specific effector T cells to E7-expressing epithelium, a finding of consequence for immunotherapy of HPV 16 E7-associated human cancers.

  20. Dynamics of oligodendrocyte responses to anterograde axonal (Wallerian) and terminal degeneration in normal and TNF-transgenic mice

    DEFF Research Database (Denmark)

    Drøjdahl, Nina; Fenger, Christina; Nielsen, Helle H

    2004-01-01

    degeneration and lesion-induced axonal sprouting in the hippocampal dentate gyrus in TNF-transgenic mice with the response in genetically normal mice. Transectioning of the entorhino-dentate perforant path axonal projection increased hippocampal TNF mRNA expression in both types of mice, but to significantly...... larger levels in the TNF-transgenics. At 5 days after axonal transection, numbers of oligodendrocytes and myelin basic protein (MBP) mRNA expression in the denervated dentate gyrus in TNF-transgenic mice had increased to the same extent as in nontransgenic littermates. At this time, transgenics showed...

  1. Increased liver pathology in hepatitis C virus transgenic mice expressing the hepatitis B virus X protein

    International Nuclear Information System (INIS)

    Keasler, Victor V.; Lerat, Herve; Madden, Charles R.; Finegold, Milton J.; McGarvey, Michael J.; Mohammed, Essam M.A.; Forbes, Stuart J.; Lemon, Stanley M.; Hadsell, Darryl L.; Grona, Shala J.; Hollinger, F. Blaine; Slagle, Betty L.

    2006-01-01

    Transgenic mice expressing the full-length HCV coding sequence were crossed with mice that express the HBV X gene-encoded regulatory protein HBx (ATX mice) to test the hypothesis that HBx expression accelerates HCV-induced liver pathogenesis. At 16 months (mo) of age, hepatocellular carcinoma was identified in 21% of HCV/ATX mice, but in none of the single transgenic animals. Analysis of 8-mo animals revealed that, relative to HCV/WT mice, HCV/ATX mice had more severe steatosis, greater liver-to-body weight ratios, and a significant increase in the percentage of hepatocytes staining for proliferating cell nuclear antigen. Furthermore, primary hepatocytes from HCV, ATX, and HCV/ATX transgenic mice were more resistant to fas-mediated apoptosis than hepatocytes from nontransgenic littermates. These results indicate that HBx expression contributes to increased liver pathogenesis in HCV transgenic mice by a mechanism that involves an imbalance in hepatocyte death and regeneration within the context of severe steatosis

  2. Abnormal differentiation, hyperplasia and embryonic/perinatal lethality in BK5-T/t transgenic mice

    Science.gov (United States)

    Chen, Xin; Schneider-Broussard, Robin; Hollowell, Debra; McArthur, Mark; Jeter, Collene R.; Benavides, Fernando; DiGiovanni, John; Tang, Dean G.

    2009-01-01

    The cell-of-origin has a great impact on the types of tumors that develop and the stem/progenitor cells have long been considered main targets of malignant transformation. The SV40 large T and small t antigens (T/t), have been targeted to multiple differentiated cellular compartments in transgenic mice. In most of these studies, transgenic animals develop tumors without apparent defects in animal development. In this study, we used the bovine keratin 5 (BK5) promoter to target the T/t antigens to stem/progenitor cell-containing cytokeratin 5 (CK5) cellular compartment. A transgene construct, BK5-T/t, was made and microinjected into the male pronucleus of FVB/N mouse oocytes. After implanting ∼1700 embryos, only 7 transgenics were obtained, including 4 embryos (E9.5, E13, E15, and E20) and 3 postnatal animals, which died at P1, P2, and P18, respectively. Immunohistological analysis revealed aberrant differentiation and prominent hyperplasia in several transgenic CK5 tissues, especially the upper digestive organs (tongue, oral mucosa, esophagus, and forestomach) and epidermis, the latter of which also showed focal dysplasia. Altogether, these results indicate that constitutive expression of the T/t antigens in CK5 cellular compartment results in abnormal epithelial differentiation and leads to embryonic/perinatal animal lethality. PMID:19272531

  3. Hyperactive hypothalamus, motivated and non-distractible chronic overeating in ADAR2 transgenic mice.

    Science.gov (United States)

    Akubuiro, A; Bridget Zimmerman, M; Boles Ponto, L L; Walsh, S A; Sunderland, J; McCormick, L; Singh, M

    2013-04-01

    ADAR2 transgenic mice misexpressing the RNA editing enzyme ADAR2 (Adenosine Deaminase that act on RNA) show characteristics of overeating and experience adult onset obesity. Behavioral patterns and brain changes related to a possible addictive overeating in these transgenic mice were explored as transgenic mice display chronic hyperphagia. ADAR2 transgenic mice were assessed in their food preference and motivation to overeat in a competing reward environment with ad lib access to a running wheel and food. Metabolic activity of brain and peripheral tissue were assessed with [(18) F] fluorodeoxyglucose positron emission tomography (FDG-PET) and RNA expression of feeding related genes, ADAR2, dopamine and opiate receptors from the hypothalamus and striatum were examined. The results indicate that ADAR2 transgenic mice exhibit, (1) a food preference for diets with higher fat content, (2) significantly increased food intake that is non-distractible in a competing reward environment, (3) significantly increased messenger RNA (mRNA) expressions of ADAR2, serotonin 2C receptor (5HT2C R), D1, D2 and mu opioid receptors and no change in corticotropin-releasing hormone mRNAs and significantly reduced ADAR2 protein expression in the hypothalamus, (4) significantly increased D1 receptor and altered bioamines with no change in ADAR2, mu opioid and D2 receptor mRNA expression in the striatum and (5) significantly greater glucose metabolism in the hypothalamus, brain stem, right hippocampus, left and right mid brain regions and suprascapular peripheral tissue than controls. These results suggest that highly motivated and goal-oriented overeating behaviors of ADAR2 transgenic mice are associated with altered feeding, reward-related mRNAs and hyperactive brain mesolimbic region. Genes, Brain and Behavior © 2013 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  4. Long-term cannabidiol treatment prevents the development of social recognition memory deficits in Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cheng, David; Spiro, Adena S; Jenner, Andrew M; Garner, Brett; Karl, Tim

    2014-01-01

    Impairments in cognitive ability and widespread pathophysiological changes caused by neurotoxicity, neuroinflammation, oxidative damage, and altered cholesterol homeostasis are associated with Alzheimer's disease (AD). Cannabidiol (CBD) has been shown to reverse cognitive deficits of AD transgenic mice and to exert neuroprotective, anti-oxidative, and anti-inflammatory properties in vitro and in vivo. Here we evaluate the preventative properties of long-term CBD treatment in male AβPPSwe/PS1ΔE9 (AβPP × PS1) mice, a transgenic model of AD. Control and AD transgenic mice were treated orally from 2.5 months of age with CBD (20 mg/kg) daily for 8 months. Mice were then assessed in the social preference test, elevated plus maze, and fear conditioning paradigms, before cortical and hippocampal tissues were analyzed for amyloid load, oxidative damage, cholesterol, phytosterols, and inflammation. We found that AβPP × PS1 mice developed a social recognition deficit, which was prevented by CBD treatment. CBD had no impact on anxiety or associative learning. The prevention of the social recognition deficit was not associated with any changes in amyloid load or oxidative damage. However, the study revealed a subtle impact of CBD on neuroinflammation, cholesterol, and dietary phytosterol retention, which deserves further investigation. This study is the first to demonstrate CBD's ability to prevent the development of a social recognition deficit in AD transgenic mice. Our findings provide the first evidence that CBD may have potential as a preventative treatment for AD with a particular relevance for symptoms of social withdrawal and facial recognition.

  5. Corneal NF-kappaB activity is necessary for the retention of transparency in the cornea of UV-B-exposed transgenic reporter mice.

    Science.gov (United States)

    Alexander, George; Carlsen, Harald; Blomhoff, Rune

    2006-04-01

    To determine the dynamics of Nuclear Factor-kappaB (NF-kappaB) in murine corneal pathology and the role of NF-kappaB in maintaining corneal clarity after ultraviolet B radiation insult, transgenic mice containing NF-kappaB-luciferase reporter were exposed to LPS (bacterial lipopolysaccharide), TNF-alpha (Tumor Necrosis Factor-alpha) or 4 kJ m(-2) UV-B radiation. NF-kappaB decoy oligonucleotides were also administered in some of the UV-B experiments. Following various exposure times, the mice were sacrificed and whole eyes or corneal tissues were obtained. Whole eyes were examined for scattering using a point-source optical imaging technique. Tissue homogenates were examined for luciferase activity using a luminometer. TNF-alpha and LPS-injected NF-kappaB-luciferase transgenic mice demonstrated 3-10-fold increases in cornea NF-kappaB with peak activities at 4 and 6 hr post-injection, respectively. Mice exposed to 4 kJ m(-2) UV-B exhibited a 3-fold increase in NF-kappaB activity 4 hr post-exposure. The administration of NF-kappaB-decoy oligonucleotides to mice had the effect of reducing UV-B-induced NF-kappaB activity in the cornea and significantly increasing the amount of light scattering in UV-B exposed corneas 7 days post-UV-B exposure when compared to sham injected mice. These results indicate that NF-kappaB is activated in cornea in pathologies that involves increased plasma levels of LPS and TNF-alpha, as well as direct UV-B exposure, and suggest that NF-kappaB activation play an essential part in the corneal healing process.

  6. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Lund, L.R.; Rygaard, Jørgen

    2005-01-01

    A prominent phenotype of plasmin deficiency in mice is reduced metastasis in the MMTV-PymT transgenic breast cancer model. Proteolytically active plasmin is generated from inactive plasminogen by one of 2 activators, uPA or tPA. We now find that uPA deficiency alone significantly reduces metastasis...... >7-fold in the MMTV-PymT model. We studied a cohort of 55 MMTV-PymT transgenic mice, either uPA-deficient or wild-type controls. Tumor incidence, latency, growth rate and final primary tumor burden were not significantly affected by uPA deficiency. In contrast, average lung metastasis volume...

  7. Utilization of APPswe/PS1dE9 Transgenic Mice in Research of Alzheimer's Disease: Focus on Gene Therapy and Cell-Based Therapy Applications

    Directory of Open Access Journals (Sweden)

    Tarja Malm

    2011-01-01

    Full Text Available One of the most extensively used transgenic mouse model of Alzheimer’s disease (AD is APPswe/PS1dE9 mice, which over express the Swedish mutation of APP together with PS1 deleted in exon 9. These mice show increase in parenchymal Aβ load with Aβ plaques starting from the age of four months, glial activation, and deficits in cognitive functions at the age of 6 months demonstrated by radial arm water maze and 12-13 months seen with Morris Water Maze test. As gene transfer technology allows the delivery of DNA into target cells to achieve the expression of a protective or therapeutic protein, and stem cell transplantation may create an environment supporting neuronal functions and clearing Aβ plaques, these therapeutic approaches alone or in combination represent potential therapeutic strategies that need to be tested in relevant animal models before testing in clinics. Here we review the current utilization of APPswe/PS1dE9 mice in testing gene transfer and cell transplantation aimed at improving the protection of the neurons against Aβ toxicity and also reducing the brain levels of Aβ. Both gene therapy and cell based therapy may be feasible therapeutic approaches for human AD.

  8. An extensive phenotypic characterization of the hTNFα transgenic mice

    Directory of Open Access Journals (Sweden)

    Tugusheva Marina

    2007-12-01

    Full Text Available Abstract Background Tumor necrosis factor alpha (TNFα is implicated in a wide variety of pathological and physiological processes, including chronic inflammatory conditions, coronary artery disease, diabetes, obesity, and cachexia. Transgenic mice expressing human TNFα (hTNFα have previously been described as a model for progressive rheumatoid arthritis. In this report, we describe extensive characterization of an hTNFα transgenic mouse line. Results In addition to arthritis, these hTNFα transgenic mice demonstrated major alterations in body composition, metabolic rate, leptin levels, response to a high-fat diet, bone mineral density and content, impaired fertility and male sexual function. Many phenotypes displayed an earlier onset and a higher degree of severity in males, pointing towards a significant degree of sexual dimorphism in response to deregulated expression of TNFα. Conclusion These results highlight the potential usefulness of this transgenic model as a resource for studying the progressive effects of constitutively expressed low levels of circulating TNFα, a condition mimicking that observed in a number of human pathological conditions.

  9. Use of the viral 2A peptide for bicistronic expression in transgenic mice

    Directory of Open Access Journals (Sweden)

    Trichas Georgios

    2008-09-01

    Full Text Available Abstract Background Transgenic animals are widely used in biomedical research and biotechnology. Multicistronic constructs, in which several proteins are encoded by a single messenger RNA, are commonly used in genetically engineered animals. This is currently done by using an internal ribosomal entry site to separate the different coding regions. 2A peptides result in the co-translational 'cleavage' of proteins and are an attractive alternative to the internal ribosomal entry site. They are more reliable than the internal ribosomal entry site and lead to expression of multiple cistrons at equimolar levels. They work in a wide variety of eukaryotic cells, but to date have not been demonstrated to function in transgenic mice in an inheritable manner. Results To test 2A function in transgenic mice and uncover any possible toxicity of widespread expression of the 2A peptide, we made a bicistronic reporter construct containing the coding sequence for a membrane localised red fluorescent protein (Myr-TdTomato and a nuclear localised green fluorescent protein (H2B-GFP, separated by a 2A sequence. When this reporter is transfected into HeLa cells, the two fluorescent proteins correctly localise to mutually exclusive cellular compartments, demonstrating that the bicistronic construct is a reliable readout of 2A function. The two fluorescent proteins also correctly localise when the reporter is electroporated into chick neural tube cells. We made two independent transgenic mouse lines that express the bicistronic reporter ubiquitously. For both lines, transgenic mice are born in Mendelian frequencies and are found to be healthy and fertile. Myr-TdTomato and H2B-GFP segregate to mutually exclusive cellular compartments in all tissues examined from a broad range of developmental stages, ranging from embryo to adult. One transgenic line shows X-linked inheritance of the transgene and mosaic expression in females but uniform expression in males, indicating

  10. Mutagenicity of the peroxisome proliferators clofibrate, Wyeth 14,643 and di-2-ethylhexyl phthalate in the lacZ plasmid-based transgenic mouse mutation assay

    Directory of Open Access Journals (Sweden)

    Boerrigter Michaël

    2004-01-01

    Full Text Available Abstract Background Peroxisome proliferators are considered rodent carcinogens that are putative human non-carcinogens based on the presumed absence of direct genetic toxicity in rodent and human cells and the resistance of human cells to the induction of peroxisomes by peroxisome proliferators. The highly sensitive lacZ plasmid-based transgenic mouse mutation assay was employed to investigate the mutagenicity of several peroxisome proliferators based on several lines of evidence suggesting that these agents may in fact exert a genotoxic effect. Methods Male and female lacZ-plasmid based transgenic mice were treated at 4 months of age with 6 doses of 2,333 mg di-2-ethylhexyl phthalate (DHEP, 200 mg Wyeth-14,643, or 90 mg clofibrate per kg of bodyweight, respectively, over a two-week period. Control animals were treated with the respective vehicles only (35% propyl glycol for DEHP and Wyeth-14,643 treatment controls and sterile water for clofibrate treatment controls. The mutant frequency in liver, kidney and spleen DNA was determined as the proportion of retrieved mutant and wild-type lacZ plasmids expressed in Escherichia Coli C host cells employing a positive selection system for mutant plasmids. Results Exposure to DEHP or Wyeth-14,643 significantly increased the mutant frequency in liver, but not in kidney or spleen, of both female and male mice. Treatment with clofibrate did not lead to an increased mutant frequency in any of the organs studied. Conclusion The results indicate that some peroxisome proliferators display an organ-specific mutagenicity in lacZ plasmid-based transgenic mice consistent with historical observations of organ- and compound-specific carcinogenicity.

  11. APP transgenic mice for modelling behavioral and psychological symptoms of dementia (BPSD)

    Science.gov (United States)

    Lalonde, R.; Fukuchi, K.; Strazielle, C.

    2012-01-01

    The discovery of gene mutations responsible for autosomal dominant Alzheimer's disease has enabled researchers to reproduce in transgenic mice several hallmarks of this disorder, notably Aβ accumulation, though in most cases without neurofibrillary tangles. Mice expressing mutated and wild-type APP as well as C-terminal fragments of APP exhibit variations in exploratory activity reminiscent of behavioral and psychological symptoms of Alzeimer dementia (BPSD). In particular, open-field, spontaneous alternation, and elevated plus-maze tasks as well as aggression are modified in several APP transgenic mice relative to non-transgenic controls. However, depending on the precise murine models, changes in open-field and elevated plus-maze exploration occur in either direction, either increased or decreased relative to controls. It remains to be determined which neurotransmitter changes are responsible for this variability, in particular with respect to GABA, 5HT, and dopamine. PMID:22373961

  12. PET imaging of brain with the β-amyloid probe, [11C]6-OH-BTA-1, in a transgenic mouse model of Alzheimer's disease

    International Nuclear Information System (INIS)

    Toyama, Hiroshi; Ye, Daniel; Cohen, Robert M.; Ichise, Masanori; Liow, Jeih-San; Cai, Lisheng; Musachio, John L.; Hong, Jinsoo; Crescenzo, Mathew; Tipre, Dnyanesh; Lu, Jian-Qiang; Zoghbi, Sami; Vines, Douglass C.; Pike, Victor W.; Innis, Robert B.; Jacobowitz, David; Seidel, Jurgen; Green, Michael V.; Katada, Kazuhiro

    2005-01-01

    The purpose of this study was to evaluate the capacity of [ 11 C]6-OH-BTA-1 and positron emission tomography (PET) to quantify β-amyloid (Aβ) plaques in the Tg2576 mouse model of Alzheimer's disease (AD). PET imaging was performed with the NIH ATLAS small animal scanner in six elderly transgenic mice (Tg2576; age 22.0±1.8 months; 23.6±2.6 g) overexpressing a mutated form of human β-amyloid precursor protein (APP) known to result in the production of Aβ plaques, and in six elderly wild-type litter mates (age 21.8±1.6 months; 29.5±4.7 g). Dynamic PET scans were performed for 30 min in each mouse under 1% isoflurane inhalation anesthesia after a bolus injection of 13-46 MBq of [ 11 C]6-OH-BTA-1. PET data were reconstructed with 3D OSEM. On the coronal PET image, irregular regions of interest (ROIs) were placed on frontal cortex (FR), parietal cortex (PA), striatum (ST), thalamus (TH), pons (PO), and cerebellum (CE), guided by a mouse stereotaxic atlas. Time-activity curves (TACs) (expressed as percent injected dose per gram normalized to body weight: % ID-kg/g) were obtained for FR, PA, ST, TH, PO, and CE. ROI-to-CE radioactivity ratios were also calculated. Following PET scans, sections of mouse brain prepared from anesthetized and fixative-perfused mice were stained with thioflavin-S. TACs for [ 11 C]6-OH-BTA-1 in all ROIs peaked early (at 30-55 s), with radioactivity washing out quickly thereafter in both transgenic and wild-type mice. Peak uptake in all regions was significantly lower in transgenic mice than in wild-type mice. During the later part of the washout phase (12-30 min), the mean FR/CE and PA/CE ratios were higher in transgenic than in wild-type mice (1.06±0.04 vs 0.98±0.07, p=0.04; 1.06±0.09 vs 0.93±0.08 p=0.02) while ST/CE, TH/CE, and PO/CE ratios were not. Ex vivo staining revealed widespread Aβ plaques in cortex, but not in cerebellum of transgenic mice or in any brain regions of wild-type mice. Marked reductions in brain uptake of this

  13. Use of transgenic mice in lipoprotein metabolism and atherosclerosis research

    NARCIS (Netherlands)

    Havekes, L.M.; Vlijmen, B.J.M. van; Jong, M.C.; Dijk, K.W. van; Hofker, M.H.

    1997-01-01

    In APOE*3-Leiden transgenic mice the atherosclerotic lesion size is correlated with plasma cholesterol. In these mice the plasma lipid levels are positively correlated with the relative amount of APOE 3-Leiden protein on the VLDL particle. The plasma cholesterol levels are influenced by diet, age

  14. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy

    Science.gov (United States)

    Yanamandra, Kiran; Patel, Tirth K.; Jiang, Hong; Schindler, Suzanne; Ulrich, Jason D.; Boxer, Adam L.; Miller, Bruce L.; Kerwin, Diana R.; Gallardo, Gilbert; Stewart, Floy; Finn, Mary Beth; Cairns, Nigel J.; Verghese, Philip B.; Fogelman, Ilana; West, Tim; Braunstein, Joel; Robinson, Grace; Keyser, Jennifer; Roh, Joseph; Knapik, Stephanie S.; Hu, Yan; Holtzman, David M.

    2017-01-01

    Tauopathies are a group of disorders in which the cytosolic protein tau aggregates and accumulates in cells within the brain, resulting in neurodegeneration. A promising treatment being explored for tauopathies is passive immunization with anti-tau antibodies. We previously found that administration of an anti-tau antibody to human tau transgenic mice increased the concentration of plasma tau. We further explored the effects of administering an anti-tau antibody on plasma tau. After peripheral administration of an anti-tau antibody to human patients with tauopathy and to mice expressing human tau in the central nervous system, there was a dose-dependent increase in plasma tau. In mouse plasma, we found that tau had a short half-life of 8 min that increased to more than 3 hours after administration of anti-tau antibody. As tau transgenic mice accumulated insoluble tau in the brain, brain soluble and interstitial fluid tau decreased. Administration of anti-tau antibody to tau transgenic mice that had decreased brain soluble tau and interstitial fluid tau resulted in an increase in plasma tau, but this increase was less than that observed in tau transgenic mice without these brain changes. Tau transgenic mice subjected to acute neuronal injury using 3-nitropropionic acid showed increased interstitial fluid tau and plasma tau. These data suggest that peripheral administration of an anti-tau antibody results in increased plasma tau, which correlates with the concentration of extracellular and soluble tau in the brain. PMID:28424326

  15. Transmissibility of H-Type Bovine Spongiform Encephalopathy to Hamster PrP Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Okada

    Full Text Available Two distinct forms of atypical bovine spongiform encephalopathies (H-BSE and L-BSE can be distinguished from classical (C- BSE found in cattle based on biochemical signatures of disease-associated prion protein (PrPSc. H-BSE is transmissible to wild-type mice-with infected mice showing a long survival period that is close to their normal lifespan-but not to hamsters. Therefore, rodent-adapted H-BSE with a short survival period would be useful for analyzing H-BSE characteristics. In this study, we investigated the transmissibility of H-BSE to hamster prion protein transgenic (TgHaNSE mice with long survival periods. Although none of the TgHaNSE mice manifested the disease during their lifespan, PrPSc accumulation was observed in some areas of the brain after the first passage. With subsequent passages, TgHaNSE mice developed the disease with a mean survival period of 220 days. The molecular characteristics of proteinase K-resistant PrPSc (PrPres in the brain were identical to those observed in first-passage mice. The distribution of immunolabeled PrPSc in the brains of TgHaNSE mice differed between those infected with H-BSE as compared to C-BSE or L-BSE, and the molecular properties of PrPres in TgHaNSE mice infected with H-BSE differed from those of the original isolate. The strain-specific electromobility, glycoform profiles, and proteolytic cleavage sites of H-BSE in TgHaNSE mice were indistinguishable from those of C-BSE, in which the diglycosylated form was predominant. These findings indicate that strain-specific pathogenic characteristics and molecular features of PrPres in the brain are altered during cross-species transmission. Typical H-BSE features were restored after back passage from TgHaNSE to bovinized transgenic mice, indicating that the H-BSE strain was propagated in TgHaNSE mice. This could result from the overexpression of the hamster prion protein.

  16. GABAB Receptor Constituents Revealed by Tandem Affinity Purification from Transgenic Mice

    DEFF Research Database (Denmark)

    Bartoi, Tudor; Rigbolt, Kristoffer T G; Du, Dan

    2010-01-01

    lines that allow a straightforward biochemical isolation of GABA(B) receptors. The transgenic mice express GABA(B1) isoforms that contain sequences for a two-step affinity purification, in addition to their endogenous subunit repertoire. Comparative analyses of purified samples from the transgenic mice...... and wild-type control animals revealed two novel components of the GABA(B1) complex. One of the identified proteins, potassium channel tetramerization domain-containing protein 12, associates with heterodimeric GABA(B) receptors via the GABA(B2) subunit. In transfected hippocampal neurons, potassium...

  17. Enhanced host immune recognition of E.coli causing mastitis in CD-14 transgenic mice.

    Science.gov (United States)

    Escherchia coli causes mastitis, an economically significant disease in dairy animals. E. coli endotoxin (lipopolysaccharide, LPS) when bound by host membrane proteins such as CD-14, causes release of pro-inflammatory cytokines recruiting neutrophils as a early innate immune response. Excessive pr...

  18. Constitutive ω-3 fatty acid production in fat-1 transgenic mice and docosahexaenoic acid administration to wild type mice protect against 2,4,6-trinitrobenzene sulfonic acid-induced colitis.

    Science.gov (United States)

    Yum, Hye-Won; Kang, Jing X; Hahm, Ki Baik; Surh, Young-Joon

    2017-06-10

    Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are known to have strong anti-inflammatory effects. In the present study, we investigated the protective effects of ω-3 PUFAs on experimentally induced murine colitis. Intrarectal administration of 2.5% 2,4,6-trinitrobenzene sulfonic acid (TNBS) caused inflammation in the colon of wild type mice, but this was less severe in fat-1 transgenic mice that constitutively produce ω-3 PUFAs from ω-6 PUFAs. The intraperitoneal administration of docosahexaenoic acid (DHA), a representative ω-3 PUFA, was also protective against TNBS-induced murine colitis. In addition, endogenously formed and exogenously introduced ω-3 PUFAs attenuated the production of malondialdehyde and 4-hydroxynonenal in the colon of TNBS-treated mice. The effective protection against inflammatory and oxidative colonic tissue damages in fat-1 and DHA-treated mice was associated with suppression of NF-κB activation and cyclooxygenase-2 expression and with elevated activation of Nrf2 and upregulation of its target gene, heme oxygenase-1. Taken together, these results provide mechanistic basis of protective action of ω-3 fatty PUFAs against experimental colitis. Copyright © 2017. Published by Elsevier Inc.

  19. Transgenic Expression of Dspp Partially Rescued the Long Bone Defects of Dmp1-null Mice

    Science.gov (United States)

    Jani, Priyam H.; Gibson, Monica P.; Liu, Chao; Zhang, Hua; Wang, Xiaofang; Lu, Yongbo; Qin, Chunlin

    2016-01-01

    Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) belong to the Small Integrin-Binding Ligand N-linked Glycoprotein (SIBLING) family. In addition to the features common to all SIBLING members, DMP1 and DSPP share several unique similarities in chemical structure, proteolytic activation and tissue localization. Mutations in, or deletion of DMP1, cause autosomal recessive hypophosphatemic rickets along with dental defects; DSPP mutations or its ablation are associated with dentinogenesis imperfecta. While the roles and functional mechanisms of DMP1 in osteogenesis have been extensively studied, those of DSPP in long bones have been studied only to a limited extent. Previous studies by our group revealed that transgenic expression of Dspp completely rescued the dentin defects of Dmp1-null (Dmp1−/−) mice. In this investigation, we assessed the effects of transgenic Dspp on osteogenesis by analyzing the formation and mineralization of the long bones in Dmp1−/− mice that expresses a transgene encoding full-length DSPP driven by a 3.6-kb rat Col1a1 promoter (referred as “Dmp1−/−;Dspp-Tg mice”). We characterized the long bones of the Dmp1−/−;Dspp-Tg mice at different ages and compared them with those from Dmp1−/− and Dmp1+/− (normal control) mice. Our analyses showed that the long bones of Dmp1−/−;Dspp-Tg mice had a significant increase in cortical bone thickness, bone volume and mineral density along with a remarkable restoration of trabecular thickness compared to those of the Dmp1−/− mice. The long bones of Dmp1−/−;Dspp-Tg mice underwent a dramatic reduction in the amount of osteoid, significant improvement of the collagen fibrillar network, and better organization of the lacunocanalicular system, compared to the Dmp1−/− mice. The elevated levels of biglycan, bone sialoprotein and osteopontin in Dmp1−/− mice were also noticeably corrected by the transgenic expression of Dspp. These findings suggest that

  20. Apolipoprotein E*3-Leiden transgenic mice mode for hypolipidaemic drugs

    NARCIS (Netherlands)

    Vlijmen, B.J.M. van; Pearce, N.J.; Bergö, M.; Staels, B.; Yates, J.W.; Gribble, A.D.; Bond, B.C.; Hofker, M.H.; Havekes, L.M.; Groot, P.H.E.

    1998-01-01

    Apolipoprotein (APO) E*3-Leiden mice with impaired chylomicron and VLDL (very low density lipoprotein) remnant metabolism display hyperlipidaemia and atherosclerosis. In the present study, these mice were used for testing the hypolipidaemic effect of two marketed agents, lovastatin (CAS 75330-75-5)

  1. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice

    International Nuclear Information System (INIS)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-01-01

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.

  2. Transgenic Mice Expressing Yeast CUP1 Exhibit Increased Copper Utilization from Feeds

    Science.gov (United States)

    Chen, Zhenliang; Liao, Rongrong; Zhang, Xiangzhe; Wang, Qishan; Pan, Yuchun

    2014-01-01

    Copper is required for structural and catalytic properties of a variety of enzymes participating in many vital biological processes for growth and development. Feeds provide most of the copper as an essential micronutrient consumed by animals, but inorganic copper could not be utilized effectively. In the present study, we aimed to develop transgenic mouse models to test if copper utilization will be increased by providing the animals with an exogenous gene for generation of copper chelatin in saliva. Considering that the S. cerevisiae CUP1 gene encodes a Cys-rich protein that can bind copper as specifically as copper chelatin in yeast, we therefore constructed a transgene plasmid containing the CUP1 gene regulated for specific expression in the salivary glands by a promoter of gene coding pig parotid secretory protein. Transgenic CUP1 was highly expressed in the parotid and submandibular salivary glands and secreted in saliva as a 9-kDa copper-chelating protein. Expression of salivary copper-chelating proteins reduced fecal copper contents by 21.61% and increased body-weight by 12.97%, suggesting that chelating proteins improve the utilization and absorbed efficacy of copper. No negative effects on the health of the transgenic mice were found by blood biochemistry and histology analysis. These results demonstrate that the introduction of the salivary CUP1 transgene into animals offers a possible approach to increase the utilization efficiency of copper and decrease the fecal copper contents. PMID:25265503

  3. Expression profile of microRNA-146a along HPV-induced multistep carcinogenesis: a study in HPV16 transgenic mice.

    Science.gov (United States)

    Araújo, Rita; Santos, Joana M O; Fernandes, Mara; Dias, Francisca; Sousa, Hugo; Ribeiro, Joana; Bastos, Margarida M S M; Oliveira, Paula A; Carmo, Diogo; Casaca, Fátima; Silva, Sandra; Medeiros, Rui; Gil da Costa, Rui M

    2018-02-01

    Persistent human papillomavirus (HPV) infection is associated with the development of certain types of cancer and the dysregulation of microRNAs has been implicated in HPV-associated carcinogenesis. This is the case of microRNA-146a (miR-146a), which is thought to regulate tumor-associated inflammation. We sought to investigate the expression levels of miR-146a during HPV16-mediated carcinogenesis using skin samples from K14-HPV16 transgenic mice which develop the consecutive phases of the carcinogenesis process. Female transgenic (HPV +/- ) and wild-type (HPV -/- ) mice were sacrificed at 24-26 weeks-old or 28-30 weeks-old. Chest and ear skin samples from HPV +/- and HPV -/- mice were histologically classified and used for microRNA extraction and quantification by qPCR. Chest skin samples from 24 to 26 weeks-old HPV +/- mice presented diffuse epidermal hyperplasia and only 22.5% showed multifocal dysplasia, while at 28-30 weeks-old all (100.0%) HPV +/- animals showed epidermal dysplasia. All HPV +/- ear skin samples showed carcinoma in situ (CIS). MiR-146a expression levels were higher in HPV +/- compared to HPV -/- mice (p = 0.006). There was also an increase in miR-146a expression in dysplastic skin lesions compared with hyperplasic lesions (p = 0.011). Samples showing CIS had a significant decrease in miR-146a expression when compared to samples showing epidermal hyperplasia (p = 0.018) and epidermal dysplasia (p = 0.009). These results suggest that HPV16 induces the overexpression of miR-146a in the initial stages of carcinogenesis (hyperplasia and dysplasia), whereas decreases its expression at later stages (CIS). Taken together, these data implicate and suggest different roles of miR-146a in HPV-mediated carcinogenesis.

  4. Overcoming antigen masking of anti-amyloidbeta antibodies reveals breaking of B cell tolerance by virus-like particles in amyloidbeta immunized amyloid precursor protein transgenic mice

    Directory of Open Access Journals (Sweden)

    Ugen Kenneth E

    2004-06-01

    Full Text Available Abstract Background In prior work we detected reduced anti-Aβ antibody titers in Aβ-vaccinated transgenic mice expressing the human amyloid precursor protein (APP compared to nontransgenic littermates. We investigated this observation further by vaccinating APP and nontransgenic mice with either the wild-type human Aβ peptide, an Aβ peptide containing the "Dutch Mutation", E22Q, or a wild-type Aβ peptide conjugated to papillomavirus virus-like particles (VLPs. Results Anti-Aβ antibody titers were lower in vaccinated APP than nontransgenic mice even when vaccinated with the highly immunogenic Aβ E22Q. One concern was that human Aβ derived from the APP transgene might mask anti-Aβ antibodies in APP mice. To test this possibility, we dissociated antigen-antibody complexes by incubation at low pH. The low pH incubation increased the anti-Aβ antibody titers 20–40 fold in APP mice but had no effect in sera from nontransgenic mice. However, even after dissociation, the anti-Aβ titers were still lower in transgenic mice vaccinated with wild-type Aβ or E22Q Aβ relative to non-transgenic mice. Importantly, the dissociated anti-Aβ titers were equivalent in nontransgenic and APP mice after VLP-based vaccination. Control experiments demonstrated that after acid-dissociation, the increased antibody titer did not cross react with bovine serum albumin nor alpha-synuclein, and addition of Aβ back to the dissociated serum blocked the increase in antibody titers. Conclusions Circulating human Aβ can interfere with ELISA assay measurements of anti-Aβ titers. The E22Q Aβ peptide vaccine is more immunogenic than the wild-type peptide. Unlike peptide vaccines, VLP-based vaccines against Aβ abrogate the effects of Aβ self-tolerance.

  5. Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice

    Directory of Open Access Journals (Sweden)

    Postina Rolf

    2009-02-01

    Full Text Available Abstract Background In a transgenic mouse model of Alzheimer disease (AD, cleavage of the amyloid precursor protein (APP by the α-secretase ADAM10 prevented amyloid plaque formation, and alleviated cognitive deficits. Furthermore, ADAM10 overexpression increased the cortical synaptogenesis. These results suggest that upregulation of ADAM10 in the brain has beneficial effects on AD pathology. Results To assess the influence of ADAM10 on the gene expression profile in the brain, we performed a microarray analysis using RNA isolated from brains of five months old mice overexpressing either the α-secretase ADAM10, or a dominant-negative mutant (dn of this enzyme. As compared to non-transgenic wild-type mice, in ADAM10 transgenic mice 355 genes, and in dnADAM10 mice 143 genes were found to be differentially expressed. A higher number of genes was differentially regulated in double-transgenic mouse strains additionally expressing the human APP[V717I] mutant. Overexpression of proteolytically active ADAM10 affected several physiological pathways, such as cell communication, nervous system development, neuron projection as well as synaptic transmission. Although ADAM10 has been implicated in Notch and β-catenin signaling, no significant changes in the respective target genes were observed in adult ADAM10 transgenic mice. Real-time RT-PCR confirmed a downregulation of genes coding for the inflammation-associated proteins S100a8 and S100a9 induced by moderate ADAM10 overexpression. Overexpression of the dominant-negative form dnADAM10 led to a significant increase in the expression of the fatty acid-binding protein Fabp7, which also has been found in higher amounts in brains of Down syndrome patients. Conclusion In general, there was only a moderate alteration of gene expression in ADAM10 overexpressing mice. Genes coding for pro-inflammatory or pro-apoptotic proteins were not over-represented among differentially regulated genes. Even a decrease of

  6. CHX14 is a plasma membrane K-efflux transporter that regulates K(+) redistribution in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Jian; Li, Penghui; Motes, Christy M; Park, Sunghun; Hirschi, Kendal D

    2015-11-01

    Potassium (K(+) ) is essential for plant growth and development, yet the molecular identity of many K(+) transporters remains elusive. Here we characterized cation/H(+) exchanger (CHX) 14 as a plasma membrane K(+) transporter. CHX14 expression was induced by elevated K(+) and histochemical analysis of CHX14 promoter::GUS transgenic plants indicated that CHX14 was expressed in xylem parenchyma of root and shoot vascular tissues of seedlings. CHX14 knockout (chx14) and CHX14 overexpression seedlings displayed different growth phenotypes during K(+) stress as compared with wild-type seedlings. Roots of mutant seedlings displayed higher K(+) uptake rates than wild-type roots. CHX14 expression in yeast cells deficient in K(+) uptake renders the mutant cells more sensitive to deficiencies of K(+) in the medium. CHX14 mediates K(+) efflux in yeast cells loaded with high K(+) . Uptake experiments using (86) Rb(+) as a tracer for K(+) with both yeast and plant mutants demonstrated that CHX14 expression in yeast and in planta mediated low-affinity K(+) efflux. Functional green fluorescent protein (GFP)-tagged versions of CHX14 were localized to both the yeast and plant plasma membranes. Taken together, we suggest that CHX14 is a plasma membrane K(+) efflux transporter involved in K(+) homeostasis and K(+) recirculation. © 2015 John Wiley & Sons Ltd.

  7. Some characteristics of neoplastic cell transformation in transgenic mice.

    Science.gov (United States)

    Shvemberger, I N; Ermilov, A N

    1996-01-01

    The role of the expression of different cellular genes and viral oncogenes in malignant cell transformation is discussed. We pay special attention to the role of the genes for growth factors and their receptors and homeobox genes in oncogenesis. Based on both the literature and our own data, specific features of tumors developed in transgenic mice are discussed. All of these data are used to analyze current theories of multistep oncogenesis and the stochastic component in this process. We suggest that all known evidence about the mechanisms of oncogenesis be used in studying the problem at various structural and functional levels in an organism. The chapter shows that transgenic mice are a most suitable model for studying various aspects of malignant transformation from the molecular to the organismal and populational levels.

  8. Effect of Lowering Asymmetric Dimethylarginine (ADMA on Vascular Pathology in Atherosclerotic ApoE-Deficient Mice with Reduced Renal Mass

    Directory of Open Access Journals (Sweden)

    Johannes Jacobi

    2014-03-01

    Full Text Available The purpose of the work was to study the impact of the endogenous nitric oxide synthase (NOS inhibitor asymmetric dimethylarginine (ADMA and its degrading enzyme, dimethylarginine dimethylaminohydrolase (DDAH1, on atherosclerosis in subtotally nephrectomized (SNX ApoE-deficient mice. Male DDAH1 transgenic mice (TG, n = 39 and C57Bl/6J wild-type littermates (WT, n = 27 with or without the deletion of the ApoE gene underwent SNX at the age of eight weeks. Animals were sacrificed at 12 months of age, and blood chemistry, as well as the extent of atherosclerosis within the entire aorta were analyzed. Sham treated (no renal mass reduction ApoE-competent DDAH1 transgenic and wild-type littermates (n = 11 served as a control group. Overexpression of DDAH1 was associated with significantly lower ADMA levels in all treatment groups. Surprisingly, SNX mice did not exhibit higher ADMA levels compared to sham treated control mice. Furthermore, the degree of atherosclerosis in ApoE-deficient mice with SNX was similar in mice with or without overexpression of DDAH1. Overexpression of the ADMA degrading enzyme, DDAH1, did not ameliorate atherosclerosis in ApoE-deficient SNX mice. Furthermore, SNX in mice had no impact on ADMA levels, suggesting a minor role of this molecule in chronic kidney disease (CKD in this mouse model.

  9. Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Sandberg, Malin K; Al-Doujaily, Huda; Sigurdson, Christina J; Glatzel, Markus; O'Malley, Catherine; Powell, Caroline; Asante, Emmanuel A; Linehan, Jacqueline M; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2010-10-01

    Chronic wasting disease (CWD) is a prion disease that affects free-ranging and captive cervids, including mule deer, white-tailed deer, Rocky Mountain elk and moose. CWD-infected cervids have been reported in 14 USA states, two Canadian provinces and in South Korea. The possibility of a zoonotic transmission of CWD prions via diet is of particular concern in North America where hunting of cervids is a popular sport. To investigate the potential public health risks posed by CWD prions, we have investigated whether intracerebral inoculation of brain and spinal cord from CWD-infected mule deer transmits prion infection to transgenic mice overexpressing human prion protein with methionine or valine at polymorphic residue 129. These transgenic mice have been utilized in extensive transmission studies of human and animal prion disease and are susceptible to BSE and vCJD prions, allowing comparison with CWD. Here, we show that these mice proved entirely resistant to infection with mule deer CWD prions arguing that the transmission barrier associated with this prion strain/host combination is greater than that observed with classical BSE prions. However, it is possible that CWD may be caused by multiple prion strains. Further studies will be required to evaluate the transmission properties of distinct cervid prion strains as they are characterized.

  10. Transgenic mice display hair loss and regrowth overexpressing mutant Hr gene.

    Science.gov (United States)

    Zhu, Kuicheng; Xu, Cunshuan; Zhang, Jintao; Chen, Yingying; Liu, Mengduan

    2017-10-30

    Mutations in the hairless (Hr) gene in both mice and humans have been implicated in the development of congenital atrichia, but the role of Hr in skin and hair follicle (HF) biology remains unknown. Here, we established transgenic mice (TG) overexpressing mutant Hr to investigate its specific role in the development of HF. Three transgenic lines were successfully constructed, and two of them (TG3 and TG8) displayed a pattern of hair loss and regrowth with alternation in the expression of HR protein. The mutant Hr gene inhibited the expression of the endogenous gene in transgenic individuals, which led to the development of alopecia. Interestingly, the hair regrew with the increase in the endogenous expression levels resulting from decreased mutant Hr expression. The findings of our study indicate that the changes in the expression of Hr result in hair loss or regrowth.

  11. Folate deficiency enhances arsenic effects on expression of genes involved in epidermal differentiation in transgenic K6/ODC mouse skin

    International Nuclear Information System (INIS)

    Nelson, Gail M.; Ahlborn, Gene J.; Delker, Don A.; Kitchin, Kirk T.; O'Brien, Thomas G.; Chen Yan; Kohan, Michael J.; Roop, Barbara C.; Ward, William O.; Allen, James W.

    2007-01-01

    Chronic arsenic exposure in humans is associated with cancers of the skin, lung, bladder and other tissues. There is evidence that folate deficiency may increase susceptibility to arsenic effects, including skin lesions. K6/ODC mice develop skin tumors when exposed to 10 ppm sodium arsenite for 5 months. In the current study, K6/ODC mice maintained on either a folate deficient or folate sufficient diet were exposed to 0, 1, or 10 ppm sodium arsenite in the drinking water for 30 days. Total RNA was isolated from skin samples and gene expression analyzed using Affymetrix Mouse 430 2.0 GeneChips. Data from 24 samples, with 4 mice in each of the 6 treatment groups, were RMA normalized and analyzed by two-way ANOVA using GeneSpring TM . Top gene ontology (GO) categories for genes responding significantly to both arsenic treatment and folate deficiency include nucleotide metabolism and cell organization and biogenesis. For many of these genes, folate deficiency magnifies the response to arsenic treatment. In particular, expression of markers of epidermal differentiation, e.g., loricrin, small proline rich proteins and involucrin, was significantly reduced by arsenic in the folate sufficient animals, and reduced further or at a lower arsenic dose in the folate deficient animals. In addition, expression of a number of epidermal cell growth/proliferation genes and cellular movement genes was altered. These results indicate that arsenic disrupts the normal balance of cell proliferation and differentiation, and that folate deficiency exacerbates these effects, consistent with the view that folate deficiency is a nutritional susceptibility factor for arsenic-induced skin tumorigenesis

  12. [Premature immunosenescence in triple-transgenic mice for Alzheimer's disease].

    Science.gov (United States)

    Mate, Ianire; Cruces, Julia; Vida, Carmen; Sanfeliu, Coral; Manassra, Rashed; Giménez-Llort, Lydia; De la Fuente, Mónica

    2014-01-01

    A deterioration of the neuroimmunoendocrine network has been observed in Alzheimer's disease (AD). However, the peripheral immune response has hardly been investigated in this pathology. Since some immune function parameters have been established as good markers of the rate of ageing, and can predict longevity, the aim of the present work was to study some of these functions in splenic leucocytes in transgenic mice for AD of different ages. Young female (4 ± 1 months), adult (9 ± 1 months), and mature (12 ± 1 months) triple-transgenic mice for AD (3 xTgAD) and non-transgenic (NTg) control mice of the same ages were used. The chemotaxis, the anti-tumour activity of « natural killer » (NK) cells and the lymphoproliferative response in the presence of the mitogens concanavalin A and lipopolysaccharide, functions that decrease with age, were determined in splenic leucocytes. In addition, the differences in lifespan between 3 xTgAD and NTg were studied in parallel using other animals, until their death through natural causes. In 3 xTgAD, with respect to NTg, chemotaxis decreased at all ages studied, whereas in lymphoproliferative response this reduction was shown at 4 months and 9 months. NK activity was diminished only in young 3 xTgAD with respect to NTg. The 3 xTgAD showed a shorter lifespan than the NTg control group. The 3 xTgAD mice show a premature immunosenescence, which could explain their early mortality. The determination of these immune functions at peripheral level could serve as a marker of the progression of the Alzheimer's disease. Copyright © 2013 SEGG. Published by Elsevier Espana. All rights reserved.

  13. Activation of Akt1 accelerates carcinogen-induced tumorigenesis in mammary gland of virgin and post-lactating transgenic mice

    International Nuclear Information System (INIS)

    Wu, Yanyuan; Kim, Juri; Elshimali, Yayha; Sarkissyan, Marianna; Vadgama, Jaydutt V

    2014-01-01

    Data from in vivo and in vitro studies suggest that activation of Akt regulates cell survival signaling and plays a key role in tumorigenesis. Hence, transgenic mice were created to explore the oncogenic role of Akt1 in the development of mammary tumors. The transgenic mice were generated by expressing myristoylated-Akt1 (myr-Akt1) under the control of the MMTV-LTR promoter. The carcinogen 7, 12 dimethyl-1,2-benzanthracene (DMBA) was used to induce tumor formation. The MMTV driven myr-Akt1 transgene expression was detected primarily in the mammary glands, uterus, and ovaries. The expression level increased significantly in lactating mice, suggesting that the response was hormone dependent. The total Akt expression level in the mammary gland was also higher in the lactating mice. Interestingly, the expression of MMTVmyr-Akt1 in the ovaries of the transgenic mice caused significant increase in circulating estrogen levels, even at the post-lactation stage. Expression of myr-Akt1 in mammary glands alone did not increase the frequency of tumor formation. However, there was an increased susceptibility of forming mammary tumors induced by DMBA in the transgenic mice, especially in mice post-lactation. Within 34 weeks, DMBA induced mammary tumors in 42.9% of transgenic mice post-lactation, but not in wild-type mice post-lactation. The myr-Akt1 mammary tumors induced by DMBA had increased phosphorylated-Akt1 and showed strong expression of estrogen receptor (ERα) and epidermal growth factor receptor (EGFR). In addition, Cyclin D1 was more frequently up-regulated in mammary tumors from transgenic mice compared to tumors from wild-type mice. Overexpression of Cyclin D1, however, was not completely dependent on activated Akt1. Interestingly, mammary tumors that had metastasized to secondary sites had increased expression of Twist and Slug, but low expression of Cyclin D1. In summary, the MMTVmyr-Akt1 transgenic mouse model could be useful to study mechanisms of ER

  14. The tumor necrosis factor family member TNFSF14 (LIGHT) is required for resolution of intestinal inflammation in mice.

    Science.gov (United States)

    Krause, Petra; Zahner, Sonja P; Kim, Gisen; Shaikh, Raziyah B; Steinberg, Marcos W; Kronenberg, Mitchell

    2014-06-01

    The pathogenesis of inflammatory bowel disease (IBD) is associated with a dysregulated mucosal immune response. Expression of the tumor necrosis factor (TNF) superfamily member 14 (TNFSF14, also known as LIGHT [homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes]) on T cells is involved in their activation; transgenic expression of LIGHT on T cells in mice promotes inflammation in multiple organs, including intestine. We investigated the roles for LIGHT in recovery from intestinal inflammation in mice. We studied the role of LIGHT in intestinal inflammation using Tnfsf14(-/-) and wild-type mice. Colitis was induced by transfer of CD4(+)CD45RB(high) T cells into Rag1(-/-) or Tnfsf14(-/-)Rag1(-/-) mice, or by administration of dextran sulfate sodium to Tnfsf14(-/-) or wild-type C57BL/6J mice. Mice were weighed, colon tissues were collected and measured, and histology analyses were performed. We measured infiltrating cell populations and expression of cytokines, chemokines, and LIGHT. After administration of dextran sulfate sodium, Tnfsf14(-/-) mice developed more severe colitis than controls, based on their reduced survival, accelerated loss of body weight, and histologic scores. LIGHT protected mice from colitis via the lymphotoxin β receptor and was expressed mainly by myeloid cells in the colon. Colons of Tnfsf14(-/-) mice also had increased accumulation of innate immune cells and higher levels of cytokines than colons from control mice. LIGHT, therefore, appears to regulate inflammation in the colon. Tnfsf14(-/-) mice develop more severe colitis than control mice. LIGHT signals through the lymphotoxin β receptor in the colon to regulate the innate immune response and mediate recovery from intestinal inflammation. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  15. Enhanced motivation to alcohol in transgenic mice expressing human α-synuclein.

    Science.gov (United States)

    Rotermund, Carola; Reolon, Gustavo K; Leixner, Sarah; Boden, Cindy; Bilbao, Ainhoa; Kahle, Philipp J

    2017-11-01

    α-Synuclein (αSYN) is the neuropathological hallmark protein of Parkinson's disease (PD) and related neurodegenerative disorders. Moreover, the gene encoding αSYN (SNCA) is a major genetic contributor to PD. Interestingly, independent genome-wide association studies also identified SNCA as the most important candidate gene for alcoholism. Furthermore, single-nucleotide-polymorphisms have been associated with alcohol-craving behavior and alcohol-craving patients showed augmented αSYN expression in blood. To investigate the effect of αSYN on the addictive properties of chronic alcohol use, we examined consumption, motivation, and seeking responses induced by environmental stimuli and relapse behavior in transgenic mice expressing the human mutant [A30P]αSYN throughout the brain. The primary reinforcing effects of alcohol under operant self-administration conditions were increased, while consumption and the alcohol deprivation effect were not altered in the transgenic mice. The same mice were subjected to immunohistochemical measurements of immediate-early gene inductions in brain regions involved in addiction-related behaviors. Acute ethanol injection enhanced immunostaining for the phosphorylated form of cAMP response element binding protein in both amygdala and nucleus accumbens of αSYN transgenic mice, while in wild-type mice no effect was visible. However, at the same time, levels of cFos remain unchanged in both genotypes. These results provide experimental confirmation of SNCA as a candidate gene for alcoholism in addition to its known link to PD. © 2017 International Society for Neurochemistry.

  16. ACCUMULATION OF RECOMBINANT FUSION PROTEIN – SECRETORY ANALOG OF Ag85B AND ESAT6 MYCOBACTERIUM TUBERCULOSIS PROTEINS – IN TRANSGENIC Lemna minor L. PLANTS

    Directory of Open Access Journals (Sweden)

    A.A.Peterson

    2015-10-01

    Full Text Available Determination of the presence of the recombinant fusion protein (ESAT6-Ag85B(ΔTMD-6His and its accumulation level in duckweed plants (Lemna minor L. was the aim of the research. ESAT6 and Ag85B are secretory proteins of Mycobacterium tuberculosis and are considered as potential candidates for development of new vaccine against tuberculosis (TB. Transgenic duckweed plants were obtained previously by Agrobacterium rhizogenes-mediated transformation and possessed fusion gene sequence esxA-fbpBΔTMD. Specific polyclonal antibodies were produced in immunized mice to identify levels of accumulation of TB antigens in plants. Recombinant antigen used for mice immunization was obtained in our laboratory by expression in E. coli. Western blot analysis revealed the recombinant tuberculosis antigen ESAT6-Ag85B(ΔTMD-6His in extracts from transgenic L. minor plants. The level of accumulation of the protein corresponds to 0.4-0.5 µg protein per 1 g of fresh weight of plant. Additionally, the accumulation of recombinant protein was investigated in lyophilized transgenic plants after 1.5 year storage. Duckweed plants accumulating a recombinant analogue of M. tuberculosis secretory proteins can be used for development of plant-based edible vaccines.

  17. Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice.

    Science.gov (United States)

    Wang, Chen; Zhang, Xiong; Teng, Zhipeng; Zhang, Tong; Li, Yu

    2014-10-05

    Autophagy is a lysosomal degradation pathway, which is essential for cell survival, proliferation, differentiation and homeostasis. It is well known that beta-amyloid (Aβ) aggregation is one of key characteristics for Alzheimer's disease (AD), which triggers a complex pathological cascade, leading to neurodegeneration. Recent studies have shown that Aβ peptide is generated from amyloid β precursor protein (APP) during autophagic turnover of APP-rich organelles by autophagy. Aβ generation during normal autophagy is subsequently degraded by lysosomes. Curcumin, a nature plant extraction, has been reported to inhibit the generation and deposition of Aβ; however, the underlying mechanisms are not fully understood yet. In the present study, we reported that curcumin treatment not only attenuated cognitive impairment detected by Morris water maze test, but also inhibited the generation of Aβ investigated by immunohistochemistry in APP/PS1 double transgenic AD mice. Moreover, curcumin induced autophagy in the mice, evidenced by LC3 immunofluorescence analysis and western blot assays on LC3. Furthermore, we found that curcumin significantly decreased the expression of Phosphatidylinositol 3-Kinase (PI3K), phosphorylated Akt and rapamycin (mTOR) at protein levels, respectively. Taken together, our data suggests that curcumin inhibits Aβ generation and induces of autophagy by downregulating PI3K/Akt/mTOR signaling pathway, and further shows a neuroprotective effect. Meanwhile curcumin might be a candidate neuroprotective agent for AD patients treatment by inducing autophagy. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effect of aging and Alzheimer's disease-like pathology on brain monoamines in mice.

    Science.gov (United States)

    Von Linstow, C U; Severino, M; Metaxas, A; Waider, J; Babcock, A A; Lesch, K P; Gramsbergen, J B; Finsen, B

    2017-09-01

    Aging is the greatest single risk factor of the neurodegenerative disorder Alzheimer's disease (AD). The monoaminergic system, including serotonin (5-HT), dopamine (DA) and noradrenaline (NA) modulates cognition, which is affected in AD. Changes in monoamine levels have been observed in AD, but these can both be age- and/or disease-related. We examined whether brain monoamine levels change as part of physiological aging and/or AD-like disease in APP SWE /PS1 ΔE9 (APP/PS1) transgenic mice. The neocortex, hippocampus, striatum, brainstem and cerebellum of 6-, 12-, 18- and 24-month-old B6C3 wild-type (WT) mice and of 18-month old APP/PS1 and WT mice were analysed for 5-HT, DA and NA contents by high pressure liquid chromatography (HPLC), along with neocortex from 14-month-old APP/PS1 and WT mice. While, we observed no aging effect in WT mice, we detected region-specific changes in the levels of all monoamines in 18-month-old transgenic compared with WT mice. This included reductions in 5-HT (-30%), DA (-47%) and NA (-32%) levels in the neocortex and increases of 5-HT in the brainstem (+18%). No changes were observed in any of the monoamines in the neocortex from 14-month-old APP/PS1 mice. In combination, these findings indicate that aging alone is not sufficient to affect brain monoamine levels, unlike the APP SWE /PS1 ΔE9 genotype. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Eμ/miR-125b transgenic mice develop lethal B-cell malignancies.

    Science.gov (United States)

    Enomoto, Y; Kitaura, J; Hatakeyama, K; Watanuki, J; Akasaka, T; Kato, N; Shimanuki, M; Nishimura, K; Takahashi, M; Taniwaki, M; Haferlach, C; Siebert, R; Dyer, M J S; Asou, N; Aburatani, H; Nakakuma, H; Kitamura, T; Sonoki, T

    2011-12-01

    MicroRNA-125b-1 (miR-125b-1) is a target of a chromosomal translocation t(11;14)(q24;q32) recurrently found in human B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This translocation results in overexpression of miR-125b controlled by immunoglobulin heavy chain gene (IGH) regulatory elements. In addition, we found that six out of twenty-one BCP-ALL patients without t(11;14)(q24;q32) showed overexpression of miR-125b. Interestingly, four out of nine patients with BCR/ABL-positive BCP-ALL and one patient with B-cell lymphoid crisis that had progressed from chronic myelogenous leukemia overexpressed miR-125b. To examine the role of the deregulated expression of miR-125b in the development of B-cell tumor in vivo, we generated transgenic mice mimicking the t(11;14)(q24;q32) (Eμ/miR-125b-TG mice). Eμ/miR-125b-TG mice overexpressed miR-125b driven by IGH enhancer and promoter and developed IgM-negative or IgM-positive lethal B-cell malignancies with clonal proliferation. B cells obtained from the Eμ/miR-125b-TG mice were resistant to apoptosis induced by serum starvation. We identified Trp53inp1, a pro-apoptotic gene induced by cell stress, as a novel target gene of miR-125b in hematopoietic cells in vitro and in vivo. Our results provide direct evidence that miR-125b has important roles in the tumorigenesis of precursor B cells.

  20. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    International Nuclear Information System (INIS)

    Liu, Ju; Li, Yan; Dong, Fengyun; Li, Liqun; Masuda, Takahiro; Allen, Thaddeus D.; Lobe, Corrinne G.

    2015-01-01

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  1. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ju, E-mail: ju.liu@sdu.edu.cn [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Li, Yan [Children' s Health Care Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Dong, Fengyun; Li, Liqun [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Masuda, Takahiro; Allen, Thaddeus D. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Lobe, Corrinne G. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Miami Mice Research Corp., MaRS Centre, Heritage Bldg., 101 College Street, Toronto, Ontario M5G 1L7 (Canada)

    2015-08-07

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  2. Mamu-A*01/Kb transgenic and MHC Class I knockout mice as a tool for HIV vaccine development

    International Nuclear Information System (INIS)

    Li Jinliang; Srivastava, Tumul; Rawal, Ravindra; Manuel, Edwin; Isbell, Donna; Tsark, Walter; La Rosa, Corinna; Wang Zhongde; Li Zhongqi; Barry, Peter A.; Hagen, Katharine D.; Longmate, Jeffrey; Diamond, Don J.

    2009-01-01

    We have developed a murine model expressing the rhesus macaque (RM) Mamu-A*01 MHC allele to characterize immune responses and vaccines based on antigens of importance to human disease processes. Towards that goal, transgenic (Tg) mice expressing chimeric RM (α1 and α2 Mamu-A*01 domains) and murine (α3, transmembrane, and cytoplasmic H-2K b domains) MHC Class I molecules were derived by transgenesis of the H-2K b D b double MHC Class I knockout strain. After immunization of Mamu-A*01/K b Tg mice with rVV-SIVGag-Pol, the mice generated CD8 + T-cell IFN-γ responses to several known Mamu-A*01 restricted epitopes from the SIV Gag and Pol antigen sequence. Fusion peptides of highly recognized CTL epitopes from SIV Pol and Gag and a strong T-help epitope were shown to be immunogenic and capable of limiting an rVV-SIVGag-Pol challenge. Mamu-A*01/K b Tg mice provide a model system to study the Mamu-A*01 restricted T-cell response for various infectious diseases which are applicable to a study in RM.

  3. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    Science.gov (United States)

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    AChE is an alternatively spliced gene. Exons 2, 3 and 4 are invariantly spliced, and this sequence is responsible for catalytic function. The 3' alternatively spliced exons, 5 and 6, are responsible for AChE disposition in tissue [J. Massoulie, The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11 (3) (2002) 130-143; Y. Li, S. Camp, P. Taylor, Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268 (8) (1993) 5790-5797]. The splice to exon 5 produces the GPI anchored form of AChE found in the hematopoietic system, whereas the splice to exon 6 produces a sequence that binds to the structural subunits PRiMA and ColQ, producing AChE expression in brain and muscle. A third alternative RNA species is present that is not spliced at the 3' end; the intron 3' of exon 4 is used as coding sequence and produces the read-through, unanchored form of AChE. In order to further understand the role of alternative splicing in the expression of the AChE gene, we have used homologous recombination in stem cells to produce gene specific deletions in mice. Alternatively and together exon 5 and exon 6 were deleted. A cassette containing the neomycin gene flanked by loxP sites was used to replace the exon(s) of interest. Tissue analysis of mice with exon 5 deleted and the neomycin cassette retained showed very low levels of AChE expression, far less than would have been anticipated. Only the read-through species of the enzyme was produced; clearly the inclusion of the selection cassette disrupted splicing of exon 4 to exon 6. The selection cassette was then deleted in exon 5, exon 6 and exons 5 + 6 deleted mice by breeding to Ella-cre transgenic mice. AChE expression in serum, brain and muscle has been analyzed. Another AChE gene targeted mouse strain involving a region in the first intron, found to be critical for AChE expression in muscle cells [S. Camp, L. Zhang, M. Marquez, B

  4. Dietary Lycopene Supplementation Improves Cognitive Performances in Tau Transgenic Mice Expressing P301L Mutation via Inhibiting Oxidative Stress and Tau Hyperphosphorylation.

    Science.gov (United States)

    Yu, Lixia; Wang, Weiguang; Pang, Wei; Xiao, Zhonghai; Jiang, Yugang; Hong, Yan

    2017-01-01

    Oxidative stress is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies and participates in their development by promoting hyperphosphorylation of microtubule-associated protein tau. Lycopene, as an effective antioxidant, combined with vitamin E seemed to be additive against oxidative stress. The present study was undertaken to examine whether lycopene or lycopene/vitamin E could exert protective effects on memory deficit and oxidative stress in tau transgenic mice expressing P301L mutation. P301L transgenic mice were assigned to three groups: P301L group (P301L), P301L+lycopene (Lyc), and P301L+lycopene/vitamin E (Lyc+VE). Age-matched C57BL/6J mice as wild type controls (Con) were used in the present study. Spatial memory was assessed by radial arm while passive memories were evaluated by step-down and step-through tests. Levels of tau phosphorylation were detected by western blot. Oxidative stress biomarkers were measured in the serum using biochemical assay kits. Compared with the control group, P301L mice displayed significant spatial and passive memory impairments, elevated malondialdehyde (MDA) levels and decreased glutathione peroxidase (GSH-Px) activities in serum, and increased tau phosphorylation at Thr231/Ser235, Ser262, and Ser396 in brain. Supplementations of lycopene or lycopene/vitamin E could significantly ameliorate the memory deficits, observably decreased MDA concentrations and increased GSH-Px activities, and markedly attenuated tau hyperphosphorylation at multiple AD-related sites. Our findings indicated that the combination of lycopene and vitamin E antioxidants acted in a synergistic fashion to bring significant effects against oxidative stress in tauopathies.

  5. Human β-globin locus control region: Analysis of the 5' DNase I hypersensitive site HS 2 in transgenic mice

    International Nuclear Information System (INIS)

    Caterina, J.J.; Ryan, T.M.; Pawlik, K.M.; Townes, T.M.; Brinster, R.L.; Behringer, R.R.; Palmiter, R.D.

    1991-01-01

    The human β-globin locus control region (LCR) is essential for high-level expression of human var-epsilon-, γ-, and β-globin genes. Developmentally stable DNase I hypersensitive sites (designated HS) mark sequences within this region that are important for LCR activity. A 1.9-kilobase (kb) fragment containing the 5' HS 2 site enhances human β-globin gene expression 100-fold in transgenic mice and also confers position-independent expression. To further define important sequences within this region, deletion mutations of the 1.9-kb fragment were introduced upstream of the human β-globin gene, and the constructs were tested for activity in transgenic mice. Although enhancer activity was gradually lost with deletion of both 5' and 3' sequences, a 373-base-pair (BP) fragment retained the ability to confer relative position-independent expression. Three prominent DNase I footprints were observed in this region with extracts from the human erythroleukemia cell line K-562, one of which contained duplicated binding sites for transcription factor AP-1 (activator protein 1). When the 1.9-kb fragment containing an 19-bp deletion of the AP-1 binding sites was tested in transgenic mice, enhancer activity decreased 20-fold but position-independent expression was retained

  6. PET imaging of brain with the {beta}-amyloid probe, [{sup 11}C]6-OH-BTA-1, in a transgenic mouse model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Hiroshi [Fujita Health University, Department of Radiology, Aichi (Japan); National Institutes of Health, Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (United States); Ye, Daniel; Cohen, Robert M. [National Institutes of Health, Geriatric Psychiatry Branch, National Institute of Mental Health, Bethesda, Maryland (United States); Ichise, Masanori; Liow, Jeih-San; Cai, Lisheng; Musachio, John L.; Hong, Jinsoo; Crescenzo, Mathew; Tipre, Dnyanesh; Lu, Jian-Qiang; Zoghbi, Sami; Vines, Douglass C.; Pike, Victor W.; Innis, Robert B. [National Institutes of Health, Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (United States); Jacobowitz, David [USUHS, Department of Anatomy, Physiology, and Genetics, Bethesda, Maryland (United States); Seidel, Jurgen; Green, Michael V. [National Institutes of Health, Department of Nuclear Medicine, Warren Grant Magnuson Clinical Center, Bethesda, Maryland (United States); Katada, Kazuhiro [Fujita Health University, Department of Radiology, Aichi (Japan)

    2005-04-01

    The purpose of this study was to evaluate the capacity of [{sup 11}C]6-OH-BTA-1 and positron emission tomography (PET) to quantify {beta}-amyloid (A{beta}) plaques in the Tg2576 mouse model of Alzheimer's disease (AD). PET imaging was performed with the NIH ATLAS small animal scanner in six elderly transgenic mice (Tg2576; age 22.0{+-}1.8 months; 23.6{+-}2.6 g) overexpressing a mutated form of human {beta}-amyloid precursor protein (APP) known to result in the production of A{beta} plaques, and in six elderly wild-type litter mates (age 21.8{+-}1.6 months; 29.5{+-}4.7 g). Dynamic PET scans were performed for 30 min in each mouse under 1% isoflurane inhalation anesthesia after a bolus injection of 13-46 MBq of [{sup 11}C]6-OH-BTA-1. PET data were reconstructed with 3D OSEM. On the coronal PET image, irregular regions of interest (ROIs) were placed on frontal cortex (FR), parietal cortex (PA), striatum (ST), thalamus (TH), pons (PO), and cerebellum (CE), guided by a mouse stereotaxic atlas. Time-activity curves (TACs) (expressed as percent injected dose per gram normalized to body weight: % ID-kg/g) were obtained for FR, PA, ST, TH, PO, and CE. ROI-to-CE radioactivity ratios were also calculated. Following PET scans, sections of mouse brain prepared from anesthetized and fixative-perfused mice were stained with thioflavin-S. TACs for [{sup 11}C]6-OH-BTA-1 in all ROIs peaked early (at 30-55 s), with radioactivity washing out quickly thereafter in both transgenic and wild-type mice. Peak uptake in all regions was significantly lower in transgenic mice than in wild-type mice. During the later part of the washout phase (12-30 min), the mean FR/CE and PA/CE ratios were higher in transgenic than in wild-type mice (1.06{+-}0.04 vs 0.98{+-}0.07, p=0.04; 1.06{+-}0.09 vs 0.93{+-}0.08 p=0.02) while ST/CE, TH/CE, and PO/CE ratios were not. Ex vivo staining revealed widespread A{beta} plaques in cortex, but not in cerebellum of transgenic mice or in any brain regions of wild

  7. Hyperactivity and learning deficits in transgenic mice bearing a human mutant thyroid hormone beta1 receptor gene.

    Science.gov (United States)

    McDonald, M P; Wong, R; Goldstein, G; Weintraub, B; Cheng, S Y; Crawley, J N

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor beta (TRbeta) gene on chromosome 3, representing a mutation of the ligand-binding domain of the TRbeta gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRbeta gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRbeta gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD.

  8. Hyperactivity and Learning Deficits in Transgenic Mice Bearing a Human Mutant Thyroid Hormone β1 Receptor Gene

    Science.gov (United States)

    McDonald, Michael P.; Wong, Rosemary; Goldstein, Gregory; Weintraub, Bruce; Cheng, Sheue-yann; Crawley, Jacqueline N.

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor β (TRβ) gene on chromosome 3, representing a mutation of the ligandbinding domain of the TRβ gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRβ gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRβ gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD. PMID:10454355

  9. Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice

    DEFF Research Database (Denmark)

    Gustafsson, E; Brakebusch, C; Hietanen, K

    2001-01-01

    Tissue-specific gene inactivation using the Cre-loxP system has become an important tool to unravel functions of genes when the conventional null mutation is lethal. We report here the generation of a transgenic mouse line expressing Cre recombinase in endothelial cells. In order to avoid...... the production and screening of multiple transgenic lines we used embryonic stem cell and embryoid body technology to identify recombinant embryonic stem cell clones with high, endothelial-specific Cre activity. One embryonic stem cell clone that showed high Cre activity in endothelial cells was used to generate...... germline chimeras. The in vivo efficiency and specificity of the transgenic Cre was analysed by intercrossing the tie-1-Cre line with the ROSA26R reporter mice. At initial stages of vascular formation (E8-9), LacZ staining was detected in almost all cells of the forming vasculature. Between E10 and birth...

  10. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice

    Science.gov (United States)

    Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.

    2003-01-01

    Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.

  11. Generation of mRx-Cre Transgenic Mouse Line for Efficient Conditional Gene Deletion in Early Retinal Progenitors

    Czech Academy of Sciences Publication Activity Database

    Klímová, Lucie; Láchová, Jitka; Machoň, Ondřej; Sedláček, Radislav; Kozmik, Zbyněk

    2013-01-01

    Roč. 8, č. 5 (2013), e63029 E-ISSN 1932-6203 R&D Projects: GA ČR GAP305/11/2198; GA MŠk(CZ) LK11214; GA MŠk(CZ) LM2011032; GA ČR GAP305/10/2143; GA MŠk ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : eye development * lens * retina * transgenic mice Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  12. Reduction of β-amyloid accumulation by reticulon 3 in transgenic mice.

    Science.gov (United States)

    Araki, Wataru; Oda, Akiko; Motoki, Kazumi; Hattori, Kotaro; Itoh, Masayuki; Yuasa, Shigeki; Konishi, Yoshihiro; Shin, Ryong-Woon; Tamaoka, Akira; Ogino, Koichi

    2013-02-01

    Inhibition of the β-secretase, BACE1, which cleaves amyloid precursor protein (APP) to produce β-amyloid protein (Aβ), is thought to be a feasible therapeutic strategy for Alzheimer's disease. Reticulon (RTN) proteins such as RTN3 have been identified as membrane proteins that interact with BACE1 and inhibit its Aβ-generating activity. In this study, we investigated whether RTN3 can regulate Aβ production in vivo, using transgenic (Tg) mice expressing APP with Swedish and London mutations (APP Tg mice) and those expressing RTN3; the latter mice showed ~1.4-fold higher expression levels of RTN3 protein in the cerebral cortex than non-Tg controls. We analyzed the brains of single APP Tg and double APP/RTN3 Tg mice at the age of approximately 15 months. The levels of secreted APP-β, a direct BACE1 cleavage product of APP, in Tris-soluble fraction were considerably reduced in the hippocampus and cerebral cortex of APP/RTN3 Tg mice relative to those in APP Tg mice. Immunohistochemical analyses demonstrated that Aβ burden and plaques were significantly (by approximately 50%) decreased in both the hippocampus and cerebral cortex of double Tg mice compared to APP Tg mice. Furthermore, the levels of guanidine-soluble Aβ40 and Aβ42 in these brain regions of APP/RTN3 Tg mice were relatively lower than those in APP Tg mice. These findings indicate that even a small increase in RTN3 expression exerts suppressive effects on amyloidogenic processing of APP and Aβ accumulation through modulation of BACE1 activity in vivo, and suggest that induction of RTN3 might be an effective therapeutic strategy against Alzheimer's disease.

  13. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  14. Pituitary mammosomatotroph adenomas develop in old mice transgenic for growth hormone-releasing hormone

    DEFF Research Database (Denmark)

    Asa, S L; Kovacs, K; Stefaneanu, L

    1990-01-01

    It has been shown that mice transgenic for human growth hormone-releasing hormone (GRH) develop hyperplasia of pituitary somatotrophs and mammosomatotrophs, cells capable of producing both growth hormone and prolactin, by 8 months of age. We now report for the first time that old GRH-transgenic...

  15. Akv murine leukemia virus enhances bone tumorigenesis in hMT-c-fos-LTR transgenic mice

    DEFF Research Database (Denmark)

    Schmidt, Jörg; Krump-Konvalinkova, Vera; Luz, Arne

    1995-01-01

    hMt-c-fos-LTR transgenic mice (U. Rüther, D. Komitowski, F. R. Schubert, and E. F. Wagner. Oncogene 4, 861–865, 1989) developed bone sarcomas in 20% (3/15) of females at 448 ± 25 days and in 8% (1/12) of males at 523 days. After infection of newborns with Akv, an infectious retrovirus derived from...

  16. Transgenic mice expressing human glucocerebrosidase variants: utility for the study of Gaucher disease.

    Science.gov (United States)

    Sanders, Angela; Hemmelgarn, Harmony; Melrose, Heather L; Hein, Leanne; Fuller, Maria; Clarke, Lorne A

    2013-08-01

    Gaucher disease is an autosomal recessively inherited storage disorder caused by deficiency of the lysosomal hydrolase, acid β-glucosidase. The disease manifestations seen in Gaucher patients are highly heterogeneous as is the responsiveness to therapy. The elucidation of the precise factors responsible for this heterogeneity has been challenging as the development of clinically relevant animal models of Gaucher disease has been problematic. Although numerous murine models for Gaucher disease have been described each has limitations in their specific utility. We describe here, transgenic murine models of Gaucher disease that will be particularly useful for the study of pharmacological chaperones. We have produced stable transgenic mouse strains that individually express wild type, N370S and L444P containing human acid β-glucosidase and show that each of these transgenic lines rescues the lethal phenotype characteristic of acid β-glucosidase null mice. Both the N370S and L444P transgenic models show early and progressive elevations of tissue sphingolipids with L444P mice developing progressive splenic Gaucher cell infiltration. We demonstrate the potential utility of these new transgenic models for the study of Gaucher disease pathogenesis. In addition, since these mice produce only human enzyme, they are particularly relevant for the study of pharmacological chaperones that are specifically targeted to human acid β-glucosidase and the common mutations underlying Gaucher disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Expression of cartilage developmental genes in Hoxc8- and Hoxd4-transgenic mice.

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    2010-02-01

    Full Text Available Hox genes encode transcription factors, which regulate skeletal patterning and chondrocyte differentiation during the development of cartilage, the precursor to mature bone. Overexpression of the homeobox transcription factors Hoxc8 and Hoxd4 causes severe cartilage defects due to delay in cartilage maturation. Matrix metalloproteinases (MMPs, bone morphogenetic proteins (BMPs and fibroblastic growth factors (FGFs are known to play important roles in skeletal development and endochondral bone formation and remodeling. In order to investigate whether these molecules are aberrantly expressed in Hoxc8- and/or Hoxd4-transgenic cartilage, we performed quantitative RT-PCR on chondrocytes from Hox-transgenic mice. Gene expression levels of Bmp4, Fgf8, Fgf10, Mmp9, Mmp13, Nos3, Timp3, Wnt3a and Wnt5a were altered in Hoxc8-transgenic chondrocytes, and Fgfr3, Ihh, Mmp8, and Wnt3a expression levels were altered in Hoxd4-transgenic chondrocytes, respectively. Notably, Wnt3a expression was elevated in Hoxc8- and reduced in Hoxd4-transgenic cartilage. These results suggest that both transcription factors affect cartilage maturation through different molecular mechanisms, and provide the basis for future studies into the role of these genes and possible interactions in pathogenesis of cartilage defects in Hoxc8- and Hoxd4-transgenic mice.

  18. Ambroxol effects in glucocerebrosidase and α‐synuclein transgenic mice

    Science.gov (United States)

    Migdalska‐Richards, Anna; Daly, Liam; Bezard, Erwan

    2016-01-01

    Objective Gaucher disease is caused by mutations in the glucocerebrosidase 1 gene that result in deficiency of the lysosomal enzyme glucocerebrosidase. Both homozygous and heterozygous glucocerebrosidase 1 mutations confer an increased risk for developing Parkinson disease. Current estimates indicate that 10 to 25% of Parkinson patients carry glucocerebrosidase 1 mutations. Ambroxol is a small molecule chaperone that has been shown to increase glucocerebrosidase activity in vitro. This study investigated the effect of ambroxol treatment on glucocerebrosidase activity and on α‐synuclein and phosphorylated α‐synuclein protein levels in mice. Methods Mice were treated with ambroxol for 12 days. After the treatment, glucocerebrosidase activity was measured in the mouse brain lysates. The brain lysates were also analyzed for α‐synuclein and phosphorylated α‐synuclein protein levels. Results Ambroxol treatment resulted in increased brain glucocerebrosidase activity in (1) wild‐type mice, (2) transgenic mice expressing the heterozygous L444P mutation in the murine glucocerebrosidase 1 gene, and (3) transgenic mice overexpressing human α‐synuclein. Furthermore, in the mice overexpressing human α‐synuclein, ambroxol treatment decreased both α‐synuclein and phosphorylated α‐synuclein protein levels. Interpretation Our work supports the proposition that ambroxol should be further investigated as a potential novel disease‐modifying therapy for treatment of Parkinson disease and neuronopathic Gaucher disease to increase glucocerebrosidase activity and decrease α‐synuclein and phosphorylated α‐synuclein protein levels. Ann Neurol 2016;80:766–775 PMID:27859541

  19. Upregulation of TREM2 Ameliorates Neuroinflammatory Responses and Improves Cognitive Deficits Triggered by Surgical Trauma in Appswe/PS1dE9 Mice

    Directory of Open Access Journals (Sweden)

    Yanhua Jiang

    2018-04-01

    Full Text Available Background/Aims: TREM2 plays a crucial role in modulating microglial function through interaction with DAP12, the adapter for TREM2. Emerging evidence has demonstrated that TREM2 could suppress neuroinflammatory responses by repression of microglia-mediated cytokine production. This study investigated the potential role of TREM2 in surgery-induced cognitive deficits and neuroinflammatory responses in wild-type (WT and APPswe/PS1dE9 mice. Methods: Adult APPswe/PS1dE9 transgenic male mice (a classic transgenic model of Alzheimer’s disease, 3 months old and their age-matched WT mice received intracerebral lentiviral particles encoding the mouse TREM2 gene and then were subjected to partial hepatectomy at 1 month after the lentiviral particle injection. The behavioral changes were evaluated with an open-field test and Morris water maze test on postoperative days 3, 7, and 14. Hippocampal TREM2, DAP12, and interleukin (IL-1β were measured at each time point. Ionized calcium-binding adapter molecule 1 (Iba-1, microglial M2 phenotype marker Arg1, synaptophysin, tau hyperphosphorylation (T396, and glycogen synthase kinase-3β (GSK-3β were also examined in the hippocampus. Results: Surgical trauma induced an exacerbated cognitive impairment and enhanced hippocampal IL-1β expression in the transgenic mice on postoperative days 3 and 7. A corresponding decline in the levels of TREM2 was also found on postoperative days 3, 7, and 14. Overexpression of TREM2 downregulated the levels of IL-1β, ameliorated T396 expression, inhibited the activity of GSK-3β, and improved sickness behavior. Increased Arg1 expression and a high level of synaptophysin were also observed in the transgenic mice following TREM2 overexpression. Conclusion: The downregulation of TREM2 exacerbated surgery-induced cognitive deficits and exaggerated neuroinflammatory responses in this rodent model. Overexpression of TREM2 potentially attenuated these effects by decreasing the

  20. Characterisation of the nociceptive phenotype of suppressible galanin overexpressing transgenic mice

    Directory of Open Access Journals (Sweden)

    Wynick David

    2010-10-01

    Full Text Available Abstract The neuropeptide galanin is widely expressed in both the central and peripheral nervous systems and is involved in many diverse biological functions. There is a substantial data set that demonstrates galanin is upregulated after injury in the DRG, spinal cord and in many brain regions where it plays a predominantly antinociceptive role in addition to being neuroprotective and pro-regenerative. To further characterise the role of galanin following nerve injury, a novel transgenic line was created using the binary transgenic tet-off system, to overexpress galanin in galaninergic tissue in a suppressible manner. The double transgenic mice express significantly more galanin in the DRG one week after sciatic nerve section (axotomy compared to WT mice and this overexpression is suppressible upon administration of doxycycline. Phenotypic analysis revealed markedly attenuated allodynia when galanin is overexpressed and an increase in allodynia following galanin suppression. This novel transgenic line demonstrates that whether galanin expression is increased at the time of nerve injury or only after allodynia is established, the neuropeptide is able to reduce neuropathic pain behaviour. These new findings imply that administration of a galanin agonist to patients with established allodynia would be an effective treatment for neuropathic pain.

  1. Mangifera indica L. extract (Vimang improves the aversive memory in spinocerebellar ataxia type 2 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Natasha Maurmann

    2014-06-01

    Full Text Available Context: The spinocerebellar ataxia type 2 (SCA-2 is a progressive neurodegenerative disorder without specific therapy identified, and it is related to the loss of function in the cerebellum, mitochondrial dysfunction, oxidative stress and neurotoxic processes. Scientific evidence indicates that Mangifera indica L. aqueous extract (MiE and its major constituent (mangiferin display antioxidant, anti-inflammatory and neuroprotective actions. Aims: To investigate the MiE and mangiferin effects on behavioral outcomes of neurological function in SCA-2 transgenic mice. Methods: The SCA-2 transgenic mice were daily and orally administered during 12 months with MiE (10, 50, and 100 mg/kg, mangiferin (10 mg/kg or vehicle. It was evaluated locomotion (open-field, aversive memory (inhibitory avoidance and declarative memory (object recognition. To explore possible cellular mechanisms underlying the in vivo effects was also evaluated their effects on nerve grow factor (NGF and tumor necrosis factor-α (TNF-α levels in the human glioblastoma cell line U138-MG supernatant. Results: MiE administration did not affect the object recognition memory, but mangiferin did. The natural extract improved selectively the aversive memory in SCA-2 mice, indicating that MiE can affect behavioral parameters regarding fear-related memory. MiE also induced a significant increase in supernatant levels of NGF and TNF-α in vitro in human U138-MG glioblastoma cells. Conclusions: The results suggest that MiE enhances the aversive memory through a mechanism that might involve an increase in neurotrophin and cytokine levels. These findings constitute the basis for the use of the natural extract in the prevention/treatment of memory deficits in SCA-2.

  2. Calcium-dependent arrhythmias in transgenic mice with heart failure.

    Science.gov (United States)

    London, Barry; Baker, Linda C; Lee, Joon S; Shusterman, Vladimir; Choi, Bum-Rak; Kubota, Toru; McTiernan, Charles F; Feldman, Arthur M; Salama, Guy

    2003-02-01

    Transgenic mice overexpressing the inflammatory cytokine tumor necrosis factor (TNF)-alpha (TNF-alpha mice) in the heart develop a progressive heart failure syndrome characterized by biventricular dilatation, decreased ejection fraction, atrial and ventricular arrhythmias on ambulatory telemetry monitoring, and decreased survival compared with nontransgenic littermates. Programmed stimulation in vitro with single extra beats elicits reentrant ventricular arrhythmias in TNF-alpha (n = 12 of 13 hearts) but not in control hearts. We performed optical mapping of voltage and Ca(2+) in isolated perfused ventricles of TNF-alpha mice to study the mechanisms that lead to the initiation and maintenance of the arrhythmias. When compared with controls, hearts from TNF-alpha mice have prolonged of action potential durations (action potential duration at 90% repolarization: 23 +/- 2 ms, n = 7, vs. 18 +/- 1 ms, n = 5; P < 0.05), no increased dispersion of refractoriness between apex and base, elevated diastolic and depressed systolic [Ca(2+)], and prolonged Ca(2+) transients (72 +/- 6 ms, n = 10, vs. 54 +/- 5 ms, n = 8; P < 0.01). Premature beats have diminished action potential amplitudes and conduct in a slow, heterogeneous manner. Lowering extracellular [Ca(2+)] normalizes conduction and prevents inducible arrhythmias. Thus both action potential prolongation and abnormal Ca(2+) handling may contribute to the initiation of reentrant arrhythmias in this heart failure model by mechanisms distinct from enhanced dispersion of refractoriness or triggered activity.

  3. Failure of pulmonary clearance of Rhodococcus equi infection in CD4+ T-lymphocyte-deficient transgenic mice.

    OpenAIRE

    Kanaly, S T; Hines, S A; Palmer, G H

    1993-01-01

    Pulmonary clearance of Rhodococcus equi requires functional T lymphocytes. In this study, CD8+ T-lymphocyte-deficient transgenic mice cleared virulent R. equi from the lungs while infection in CD4+ T-lymphocyte-deficient transgenic mice persisted. Although both CD4+ and CD8+ T cells function early in pulmonary defense against R. equi, clearance is dependent on CD4+ T lymphocytes.

  4. Aberrant phenotypes of transgenic mice expressing dimeric human erythropoietin

    Directory of Open Access Journals (Sweden)

    Yun Seong-Jo

    2012-01-01

    Full Text Available Abstract Background Dimeric human erythropoietin (dHuEPO peptides are reported to exhibit significantly higher biological activity than the monomeric form of recombinant EPO. The objective of this study was to produce transgenic (tg mice expressing dHuEPO and to investigate the characteristics of these mice. Methods A dHuEPO-expressing vector under the control of the goat beta-casein promoter, which produced a dimer of human EPO molecules linked by a 2-amino acid peptide linker (Asp-Ile, was constructed and injected into 1-cell fertilized embryos by microinjection. Mice were screened using genomic DNA samples obtained from tail biopsies. Blood samples were obtained by heart puncture using heparinized tubes, and hematologic parameters were assessed. Using the microarray analysis tool, we analyzed differences in gene expression in the spleens of tg and control mice. Results A high rate of spontaneous abortion or death of the offspring was observed in the recipients of dHuEPO embryos. We obtained 3 founder lines (#4, #11, and #47 of tg mice expressing the dHuEPO gene. However, only one founder line showed stable germline integration and transmission, subsequently establishing the only transgenic line (#11. We obtained 2 F1 mice and 3 F2 mice from line #11. The dHuEPO protein could not be obtained because of repeated spontaneous abortions in the tg mice. Tg mice exhibited symptoms such as short lifespan and abnormal blood composition. The red blood cell count, white blood cell count, and hematocrit levels in the tg mice were remarkably higher than those in the control mice. The spleens of the tg mice (F1 and F2 females were 11- and -21-fold larger than those of the control mice. Microarray analysis revealed 2,672 spleen-derived candidate genes; more genes were downregulated than upregulated (849/764. Reverse transcriptase-polymerase chain reaction (RT-PCR and quantitative real-time PCR (qRT-PCR were used for validating the results of the microarray

  5. Studies of UCP2 transgenic and knockout mice reveal that liver UCP2 is not essential for the antiobesity effects of fish oil.

    Science.gov (United States)

    Tsuboyama-Kasaoka, Nobuyo; Sano, Kayo; Shozawa, Chikako; Osaka, Toshimasa; Ezaki, Osamu

    2008-03-01

    Uncoupling protein 2 (UCP2) is a possible target molecule for energy dissipation. Many dietary fats, including safflower oil and lard, induce obesity in C57BL/6 mice, whereas fish oil does not. Fish oil increases UCP2 expression in hepatocytes and may enhance UCP2 activity by activating the UCP2 molecule or altering the lipid bilayer environment. To examine the role of liver UCP2 in obesity, we created transgenic mice that overexpressed human UCP2 in hepatocytes and examined whether UCP2 transgenic mice showed less obesity when fed a high-fat diet (safflower oil or lard). In addition, we examined whether fish oil had antiobesity effects in UCP2 knockout mice. UCP2 transgenic and wild-type mice fed a high-fat diet (safflower oil or lard) developed obesity to a similar degree. UCP2 knockout and wild-type mice fed fish oil had lower rates of obesity than mice fed safflower oil. Remarkably, safflower oil did not induce obesity in female UCP2 knockout mice, an unexpected phenotype for which we presently have no explanation. However, this unexpected effect was not observed in male UCP2 knockout mice or in UCP2 knockout mice fed a high-lard diet. These data indicate that liver UCP2 is not essential for fish oil-induced decreases in body fat.

  6. Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice

    OpenAIRE

    Lucas, José J.; Hernández, Félix; Gómez-Ramos, Pilar; Morán, María A.; Hen, René; Avila, Jesús

    2001-01-01

    Glycogen synthase kinase-3β (GSK-3β) has been postulated to mediate Alzheimer’s disease tau hyperphosphorylation, β-amyloid-induced neurotoxicity and presenilin-1 mutation pathogenic effects. By using the tet-regulated system we have produced conditional transgenic mice overexpressing GSK-3β in the brain during adulthood while avoiding perinatal lethality due to embryonic transgene expression. These mice show decreased levels of nuclear β-catenin and hyperphosphorylation of tau in hippocampal...

  7. Striatal Distribution and Cytoarchitecture of Dopamine Receptor Subtype 1 and 2: Evidence from Double-Labeling Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Keke Ren

    2017-08-01

    Full Text Available As the main input nucleus of the basal ganglion, the striatum executes different functions, including motivation, reward and attention. The functions of the striatum highly rely on its subregions that receive projections from various cortical areas and the distribution of striatonigral neurons that express D1 dopamine (DA receptors (or D1 medium-sized spiny neurons, D1 MSNs and striatopallidal neurons that express D2 DA receptors (or D2 MSNs. Using bacterial artificial chromosome (BAC transgenic mice, several studies have recently been performed on the spatial distribution of D1 and D2 MSNs. However, these studies mainly focused on enumeration of either D1-enhanced fluorescent protein (eGFP or D2-eGFP in mice. In the present work, we used Drd1a-tdTamato and Drd2-eGFP double BAC transgenic mice to evaluate the spatial pattern of D1 MSNs (red fluorescence and D2 MSNs (green fluorescence along the rostro-caudal axis of the dorsal striatum. The dorsal striatum was divided into three subregions: rostral caudoputamen (CPr, intermediate CP (CPi, and caudal CP (CPc across the rostral–caudal extent of the striatum. The results demonstrate that D1 and D2 MSNs were intermingled with each other in most of these regions. The cell density of D1 MSNs was slightly higher than D2 MSNs through CPr, CPi, and CPc, though it did not reach significance. However, in CPi, the ratio of D1/D2 in the ventromedial CPi group was significantly higher than those in dorsolateral, dorsomedial, and ventrolateral CPi. There was similar proportion of cells that co-expressed D1 and D2 receptors. Moreover, we demonstrated a pathway-specific activation pattern of D1 MSNs and D2 MSNs in a manic like mouse model induced by D-Amphetamine by utilizing this double transgenic mice and c-fos immunoreactivity. Our results may provide a morphological basis for the function or pathophysiology of striatonigral and striatopallidal neurons with diverse cortical inputs to the dorsal striatum.

  8. Circumsporozoite Protein-Specific Kd-Restricted CD8+ T Cells Mediate Protective Antimalaria Immunity in Sporozoite-Immunized MHC-I-Kd Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2014-01-01

    Full Text Available Although the roles of CD8+ T cells and a major preerythrocytic antigen, the circumsporozoite (CS protein, in contributing protective antimalaria immunity induced by radiation-attenuated sporozoites, have been shown by a number of studies, the extent to which these players contribute to antimalaria immunity is still unknown. To address this question, we have generated C57BL/6 (B6 transgenic (Tg mice, expressing Kd molecules under the MHC-I promoter, called MHC-I-Kd-Tg mice. In this study, we first determined that a single immunizing dose of IrPySpz induced a significant level of antimalaria protective immunity in MHC-I-Kd-Tg mice but not in B6 mice. Then, by depleting various T-cell subsets in vivo, we determined that CD8+ T cells are the main mediator of the protective immunity induced by IrPySpz. Furthermore, when we immunized (MHC-I-Kd-Tg × CS-Tg F1 mice with IrPySpz after crossing MHC-I-Kd-Tg mice with PyCS-transgenic mice (CS-Tg, which are unable to mount PyCS-specific immunity, we found that IrPySpz immunization failed to induce protective antimalaria immunity in (MHC-I-Kd-Tg × CS-Tg F1 mice, thus indicating the absence of PyCS antigen-dependent immunity in these mice. These results indicate that protective antimalaria immunity induced by IrPySpz in MHC-I-Kd-Tg mice is mediated by CS protein-specific, Kd-restricted CD8+ T cells.

  9. Substitutions of PrP N-terminal histidine residues modulate scrapie disease pathogenesis and incubation time in transgenic mice.

    Science.gov (United States)

    Eigenbrod, Sabina; Frick, Petra; Bertsch, Uwe; Mitteregger-Kretzschmar, Gerda; Mielke, Janina; Maringer, Marko; Piening, Niklas; Hepp, Alexander; Daude, Nathalie; Windl, Otto; Levin, Johannes; Giese, Armin; Sakthivelu, Vignesh; Tatzelt, Jörg; Kretzschmar, Hans; Westaway, David

    2017-01-01

    Prion diseases have been linked to impaired copper homeostasis and copper induced-oxidative damage to the brain. Divalent metal ions, such as Cu2+ and Zn2+, bind to cellular prion protein (PrPC) at octapeptide repeat (OR) and non-OR sites within the N-terminal half of the protein but information on the impact of such binding on conversion to the misfolded isoform often derives from studies using either OR and non-OR peptides or bacterially-expressed recombinant PrP. Here we created new transgenic mouse lines expressing PrP with disrupted copper binding sites within all four histidine-containing OR's (sites 1-4, H60G, H68G, H76G, H84G, "TetraH>G" allele) or at site 5 (composed of residues His-95 and His-110; "H95G" allele) and monitored the formation of misfolded PrP in vivo. Novel transgenic mice expressing PrP(TetraH>G) at levels comparable to wild-type (wt) controls were susceptible to mouse-adapted scrapie strain RML but showed significantly prolonged incubation times. In contrast, amino acid replacement at residue 95 accelerated disease progression in corresponding PrP(H95G) mice. Neuropathological lesions in terminally ill transgenic mice were similar to scrapie-infected wt controls, but less severe. The pattern of PrPSc deposition, however, was not synaptic as seen in wt animals, but instead dense globular plaque-like accumulations of PrPSc in TgPrP(TetraH>G) mice and diffuse PrPSc deposition in (TgPrP(H95G) mice), were observed throughout all brain sections. We conclude that OR and site 5 histidine substitutions have divergent phenotypic impacts and that cis interactions between the OR region and the site 5 region modulate pathogenic outcomes by affecting the PrP globular domain.

  10. Dysregulation of Autophagy Contributes to Anal Carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Evie H Carchman

    Full Text Available Autophagy is an intracellular catabolic process that removes and recycles unnecessary/dysfunctional cellular components, contributing to cellular health and survival. Autophagy is a highly regulated cellular process that responds to several intracellular signals, many of which are deregulated by human papillomavirus (HPV infection through the expression of HPV-encoded oncoproteins. This adaptive inhibitory response helps prevent viral clearance. A strong correlation remains between HPV infection and the development of squamous cell carcinoma (SCC of the anus, particularly in HIV positive and other immunosuppressed patients. We hypothesize that autophagy is inhibited by HPV-encoded oncoproteins thereby promoting anal carcinogenesis (Fig 1.HPV16 transgenic mice (K14E6/E7 and non-transgenic mice (FVB/N, both of which do not spontaneously develop anal tumors, were treated topically with the chemical carcinogen, 7,12-Dimethylbenz[a]anthracene (DMBA, to induce anal cancer. The anuses at different time points of treatment (5, 10, 15 and 20 weeks were analyzed using immunofluorescence (IF for two key autophagy marker proteins (LC3β and p62 in addition to histological grading. The anuses from the K14E6/E7 mice were also analyzed for visual evidence of autophagic activity by electron microscopy (EM. To see if there was a correlation to humans, archival anal specimens were assessed histologically for grade of dysplasia and then analyzed for LC3β and p62 protein content. To more directly examine the effect of autophagic inhibition on anal carcinogenesis, nontransgenic mice that do not develop anal cancer with DMBA treatment were treated with a known pharmacologic inhibitor of autophagy, chloroquine, and examined for tumor development and analyzed by IF for autophagic proteins.Histologically, we observed the progression of normal anoderm to invasive SCC with DMBA treatment in K14E6/E7 mice but not in nontransgenic, syngeneic FVB/N background control mice

  11. Cosmetics-triggered percutaneous remote control of transgene expression in mice.

    Science.gov (United States)

    Wang, Hui; Ye, Haifeng; Xie, Mingqi; Daoud El-Baba, Marie; Fussenegger, Martin

    2015-08-18

    Synthetic biology has significantly advanced the rational design of trigger-inducible gene switches that program cellular behavior in a reliable and predictable manner. Capitalizing on genetic componentry, including the repressor PmeR and its cognate operator OPmeR, that has evolved in Pseudomonas syringae pathovar tomato DC3000 to sense and resist plant-defence metabolites of the paraben class, we have designed a set of inducible and repressible mammalian transcription-control devices that could dose-dependently fine-tune transgene expression in mammalian cells and mice in response to paraben derivatives. With an over 60-years track record as licensed preservatives in the cosmetics industry, paraben derivatives have become a commonplace ingredient of most skin-care products including shower gels, cleansing toners and hand creams. As parabens can rapidly reach the bloodstream of mice following topical application, we used this feature to percutaneously program transgene expression of subcutaneous designer cell implants using off-the-shelf commercial paraben-containing skin-care cosmetics. The combination of non-invasive, transdermal and orthogonal trigger-inducible remote control of transgene expression may provide novel opportunities for dynamic interventions in future gene and cell-based therapies. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity.

    Science.gov (United States)

    Yi, Woelsung; Gupta, Sanjay; Ricker, Edd; Manni, Michela; Jessberger, Rolf; Chinenov, Yurii; Molina, Henrik; Pernis, Alessandra B

    2017-08-15

    Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (T H ) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (T FH ) cells, is critical as aberrant T FH cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1-4E-BP-eIF4E axis, secondary to aberrant assembly of a raptor-p62-TRAF6 complex. Proteomic analysis reveals that this pathway selectively controls the abundance of a subset of proteins. Rapamycin or raptor deletion ameliorates the aberrant T FH cell expansion in mice lacking Def6. Thus deregulation of mTORC1-dependent pathways controlling protein synthesis can result in T-cell dysfunction, indicating a mechanism by which mTORC1 can promote autoimmunity.Excessive expansion of the T follicular helper (T FH ) cell pool is associated with autoimmune disease and Def6 has been identified as an SLE risk variant. Here the authors show that Def6 limits proliferation of T FH cells in mice via alteration of mTORC1 signaling and inhibition of Bcl6 expression.

  13. The effects of enhanced zinc on spatial memory and plaque formation in transgenic mice

    Science.gov (United States)

    Linkous, D.H.; Adlard, P.A.; Wanschura, P.B.; Conko, K.M.; Flinn, J.M.

    2009-01-01

    There is considerable evidence suggesting that metals play a central role in the pathogenesis of Alzheimer's disease. Reports suggest that elevated dietary metals may both precipitate and potentiate an Alzheimer's disease phenotype. Despite this, there remain few studies that have examined the behavioral consequences of elevated dietary metals in wild type and Alzheimer's disease animals. To further investigate this in the current study, two separate transgenic models of AD (Tg2576 and TgCRND8), together with wild type littermates were administered 10 ppm (0.153 mM) Zn. Tg2576 animals were maintained on a zinc-enriched diet both pre- and postnatally until 11 months of age, while TgCRND8 animals were treated for five months following weaning. Behavioral testing, consisting of "Atlantis" and "moving" platform versions of the Morris water maze, were conducted at the end of the study, and tissues were collected for immunohistochemical analysis of amyloid-β burden. Our data demonstrate that the provision of a zinc-enriched diet potentiated Alzheimer-like spatial memory impairments in the transgenic animals and was associated with reduced hippocampal amyloid-β plaque deposits. Zinc-related behavioral deficits were also demonstrated in wild type mice, which were sometimes as great as those present in the transgenic animals. However, zinc-related cognitive impairments in transgenic mice were greater than the summation of zinc effects in the wild type mice and the transgene effects.

  14. Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation.

    Science.gov (United States)

    Xu, Peng-Xin; Wang, Shao-Wei; Yu, Xiao-Lin; Su, Ya-Jing; Wang, Teng; Zhou, Wei-Wei; Zhang, He; Wang, Yu-Jiong; Liu, Rui-Tian

    2014-05-01

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles in the brain. Aβ aggregation is closely associated with neurotoxicity, oxidative stress, and neuronal inflammation. The soluble Aβ oligomers are believed to be the most neurotoxic form among all forms of Aβ aggregates. We have previously reported a polyphenol compound rutin that could inhibit Aβ aggregation and cytotoxicity, attenuate oxidative stress, and decrease the production of nitric oxide and proinflammatory cytokines in vitro. In the current study, we investigated the effect of rutin on APPswe/PS1dE9 transgenic mice. Results demonstrated that orally administered rutin significantly attenuated memory deficits in AD transgenic mice, decreased oligomeric Aβ level, increased super oxide dismutase (SOD) activity and glutathione (GSH)/glutathione disulfide (GSSG) ratio, reduced GSSG and malondialdehyde (MDA) levels, downregulated microgliosis and astrocytosis, and decreased interleukin (IL)-1β and IL-6 levels in the brain. These results indicated that rutin is a promising agent for AD treatment because of its antioxidant, anti-inflammatory, and reducing Aβ oligomer activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Nuclear 82-kDa choline acetyltransferase decreases amyloidogenic APP metabolism in neurons from APP/PS1 transgenic mice.

    Science.gov (United States)

    Albers, Shawn; Inthathirath, Fatima; Gill, Sandeep K; Winick-Ng, Warren; Jaworski, Ewa; Wong, Daisy Y L; Gros, Robert; Rylett, R Jane

    2014-09-01

    Alzheimer disease (AD) is associated with increased amyloidogenic processing of amyloid precursor protein (APP) to β-amyloid peptides (Aβ), cholinergic neuron loss with decreased choline acetyltransferase (ChAT) activity, and cognitive dysfunction. Both 69-kDa ChAT and 82-kDa ChAT are expressed in cholinergic neurons in human brain and spinal cord with 82-kDa ChAT localized predominantly to neuronal nuclei, suggesting potential alternative functional roles for the enzyme. By gene microarray analysis, we found that 82-kDa ChAT-expressing IMR32 neural cells have altered expression of genes involved in diverse cellular functions. Importantly, genes for several proteins that regulate APP processing along amyloidogenic and non-amyloidogenic pathways are differentially expressed in 82-kDa ChAT-containing cells. The predicted net effect based on observed changes in expression patterns of these genes would be decreased amyloidogenic APP processing with decreased Aβ production. This functional outcome was verified experimentally as a significant decrease in BACE1 protein levels and activity and a concomitant reduction in the release of endogenous Aβ1-42 from neurons cultured from brains of AD-model APP/PS1 transgenic mice. The expression of 82-kDa ChAT in neurons increased levels of GGA3, which is involved in trafficking BACE1 to lysosomes for degradation. shRNA-induced decreases in GGA3 protein levels attenuated the 82-kDa ChAT-mediated decreases in BACE1 protein and activity and Aβ1-42 release. Evidence that 82-kDa ChAT can enhance GGA3 gene expression is shown by enhanced GGA3 gene promoter activity in SN56 neural cells expressing this ChAT protein. These studies indicate a novel relationship between cholinergic neurons and APP processing, with 82-kDa ChAT acting as a negative regulator of Aβ production. This decreased formation of Aβ could result in protection for cholinergic neurons, as well as protection of other cells in the vicinity that are sensitive to

  16. Low CD4/CD8 T-cell ratio associated with inflammatory arthropathy in human T-cell leukemia virus type I Tax transgenic mice.

    Directory of Open Access Journals (Sweden)

    Takeo Ohsugi

    Full Text Available BACKGROUND: Human T-cell leukemia virus type I (HTLV-1 can cause an aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL as well as inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. A transgenic mouse that expresses HTLV-1 Tax also develops T-cell leukemia/lymphoma and an inflammatory arthropathy that resembles rheumatoid arthritis. The aim of this study was to identify the primary T-cell subsets involved in the development of arthropathy in Tax transgenic mice. PRINCIPAL FINDINGS: By 24 months of age, Tax transgenic mice developed severe arthropathy with a cumulative incidence of 22.8%. The pathological findings of arthropathy in Tax transgenic mice were similar to those seen in human rheumatoid arthritis or mouse models of rheumatoid arthritis, with synovial proliferation and a positive rheumatoid factor. Before the onset of spontaneous arthropathy, young and old Tax transgenic mice were not sensitive to collagen and did not develop arthritis after immunization with type II collagen. The arthropathic Tax transgenic mice showed a significantly decreased proportion of splenic CD4(+ T cells, whereas the proportion of splenic CD8(+ T cells was increased. Regulatory T cells (CD4(+CD25(+Foxp3(+ were significantly decreased and CD8(+ T cells that expressed the chemokine receptor CCR4 (CD8(+CCR4(+ were significantly increased in arthropathic Tax transgenic mice. The expression of tax mRNA was strong in the spleen and joints of arthropathic mice, with a 40-fold increase compared with healthy transgenic mice. CONCLUSIONS: Our findings reveal that Tax transgenic mice develop rheumatoid-like arthritis with proliferating synovial cells in the joints; however, the proportion of different splenic T-cell subsets in these mice was completely different from other commonly used animal models of rheumatoid arthritis. The crucial T-cell subsets in arthropathic Tax transgenic mice appear to resemble

  17. E6AP is Required for Human Papillomavirus type 16 E6 to Cause Cervical Cancer in Mice

    Science.gov (United States)

    Shai, Anny; Pitot, Henry C.; Lambert, Paul F.

    2010-01-01

    High-risk human papillomaviruses cause certain anogenital and head and neck cancers. E6, one of three potent HPV oncogenes that contribute to the development of these malignancies, is a multifunctional protein with many biochemical activities. Among these activities are its ability to bind and inactivate the cellular tumor suppressor p53, induce expression of telomerase, and bind to various other proteins including Bak, E6BP1, E6TP1, and proteins that contain PDZ domains such as hScrib and hDlg. Many of these activities are thought to contribute to E6’s role in carcinogenesis. E6’s interaction with many of these cellular proteins, including p53, leads to their destabilization. This property is mediated at least in part through E6’s ability to recruit the ubiquitin ligase, E6AP into complexes with these cellular proteins resulting in their ubiquitin–mediated degradation by the proteasome. In this study, we address the requirement for E6AP in mediating E6's acute and oncogenic phenotypes, including induction of epithelial hyperplasia, abrogation of DNA damage response and induction of cervical cancer. Loss of E6AP had no discernable effect on E6's ability to induce hyperplasia or abrogate DNA damage responses, akin to what we had earlier observed in the mouse epidermis. Nevertheless, in cervical carcinogenesis studies, there was a complete loss of E6’s oncogenic potential in mice nulligenic for E6AP. Thus, E6AP is absolutely required for E6 to cause cervical cancer. PMID:20530688

  18. Organotypic brain slice cultures of adult transgenic P301S mice--a model for tauopathy studies.

    Directory of Open Access Journals (Sweden)

    Agneta Mewes

    Full Text Available BACKGROUND: Organotypic brain slice cultures represent an excellent compromise between single cell cultures and complete animal studies, in this way replacing and reducing the number of animal experiments. Organotypic brain slices are widely applied to model neuronal development and regeneration as well as neuronal pathology concerning stroke, epilepsy and Alzheimer's disease (AD. AD is characterized by two protein alterations, namely tau hyperphosphorylation and excessive amyloid β deposition, both causing microglia and astrocyte activation. Deposits of hyperphosphorylated tau, called neurofibrillary tangles (NFTs, surrounded by activated glia are modeled in transgenic mice, e.g. the tauopathy model P301S. METHODOLOGY/PRINCIPAL FINDINGS: In this study we explore the benefits and limitations of organotypic brain slice cultures made of mature adult transgenic mice as a potential model system for the multifactorial phenotype of AD. First, neonatal (P1 and adult organotypic brain slice cultures from 7- to 10-month-old transgenic P301S mice have been compared with regard to vitality, which was monitored with the lactate dehydrogenase (LDH- and the MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assays over 15 days. Neonatal slices displayed a constant high vitality level, while the vitality of adult slice cultures decreased significantly upon cultivation. Various preparation and cultivation conditions were tested to augment the vitality of adult slices and improvements were achieved with a reduced slice thickness, a mild hypothermic cultivation temperature and a cultivation CO(2 concentration of 5%. Furthermore, we present a substantial immunohistochemical characterization analyzing the morphology of neurons, astrocytes and microglia in comparison to neonatal tissue. CONCLUSION/SIGNIFICANCE: Until now only adolescent animals with a maximum age of two months have been used to prepare organotypic brain slices. The current study

  19. Overexpression of eIF-5A2 in mice causes accelerated organismal aging by increasing chromosome instability

    Directory of Open Access Journals (Sweden)

    Chen Leilei

    2011-05-01

    Full Text Available Abstract Background Amplification of 3q26 is one of the most frequent genetic alterations in many human malignancies. Recently, we isolated a novel oncogene eIF-5A2 within the 3q26 region. Functional study has demonstrated the oncogenic role of eIF-5A2 in the initiation and progression of human cancers. In the present study, we aim to investigate the physiological and pathological effect of eIF-5A2 in an eIF-5A2 transgenic mouse model. Methods An eIF-5A2 transgenic mouse model was generated using human eIF-5A2 cDNA. The eIF-5A2 transgenic mice were characterized by histological and immunohistochemistry analyses. The aging phenotypes were further characterized by wound healing, bone X-ray imaging and calcification analysis. Mouse embryo fibroblasts (MEF were isolated to further investigate molecular mechanism of eIF-5A2 in aging. Results Instead of resulting in spontaneous tumor formation, overexpression of eIF-5A2 accelerated the aging process in adult transgenic mice. This included decreased growth rate and body weight, shortened life span, kyphosis, osteoporosis, delay of wound healing and ossification. Investigation of the correlation between cellular senescence and aging showed that cellular senescence is not required for the aging phenotypes in eIF-5A2 mice. Interestingly, we found that activation of eIF-5A2 repressed p19 level and therefore destabilized p53 in transgenic mouse embryo fibroblast (MEF cells. This subsequently allowed for the accumulation of chromosomal instability, such as errors in cell dividing during metaphase and anaphase. Additionally, a significantly increase in number of aneuploidy cells (p Conclusion These observations suggest that eIF-5A2 mouse models could accelerate organismal aging by increasing chromosome instability.

  20. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.

    Science.gov (United States)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-12-02

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Over-expression of X-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6J mice.

    Science.gov (United States)

    Wang, Jian; Menchenton, Trevor; Yin, Shankai; Yu, Zhiping; Bance, Manohar; Morris, David P; Moore, Craig S; Korneluk, Robert G; Robertson, George S

    2010-07-01

    Apoptosis of cochlear cells plays a significant role in age-related hearing loss or presbycusis. In this study, we evaluated whether over-expression of the anti-apoptotic protein known as X-linked Inhibitor of Apoptosis Protein (XIAP) slows the development of presbycusis. We compared the age-related hearing loss between transgenic (TG) mice that over-express human XIAP tagged with 6-Myc (Myc-XIAP) on a pure C57BL/6J genetic background with wild-type (WT) littermates by measuring auditory brainstem responses. The result showed that TG mice developed hearing loss considerably more slowly than WT littermates, primarily within the high-frequency range. The average total hair cell loss was significantly less in TG mice than WT littermates. Although levels of Myc-XIAP in the ear remained constant at 2 and 14 months, there was a marked increase in the amount of endogenous XIAP from 2 to 14 months in the cochlea, but not in the brain, in both genotypes. These results suggest that XIAP over-expression reduces age-related hearing loss and hair cell death in the cochlea. Copyright 2008 Elsevier Inc. All rights reserved.

  2. The cytomegalovirus-encoded chemokine receptor US28 promotes intestinal neoplasia in transgenic mice

    NARCIS (Netherlands)

    Bongers, Gerold; Maussang, David; Muniz, Luciana R; Noriega, Vanessa M; Fraile-Ramos, Alberto; Barker, Nick; Marchesi, Federica; Thirunarayanan, Nanthakumar; Vischer, Henry F; Qin, Lihui; Mayer, Lloyd; Harpaz, Noam; Leurs, Rob; Furtado, Glaucia C; Clevers, Hans; Tortorella, Domenico; Smit, Martine J; Lira, Sergio A

    2010-01-01

    US28 is a constitutively active chemokine receptor encoded by CMV (also referred to as human herpesvirus 5), a highly prevalent human virus that infects a broad spectrum of cells, including intestinal epithelial cells (IECs). To study the role of US28 in vivo, we created transgenic mice (VS28 mice)

  3. Liver-specific expression of the agouti gene in transgenic mice promotes liver carcinogenesis in the absence of obesity and diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Kuklin, Alexander [ORNL; Mynatt, Randall [ORNL; Klebig, Mitch [ORNL; Kiefer, Laura [Glaxo Wellcome, Research Triangle Park, NC; Wilkison, William O [Glaxo Wellcome, Research Triangle Park, NC; Woychik, Richard P [Jackson Laboratory, The, Bar Harbor, ME; Michaud III, Edward J [ORNL

    2004-01-01

    Background: The agouti protein is a paracrine factor that is normally present in the skin of many species of mammals. Agouti regulates the switch between black and yellow hair pigmentation by signalling through the melanocortin 1 receptor (Mc1r) on melanocytes. Lethal yellow (Ay) and viable yellow (Avy) are dominant regulatory mutations in the mouse agouti gene that cause the wild- ype protein to be produced at abnormally high levels throughout the body. Mice harboring these mutations exhibit a pleiotropic syndrome characterized by yellow coat color, obesity, hyperglycemia, hyperinsulinemia, and increased susceptibility to hyperplasia and carcinogenesis in numerous tissues, including the liver. The goal of this research was to determine if ectopic expression of the agouti gene in the liver alone is sufficient to recapitulate any aspect of this syndrome. For this purpose, we generated lines of transgenic mice expressing high levels of agouti in the liver under the regulatory control of the albumin promoter. Expression levels of the agouti transgene in the liver were quantified by Northern blot analysis. Functional agouti protein in the liver of transgenic mice was assayed by its ability to inhibit binding of the -melanocyte stimulating hormone ( MSH) to the Mc1r. Body weight, plasma insulin and blood glucose levels were analyzed in control and transgenic mice. Control and transgenic male mice were given a single intraperitoneal injection (10 mg/kg) of the hepatocellular carcinogen, diethylnitrosamine (DEN), at 15 days of age. Mice were euthanized at 36 or 40 weeks after DEN injection and the number of tumors per liver and total liver weights were recorded. Results: The albumin-agouti transgene was expressed at high levels in the livers of mice and produced a functional agouti protein. Albumin-agouti transgenic mice had normal body weights and normal levels of blood glucose and plasma insulin, but responded to chemical initiation of the liver with an increased number

  4. Genetic biomarkers for ALS disease in transgenic SOD1(G93A mice.

    Directory of Open Access Journals (Sweden)

    Ana C Calvo

    Full Text Available The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1(G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1(G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10 could be considered potential genetic biomarkers of longevity in transgenic SOD1(G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.

  5. A non-specific effect associated with conditional transgene expression based on Cre-loxP strategy in mice.

    Directory of Open Access Journals (Sweden)

    Linghua Qiu

    Full Text Available Transgenes flanked by loxP sites have been widely used to generate transgenic mice where the transgene expression can be controlled spatially and temporally by Cre recombinase. Data from this approach has led to important conclusions in cancer, neurodevelopment and neurodegeneration. Using this approach to conditionally express micro RNAs (miRNAs in mice, we found that Cre-mediated recombination in neural progenitor cells caused microcephaly in five of our ten independent transgenic lines. This effect was not associated with the types or the quantity of miRNAs being expressed, nor was it associated with specific target knockdown. Rather, it was correlated with the presence of multiple tandem transgene copies and inverted (head-to-head or tail-to-tail transgene repeats. The presence of these inverted repeats caused a high level of cell death in the ventricular zone of the embryonic brain, where Cre was expressed. Therefore, results from this Cre-loxP approach to generate inducible transgenic alleles must be interpreted with caution and conclusions drawn in previous reports may need reexamination.

  6. Global Overexpression of ET-1 Decreases Blood Pressure - A Systematic Review and Meta-Analysis of ET-1 Transgenic Mice.

    Science.gov (United States)

    Lu, Yong Ping; Tsuprykov, Oleg; Vignon-Zellweger, Nicolas; Heiden, Susi; Hocher, Berthold

    2016-01-01

    ET-1 has independent effects on blood pressure regulation in vivo, it is involved in tubular water and salt excretion, promotes constriction of smooth muscle cells, modulates sympathetic nerve activity, and activates the liberation of nitric oxide. To determine the net effect of these partially counteracting mechanisms on blood pressure, a systematic meta-analysis was performed. Based on the principles of Cochrane systematic reviews, we searched in major literature databases - MEDLINE (PubMed), Embase, Google Scholar, and the China Biological Medicine Database (CBM-disc) - for articles relevant to the topic of the blood pressure phenotype of endothelin-1 transgenic (ET-1+/+) mice from January 1, 1988 to March 31, 2016. Review Manager Version 5.0 (Rev-Man 5.0) software was applied for statistical analysis. In total thirteen studies reported blood pressure data. The meta-analysis of blood pressure data showed that homozygous ET-1 transgenic mice (ET-1+/+ mice) had a significantly lower blood pressure as compared to WT mice (mean difference: -2.57 mmHg, 95% CI: -4.98∼ -0.16, P = 0.04), with minimal heterogeneity (P = 0.86). A subgroup analysis of mice older than 6 months revealed that the blood pressure difference between ET-1+/+ mice and WT mice was even more pronounced (mean difference: -6.19 mmHg, 95% CI: -10.76∼ -1.62, P = 0.008), with minimal heterogeneity (P = 0.91). This meta-analysis provides robust evidence that global ET-1 overexpression in mice lowers blood pressure in an age-dependent manner. Older ET-1+/+ mice have a somewhat more pronounced reduction of blood pressure. © 2016 The Author(s) Published by S. Karger AG, Basel.

  7. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice.

    Science.gov (United States)

    Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao

    2015-08-24

    Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  8. Expression of a single, viral oncoprotein in skin epithelium is sufficient to recruit lymphocytes.

    Directory of Open Access Journals (Sweden)

    Allison Choyce

    Full Text Available Established cancers are frequently associated with a lymphocytic infiltrate that fails to clear the tumour mass. In contrast, the importance of recruited lymphocytes during premalignancy is less well understood. In a mouse model of premalignant skin epithelium, transgenic mice that express the human papillomavirus type 16 (HPV16 E7 oncoprotein under a keratin 14 promoter (K14E7 mice display epidermal hyperplasia and have a predominant infiltrate of lymphocytes consisting of both CD4 and CD8 T cells. Activated, but not naïve T cells, were shown to preferentially traffic to hyperplastic skin with an increased frequency of proliferative CD8+ T cells and CD4+ T cells expressing CCR6 within the tissue. Disruption of the interaction between E7 protein and retinoblastoma tumour suppressor protein (pRb led to reduced epithelial hyperplasia and T cell infiltrate. Finally, while K14E7 donor skin grafts are readily accepted onto syngeneic, non-transgenic recipients, these same skin grafts lacking skin-resident lymphocytes were rejected. Our data suggests that expression of a single oncoprotein in the epidermis is sufficient for lymphocyte trafficking (including immunosuppressive lymphocytes to premalignant skin.

  9. Increased Melanoma Growth and Metastasis Spreading in Mice Overexpressing Placenta Growth Factor

    Science.gov (United States)

    Marcellini, Marcella; De Luca, Naomi; Riccioni, Teresa; Ciucci, Alessandro; Orecchia, Angela; Lacal, Pedro Miguel; Ruffini, Federica; Pesce, Maurizio; Cianfarani, Francesca; Zambruno, Giovanna; Orlandi, Augusto; Failla, Cristina Maria

    2006-01-01

    Placenta growth factor (PlGF), a member of the vascular endothelial growth factor family, plays an important role in adult pathological angiogenesis. To further investigate PlGF functions in tumor growth and metastasis formation, we used transgenic mice overexpressing PlGF in the skin under the control of the keratin 14 promoter. These animals showed a hypervascularized phenotype of the skin and increased levels of circulating PlGF with respect to their wild-type littermates. Transgenic mice and controls were inoculated intradermally with B16-BL6 melanoma cells. The tumor growth rate was fivefold increased in transgenic animals compared to wild-type mice, in the presence of a similar percentage of tumor necrotic tissue. Tumor vessel area was increased in transgenic mice as compared to controls. Augmented mobilization of endothelial and hematopoietic stem cells from the bone marrow was observed in transgenic animals, possibly contributing to tumor vascularization. The number and size of pulmonary metastases were significantly higher in transgenic mice compared to wild-type littermates. Finally, PlGF promoted tumor cell invasion of the extracellular matrix and increased the activity of selected matrix metalloproteinases. These findings indicate that PlGF, in addition to enhancing tumor angiogenesis and favoring tumor growth, may directly influence melanoma dissemination. PMID:16877362

  10. Endothelin-1 overexpression exacerbates atherosclerosis and induces aortic aneurysms in apolipoprotein E knockout mice.

    Science.gov (United States)

    Li, Melissa W; Mian, Muhammad Oneeb Rehman; Barhoumi, Tlili; Rehman, Asia; Mann, Koren; Paradis, Pierre; Schiffrin, Ernesto L

    2013-10-01

    Endothelin (ET)-1 plays a role in vascular reactive oxygen species production and inflammation. ET-1 has been implicated in human atherosclerosis and abdominal aortic aneurysm (AAA) development. ET-1 overexpression exacerbates high-fat diet-induced atherosclerosis in apolipoprotein E(-/-) (Apoe(-/-)) mice. ET-1-induced reactive oxygen species and inflammation may contribute to atherosclerosis progression and AAA development. Eight-week-old male wild-type mice, transgenic mice overexpressing ET-1 selectively in endothelium (eET-1), Apoe(-/-) mice, and eET-1/Apoe(-/-) mice were fed high-fat diet for 8 weeks. eET-1/Apoe(-/-) had a 45% reduction in plasma high-density lipoprotein (P<0.05) and presented ≥ 2-fold more aortic atherosclerotic lesions compared with Apoe(-/-) (P<0.01). AAAs were detected only in eET-1/Apoe(-/-) (8/21; P<0.05). Reactive oxygen species production was increased ≥ 2-fold in perivascular fat, media, or atherosclerotic lesions in the ascending aorta and AAAs of eET-1/Apoe(-/-) compared with Apoe(-/-) (P<0.05). Monocyte/macrophage infiltration was enhanced ≥ 2.5-fold in perivascular fat of ascending aorta and AAAs in eET-1/Apoe(-/-) compared with Apoe(-/-) (P<0.05). CD4(+) T cells were detected almost exclusively in perivascular fat (3/6) and atherosclerotic lesions (5/6) in ascending aorta of eET-1/Apoe(-/-) (P<0.05). The percentage of spleen proinflammatory Ly-6C(hi) monocytes was enhanced 26% by ET-1 overexpression in Apoe(-/-) (P<0.05), and matrix metalloproteinase-2 was increased 2-fold in plaques of eET-1/Apoe(-/-) (P<0.05) compared with Apoe(-/-). ET-1 plays a role in progression of atherosclerosis and AAA formation by decreasing high-density lipoprotein, and increasing oxidative stress, inflammatory cell infiltration, and matrix metalloproteinase-2 in perivascular fat, vascular wall, and atherosclerotic lesions.

  11. Usefulness of high-resolution sonography for assessement of hepatocellular carcinoma in the transgenic mice expressing hepatitis B virus X-protein; A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kwon-Ha; Park, Sung Hoon; Kim, Chang Guhn; Won, Jong Jin; Moon, Hyung Bae [Wonkwang Univ. School of Medicine, Iksan (Korea, Republic of); Yu, Dae Yeul [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-11-01

    To determine the value of high resolution ultrasonography (US) for the detection of hepatocellular carcinoma in the HBx transgenic mice. Forty-two HBx transgenic mice aged 8-20 (mean, 14) months underwent high-resolution ultrasound using a 10-12 MHz linear transducer. US findings indication the presence or absence, number, size and echogenicity of each hepatic tumor were analyzed, and in addition, color or power Doppler US was used to analyse tumoral vascularity. In each animal, sacrificed less than five hours after US examination, sonographic and pathologic findings were correlated. On gross pathologic examination, 20 hepatocellular carcinomas measuring 1.5-15 (mean, 4.7) mm in diameter were found in 16 mice; US revealed that 17 of the tumors were homogeneous hypoechoic nodules. With regard to tumor detection, sensitivity was 85%, specificity 96%, positive predictive value 0.944, negative predictive value 0.897, and overall accuracy 90%. Doppler US revealed that in three nodules, intratumoral vessels were present. In the other 26 mice, gross examination showed that no mass was present; microscopically, however, four nodules measuring 0.3-1.2 mm were found in four of these animals. Tumoral vascularity detected by color Doppler US corresponded to the intratumoral vessel within the nodules. One peritoneal nodule, confirmed as a metastatic tumor, was found at the greater omentum. In HBx transgenic mice, high-resolution US is valuable for the detection of hepatocellular carcinoma.

  12. Studying the Specific Activity of the Amide Form of HLDF-6 Peptide using the Transgenic Model of Alzheimer's Disease.

    Science.gov (United States)

    Bogachouk, A P; Storozheva, Z I; Telegin, G B; Chernov, A S; Proshin, A T; Sherstnev, V V; Zolotarev, Yu A; Lipkin, V M

    2017-01-01

    The neuroprotective and nootropic activities of the amide form (AF) of the HLDF-6 peptide (TGENHR-NH 2 ) were studied in transgenic mice of the B6C3-Tg(APPswe,PSEN1de9)85Dbo (Tg+) line (the animal model of familial Alzheimer's disease (AD)). The study was performed in 4 mouse groups: group 1 (study group): Tg+ mice intranasally injected with the peptide at a dose of 250 μg/kg; group 2 (active control): Tg+ mice intranasally injected with normal saline; group 3 (control 1): Tg- mice; and group 4 (control 2): C57Bl/6 mice. The cognitive functions were evaluated using three tests: the novel object recognition test, the conditioned passive avoidance task, and the Morris water maze. The results testify to the fact that the pharmaceutical substance (PhS) based on the AF of HLDF-6 peptide at a dose of 250 μg/kg administered intranasally efficiently restores the disturbed cognitive functions in transgenic mice. These results are fully consistent with the data obtained in animal models of Alzheimer's disease induced by the injection of the beta-amyloid (βA) fragment 25-35 into the giant-cell nucleus basalis of Meynert or by co-injection of the βA fragment 25-35 and ibotenic acid into the hippocampus, and the model of ischemia stroke (chronic bilateral occlusion of carotids, 2VO). According to the overall results, PhS based on AF HLDF-6 was chosen as an object for further investigation; the dose of 250 μg/kg was used as an effective therapeutic dose. Intranasal administration was the route for delivery.

  13. Cultured cells of the blood-brain barrier from apolipoprotein B-100 transgenic mice: effects of oxidized low-density lipoprotein treatment.

    Science.gov (United States)

    Lénárt, Nikolett; Walter, Fruzsina R; Bocsik, Alexandra; Sántha, Petra; Tóth, Melinda E; Harazin, András; Tóth, Andrea E; Vizler, Csaba; Török, Zsolt; Pilbat, Ana-Maria; Vígh, László; Puskás, László G; Sántha, Miklós; Deli, Mária A

    2015-07-17

    The apolipoprotein B-100 (ApoB-100) transgenic mouse line is a model of human atherosclerosis. Latest findings suggest the importance of ApoB-100 in the development of neurodegenerative diseases and microvascular/perivascular localization of ApoB-100 protein was demonstrated in the cerebral cortex of ApoB-100 transgenic mice. The aim of the study was to characterize cultured brain endothelial cells, pericytes and glial cells from wild-type and ApoB-100 transgenic mice and to study the effect of oxidized low-density lipoprotein (oxLDL) on these cells. Morphology of cells isolated from brains of wild type and ApoB-100 transgenic mice was characterized by immunohistochemistry and the intensity of immunolabeling was quantified by image analysis. Toxicity of oxLDL treatment was monitored by real-time impedance measurement and lactate dehydrogenase release. Reactive oxygen species and nitric oxide production, barrier permeability in triple co-culture blood-brain barrier model and membrane fluidity were also determined after low-density lipoprotein (LDL) or oxLDL treatment. The presence of ApoB-100 was confirmed in brain endothelial cells, while no morphological change was observed between wild type and transgenic cells. Oxidized but not native LDL exerted dose-dependent toxicity in all three cell types, induced barrier dysfunction and increased reactive oxygen species (ROS) production in both genotypes. A partial protection from oxLDL toxicity was seen in brain endothelial and glial cells from ApoB-100 transgenic mice. Increased membrane rigidity was measured in brain endothelial cells from ApoB-100 transgenic mice and in LDL or oxLDL treated wild type cells. The morphological and functional properties of cultured brain endothelial cells, pericytes and glial cells from ApoB-100 transgenic mice were characterized and compared to wild type cells for the first time. The membrane fluidity changes in ApoB-100 transgenic cells related to brain microvasculature indicate

  14. Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus

    DEFF Research Database (Denmark)

    Ghiasi, Seyed Mojtaba; Salmanian, A H; Chinikar, S

    2011-01-01

    in their serum and feces, respectively. The mice in the fed/boosted group showed a significant rise in specific IgG antibodies after a single boost. Our results imply that oral immunization of animals with edible materials from transgenic plants is feasible, and further assessments are under way. In addition......While Crimean-Congo hemorrhagic fever (CCHF) has a high mortality rate in humans, the associated virus (CCHFV) does not induce clinical symptoms in animals, but animals play an important role in disease transmission to humans. Our aim in this study was to examine the immunogenicity of the CCHFV...... glycoprotein when expressed in the root and leaf of transgenic plants via hairy roots and stable transformation of tobacco plants, respectively. After confirmatory analyses of transgenic plant lines and quantification of the expressed glycoprotein, mice were either fed with the transgenic leaves or roots, fed...

  15. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice

    Directory of Open Access Journals (Sweden)

    Shih-Yin Tsai

    2016-08-01

    Full Text Available Obesity is a major risk factor driving the global type II diabetes pandemic. However, the molecular factors linking obesity to disease remain to be elucidated. Gender differences are apparent in humans and are also observed in murine models. Here, we link these differences to expression of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1, which, upon HFD feeding, becomes significantly reduced in the skeletal muscle and adipose tissue of male but not female mice. Strikingly, restoring 4E-BP1 expression in male mice protects them against HFD-induced obesity and insulin resistance. Male 4E-BP1 transgenic mice also exhibit reduced white adipose tissue accumulation accompanied by decreased circulating levels of leptin and triglycerides. Importantly, transgenic 4E-BP1 male mice are also protected from aging-induced obesity and metabolic decline on a normal diet. These results demonstrate that 4E-BP1 is a gender-specific suppressor of obesity that regulates insulin sensitivity and energy metabolism.

  16. Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice

    Directory of Open Access Journals (Sweden)

    Liu Zhihui

    2008-08-01

    Full Text Available Abstract Background Interleukin 1 beta (IL-1β plays an important role in a number of chronic and acute inflammatory diseases. To understand the role of IL-1β in disease processes and develop an in vivo screening system for anti-inflammatory drugs, a transgenic mouse line was generated which incorporated the transgene firefly luciferase gene driven by a 4.5-kb fragment of the human IL-1β gene promoter. Luciferase gene expression was monitored in live mice under anesthesia using bioluminescence imaging in a number of inflammatory disease models. Results In a LPS-induced sepsis model, dramatic increase in luciferase activity was observed in the mice. This transgene induction was time dependent and correlated with an increase of endogenous IL-1β mRNA and pro-IL-1β protein levels in the mice. In a zymosan-induced arthritis model and an oxazolone-induced skin hypersensitivity reaction model, luciferase expression was locally induced in the zymosan injected knee joint and in the ear with oxazolone application, respectively. Dexamethasone suppressed the expression of luciferase gene both in the acute sepsis model and in the acute arthritis model. Conclusion Our data suggest that the transgenic mice model could be used to study transcriptional regulation of the IL-1β gene expression in the inflammatory process and evaluation the effect of anti-inflammatory drug in vivo.

  17. Impaired c-Fos and polo-like kinase 2 induction in the limbic system of fear-conditioned α-synuclein transgenic mice.

    Directory of Open Access Journals (Sweden)

    Heinrich Schell

    Full Text Available α-Synuclein (αSYN is genetically and neuropathologically linked to a spectrum of neurodegenerative diseases including Parkinson's disease, dementia with Lewy bodies, and related disorders. Cognitive impairment is recapitulated in several αSYN transgenic mouse lines. However, the mechanisms of dysfunction in affected neurons are largely unknown. Here we measured neuronal activity induced gene products in the limbic system of αSYN transgenic mice upon fear conditioning (FC. Induction of the synaptic plasticity marker c-Fos was significantly reduced in the amygdala and hippocampus of (Thy1-h[A30P]αSYN transgenic mice in an age-dependent manner. Similarly, the neuronal activity inducible polo-like kinase 2 (Plk2 that can phosphorylate αSYN at the pathological site serine-129 was up-regulated in both brain regions upon FC. Plk2 inductions were also significantly impaired in aged (Thy1-h[A30P]αSYN transgenic mice, both in the amygdala and hippocampus. Plk2 inductions in the amygdala after FC were paralleled by a small but significant increase in the number of neuronal cell bodies immunopositive for serine-129 phosphorylated αSYN in young but not aged (Thy1-h[A30P]αSYN transgenic mice. In addition, we observed in the aged hippocampus a distinct type of apparently unmodified transgenic αSYN profiles resembling synaptic accumulations of αSYN. Thus, the cognitive decline observed in aged αSYN transgenic mice might be due to impairment of neurotransmission and synaptic plasticity in the limbic system by distinct αSYN species.

  18. Diabetic kidney lesions of GIPRdn transgenic mice: podocyte hypertrophy and thickening of the GBM precede glomerular hypertrophy and glomerulosclerosis.

    Science.gov (United States)

    Herbach, Nadja; Schairer, Irene; Blutke, Andreas; Kautz, Sabine; Siebert, Angela; Göke, Burkhard; Wolf, Eckhard; Wanke, Ruediger

    2009-04-01

    Diabetic nephropathy is the leading cause of end-stage renal disease and the largest contributor to the total cost of diabetes care. Rodent models are excellent tools to gain more insight into the pathogenesis of diabetic nephropathy. In the present study, we characterize the age-related sequence of diabetes-associated kidney lesions in GIPR(dn) transgenic mice, a novel mouse model of early-onset diabetes mellitus. Clinical-chemical analyses as well as qualitative and quantitative morphological analyses of the kidneys of GIPR(dn) transgenic animals and nontransgenic littermate controls were performed at 3, 8, 20, and 28 wk of age. Early renal changes of transgenic mice consisted of podocyte hypertrophy, reduced numerical volume density of podocytes in glomeruli, and homogenous thickening of the glomerular basement membrane, followed by renal and glomerular hypertrophy as well as mesangial expansion and matrix accumulation. At 28 wk of age, glomerular damage was most prominent, including advanced glomerulosclerosis, tubulointerstitial lesions, and proteinuria. Real-time PCR demonstrated increased glomerular expression of Col4a1, Fn1, and Tgfb1. Immunohistochemistry revealed increased mesangial deposition of collagen type IV, fibronectin, and laminin. The present study shows that GIPR(dn) transgenic mice exhibit renal changes that closely resemble diabetes-associated kidney alterations in humans. Data particularly from male transgenic mice indicate that podocyte hypertrophy is directly linked to hyperglycemia, without the influence of mechanical stress. GIPR(dn) transgenic mice are considered an excellent new tool to study the mechanisms involved in onset and progression of diabetic nephropathy.

  19. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice

    International Nuclear Information System (INIS)

    Tomioka, Yukiko; Morimatsu, Masami; Nishijima, Ken-ichi; Usui, Tatsufumi; Yamamoto, Sayo; Suyama, Haruka; Ozaki, Kinuyo; Ito, Toshihiro

    2014-01-01

    Highlights: • Tumor-associated antigen MUC1 binds to Siglec-9. • Soluble Siglec-9 reduced proliferation of MUC1-positive tumor in transgenic mice. • Soluble Siglec-9 and MUC1 on tumor cells were colocalized in transgenic mice. • MUC1 expression on tumor cells were reduced in soluble Siglec-9 transgenic mice. - Abstract: Tumor-associated MUC1 binds to Siglec-9, which is expected to mediate tumor cell growth and negative immunomodulation. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of MUC1 to its receptor molecules like human Siglec-9, leading to provide antitumor benefit against MUC1-expressing tumor, and generated transgenic mouse lines expressing sSiglec-9 (sSiglec-9 Tg). When mammary tumor cells expressing MUC1 were intraperitoneally transplanted into sSiglec-9 Tg, tumor proliferation was slower with the lower histological malignancy as compared with non-transgenic mice. The sSiglec-9 was detected in the ascites caused by the tumor in the sSiglec-9 Tg, and sSiglec-9 and MUC1 were often colocalized on surfaces of the tumor cells. PCNA immunohistochemistry also revealed the reduced proliferation of the tumor cells in sSiglec-9 Tg. In sSiglec-9 Tg with remarkable suppression of tumor proliferation, MUC1 expressions were tend to be reduced. In the ascites of sSiglec-9 Tg bearing the tumor, T cells were uniformly infiltrated, whereas aggregations of degenerative T cells were often observed in the non-transgenic mice. These results suggest that sSiglec-9 has an antitumor benefit against MUC1-expressing tumor in the transgenic mice, which may avoid the negative immunomodulation and/or suppress tumor-associated MUC1 downstream signal transduction, and subsequent tumor proliferation

  20. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Tomioka, Yukiko, E-mail: ytomi@muses.tottori-u.ac.jp [Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815 (Japan); Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); Morimatsu, Masami, E-mail: mmorimat@vetmed.hokudai.ac.jp [Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815 (Japan); Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Nishijima, Ken-ichi, E-mail: nishijma@nubio.nagoya-u.ac.jp [Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Usui, Tatsufumi, E-mail: usutatsu@muses.tottori-u.ac.jp [Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); Yamamoto, Sayo, E-mail: ysayo@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Suyama, Haruka, E-mail: sharuka@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Ozaki, Kinuyo, E-mail: k-ozaki@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Ito, Toshihiro, E-mail: toshiito@muses.tottori-u.ac.jp [Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); and others

    2014-07-18

    Highlights: • Tumor-associated antigen MUC1 binds to Siglec-9. • Soluble Siglec-9 reduced proliferation of MUC1-positive tumor in transgenic mice. • Soluble Siglec-9 and MUC1 on tumor cells were colocalized in transgenic mice. • MUC1 expression on tumor cells were reduced in soluble Siglec-9 transgenic mice. - Abstract: Tumor-associated MUC1 binds to Siglec-9, which is expected to mediate tumor cell growth and negative immunomodulation. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of MUC1 to its receptor molecules like human Siglec-9, leading to provide antitumor benefit against MUC1-expressing tumor, and generated transgenic mouse lines expressing sSiglec-9 (sSiglec-9 Tg). When mammary tumor cells expressing MUC1 were intraperitoneally transplanted into sSiglec-9 Tg, tumor proliferation was slower with the lower histological malignancy as compared with non-transgenic mice. The sSiglec-9 was detected in the ascites caused by the tumor in the sSiglec-9 Tg, and sSiglec-9 and MUC1 were often colocalized on surfaces of the tumor cells. PCNA immunohistochemistry also revealed the reduced proliferation of the tumor cells in sSiglec-9 Tg. In sSiglec-9 Tg with remarkable suppression of tumor proliferation, MUC1 expressions were tend to be reduced. In the ascites of sSiglec-9 Tg bearing the tumor, T cells were uniformly infiltrated, whereas aggregations of degenerative T cells were often observed in the non-transgenic mice. These results suggest that sSiglec-9 has an antitumor benefit against MUC1-expressing tumor in the transgenic mice, which may avoid the negative immunomodulation and/or suppress tumor-associated MUC1 downstream signal transduction, and subsequent tumor proliferation.

  1. Studying the Specific Activity of the Amide Form of HLDF-6 Peptide using the Transgenic Model of Alzheimer’s Disease

    Science.gov (United States)

    Bogachouk, A. P.; Storozheva, Z. I.; Telegin, G. B.; Chernov, A. S.; Proshin, A. T.; Sherstnev, V. V.; Zolotarev, Yu. A.; Lipkin, V. M.

    2017-01-01

    The neuroprotective and nootropic activities of the amide form (AF) of the HLDF-6 peptide (TGENHR-NH2) were studied in transgenic mice of the B6C3-Tg(APPswe,PSEN1de9)85Dbo (Tg+) line (the animal model of familial Alzheimer’s disease (AD)). The study was performed in 4 mouse groups: group 1 (study group): Tg+ mice intranasally injected with the peptide at a dose of 250 μg/kg; group 2 (active control): Tg+ mice intranasally injected with normal saline; group 3 (control 1): Tg- mice; and group 4 (control 2): C57Bl/6 mice. The cognitive functions were evaluated using three tests: the novel object recognition test, the conditioned passive avoidance task, and the Morris water maze. The results testify to the fact that the pharmaceutical substance (PhS) based on the AF of HLDF-6 peptide at a dose of 250 μg/kg administered intranasally efficiently restores the disturbed cognitive functions in transgenic mice. These results are fully consistent with the data obtained in animal models of Alzheimer’s disease induced by the injection of the beta-amyloid (βA) fragment 25-35 into the giant-cell nucleus basalis of Meynert or by co-injection of the βA fragment 25-35 and ibotenic acid into the hippocampus, and the model of ischemia stroke (chronic bilateral occlusion of carotids, 2VO). According to the overall results, PhS based on AF HLDF-6 was chosen as an object for further investigation; the dose of 250 μg/kg was used as an effective therapeutic dose. Intranasal administration was the route for delivery. PMID:29104777

  2. The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sebastian R Schreglmann

    Full Text Available Adult neurogenesis mirrors the brain´s endogenous capacity to generate new neurons throughout life. In the subventricular zone/ olfactory bulb system adult neurogenesis is linked to physiological olfactory function and has been shown to be impaired in murine models of neuronal alpha-Synuclein overexpression. We analyzed the degree and temporo-spatial dynamics of adult olfactory bulb neurogenesis in transgenic mice expressing human wild-type alpha-Synuclein (WTS under the murine Thy1 (mThy1 promoter, a model known to have a particularly high tg expression associated with impaired olfaction.Survival of newly generated neurons (NeuN-positive in the olfactory bulb was unchanged in mThy1 transgenic animals. Due to decreased dopaminergic differentiation a reduction in new dopaminergic neurons within the olfactory bulb glomerular layer was present. This is in contrast to our previously published data on transgenic animals that express WTS under the control of the human platelet-derived growth factor β (PDGF promoter, that display a widespread decrease in survival of newly generated neurons in regions of adult neurogenesis, resulting in a much more pronounced neurogenesis deficit. Temporal and quantitative expression analysis using immunofluorescence co-localization analysis and Western blots revealed that in comparison to PDGF transgenic animals, in mThy1 transgenic animals WTS is expressed from later stages of neuronal maturation only but at significantly higher levels both in the olfactory bulb and cortex.The dissociation between higher absolute expression levels of alpha-Synuclein but less severe impact on adult olfactory neurogenesis in mThy1 transgenic mice highlights the importance of temporal expression characteristics of alpha-Synuclein on the maturation of newborn neurons.

  3. Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice.

    Science.gov (United States)

    Mizuno, Tooru M; Kelley, Kevin A; Pasinetti, Giulio M; Roberts, James L; Mobbs, Charles V

    2003-11-01

    Hypothalamic proopiomelanocortin (POMC) gene expression is reduced in many forms of obesity and diabetes, particularly in those attributable to deficiencies in leptin or its receptor. To assess the functional significance of POMC in mediating metabolic phenotypes associated with leptin deficiency, leptin-deficient mice bearing a transgene expressing the POMC gene under control of the neuron-specific enolase promoter were produced. The POMC transgene attenuated fasting-induced hyperphagia in wild-type mice. Furthermore, the POMC transgene partially reversed obesity, hyperphagia, and hypothermia and effectively normalized hyperglycemia, glucosuria, glucose intolerance, and insulin resistance in leptin-deficient mice. Effects of the POMC transgene on glucose homeostasis were independent of the partial correction of hyperphagia and obesity. Furthermore, the POMC transgene normalized the profile of hepatic and adipose gene expression associated with gluconeogenesis, glucose output, and insulin sensitivity. These results indicate that central POMC is a key modulator of glucose homeostasis and that agonists of POMC products may provide effective therapy in treating impairments in glucose homeostasis when hypothalamic POMC expression is reduced, as occurs with leptin deficiency, hypothalamic damage, and aging.

  4. Muscle-directed gene therapy for phenylketonuria (PKU): Development of transgenic mice with muscle-specific phenylalanine hydroxylase expression

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.O.; Messing, A.; Wolff, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1994-09-01

    Phenylketonuria (PKU) is an attractive target for gene therapy because of shortcomings in current therapy including lifelong commitment to a difficult and expensive diet, persistent mild cognitive deficits in some children despite adequate dietary therapy, and maternal PKU syndrome. Phenylalanine hydroxylase (PAH) is normally expressed only in liver, but we propose to treat PKU by introducing the gene for PAH into muscle. In order to evaluate both the safety and efficacy of this approach, we have a developed a trangenic mouse which expresses PAH in both cardiac and skeletal muscle. The transgene includes promoter and enhancer sequences from the mouse muscle creatine kinase (MCK) gene fused to the mouse liver PAH cDNA. Mice which have inherited the transgene are healthy, active, and do not exhibit any signs of muscle weakness or wasting. Ectopic PAH expression in muscle is not detrimental to the health, neurologic function, or reproduction of the mice. Pah{sup enu2} hyperphenylalaninemic mice, a model of human PAH deficiency, bred to carry the transgene have substantial PAH expression in cardiac and skeletal muscle but none in liver. Muscle PAH expression alone does not complement the hyperphenylalaninemic phenotype of Pah{sup enu2} mice. However, administration of reduced tetrahydrobiopterin to transgenic Pah{sup enu2} mice is associated with a 25% mean decrease in serum phenylalanine levels. We predict that ectopic expression of PAH in muscle along with adequate muscle supplies of reduced biopterin cofactor will decrease hyperphenylalaninemia in PKU.

  5. Protection from obesity and insulin resistance in mice overexpressing human apolipoprotein C1

    NARCIS (Netherlands)

    Jong, M. C.; Voshol, P. J.; Muurling, M.; Dahlmans, V. E.; Romijn, J. A.; Pijl, H.; Havekes, L. M.

    2001-01-01

    Apolipoprotein (APO) C1 is a 6.6-kDa protein present in plasma and associated with lipoproteins. Using hyperinsulinemic-euglycemic clamp tests, we previously found that in APOC1 transgenic mice, the whole-body insulin-mediated glucose uptake is increased concomitant with a decreased fatty acid

  6. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Bissell, Mina J; Werb, Zena

    1995-06-01

    An intact basement membrane (BM) is essential for the proper function, differentiation and morphology of many epithelial cells. The disruption or loss of this BM occurs during normal development as well as in the disease state. To examine the importance of BM during mammary gland development in vivo, we generated transgenic mice that inappropriately express autoactivating isoforms of the matrix metalloproteinase stromelysin-1. The mammary glands from these mice are both functionally and morphologically altered throughout development. We have now documented a dramatic incidence of breast tumors in several independent lines of these mice. These data suggest that overexpression of stromelysin-1 and disruption of the BM may be a key step in the multi-step process of breast cancer.

  7. Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6.

    Science.gov (United States)

    Ladenheim, B; Krasnova, I N; Deng, X; Oyler, J M; Polettini, A; Moran, T H; Huestis, M A; Cadet, J L

    2000-12-01

    Increasing evidence implicates apoptosis as a major mechanism of cell death in methamphetamine (METH) neurotoxicity. The involvement of a neuroimmune component in apoptotic cell death after injury or chemical damage suggests that cytokines may play a role in METH effects. In the present study, we examined if the absence of IL-6 in knockout (IL-6-/-) mice could provide protection against METH-induced neurotoxicity. Administration of METH resulted in a significant reduction of [(125)I]RTI-121-labeled dopamine transporters in the caudate-putamen (CPu) and cortex as well as depletion of dopamine in the CPu and frontal cortex of wild-type mice. However, these METH-induced effects were significantly attenuated in IL-6-/- animals. METH also caused a decrease in serotonin levels in the CPu and hippocampus of wild-type mice, but no reduction was observed in IL-6-/- animals. Moreover, METH induced decreases in [(125)I]RTI-55-labeled serotonin transporters in the hippocampal CA3 region and in the substantia nigra-reticulata but increases in serotonin transporters in the CPu and cingulate cortex in wild-type animals, all of which were attenuated in IL-6-/- mice. Additionally, METH caused increased gliosis in the CPu and cortices of wild-type mice as measured by [(3)H]PK-11195 binding; this gliotic response was almost completely inhibited in IL-6-/- animals. There was also significant protection against METH-induced DNA fragmentation, measured by the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeled (TUNEL) cells in the cortices. The protective effects against METH toxicity observed in the IL-6-/- mice were not caused by differences in temperature elevation or in METH accumulation in wild-type and mutant animals. Therefore, these observations support the proposition that IL-6 may play an important role in the neurotoxicity of METH.

  8. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Directory of Open Access Journals (Sweden)

    Vinciane Régnier

    Full Text Available The cystathionine β-synthase (CBS gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA metabolism, a pathway important for several brain physiological processes.Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1 expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line.We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  9. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Science.gov (United States)

    Régnier, Vinciane; Billard, Jean-Marie; Gupta, Sapna; Potier, Brigitte; Woerner, Stéphanie; Paly, Evelyne; Ledru, Aurélie; David, Sabrina; Luilier, Sabrina; Bizot, Jean-Charles; Vacano, Guido; Kraus, Jan P; Patterson, David; Kruger, Warren D; Delabar, Jean M; London, Jaqueline

    2012-01-01

    The cystathionine β-synthase (CBS) gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS) cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA) metabolism, a pathway important for several brain physiological processes. Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1) expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  10. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice.

    Science.gov (United States)

    Kim, Joohwee; Vaish, Vivek; Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub

    2016-10-07

    Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.

  11. Smad6/Smurf1 overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia

    Science.gov (United States)

    Horiki, Mitsuru; Imamura, Takeshi; Okamoto, Mina; Hayashi, Makoto; Murai, Junko; Myoui, Akira; Ochi, Takahiro; Miyazono, Kohei; Yoshikawa, Hideki; Tsumaki, Noriyuki

    2004-01-01

    Biochemical experiments have shown that Smad6 and Smad ubiquitin regulatory factor 1 (Smurf1) block the signal transduction of bone morphogenetic proteins (BMPs). However, their in vivo functions are largely unknown. Here, we generated transgenic mice overexpressing Smad6 in chondrocytes. Smad6 transgenic mice showed postnatal dwarfism with osteopenia and inhibition of Smad1/5/8 phosphorylation in chondrocytes. Endochondral ossification during development in these mice was associated with almost normal chondrocyte proliferation, significantly delayed chondrocyte hypertrophy, and thin trabecular bone. The reduced population of hypertrophic chondrocytes after birth seemed to be related to impaired bone growth and formation. Organ culture of cartilage rudiments showed that chondrocyte hypertrophy induced by BMP2 was inhibited in cartilage prepared from Smad6 transgenic mice. We then generated transgenic mice overexpressing Smurf1 in chondrocytes. Abnormalities were undetectable in Smurf1 transgenic mice. Mating Smad6 and Smurf1 transgenic mice produced double-transgenic pups with more delayed endochondral ossification than Smad6 transgenic mice. These results provided evidence that Smurf1 supports Smad6 function in vivo. PMID:15123739

  12. Utrophin up-regulation by an artificial transcription factor in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Elisabetta Mattei

    2007-08-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter "A". Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.

  13. TRANSGENIC STRATEGY FOR IDENTIFYING SYNAPTIC CONNECTIONS IN MICE BY FLUORESCENCE COMPLEMENTATION (GRASP

    Directory of Open Access Journals (Sweden)

    Masahito eYamagata

    2012-02-01

    Full Text Available In the "GFP reconstitution across synaptic partners" (GRASP method, non-fluorescent fragments of GFP are expressed in two different neurons; the fragments self-assemble at synapses between the two to form a fluorophore. GRASP has proven useful for light microscopic identification of synapses in two invertebrate species, Caenorhabditis elegans and Drosophila melanogaster, but has not yet been applied to vertebrates. Here, we describe GRASP constructs that function in mammalian cells and implement a transgenic strategy in which a Cre-dependent gene switch leads to expression of the two fragments in mutually exclusive neuronal subsets in mice. Using a transgenic line that expresses Cre selectively in rod photoreceptors, we demonstrate labeling of synapses in the outer plexiform layer of the retina. Labeling is specific, in that synapses made by rods remain labeled for at least 6 months whereas nearby synapses made by intercalated cone photoreceptors on many of the same interneurons remain unlabeled. We also generated antisera that label reconstituted GFP but neither fragment in order to amplify the GRASP signal and thereby increase the sensitivity of the method.

  14. Adenohypophysial changes in mice transgenic for human growth hormone-releasing factor

    DEFF Research Database (Denmark)

    Stefaneanu, L; Kovacs, K; Horvath, E

    1989-01-01

    The effect of protracted GH-releasing factor (GRF) stimulation on adenohypophysial morphology was investigated in six mice transgenic for human GRF (hGRF). All animals had significantly higher plasma levels of GH and GRF and greater body weights than controls. Eight-month-old mice were killed...... of their ultrastructural features, contained secretory granules heavily labeled for GH by immunogold technique; PRL labeling varied from cell to cell, with the predominance of a weak immunostaining and was colocalized with GH in secretory granules. These results indicate that chronic exposure to GRF excess leads...

  15. Three-dimensional MR microscopy of a transgenic mouse model of dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Sze, R.W.; Strife, J.L. [Dept. of Radiology, Children' s Hospital Medical Center, Cincinnati, OH (United States); Chan, C.B.; Sanbe, A.; Robbins, J. [Div. of Molecular Cardiovascular Biology, Department of Pediatrics, Children' s Hospital Research Foundation, Cincinnati, OH (United States); Dardzinski, B.J.; Dunn, S.; Schmithorst, V.; Holland, S.K. [Imaging Research Center, Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2001-02-01

    Background. Scientists are now able to alter the genetics of vertebrate embryos routinely to produce animal models of human developmental diseases. However, our understanding of structural changes in these animal models is limited by current methodologies. Histological techniques, although providing great anatomic detail, display only ''static'' data (one time point only) in two dimensions. Ultrasound may be used to generate continuous time course data, but is limited by interobserver variation, limited acoustic windows, and relatively low resolution. Objective. To apply the high resolution, non-destructive, and three-dimensional acquisition capabilities of magnetic resonance (MR) microscopy to compare the hearts of normal mice versus an established transgenic mouse model of dilated cardiomyopathy. Materials and methods. Transgenic mice exhibiting dilated cardiomyopathy were developed via the introduction of a mutated, heart-specific gene (myosin light chain). Post-mortem cardiac imaging was performed on the transgenic mice and normal controls. MR imaging was performed on a Bruker 3T imaging magnet using a custom radiofrequency coil following contrast perfusion of the atrial and ventricular chambers. Image resolution was 156 {mu}m isotropic voxels. MR images were compared to gross pathologic specimens. Imaging data were post-processed using custom software to calculate the volumes of the atria and ventricles and to display the three-dimensional morphology of the chambers and myocardium. Results. Of the seven mice scanned, four exhibited normal right atrial (average = 14.8 {mu}l {+-} 1.4), left atrial (average = 8.5 {mu}l {+-} 0.3), right ventricular (average = 12.9 {mu}l {+-} 2.7), and left ventricular (average 3.3 {mu}l {+-} 0.5) volumes. Three mice exhibited dilatation of the right and left cardiac chambers (RA average = 23.9 {mu}l {+-} 5.6; LA average = 15.9 {mu}l {+-} 4.8; RV average = 32.5 {mu}l {+-} 6.8; LV average 24.0 {mu}l {+-} 1.4

  16. ADAM12-S stimulates bone growth in transgenic mice by modulating chondrocyte proliferation and maturation

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Albrechtsen, Reidar; Rudkjaer, Lise

    2006-01-01

    ADAM12-S transgenic mice exhibit a pronounced increase in the length of bones, such as femur, tibia, and vertebrae. The effect of ADAM12-S on longitudinal bone growth involves the modulation of chondrocyte proliferation and maturation, likely through proteolytic activities and altered cell......: Transgenic mice expressing the secreted form of human ADAM12, ADAM12-S, or a truncated metalloprotease-deficient form of ADAM12-S in the circulation were used to study the effects of ADAM12 on the skeleton. In addition, murine chondrocyte cultures were used to study the effect of ADAM12-S on cell...... studies showed that ADAM12-S inhibits chondrocyte adhesion to fibronectin and collagen type II. CONCLUSIONS: ADAM12-S stimulates bone growth in mice by modulating chondrocyte proliferation and maturation through mechanisms probably involving both metalloprotease and adhesion activities....

  17. Growth hormone (GH) binding and effects of GH analogs in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Bartke, A.; Steger, R.W. [Southern Illinois Univ., Carbondale, IL (United States); Turyn, D. [UBA-CONICET, Buenos Aires (Argentina)] [and others

    1994-12-31

    Overexpression of human (h) or bovine (b) growth hormone (GH) in transgenic mice is associated with marked (2- to 12-fold) and significant increase in hepatic binding of GH and prolactin (PRL). This is due to an increase in the number of GH and PRL receptors (GHR, PRLR) per mg of microsomal protein without changes in binding affinity. Comparison of results obtained in transgenic animals expressing bGH with a mouse metallothionein (MT) or a rat phosphoenolpyruvate carboxykinase (PEPCK) promoter suggests that effects of bGH on hepatic GHR and PRLR do not require GH overexpression during fetal life and, within the dose range tested, the effects on PRLR are not dose dependent. The increase in hepatic GHR was accompanied by significant increases in plasma GH-binding protein (GHBP) and in mean residence time of injected GH. Thus life-long elevation of peripheral GH levels alters the availability of both free GH and GHR. Site-directed in vitro mutagenesis was used to produce hGH and bGH analogs mutated within one of the sites involved in binding to GHR and PRLR. Mutating hGH to produce amino acid identity with bGH at Position 11, 18 (within Helix 1), 57, or 60 (within the loop between Helix 1 and 2) did not affect binding to GHR in vitro, or somatotropic activity in transgenic mice in vivo but reduced lactogenic activity in Nb{sub 2} cells by 22%-45%. Mutations of bGH designed to produce amino acid identity with hGH at one to four of the corresponding positions in the bGH molecule did not interfere with binding to GHR or somatotropic activity in vivo, and failed to produce significant binding to PRLR but resulted in alterations in the effects on the hypothalamic and anterior pituitary function in transgenic mice. Apparently region(s) outside the domains examined are essential for lactogenic activity of hGH, and different portions of the GH molecule are responsible for its diverse actions in vivo. 35 refs.

  18. Extraneural manifestations of prion infection in GPI-anchorless transgenic mice

    International Nuclear Information System (INIS)

    Lee, Andrew M.; Paulsson, Johan F.; Cruite, Justin; Andaya, Abegail A.; Trifilo, Matthew J.; Oldstone, Michael B.A.

    2011-01-01

    Earlier studies indicated that transgenic (tg) mice engineered to express prion protein (PrP) lacking the glycophosphatidylinositol (GPI -/- ) membrane anchor formed abnormal proteinase-resistant prion (PrPsc) amyloid deposits in their brains and hearts when infected with the RML strain of murine scrapie. In contrast, RML scrapie infection of normal mice with a GPI-anchored PrP did not deposit amyloid with PrPsc in the brain or the heart. Here we report that scrapie-infected GPI -/- PrP tg mice also deposit PrP and transmissible infectious material in the gut, kidneys, and islets of Langerhans. Similar to previously reported amyloid deposits in the brain and heart, amyloid deposits were found in the gut; however, no amyloid deposited in the islets. By high-resolution electron microscopy, we show PrP is located primarily in α cells and also β cells. Islets contain abundant insulin and there is no abnormality in glucose metabolism in infected GPI -/- PrP tg mice.

  19. Transgenic overexpression of p23 induces spontaneous hydronephrosis in mice

    Science.gov (United States)

    Lee, Jaehoon; Kim, Hye Jin; Moon, Jung Ah; Sung, Young Hoon; Baek, In-Jeoung; Roh, Jae-il; Ha, Na Young; Kim, Seung-Yeon; Bahk, Young Yil; Lee, Jong Eun; Yoo, Tae Hyun; Lee, Han-Woong

    2011-01-01

    p23 is a cochaperone of heat shock protein 90 and also interacts functionally with numerous steroid receptors and kinases. However, the in vivo roles of p23 remain unclear. To explore its in vivo function, we generated the transgenic (TG) mice ubiquitously overexpressing p23. The p23 TG mice spontaneously developed kidney abnormalities closely resembling human hydronephrosis. Consistently, kidney functions deteriorate significantly in the p23 TG mice compared to their wild-type (WT) littermates. Furthermore, the expression of target genes for aryl hydrocarbon receptor (AhR), such as cytochrome P450, family 1, subfamily A, polypeptide 1 (Cyp1A1) and cytochrome P450, family 1, subfamily B, polypeptide 1 (Cyp1B1), were induced in the kidneys of the p23 TG mice. These results indicate that the overexpression of p23 contributes to the development of hydronephrosis through the upregulation of the AhR pathway in vivo. PMID:21323770

  20. Transgenic Mice Over-Expressing RBP4 Have RBP4-Dependent and Light-Independent Retinal Degeneration.

    Science.gov (United States)

    Du, Mei; Phelps, Eric; Balangue, Michael J; Dockins, Aaron; Moiseyev, Gennadiy; Shin, Younghwa; Kane, Shelley; Otalora, Laura; Ma, Jian-Xing; Farjo, Rafal; Farjo, Krysten M

    2017-08-01

    Transgenic mice overexpressing serum retinol-binding protein (RBP4-Tg) develop progressive retinal degeneration, characterized by microglia activation, yet the precise mechanisms underlying retinal degeneration are unclear. Previous studies showed RBP4-Tg mice have normal ocular retinoid levels, suggesting that degeneration is independent of the retinoid visual cycle or light exposure. The present study addresses whether retinal degeneration is light-dependent and RBP4-dependent by testing the effects of dark-rearing and pharmacological lowering of serum RBP4 levels, respectively. RBP4-Tg mice reared on normal mouse chow in normal cyclic light conditions were directly compared to RBP4-Tg mice exposed to chow supplemented with the RBP4-lowering compound A1120 or dark-rearing conditions. Quantitative retinal histological analysis was conducted to assess retinal degeneration, and electroretinography (ERG) and optokinetic tracking (OKT) tests were performed to assess retinal and visual function. Ocular retinoids and bis-retinoid A2E were quantified. Dark-rearing RBP4-Tg mice effectively reduced ocular bis-retinoid A2E levels, but had no significant effect on retinal degeneration or dysfunction in RBP4-Tg mice, demonstrating that retinal degeneration is light-independent. A1120 treatment lowered serum RBP4 levels similar to wild-type mice, and prevented structural retinal degeneration. However, A1120 treatment did not prevent retinal dysfunction in RBP4-Tg mice. Moreover, RBP4-Tg mice on A1120 diet had significant worsening of OKT response and loss of cone photoreceptors compared to RBP4-Tg mice on normal chow. This may be related to the very significant reduction in retinyl ester levels in the retina of mice on A1120-supplemented diet. Retinal degeneration in RBP4-Tg mice is RBP4-dependent and light-independent.

  1. Disruption of Mouse Cytochrome P450 4f14 (Cyp4f14 Gene) Causes Severe Perturbations in Vitamin E Metabolism*

    Science.gov (United States)

    Bardowell, Sabrina A.; Duan, Faping; Manor, Danny; Swanson, Joy E.; Parker, Robert S.

    2012-01-01

    Vitamin E is a family of naturally occurring and structurally related lipophilic antioxidants, one of which, α-tocopherol (α-TOH), selectively accumulates in vertebrate tissues. The ω-hydroxylase cytochrome P450–4F2 (CYP4F2) is the only human enzyme shown to metabolize vitamin E. Using cDNA cloning, cell culture expression, and activity assays, we identified Cyp4f14 as a functional murine ortholog of CYP4F2. We then investigated the effect of Cyp4f14 deletion on vitamin E metabolism and status in vivo. Cyp4f14-null mice exhibited substrate-specific reductions in liver microsomal vitamin E-ω-hydroxylase activity ranging from 93% (γ-TOH) to 48% (γ-tocotrienol). In vivo data obtained from metabolic cage studies showed whole-body reductions in metabolism of γ-TOH of 90% and of 68% for δ- and α-TOH. This metabolic deficit in Cyp4f14−/− mice was partially offset by increased fecal excretion of nonmetabolized tocopherols and of novel ω-1- and ω-2-hydroxytocopherols. 12′-OH-γ-TOH represented 41% of whole-body production of γ-TOH metabolites in Cyp4f14−/− mice fed a soybean oil diet. Despite these counterbalancing mechanisms, Cyp4f14-null mice fed this diet for 6 weeks hyper-accumulated γ-TOH (2-fold increase over wild-type littermates) in all tissues and appeared normal. We conclude that CYP4F14 is the major but not the only vitamin E-ω-hydroxylase in mice. Its disruption significantly impairs whole-body vitamin E metabolism and alters the widely conserved phenotype of preferential tissue deposition of α-TOH. This model animal and its derivatives will be valuable in determining the biological actions of specific tocopherols and tocotrienols in vivo. PMID:22665481

  2. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1.

    Directory of Open Access Journals (Sweden)

    Sandra J Feeney

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.

  3. Excessive growth hormone expression in male GH transgenic mice adversely alters bone architecture and mechanical strength.

    Science.gov (United States)

    Lim, S V; Marenzana, M; Hopkinson, M; List, E O; Kopchick, J J; Pereira, M; Javaheri, B; Roux, J P; Chavassieux, P; Korbonits, M; Chenu, C

    2015-04-01

    Patients with acromegaly have a higher prevalence of vertebral fractures despite normal bone mineral density (BMD), suggesting that GH overexpression has adverse effects on skeletal architecture and strength. We used giant bovine GH (bGH) transgenic mice to analyze the effects of high serum GH levels on BMD, architecture, and mechanical strength. Five-month-old hemizygous male bGH mice were compared with age- and sex-matched nontransgenic littermates controls (NT; n=16/group). Bone architecture and BMD were analyzed in tibia and lumbar vertebrae using microcomputed tomography. Femora were tested to failure using three-point bending and bone cellular activity determined by bone histomorphometry. bGH transgenic mice displayed significant increases in body weight and bone lengths. bGH tibia showed decreases in trabecular bone volume fraction, thickness, and number compared with NT ones, whereas trabecular pattern factor and structure model index were significantly increased, indicating deterioration in bone structure. Although cortical tissue perimeter was increased in transgenic mice, cortical thickness was reduced. bGH mice showed similar trabecular BMD but reduced trabecular thickness in lumbar vertebra relative to controls. Cortical BMD and thickness were significantly reduced in bGH lumbar vertebra. Mechanical testing of femora confirmed that bGH femora have decreased intrinsic mechanical properties compared with NT ones. Bone turnover is increased in favor of bone resorption in bGH tibia and vertebra compared with controls, and serum PTH levels is also enhanced in bGH mice. These data collectively suggest that high serum GH levels negatively affect bone architecture and quality at multiple skeletal sites.

  4. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young-Mi, E-mail: youngmi_ham@hms.harvard.edu [College of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States); Mahoney, Sarah Jane [Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-06-10

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors.

  5. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    International Nuclear Information System (INIS)

    Ham, Young-Mi; Mahoney, Sarah Jane

    2013-01-01

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors

  6. [Effects of grain-sized moxibustion on learning and memory ability and amyloid deposition of transgenic Alzheimer's disease mice].

    Science.gov (United States)

    Yu, Jing; Chu, Jia-Mei; Gao, Ling-Ai; Zhang, Yong-Sheng; Bao, Ye-Hua

    2014-02-01

    To observe the effect of grain-sized moxibustion at "Xinshu" (BL 15) and "Shenshu" (BL 23) on memory-learning ability and amyloid deposition in transgenic Alzheimer's disease (AD) mice. seventeen amyloid precursor protein (APP)/presenilin (PS)1 (APP+/PS 1+) double transgenic 6799 mice aged 3-4 weeks were randomly divided into model group (n = 9) and moxibustion group (n = 8). Nine wide-type (C 57 BL/6 J) female mice were used as the normal control group. Moxibustion (ignited grain-sized moxa cone) was applied to bilateral "Xinshu" (BL 15) and "Shenshu" (BL 23) for about 30 s, once a day for 9 courses (10 days constitute a therapeutic course, with 2 days' break between every two courses). Morris water maze tests were performed to detect the mice's learning-memory ability. The alterations of beta-amyloid deposition (number of the positive plaques) in the cerebral cortex and hippocampus were detected by using an imaging analysis system following Congo red staining of the cerebral tissue sections. Compared with the normal group, the average escape latency of place navigation tests was significantly increased (P memory ability after moxibustion. Results of Congo red staining of the cerebral tissue showed that there were many irregular, uneven staining positive plaques in the cerebral cortex and hippocampus of AD mice in the model group. Compared with the model group, the positive plaque numbers in both cerebral cortex and hippocampus were considerably reduced in the moxibustion group (P memory ability and restrain the formation of amyloid deposition in AD mice.

  7. IGF-II transgenic mice display increased aberrant colon crypt multiplicity and tumor volume after 1,2-dimethylhydrazine treatment

    Directory of Open Access Journals (Sweden)

    Oesterle Doris

    2006-01-01

    Full Text Available Abstract In colorectal cancer insulin-like growth factor II (IGF-II is frequently overexpressed. To evaluate, whether IGF-II affects different stages of tumorigenesis, we induced neoplastic alterations in the colon of wild-type and IGF-II transgenic mice using 1,2-dimethylhydrazine (DMH. Aberrant crypt foci (ACF served as markers of early lesions in the colonic mucosa, whereas adenomas and carcinomas characterized the endpoints of tumor development. DMH-treatment led initially to significantly more ACF in IGF-II transgenic than in wild-type mice. This increase in ACF was especially prominent for those consisting of ≥three aberrant crypts (AC. Nevertheless, adenomas and adenocarcinomas of the colon, present after 34 weeks in both genetic groups, were not found at different frequency. Tumor volumes, however, were significantly higher in IGF-II transgenic mice and correlated with serum IGF-II levels. Immunohistochemical staining for markers of proliferation and apoptosis revealed increased cell proliferation rates in tumors of IGF-II transgenic mice without significant affection of apoptosis. Increased proliferation was accompanied by elevated localization of β-catenin in the cytosol and cell nuclei and reduced appearance at the inner plasma membrane. In conclusion, we provide evidence that IGF-II, via activation of the β-catenin signaling cascade, promotes growth of ACF and tumors without affecting tumor numbers.

  8. Effects of (-)Epicatechin on the Pathology of APP/PS1 Transgenic Mice.

    Science.gov (United States)

    Zeng, Yue-Qin; Wang, Yan-Jiang; Zhou, Xin-Fu

    2014-01-01

    Alzheimer's disease (AD) is a multifactorial disorder characterized by the progressive deterioration of neuronal networks. The clearance of Aβ from the brain and anti-inflammation are potential important strategies to prevent and treat disease. In a previous study, we demonstrated the grape seed extract (GSE) could reduce brain Aβ burden and microglia activation, but which polyphenol plays a major role in these events is not known. Here, we tested pharmacological effects of (-)epicatechin, one principle polyphenol compound in GSE, on transgenic AD mice. APP/PS1 transgenic mice were fed with (-)epicatechin diet (40 mg/kg/day) and curcumin diet (47 mg/kg/day) at 3 months of age for 9 months, the function of liver, Aβ levels in the brain and serum, AD-type neuropathology, plasma levels of inflammatory cytokines were measured. Toward the end of the experiment, we found long-term feeding of (-)epicatechin diet was well tolerated without fatality, changes in food consumption, body weight, or liver function. (-)Epicatechin significantly reduced total Aβ in brain and serum by 39 and 40%, respectively, compared with control diet. Microgliosis and astrocytosis in the brain of Alzheimer's mice were also reduced by 38 and 35%, respectively. The (-)epicatechin diet did not alter learning and memory behaviors in AD mice. This study has provided evidence on the beneficial role of (-)epicatechin in ameliorating amyloid-induced AD-like pathology in AD mice, but the impact of (-)epicatechin on tau pathology is not clear, also the mechanism needs further research.

  9. Effects of (-epicatechin on the pathology of APP/PS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Yueqin eZeng

    2014-05-01

    Full Text Available Background: Alzheimer’s disease is a multifactorial disorder characterized by the progressive deterioration of neuronal networks. The clearance of Aβ from the brain and anti-inflammation are potential important strategies to prevent and treat disease. In a previous study, we demonstrated the grape seed extract (GSE could reduce brain Aβ burden and microglia activation,but which polyphenol plays a major role in these events is not known. Here we tested pharmacological effects of (-epicatechin, one principle polyphenol compound in GSE, on transgenic AD mice.Methods: APP/PS1 transgenic mice were fed with (-epicatechin diet(40mg/kg/d and curcumin diet (47mg/kg/d at 3 months of age for 9 months, the function of liver, Aβ levels in the brain and serum, AD-type neuropathology, plasma levels of inflammatory cytokines were measured.Results: Towards the end of the experiment we found long-term feeding of (- epicatechin diet was well tolerated without fatality, changes in food consumption, body weight or liver function. (-Epicatechin significantly reduced total Aβ in brain and serum by 39% and 40%, respectively, compared with control diet. Microgliosis and astrocytosis in the brain of Alzheimer’s mice were also reduced by 38% and 35%, respectively. The (-epicatechin diet did not alter learning and memory behaviors in AD mice.Conclusions: This study has provided evidence on the beneficial role of (-epicatechin in ameliorating amyloid-induced AD-like pathology in AD mice, but the impact of (-epicatechin on tau pathology is not clear, also the mechanism needs further research.

  10. DNA mismatch repair deficiency accelerates lung neoplasm development in K-rasLA1/+ mice: a brief report

    International Nuclear Information System (INIS)

    Downey, Charlene M; Jirik, Frank R

    2015-01-01

    Inherited as well as acquired deficiencies in specific DNA mismatch repair (MMR) components are associated with the development of a wide range of benign and malignant neoplasms. Loss of key members such as MSH2 and MLH1 severely cripples the ability of the cell to recognize and correct such lesions as base:base mismatches and replicative DNA polymerase errors such as slippages at repetitive sequences. Genomic instability resulting from MMR deficiency not only predisposes cells to malignant transformation but may also promote tumor progression. To test the latter, we interbred Msh2 −/− mice with the K-ras LA1/+ transgenic line that spontaneously develops a range of premalignant and malignant lung lesions. Compared to K-ras LA1/+ mice, K-ras LA1/+ ; Msh2 −/− mice developed lung adenomas and adenocarcinomas at an increased frequency and also demonstrated evidence of accelerated adenocarcinoma growth. Since MMR defects have been identified in some human lung cancers, the mutant mice may not only be of preclinical utility but they will also be useful in identifying gene alterations able to act in concert with Kras mutants to promote tumor progression

  11. Neuronal erythropoietin overexpression is protective against kanamycin-induced hearing loss in mice.

    Science.gov (United States)

    Bächinger, David; Horvath, Lukas; Eckhard, Andreas; Goosmann, Madeline M; Honegger, Tim; Gassmann, Max; Vogel, Johannes; Naldi, Arianne Monge

    2018-07-01

    Aminoglycosides have detrimental effects on the hair cells of the inner ear, yet these agents indisputably are one of the cornerstones in antibiotic therapy. Hence, there is a demand for strategies to prevent aminoglycoside-induced ototoxicity, which are not available today. In vitro data suggests that the pleiotropic growth factor erythropoietin (EPO) is neuroprotective against aminoglycoside-induced hair cell loss. Here, we use a mouse model with EPO-overexpression in neuronal tissue to evaluate whether EPO could also in vivo protect from aminoglycoside-induced hearing loss. Auditory brainstem response (ABR) thresholds were measured in 12-weeks-old mice before and after treatment with kanamycin for 15 days, which resulted in both C57BL/6 and EPO-transgenic animals in a high-frequency hearing loss. However, ABR threshold shifts in EPO-transgenic mice were significantly lower than in C57BL/6 mice (mean difference in ABR threshold shift 13.6 dB at 32 kHz, 95% CI 3.8-23.4 dB, p = 0.003). Correspondingly, quantification of hair cells and spiral ganglion neurons by immunofluorescence revealed that EPO-transgenic mice had a significantly lower hair cell and spiral ganglion neuron loss than C57BL/6 mice. In conclusion, neuronal overexpression of EPO is protective against aminoglycoside-induce hearing loss, which is in accordance with its known neuroprotective effects in other organs, such as the eye or the brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Staging of Alzheimer's Pathology in Triple Transgenic Mice: A Light and Electron Microscopic Analysis

    Directory of Open Access Journals (Sweden)

    Kwang-Jin Oh

    2010-01-01

    , and TauP301L gene mutations, remains unclear. At 3 weeks of age, AT180, Alz50, MC1, AT8, and PHF-1 intraneuronal immunoreactivity appeared in the amygdala and hippocampus and at later ages in the cortex of 3xTg-AD mice. AT8 and PHF-1 staining was fixation dependent in young mutant mice. 6E10 staining was seen at all ages. Fluorescent immunomicroscopy revealed CA1 neurons dual stained for 6E10 and Alz50 and single Alz50 immunoreactive neurons in the subiculum at 3 weeks and continuing to 20 months. Although electron microscopy confirmed intraneuronal cytoplasmic Alz50, AT8, and 6E10 reaction product in younger 3xTg-AD mice, straight filaments appeared at 23 months of age in female mice. The present data suggest that other age-related biochemical mechanisms in addition to early intraneuronal accumulation of 6E10 and tau underlie the formation of tau filaments in 3xTg-AD mice.

  13. Generation and Characterization of a Transgenic Mouse Carrying a Functional Human β-Globin Gene with the IVSI-6 Thalassemia Mutation

    Directory of Open Access Journals (Sweden)

    Giulia Breveglieri

    2015-01-01

    Full Text Available Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6 carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a the transgenic integration region is located in mouse chromosome 7; (b the expression of the transgene is tissue specific; (c as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin αmu-globin2/βhu-globin2 and, more importantly, (d the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia.

  14. Generation and Characterization of a Transgenic Mouse Carrying a Functional Human β-Globin Gene with the IVSI-6 Thalassemia Mutation

    Science.gov (United States)

    Mancini, Irene; Lampronti, Ilaria; Salvatori, Francesca; Fabbri, Enrica; Zuccato, Cristina; Cosenza, Lucia C.; Montagner, Giulia; Borgatti, Monica; Altruda, Fiorella; Fagoonee, Sharmila; Carandina, Gianni; Aiello, Vincenzo; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece) are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6) carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a) the transgenic integration region is located in mouse chromosome 7; (b) the expression of the transgene is tissue specific; (c) as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin mu α-globin2/hu β-globin2 and, more importantly, (d) the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia. PMID:26097845

  15. Promoting scopolamine biosynthesis in transgenic Atropa belladonna plants with pmt and h6h overexpression under field conditions.

    Science.gov (United States)

    Xia, Ke; Liu, Xiaoqiang; Zhang, Qiaozhuo; Qiang, Wei; Guo, Jianjun; Lan, Xiaozhong; Chen, Min; Liao, Zhihua

    2016-09-01

    Atropa belladonna is one of the most important plant sources for producing pharmaceutical tropane alkaloids (TAs). T1 progeny of transgenic A. belladonna, in which putrescine N-methyltransferase (EC. 2.1.1.53) from Nicotiana tabacum (NtPMT) and hyoscyamine 6β-hydroxylase (EC. 1.14.11.14) from Hyoscyamus niger (HnH6H) were overexpressed, were established to investigate TA biosynthesis and distribution in ripe fruits, leaves, stems, primary roots and secondary roots under field conditions. Both NtPMT and HnH6H were detected at the transcriptional level in transgenic plants, whereas they were not detected in wild-type plants. The transgenes did not influence the root-specific expression patterns of endogenous TA biosynthetic genes in A. belladonna. All four endogenous TA biosynthetic genes (AbPMT, AbTRI, AbCYP80F1 and AbH6H) had the highest/exclusive expression levels in secondary roots, suggesting that TAs were mainly synthesized in secondary roots. T1 progeny of transgenic A. belladonna showed an impressive scopolamine-rich chemotype that greatly improved the pharmaceutical value of A. belladonna. The higher efficiency of hyoscyamine conversion was found in aerial than in underground parts. In aerial parts of transgenic plants, hyoscyamine was totally converted to downstream alkaloids, especially scopolamine. Hyoscyamine, anisodamine and scopolamine were detected in underground parts, but scopolamine and anisodamine were more abundant than hyoscyamine. The exclusively higher levels of anisodamine in roots suggested that it might be difficult for its translocation from root to aerial organs. T1 progeny of transgenic A. belladonna, which produces scopolamine at very high levels (2.94-5.13 mg g(-1)) in field conditions, can provide more valuable plant materials for scopolamine production. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. The food additive vanillic acid controls transgene expression in mammalian cells and mice.

    Science.gov (United States)

    Gitzinger, Marc; Kemmer, Christian; Fluri, David A; El-Baba, Marie Daoud; Weber, Wilfried; Fussenegger, Martin

    2012-03-01

    Trigger-inducible transcription-control devices that reversibly fine-tune transgene expression in response to molecular cues have significantly advanced the rational reprogramming of mammalian cells. When designed for use in future gene- and cell-based therapies the trigger molecules have to be carefully chosen in order to provide maximum specificity, minimal side-effects and optimal pharmacokinetics in a mammalian organism. Capitalizing on control components that enable Caulobacter crescentus to metabolize vanillic acid originating from lignin degradation that occurs in its oligotrophic freshwater habitat, we have designed synthetic devices that specifically adjust transgene expression in mammalian cells when exposed to vanillic acid. Even in mice transgene expression was robust, precise and tunable in response to vanillic acid. As a licensed food additive that is regularly consumed by humans via flavoured convenience food and specific fresh vegetable and fruits, vanillic acid can be considered as a safe trigger molecule that could be used for diet-controlled transgene expression in future gene- and cell-based therapies.

  17. Divergent systemic and local inflammatory response to hind limb demand ischemia in wild-type and ApoE-/- mice.

    Science.gov (United States)

    Crawford, Robert S; Albadawi, Hassan; Robaldo, Alessandro; Peck, Michael A; Abularrage, Christopher J; Yoo, Hyung-Jin; Lamuraglia, Glenn M; Watkins, Michael T

    2013-08-01

    We designed studies to determine whether the ApoE-/- phenotype modulates the local skeletal muscle and systemic inflammatory (plasma) responses to lower extremity demand ischemia. The ApoE-/- phenotype is an experimental model for atherosclerosis in humans. Aged female ApoE-/- and C57BL6 mice underwent femoral artery ligation, then were divided into sedentary and demand ischemia (exercise) groups on day 14. We assessed baseline and postexercise limb perfusion and hind limb function. On day 14, animals in the demand ischemia group underwent daily treadmill exercise through day 28. Sedentary mice were not exercised. On day 28, we harvested plasma and skeletal muscle from ischemic limbs from sedentary and exercised mice. We assayed muscle for angiogenic and proinflammatory proteins, markers of skeletal muscle regeneration, and evidence of skeletal muscle fiber maturation. Hind limb ischemia was similar in ApoE-/- and C57 mice before the onset of exercise. Under sedentary conditions, plasma vascular endothelial cell growth factor and interleukin-6, but not keratinocyte chemoattractant factor (KC) or macrophage inflammatory protein-2 (MIP-2), were higher in ApoE (P factor, KC, and MIP-2, but not IL-6, were lower in ApoE (P demand ischemia in the C57BL6 mice, compared with the ApoE-/- mice (P = 0.01). Demand limb ischemia in the ApoE-/- phenotype exacerbated the expression of select systemic cytokines in plasma and blunted indices of muscle regeneration. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Inhibition of Bifidobacterium Cell Wall 51.74 kDa Adhesin Isolated from Infants Feces Towards Adhesion of Enteric Phatogen E. coli on Enterocyte Balb/C Mice

    Directory of Open Access Journals (Sweden)

    I Sukrama

    2012-01-01

    Full Text Available Objectives: To determine 51.74 kDa adhesin of Bifidobacterium sp cell wall isolated from infants feces as an anti adhesion of E. coli on enterocyte mice. Methods: Randomized Posttest-Only Control Group Design was employed to investigate adherence ability of this adhesin towards E.coli adhesion on mice entherocyte. Results: In this research, it was obtained, that the 51.74 kDa adhesin cell wall of Bifidobacterium sp has an ability to inhibit adhesion of E. coli on mice enterocyte. The ability was increased as an increase of adhsein concentration. Conclusions: that can be drawn from this research is the finding of 51.74 kDa adhesin cell wall of Bifidobacterium sp isolated from infants feces that can inhibit adhseion of E. coli on mice enterocyte. Future work that can be carried out are further researches concerning whether these protein can be applied to inhibit adherence of other pathogen bacteria

  19. A Genome-wide Gene-Expression Analysis and Database in Transgenic Mice during Development of Amyloid or Tau Pathology

    Directory of Open Access Journals (Sweden)

    Mar Matarin

    2015-02-01

    Full Text Available We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of “amyloid” transgenic mice (mutant human APP, PSEN1, or APP/PSEN1 and “TAU” transgenic mice (mutant human MAPT gene. Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. Network analysis of immune gene modules revealed six hub genes in hippocampus of amyloid mice, four in common with cortex. The hippocampal network in TAU mice was similar except that Trem2 had hub status only in amyloid mice. The cortical network of TAU mice was entirely different with more hub genes and few in common with the other networks, suggesting reasons for specificity of cortical dysfunction in FTDP17. This Resource opens up many areas for investigation. All data are available and searchable at http://www.mouseac.org.

  20. AbetaPP induces cdk5-dependent tau hyperphosphorylation in transgenic mice Tg2576.

    Science.gov (United States)

    Otth, Carola; Concha, Ilona I; Arendt, Thomas; Stieler, Jens; Schliebs, Reinhard; González-Billault, Christian; Maccioni, Ricardo B

    2002-10-01

    Previous studies of Abeta-induced neuronal damage of hippocampal cells in culture have provided strong evidence that deregulation of the Cdk5/p35 kinase system is involved in the neurodegeneration pathway. Cdk5 inhibitors and antisense probes neuroprotected hippocampal cells against the neurotoxic action of Abeta. To further investigate the mechanisms underlying the participation of Cdk5 in neuronal degeneration, the transgenic mouse containing the Swedish mutations, Tg2576, was used as an animal model. Immunocytochemical studies using anti-Abeta(1-17) antibody evidenced the presence of labeled small-clustered core plaques in the hippocampus and cortex of 18-month-old transgenic mice brains. The loss of granular cells without a compressed appearance was detected in the vicinity of the cores in the dentate gyrus of the hippocampus. Immunostaining of Tg2576 brain sections with antibodies AT8, PHF1 and GFAP labeled punctuate dystrophic neurites in and around the amyloid core. Reactive astrogliosis around the plaques in the hippocampus was also observed. Studies at the molecular level showed differences in the expression of the truncated Cdk5 activator p25 in the transgenic animal, as compared with wild type controls. However no differences in Cdk5 levels were detected, thus corroborating previous cellular findings. Interestingly, hyperphosphorylated tau epitopes were substantially increased as assessed with the AT8 and PHF1 antibodies, in agreement with the observation of a p25 increase in the transgenic animal. These observations strongly suggest that the increased exposure of Alzheimer's type tau phosphoepitopes in the transgenic mice correlated with deregulation of Cdk5 leading to an increase in p25 levels. These studies also provide further evidence on the links between extraneuronal amyloid deposition and tau pathology.

  1. Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur

    Energy Technology Data Exchange (ETDEWEB)

    Klebig, M.L.; Woychik, R.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Wilkinson, J.E. [Univ. of Tennessee, Knoxville, TN (United States); Geisler, J.G. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States)

    1995-05-23

    Mice that carry the lethal yellow (A{sup y}) or viable yellow (A{sup vy}) mutation, two dominant mutations of the agouti (a) gene in mouse chromosome 2, exhibit a phenotype that includes yellow fur, marked obesity, a form of type II diabetes associated with insulin resistance, and an increased susceptibility to tumor development. Molecular analyses of these and several other dominant {open_quotes}obese yellow{close_quotes} a-locus mutations suggested that ectopic expression of the normal agouti protein gives rise to this complex pleiotropic phenotype. We have now tested this hypothesis directly by generating transgenic mice that ectopically express an agouti cDNA clone encoding the normal agouti protein in all tissues examined. Transgenic mice of both sexes have yellow fur, become obese, and develop hyperinsulinemia. In addition, male transgenic mice develop hyperglycemia by 12-20 weeks of age. These results demonstrate conclusively that the ectopic agouti expression is responsible for most, if not all, of the phenotypic traits of the dominant, obese yellow mutants. 42 refs., 5 figs.

  2. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2.

    Directory of Open Access Journals (Sweden)

    David Ramonet

    2011-04-01

    Full Text Available Mutations in the leucine-rich repeat kinase 2 (LRRK2 gene cause late-onset, autosomal dominant familial Parkinson's disease (PD and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s through which familial mutations precipitate neuronal degeneration and PD.

  3. Expression Analysis of CB2-GFP BAC Transgenic Mice.

    Science.gov (United States)

    Schmöle, Anne-Caroline; Lundt, Ramona; Gennequin, Benjamin; Schrage, Hanna; Beins, Eva; Krämer, Alexandra; Zimmer, Till; Limmer, Andreas; Zimmer, Andreas; Otte, David-Marian

    2015-01-01

    The endocannabinoid system (ECS) is a retrograde messenger system, consisting of lipid signaling molecules that bind to at least two G-protein-coupled receptors, Cannabinoid receptor 1 and 2 (CB1 and 2). As CB2 is primarily expressed on immune cells such as B cells, T cells, macrophages, dendritic cells, and microglia, it is of great interest how CB2 contributes to immune cell development and function in health and disease. Here, understanding the mechanisms of CB2 involvement in immune-cell function as well as the trafficking and regulation of CB2 expressing cells are crucial issues. Up to now, CB2 antibodies produce unclear results, especially those targeting the murine protein. Therefore, we have generated BAC transgenic GFP reporter mice (CB2-GFPTg) to trace CB2 expression in vitro and in situ. Those mice express GFP under the CB2 promoter and display GFP expression paralleling CB2 expression on the transcript level in spleen, thymus and brain tissue. Furthermore, by using fluorescence techniques we show that the major sources for GFP-CB2 expression are B cells in spleen and blood and microglia in the brain. This novel CB2-GFP transgenic reporter mouse line represents a powerful resource to study CB2 expression in different cell types. Furthermore, it could be used for analyzing CB2-mediated mobilization and trafficking of immune cells as well as studying the fate of recruited immune cells in models of acute and chronic inflammation.

  4. Complex genomic rearrangement in CCS-LacZ transgenic mice.

    Science.gov (United States)

    Stroud, Dina Myers; Darrow, Bruce J; Kim, Sang Do; Zhang, Jie; Jongbloed, Monique R M; Rentschler, Stacey; Moskowitz, Ivan P G; Seidman, Jonathan; Fishman, Glenn I

    2007-02-01

    The cardiac conduction system (CCS)-lacZ insertional mouse mutant strain genetically labels the developing and mature CCS. This pattern of expression is presumed to reflect the site of transgene integration rather than regulatory elements within the transgene proper. We sought to characterize the genomic structure of the integration locus and identify nearby gene(s) that might potentially confer the observed CCS-specific transcription. We found rearrangement of chromosome 7 between regions D1 and E1 with altered transcription of multiple genes in the D1 region. Several lines of evidence suggested that regulatory elements from at least one gene, Slco3A1, influenced CCS-restricted reporter gene expression. In embryonic hearts, Slco3A1 was expressed in a spatial pattern similar to the CCS-lacZ transgene and was similarly neuregulin-responsive. At later stages, however, expression patterns of the transgene and Slco3A1 diverged, suggesting that the Slco3A1 locus may be necessary, but not sufficient to confer CCS-specific transgene expression in the CCS-lacZ line. (c) 2007 Wiley-Liss, Inc.

  5. Investigation of $K_{L,S} \\rightarrow \\pi^{+}\\pi^{-}e^{+}e^{-}$ decays

    CERN Document Server

    Lai, A; Arcidiacono, R; Barr, G; Becker, H G; Bevan, A; Biino, C; Bizzeti, A; Bocquet, G; Calvetti, M; Cartiglia, N; Casali, R; Ceccucci, Augusto; Cenci, P; Cerri, C; Cheshkov, C; Chollet, J C; Chèze, J B; Cirilli, M; Clemencic, M; Cogan, J; Collazuol, G; Contalbrigo, M; Costantini, F; Cundy, Donald C; Dalpiaz, Pietro; De Beer, M; Debu, P; Doble, Niels T; Dosanjh, R S; Duclos, J; Eppard, M; Falaleev, V P; Fantechi, R; Fayard, Louis; Fischer, G; Formica, A; Fox, H; Frabetti, P L; Gaponenko, A N; Gatignon, L; Gershon, T J; Gianoli, A; Giudici, Sergio; Gonidec, A; Gorini, B; Govi, G; Grafström, P; Granier de Cassagnac, R; Graziani, G; Hay, B; Holder, M; Holtz, K; Iacopini, E; Iconomidou-Fayard, L; Imbergamo, E; Jeitler, Manfred; Kalmus, George Ernest; Kalter, A; Kekelidze, V D; Khristov, P Z; Kleinknecht, K; Knowles, I; Koch, U; Kubischta, Werner; Köpke, L; Lazzeroni, C; Lenti, M; Lopes da Silva, P; Lubrano, P; Luitz, S; Madigozhin, D T; Maier, A; Mannelli, I; Marchetto, F; Markytan, Manfred; Marouelli, P; Marras, D; Martin, V; Martini, M; Masetti, L; Mazzucato, E; Menichetti, E; Mestvirishvili, A; Mikulec, I; Munday, D J; Nappi, A; Nassalski, J P; Needham, M D; Neuhofer, Günther; Norton, A; Ocariz, J; Olaiya, E; Palestini, S; Panzer-Steindel, B; Parker, M A; Pellmann, I A; Pepé, M; Pernicka, Manfred; Peters, A; Petrucci, F; Peyaud, B; Piccini, M; Pierazzini, G M; Potrebenikov, Yu K; Rondio, Ewa; Sacco, R; Savrié, M; Schmidt, S; Schué, Yu; Schönharting, V; Sozzi, M; Szleper, M; Tatishvili, G T; Taureg, Hans; Taurok, Anton; Turlay, René; Unal, G; Vallage, B; Velasco, M; Veltri, M; Wahl, H; Walker, A; Wanke, R; White, T O; Widhalm, L; Wingerter-Seez, I; Winhart, A; Wislicki, W; Wittgen, M; Wotton, S A; Wronka, S; Zinchenko, A I; Ziolkowski, M

    2003-01-01

    The K_L -> pi+pi-e+e- and K_S -> pi+pi-e+e- decay modes have been studied in detail using the NA48 detector at CERN SPS. Based on the data collected during the 1998 and 1999 run periods, a sample of 1162 K_L -> pi+pi-e+e- candidates has been observed with an expected background level of 36.9 events, yielding the branching ratio measurement BR(K_L -> pi+pi-e+e-)=(3.08+-0.20)x10^-7. The distribution of events in the sin\\phicos\\phi variable, where \\phi is the angle between the pi+pi- and the e+e- decay planes in the kaon centre of mass, is found to exhibit a large CP-violating asymmetry with the value A_\\phi(14.2+-3.6)%. For the K_S -> pi+pi-e+e- decay channel, 621 candidates have been identified in the 1999 data sample with an estimated background contribution of 0.7 event. The corresponding branching ratio has been determined to be BR(K_S -> pi+pi-e+e-)=(4.71+-0.32)x10^-5. The combined value of this measurement with the published 1998 result id BR(K_S -> pi+pi-e+e-)=4.69+-0.30)x10^-5. No asymmetry is observed ...

  6. Astrocytic Gap Junctional Communication is Reduced in Amyloid-β-Treated Cultured Astrocytes, but not in Alzheimer's Disease Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Nancy F Cruz

    2010-07-01

    Full Text Available Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-β on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β1-40 (1 μmol/l for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue, NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  7. Astrocytic gap junctional communication is reduced in amyloid-β-treated cultured astrocytes, but not in Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cruz, Nancy F; Ball, Kelly K; Dienel, Gerald A

    2010-08-17

    Alzheimer's disease is characterized by accumulation of amyloid deposits in brain, progressive cognitive deficits and reduced glucose utilization. Many consequences of the disease are attributed to neuronal dysfunction, but roles of astrocytes in its pathogenesis are not well understood. Astrocytes are extensively coupled via gap junctions, and abnormal trafficking of metabolites and signalling molecules within astrocytic syncytia could alter functional interactions among cells comprising the neurovascular unit. To evaluate the influence of amyloid-beta on astrocyte gap junctional communication, cultured astrocytes were treated with monomerized amyloid-β(1-40) (1 μmol/l) for intervals ranging from 2 h to 5 days, and the areas labelled by test compounds were determined by impaling a single astrocyte with a micropipette and diffusion of material into coupled cells. Amyloid-β-treated astrocytes had rapid, sustained 50-70% reductions in the area labelled by Lucifer Yellow, anionic Alexa Fluor® dyes and energy-related compounds, 6-NBDG (a fluorescent glucose analogue), NADH and NADPH. Amyloid-β treatment also caused a transient increase in oxidative stress. In striking contrast with these results, spreading of Lucifer Yellow within astrocytic networks in brain slices from three regions of 8.5-14-month-old control and transgenic Alzheimer's model mice was variable, labelling 10-2000 cells; there were no statistically significant differences in the number of dye-labelled cells among the groups or with age. Thus amyloid-induced dysfunction of gap junctional communication in cultured astrocytes does not reflect the maintenance of dye transfer through astrocytic syncytial networks in transgenic mice; the pathophysiology of Alzheimer's disease is not appropriately represented by the cell culture system.

  8. Traumatic brain injury precipitates cognitive impairment and extracellular Aβ aggregation in Alzheimer's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Naoki Tajiri

    Full Text Available Traumatic brain injury (TBI has become a signature wound of the wars in Iraq and Afghanistan. Many American soldiers, even those undiagnosed but likely suffering from mild TBI, display Alzheimer's disease (AD-like cognitive impairments, suggesting a pathological overlap between TBI and AD. This study examined the cognitive and neurohistological effects of TBI in presymptomatic APP/PS1 AD-transgenic mice. AD mice and non-transgenic (NT mice received an experimental TBI on the right parietal cortex using the controlled cortical impact model. Animals were trained in a water maze task for spatial memory before TBI, and then reevaluated in the same task at two and six weeks post-TBI. The results showed that AD mice with TBI made significantly more errors in the task than AD mice without TBI and NT mice regardless of TBI. A separate group of AD mice and NT mice were evaluated neurohistologically at six weeks after TBI. The number of extracellular beta-amyloid (Aβ-deposits significantly increased by at least one fold in the cortex of AD mice that received TBI compared to the NT mice that received TBI or the AD and NT mice that underwent sham surgery. A significant decrease in MAP2 positive cells, indicating neuronal loss, was observed in the cortex of both the AD and NT mice that received TBI compared to the AD and NT mice subjected to sham surgery. Similar changes in extracellular Aβ deposits and MAP2 positive cells were also seen in the hippocampus. These results demonstrate for the first time that TBI precipitates cognitive impairment in presymptomatic AD mice, while also confirming extracellular Aβ deposits following TBI. The recognition of this pathological link between TBI and AD should aid in developing novel treatments directed at abrogating cellular injury and extracellular Aβ deposition in the brain.

  9. Adipogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice - including relationship of sex differences

    International Nuclear Information System (INIS)

    Ogawa, Rei; Mizuno, Hiroshi; Watanabe, Atsushi; Migita, Makoto; Hyakusoku, Hiko; Shimada, Takashi

    2004-01-01

    We have previously demonstrated that adipose-derived stromal cells (ASCs) as well as bone marrow-derived stromal cells (BSCs) differentiate into a variety of cell lineages both in vitro and in vivo. Both types are considered to include mesenchymal stem cells. Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have also previously reported the plasticity of BSCs and ASCs. In this study, we focused on adipogenic differentiation in vitro by ASCs harvested from GFP transgenic mice. Moreover, preadipocytes and mature adipocytes were harvested at the same time, and the cells were cultured to compare them with ASCs. Inguinal fat pads from GFP transgenic mice were used for the isolation of ASCs, preadipocytes, and mature adipocytes. After expansion to three passages of ASCs, the cells were incubated in an adipogenic medium for two weeks. Adipogenic differentiation of ASCs was assessed by Oil Red O staining and the expression of the adipocyte specific peroxisome proliferative activated receptor γ2 (PPAR-γ2) gene. These ASCs stained positively, and expression of PPAR-γ2 was detected. Moreover, we also tried to characterize the influence of sex differences on the adipogenic differentiation of ASCs harvested from both male and female mice. This was assessed by the expression levels of the PPAR-γ2 gene using real-time PCR. The results showed that the expression levels of ASCs harvested from female mice were a maximum of 2.89 times greater than those harvested from male mice. This suggests that the adipogenic differentiation of ASCs is closely related to sex differences

  10. Exploration, anxiety, and spatial memory in transgenic anophthalmic mice.

    Science.gov (United States)

    Buhot, M C; Dubayle, D; Malleret, G; Javerzat, S; Segu, L

    2001-04-01

    Contradictory results are found in the literature concerning the role of vision in the perception of space or in spatial navigation, in part because of the lack of murine models of total blindness used so far. The authors evaluated the spatial abilities of anophthalmic transgenic mice. These mice did not differ qualitatively from their wild-type littermates in general locomotor activity, spontaneous alternation, object exploration, or anxiety, but their level of exploratory activity was generally lower. In the spatial version of the water maze, they displayed persistent thigmotaxic behavior and showed severe spatial learning impairments. However, their performances improved with training, suggesting that they may have acquired a rough representation of the platform position. These results suggest that modalities other than vision enable some degree of spatial processing in proximal and structured spaces but that vision is critical for accurate spatial navigation.

  11. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Nielsen, Boye Schnack; Frandsen, Thomas Leth

    2003-01-01

    , high levels of PAI-1 as well as uPA are equally associated with poor prognosis in cancer patients. PAI-1 is thought to play a vital role for the controlled extracellular proteolysis during tumor neovascularization. We have studied the effect of PAI-1 deficiency in a transgenic mouse model...... of metastasizing breast cancer. In these tumors, the expression pattern of uPA and PAI-1 resembles that of human ductal breast cancer and plasminogen is required for efficient metastasis. In a cohort of 63 transgenic mice that were either PAI-1-deficient or wild-type sibling controls, primary tumor growth...

  12. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia.

    Directory of Open Access Journals (Sweden)

    Lijie Ma

    Full Text Available Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys' thick ascending limb (TAL caused unfolded protein response in younger (1-month old mice and apoptosis in older (12-month old mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies.

  13. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia

    Science.gov (United States)

    Landry, Nichole K.; El-Achkar, Tarek M.; Lieske, John C.

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys’ thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies. PMID:29145399

  14. Erythroblast differentiation at spleen in Q137E mutant ribosomal protein S19 gene knock-in C57BL/6J mice.

    Science.gov (United States)

    Yamanegi, Koji; Yamada, Naoko; Nakasho, Keiji; Nishiura, Hiroshi

    2018-01-01

    We recently found that erythroblast-like cells derived from human leukaemia K562 cells express C5a receptor (C5aR) and produce its antagonistic and agonistic ligand ribosomal protein S19 (RP S19) polymer, which is cross-linked between K122 and Q137 by tissue transglutaminases. RP S19 polymer binds to the reciprocal C5aRs on erythroblast-like cells and macrophage-like cells derived from human monocytic THP-1 cells and promotes differentiation into reticulocyte-like cells through enucleation in vitro. To examine the roles of RP S19 polymer in mouse erythropoiesis, we prepared Q137E mutant RP S19 gene knock-in C57BL/6J mice. In contrast to wild-type mice, erythroblast numbers at the preliminary stage (CD71 high /TER119 low ) in spleen based on transferrin receptor (CD71) and glycophorin A (TER119) values and erythrocyte numbers in orbital artery bloods were not largely changed in knock-in mice. Conversely, erythroblast numbers at the early stage (CD71 high /TER119 high ) were significantly decreased in spleen by knock-in mice. The reduction of early erythroblast numbers in spleen was enhanced by the phenylhydrazine-induced pernicious anemia model knock-in mice and was rescued by a functional analogue of RP S19 dimer S-tagged C5a/RP S19. These data indicated that RP S19 polymer plays the roles in the early erythroblast differentiation of C57BL/6J mouse spleen. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Activation of nicotinic α(7) acetylcholine receptor enhances long term potentation in wild type mice but not in APP(swe)/PS1ΔE9 mice

    DEFF Research Database (Denmark)

    Söderman, Andreas; Mikkelsen, Jens D; West, Mark J

    2011-01-01

    the effect of the partial α(7) nAChR agonist SSR180711 on hippocampal slice preparations from normal wild type (Wt) and APP(swe)/PS1ΔE9 transgenic (Tg) mice. In the hippocampal slices from the 6 months old Wt mice, the application of both nicotine (5μM) and SSR180711 (300nM) resulted in a significant...... enhancement of LTP expressed in area CA1. However, in the Tg mice the application of SSR180711 did not result in an increase in LTP beyond control levels. The amount of binding of the α(7) nAChR ligand 125-I-α-bungarotoxin was not different between in Tg and Wt mice. These findings indicate that the α(7) n......AChR is functionally blocked in the hippocampal neurons, downstream of the α(7) nAChR, and that this is likely due to an interaction between the receptor and Aβ, which leads to changes in LTP....

  16. MER5101, a novel Aβ1-15:DT conjugate vaccine, generates a robust anti-Aβ antibody response and attenuates Aβ pathology and cognitive deficits in APPswe/PS1ΔE9 transgenic mice.

    Science.gov (United States)

    Liu, Bin; Frost, Jeffrey L; Sun, Jing; Fu, Hongjun; Grimes, Stephen; Blackburn, Peter; Lemere, Cynthia A

    2013-04-17

    Active amyloid-β (Aβ) immunotherapy is under investigation to prevent or treat early Alzheimer's disease (AD). In 2002, a Phase II clinical trial (AN1792) was halted due to meningoencephalitis in ∼6% of the AD patients, possibly caused by a T-cell-mediated immunological response. Thus, generating a vaccine that safely generates high anti-Aβ antibody levels in the elderly is required. In this study, MER5101, a novel conjugate of Aβ1-15 peptide (a B-cell epitope fragment) conjugated to an immunogenic carrier protein, diphtheria toxoid (DT), and formulated in a nanoparticular emulsion-based adjuvant, was administered to 10-month-old APPswe/PS1ΔE9 transgenic (Tg) and wild-type (Wt) mice. High anti-Aβ antibody levels were observed in both vaccinated APPswe/PS1ΔE9 Tg and Wt mice. Antibody isotypes were mainly IgG1 and IgG2b, suggesting a Th2-biased response. Restimulation of splenocytes with the Aβ1-15:DT conjugate resulted in a strong proliferative response, whereas proliferation was absent after restimulation with Aβ1-15 or Aβ1-40/42 peptides, indicating a cellular immune response against DT while avoiding an Aβ-specific T-cell response. Moreover, significant reductions in cerebral Aβ plaque burden, accompanied by attenuated microglial activation and increased synaptic density, were observed in MER5101-vaccinated APPswe/PS1ΔE9 Tg mice compared with Tg adjuvant controls. Last, MER5101-immunized APPswe/PS1ΔE9 Tg mice showed improvement of cognitive deficits in both contextual fear conditioning and the Morris water maze. Our novel, highly immunogenic Aβ conjugate vaccine, MER5101, shows promise for improving Aβ vaccine safety and efficacy and therefore, may be useful for preventing and/or treating early AD.

  17. Handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins in transgenic mice

    DEFF Research Database (Denmark)

    Kragh, Peter M; Pedersen, Christina B; Schmidt, Stine P

    2007-01-01

    Abstract To investigate the in vivo handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins, three transgenic mouse lines were produced by pronuclear injection of cDNA encoding the wild-type, hSCAD-wt, and two disease causing folding variants hSCAD-319C > T and hSCAD-625G > A....... The transgenic mice were mated with an SCAD-deficient mouse strain (BALB/cByJ) and, in the second generation, three mouse lines were obtained without endogenous SCAD expression but harboring hSCAD-wt, hSCAD-319C > T, and hSCAD-625G > A transgenes, respectively. All three lines had expression of the transgene...... developed for any of the lines transgenic for the hSCAD folding variants. The indicated remarkable efficiency of the mouse protein quality control system in the degradation of SCAD folding variants should be further substantiated and investigated, since it might indicate ways to prevent disease...

  18. Early differences in metabolic flexibility between obesity-resistant and obesity-prone mice

    Czech Academy of Sciences Publication Activity Database

    Bardová, Kristina; Horáková, Olga; Janovská, Petra; Hansíková, Jana; Kůs, Vladimír; van Schothorst, E. M.; Hoevenaars, F.P.M.; Uil, M.; Hensler, Michal; Keijer, J.; Kopecký, Jan

    2016-01-01

    Roč. 124, May (2016), s. 163-170 ISSN 0300-9084 R&D Projects: GA MŠk(CZ) 7E10059; GA ČR(CZ) GB14-36804G Institutional support: RVO:67985823 Keywords : indirect calorimetry * glucose tolerance * weaning * C57BL/6J mice * A/J mice * metabolic flexibility Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.112, year: 2016

  19. Transgenic plants of Petunia hybrida harboring the CYP2E1 gene efficiently remove benzene and toluene pollutants and improve resistance to formaldehyde

    Directory of Open Access Journals (Sweden)

    Daoxiang Zhang

    2011-01-01

    Full Text Available The CYP2E1 protein belongs to the P450 enzymes family and plays an important role in the metabolism of small molecular and organic pollutants. In this study we generated CYP2E1 transgenic plants of Petunia using Agrobacterium rhizogenes K599. PCR analysis confirmed that the regenerated plants contained the CYP2E1 transgene and the rolB gene of the Ri plasmid. Southern blotting revealed the presence of multiple copies of CYP2E1 in the genome of transgenic plants. Fluorescent quantitative PCR revealed exogenous CYP2E1 gene expression in CYP2E1 transgenic plants at various levels, whereas no like expression was detected in either GUS transgenic plants or wild-types. The absorption of benzene and toluene by transgenic plants was analyzed through quantitative gas chromatography. Transgenic plants with high CYP2E1 expression showed a significant increase in absorption capacity of environmental benzene and toluene, compared to control GUS transgenic and wild type plants. Furthermore, these plants also presented obvious improved resistance to formaldehyde. This study, besides being the first to reveal that the CYP2E1 gene enhances plant resistance to formaldehyde, also furnishes a new method for reducing pollutants, such as benzene, toluene and formaldehyde, by using transgenic flowering horticultural plants.

  20. Cathepsin B as a potential cystatin M/E target in the mouse hair follicle

    NARCIS (Netherlands)

    Oortveld, M.A.W.; Vlijmen-Willems, I.M.J.J. van; Kersten, F.F.J.; Cheng, T.; Verdoes, M.; Erp, P.E.J. van; Verbeek, S.; Reinheckel, T.; Hendriks, W.J.A.J.; Schalkwijk, J.; Zeeuwen, P.L.J.M.

    2017-01-01

    Deficiency of the cysteine protease inhibitor cystatin M/E (Cst6) in mice leads to disturbed epidermal cornification, impaired barrier function, and neonatal lethality. We report the rescue of the lethal skin phenotype of ichq (Cst6-deficient; Cst6-/-) mice by transgenic, epidermis-specific,

  1. Progressive paralysis associated with diffuse astrocyte anaplasia in delta 202 mice homozygous for a transgene encoding the SV40 T antigen.

    Science.gov (United States)

    López-Revilla, Rubén; Soto-Zárate, Carlos; Ridaura, Cecilia; Chávez-Dueñas, Lucía; Paul, Dieter

    2004-03-01

    A convenient transgenic astrocytoma model in delta202 mice, homozygous for a construct encoding the early region of the SV40 virus genome, is described. In the offspring of crosses between delta202 mice heterozygous for the transgene nearly 60% were transgenic; one third of these developed progressive paralysis starting in the hindlimbs at approximately 35 days of age and died at 90 +/- 30 days of age. In affected mice proliferating-non-neuronal cells immunostained with antibodies to the GFAP, an astrocyte marker, whose number increased with age were found in the white matter of the brain, cerebellum and spinal cord, and progressive degeneration and necrosis of spinal motoneurons was observed that-may explain the paralysis. The early onset and reproducible time course of the neurological disease suggest that homozygous delta202 mice, whose proliferating astrocytes appear to damage spinal motoneurons, are a useful model to study astrocyte differentiation, function and tumorigenesis.

  2. Early thymic T cell development in young transgenic mice overexpressing human Cu/Zn superoxide dismutase, a model of Down syndrome.

    Science.gov (United States)

    Laurent, Julien; Paly, Evelyne; Marche, Patrice N; London, Jacqueline

    2006-06-01

    Previous studies have shown that transgenic mice overexpressing Cu/Zn superoxide dismutase, a model of Down syndrome, exhibit premature thymic involution. We have performed a flow cytometry analysis of the developing thymus in these homozygous transgenic mice (hSOD1/hSOD1: Tg-SOD). Longitudinal follow-up analysis from day 3 to day 280 showed an early thymic development in Tg-SOD mice compared with controls. This early thymic development was associated with an increased migration of mature T cells to peripheral lymphoid organs. BrdU labeling showed no difference between Tg-SOD and control mice, confirming that the greater number of peripheral T cells in Tg-SOD mice was not due to extensive proliferation of these cells but rather to a greater pool of emigrant T cells in Tg-SOD.

  3. Synthesis of 1-benzyl-4-[(5,6-dimethoxy[2-14C]-1-indanon)-2-YL]-methylpiperidine hydrochloride (E2020-14C)

    International Nuclear Information System (INIS)

    Iimura, Youichi; Mishima, Mannen; Sugimoto, Hachiro

    1989-01-01

    1-Benzyl-4-[(5,6-dimethoxy[2- 14 C]-1-indanon)-2-yl]-methylpiperidine hydrochloride (E2020- 14 C), and acetylcholinesterase inhibitor for studying the pharmacokinetic profiles of E2020, was synthesized from 5,6-dimethoxy[2- 14 C]-1-indanone as the labelled starting material. (author)

  4. Knockout and transgenic mice of Trp53: what have we learned about p53 in breast cancer?

    International Nuclear Information System (INIS)

    Blackburn, Anneke C; Jerry, D Joseph

    2002-01-01

    The human p53 tumor suppressor gene TP53 is mutated at a high frequency in sporadic breast cancer, and Li-Fraumeni syndrome patients who carry germline mutations in one TP53 allele have a high incidence of breast cancer. In the 10 years since the first knockout of the mouse p53 tumor suppressor gene (designated Trp53) was published, much has been learned about the contribution of p53 to biology and tumor suppression in the breast through the use of p53 transgenic and knockout mice. The original mice deficient in p53 showed no mammary gland phenotype. However, studies using BALB/c-Trp53-deficient mice have demonstrated a delayed involution phenotype and a mammary tumor phenotype. Together with other studies of mutant p53 transgenes and p53 bitransgenics, a greater understanding has been gained of the role of p53 in involution, of the regulation of p53 activity by hormones, of the effect of mouse strain and modifier genes on tumor phenotype, and of the cooperation between p53 and other oncogenic pathways, chemical carcinogens and hormonal stimulation in mammary tumorigenesis. Both p53 transgenic and knockout mice are important in vivo tools for understanding breast cancer, and are yet to be exploited for developing therapeutic strategies in breast cancer

  5. AβPP/PS1 Transgenic Mice Show Sex Differences in the Cerebellum Associated with Aging.

    Science.gov (United States)

    Ordoñez-Gutierrez, Lara; Fernandez-Perez, Ivan; Herrera, Jose Luis; Anton, Marta; Benito-Cuesta, Irene; Wandosell, Francisco

    2016-09-06

    Cerebellar pathology has been related to presenilin 1 mutations in certain pedigrees of familial Alzheimer's disease. However, cerebellum tissue has not been intensively analyzed in transgenic models of mutant presenilins. Furthermore, the effect of the sex of the mice was not systematically analyzed, despite the fact that important gender differences in the evolution of the disease in the human population have been described. We analyzed whether the progression of amyloidosis in a double transgenic mouse, AβPP/PS1, is susceptible to aging and differentially affects males and females. The accumulation of amyloid in the cerebellum differentially affects males and females of the AβPP/PS1 transgenic line, which was found to be ten-fold higher in 15-month-old females. Amyloid-β accumulation was more evident in the molecular layer of the cerebellum, but glia reaction was only observed in the granular layer of the older mice. The sex divergence was also observed in other neuronal, survival, and autophagic markers. The cerebellum plays an important role in the evolution of the pathology in this transgenic mouse model. Sex differences could be crucial for a complete understanding of this disease. We propose that the human population could be studied in this way. Sex-specific treatment strategies in human populations could show a differential response to the therapeutic approach.

  6. Serum β-amyloid peptide levels spike in the early stage of Alzheimer-like plaque pathology in an APP/PS1 double transgenic mouse model.

    Science.gov (United States)

    He, Jue; Qiao, Jin-Ping; Zhu, Shenghua; Xue, Mengzhou; Chen, Wenwu; Wang, Xinchun; Tempier, Adrien; Huang, Qingjun; Kong, Jiming; Li, Xin-Min

    2013-11-01

    Serum levels of β-amyloid (Aβ) peptides may represent an early biomarker in the diagnosis of Alzheimer's disease (AD). In the present study, we investigated the temporal kinetic changes in the levels of serum Aβ 1-42 and 40 in an amyloid precursor protein (APP)/presenilin (PS)1 double transgenic mouse model of AD. Serum Aβ peptide levels in 2-, 3-, 6-, 9- and 18-month old, and liver Aβ 1-40 level in 6-month old mice were measured using enzyme-linked immunosorbent assay (ELISA) kits. Results revealed that serum Aβ levels peaked in 3-month old transgenic mice, and the Aβ level in non-transgenic and transgenic mice is comparable in liver. Compared to the 6-month old transgenic mice, Congo red staining showed that the 3-month old transgenic mice had minimum brain Aβ plaques, corresponding to the early stage of Alzheimer-like plaque pathology, and confocal microscope images showed that the deposition of Aβ in their cerebral vessels was minimal. Furthermore, results of the water maze test, showed that memory was normal for the 3- month old transgenic mice when compared to age-matched non-transgenic mice. These results suggest that serum Aβ peptide levels may be peaked during the early stage of AD. Monitoring serum Aβ peptide levels in the potential AD population may provide an early diagnosis of AD prior to the appearance of clinical symptoms.

  7. Intestinal tumor suppression in ApcMin/+ mice by prostaglandin D2 receptor PTGDR

    International Nuclear Information System (INIS)

    Tippin, Brigette L; Kwong, Alan M; Inadomi, Michael J; Lee, Oliver J; Park, Jae Man; Materi, Alicia M; Buslon, Virgilio S; Lin, Amy M; Kudo, Lili C; Karsten, Stanislav L; French, Samuel W; Narumiya, Shuh; Urade, Yoshihiro; Salido, Eduardo; Lin, Henry J

    2014-01-01

    Our earlier work showed that knockout of hematopoietic prostaglandin D synthase (HPGDS, an enzyme that produces prostaglandin D 2 ) caused more adenomas in Apc Min/+ mice. Conversely, highly expressed transgenic HPGDS allowed fewer tumors. Prostaglandin D 2 (PGD 2 ) binds to the prostaglandin D 2 receptor known as PTGDR (or DP1). PGD 2 metabolites bind to peroxisome proliferator-activated receptor γ (PPARG). We hypothesized that Ptgdr or Pparg knockouts may raise numbers of tumors, if these receptors take part in tumor suppression by PGD 2 . To assess, we produced Apc Min/+ mice with and without Ptgdr knockouts (147 mice). In separate experiments, we produced Apc Min/+ mice expressing transgenic lipocalin-type prostaglandin D synthase (PTGDS), with and without heterozygous Pparg knockouts (104 mice). Homozygous Ptgdr knockouts raised total numbers of tumors by 30–40% at 6 and 14 weeks. Colon tumors were not affected. Heterozygous Pparg knockouts alone did not affect tumor numbers in Apc Min/+ mice. As mentioned above, our Pparg knockout assessment also included mice with highly expressed PTGDS transgenes. Apc Min/+ mice with transgenic PTGDS had fewer large adenomas (63% of control) and lower levels of v-myc avian myelocytomatosis viral oncogene homolog (MYC) mRNA in the colon. Heterozygous Pparg knockouts appeared to blunt the tumor-suppressing effect of transgenic PTGDS. However, tumor suppression by PGD 2 was more clearly mediated by receptor PTGDR in our experiments. The suppression mechanism did not appear to involve changes in microvessel density or slower proliferation of tumor cells. The data support a role for PGD 2 signals acting through PTGDR in suppression of intestinal tumors

  8. Expression Analysis of CB2-GFP BAC Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Anne-Caroline Schmöle

    Full Text Available The endocannabinoid system (ECS is a retrograde messenger system, consisting of lipid signaling molecules that bind to at least two G-protein-coupled receptors, Cannabinoid receptor 1 and 2 (CB1 and 2. As CB2 is primarily expressed on immune cells such as B cells, T cells, macrophages, dendritic cells, and microglia, it is of great interest how CB2 contributes to immune cell development and function in health and disease. Here, understanding the mechanisms of CB2 involvement in immune-cell function as well as the trafficking and regulation of CB2 expressing cells are crucial issues. Up to now, CB2 antibodies produce unclear results, especially those targeting the murine protein. Therefore, we have generated BAC transgenic GFP reporter mice (CB2-GFPTg to trace CB2 expression in vitro and in situ. Those mice express GFP under the CB2 promoter and display GFP expression paralleling CB2 expression on the transcript level in spleen, thymus and brain tissue. Furthermore, by using fluorescence techniques we show that the major sources for GFP-CB2 expression are B cells in spleen and blood and microglia in the brain. This novel CB2-GFP transgenic reporter mouse line represents a powerful resource to study CB2 expression in different cell types. Furthermore, it could be used for analyzing CB2-mediated mobilization and trafficking of immune cells as well as studying the fate of recruited immune cells in models of acute and chronic inflammation.

  9. Anxiolytic effect of music exposure on BDNFMet/Met transgenic mice.

    Science.gov (United States)

    Li, Wen-Jing; Yu, Hui; Yang, Jian-Min; Gao, Jing; Jiang, Hong; Feng, Min; Zhao, Yu-Xia; Chen, Zhe-Yu

    2010-08-06

    Brain-derived neurotrophic factor (BDNF) has been reported to play important roles in the modulation of anxiety, mood stabilizers, and pathophysiology of affective disorders. Recently, a single nucleotide polymorphism (SNP) in the BDNF gene (Val66Met) has been found to be associated with depression and anxiety disorders. The humanized BDNF(Met/Met) knock-in transgenic mice exhibited increased anxiety-related behaviors that were unresponsive to serotonin reuptake inhibitors, fluoxetine. Music is known to be able to elicit emotional changes, including anxiolytic effects. In this study, we found that music treatment could significantly decrease anxiety state in BDNF(Met/Met) mice, but not in BDNF(+/)(-), mice compared with white noise exposure in open field and elevated plus maze test. Moreover, in contrast to white noise exposure, BDNF expression levels in the prefrontal cortex (PFC), amygdala and hippocampus were significantly increased in music-exposed adult BDNF(Met/Met) mice. However, music treatment could not upregulate BDNF levels in the PFC, amygdala, and hippocampus in BDNF(+/)(-) mice, which suggests the essential role of BDNF in the anxiolytic effect of music. Together, our results imply that music may provide an effective therapeutic intervention for anxiety disorders in humans with this genetic BDNF(Met) variant. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    Directory of Open Access Journals (Sweden)

    Shih Ping Yao

    2002-04-01

    Full Text Available Abstract Background Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT that greatly improves the production efficiency of large transgenic animals. Results The linker protein, a monoclonal antibody (mAb C, is reactive to a surface antigen on sperm of all tested species including pig, mouse, chicken, cow, goat, sheep, and human. mAb C is a basic protein that binds to DNA through ionic interaction allowing exogenous DNA to be linked specifically to sperm. After fertilization of the egg, the DNA is shown to be successfully integrated into the genome of viable pig and mouse offspring with germ-line transfer to the F1 generation at a highly efficient rate: 37.5% of pigs and 33% of mice. The integration is demonstrated again by FISH analysis and F2 transmission in pigs. Furthermore, expression of the transgene is demonstrated in 61% (35/57 of transgenic pigs (F0 generation. Conclusions Our data suggests that LB-SMGT could be used to generate transgenic animals efficiently in many different species.

  11. Robust Central Nervous System Pathology in Transgenic Mice following Peripheral Injection of α-Synuclein Fibrils.

    Science.gov (United States)

    Ayers, Jacob I; Brooks, Mieu M; Rutherford, Nicola J; Howard, Jasie K; Sorrentino, Zachary A; Riffe, Cara J; Giasson, Benoit I

    2017-01-15

    Misfolded α-synuclein (αS) is hypothesized to spread throughout the central nervous system (CNS) by neuronal connectivity leading to widespread pathology. Increasing evidence indicates that it also has the potential to invade the CNS via peripheral nerves in a prion-like manner. On the basis of the effectiveness following peripheral routes of prion administration, we extend our previous studies of CNS neuroinvasion in M83 αS transgenic mice following hind limb muscle (intramuscular [i.m.]) injection of αS fibrils by comparing various peripheral sites of inoculations with different αS protein preparations. Following intravenous injection in the tail veins of homozygous M83 transgenic (M83 +/+ ) mice, robust αS pathology was observed in the CNS without the development of motor impairments within the time frame examined. Intraperitoneal (i.p.) injections of αS fibrils in hemizygous M83 transgenic (M83 +/- ) mice resulted in CNS αS pathology associated with paralysis. Interestingly, injection with soluble, nonaggregated αS resulted in paralysis and pathology in only a subset of mice, whereas soluble Δ71-82 αS, human βS, and keyhole limpet hemocyanin (KLH) control proteins induced no symptoms or pathology. Intraperitoneal injection of αS fibrils also induced CNS αS pathology in another αS transgenic mouse line (M20), albeit less robustly in these mice. In comparison, i.m. injection of αS fibrils was more efficient in inducing CNS αS pathology in M83 mice than i.p. or tail vein injections. Furthermore, i.m. injection of soluble, nonaggregated αS in M83 +/- mice also induced paralysis and CNS αS pathology, although less efficiently. These results further demonstrate the prion-like characteristics of αS and reveal its efficiency to invade the CNS via multiple routes of peripheral administration. The misfolding and accumulation of α-synuclein (αS) inclusions are found in a number of neurodegenerative disorders and is a hallmark feature of Parkinson

  12. Obesity and Hepatic Steatosis Are Associated with Elevated Serum Amyloid Beta in Metabolically Stressed APPswe/PS1dE9 Mice.

    Directory of Open Access Journals (Sweden)

    Feng-Shiun Shie

    Full Text Available Diabesity-associated metabolic stresses modulate the development of Alzheimer's disease (AD. For further insights into the underlying mechanisms, we examine whether the genetic background of APPswe/PS1dE9 at the prodromal stage of AD affects peripheral metabolism in the context of diabesity. We characterized APPswe/PS1dE9 transgenic mice treated with a combination of high-fat diet with streptozotocin (HFSTZ in the early stage of AD. HFSTZ-treated APPswe/PS1dE9 transgenic mice exhibited worse metabolic stresses related to diabesity, while serum β-amyloid levels were elevated and hepatic steatosis became apparent. Importantly, two-way analysis of variance shows a significant interaction between HFSTZ and genetic background of AD, indicating that APPswe/PS1dE9 transgenic mice are more vulnerable to HFSTZ treatment. In addition, body weight gain, high hepatic triglyceride, and hyperglycemia were positively associated with serum β-amyloid, as validated by Pearson's correlation analysis. Our data suggests that the interplay between genetic background of AD and HFSTZ-induced metabolic stresses contributes to the development of obesity and hepatic steatosis. Alleviating metabolic stresses including dysglycemia, obesity, and hepatic steatosis could be critical to prevent peripheral β-amyloid accumulation at the early stage of AD.

  13. Magnetic refrigeration down to 1.6 K for the future circular collider e^{+}e^{-}

    Directory of Open Access Journals (Sweden)

    Jakub Tkaczuk

    2017-04-01

    Full Text Available High-field superconducting rf cavities of the future circular collider e^{+}e^{-} may require a kW-range superfluid helium refrigeration down to 1.6 K. Magnetic refrigeration operating below 4.2 K can be an alternative to the compression/expansion helium refrigeration. A significant difference between this application and previous magnetic refrigerator studies is its large cooling power, up to 10^{3} times larger than the other designs. Principles of magnetic refrigeration are described and various technical solutions are compared. A numerical model for the static magnetic refrigerator is presented, validated, and adapted to the needs of the positron-electron version of the future circular collider. A preliminary design of magnetic refrigerator suitable for low temperature, kW-range cooling is studied.

  14. Global IP6K1 deletion enhances temperature modulated energy expenditure which reduces carbohydrate and fat induced weight gain

    Directory of Open Access Journals (Sweden)

    Qingzhang Zhu

    2017-01-01

    Full Text Available Objective: IP6 kinases (IP6Ks regulate cell metabolism and survival. Mice with global (IP6K1-KO or adipocyte-specific (AdKO deletion of IP6K1 are protected from diet induced obesity (DIO at ambient (23 °C temperature. AdKO mice are lean primarily due to increased AMPK mediated thermogenic energy expenditure (EE. Thus, at thermoneutral (30 °C temperature, high fat diet (HFD-fed AdKO mice expend energy and gain body weight, similar to control mice. IP6K1 is ubiquitously expressed; thus, it is critical to determine to what extent the lean phenotype of global IP6K1-KO mice depends on environmental temperature. Furthermore, it is not known whether IP6K1 regulates AMPK mediated EE in cells, which do not express UCP1. Methods: Q-NMR, GTT, food intake, EE, QRT-PCR, histology, mitochondrial oxygen consumption rate (OCR, fatty acid metabolism assays, and immunoblot studies were conducted in IP6K1-KO and WT mice or cells. Results: Global IP6K1 deletion mediated enhancement in EE is impaired albeit not abolished at 30 °C. As a result, IP6K1-KO mice are protected from DIO, insulin resistance, and fatty liver even at 30 °C. Like AdKO, IP6K1-KO mice display enhanced adipose tissue browning. However, unlike AdKO mice, thermoneutrality only partly abolishes browning in IP6K1-KO mice. Cold (5 °C exposure enhances carbohydrate expenditure, whereas 23 °C and 30 °C promote fat oxidation in HFD-KO mice. Furthermore, IP6K1 deletion diminishes cellular fat accumulation via activation of the AMPK signaling pathway. Conclusions: Global deletion of IP6K1 ameliorates obesity and insulin resistance irrespective of the environmental temperature conditions, which strengthens its validity as an anti-obesity target. Keywords: IP6K, Obesity, Diabetes, Energy expenditure, β-oxidation

  15. MR Microimaging of amyloid plaques in Alzheimer's disease transgenic mice

    International Nuclear Information System (INIS)

    Wengenack, Thomas M.; Poduslo, Joseph F.; Jack, Clifford R.; Garwood, Michael

    2008-01-01

    Alzheimer's disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process. Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas. (orig.)

  16. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle.

    Science.gov (United States)

    Lyons, John D; Klingensmith, Nathan J; Otani, Shunsuke; Mittal, Rohit; Liang, Zhe; Ford, Mandy L; Coopersmith, Craig M

    2017-12-01

    Cell production and death are tightly regulated in the rapidly renewing gut epithelium, with proliferation confined to crypts and apoptosis occurring in villi and crypts. This study sought to determine how stress alters these compartmentalized processes. Wild-type mice made septic via cecal ligation and puncture had decreased crypt proliferation and increased crypt and villus apoptosis. Fabpi -TAg mice expressing large T-antigen solely in villi had ectopic enterocyte proliferation with increased villus apoptosis in unmanipulated animals. Septic fabpi -TAg mice had an unexpected increase in villus proliferation compared with unmanipulated littermates, whereas crypt proliferation was decreased. Cell cycle regulators cyclin D1 and cyclin D2 were decreased in jejunal tissue in septic transgenic mice. In contrast, villus and crypt apoptosis were increased in septic fabpi -TAg mice. To examine the relationship between apoptosis and proliferation in a compartment-specific manner, fabpi -TAg mice were crossed with fabpl -Bcl-2 mice, resulting in expression of both genes in the villus but Bcl-2 alone in the crypt. Septic bi-transgenic animals had decreased crypt apoptosis but had a paradoxical increase in villus apoptosis compared with septic fabpi -TAg mice, associated with decreased proliferation in both compartments. Thus, sepsis unmasks compartment-specific proliferative and apoptotic regulation that is not present under homeostatic conditions.-Lyons, J. D., Klingensmith, N. J., Otani, S., Mittal, R., Liang, Z., Ford, M. L., Coopersmith, C. M. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle. © FASEB.

  17. The utrophin A 5'-UTR drives cap-independent translation exclusively in skeletal muscles of transgenic mice and interacts with eEF1A2.

    Science.gov (United States)

    Miura, P; Coriati, A; Bélanger, G; De Repentigny, Y; Lee, J; Kothary, R; Holcik, M; Jasmin, B J

    2010-04-01

    The molecular mechanisms regulating expression of utrophin A are of therapeutic interest since upregulating its expression at the sarcolemma can compensate for the lack of dystrophin in animal models of Duchenne Muscular Dystrophy (DMD). The 5'-UTR of utrophin A has been previously shown to drive cap-independent internal ribosome entry site (IRES)-mediated translation in response to muscle regeneration and glucocorticoid treatment. To determine whether the utrophin A IRES displays tissue specific activity, we generated transgenic mice harboring control (CMV/betaGAL/CAT) or utrophin A 5'-UTR (CMV/betaGAL/UtrA/CAT) bicistronic reporter transgenes. Examination of multiple tissues from two CMV/betaGAL/UtrA/CAT lines revealed that the utrophin A 5'-UTR drives cap-independent translation of the reporter gene exclusively in skeletal muscles and no other examined tissues. This expression pattern suggested that skeletal muscle-specific factors are involved in IRES-mediated translation of utrophin A. We performed RNA-affinity chromatography experiments combined with mass spectrometry to identify trans-factors that bind the utrophin A 5'-UTR and identified eukaryotic elongation factor 1A2 (eEF1A2). UV-crosslinking experiments confirmed the specificity of this interaction. Regions of the utrophin A 5'-UTR that bound eEF1A2 also mediated cap-independent translation in C2C12 muscle cells. Cultured cells lacking eEF1A2 had reduced IRES activity compared with cells overexpressing eEF1A2. Together, these results suggest an important role for eEF1A2 in driving cap-independent translation of utrophin A in skeletal muscle. The trans-factors and signaling pathways driving skeletal-muscle specific IRES-mediated translation of utrophin A could provide unique targets for developing pharmacological-based DMD therapies.

  18. Expression of Autoactivated Stromelysin-1 in Mammary Glands of Transgenic Mice Leads to a Reactive Stroma During Early Development

    Energy Technology Data Exchange (ETDEWEB)

    Thomasset, N.; Lochter, A.; Sympson, C.J.; Lund, L.R.; Williams, D.R.; Behrendtsen, O.; Werb, Z.; Bissell, M.J.

    1998-04-24

    Extracellular matrix and extracellular matrix-degrading matrix metalloproteinases play a key role in interactions between the epithelium and the mesenchyme during mammary gland development and disease. In patients with breast cancer, the mammary mesenchyme undergoes a stromal reaction, the etiology of which is unknown. We previously showed that targeting of an autoactivating mutant of the matrix metalloproteinase stromelysin-1 to mammary epithelia of transgenic mice resulted in reduced mammary function during pregnancy and development of preneoplastic and neoplastic lesions. Here we examine the cascade of alterations before breast tumor formation in the mammary gland stroma once the expression of the stromelysin-1 transgene commences. Beginning in postpubertal virgin animals, low levels of transgene expression in mammary epithelia led to increased expression of endogenous stromelysin-1 in stromal fibroblasts and up-regulation of other matrix metalloproteinases, without basement membrane disruption. These changes were accompanied by the progressive development of a compensatory reactive stroma, characterized by increased collagen content and vascularization in glands from virgin mice. This remodeling of the gland affected epithelial-mesenchymal communication as indicated by inappropriate expression of tenascin-C starting by day 6 of pregnancy. This, together with increased transgene expression, led to basement membrane disruption starting by day 15 of pregnancy. We propose that the highly reactive stroma provides a prelude to breast epithelial tumors observed in these animals. Epithelial development depends on an exquisite series of inductive and instructive interactions between the differentiating epithelium and the mesenchymal (stromal) compartment. The epithelium, which consists of luminal and myoepithelial cells, is separated from the stroma by a basement membrane (BM), which plays a central role in mammary gland homeostasis and gene expression. In vivo, stromal

  19. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. (Cincinnati College of Medicine, OH (USA))

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  20. Human Papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization

    Science.gov (United States)

    Vandermark, Erik R.; Deluca, Krysta A.; Gardner, Courtney R.; Marker, Daniel F.; Schreiner, Cynthia N.; Strickland, David A.; Wilton, Katelynn M.; Mondal, Sumona; Woodworth, Craig D.

    2012-01-01

    The NF-kB family of transcription factors regulates important biological functions including cell growth, survival and the immune response. We found that Human Papillomavirus type 16 (HPV-16) E7 and E6/E7 proteins inhibited basal and TNF-alpha-inducible NF-kB activity in human epithelial cells cultured from the cervical transformation zone, the anatomic region where most cervical cancers develop. In contrast, HPV-16 E6 regulated NF-kB in a cell type- and cell growth-dependent manner. NF-kB influenced immortalization of cervical cells by HPV16. Inhibition of NF-kB by an IkB alpha repressor mutant increased colony formation and immortalization by HPV-16. In contrast, activation of NF-kB by constitutive expression of p65 inhibited proliferation and immortalization. Our results suggest that inhibition of NF-kB by HPV-16 E6/E7 contributes to immortalization of cells from the cervical transformation zone. PMID:22284893

  1. Targeting Aberrant p70S6K Activation for Estrogen Receptor-Negative Breast Cancer Prevention.

    Science.gov (United States)

    Wang, Xiao; Yao, Jun; Wang, Jinyang; Zhang, Qingling; Brady, Samuel W; Arun, Banu; Seewaldt, Victoria L; Yu, Dihua

    2017-11-01

    The prevention of estrogen receptor-negative (ER-) breast cancer remains a major challenge in the cancer prevention field, although antiestrogen and aromatase inhibitors have shown adequate efficacy in preventing estrogen receptor-positive (ER + ) breast cancer. Lack of commonly expressed, druggable targets is a major obstacle for meeting this challenge. Previously, we detected the activation of Akt signaling pathway in atypical hyperplasic early-stage lesions of patients. In the current study, we found that Akt and the downstream 70 kDa ribosomal protein S6 kinase (p70S6K) signaling pathway was highly activated in ER - premalignant breast lesions and ER - breast cancer. In addition, p70S6K activation induced transformation of ER - human mammary epithelial cells (hMEC). Therefore, we explored the potential of targeting Akt/p70S6K in the p70S6K activated, ER - hMEC models and mouse mammary tumor models for the prevention of ER - breast cancer. We found that a clinically applicable Akt/p70S6K dual inhibitor, LY2780301, drastically decreased proliferation of hMECs with ErbB2-induced p70S6K activation via Cyclin B1 inhibition and cell-cycle blockade at G 0 -G 1 phase, while it did not significantly reverse the abnormal acinar morphology of these hMECs. In addition, a brief treatment of LY2780301 in MMTV- neu mice that developed atypical hyperplasia (ADH) and mammary intraepithelial neoplasia (MIN) lesions with activated p70S6K was sufficient to suppress S6 phosphorylation and decrease cell proliferation in hyperplasic MECs. In summary, targeting the aberrant Akt/p70S6K activation in ER - hMEC models in vitro and in the MMTV- neu transgenic mouse model in vivo effectively inhibited Akt/S6K signaling and reduced proliferation of hMECs in vitro and ADH/MIN lesions in vivo , indicating its potential in prevention of p70S6K activated ER - breast cancer. Cancer Prev Res; 10(11); 641-50. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Administration of vitamin K does not counteract the ectopic mineralization of connective tissues in Abcc6−/− mice, a model for pseudoxanthoma elasticum

    OpenAIRE

    Jiang, Qiujie; Li, Qiaoli; Grand-Pierre, Alix E; Schurgers, Leon J; Uitto, Jouni

    2011-01-01

    Pseudoxanthoma elasticum (PXE) is a heritable multisystem disorder manifesting with ectopic calcification of peripheral connective tissues, caused by mutations in the ABCC6 gene. Alterations in vitamin K metabolism have been suggested to contribute to the pathomechanisms of the mineralization process. In this study we administered vitamin K or its glutathione conjugate (K3-GSH) into Abcc6−/− mice that recapitulate features of PXE. Oral administration of vitamin K2, in dosages that vastly exce...

  3. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer's disease (3xTgAD) mice.

    Science.gov (United States)

    Knight, Elysse M; Brown, Timothy M; Gümüsgöz, Sarah; Smith, Jennifer C M; Waters, Elizabeth J; Allan, Stuart M; Lawrence, Catherine B

    2013-01-01

    Alzheimer's disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4-10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.

  4. Transgene IL-6 Enhances DC-Stimulated CTL Responses by Counteracting CD4+25+Foxp3+ Regulatory T Cell Suppression via IL-6-Induced Foxp3 Downregulation

    Directory of Open Access Journals (Sweden)

    Kalpana Kalyanasundaram Bhanumathy

    2014-03-01

    Full Text Available Dendritic cells (DCs, the most potent antigen-presenting cells have been extensively applied in clinical trials for evaluation of antitumor immunity. However, the efficacy of DC-mediated cancer vaccines is still limited as they are unable to sufficiently break the immune tolerance. In this study, we constructed a recombinant adenoviral vector (AdVIL-6 expressing IL-6, and generated IL-6 transgene-engineered DC vaccine (DCOVA/IL-6 by transfection of murine bone marrow-derived ovalbumin (OVA-pulsed DCs (DCOVA with AdVIL-6. We then assessed DCOVA/IL-6-stimulated cytotoxic T-lymphocyte (CTL responses and antitumor immunity in OVA-specific animal tumor model. We demonstrate that DCOVA/IL-6 vaccine up-regulates expression of DC maturation markers, secretes transgene-encoded IL-6, and more efficiently stimulates OVA-specific CTL responses and therapeutic immunity against OVA-expressing B16 melanoma BL6-10OVA in vivo than the control DCOVA/Null vaccine. Moreover, DCOVA/IL-6-stimulated CTL responses were relatively maintained in mice with transfer of CD4+25+Foxp3+ Tr-cells, but significantly reduced when treated with anti-IL-6 antibody. In addition, we demonstrate that IL-6 down-regulates Foxp3-expression of CD4+25+Foxp3+ Tr-cells in vitro. Taken together, our results demonstrate that AdV-mediated IL-6 transgene-engineered DC vaccine stimulates potent CTL responses and antitumor immunity by counteracting CD4+25+ Tr immunosuppression via IL-6-induced Foxp3 down-regulation. Thus, IL-6 may be a good candidate for engineering DCs for cancer immunotherapy.

  5. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice

    NARCIS (Netherlands)

    M.J. van Haperen (Rien); A. van Tol (Arie); P. Vermeulen; M. Jauhiainen; T. van Gent (Teus); P.M. van den Berg (Paul); S. Ehnholm (Sonja); A.W.M. van der Kamp (Arthur); M.P.G. de Crom (Rini); F.G. Grosveld (Frank)

    2000-01-01

    textabstractPlasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoprotein particles and alters high density lipoprotein (HDL) subfraction patterns in vitro, but its physiological function is poorly understood. Transgenic mice that overexpress

  6. Chimeric analysis of EGFP and DsRed2 transgenic mice demonstrates polyclonal maintenance of pancreatic acini.

    Science.gov (United States)

    Ryu, Je-Young; Siswanto, Antoni; Harimoto, Kenichi; Tagawa, Yoh-ichi

    2013-06-01

    The pancreatic islet is an assembly of specific endocrine cells. There are many conflicting reports regarding whether the acinus develops from single or multiple progenitor cells. This study investigated the development and maintenance clonality of the pancreatic acinus and duct using a chimeric analysis with EGFP and DsRed2 transgenic mice. Chimeric mice (G-R mice) were obtained by the aggregation method, using 8-cell stage embryos from EGFP and DsRed2 transgenic mice. The islets from the G-R mice were chimeric and mosaic, consisting of either EGFP- or DsRed2-positive populations, as in previous reports. On the other hand, most acini developed from either EGFP or DsRed2 origin, but some were chimeric. Interestingly, these chimeric acini were clearly separated into two-color regions and were not mosaic. Some large intralobular pancreatic ducts consisting of more than 10 cells were found to be chimeric, but no small ducts made up of less than 9 cells were chimeric. Our histological observations suggest that the pancreatic acinus polyclonally and directionally is maintained by multiple progenitor cells. Pancreatic large ducts also seem to develop polyclonally and might result from the assembly of small ducts that develop from a single origin. These findings provide useful information for further understanding pancreatic maintenance.

  7. The distribution of 14C-chitosan by different molecular weight in mice

    International Nuclear Information System (INIS)

    Kim, Kwang Yoon; Kim, Young Ho; Bom, Hee Seung; Kim, Ji Yeul; Kim, Hee Kyung; Roh, Young Bok; Nishimura, Yoshikazu

    1998-01-01

    Chitosan is a nontoxic natural chealtor which was made by chitin, and reduced a contamination of radiostrontium in animals. In this experiment, a different molecular weight of C-14 chitosan was intravenously administered to mice, and then the distribution of C-14 chitosan in the body was observed. Male mice (8 to 10 weeks, body weight of 30 to 35g) of ICR strain were used. C-14 chitosan, mice was sacrificed at the 6th hour, 1st, 3rd, 5th, and 7th day. Beta radioactivities in the blood, liver, kidney, liver, muscle, testis, and urine was measured using a liquid scintillation analyzer. Most of the C-14 chitosan was excreted through urine within 6 hours. Biodistribution of C-14 chitosan was similar despite the difference of molecular weight. Higher distributions of radioactivities were found in the liver, kidney, spleen. The relative concentration in tissue increased for the 6 hours and then decreased. In conclusion, most of C-14 chitosan was excreted through urine despite the difference of molecular weight. and, low molecular weight of C-14 chitosan showed higher distribution than high molecular weight of C-14 chitosan in tissues

  8. Apple, Cherry, and Blackcurrant Increases Nuclear Factor Kappa B Activation in Liver of Transgenic Mice

    DEFF Research Database (Denmark)

    Balstad, Trude; Paur, Ingvild; Poulsen, Morten

    2010-01-01

    Nuclear factor kappa B (NF-B) is essential in normal physiology, and several human disorders involve inappropriate regulation of NF-B. Diets dominated by plant-based foods protect against chronic diseases, and several food derived compounds have been identified as promising NF-B modulators. We...... investigated the effects of diets supplemented with apple, blackcurrant, or cherries on lipopolysaccharide (LPS)-induced NF-B activation in transgenic NF-B-luciferase mice. Whole body and organ specific NF-B activities were determined. The mice had ad libitum access to the respective experimental diets for 7...... slightly higher whole-body NF-B activation at 4 h, and all 3 experimental groups had higher NF-B activation at 6 h. LPS-induced NF-B activation in liver was increased with all 3 experimental diets, but no effects were observed in other organs. Our findings indicate that high intakes of lyophilized fruits...

  9. Bee Venom Acupuncture Augments Anti-Inflammation in the Peripheral Organs of hSOD1G93A Transgenic Mice.

    Science.gov (United States)

    Lee, Sun-Hwa; Choi, Sun-Mi; Yang, Eun Jin

    2015-07-29

    Amyotrophic lateral sclerosis (ALS) includes progressively degenerated motor neurons in the brainstem, motor cortex, and spinal cord. Recent reports demonstrate the dysfunction of multiple organs, including the lungs, spleen, and liver, in ALS animals and patients. Bee venom acupuncture (BVA) has been used for treating inflammatory diseases in Oriental Medicine. In a previous study, we demonstrated that BV prevented motor neuron death and increased anti-inflammation in the spinal cord of symptomatic hSOD1G93A transgenic mice. In this study, we examined whether BVA's effects depend on acupuncture point (ST36) in the organs, including the liver, spleen and kidney, of hSOD1G93A transgenic mice. We found that BV treatment at ST36 reduces inflammation in the liver, spleen, and kidney compared with saline-treatment at ST36 and BV injected intraperitoneally in symptomatic hSOD1G93A transgenic mice. Those findings suggest that BV treatment combined with acupuncture stimulation is more effective at reducing inflammation and increasing immune responses compared with only BV treatment, at least in an ALS animal model.

  10. Thio-, selenido-, and telluridogermanates(III): K/sub 6/Ge/sub 2/S/sub 6/, K/sub 6/Ge/sub 2/Se/sub 6/, and Na/sub 6/Ge/sub 2/Te/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, B; Kieselbach, E; Schaefer, H; Schrod, H [Technische Hochschule Darmstadt (Germany, F.R.). Fachbereich Anorganische Chemie und Kernchemie

    1984-09-01

    The new compounds K/sub 6/Ge/sub 2/S/sub 6/ and K/sub 6/Ge/sub 2/Se/sub 6/ crystallize in the monoclinic system, space group C2/m (No 12). The compounds are isotypic and form the K/sub 6/Si/sub 2/Te/sub 6/ structure. Na/sub 6/Ge/sub 2/Te/sub 6/ crystallizes in the K/sub 6/Sn/sub 2/Te/sub 6/ structure, monoclinic, space group P2/sub 1//c (No 14). The lattice constants are given.

  11. Ligand activation of peroxisome proliferator-activated receptor-β/δ suppresses liver tumorigenesis in hepatitis B transgenic mice

    International Nuclear Information System (INIS)

    Balandaram, Gayathri; Kramer, Lance R.; Kang, Boo-Hyon; Murray, Iain A.; Perdew, Gary H.; Gonzalez, Frank J.; Peters, Jeffrey M.

    2016-01-01

    Highlights: • The role of PPARβ/δ in HBV-induced liver cancer was examined. • PPARβ/δ inhibits steatosis, inflammation, tumor multiplicity and promotes apoptosis. • Kupffer cell PPARβ/δ mediates these effects independent of DNA binding. - Abstract: Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits steatosis and inflammation, known risk factors for liver cancer. In this study, the effect of ligand activation of PPARβ/δ in modulating liver tumorigenesis in transgenic hepatitis B virus (HBV) mice was examined. Activation of PPARβ/δ in HBV mice reduced steatosis, the average number of liver foci, and tumor multiplicity. Reduced expression of hepatic CYCLIN D1 and c-MYC, tumor necrosis factor alpha (Tnfa) mRNA, serum levels of alanine aminotransaminase, and an increase in apoptotic signaling was also observed following ligand activation of PPARβ/δ in HBV mice compared to controls. Inhibition of Tnfa mRNA expression was not observed in wild-type hepatocytes. Ligand activation of PPARβ/δ inhibited lipopolysaccharide (LPS)-induced mRNA expression of Tnfa in wild-type, but not in Pparβ/δ-null Kupffer cells. Interestingly, LPS-induced expression of Tnfa mRNA was also inhibited in Kupffer cells from a transgenic mouse line that expressed a DNA binding mutant form of PPARβ/δ compared to controls. Combined, these results suggest that ligand activation of PPARβ/δ attenuates hepatic tumorigenesis in HBV transgenic mice by inhibiting steatosis and cell proliferation, enhancing hepatocyte apoptosis, and modulating anti-inflammatory activity in Kupffer cells.

  12. An Lck-cre transgene accelerates autoantibody production and lupus development in (NZB × NZW)F1 mice

    Science.gov (United States)

    Nelson, Richard K.; Gould, Karen A.

    2015-01-01

    Lupus is an autoimmune disease characterized by the development of antinuclear autoantibodies and immune complex-mediated tissue damage. T cells in lupus patients appear to undergo apoptosis at an increased rate, and this enhanced T cell apoptosis has been postulated to contribute to lupus pathogenesis by increasing autoantigen load. However, there is no direct evidence to support this hypothesis. In this study, we show that an Lck-cre transgene, which increases T cell apoptosis as a result of T cell specific expression of cre recombinase, accelerates the development of autoantibodies and nephritis in lupus-prone (NZB×NZW)F1 mice. Although the enhanced T cell apoptosis in Lck-cre transgenic mice resulted in an overall decrease in the relative abundance of splenic CD4+ and CD8+ T cells, the proportion of activated CD4+ T cells was increased and no significant change was observed in the relative abundance of suppressive T cells. We postulate that the Lck-cre transgene promoted lupus by enhancing T cells apoptosis, which, in conjunction with the impaired clearance of apoptotic cells in lupus-prone mice, increased the nuclear antigen load and accelerated the development of anti-nuclear autoantibodies. Furthermore, our results also underscore the importance of including cre-only controls in studies using the cre-lox system. PMID:26385218

  13. Resistance to the Beneficial Metabolic Effects and Hepatic Antioxidant Defense Actions of Fibroblast Growth Factor 21 Treatment in Growth Hormone-Overexpressing Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Ravneet K. Boparai

    2015-01-01

    Full Text Available Fibroblast growth factor 21 (FGF21 modulates a diverse range of biological functions, including glucose and lipid metabolism, adaptive starvation response, and energy homeostasis, but with limited mechanistic insight. FGF21 treatment has been shown to inhibit hepatic growth hormone (GH intracellular signaling. To evaluate GH axis involvement in FGF21 actions, transgenic mice overexpressing bovine GH were used. Expectedly, in response to FGF21 treatment control littermates showed metabolic improvements whereas GH transgenic mice resisted most of the beneficial effects of FGF21, except an attenuation of the innate hyperinsulinemia. Since FGF21 is believed to exert its effects mostly at the transcriptional level, we analyzed and observed significant upregulation in expression of various genes involved in carbohydrate and lipid metabolism, energy homeostasis, and antioxidant defense in FGF21-treated controls, but not in GH transgenics. The resistance of GH transgenic mice to FGF21-induced changes underlines the necessity of normal GH signaling for the beneficial effects of FGF21.

  14. Tumorigenic potential of pituitary tumor transforming gene (PTTG in vivo investigated using a transgenic mouse model, and effects of cross breeding with p53 (+/− transgenic mice

    Directory of Open Access Journals (Sweden)

    Fong Miranda Y

    2012-11-01

    Full Text Available Abstract Background Pituitary tumor-transforming gene (PTTG is an oncogene that is overexpressed in variety of tumors and exhibits characteristics of a transforming gene. Previous transgenic mouse models to access the tumorigenic potential in the pituitary and ovary have resulted in dysplasia without formation of visible tumors, possibly due to the insufficient expression of PTTG. PTTG expression level is critical for ovarian tumorigenesis in a xenograft model. Therefore, the tumorigenic function of PTTG in vivo remains unclear. We generated a transgenic mouse that overexpresses PTTG driven by the CMV promoter to determine whether PTTG functions as a transforming oncogene that is capable of initiating tumorigenesis. Methods Transgenic animals were generated by microinjection of PTTG transgene into the male pronucleus of FVB 0.5 day old embryos. Expression levels of PTTG in tissues of transgenic animals were analyzed using an immunohistochemical analysis. H&E staining and immunohistostaining were performed to examine the type of tumor in transgenic and PTTG transgenic/p53+/- animals. Results PTTG transgenic offspring (TgPTTG were monitored for tumor development at various ages. H&E analysis was performed to identify the presence of cancer and hyperplastic conditions verified with the proliferation marker PCNA and the microvessel marker CD31. Immunohistochemistry was performed to determine transgene expression, revealing localization to the epithelium of the fallopian tube, with more generalized expression in the liver, lung, kidney, and spleen. At eight months of age, 2 out of 15 TgPTTG developed ovarian cancer, 2 out of 15 developed benign tumors, 2 out of 15 developed cervical dysplasia, and 3 out of 15 developed adenomyosis of the uterus. At ten months of age, 2 out of 10 TgPTTG developed adenocarcinoma of the ovary, 1 out of 10 developed a papillary serous adenocarcinoma, and 2 out of 10 presented with atypia of ovarian epithelial cells

  15. The PB2-K627E mutation attenuates H3N2 swine influenza virus in cultured cells and in mice.

    Science.gov (United States)

    Gong, Xiao-Qian; Ruan, Bao-Yang; Liu, Xiao-Min; Zhang, Peng; Wang, Xiu-Hui; Wang, Qi; Shan, Tong-Ling; Tong, Wu; Zhou, Yan-Jun; Li, Guo-Xin; Zheng, Hao; Tong, Guang-Zhi; Yu, Hai

    2018-04-01

    PB2-627K is an important amino acid that determines the virulence of some influenza A viruses. However, it has not been experimentally investigated in the H3N2 swine influenza virus. To explore the potential role of PB2-K627E substitution in H3N2 swine influenza virus, the growth properties and pathogenicity between H3N2 swine influenza virus and its PB2-K627E mutant were compared. For the first time, our results showed that PB2-K627E mutation attenuates H3N2 swine influenza virus in mammalian cells and in mice, suggesting that PB2-627K is required for viral replication and pathogenicity of H3N2 swine influenza virus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Magnetic refrigeration down to 1.6 K for the future circular collider e$^+$e$^-$

    CERN Document Server

    Tkaczuk, Jakub; Millet, Francois; Rousset, Bernard; Duval, Jean Marc

    2017-01-01

    High-field superconducting rf cavities of the future circular collider e+e− may require a kW-range superfluid helium refrigeration down to 1.6 K. Magnetic refrigeration operating below 4.2 K can be an alternative to the compression/expansion helium refrigeration. A significant difference between this application and previous magnetic refrigerator studies is its large cooling power, up to 103 times larger than the other designs. Principles of magnetic refrigeration are described and various technical solutions are compared. A numerical model for the static magnetic refrigerator is presented, validated, and adapted to the needs of the positron-electron version of the future circular collider. A preliminary design of magnetic refrigerator suitable for low temperature, kW-range cooling is studied.

  17. A powerful transgenic tool for fate mapping and functional analysis of newly generated neurons

    Directory of Open Access Journals (Sweden)

    Vogt Weisenhorn Daniela M

    2010-12-01

    Full Text Available Abstract Background Lack of appropriate tools and techniques to study fate and functional integration of newly generated neurons has so far hindered understanding of neurogenesis' relevance under physiological and pathological conditions. Current analyses are either dependent on mitotic labeling, for example BrdU-incorporation or retroviral infection, or on the detection of transient immature neuronal markers. Here, we report a transgenic mouse model (DCX-CreERT2 for time-resolved fate analysis of newly generated neurons. This model is based on the expression of a tamoxifen-inducible Cre recombinase under the control of a doublecortin (DCX promoter, which is specific for immature neuronal cells in the CNS. Results In the DCX-CreERT2 transgenic mice, expression of CreERT2 was restricted to DCX+ cells. In the CNS of transgenic embryos and adult DCX-CreERT2 mice, tamoxifen administration caused the transient translocation of CreERT2 to the nucleus, allowing for the recombination of loxP-flanked sequences. In our system, tamoxifen administration at E14.5 resulted in reporter gene activation throughout the developing CNS of transgenic embryos. In the adult CNS, neurogenic regions were the primary sites of tamoxifen-induced reporter gene activation. In addition, reporter expression could also be detected outside of neurogenic regions in cells physiologically expressing DCX (e.g. piriform cortex, corpus callosum, hypothalamus. Four weeks after recombination, the vast majority of reporter-expressing cells were found to co-express NeuN, revealing the neuronal fate of DCX+ cells upon maturation. Conclusions This first validation demonstrates that our new DCX-CreERT2 transgenic mouse model constitutes a powerful tool to investigate neurogenesis, migration and their long-term fate of neuronal precursors. Moreover, it allows for a targeted activation or deletion of specific genes in neuronal precursors and will thereby contribute to unravel the molecular

  18. A distal region of the human TGM1 promoter is required for expression in transgenic mice and cultured keratinocytes

    Directory of Open Access Journals (Sweden)

    Lu Ying

    2004-04-01

    Full Text Available Abstract Background TGM1(transglutaminase 1 is an enzyme that crosslinks the cornified envelope of mature keratinocytes. Appropriate expression of the TGM1 gene is crucial for proper keratinocyte function as inactivating mutations lead to the debilitating skin disease, lamellar ichthyosis. TGM1 is also expressed in squamous metaplasia, a consequence in some epithelia of vitamin A deficiency or toxic insult that can lead to neoplasia. An understanding of the regulation of this gene in normal and abnormal differentiation states may contribute to better disease diagnosis and treatment. Methods In vivo requirements for expression of the TGM1 gene were studied by fusing various lengths of promoter DNA to a reporter and injecting the DNA into mouse embryos to generate transgenic animals. Expression of the reporter was ascertained by Western blotting and immunohistochemistry. Further delineation of a transcriptionally important distal region was determined by transfections of progressively shortened or mutated promoter DNA into cultured keratinocytes. Results In vivo analysis of a reporter transgene driven by the TGM1 promoter revealed that 1.6 kilobases, but not 1.1 kilobases, of DNA was sufficient to confer tissue-specific and cell layer-specific expression. This same region was responsible for reporter expression in tissues undergoing squamous metaplasia as a response to vitamin A deprivation. Mutation of a distal promoter AP1 site or proximal promoter CRE site, both identified as important transcriptional elements in transfection assays, did not prevent appropriate expression. Further searching for transcriptional elements using electrophoretic mobility shift (EMSA and transfection assays in cultured keratinocytes identified two Sp1 elements in a transcriptionally active region between -1.6 and -1.4 kilobases. While mutation of either Sp1 site or the AP1 site singly had only a small effect, mutation of all three sites eliminated nearly all the

  19. Adenovirus type 5 E1A and E6 proteins of low-risk cutaneous beta-human papillomaviruses suppress cell transformation through interaction with FOXK1/K2 transcription factors.

    Science.gov (United States)

    Komorek, Jessica; Kuppuswamy, Mohan; Subramanian, T; Vijayalingam, S; Lomonosova, Elena; Zhao, Ling-Jun; Mymryk, Joe S; Schmitt, Kimberly; Chinnadurai, G

    2010-03-01

    The adenovirus (Adv) oncoprotein E1A stimulates cell proliferation and inhibits differentiation. These activities are primarily linked to the N-terminal region (exon 1) of E1A, which interacts with multiple cellular protein complexes. The C terminus (exon 2) of E1A antagonizes these processes, mediated in part through interaction with C-terminal binding proteins 1 and 2 (CtBP1/2). To identify additional cellular E1A targets that are involved in the modulation of E1A C-terminus-mediated activities, we undertook tandem affinity purification of E1A-associated proteins. Through mass spectrometric analysis, we identified several known E1A-interacting proteins as well as novel E1A targets, such as the forkhead transcription factors, FOXK1/K2. We identified a Ser/Thr-containing sequence motif in E1A that mediated interaction with FOXK1/K2. We demonstrated that the E6 proteins of two beta-human papillomaviruses (HPV14 and HPV21) associated with epidermodysplasia verruciformis also interacted with FOXK1/K2 through a motif similar to that of E1A. The E1A mutants deficient in interaction with FOXK1/K2 induced enhanced cell proliferation and oncogenic transformation. The hypertransforming activity of the mutant E1A was suppressed by HPV21 E6. An E1A-E6 chimeric protein containing the Ser/Thr domain of the E6 protein in E1A interacted efficiently with FOXK1/K2 and inhibited cell transformation. Our results suggest that targeting FOXK1/K2 may be a common mechanism for certain beta-HPVs and Adv5. E1A exon 2 mutants deficient in interaction with the dual-specificity kinases DYRK1A/1B and their cofactor HAN11 also induced increased cell proliferation and transformation. Our results suggest that the E1A C-terminal region may suppress cell proliferation and oncogenic transformation through interaction with three different cellular protein complexes: FOXK1/K2, DYRK(1A/1B)/HAN11, and CtBP1/2.

  20. Keratin-6 driven ODC expression to hair follicle keratinocytes enhances stemness and tumorigenesis by negatively regulating Notch

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.; Afaq, Farrukh [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Elmets, Craig A. [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2014-08-29

    Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34{sup +}/K15{sup +}/p63{sup +} keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 and keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly different in

  1. Keratin-6 driven ODC expression to hair follicle keratinocytes enhances stemness and tumorigenesis by negatively regulating Notch

    International Nuclear Information System (INIS)

    Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.; Afaq, Farrukh; Elmets, Craig A.; Athar, Mohammad

    2014-01-01

    Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34 + /K15 + /p63 + keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 and keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly different in tumors induced

  2. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD mice

    Directory of Open Access Journals (Sweden)

    Elysse M. Knight

    2013-01-01

    Alzheimer’s disease (AD is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD and non-transgenic (Non-Tg control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4–10 months, 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.

  3. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD) mice

    Science.gov (United States)

    Knight, Elysse M.; Brown, Timothy M.; Gümüsgöz, Sarah; Smith, Jennifer C. M.; Waters, Elizabeth J.; Allan, Stuart M.; Lawrence, Catherine B.

    2013-01-01

    SUMMARY Alzheimer’s disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4–10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD. PMID:22864021

  4. Attenuated lung fibrosis in interleukin 6 knock-out mice after C-ion irradiation to lung

    International Nuclear Information System (INIS)

    Saito-Fujita, Tomoko; Iwakawa, Mayumi; Nakamura, Etsuko; Nakawatari, Miyako; Fujita, Hidetoshi; Moritake, Takashi; Imai, Takashi

    2011-01-01

    There is a great deal of evidence that a cyclic cascade of inflammatory cytokines, together with the activation of macrophages, is initiated very early after irradiation to develop lung fibrosis in a late phase. To understand the persistent effects of cytokines, the cytokine gene of knock out or transgenic mouse is one of the useful tools. In this study, we evaluated a role of a key molecule, interleukin-6 (IL-6), in the late-phase inflammatory response and subsequent fibrotic changes after irradiation using wild-type (WT) and IL-6 knock out (IL-6 KO) mice. The mice underwent thoracic irradiation with 10 Gy of C-ion beam or sham-irradiation and were examined by histology. Immunoreactivity for IL-6 was induced at the site of bronchiolar epithelium, in pneumocytes and in monocytes by C-ion irradiation. At 24 weeks after irradiation, the infiltration of macrophages, detected by positive immunohistological staining with Mac3 antibody, was observed in alveolar spaces both in WT and IL-6 KO mice. The thickening of bronchiolar and alveolar walls exhibited in WT mice, but not KO mice, and fibrotic changes detected by Masson-Trichrome staining, were observed only in the lungs of WT mice, while it was attenuated in IL-6 KO mice. These results indicated that IL-6 might not be essential for activating macrophages in the late phase, but plays an important role for fibrotic changes of the alveolar wall after irradiation. (author)

  5. Decreased production of interleukin-6 and prostaglandin E2 associated with inhibition of delta-5 desaturation of omega6 fatty acids in mice fed safflower oil diets supplemented with sesamol.

    Science.gov (United States)

    Chavali, S R; Forse, R A

    1999-12-01

    The differences in the immune responses in mice fed sesame oil diets and those fed sesamin may be attributed to the presence of other lignans in the non-fat portion of the oil. The fatty acid composition (mean +/- SD mol. %) of liver membrane phospholipids and the levels of endotoxin-induced prostaglandin (PG) E2, interleukin (IL)-6, IL-10, IL-12 and tumor necrosis factor (TNF)-alpha were determined in mice fed diets supplemented with 5% safflower oil (SO) in the absence or presence of 1% sesamol. The levels of dihomo-gamma-linolenic acid (20:3omega6) were markedly higher (P<0.025) in the livers from mice fed sesamol supplemented SO diets (1.6 +/- 0.1) compared to the controls (1.4 +/- 0.1). These data suggest that sesamol or its metabolite could inhibit the in vivo delta-5 desaturation of omega6 fatty acids. Further, in animals fed sesamol supplemented SO diets, the levels of PGE2 (228 +/- 41 pg/ml) were markedly lower (P<0.01) compared to those fed SO diet alone (1355 +/- 188 pg/ml). Concomitantly, the concentrations of IL-6 were also lower (P<0.01) in mice fed sesamol diet (63 +/- 11 ng/ml) compared to the controls (143 +/- 22 ng/ml). A marked reduction in the levels of PGE2 in animals fed sesamol diets suggests that sesamol or its metabolite could inhibit the activity of cyclooxygenase enzyme.

  6. Chimeric peptide containing both B and T cells epitope of tumor-associated antigen L6 enhances anti-tumor effects in HLA-A2 transgenic mice.

    Science.gov (United States)

    Lin, Su-I; Huang, Ming-Hsi; Chang, Yu-Wen; Chen, I-Hua; Roffler, Steve; Chen, Bing-Mae; Sher, Yuh-Pyng; Liu, Shih-Jen

    2016-07-28

    Synthetic peptides are attractive for cancer immunotherapy because of their safety and flexibility. In this report, we identified a new B cell epitope of tumor-associated antigen L6 (TAL6) that could induce antibody-dependent cellular cytotoxicity (ADCC) in vivo. We incorporated the B cell epitope with a cytotoxic T lymphocyte (CTL) and a helper T (Th) epitope to form a chimeric long peptide. We formulated the chimeric peptide with different adjuvants to immunize HLA-A2 transgenic mice and evaluate their immunogenicity. The chimeric peptide formulated with an emulsion type nanoparticle (PELC) adjuvant and a toll-like receptor 9 agonist (CpG ODN) (PELC/CpG) induced the greatest ADCC and CTL responses. The induced anti-tumor immunity inhibited the growth of TAL6-positive cancer cells. Moreover, we observed that immunization with the chimeric peptide inhibited cancer cell migration in vitro and metastasis in vivo. These data suggest that a chimeric peptide containing both B and T cell epitopes of TAL6 formulated with PELC/CpG adjuvant is feasible for cancer immunotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Functional blockage of EMMPRIN ameliorates atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Liu, Hong; Yang, Li-xia; Guo, Rui-wei; Zhu, Guo-Fu; Shi, Yan-Kun; Wang, Xian-mei; Qi, Feng; Guo, Chuan-ming; Ye, Jin-shan; Yang, Zhi-hua; Liang, Xing

    2013-10-09

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a 58-kDa cell surface glycoprotein, has been identified as a key receptor for transmitting cellular signals mediating metalloproteinase activities, as well as inflammation and oxidative stress. Clinical evidence has revealed that EMMPRIN is expressed in human atherosclerotic plaque; however, the relationship between EMMPRIN and atherosclerosis is unclear. To evaluate the functional role of EMMPRIN in atherosclerosis, we treated apolipoprotein E-deficient (ApoE(-/-)) mice with an EMMPRIN function-blocking antibody. EMMPRIN was found to be up-regulated in ApoE(-/-) mice fed a 12-week high-fat diet in contrast to 12 weeks of normal diet. Administration of a function-blocking EMMPRIN antibody (100 μg, twice per week for 4 weeks) to ApoE(-/-) mice, starting after 12 weeks of high-fat diet feeding caused attenuated and more stable atherosclerotic lesions, less reactive oxygen stress generation on plaque, as well as down-regulation of circulating interleukin-6 and monocyte chemotactic protein-1 in ApoE(-/-) mice. The benefit of EMMPRIN functional blockage was associated with reduced metalloproteinases proteolytic activity, which delayed the circulating monocyte transmigrating into atherosclerotic lesions. EMMPRIN antibody intervention ameliorated atherosclerosis in ApoE(-/-) mice by the down-regulation of metalloproteinase activity, suggesting that EMMPRIN may be a viable therapeutic target in atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Disruption of genes encoding eIF4E binding proteins-1 and -2 does not alter basal or sepsis-induced changes in skeletal muscle protein synthesis in male or female mice.

    Science.gov (United States)

    Steiner, Jennifer L; Pruznak, Anne M; Deiter, Gina; Navaratnarajah, Maithili; Kutzler, Lydia; Kimball, Scot R; Lang, Charles H

    2014-01-01

    Sepsis decreases skeletal muscle protein synthesis in part by impairing mTOR activity and the subsequent phosphorylation of 4E-BP1 and S6K1 thereby controlling translation initiation; however, the relative importance of changes in these two downstream substrates is unknown. The role of 4E-BP1 (and -BP2) in regulating muscle protein synthesis was assessed in wild-type (WT) and 4E-BP1/BP2 double knockout (DKO) male mice under basal conditions and in response to sepsis. At 12 months of age, body weight, lean body mass and energy expenditure did not differ between WT and DKO mice. Moreover, in vivo rates of protein synthesis in gastrocnemius, heart and liver did not differ between DKO and WT mice. Sepsis decreased skeletal muscle protein synthesis and S6K1 phosphorylation in WT and DKO male mice to a similar extent. Sepsis only decreased 4E-BP1 phosphorylation in WT mice as no 4E-BP1/BP2 protein was detected in muscle from DKO mice. Sepsis decreased the binding of eIF4G to eIF4E in WT mice; however, eIF4E•eIF4G binding was not altered in DKO mice under either basal or septic conditions. A comparable sepsis-induced increase in eIF4B phosphorylation was seen in both WT and DKO mice. eEF2 phosphorylation was similarly increased in muscle from WT septic mice and both control and septic DKO mice, compared to WT control values. The sepsis-induced increase in muscle MuRF1 and atrogin-1 (markers of proteolysis) as well as TNFα and IL-6 (inflammatory cytokines) mRNA was greater in DKO than WT mice. The sepsis-induced decrease in myocardial and hepatic protein synthesis did not differ between WT and DKO mice. These data suggest overall basal protein balance and synthesis is maintained in muscle of mice lacking both 4E-BP1/BP2 and that sepsis-induced changes in mTOR signaling may be mediated by a down-stream mechanism independent of 4E-BP1 phosphorylation and eIF4E•eIF4G binding.

  9. Elevated mRNA-levels of gonadotropin-releasing hormone and its receptor in plaque-bearing Alzheimer's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Syed Nuruddin

    Full Text Available Research on Alzheimer's disease (AD has indicated an association between hormones of the hypothalamic-pituitary-gonadal (HPG axis and cognitive senescence, indicating that post meno-/andropausal changes in HPG axis hormones are implicated in the neuropathology of AD. Studies of transgenic mice with AD pathologies have led to improved understanding of the pathophysiological processes underlying AD. The aims of this study were to explore whether mRNA-levels of gonadotropin-releasing hormone (Gnrh and its receptor (Gnrhr were changed in plaque-bearing Alzheimer's disease transgenic mice and to investigate whether these levels and amyloid plaque deposition were downregulated by treatment with a gonadotropin-releasing hormone analog (Gnrh-a; Leuprorelin acetate. The study was performed on mice carrying the Arctic and Swedish amyloid-β precursor protein (AβPP mutations (tgArcSwe. At 12 months of age, female tgArcSwe mice showed a twofold higher level of Gnrh mRNA and more than 1.5 higher level of Gnrhr mRNA than age matched controls. Male tgArcSwe mice showed the same pattern of changes, albeit more pronounced. In both sexes, Gnrh-a treatment caused significant down-regulation of Gnrh and Gnrhr mRNA expression. Immunohistochemistry combined with quantitative image analysis revealed no significant changes in the plaque load after Gnrh-a treatment in hippocampus and thalamus. However, plaque load in the cerebral cortex of treated females tended to be lower than in female vehicle-treated mice. The present study points to the involvement of hormonal changes in AD mice models and demonstrates that these changes can be effectively counteracted by pharmacological treatment. Although known to increase in normal aging, our study shows that Gnrh/Gnrhr mRNA expression increases much more dramatically in tgArcSwe mice. Treatment with Leuprorelin acetate successfully abolished the transgene specific effects on Gnrh/Gnrhr mRNA expression. The present experimental

  10. Morphine Tolerance and Physical Dependence Are Altered in Conditional HIV-1 Tat Transgenic Mice.

    Science.gov (United States)

    Fitting, Sylvia; Stevens, David L; Khan, Fayez A; Scoggins, Krista L; Enga, Rachel M; Beardsley, Patrick M; Knapp, Pamela E; Dewey, William L; Hauser, Kurt F

    2016-01-01

    Despite considerable evidence that chronic opiate use selectively affects the pathophysiologic consequences of human immunodeficiency virus type 1 (HIV-1) infection in the nervous system, few studies have examined whether neuro-acquired immune deficiency syndrome (neuroAIDS) might intrinsically alter the pharmacologic responses to chronic opiate exposure. This is an important matter because HIV-1 and opiate abuse are interrelated epidemics, and HIV-1 patients are often prescribed opiates as a treatment of HIV-1-related neuropathic pain. Tolerance and physical dependence are inevitable consequences of frequent and repeated administration of morphine. In the present study, mice expressing HIV-1 Tat in a doxycycline (DOX)-inducible manner [Tat(+)], their Tat(-) controls, and control C57BL/6 mice were chronically exposed to placebo or 75-mg morphine pellets to explore the effects of Tat induction on morphine tolerance and dependence. Antinociceptive tolerance and locomotor activity tolerance were assessed using tail-flick and locomotor activity assays, respectively, and physical dependence was measured with the platform-jumping assay and recording of other withdrawal signs. We found that Tat(+) mice treated with DOX [Tat(+)/DOX] developed an increased tolerance in the tail-flick assay compared with control Tat(-)/DOX and/or C57/DOX mice. Equivalent tolerance was developed in all mice when assessed by locomotor activity. Further, Tat(+)/DOX mice expressed reduced levels of physical dependence to chronic morphine exposure after a 1-mg/kg naloxone challenge compared with control Tat(-)/DOX and/or C57/DOX mice. Assuming the results seen in Tat transgenic mice can be generalized to neuroAIDS, our findings suggest that HIV-1-infected individuals may display heightened analgesic tolerance to similar doses of opiates compared with uninfected individuals and show fewer symptoms of physical dependence. Copyright © 2015 by The American Society for Pharmacology and Experimental

  11. Salt-Sensitive Hypertension and Cardiac Hypertrophy in Transgenic Mice Expressing a Corin Variant Identified in African Americans

    Science.gov (United States)

    Wang, Wei; Cui, Yujie; Shen, Jianzhong; Jiang, Jingjing; Chen, Shenghan; Peng, Jianhao; Wu, Qingyu

    2012-01-01

    African Americans represent a high risk population for salt-sensitive hypertension and heart disease but the underlying mechanism remains unclear. Corin is a cardiac protease that regulates blood pressure by activating natriuretic peptides. A corin gene variant (T555I/Q568P) was identified in African Americans with hypertension and cardiac hypertrophy. In this study, we test the hypothesis that the corin variant contributes to the hypertensive and cardiac hypertrophic phenotype in vivo. Transgenic mice were generated to express wild-type or T555I/Q568P variant corin in the heart under the control of α-myosin heavy chain promoter. The mice were crossed into a corin knockout background to create KO/TgWT and KO/TgV mice that expressed WT or variant corin, respectively, in the heart. Functional studies showed that KO/TgV mice had significantly higher levels of pro-atrial natriuretic peptide in the heart compared with that in control KO/TgWT mice, indicating that the corin variant was defective in processing natriuretic peptides in vivo. By radiotelemetry, corin KO/TgV mice were found to have hypertension that was sensitive to dietary salt loading. The mice also developed cardiac hypertrophy at 12–14 months of age when fed a normal salt diet or at a younger age when fed a high salt diet. The phenotype of salt-sensitive hypertension and cardiac hypertrophy in KO/TgV mice closely resembles the pathological findings in African Americans who carry the corin variant. The results indicate that corin defects may represent an important mechanism in salt-sensitive hypertension and cardiac hypertrophy in African Americans. PMID:22987923

  12. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis.

    Science.gov (United States)

    Esteller, M; Toyota, M; Sanchez-Cespedes, M; Capella, G; Peinado, M A; Watkins, D N; Issa, J P; Sidransky, D; Baylin, S B; Herman, J G

    2000-05-01

    O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair protein that removes mutagenic and cytotoxic adducts from the O6 position of guanine. O6-methylguanine mispairs with thymine during replication, and if the adduct is not removed, this results in conversion from a guanine-cytosine pair to an adenine-thymine pair. In vitro assays show that MGMT expression avoids G to A mutations and MGMT transgenic mice are protected against G to A transitions at ras genes. We have recently demonstrated that the MGMT gene is silenced by promoter methylation in many human tumors, including colorectal carcinomas. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of K-ras mutations, we studied 244 colorectal tumor samples for MGMT promoter hypermethylation and K-ras mutational status. Our results show a clear association between the inactivation of MGMT by promoter hypermethylation and the appearance of G to A mutations at K-ras: 71% (36 of 51) of the tumors displaying this particular type of mutation had abnormal MGMT methylation, whereas only 32% (12 of 37) of those with other K-ras mutations not involving G to A transitions and 35% (55 of 156) of the tumors without K-ras mutations demonstrated MGMT methylation (P = 0.002). In addition, MGMT loss associated with hypermethylation was observed in the small adenomas, including those that do not yet contain K-ras mutations. Hypermethylation of other genes such as p16INK4a and p14ARF was not associated with either MGMT hypermethylation or K-ras mutation. Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to a particular genetic change in human cancer, specifically G to A transitions in the K-ras oncogene.

  13. Intrathymic selection of NK1.1+α/β T cell antigen receptor (TCR)+ cells in transgenic mice bearing TCR specific for chicken ovalbumin and restricted to I-Ad

    Science.gov (United States)

    Iwabuchi, Chikako; Iwabuchi, Kazuya; Nakagawa, Ken-ichi; Takayanagi, Toshiaki; Nishihori, Hiroki; Tone, Saori; Ogasawara, Kazumasa; Good, Robert A.; Onoé, Kazunori

    1998-01-01

    Generation and negative selection of NK1.1+α/β T cell receptor (TCR)+ thymocytes were analyzed using TCR-transgenic (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice and Rag-1−/−/DO10 mice, which had been established by breeding and backcrossing between Rag-1−/− and DO10 mice. Almost all T cells from these mice were shown to bear Vα13/Vβ8.2 that is specific for chicken ovalbumin (cOVA) and restricted to I-Ad. A normal proportion of the NK1.1+ Vα13/Vβ8.2+ thymocytes was generated in these mice. However, the actual cell number of both NK1.1+ and NK1.1− thymocytes in I-Ad/d mice (positive selecting background) was larger than that in I-Ab/d mice (negative selecting background). Markedly low but significant proportions of NK1.1+ Vα13/Vβ8.2+ cells were detected in the spleens from I-Ad/d and I-Ab/d mice. It was shown that the splenic NK1.1+ T cells of the I-Ab/d mice were anergized against stimulation through TCR. When (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice were given cOVA, extensive or intermediate elimination of NK1.1+α/βTCR+ thymocytes was induced in I-Ad/d or I-Ab/d mice, respectively. However, the clonal elimination was not as complete as that seen in the major NK1.1− thymocyte population. The present findings indicate that normal generation of NK1.1+α/βTCR+ thymocytes occurs in the absence of Vα14-Jα281 and that substantial negative selection operates on the NK1.1+α/βTCR+ cells. PMID:9653164

  14. Regulation of an Autoimmune Model for Multiple Sclerosis in Th2-Biased GATA3 Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Viromi Fernando

    2014-01-01

    Full Text Available T helper (Th2 cells have been proposed to play a neuroprotective role in multiple sclerosis (MS. This is mainly based on “loss-of-function” studies in an animal model for MS, experimental autoimmune encephalomyelitis (EAE, using blocking antibodies against Th2 related cytokines, and knockout mice lacking Th2-related molecules. We tested whether an increase of Th2 responses (“gain-of-function” approach could alter EAE, the approach of novel GATA binding protein 3 (GATA3-transgenic (tg mice that overexpress GATA3, a transcription factor required for Th2 differentiation. In EAE induced with myelin oligodendrocyte glycoprotein (MOG35−55 peptide, GATA3-tg mice had a significantly delayed onset of disease and a less severe maximum clinical score, compared with wild-type C57BL/6 mice. Histologically, GATA3-tg mice had decreased levels of meningitis and demyelination in the spinal cord, and anti-inflammatory cytokine profiles immunologically, however both groups developed similar levels of MOG-specific lymphoproliferative responses. During the early stage, we detected higher levels of interleukin (IL-4 and IL-10, with MOG and mitogen stimulation of regional lymph node cells in GATA3-tg mice. During the late stage, only mitogen stimulation induced higher IL-4 and lower interferon-γ and IL-17 production in GATA3-tg mice. These results suggest that a preexisting bias toward a Th2 immune response may reduce the severity of inflammatory demyelinating diseases, including MS.

  15. Breaking tolerance in transgenic mice expressing the human TSH receptor A-subunit: thyroiditis, epitope spreading and adjuvant as a 'double edged sword'.

    Science.gov (United States)

    McLachlan, Sandra M; Aliesky, Holly A; Chen, Chun-Rong; Chong, Gao; Rapoport, Basil

    2012-01-01

    Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a "double-edged sword". On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the

  16. Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice.

    Science.gov (United States)

    Gomez-Sintes, Raquel; Bortolozzi, Analia; Artigas, Francesc; Lucas, José J

    2014-09-01

    Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase with constitutive activity involved in cellular architecture, gene expression, cell proliferation, fate decision and apoptosis, among others. GSK-3 expression is particularly high in brain where it may be involved in neurological and psychiatric disorders such as Alzheimer׳s disease, bipolar disorder and major depression. A link with schizophrenia is suggested by the antipsychotic drug-induced GSK-3 regulation and by the involvement of the Akt/GSK-3 pathway in dopaminergic neurotransmission. Taking advantage of the previous development of dominant negative GSK-3 transgenic mice (Tg) showing a selective reduction of GSK-3 activity in forebrain neurons but not in dopaminergic neurons, we explored the relationship between GSK-3 and dopaminergic neurotransmission in vivo. In microdialysis experiments, local quinpirole (DA D2-R agonist) in dorsal striatum reduced dopamine (DA) release significantly less in Tg mice than in wild-type (WT) mice. However, local SKF-81297 (selective DA D1-R agonist) in dorsal striatum reduced DA release equally in both control and Tg mice indicating a comparable function of DA D1-R in the direct striato-nigral pathway. Likewise, systemic quinpirole administration - acting preferentially on presynaptic DA D2- autoreceptors to modulate DA release-reduced striatal DA release similarly in both control and Tg mice. Quinpirole reduced locomotor activity and induced c-fos expression in globus pallidus (both striatal DA D2-R-mediated effects) significantly more in WT than in Tg mice. Taking together, the present results show that dominant negative GSK-3 transgenic mice show reduced DA D2-R-mediated function in striatum and further support a link between dopaminergic neurotransmission and GSK-3 activity. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  17. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo.

    Science.gov (United States)

    Bidlack, Felicitas B; Xia, Yan; Pugach, Megan K

    2017-01-01

    Mice lacking amelogenin (KO) have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes ( Tg ) representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180 Tg , CTRNC Tg and LRAP Tg mice to generate M180 Tg and CTRNC Tg double transgene and M180 Tg , CTRNC Tg , LRAP Tg triple transgene mice with transgene hemizygosity (on one allelle) or homozygosity (on both alleles). Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene ( p structure, but only up to a maximum of ~80% that of molar and ~40% that of incisor wild-type enamel.

  18. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene

    DEFF Research Database (Denmark)

    Efrat, S; Linde, S; Kofod, Hans

    1988-01-01

    Three pancreatic beta-cell lines have been established from insulinomas derived from transgenic mice carrying a hybrid insulin-promoted simian virus 40 tumor antigen gene. The beta tumor cell (beta TC) lines maintain the features of differentiated beta cells for about 50 passages in culture. The ...... both to immortalize a rare cell type and to provide a selection for the maintenance of its differentiated phenotype....

  19. Early-Onset Diabetic E1-DN Mice Develop Albuminuria and Glomerular Injury Typical of Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Mervi E. Hyvönen

    2015-01-01

    Full Text Available The transgenic E1-DN mice express a kinase-negative epidermal growth factor receptor in their pancreatic islets and are diabetic from two weeks of age due to impaired postnatal growth of β-cell mass. Here, we characterize the development of hyperglycaemia-induced renal injury in the E1-DN mice. Homozygous mice showed increased albumin excretion rate (AER at the age of 10 weeks; the albuminuria increased over time and correlated with blood glucose. Morphometric analysis of PAS-stained histological sections and electron microscopy images revealed mesangial expansion in homozygous E1-DN mice, and glomerular sclerosis was observed in the most hyperglycaemic mice. The albuminuric homozygous mice developed also other structural changes in the glomeruli, including thickening of the glomerular basement membrane and widening of podocyte foot processes that are typical for diabetic nephropathy. Increased apoptosis of podocytes was identified as one mechanism contributing to glomerular injury. In addition, nephrin expression was reduced in the podocytes of albuminuric homozygous E1-DN mice. Tubular changes included altered epithelial cell morphology and increased proliferation. In conclusion, hyperglycaemic E1-DN mice develop albuminuria and glomerular and tubular injury typical of human diabetic nephropathy and can serve as a new model to study the mechanisms leading to the development of diabetic nephropathy.

  20. Adaptation to experimental jet-lag in R6/2 mice despite circadian dysrhythmia.

    Directory of Open Access Journals (Sweden)

    Nigel I Wood

    Full Text Available The R6/2 transgenic mouse model of Huntington's disease (HD shows a disintegration of circadian rhythms that can be delayed by pharmacological and non-pharmacological means. Since the molecular machinery underlying the circadian clocks is intact, albeit progressively dysfunctional, we wondered if light phase shifts could modulate the deterioration in daily rhythms in R6/2 mice. Mice were subjected to four x 4 hour advances in light onset. R6/2 mice adapted to phase advances, although angles of entrainment increased with age. A second cohort was subjected to a jet-lag paradigm (6 hour delay or advance in light onset, then reversal after 2 weeks. R6/2 mice adapted to the original shift, but could not adjust accurately to the reversal. Interestingly, phase shifts ameliorated the circadian rhythm breakdown seen in R6/2 mice under normal LD conditions. Our previous finding that the circadian period (tau of 16 week old R6/2 mice shortens to approximately 23 hours may explain how they adapt to phase advances and maintain regular circadian rhythms. We tested this using a 23 hour period light/dark cycle. R6/2 mice entrained to this cycle, but onsets of activity continued to advance, and circadian rhythms still disintegrated. Therefore, the beneficial effects of phase-shifting are not due solely to the light cycle being closer to the tau of the mice. Our data show that R6/2 mice can adapt to changes in the LD schedule, even beyond the age when their circadian rhythms would normally disintegrate. Nevertheless, they show abnormal responses to changes in light cycles. These might be caused by a shortened tau, impaired photic re-synchronization, impaired light detection and/or reduced masking by evening light. If similar abnormalities are present in HD patients, they may suffer exaggerated jet-lag. Since the underlying molecular clock mechanism remains intact, light may be a useful treatment for circadian dysfunction in HD.

  1. Transgenic increase in N-3/n-6 Fatty Acid ratio reduces maternal obesity-associated inflammation and limits adverse developmental programming in mice.

    Science.gov (United States)

    Heerwagen, Margaret J R; Stewart, Michael S; de la Houssaye, Becky A; Janssen, Rachel C; Friedman, Jacob E

    2013-01-01

    Maternal and pediatric obesity has risen dramatically over recent years, and is a known predictor of adverse long-term metabolic outcomes in offspring. However, which particular aspects of obese pregnancy promote such outcomes is less clear. While maternal obesity increases both maternal and placental inflammation, it is still unknown whether this is a dominant mechanism in fetal metabolic programming. In this study, we utilized the Fat-1 transgenic mouse to test whether increasing the maternal n-3/n-6 tissue fatty acid ratio could reduce the consequences of maternal obesity-associated inflammation and thereby mitigate downstream developmental programming. Eight-week-old WT or hemizygous Fat-1 C57BL/6J female mice were placed on a high-fat diet (HFD) or control diet (CD) for 8 weeks prior to mating with WT chow-fed males. Only WT offspring from Fat-1 mothers were analyzed. WT-HFD mothers demonstrated increased markers of infiltrating adipose tissue macrophages (Pmaternal insulin resistance (r = 0.59, Pmaternal protection from excess inflammation corresponded with improved metabolic outcomes in adult WT offspring. While the offspring from WT-HFD mothers weaned onto CD demonstrated increased weight gain (Pmaternal inflammation may be a promising target for preventing adverse fetal metabolic outcomes in pregnancies complicated by maternal obesity.

  2. Synthesis of 1-benzyl-4-((5,6-dimethoxy(2- sup 14 C)-1-indanon)-2-YL)-methylpiperidine hydrochloride (E2020- sup 14 C)

    Energy Technology Data Exchange (ETDEWEB)

    Iimura, Youichi; Mishima, Mannen; Sugimoto, Hachiro (Eisai Co., Ltd., Ibaraki (Japan). Tsukuba Research Labs.)

    1989-07-01

    1-Benzyl-4-((5,6-dimethoxy(2-{sup 14}C)-1-indanon)-2-yl)-methylpiperidine hydrochloride (E2020-{sup 14}C), and acetylcholinesterase inhibitor for studying the pharmacokinetic profiles of E2020, was synthesized from 5,6-dimethoxy(2-{sup 14}C)-1-indanone as the labelled starting material. (author).

  3. Alteration of strain background and a high omega-6 fat diet induces earlier onset of pancreatic neoplasia in EL-Kras transgenic mice.

    Science.gov (United States)

    Cheon, Eric C; Strouch, Matthew J; Barron, Morgan R; Ding, Yongzeng; Melstrom, Laleh G; Krantz, Seth B; Mullapudi, Bhargava; Adrian, Kevin; Rao, Sambasiva; Adrian, Thomas E; Bentrem, David J; Grippo, Paul J

    2011-06-15

    Diets containing omega-6 (ω-6) fat have been associated with increased tumor development in carcinogen-induced pancreatic cancer models. However, the effects of ω-6 fatty acids and background strain on the development of genetically-induced pancreatic neoplasia is unknown. We assessed the effects of a diet rich in ω-6 fat on the development of pancreatic neoplasia in elastase (EL)-Kras(G12D) (EL-Kras) mice in two different backgrounds. EL-Kras FVB mice were crossed to C57BL/6 (B6) mice to produce EL-Kras FVB6 F1 (or EL-Kras F1) and EL-Kras B6 congenic mice. Age-matched EL-Kras mice from each strain were compared to one another on a standard chow. Two cohorts of EL-Kras FVB and EL-Kras F1 mice were fed a 23% corn oil diet and compared to age-matched mice fed a standard chow. Pancreata were scored for incidence, frequency, and size of neoplastic lesions, and stained for the presence of mast cells to evaluate changes in the inflammatory milieu secondary to a high fat diet. EL-Kras F1 mice had increased incidence, frequency, and size of pancreatic neoplasia compared to EL-Kras FVB mice. The frequency and size of neoplastic lesions and the weight and pancreatic mast cell densities in EL-Kras F1 mice were increased in mice fed a high ω-6 fatty acid diet compared to mice fed a standard chow. We herein introduce the EL-Kras B6 mouse model which presents with increased frequency of pancreatic neoplasia compared to EL-Kras F1 mice. The phenotype in EL-Kras F1 and FVB mice is promoted by a diet rich in ω-6 fatty acid. Copyright © 2010 UICC.

  4. Minor abnormalities of testis development in mice lacking the gene encoding the MAPK signalling component, MAP3K1.

    Directory of Open Access Journals (Sweden)

    Nick Warr

    2011-05-01

    Full Text Available In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans.

  5. Inhibition of elastase-pulmonary emphysema in dominant-negative MafB transgenic mice.

    Science.gov (United States)

    Aida, Yasuko; Shibata, Yoko; Abe, Shuichi; Inoue, Sumito; Kimura, Tomomi; Igarashi, Akira; Yamauchi, Keiko; Nunomiya, Keiko; Kishi, Hiroyuki; Nemoto, Takako; Sato, Masamichi; Sato-Nishiwaki, Michiko; Nakano, Hiroshi; Sato, Kento; Kubota, Isao

    2014-01-01

    Alveolar macrophages (AMs) play important roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). We previously demonstrated upregulation of the transcription factor MafB in AMs of mice exposed to cigarette smoke. The aim of this study was to elucidate the roles of MafB in the development of pulmonary emphysema. Porcine pancreatic elastase was administered to wild-type (WT) and dominant-negative (DN)-MafB transgenic (Tg) mice in which MafB activity was suppressed only in macrophages. We measured the mean linear intercept and conducted cell differential analysis of bronchoalveolar lavage (BAL) cells, surface marker analysis using flow cytometry, and immunohistochemical staining using antibodies to matrix metalloproteinase (MMP)-9 and MMP-12. Airspace enlargement of the lungs was suppressed significantly in elastase-treated DN-MafB Tg mice compared with treated WT mice. AMs with projected pseudopods were decreased in DN-MafB Tg mice. The number of cells intermediately positive for F4/80 and weakly or intermediately positive for CD11b, which are considered cell subsets of matured AMs, decreased in the BAL of DN-MafB Tg mice. Furthermore, MMP-9 and -12 were significantly downregulated in BAL cells of DN-MafB Tg mice. Because MMPs exacerbate emphysema, MafB may be involved in pulmonary emphysema development through altered maturation of macrophages and MMP expression.

  6. The development of the conditionally replication-competent adenovirus: replacement of E4 orf1-4 region by exogenous gene.

    Science.gov (United States)

    Nam, Jae-Kook; Lee, Mi-Hyang; Seo, Hae-Hyun; Kim, Seok-Ki; Lee, Kang-Huyn; Kim, In-Hoo; Lee, Sang-Jin

    2010-05-01

    Tumor or tissue specific replicative adenovirus armed with a therapeutic gene has shown a promising anti-cancer therapeutic modality. However, because the genomic packaging capacity is constrained, only a few places inside it are available for transgene insertion. In the present study, we introduce a novel strategy utilizing the early E4 region for the insertion of therapeutic gene(s). We constructed the conditionally replication-competent adenovirus (CRAd), Ad5E4(mRFP) by: (i) replacing the E4/E1a promoter by the prostate-specific enhancer element; (ii) inserting mRFP inside the E4orf1-4 deletion region; and (iii) sub-cloning enhanced green fluorescent protein controlled by cytomegalovirus promoter in the left end of the viral genome. Subsequently, we evaluated its replication abilities and killing activities in vitro, as well as its in vivo anti-tumor efficacy in CWR22rv xenografts. When infected with Ad5E4(mRFP), the number and intensity of the mRFP gene products increased in a prostate cancer cell-specific manner as designed, suggesting that the mRFP gene and E4orfs other than E4orf1-4 were well synthesized from one transcript via alternative splicing as the recombinant adenovirus replicated. As expected from the confirmed virus replication capability, Ad5E4(mRFP) induced cell lysis as potent as the wild-type adenovirus and effectively suppressed tumor growth when tested in the CWR22rv xenografts in nude mice. Furthermore, Ad5E4(endo/angio) harboring an endostatin-angiostatin gene in E4orf1-4 was able to enhance CRAd by replacing mRFP with a therapeutic gene. The approach employed in the present study for the insertion of a therapeutic transgene in CRAd should facilitate the construction of CRAd containing multiple therapeutic genes in the viral genome that may have the potential to serve as highly potent cancer therapeutic reagents. Copyright (c) 2010 John Wiley & Sons, Ltd.

  7. Metallothionein-I overexpression alters brain inflammation and stimulates brain repair in transgenic mice with astrocyte-targeted interleukin-6 expression

    DEFF Research Database (Denmark)

    Penkowa, Milena; Camats, Jordi; Giralt, Mercedes

    2003-01-01

    injury, such as a cryolesion, demonstrate a neuroprotective role of IL-6. Thus, the GFAP-IL-6 mice showed faster tissue repair and decreased oxidative stress and apoptosis compared with control litter-mate mice. The neuroprotective factors metallothionein-I+II (MT-I+II) were upregulated by the cryolesion...... the inflammatory response, decreased oxidative stress and apoptosis significantly, and increased brain tissue repair in comparison with either GFAP-IL-6 or control litter-mate mice. Overall, the results demonstrate that brain MT-I+II proteins are fundamental neuroprotective factors....

  8. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo

    Directory of Open Access Journals (Sweden)

    Felicitas B. Bidlack

    2017-11-01

    Full Text Available Mice lacking amelogenin (KO have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes (Tg representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180Tg, CTRNCTg and LRAPTg mice to generate M180Tg and CTRNCTg double transgene and M180Tg, CTRNCTg, LRAPTg triple transgene mice with transgene hemizygosity (on one allelle or homozygosity (on both alleles. Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene (p < 0.05. The presence of the LRAPTg did not improve the phenotype of M180Tg/CTRNCTg/KO enamel. In the absence of endogenous amelogenin, the addition of amelogenin transgenes representing the most

  9. A Mutation of the Prdm9 Mouse Hybrid Sterility Gene Carried by a Transgene.

    Science.gov (United States)

    Mihola, O; Trachtulec, Z

    2017-01-01

    PRDM9 is a protein with histone-3-methyltransferase activity, which specifies the sites of meiotic recombination in mammals. Deficiency of the Prdm9 gene in the laboratory mouse results in complete arrest of the meiotic prophase of both sexes. Moreover, the combination of certain PRDM9 alleles from different mouse subspecies causes hybrid sterility, e.g., the male-specific meiotic arrest found in the (PWD/Ph × C57BL/6J)F1 animals. The fertility of all these mice can be rescued using a Prdm9-containing transgene. Here we characterized a transgene made from the clone RP24-346I22 that was expected to encompass the entire Prdm9 gene. Both (PWD/Ph × C57BL/6J)F1 intersubspecific hybrid males and Prdm9-deficient laboratory mice of both sexes carrying this transgene remained sterile, suggesting that Prdm9 inactivation occurred in the Tg(RP24-346I22) transgenics. Indeed, comparative qRT-PCR analysis of testicular RNAs from transgene-positive versus negative animals revealed similar expression levels of Prdm9 mRNAs from the exons encoding the C-terminal part of the protein but elevated expression from the regions coding for the N-terminus of PRDM9, indicating that the transgenic carries a new null Prdm9 allele. Two naturally occurring alternative Prdm9 mRNA isoforms were overexpressed in Tg(RP24-346I22), one formed via splicing to a 3'-terminal exon consisting of short interspersed element B2 and one isoform including an alternative internal exon of 28 base pairs. However, the overexpression of these alternative transcripts was apparently insufficient for Prdm9 function or for increasing the fertility of the hybrid males.

  10. Transmission and adaptation of chronic wasting disease to hamsters and transgenic mice: evidence for strains.

    Science.gov (United States)

    Raymond, Gregory J; Raymond, Lynne D; Meade-White, Kimberly D; Hughson, Andrew G; Favara, Cynthia; Gardner, Donald; Williams, Elizabeth S; Miller, Michael W; Race, Richard E; Caughey, Byron

    2007-04-01

    In vitro screening using the cell-free prion protein conversion system indicated that certain rodents may be susceptible to chronic wasting disease (CWD). Therefore, CWD isolates from mule deer, white-tailed deer, and elk were inoculated intracerebrally into various rodent species to assess the rodents' susceptibility and to develop new rodent models of CWD. The species inoculated were Syrian golden, Djungarian, Chinese, Siberian, and Armenian hamsters, transgenic mice expressing the Syrian golden hamster prion protein, and RML Swiss and C57BL10 wild-type mice. The transgenic mice and the Syrian golden, Chinese, Siberian, and Armenian hamsters had limited susceptibility to certain of the CWD inocula, as evidenced by incomplete attack rates and long incubation periods. For serial passages of CWD isolates in Syrian golden hamsters, incubation periods rapidly stabilized, with isolates having either short (85 to 89 days) or long (408 to 544 days) mean incubation periods and distinct neuropathological patterns. In contrast, wild-type mouse strains and Djungarian hamsters were not susceptible to CWD. These results show that CWD can be transmitted and adapted to some species of rodents and suggest that the cervid-derived CWD inocula may have contained or diverged into at least two distinct transmissible spongiform encephalopathy strains.

  11. Age-dependent effect of apolipoprotein E4 on functional outcome after controlled cortical impact in mice.

    Science.gov (United States)

    Mannix, Rebekah C; Zhang, Jimmy; Park, Juyeon; Zhang, Xuan; Bilal, Kiran; Walker, Kendall; Tanzi, Rudolph E; Tesco, Giuseppina; Whalen, Michael J

    2011-01-01

    The apolipoprotein E4 (APOE4) gene leads to increased brain amyloid beta (Aβ) and poor outcome in adults with traumatic brain injury (TBI); however, its role in childhood TBI is controversial. We hypothesized that the transgenic expression of human APOE4 worsens the outcome after controlled cortical impact (CCI) in adult but not immature mice. Adult and immature APOE4 mice had worse motor outcome after CCI (P<0.001 versus wild type (WT)), but the Morris water maze performance was worse only in adult APOE4 mice (P=0.028 at 2 weeks, P=0.019 at 6 months versus WT), because immature APOE4 mice had performance similar to WT for up to 1 year after injury. Brain lesion size was similar in adult APOE4 mice but was decreased (P=0.029 versus WT) in injured immature APOE4 mice. Microgliosis was similar in all groups. Soluble brain Aβ(40) was increased at 48 hours after CCI in adult and immature APOE4 mice and in adult WT (P<0.05), and was dynamically regulated during the chronic period by APOE4 in adults but not immature mice. The data suggest age-dependent effects of APOE4 on cognitive outcome after TBI, and that therapies targeting APOE4 may be more effective in adults versus children with TBI.

  12. Identification of Secretory Odontoblasts Using DMP1-GFP Transgenic Mice

    Science.gov (United States)

    Balic, Anamaria; Mina, Mina

    2011-01-01

    Terminal differentiation of odontoblasts from dental papilla is a long process involving several intermediate steps and changes in the transcriptional profile and expression of proteins secreted by cells in the odontoblast lineage. Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stages of differentiation along a lineage. Our previous studies showed utilization of pOBCol3.6GFP and pOBCol2.3GFP animals for identification of odontoblasts at early and late stages of polarization respectively. In the present study we used the DMP1-GFP transgenic animal as an experimental model to examine its expression during the differentiation of odontoblasts from progenitor cells in vivo and in vitro. Our observations showed that DMP1-GFP transgene is first activated in secretory/functional odontoblasts engaged in secretion of predentin and then transiently expressed at high levels in newly differentiated odontoblasts. Expression of DMP1-GFP was down-regulated in highly differentiated odontoblasts. The temporal and spatial pattern of expression of DMP1-GFP transgene closely mimics the expression of endogenous DMP1. This transgenic animal will facilitate studies of gene expression and biological functions in secretory/functional odontoblasts. PMID:21172466

  13. Breaking Tolerance in Transgenic Mice Expressing the Human TSH Receptor A-Subunit: Thyroiditis, Epitope Spreading and Adjuvant as a ‘Double Edged Sword’

    Science.gov (United States)

    McLachlan, Sandra M.; Aliesky, Holly A.; Chen, Chun-Rong; Chong, Gao; Rapoport, Basil

    2012-01-01

    Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a “double-edged sword”. On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the

  14. An Lck-cre transgene accelerates autoantibody production and lupus development in (NZB × NZW)F1 mice.

    Science.gov (United States)

    Nelson, R K; Gould, K A

    2016-02-01

    Lupus is an autoimmune disease characterized by the development of antinuclear autoantibodies and immune complex-mediated tissue damage. T cells in lupus patients appear to undergo apoptosis at an increased rate, and this enhanced T cell apoptosis has been postulated to contribute to lupus pathogenesis by increasing autoantigen load. However, there is no direct evidence to support this hypothesis. In this study, we show that an Lck-cre transgene, which increases T cell apoptosis as a result of T cell-specific expression of cre recombinase, accelerates the development of autoantibodies and nephritis in lupus-prone (NZB × NZW)F1 mice. Although the enhanced T cell apoptosis in Lck-cre transgenic mice resulted in an overall decrease in the relative abundance of splenic CD4(+) and CD8(+) T cells, the proportion of activated CD4(+) T cells was increased and no significant change was observed in the relative abundance of suppressive T cells. We postulate that the Lck-cre transgene promoted lupus by enhancing T cell apoptosis, which, in conjunction with the impaired clearance of apoptotic cells in lupus-prone mice, increased the nuclear antigen load and accelerated the development of anti-nuclear autoantibodies. Furthermore, our results also underscore the importance of including cre-only controls in studies using the cre-lox system. © The Author(s) 2015.

  15. ADAM 12 protease induces adipogenesis in transgenic mice

    DEFF Research Database (Denmark)

    Kawaguchi, Nobuko; Xu, Xiufeng; Tajima, Rie

    2002-01-01

    ADAM 12 (meltrin-alpha) is a member of the ADAM (a disintegrin and metalloprotease) family. ADAM 12 functions as an active metalloprotease, supports cell adhesion, and has been implicated in myoblast differentiation and fusion. Human ADAM 12 exists in two forms: the prototype membrane-anchored pr......ADAM 12 (meltrin-alpha) is a member of the ADAM (a disintegrin and metalloprotease) family. ADAM 12 functions as an active metalloprotease, supports cell adhesion, and has been implicated in myoblast differentiation and fusion. Human ADAM 12 exists in two forms: the prototype membrane......-anchored protein, ADAM 12-L, and a shorter secreted form, ADAM 12-S. Here we report the occurrence of adipocytes in the skeletal muscle of transgenic mice in which overexpression of either form is driven by the muscle creatine kinase promoter. Cells expressing a marker of early adipogenesis were apparent...

  16. A transgenic approach to study argininosuccinate synthetase gene expression

    Science.gov (United States)

    2014-01-01

    Background Argininosuccinate synthetase (ASS) participates in urea, nitric oxide and arginine production. Besides transcriptional regulation, a post-transcriptional regulation affecting nuclear precursor RNA stability has been reported. To study whether such post-transcriptional regulation underlines particular temporal and spatial ASS expression, and to investigate how human ASS gene behaves in a mouse background, a transgenic mouse system using a modified bacterial artificial chromosome carrying the human ASS gene tagged with EGFP was employed. Results Two lines of ASS-EGFP transgenic mice were generated: one with EGFP under transcriptional control similar to that of the endogenous ASS gene, another with EGFP under both transcriptional and post-transcriptional regulation as that of the endogenous ASS mRNA. EGFP expression in the liver, the organ for urea production, and in the intestine and kidney that are responsible for arginine biosynthesis, was examined. Organs taken from embryos E14.5 stage to young adult were examined under a fluorescence microscope either directly or after cryosectioning. The levels of EGFP and endogenous mouse Ass mRNAs were also quantified by S1 nuclease mapping. EGFP fluorescence and EGFP mRNA levels in both the liver and kidney were found to increase progressively from embryonic stage toward birth. In contrast, EGFP expression in the intestine was higher in neonates and started to decline at about 3 weeks after birth. Comparison between the EGFP profiles of the two transgenic lines indicated the developmental and tissue-specific regulation was mainly controlled at the transcriptional level. The ASS transgene was of human origin. EGFP expression in the liver followed essentially the mouse Ass pattern as evidenced by zonation distribution of fluorescence and the level of EGFP mRNA at birth. However, in the small intestine, Ass mRNA level declined sharply at 3 week of age, and yet substantial EGFP mRNA was still detectable at this stage

  17. Late inflammatory and thrombotic changes in irradiated hearts of C57BL/6 wild-type and atherosclerosis-prone ApoE-deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Patties, I.; Glasow, A. [University of Leipzig, Department of Radiation Therapy, Leipzig (Germany); Haagen, J. [University of Technology, Department of Radiotherapy and Radiation Oncology, Medical Faculty Carl Gustav Carus, Dresden (Germany); Doerr, W. [University of Technology, Department of Radiotherapy and Radiation Oncology, Medical Faculty Carl Gustav Carus, Dresden (Germany); CCC, Medical University/AKH, Department of Radiation Oncology and Christian Doppler Laboratory for Medical Radiation Research for Radiooncology, Vienna (Austria); Hildebrandt, G. [University of Rostock, Department of Radiotherapy and Radiation Oncology, Rostock (Germany)

    2014-09-09

    Radiation-induced heart disease represents a late complication of thoracic radiotherapy. We investigated the inflammatory and thrombotic response after local heart irradiation in wild-type and atherosclerosis-prone mice. Atherosclerosis-prone ApoE{sup -/-} and C57BL/6 wild-type mice were sacrificed 20, 40, and 60 weeks after irradiation with 0.2, 2, 8, or 16 Gy. The expression of CD31, vascular cell adhesion molecule-1 (VCAM-1), thrombomodulin (TM), and CD45 were quantified by immunofluorescence staining of heart tissue sections. Microvascular density decreased at 40 weeks after 16 Gy in C57BL/6 but not in ApoE{sup -/-} mice. CD31 expression declined in C57BL/6 mice at 40 weeks (8 Gy), but increased in ApoE{sup -/-} mice at 20 (2/8/16 Gy) and 60 weeks (16 Gy). Capillary area decreased in C57BL/6 at 40 weeks (8/16 Gy) but increased in ApoE{sup -/-} mice at 20 weeks (16 Gy). Endocardial VCAM-1 expression remained unchanged. TM-positive capillaries decreased at 40 weeks (8/16 Gy) in C57BL/6 and at 60 weeks (2/16 Gy) in ApoE{sup -/-} mice. Leukocyte infiltration transiently rose 40 weeks after 8 Gy (only ApoE{sup -/-}) and 16 Gy. After receiving a low irradiation dose of 0.2 Gy, no significant changes were observed in any of the mouse models. This study demonstrated that local heart irradiation affects microvascular structure and induces inflammatory/thrombotic responses in mice in a dose- and time-dependent manner. Thereby, significant prothrombotic changes were found in both strains, although they were progressive in ApoE{sup -/-} mice only. Proinflammatory responses, like the increase of adhesion molecules and leukocyte infiltration, were more pronounced and occurred at lower doses in ApoE{sup -/-} vs. C57BL/6 mice. These findings indicate that metabolic risk factors, such as decreased ApoE lipoproteins, may lead to an enhanced proinflammatory and prothrombotic late response in locally irradiated hearts. (orig.) [German] Strahlungsinduzierte kardiovaskulaere

  18. Stability of transgene expression, field performance and recombination breeding of transformed barley lines

    DEFF Research Database (Denmark)

    Horvath, H.; Jensen, L.G.; Wong, O.T.

    2001-01-01

    in homozygous transgenic T-3 plants, and these remained constant over a 3-year period. In micro-malting experiments, the heat-stable enzyme reached levels of up to 1.4 mug.mg(-1) protein and survived kiln drying at levels of 70-100%. In the field trials of 1997 and 1998 the transgenic lines had a reduced 1000...... lines yielded approximately 6 t.ha(-1) and Golden Promise 7.7 t.ha(-1). Cross-breeding was carried out to transfer the transgene into a more suitable genetic background. Crosses of the semi-dwarf ari-e mutant Golden Promise gave rise to the four morphological phenotypes nutans, high erect, erect...... transformants were observed in some F-4 lines homozygous for the morphological phenotypes and for the transgene. In the case of a homozygous nutans line, the transgenic plants had a higher 1000-grain weight than those lacking the transgene. Like mutants providing useful output traits, transgenic plants...

  19. Polyamines modulate carcinogen-induced mutagenesis in vivo.

    Science.gov (United States)

    Wallon, U Margaretha; O'Brien, Thomas G

    2005-01-01

    Elevated polyamine levels as a consequence of targeted overexpression of ornithine decarboxylase (ODC) to murine skin enhance susceptibility to tumorigenesis in this tissue. A possible mechanism for the enhanced susceptibility phenotype is an increased sensitivity of tissues with elevated polyamine levels to the mutagenic action of carcinogens. To test this hypothesis, a transgenic mouse model containing the Big Blue transgene and also expressing a K6/ODC transgene was developed. Incorporation of the K6/ODC transgene into the Big Blue model did not affect the spontaneous lacI mutant frequency in either skin or epidermis of the double-transgenic mice. After skin treatment with single doses of either 7,12-dimethylbenz[a]anthracene or N-methyl-N'-nitro-N-nitrosoguanidine, however, the mutant frequency was significantly increased in the skin of double-transgenic Big Blue;K6/ODC mice compared to Big Blue controls. The increases in mutant frequency were clearly due to ODC transgene activity, since treatment of mice with the ODC inhibitor, alpha-difluoromethylornithine, completely abolished the difference in mutant frequencies between double-transgenic and Big Blue mice. These results demonstrate that intracellular polyamine levels modulate mutation induction following carcinogen exposure. 2004 Wiley-Liss, Inc.

  20. CXCL14 deficiency in mice attenuates obesity and inhibits feeding behavior in a novel environment.

    Directory of Open Access Journals (Sweden)

    Kosuke Tanegashima

    Full Text Available BACKGROUND: CXCL14 is a chemoattractant for macrophages and immature dendritic cells. We recently reported that CXCL14-deficient (CXCL14(-/- female mice in the mixed background are protected from obesity-induced hyperglycemia and insulin resistance. The decreased macrophage infiltration into visceral adipose tissues and the increased insulin sensitivity of skeletal muscle contributed to these phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed a comprehensive study for the body weight control of CXCL14(-/- mice in the C57BL/6 background. We show that both male and female CXCL14(-/- mice have a 7-11% lower body weight compared to CXCL14(+/- and CXCL14(+/+ mice in adulthood. This is mainly caused by decreased food intake, and not by increased energy expenditure or locomotor activity. Reduced body weight resulting from the CXCL14 deficiency was more pronounced in double mutant CXCL14(-/-ob/ob and CXCL14(-/-A(y mice. In the case of CXCL14(-/-A(y mice, oxygen consumption was increased compared to CXCL14(+/-A(y mice, in addition to the reduced food intake. In CXCL14(-/- mice, fasting-induced up-regulation of Npy and Agrp mRNAs in the hypothalamus was blunted. As intracerebroventricular injection of recombinant CXCL14 did not change the food intake of CXCL14(-/- mice, CXCL14 could indirectly regulate appetite. Intriguingly, the food intake of CXCL14(-/- mice was significantly repressed when mice were transferred to a novel environment. CONCLUSIONS/SIGNIFICANCE: We demonstrated that CXCL14 is involved in the body weight control leading to the fully obese phenotype in leptin-deficient or A(y mutant mice. In addition, we obtained evidence indicating that CXCL14 may play an important role in central nervous system regulation of feeding behavior.

  1. Effects of the deletion of early region 4 (E4 open reading frame 1 (orf1, orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Directory of Open Access Journals (Sweden)

    Michael A Thomas

    Full Text Available The global health burden engendered by human immunodeficiency virus (HIV-induced acquired immunodeficiency syndrome (AIDS is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1 through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and

  2. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Science.gov (United States)

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a

  3. Different metabolic profiles of K1 serotype and non-serotype K1 and K2 Klebsiella pneumoniae isolates in oral infection mice model.

    Science.gov (United States)

    Chen, Nan; Wang, Lin-Lin; Xue, Juan; Ma, Xiang-Bo; Zhao, Sheng; Rong, Rui-Xue; Li, Hong-Quan; Ding, Liang; Zheng, Ming-Zhi; Chen, Ying-Ying; Duan, Fei; Shen, Yue-Liang

    2014-10-01

    K1 or K2 serotype Klebsiella pneumoniae isolate caused clinical pyogenic liver abscess (KLA) infection is prevalent in many areas. It has been identified that K1 or K2 serotype K. pneumoniae isolates caused KLA infection in mice by oral inoculation. In our study, K1 serotype K. pneumoniae isolate Kp1002 with hypermucoviscosity (HV)-positive phenotype caused KLA infection in C57BL/6 mice by oral inoculation. Simultaneously, non-serotype K1 and K2 isolate Kp1014 with HV-negative phenotype failed to cause KLA infection in the same manner. It seems that gastrointestinal tract translocation is the pathway by which K1 or K2 serotype K. pneumoniae caused KLA infection. Liquid chromatography-tandem mass spectrometry was used to further analyze metabolic profile changes in mice with KLA infection. Data showed that after Kp1002 or Kp1014 oral inoculation, serum Phosphatidylcholine (PC) and Lysophosphatidylcholine (LPC) levels significantly changed in mice. Some PC and LPC molecules showed changes both in the Kp1002 KLA group and the Kp1014 no-KLA group compared with the control group. The level of 18:1/18:2-PC significantly changed in the Kp1002 KLA group compared with the control group, but showed no change between the Kp1014 no-KLA group and the control group. The level of 18:1/18:2-PC might have been particularly affected by KLA infection caused by K1 serotype K. pneumoniae Kp1002. It may be a potential biomarker for KLA infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Development of ghrelin transgenic mice for elucidation of clinical implication of ghrelin.

    Science.gov (United States)

    Aotani, Daisuke; Ariyasu, Hiroyuki; Shimazu-Kuwahara, Satoko; Shimizu, Yoshiyuki; Nomura, Hidenari; Murofushi, Yoshiteru; Kaneko, Kentaro; Izumi, Ryota; Matsubara, Masaki; Kanda, Hajime; Noguchi, Michio; Tanaka, Tomohiro; Kusakabe, Toru; Miyazawa, Takashi; Nakao, Kazuwa

    2017-01-01

    To elucidate the clinical implication of ghrelin, we have been trying to generate variable models of transgenic (Tg) mice overexpressing ghrelin. We generated Tg mice overexpressing des-acyl ghrelin in a wide variety of tissues under the control of β-actin promoter. While plasma des-acyl ghrelin level in the Tg mice was 44-fold greater than that of control mice, there was no differences in the plasma ghrelin level between des-acyl ghrelin Tg and the control mice. The des-acyl ghrelin Tg mice exhibited the lower body weight and the shorter body length due to modulation of GH-IGF-1 axis. We tried to generate Tg mice expressing a ghrelin analog, which possessed ghrelin-like activity (Trp 3 -ghrelin Tg mice). The plasma Trp 3 -ghrelin concentration in Trp 3 -ghrelin Tg mice was approximately 85-fold higher than plasma ghrelin (acylated ghrelin) concentration seen in the control mice. Because Trp 3 -ghrelin is approximately 24-fold less potent than ghrelin, the plasma Trp 3 -ghrelin concentration in Trp 3 -ghrelin Tg mice was calculated to have approximately 3.5-fold biological activity greater than that of ghrelin (acylated ghrelin) in the control mice. Trp 3 -ghrelin Tg mice did not show any phenotypes except for reduced insulin sensitivity in 1-year old. After the identification of ghrelin O-acyltransferase (GOAT), we generated doubly Tg mice overexpressing both mouse des-acyl ghrelin and mouse GOAT in the liver by cross-mating the two kinds of Tg mice. The plasma ghrelin concentration of doubly Tg mice was approximately 2-fold higher than that of the control mice. No apparent phenotypic changes in body weight and food intake were observed in doubly Tg mice. Further studies are ongoing in our laboratory to generate Tg mice with the increased plasma ghrelin level to a greater extent. The better understanding of physiological and pathophysiological significance of ghrelin from experiments using an excellent animal model may provide a new therapeutic approach for human

  5. Long-term high-level expression of human beta-globin occurs following transplantation of transgenic marrow into irradiated mice.

    Science.gov (United States)

    Himelstein, A; Ward, M; Podda, S; de la Flor Weiss, E; Costantini, F; Bank, A

    1993-03-01

    When the human beta-globin gene is transferred into the bone marrow cells of live mice, its expression is very low. To investigate the reason for this, we transferred the bone marrow of transgenic mice containing and expressing the human beta-globin into irradiated recipients. We demonstrate that long-term high level expression of the human beta-globin gene can be maintained in the marrow and blood of irradiated recipients following transplantation. Although expression decreased over time in most animals because of host marrow reconstitution, the ratio of human beta-globin transgene expression to endogenous mouse beta-globin gene expression in donor-derived erythroid cells remained constant over time. We conclude that there is no inherent limitation to efficient expression of an exogenous human beta-globin gene in mouse bone marrow cells following marrow transplantation.

  6. Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APPswe/PS1ΔE9 transgenic mouse model of Alzheimer's disease

    International Nuclear Information System (INIS)

    Tang, Jun; Song, Min; Wang, Yanyan; Fan, Xiaotang; Xu, Haiwei; Bai, Yun

    2009-01-01

    In addition to the subventricular zone, the dentate gyrus of the hippocampus is one of the few brain regions in which neurogenesis continues into adulthood. Perturbation of neurogenesis can alter hippocampal function, and previous studies have shown that neurogenesis is dysregulated in Alzheimer disease (AD) brain. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin have been shown to play important roles both in embryonic development and in the adult nervous system, and may regulate hippocampal neurogenesis. Previous data indicated that increased expression of BMP4 mRNA within the dentate gyrus might contribute to decreased hippocampal cell proliferation in the APP swe /PS1 ΔE9 mouse AD model. However, it is not known whether the BMP antagonist Noggin contributes to the regulation of neurogenesis. We therefore studied the relative expression levels and localization of BMP4 and its antagonist Noggin in the dentate gyrus and whether these correlated with changes in neurogenesis in 6-12 mo old APP swe /PS1 ΔE9 transgenic mice. Bromodeoxyuridine (BrdU) was used to label proliferative cells. We report that decreased neurogenesis in the APP/PS1 transgenic mice was accompanied by increased expression of BMP4 and decreased expression of Noggin at both the mRNA and protein levels; statistical analysis showed that the number of proliferative cells at different ages correlated positively with Noggin expression and negatively with BMP4 expression. Intraventricular administration of a chimeric Noggin/Fc protein was used to block the action of endogenous BMP4; this resulted in a significant increase in the number of BrdU-labeled cells in dentate gyrus subgranular zone and hilus in APP/PS1 mice. These results suggest that BMP4 and Noggin co-modulate neurogenesis.

  7. Morphogenetic roles of perlecan in the tooth enamel organ: an analysis of overexpression using transgenic mice.

    Science.gov (United States)

    Ida-Yonemochi, Hiroko; Satokata, Ichiro; Ohshima, Hayato; Sato, Toshiya; Yokoyama, Minesuke; Yamada, Yoshihiko; Saku, Takashi

    2011-09-01

    Perlecan, a heparan sulfate proteoglycan, is enriched in the intercellular space of the enamel organ. To understand the role of perlecan in tooth morphogenesis, we used a keratin 5 promoter to generate transgenic (Tg) mice that over-express perlecan in epithelial cells, and examined their tooth germs at tissue and cellular levels. Immunohistochemistry showed that perlecan was more strongly expressed in the enamel organ cells of Tg mice than in wild-type mice. Histopathology showed wider intercellular spaces in the stellate reticulum of the Tg molars and loss of cellular polarity in the enamel organ, especially in its cervical region. Hertwig's epithelial root sheath (HERS) cells in Tg mice were irregularly aligned due to excessive deposits of perlecan along the inner, as well as on the outer sides of the HERS. Tg molars had dull-ended crowns and outward-curved tooth roots and their enamel was poorly crystallized, resulting in pronounced attrition of molar cusp areas. In Tg mice, expression of integrin β1 mRNA was remarkably higher at E18, while expression of bFGF, TGF-β1, DSPP and Shh was more elevated at P1. The overexpression of perlecan in the enamel organ resulted in irregular morphology of teeth, suggesting that the expression of perlecan regulates growth factor signaling in a stage-dependent manner during each step of the interaction between ameloblast-lineage cells and mesenchymal cells. Copyright © 2011 International Society of Matrix Biology. All rights reserved.

  8. Autocrine effects of transgenic resistin reduce palmitate and glucose oxidation in brown adipose tissue

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Mlejnek, Petr; Zídek, Václav; Landa, Vladimír; Šimáková, Miroslava; Šilhavý, Jan; Strnad, Hynek; Eigner, Sebastian; Eigner-Henke, Kateřina; Škop, V.; Malínská, H.; Trnovská, J.; Kazdová, L.; Drahota, Zdeněk; Mráček, Tomáš; Houštěk, Josef

    2016-01-01

    Roč. 48, č. 6 (2016), s. 420-427 ISSN 1094-8341 R&D Projects: GA MŠk(CZ) LL1204; GA ČR(CZ) GB14-36804G; GA MZd(CZ) NT14325 Institutional support: RVO:67985823 ; RVO:68378050 ; RVO:61389005 Keywords : brown adipose tissue * autocrine * transgenic * spontaneously hypertensive rat Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.044, year: 2016

  9. Sequence analysis of laci mutations obtained from lung cells of radon-exposed big blue trademark transgenic mice

    International Nuclear Information System (INIS)

    Layton, A.D.; Cross, F.T.; Steigler, G.L.; Stillwell, L.S.; Jostes, R.F.; Lutze, L.H.

    1994-01-01

    We have exposed Big Blue trademark transgenic mice by inhalation to 320, 640 and 960 Working Level Months (WLM) of radon progeny. Mice were sacrificed after 3, 6 and 9 days; the time periods required to obtain the exposures. Control mice were also sacrificed at each time interval. In each case all tissues were excised, flash frozen in liquid nitrogen, and stored at -80 degrees C for further analysis. Twelve lacI mutations have been isolated from the lung tissue of a mouse from the 960-WLM exposure group; the lacI genes from these mutants have been sequenced. Sequence data indicate that three of the mutants have a C;G deletion at BP 978 and are possibly clonal in origin. Two mutants have multiple events within the gene: one has a an A:T to C:G transversion and a C:G insertion separated by 291 BPs; the second has a G:C to A:T transition as well as an A:T deletion followed by 6 base pairs downstream by a T:A insertion. Other mutations include a single G:C to A:T transition, a two base pair deletion, and a C:G to T:A transition. Mutant plaques are being evaluated from individual mice at other dose levels. Time course experiments are also planned. These studies will help define the molecular fine structure of mutations induced by high-LET radiation exposure

  10. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    Directory of Open Access Journals (Sweden)

    Dani Smith

    Full Text Available Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains.Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not.Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  11. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    Science.gov (United States)

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P; Klein, Jonathan D; Chen, Gang; Lazarus, Philip; Collaco, Joseph M; McGrath-Morrow, Sharon A

    2015-01-01

    Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  12. Dietary omega 6 fatty acids and the effects of hyperthyroidism in mice.

    Science.gov (United States)

    Deshpande, N; Hulbert, A J

    1995-03-01

    The influence of the type of dietary fat on the effects of thyroid hormones was investigated in mice. Hyperthyroidism was achieved by providing thyroid hormones (T3 and T4) in the drinking water. Both hyperthyroid and euthyroid mice (Mus musculus) were fed isoenergetic diets containing 18% (w/w) total lipid but differing in fatty acid composition. Diets were either low in the polyunsaturated linoleic acid (18:2, omega 6) and high in saturated fatty acids (SFAs) or low in saturated fats and high in the polyunsaturated fatty acid (PUFA), linoleic acid. Treatments were maintained for 21-22 days. Plasma thyroid hormone levels, standard metabolic rate (SMR), changes in body mass, specific activities of malic enzyme (ME), Na-K-ATPase and glycerolphosphate dehydrogenase (GPDH) of the liver were measured. Fatty acid composition of the liver phospholipids was also determined. Levels of T3 (15-17 nM) and T4 (250-255 nM) were significantly higher in the respective hyperthyroid groups. There was no significant influence of the diet on hormone levels. Hyperthyroidism increased the SMR 37-44% above the euthyroid levels. A significant body weight loss of 14-18% was observed in hyperthyroid mice on the PUFA diet but not in those on the SFA diet. PUFA diet significantly reduced the activity of ME but had no effect on Na-K-ATPase or GPDH activity. Activities of Na-K-ATPase and GPDH were significantly elevated in all hyperthyroid groups. Mice on T4 and PUFA diet showed a highly significant 399% increase in GPDH activity above the euthyroid level.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Intrathymic selection of NK1.1+α/β T cell antigen receptor (TCR)+ cells in transgenic mice bearing TCR specific for chicken ovalbumin and restricted to I-Ad

    OpenAIRE

    Iwabuchi, Chikako; Iwabuchi, Kazuya; Nakagawa, Ken-ichi; Takayanagi, Toshiaki; Nishihori, Hiroki; Tone, Saori; Ogasawara, Kazumasa; Good, Robert A.; Onoé, Kazunori

    1998-01-01

    Generation and negative selection of NK1.1+α/β T cell receptor (TCR)+ thymocytes were analyzed using TCR-transgenic (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice and Rag-1−/−/DO10 mice, which had been established by breeding and backcrossing between Rag-1−/− and DO10 mice. Almost all T cells from these mice were shown to bear Vα13/Vβ8.2 that is specific for chicken ovalbumin (cOVA) and restricted to I-Ad. A normal proportion of the NK1.1+ Vα13/Vβ8.2+ thymocytes was generated in these mice. Ho...

  14. Gene-mutation assays in lambda-lacZ transgenic mice : comparison of lacZ with endogenous genes in splenocytes and small intestinal epithelium

    NARCIS (Netherlands)

    Delft, J.H.M. van; Bergmans, A.; Dam, F.J. van; Tates, A.D.; Howard, L.; Winton, D.J.; Baan, R.A.

    1998-01-01

    Comparison of results derived from transgenic animal gene-mutation assays with those from mutation analyses in endogenous genes is an important step in the validation of the former. We have used λlacZ transgenic mice to study alkylation-induced mutagenesis in vivo in (a) lacZ and hprt in spleen

  15. Conditional reverse tet-transactivator mouse strains for the efficient induction of TRE-regulated transgenes in mice.

    Directory of Open Access Journals (Sweden)

    Lukas E Dow

    Full Text Available Tetracycline or doxycycline (dox-regulated control of genetic elements allows inducible, reversible and tissue specific regulation of gene expression in mice. This approach provides a means to investigate protein function in specific cell lineages and at defined periods of development and disease. Efficient and stable regulation of cDNAs or non-coding elements (e.g. shRNAs downstream of the tetracycline-regulated element (TRE requires the robust expression of a tet-transactivator protein, commonly the reverse tet-transactivator, rtTA. Most rtTA strains rely on tissue specific promoters that often do not provide sufficient rtTA levels for optimal inducible expression. Here we describe the generation of two mouse strains that enable Cre-dependent, robust expression of rtTA3, providing tissue-restricted and consistent induction of TRE-controlled transgenes. We show that these transgenic strains can be effectively combined with established mouse models of disease, including both Cre/LoxP-based approaches and non Cre-dependent disease models. The integration of these new tools with established mouse models promises the development of more flexible genetic systems to uncover the mechanisms of development and disease pathogenesis.

  16. MR Microimaging of amyloid plaques in Alzheimer's disease transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Wengenack, Thomas M.; Poduslo, Joseph F. [Mayo Clinic, Molecular Neurobiology Laboratory, Departments of Neurology, Neuroscience, and Biochemistry/Molecular Biology, Rochester, MN (United States); Jack, Clifford R. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Garwood, Michael [University of Minnesota Medical School, Center for Magnetic Resonance Research, Minneapolis, MN (United States); University of Minnesota Medical School, Department of Radiology, Minneapolis, MN (United States)

    2008-03-15

    Alzheimer's disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process. Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas. (orig.)

  17. Sildenafil promotes eNOS activation and inhibits NADPH oxidase in the transgenic sickle cell mouse penis.

    Science.gov (United States)

    Musicki, Biljana; Bivalacqua, Trinity J; Champion, Hunter C; Burnett, Arthur L

    2014-02-01

    Sickle cell disease (SCD)-associated vasculopathy in the penis is characterized by aberrant nitric oxide and phosphodiesterase (PDE) 5 signaling, and by increased oxidative stress. Preliminary clinical trials show that continuous treatment with PDE5 inhibitor sildenafil unassociated with sexual activity decreases priapic activity in patients with SCD. However, the mechanism of its vasculoprotective effect in the penis remains unclear. We evaluated whether continuous administration of PDE5 inhibitor sildenafil promotes eNOS function at posttranslational levels and decreases superoxide-producing enzyme NADPH oxidase activity in the sickle cell mouse penis. SCD transgenic mice were used as an animal model of SCD. WT mice served as controls. Mice received treatment with the PDE5 inhibitor sildenafil (100 mg/kg/day) or vehicle for 3 weeks. eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS interactions with heat-shock protein 90 (HSP90) (positive regulator), phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177), an NADPH oxidase catalytic subunit gp91(phox), and a marker of oxidative stress (4-hydroxy-2-nonenal [HNE]) were measured by Western blot. Effect of continuous sildenafil treatment on eNOS posttranslational activation, NADPH oxidase catalytic subunit, and oxidative stress in the penis of the sickle cell mouse. Continuous treatment with sildenafil reversed (P penis. Sildenafil treatment of WT mice did not affect any of these parameters. Our findings that sildenafil enhances eNOS activation and inhibits NADPH oxidase function in the sickle cell mouse penis offers a vasculoprotective molecular basis for the therapeutic effect of sildenafil in the penis in association with SCD. © 2013 International Society for Sexual Medicine.

  18. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice

    International Nuclear Information System (INIS)

    Pittius, C.W.; Hennighausen, L.; Lee, E.; Westphal, H.; Nicols, E.; Vitale, J.; Gordon, K.

    1988-01-01

    Whey acidic protein (WAP) is a major whey protein in mouse milk. Its gene is expressed in the lactating mammary gland and is inducible by steroid and peptide hormones. A series of transgenic mice containing a hybrid gene in which human tissue plasminogen activator (tPA) cDNA is under the control of the murine WAP gene promoter had previously been generated. In this study, 21 tissues from lactating and virgin transgenic female mice containing the WAP-tPA hybrid gene were screened for the distribution of murine WAP and human tPA transcripts. Like the endogenous WAP RNA, WAP-tPA RNA was expressed predominantly in mammary gland tissue and appeared to be inducible by lactation. Whereas WAP transcripts were not detected in 22 tissues of virgin mice, low levels of WAP-tPA RNA, which were not modulated during lactation, were found in tongue, kidney, and sublingual gland. These studies demonstrate that the WAP gene promoter can target the expression of a transgene to the mammary gland and that this expression is inducible during lactation

  19. Intratracheal injection of adenovirus containing the human MNSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis

    International Nuclear Information System (INIS)

    Epperly, Michael W.; Bray, Jenifer A.; Krager, Stephen; Berry, Luann M.; Gooding, William; Engelhardt, John F.; Zwacka, Ralf; Travis, Elizabeth L.; Greenberger, Joel S.

    1999-01-01

    Purpose: A dose and volume limiting factor in radiation treatment of thoracic cancer is the development of fibrosis in normal lung. The goal of the present study was to determine whether expression prior to irradiation of a transgene for human manganese superoxide dismutase (MnSOD) or human copper/zinc superoxide dismutase (Cu/ZnSOD) protects against irradiation-induced lung damage in mice. Methods and Materials: Athymic Nude (Nu/J) mice were intratracheally injected with 10 9 plaque-forming units (PFU) of a replication-incompetent mutant adenovirus construct containing the gene for either human MnSOD, human copper/zinc superoxide dismutase (Cu/ZnSOD) or LacZ. Four days later the mice were irradiated to the pulmonary cavity to doses of 850, 900, or 950 cGy. To demonstrate adenoviral infection, nested reverse transcriptase-polymerase chain reaction (RT-PCR) was carried out with primers specific for either human MnSOD or Cu/ZnSOD transgene on freshly explanted lung, trachea, or alveolar type II cells, and immunohistochemistry was used to measure LacZ expression. RNA was extracted on day 0, 1, 4, or 7 after 850 cGy of irradiation from lungs of mice that had previously received adenovirus or had no treatment. Slot blot analysis was performed to quantitate RNA expression for IL-1, tumor necrosis factor (TNF)-α, TGF-β, MnSOD, or Cu/ZnSOD. Lung tissue was explanted and tested for biochemical activity of MnSOD or Cu/ZnSOD after adenovirus injection. Other mice were sacrificed 132 days after irradiation, lungs excised, frozen in OCT, (polyvinyl alcohol, polyethylene glycol mixture) sectioned, H and E stained, and evaluated for percent of the lung demonstrating organizing alveolitis. Results: Mice injected intratracheally with adenovirus containing the gene for human MnSOD had significantly reduced chronic lung irradiation damage following 950 cGy, compared to control mice or mice injected with adenovirus containing the gene for human Cu/ZnSOD or LacZ. Immunohistochemistry

  20. Vascular defects in gain-of-function fps/fes transgenic mice correlate with PDGF- and VEGF-induced activation of mutant Fps/Fes kinase in endothelial cells.

    Science.gov (United States)

    Sangrar, W; Mewburn, J D; Vincent, S G; Fisher, J T; Greer, P A

    2004-05-01

    Fps/Fes is a cytoplasmic tyrosine kinase that is abundantly expressed in the myeloid, endothelial, epithelial, neuronal and platelet lineages. Genetic manipulation in mice has uncovered potential roles for this kinase in hematopoiesis, innate immunity, inflammation and angiogenesis. We have utilized a genetic approach to explore the role of Fps/Fes in angiogenesis. A hypervascular line of mice generated by expression of a 'gain-of-function' human fps/fes transgene (fps(MF)) encoding a myristoylated variant of Fps (MFps) was used in these studies. The hypervascular phenotype of this line was extensively characterized by intravital microscopy and biochemical approaches. fps(MF) mice exhibited 1.6-1.7-fold increases in vascularity which was attributable to increases in the number of secondary vessels. Vessels were larger, exhibited varicosities and disorganized patterning, and were found to have defects in histamine-induced permeability. Biochemical characterization of endothelial cell (EC) lines derived from fps(MF) mice revealed that MFps was hypersensitive to activation by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). MFps mediates enhanced sensitization to VEGF and PDGF signaling in ECs. We propose that this hypersensitization contributes to excessive angiogenic signaling and that this underlies the observed hypervascular phenotype of fps(MF) mice. These phenotypes recapitulate important aspects of the vascular defects observed in both VEGF and angiopoietin-1 transgenic mice. The fps/fes proto-oncogene product therefore represents a novel player in the regulation of angiogenesis, and the fps(MF) line of mice constitutes a unique new murine model for the study of this process.

  1. Effects of anabolic steroids and high-intensity aerobic exercise on skeletal muscle of transgenic mice.

    Directory of Open Access Journals (Sweden)

    Karina Fontana

    Full Text Available In an attempt to shorten recovery time and improve performance, strength and endurance athletes occasionally turn to the illicit use of anabolic-androgenic steroids (AAS. This study evaluated the effects of AAS treatment on the muscle mass and phenotypic characteristics of transgenic mice subjected to a high-intensity, aerobic training program (5d/wk for 6 weeks. The transgenic mice (CETP(+/-LDLr(-/+ were engineered to exhibit a lipid profile closer to humans. Animals were divided into groups of sedentary (Sed and/or training (Ex mice (each treated orally with AAS or gum arabic/vehicle: Sed-C, Sed-M, ex-C, ex-M. The effects of AAS (mesterolone: M on specific phenotypic adaptations (muscle wet weight, cross-sectional area, and fiber type composition in three hindlimb muscles (soleus:SOL, tibialis anterior:TA and gastrocnemius:GAS were assessed. In order to detect subtle changes in fiber type profile, the entire range of fiber types (I, IC, IIAC, IIA, IIAD, IID, IIDB, IIB was delineated using mATPase histochemistry. Body weight gain occurred throughout the study for all groups. However, the body weight gain was significantly minimized with exercise. This effect was blunted with mesterolone treatment. Both AAS treatment (Sed-M and high-intensity, aerobic training (ex-C increased the wet weights of all three muscles and induced differential hypertrophy of pure and hybrid fibers. Combination of AAS and training (ex-M resulted in enhanced hypertrophy. In the SOL, mesterolone treatment (Sed-M and ex-M caused dramatic increases in the percentages of fiber types IC, IIAC, IIAD, IID, with concomitant decrease in IIA, but had minimal impact on fiber type percentages in the predominantly fast muscles. Overall, the AAS-induced differential adaptive changes amounted to significant fiber type transformations in the fast-to-slow direction in SOL. AAS treatment had a significant effect on muscle weights and fiber type composition in SOL, TA and GAS which was

  2. Cat odor exposure induces distinct changes in the exploratory behavior and Wfs1 gene expression in C57Bl/6 and 129Sv mice.

    Science.gov (United States)

    Raud, Sirli; Sütt, Silva; Plaas, Mario; Luuk, Hendrik; Innos, Jürgen; Philips, Mari-Anne; Kõks, Sulev; Vasar, Eero

    2007-10-16

    129Sv and C57Bl/6 (Bl6) strains are two most widely used inbred mice strains for generation of transgenic animals. The present study confirms the existence of substantial differences in the behavior of these two mice strains. The exploratory behavior of Bl6 mice in a novel environment was significantly higher compared to 129Sv mice. The exposure of mice to cat odor-induced an anxiety-like state in Bl6, but not in 129Sv mice. The levels of Wfs1 gene expression did not differ in the prefrontal cortex, mesolimbic area and temporal lobe of experimentally naive Bl6 and 129Sv mice. However, after cat odor exposure the expression of Wfs1 gene was significantly lower in the mesolimbic area and temporal lobe of Bl6 mice compared to 129Sv strain. Dynamics of Wfs1 gene expression and exploratory behavior suggest that the down-regulation of Wfs1 gene in Bl6 mice might be related to the increased anxiety. Further studies are needed to test the robustness and possible causal relationship of this finding.

  3. HIV-1 Nef mutations abrogating downregulation of CD4 affect other Nef functions and show reduced pathogenicity in transgenic mice

    International Nuclear Information System (INIS)

    Hanna, Zaher; Priceputu, Elena; Hu, Chunyan; Vincent, Patrick; Jolicoeur, Paul

    2006-01-01

    HIV-1 Nef has the ability to downmodulate CD4 cell surface expression. Several studies have shown that CD4 downregulation is required for efficient virus replication and high infectivity. However, the pathophysiological relevance of this phenomenon in vivo, independently of its role in sustaining high virus loads, remains unclear. We studied the impact of the CD4 downregulation function of Nef on its pathogenesis in vivo, in the absence of viral replication, in the CD4C/HIV transgenic (Tg) mouse model. Two independent Nef mutants (RD35/36AA and D174K), known to abrogate CD4 downregulation, were tested in Tg mice. Flow cytometry analysis showed that downregulation of murine CD4 was severely decreased or abrogated on Tg T cells expressing respectively Nef RD35/36AA and Nef D174K . Similarly, the severe depletion of double-positive CD4 + CD8 + and of single-positive CD4 + CD8 - thymocytes, usually observed with Nef Wt , was not detected in Nef RD35/36AA and Nef D174K Tg mice. However, both mutant Tg mice showed a partial depletion of peripheral CD4 + T cells. This was accompanied, as previously reported for Net Wt Tg mice, by the presence of an activated/memory-like phenotype (CD69 + , CD25 + , CD44 + , CD45RB Low , CD62 Low ) of CD4 + T cells expressing Nef RD35/36AA and to a lesser extent Nef D174K . In addition, both mutants retained the ability to block CD4 + T cell proliferation in vitro after anti-CD3 stimulation, but not to enhance apoptosis/death of CD4 + T cells. Therefore, it appears that Nef-mediated CD4 downregulation is associated with thymic defects, but segregates independently of the activated/memory-like phenotype, of the partial depletion and of the impaired in vitro proliferation of peripheral CD4 + T cells. Histopathological assessment revealed the total absence of or decrease severity and frequency of organ AIDS-like diseases (lung, heart and kidney pathologies) in respectively Nef RD35/36AA and Nef D174K Tg mice, relative to those developing in

  4. Oropharyngeal Candidiasis in HIV Infection: Analysis of Impaired Mucosal Immune Response to Candida albicans in Mice Expressing the HIV-1 Transgene

    Directory of Open Access Journals (Sweden)

    Louis de Repentigny

    2015-06-01

    Full Text Available IL-17-producing Th17 cells are of critical importance in host defense against oropharyngeal candidiasis (OPC. Speculation about defective Th17 responses to oral C. albicans infection in the context of HIV infection prompted an investigation of innate and adaptive immune responses to Candida albicans in transgenic mice expressing the genome of HIV-1 in immune cells and displaying an AIDS-like disease. Defective IL-17 and IL-22-dependent mucosal responses to C. albicans were found to determine susceptibility to OPC in these transgenic mice. Innate phagocytes were quantitatively and functionally intact, and individually dispensable for control of OPC and to prevent systemic dissemination of Candida to deep organs. CD8+ T-cells recruited to the oral mucosa of the transgenic mice limited the proliferation of C. albicans in these conditions of CD4+ T-cell deficiency. Therefore, the immunopathogenesis of OPC in the context of HIV infection involves defective T-cell-mediated immunity, failure of crosstalk with innate mucosal immune effector mechanisms, and compensatory cell responses, which limit Candida infection to the oral mucosa and prevent systemic dissemination.

  5. Tubular overexpression of gremlin induces renal damage susceptibility in mice.

    Directory of Open Access Journals (Sweden)

    Alejandra Droguett

    Full Text Available A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1 specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage

  6. Genotype-induced changes in biophysical properties of frontal cortex lipid raft from APP/PS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Mario L Diaz

    2012-11-01

    Full Text Available Alterations in the lipid composition of lipid rafts have been demonstrated both in human brain and transgenic mouse models, and it has been postulated that aberrant lipid composition in lipid rafts is partly responsible for neuronal degeneration. In order to assess the impact of lipid changes on lipid raft functional properties, we have aimed at determining relevant physicochemical modifications in lipid rafts purified from frontal cortex of wild type (WT and APP/PS1 double transgenic mice. By means of steady-state fluorescence anisotropy analyses using two lipid soluble fluorescent probes, TMA-DPH (1-[(4-trimethyl-aminophenyl]-6-phenyl-1,3,5-hexatriene and DPH (1,6-diphenyl-1,3,5-hexatriene, we demonstrate that cortical lipid rafts from WT and APP/PS1 animals exhibit different biophysical behaviours, depending on genotype but also on age. Thus, aged APP/PS1 animals exhibited slightly more liquid-ordered lipid rafts than WT counterparts. Membrane microviscosity napp analyses demonstrate that WT lipid rafts are more fluid than APP/PS1 animals of similar age, both at the aqueous interface and hydrophobic core of the membrane. napp in APP/PS1 animals was higher for DPH than for TMA-DPH under similar experimental conditions, indicating that the internal core of the membrane is more viscous than the raft membrane at the aqueous interface. The most dramatic changes in biophysical properties of lipid rafts were observed when membrane cholesterol was depleted with methyl-beta-cyclodextrin. Overall, our results indicate that APP/PS1 genotype strongly affects physicochemical properties of lipid raft. Such alterations appear not to be homogeneous across the raft membrane axis, but rather are more prominent at the membrane plane. These changes correlate with aberrant proportions of sphingomyelin, cholesterol and saturated fatty acids, as well as polyunsaturated fatty acids, measured in lipid rafts from frontal cortex in this familial model of

  7. Pervasive and stochastic changes in the TCR repertoire of regulatory T-cell-deficient mice.

    Science.gov (United States)

    Zheng, Lingjie; Sharma, Rahul; Kung, John T; Deshmukh, Umesh S; Jarjour, Wael N; Fu, Shu Man; Ju, Shyr-Te

    2008-04-01

    We hypothesize that regulatory T-cell (Treg)-deficient strains have an altered TCR repertoire in part due to the expansion of autoimmune repertoire by self-antigen. We compared the Vbeta family expression profile between B6 and Treg-lacking B6.Cg-Foxp3(sf)(/Y) (B6.sf) mice using fluorescent anti-Vbeta mAbs and observed no changes. However, while the spectratypes of 20 Vbeta families among B6 mice were highly similar, the Vbeta family spectratypes of B6.sf mice were remarkably different from B6 mice and from each other. Significant spectratype changes in many Vbeta families were also observed in Treg-deficient IL-2 knockout (KO) and IL-2Ralpha KO mice. Such changes were not observed with anti-CD3 mAb-treated B6 mice or B6 CD4+CD25- T cells. TCR transgenic (OT-II.sf) mice displayed dramatic reduction of clonotypic TCR with concomitant increase in T cells bearing non-transgenic Vbeta and Valpha families, including T cells with dual receptors expressing reduced levels of transgenic Valpha and endogenous Valpha. Collectively, the data demonstrate that Treg deficiency allows polyclonal expansion of T cells in a stochastic manner, resulting in widespread changes in the TCR repertoire.

  8. Moderate activation of IKK2-NF-kB in unstressed adult mouse liver induces cytoprotective genes and lipogenesis without apparent signs of inflammation or fibrosis.

    Science.gov (United States)

    Lu, Hong; Lei, Xiaohong; Zhang, Qinghao

    2015-07-30

    The NF-kB signaling, regulated by IKK1-p52/RelB and IKK2-p65, is activated by various stresses to protect or damage the liver, in context-specific manners. Two previous studies of liver-specific expression of constitutive active IKK2 (IKK2ca) showed that strong activation of IKK2-NF-kB in mouse livers caused inflammation, insulin resistance, and/or fibrosis. The purpose of this study was to understand how moderate activation of IKK2-NF-kB in adult mouse livers alters hepatic gene expression and pathophysiology. We generated mice with adult hepatocyte-specific activation of Ikk2 (Liv-Ikk2ca) using Alb-cre mice and Ikk2ca Rosa26 knockin mice in which a moderate expression of Ikk2ca transgene was driven by the endogenous Rosa26 promoter. Surprisingly, compared to wild-type mice, adult male Liv-Ikk2ca mice had higher hepatic mRNA expression of Ikk2 and classical NF-kB targets (e.g. Lcn2 and A20), as well as IKK1, NIK, and RelB, but no changes in markers of inflammation or fibrosis. Blood levels of IL-6 and MCP-1 remained unchanged, and histology analysis showed a lack of injury or infiltration of inflammatory cells in livers of Liv-Ikk2ca mice. Moreover, Liv-Ikk2ca mice had lower mRNA expression of prooxidative enzymes Cyp2e1 and Cyp4a14, higher expression of antioxidative enzymes Sod2, Gpx1, and Nqo1, without changes in key enzymes for fatty acid oxidation, glucose utilization, or gluconeogenesis. In parallel, Liv-Ikk2ca mice and wild-type mice had similar levels of hepatic reduced glutathione, endogenous reactive oxygen species, and lipid peroxidation. Additionally, Liv-Ikk2ca mice had higher Cyp3a11 without down-regulation of most drug processing genes. Regarding nuclear proteins of NF-kB subunits, Liv-Ikk2ca mice had moderately higher p65 and p50 but much higher RelB. Results of ChIP-qPCR showed that the binding of p50 to multiple NF-kB-target genes was markedly increased in Liv-Ikk2ca mice. Additionally, Liv-Ikk2ca mice had moderate increase in triglycerides in

  9. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2.

    Science.gov (United States)

    Le Bacquer, Olivier; Petroulakis, Emmanuel; Paglialunga, Sabina; Poulin, Francis; Richard, Denis; Cianflone, Katherine; Sonenberg, Nahum

    2007-02-01

    The most common pathology associated with obesity is insulin resistance, which results in the onset of type 2 diabetes mellitus. Several studies have implicated the mammalian target of rapamycin (mTOR) signaling pathway in obesity. Eukaryotic translation initiation factor 4E-binding (eIF4E-binding) proteins (4E-BPs), which repress translation by binding to eIF4E, are downstream effectors of mTOR. We report that the combined disruption of 4E-BP1 and 4E-BP2 in mice increased their sensitivity to diet-induced obesity. Increased adiposity was explained at least in part by accelerated adipogenesis driven by increased expression of CCAAT/enhancer-binding protein delta (C/EBPdelta), C/EBPalpha, and PPARgamma coupled with reduced energy expenditure, reduced lipolysis, and greater fatty acid reesterification in the adipose tissue of 4E-BP1 and 4E-BP2 double KO mice. Increased insulin resistance in 4E-BP1 and 4E-BP2 double KO mice was associated with increased ribosomal protein S6 kinase (S6K) activity and impairment of Akt signaling in muscle, liver, and adipose tissue. These data clearly demonstrate the role of 4E-BPs as a metabolic brake in the development of obesity and reinforce the idea that deregulated mTOR signaling is associated with the development of the metabolic syndrome.

  10. Effect of 14-kDa and 47-kDa protein molecules of age garlic extract on peritoneal macrophages.

    Science.gov (United States)

    Daneshmandi, Saeed; Hajimoradi, Monire; Ahmadabad, Hasan Namdar; Hassan, Zuhair Mohammad; Roudbary, Maryam; Ghazanfari, Tooba

    2011-03-01

    Garlic (Allium sativum), traditionally being used as a spice worldwide, has different applications and is claimed to possess beneficial effects in several health ailments such as tumor and atherosclerosis. Garlic is also an immunomodulator and its different components are responsible for different properties. The present work aimed to assess the effect of protein fractions of garlic on peritoneal macrophages. 14-kDa and 47-kDa protein fractions of garlic were purified. Mice peritoneal macrophages were lavaged and cultured in a microtiter plate and exposed to different concentrations of garlic proteins. MTT assay was performed to evaluate the viability of macrophage. The amount of nitric oxide (NO) was detected in culture supernatants of macrophages by Griess reagent and furthermore, the cytotoxicity study of culture supernatants was carried out on WEHI-164 fibrosarcoma cell line as tumor necrosis factor-α bioassay. MTT assay results for both 14-kDa and 47-kDa protein fractions of stimulated macrophages were not significant (P > 0.05). Both 14-kDa and 47-kDa fractions significantly suppressed production of NO from macrophages (P = 0.007 and P = 0.003, respectively). Cytotoxicity of macrophages' supernatant on WEHI-164 fibrosarcoma cells was not affected by garlic protein fractions (P = 0.066 for 14-kDa and P = 0.085 for 47-kDa fractions). according to our finding, 14-kDa and 47-kDa fractions of aged garlic extract are able to suppress NO production from macrophages, which can be used as a biological advantage. These molecules had no cytotoxic effect on macrophages and do not increase tumoricidal property of macrophages.

  11. Impact of chocolate liquor on vascular lesions in apoE-knockout mice.

    Science.gov (United States)

    Yazdekhasti, Narges; Brandsch, Corinna; Hirche, Frank; Kühn, Julia; Schloesser, Anke; Esatbeyoglu, Tuba; Huebbe, Patricia; Wolffram, Siegfried; Rimbach, Gerald; Stangl, Gabriele I

    2017-10-15

    Cocoa polyphenols are thought to reduce the risk of cardiovascular diseases. Thus, cocoa-containing foods may have significant health benefits. Here, we studied the impact of chocolate liquor on vascular lesion development and plaque composition in a mouse model of atherosclerosis. Apolipoprotein E (apoE)-knockout mice were assigned to two groups and fed a Western diet that contained 250 g/kg of either chocolate liquor or a polyphenol-free isoenergetic control paste for 16 weeks. In addition to fat, protein, and fibers, the chocolate liquor contained 2 g/kg of polyphenols. Compared with the control group, mice fed the chocolate liquor had larger plaque areas in the descending aorta and aortic root, which were attributed to a higher mass of vascular smooth muscle cells (VSMCs) and collagen. Vascular lipid deposits and calcification areas did not differ between the two groups. The aortic tissue level of interleukin-6 (IL-6) mRNA was 5-fold higher in the mice fed chocolate liquor than in the control mice. Chocolate-fed mice exhibited an increased hepatic saturated to polyunsaturated fatty acid ratio than the controls. Although the chocolate liquor contained 14 µg/kg of vitamin D 2 , the chocolate liquor-fed mice did not have measurable 25-hydroxyvitamin D 2 in the serum. These mice even showed a 25% reduction in the level of 25-hydroxyvitamin D 3 compared with the control mice. Overall, present data may contribute to our understanding how chocolate constituents can impact vascular lesion development. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Over-expression of two different forms of the alpha-secretase ADAM10 affects learning and memory in mice.

    Science.gov (United States)

    Schmitt, Ulrich; Hiemke, Christoph; Fahrenholz, Falk; Schroeder, Anja

    2006-12-15

    Members of the ADAM family (adisintegrin and metalloprotease) are the main candidates for physiologically relevant alpha-secretases. The alpha-secretase cleaves in the non-amyloidogenic pathway the amyloid precursor protein within the region of the Abeta peptides preventing their aggregation in the brain. The increase of alpha-secretase activity in the brain provides a plausible strategy to prevent Abeta formation. Concerning this possibility two transgenic mouse lines (FVB/N) have been created: mice over-expressing the bovine form of the alpha-secretase (ADAM10) and mice over-expressing an inactive form of the alpha-secretase (ADAM10-E348A-HA; ADAM10-dn). For behavioral examination a F1 generation of transgenic mice (C57Bl/6 x FVB/N (tg)) was generated and compared to wild type F1 generation (C57Bl/6 x FVB/N). Behavior was characterized in the following tasks: standard open field, enriched open field, elevated plus-maze, and the Morris water maze hidden platform task. Concerning basal activity, exploration, and anxiety, transgenic mice behaved similar to controls. With respect to learning and memory both transgenic lines showed a significant deficit compared to controls. ADAM10 mice however, showed thigmotaxis with passive floating behavior in the Morris water maze indicating differences in motivation, whereas, ADAM10-dn mice displayed an inconspicuous but limited goal-directed search pattern. Thus variation of the enzymatic activity of alpha-secretase ADAM10 alters learning and memory differentially. Nevertheless, it could be concluded that both, ADAM10 and ADAM10-dn mice are suitable control mice for the assessment of alpha-secretase-related effects in animal models of Alzheimer's disease.

  13. Oxidative metabolism and Ca2+ handling in isolated brain mitochondria and striatal neurons from R6/2 mice, a model of Huntington's disease.

    Science.gov (United States)

    Hamilton, James; Pellman, Jessica J; Brustovetsky, Tatiana; Harris, Robert A; Brustovetsky, Nickolay

    2016-07-01

    Alterations in oxidative metabolism and defects in mitochondrial Ca 2+ handling have been implicated in the pathology of Huntington's disease (HD), but existing data are contradictory. We investigated the effect of human mHtt fragments on oxidative metabolism and Ca 2+ handling in isolated brain mitochondria and cultured striatal neurons from the R6/2 mouse model of HD. Non-synaptic and synaptic mitochondria isolated from the brains of R6/2 mice had similar respiratory rates and Ca 2+ uptake capacity compared with mitochondria from wild-type (WT) mice. Respiratory activity of cultured striatal neurons measured with Seahorse XF24 flux analyzer revealed unaltered cellular respiration in neurons derived from R6/2 mice compared with neurons from WT animals. Consistent with the lack of respiratory dysfunction, ATP content of cultured striatal neurons from R6/2 and WT mice was similar. Mitochondrial Ca 2+ accumulation was also evaluated in cultured striatal neurons from R6/2 and WT animals. Our data obtained with striatal neurons derived from R6/2 and WT mice show that both glutamate-induced increases in cytosolic Ca 2+ and subsequent carbonilcyanide p-triflouromethoxyphenylhydrazone-induced increases in cytosolic Ca 2+ were similar between WT and R6/2, suggesting that mitochondria in neurons derived from both types of animals accumulated comparable amounts of Ca 2+ Overall, our data argue against respiratory deficiency and impaired Ca 2+ handling induced by human mHtt fragments in both isolated brain mitochondria and cultured striatal neurons from transgenic R6/2 mice. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. HLA-A*01:03, HLA-A*24:02, HLA-B*08:01, HLA-B*27:05, HLA-B*35:01, HLA-B*44:02, and HLA-C*07:01 Monochain Transgenic/H-2 Class I Null Mice

    DEFF Research Database (Denmark)

    Boucherma, Rachid; Kridane-Miledi, Hédia; Bouziat, Romain

    2013-01-01

    We have generated a panel of transgenic mice expressing HLA-A*01:03, -A*24:02, -B*08:01, -B*27:05, -B*35:01, -B*44:02, or -C*07:01 as chimeric monochain molecules (i.e., appropriate HLA α1α2 H chain domains fused with a mouse α3 domain and covalently linked to human β2-microglobulin). Whereas...... a quantitative and qualitative restoration of the peripheral CD8(+) T cell repertoire, which exhibited a TCR diversity comparable with C57BL/6 WT mice. Potent epitope-specific, HLA-restricted, IFN-γ-producing CD8(+) T cell responses were generated against known reference T cell epitopes after either peptide...

  15. Transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.

    Science.gov (United States)

    Liu, Bigang; Gong, Shuai; Li, Qiuhui; Chen, Xin; Moore, John; Suraneni, Mahipal V; Badeaux, Mark D; Jeter, Collene R; Shen, Jianjun; Mehmood, Rashid; Fan, Qingxia; Tang, Dean G

    2017-08-08

    This project was undertaken to address a critical cancer biology question: Is overexpression of the pluripotency molecule Nanog sufficient to initiate tumor development in a somatic tissue? Nanog1 is critical for the self-renewal and pluripotency of ES cells, and its retrotransposed homolog, NanogP8 is preferentially expressed in somatic cancer cells. Our work has shown that shRNA-mediated knockdown of NanogP8 in prostate, breast, and colon cancer cells inhibits tumor regeneration whereas inducible overexpression of NanogP8 promotes cancer stem cell phenotypes and properties. To address the key unanswered question whether tissue-specific overexpression of NanogP8 is sufficient to promote tumor development in vivo , we generated a NanogP8 transgenic mouse model, in which the ARR 2 PB promoter was used to drive NanogP8 cDNA. Surprisingly, the ARR 2 PB-NanogP8 transgenic mice were viable, developed normally, and did not form spontaneous tumors in >2 years. Also, both wild type and ARR 2 PB-NanogP8 transgenic mice responded similarly to castration and regeneration and castrated ARR 2 PB-NanogP8 transgenic mice also did not develop tumors. By crossing the ARR 2 PB-NanogP8 transgenic mice with ARR 2 PB-Myc (i.e., Hi-Myc) mice, we found that the double transgenic (i.e., ARR 2 PB-NanogP8; Hi-Myc) mice showed similar tumor incidence and histology to the Hi-Myc mice. Interestingly, however, we observed white dots in the ventral lobes of the double transgenic prostates, which were characterized as overgrown ductules/buds featured by crowded atypical Nanog-expressing luminal cells. Taken together, our present work demonstrates that transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.

  16. Increased infectivity of anchorless mouse scrapie prions in transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Race, Brent; Phillips, Katie; Meade-White, Kimberly; Striebel, James; Chesebro, Bruce

    2015-06-01

    Prion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previous in vivo studies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal. Prion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by

  17. High levels of eukaryotic Initiation Factor 6 (eIF6) are required for immune system homeostasis and for steering the glycolytic flux of TCR-stimulated CD4+ T cells in both mice and humans.

    Science.gov (United States)

    Manfrini, Nicola; Ricciardi, Sara; Miluzio, Annarita; Fedeli, Maya; Scagliola, Alessandra; Gallo, Simone; Brina, Daniela; Adler, Thure; Busch, Dirk H; Gailus-Durner, Valerie; Fuchs, Helmut; Hrabě de Angelis, Martin; Biffo, Stefano

    2017-12-01

    Eukaryotic Initiation Factor 6 (eIF6) is required for 60S ribosomal subunit biogenesis and efficient initiation of translation. Intriguingly, in both mice and humans, endogenous levels of eIF6 are detrimental as they act as tumor and obesity facilitators, raising the question on the evolutionary pressure that maintains high eIF6 levels. Here we show that, in mice and humans, high levels of eIF6 are required for proper immune functions. First, eIF6 heterozygous (het) mice show an increased mortality during viral infection and a reduction of peripheral blood CD4 + Effector Memory T cells. In human CD4 + T cells, eIF6 levels rapidly increase upon T-cell receptor activation and drive the glycolytic switch and the acquisition of effector functions. Importantly, in CD4 + T cells, eIF6 levels control interferon-γ (IFN-γ) secretion without affecting proliferation. In conclusion, the immune system has a high evolutionary pressure for the maintenance of a dynamic and powerful regulation of the translational machinery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    International Nuclear Information System (INIS)

    Pierce, Anson; Wei, Rochelle; Halade, Dipti; Yoo, Si-Eun; Ran, Qitao; Richardson, Arlan

    2010-01-01

    Research highlights: → Development of mouse overexpressing native human HSF1 in all tissues including CNS. → HSF1 overexpression enhances heat shock response at whole-animal and cellular level. → HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. → HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1 +/0 ) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1 +/0 mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1 +/0 cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1 +/0 cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  19. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these

  20. In vivo characterisation of the inflammatory reaction following mesh implantation in transgenic mice models.

    Science.gov (United States)

    Fet, N; Alizai, P H; Fragoulis, A; Wruck, C; Pufe, T; Tolba, R H; Neumann, U P; Klinge, U

    2014-06-01

    Hernia repair with prosthetic meshes represents one of the most common surgical procedures in the field of surgery. This intervention is always associated with an ensuing inflammatory response, angiogenesis and fibrotic encapsulation forming a foreign body granuloma (FBG) around the mesh fibres. Several studies have described this inflammatory reaction by characterising inflammatory cell infiltrate around the FBG after mesh explantation. However, very little is known about the real-time progression of such an inflammatory response. The aim of this study was to investigate the feasibility of monitoring the ongoing inflammatory response to mesh implantation using bioluminescence in vivo. Three luciferase transgenic mice strains (FVB/N-Tg(Vegfr2-luc)-Xen, BALB/C-Tg(NFκB-RE-luc)-Xen and Tg(INS/EpRE-Luc)T20Rbl) were used. Mice were anaesthetized with 2 % isoflurane, and two incisions were made on the left and right sides of the abdomen of the mice. A 1-cm(2) propylene mesh was implanted subcutaneously in the right incision wound of each mouse, and the left wound served as control. Two hundred microliters of D-luciferin was injected into the mice, and bioluminescence measurements were done prior to the surgical intervention and subsequently every 3 days. After mesh explantation, histological analysis was done. Statistical analysis was done using prism GraphPad software. Bioluminescence results revealed different time points of maximum signal for the different mice strains. VEGFR2 gene expression peaked on day 6, NFkB on day 12 and ARE on day 3 post mesh implantation. We also observed much higher bioluminescent signal around the FBG surrounding the mesh as compared to the control wound, with p response over a given period of time.

  1. The Dmp1-SOST Transgene Interacts With and Downregulates the Dmp1-Cre Transgene and the Rosa(Notch) Allele.

    Science.gov (United States)

    Zanotti, Stefano; Canalis, Ernesto

    2016-05-01

    Activation of Notch1 in osteocytes of Rosa(Notch) mice, where a loxP-flanked STOP cassette and the Nicd coding sequence were targeted to the reverse orientation splice acceptor (Rosa)26 locus, causes osteopetrosis associated with suppressed Sost expression and enhanced Wnt signaling. To determine whether Sost downregulation mediates the effects of Notch activation in osteocytes, Rosa(Notch) mice were crossed with transgenics expressing Cre recombinase or SOST under the control of the dentin matrix protein (Dmp)1 promoter. Dmp1-SOST transgenics displayed vertebral osteopenia and a modest femoral cancellous and cortical bone phenotype, whereas hemizygous Dmp1-Cre transgenics heterozygous for the Rosa(Notch) allele (Dmp1-Cre;Rosa(Notch)) exhibited osteopetrosis. The phenotype of Notch activation in osteocytes was prevented in Dmp1-Cre;Rosa(Notch) mice hemizygous for the Dmp1-SOST transgene. The effect was associated with downregulated Notch signaling and suppressed Dmp1 and Rosa26 expression. To test whether SOST regulates Notch expression in osteocytes, cortical bone cultures from Dmp1-Cre;Rosa(Notch) mice or from Rosa(Notch) control littermates were exposed to recombinant human SOST. The addition of SOST had only modest effects on Notch target gene mRNA levels and suppressed Dmp1, but not Cre or Rosa26, expression. These findings suggest that prevention of the Dmp1-Cre;Rosa(Notch) skeletal phenotype by Dmp1-SOST is not secondary to SOST expression but to interactions among the Dmp1-SOST and Dmp1-Cre transgenes and the Rosa26 locus. In conclusion, the Dmp1-SOST transgene suppresses the expression of the Dmp1-Cre transgene and of Rosa26. © 2015 Wiley Periodicals, Inc.

  2. IL-6 Impairs Myogenic Differentiation by Downmodulation of p90RSK/eEF2 and mTOR/p70S6K Axes, without Affecting AKT Activity

    Directory of Open Access Journals (Sweden)

    Michele Pelosi

    2014-01-01

    Full Text Available IL-6 is a multifaceted pleiotropic cytokine, which is produced by a variety of cell types and targets different cells and tissues. In physiological conditions, IL-6 can be locally and transiently produced by skeletal muscle and plays an important role in muscle homeostasis. Circulating IL-6 levels are normally very low or undetectable but are dramatically increased in several pathologic conditions. In this study, we aimed to define the potential molecular mechanisms underlying the effects of IL-6 on myogenic program. We explored the molecular mechanisms through which exogenous IL-6, or the conditioned medium from the murine C-26 adenocarcinoma cells (a cellular model that secretes high levels of IL-6 and induces cancer cachexia in mice, interferes with the myogenic program. Our study revealed that IL-6 induces the activation of the Stat3 signaling and promotes the downmodulation of the p90RSK/eEF2 and mTOR/p70S6K axes, while it does not affect the activation of AKT. We thus identified potential molecular mediators of the inhibitory effects of IL-6 on myogenic program.

  3. Hepatic oxidative stress in ovariectomized transgenic mice expressing the hepatitis C virus polyprotein is augmented through suppression of adenosine monophosphate-activated protein kinase/proliferator-activated receptor gamma co-activator 1 alpha signaling.

    Science.gov (United States)

    Tomiyama, Yasuyuki; Nishina, Sohji; Hara, Yuichi; Kawase, Tomoya; Hino, Keisuke

    2014-10-01

    Oxidative stress plays an important role in hepatocarcinogenesis of hepatitis C virus (HCV)-related chronic liver diseases. Despite the evidence of an increased proportion of females among elderly patients with HCV-related hepatocellular carcinoma (HCC), it remains unknown whether HCV augments hepatic oxidative stress in postmenopausal women. The aim of this study was to determine whether oxidative stress was augmented in ovariectomized (OVX) transgenic mice expressing the HCV polyprotein and to investigate its underlying mechanisms. OVX and sham-operated female transgenic mice expressing the HCV polyprotein and non-transgenic littermates were assessed for the production of reactive oxygen species (ROS), expression of inflammatory cytokines and antioxidant potential in the liver. Compared with OVX non-transgenic mice, OVX transgenic mice showed marked hepatic steatosis and ROS production without increased induction of inflammatory cytokines, but there was no increase in ROS-detoxifying enzymes such as superoxide dismutase 2 and glutathione peroxidase 1. In accordance with these results, OVX transgenic mice showed less activation of peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α), which is required for the induction of ROS-detoxifying enzymes, and no activation of adenosine monophosphate-activated protein kinase-α (AMPKα), which regulates the activity of PGC-1α. Our study demonstrated that hepatic oxidative stress was augmented in OVX transgenic mice expressing the HCV polyprotein by attenuation of antioxidant potential through inhibition of AMPK/PGC-1α signaling. These results may account in part for the mechanisms by which HCV-infected women are at high risk for HCC development when some period has passed after menopause. © 2013 The Japan Society of Hepatology.

  4. Photoacoustic imaging of vascular networks in transgenic mice

    Science.gov (United States)

    Laufer, J. G.; Cleary, J. O.; Zhang, E. Z.; Lythgoe, M. F.; Beard, P. C.

    2010-02-01

    The preferential absorption of near infrared light by blood makes photoacoustic imaging well suited to visualising vascular structures in soft tissue. In addition, the spectroscopic specificity of tissue chromophores can be exploited by acquiring images at multiple excitation wavelengths. This allows the quantification of endogenous chromophores, such as oxy- and deoxyhaemoglobin, and hence blood oxygenation, and the detection of exogenous chromophores, such as functionalised contrast agents. More importantly, this approach has the potential to visualise the spatial distribution of low concentrations of functionalised contrast agents against the strong background absorption of the endogenous chromophores. This has a large number of applications in the life sciences. One example is the structural and functional phenotyping of transgenic mice for the study of the genetic origins of vascular malformations, such as heart defects. In this study, photoacoustic images of mouse embryos have been acquired to study the development of the vasculature following specific genetic knockouts.

  5. Evaluation of Colicin Effect on the Induction of Treated Mice in Prevention of Infection Caused by Escherichia coli K99

    Directory of Open Access Journals (Sweden)

    Yahya Tahamtan

    2016-11-01

    Full Text Available Background. Colicin produce by colicinogenic E. coli (CEC arenarrow limited spectrum antimicrobial agents that are able to kill or prevent close related strains. Objective. The objective of this study was to evaluation effect of Colicin to induce immunized mice to prevent infection caused by E. coliK99. Patient and Methods. The experiment was conducted into two mice groups (30 in each group with two weeks old. All mice were administered by streptomycin sulfate prior to treatment to eliminate resident E. coli. Group one was orally inoculated with PBS as control and the second was immunized by Colicin solution as immunize group. Both control and immunized group were challenged by 3 LD 50 of E. coli K99 and follow a week. Results. Immunized mice group were not showed severe clinical signs. While diarrhea with different sings of colibaccillosis was established in control group and infected mice was died. Conclusion. Overuse antibiotics developed serious new types of multi drug resistance in human medicine and therefore has limited their use in farm animals. The study indicates the use of Colicin and biotherapy instead of antibiotic is more safe and efficient for control of E. coliK99 infection. Immunized mice by Colicin solution protected E. coli K99 colonization and reduce fecal shedding. Investigation in livestock for applying Colicin in farm animal is recommended.

  6. [Distributions of H3K27me3 and its modification enzymes in different tissues of mice].

    Science.gov (United States)

    Wang, Yuying; Wang, Xinli; Zhang, Ran; Zhang, Zhiyan; Wang, Yu; Yang, Bo; Wang, Guanjie; Zhang, Xin; Ma, Fuhao; Xu, Hongye; Wu, Xiaohui; Zhang, Feng; Li, Qing

    2017-11-01

    Objective To investigate the levels of trimethylated histone 3 at lysine residue 27 (H3K27me3) and its modification enzymes Zeste gene enhancer homolog 2 (EZH2), lysine-specific demethylase 6B (Kdm6B/JMJD3) and lysine-specific demethylase 6A (Kdm6A/UTX) in tissues and organs of 7-day and 2-month postnatal mice. Methods Immunohistochemistry was used to detect the expressions of H3K27me3 and its modification enzymes EZH2, JMJD3 and UTX in the brain, salivary glands, back fat, thymus, lung, heart, stomach, intestines, liver, testes, and skin of 7-day and 2-month mice. Real-time quantitative PCR was used to confirm the results. The relationships between H3K27me3 and its modification enzymes were analyzed statistically. Results Immunohistochemistry showed H3K27me3 persistently present in all examined tissues of 7-day and 2-month mice. EZH2 was persistently expressed in the brain, heart, liver, and skin of 7-day and 2-month mice, but only expressed in the salivary glands, adipose tissues, thymus, lung, intestines, and testes of 2-month mice. JMJD3 was expressed in the brain, salivary glands, adipose tissues, lung, heart, stomach, intestines, testes, skin of 7-day mice, but was not expressed in the lung, adipose tissues and stomach of 2-month mice. UTX was expressed in the brain, salivary glands, adipose tissues, lung, heart, testes, skin of 7-day mice, but only expressed in the testes of 2-month mice. Most mRNA of H3K27 modification enzymes were moderately or highly expressed as their immunohistochemical results were positive. Conclusion There was H3K27me3 persistently present in the all examined tissues at different stages. EZH2 was mostly expressed in the brain, salivary glands, adipose tissues, thymus, lung, heart, intestines, liver, testes and skin of 2-month-old mice. JMJD3 and UTX were mostly expressed in the brain, salivary glands, adipose tissues, lung, heart, skin and testes of 7-day-old mice. No significant association was found between the distribution of H3K

  7. Light induced apoptosis is accelerated in transgenic retina overexpressing human EAT/mcl-1, an anti-apoptotic bcl-2 related gene.

    Science.gov (United States)

    Shinoda, K; Nakamura, Y; Matsushita, K; Shimoda, K; Okita, H; Fukuma, M; Yamada, T; Ohde, H; Oguchi, Y; Hata, J; Umezawa, A

    2001-10-01

    EAT/mcl-1 (EAT), an immediate early gene, functions in a similar way to bcl-2 in neutralising Bax mediated cytotoxicity, suggesting that EAT is a blocker of cell death. The aim of this study was to determine the effect of overexpression of the human EAT gene on light induced retinal cell apoptosis. EAT transgenic mice incorporating the EF-1alpha promoter were utilised, and expression of human EAT was detected by RT-PCR. Light damage was induced by raising mice under constant illumination. Two groups of animals, EAT transgenic mice (n=14) and littermates (n=13), were examined by ERG testing and histopathology at regular time points up to 20 weeks of constant light stimulation. Electrophysiological and histopathological findings were evaluated by established systems of arbitrary scoring as scores 0-2 and scores 0-3, respectively. The mean score (SD) of ERG response was significantly lower in EAT transgenic mice (0.79 (0.89)) than in littermates (1.69 (0.48)) (pstatistical significance (p=0.1156), the estimated incidence of electrophysiological retinal damage was higher in EAT mice (0.0495/mouse/week; 95% confidence interval (CI) 0.0347-0.0500) than in littermates (0. 0199/mouse/week; 95% CI 0.0035-0.0364). The mean scores (SD) for histopathological retinal degeneration were 2.31 (0.63) in littermates and 1.43 (1.22) in EAT transgenic mice (p=0.065). However, Kaplan-Meier curves for histopathological failure in two groups of mice showed that retinal photoreceptor cells were preserved significantly against constant light in the littermate compared with transgenic mice (p=0.0241). The estimated incidence of histopathological retinal damage was 0.0042/mouse/week in the littermates (95% CI 0-0.0120) and 0.0419/mouse/week in the EAT mice (95% CI 0.0286-0.0500). Retinal photoreceptor cell apoptosis under constant light stimulation is likely to be accelerated in transgenic retina overexpressing EAT.

  8. Expression and Immunogenicity of the Mycobacterial Ag85B/ESAT-6 Antigens Produced in Transgenic Plants by Elastin-Like Peptide Fusion Strategy

    Directory of Open Access Journals (Sweden)

    Doreen Manuela Floss

    2010-01-01

    Full Text Available This study explored a novel system combining plant-based production and the elastin-like peptide (ELP fusion strategy to produce vaccinal antigens against tuberculosis. Transgenic tobacco plants expressing the mycobacterial antigens Ag85B and ESAT-6 fused to ELP (TBAg-ELP were generated. Purified TBAg-ELP was obtained by the highly efficient, cost-effective, inverse transition cycling (ICT method and tested in mice. Furthermore, safety and immunogenicity of the crude tobacco leaf extracts were assessed in piglets. Antibodies recognizing mycobacterial antigens were produced in mice and piglets. A T-cell immune response able to recognize the native mycobacterial antigens was detected in mice. These findings showed that the native Ag85B and ESAT-6 mycobacterial B- and T-cell epitopes were conserved in the plant-expressed TBAg-ELP. This study presents the first results of an efficient plant-expression system, relying on the elastin-like peptide fusion strategy, to produce a safe and immunogenic mycobacterial Ag85B-ESAT-6 fusion protein as a potential vaccine candidate against tuberculosis.

  9. [Effect of Huanglian Jiedu Decoction on Monocyte Development in apoE Gene Knockout Mice].

    Science.gov (United States)

    Chen, Bing; Kong, Ya-xian; Ll, Yu-mei; Xue, Xin; Zhang, Jian-ping; Zeng, Hui; Hu, Jing- qing; Ma, Ya-luan

    2016-01-01

    To observe monocyte (Mo) development in wild type C57BL/6 mice and apoE gene knockout (apoE(-/-)) mice, and to evaluate the immuno-regulatory effect of Huanglian Jiedu Decoction (HJD) on peripheral Mo development in apoE(-/-) mice. Four, 8, 12, and 16 weeks old female C57BL/6 mice were set up as control groups of different ages, while 4, 8, 12, and 16 weeks old female apoE(-/-) mice were set up as hyperlipidemia groups of different ages. Four-week old female C57BL/6 mice were recruited as a blank group. Four-week old female apoE(-/-) mice were randomly divided into the control group, the Western medicine group, and the Chinese medicine group by paired comparison, 5 in each group. Equivalent clinical dose was administered to mice according to body weight. Mice in the Western medicine group were administered with Atrovastatin at the daily dose of 10 mg/kg by gastrogavage, while those in the Chinese medicine group were administered with HJD at the daily dose of 5 g/kg by gastrogavage. Body weight was detected each week. After 4 weeks blood lipids levels (such as TG, TC, LDL-C, and HDL-C), and the proportions of Mo and Ly6c(hi) were detected. Compared with 4-week-old homogenic mice, the proportion of Mo decreased in 16-week-old C57BL/6 mice (P < 0.05). Levels of TC and TG, and the proportion of Ly6c(hi) subtype increased, but the proportion of Mo de- creased in 8-week-old apoE(-/-) mice (P <0. 05). Levels of TC, TG, and LDL-C increased in 12-week-old apoE(-/-) mice (P < 0.05). Levels of TC, TG, LDL-C, and HDL-C increased in 16-week-old apoE(-/-) mice (P < 0.05, P < 0.01). Compared with 8-week-old homogenic mice, the proportion of Mo decreased in 16-week-old C57BL/6 mice (P < 0.05); levels of TC and LDL-C increased in 12-week-old apoE(-/-) mice (P < 0.05); levels of TC and HDL-C increased in 16-week-old apoE(-/-) mice (P < 0.05, P < 0.01). Compared with C57BL/6 mice of the same age, TC and TG increased, HDL-C decreased (P < 0.01) in 4-and 8-week-old apoE(-/-) mice (P

  10. Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice.

    Science.gov (United States)

    Winchenbach, Jan; Düking, Tim; Berghoff, Stefan A; Stumpf, Sina K; Hülsmann, Swen; Nave, Klaus-Armin; Saher, Gesine

    2016-01-01

    Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions.

  11. Resistance to chronic wasting disease in transgenic mice expressing a naturally occurring allelic variant of deer prion protein

    NARCIS (Netherlands)

    Meade-White, K.; Race, B.; Trifilo, M.; Bossers, A.; Favara, C.; Lacasse, R.; Miller, M.; Williams, E.; Oldstone, M.; Race, R.; Chesebro, B.

    2007-01-01

    Prion protein (PrP) is a required factor for susceptibility to transmissible spongiform encephalopathy or prion diseases. In transgenic mice, expression of prion protein (PrP) from another species often confers susceptibility to prion disease from that donor species. For example, expression of deer

  12. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer’s disease

    International Nuclear Information System (INIS)

    Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon; Kim, Nam-Hee; Kim, Hyun-Jung; Kim, Chan-Wha

    2013-01-01

    Highlights: ► A transgenic mouse model expressing NSE-htau23 was used. ► 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. ► Differentially expressed spots in different stages of AD were identified. ► GSTP1 and CAII were downregulated with the progression of AD. ► SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer’s disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between tau and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The study of up- and down-regulation of proteins during the progression of AD helps to explain the mechanisms associated with neuronal

  13. Investigation of K sub L , sub S-> pi sup +pi sup - e sup + e sup - decays

    CERN Document Server

    Lai, A; Bevan, A

    2003-01-01

    The K sub L-> pi sup +pi sup - e sup + e sup - and K sub S-> pi sup +pi sup - e sup + e sup - decay modes have been studied in detail using the NA48 detector at the CERN SPS. Based on the data collected during the 1998 and 1999 run periods, a sample of 1162 K sub L-> pi sup +pi sup - e sup + e sup - candidates has been observed with an expected background level of 36.9 events, yielding the branching ratio measurement BR(K sub L -> pi sup +pi sup - e sup + e sup -)=(3.08+-0.20) x 10 sup - sup 7. The distribution of events in the sin phi cos phi variable, where phi is the angle between the pi sup +pi sup - and the e sup + e sup - decay planes in the kaon centre of mass, is found to exhibit a large CP-violating asymmetry with the value A subphi=(14.2+-3.6)%. For the K sub S-> pi sup +pi sup - e sup + e sup - decay channel, 621 candidates have been identified in the 1999 data sample with an estimated background contribution of 0.7 event. The corresponding branching ratio has been determined to be BR(K sub S-> pi ...

  14. Inhibitory effect of vitamin C in combination with vitamin K3 on tumor growth and metastasis of Lewis lung carcinoma xenografted in C57BL/6 mice.

    Science.gov (United States)

    Chen, Ming-Feng; Yang, Chih-Min; Su, Cheng-Ming; Liao, Jiunn-Wang; Hu, Miao-Lin

    2011-01-01

    Vitamin C in combination with vitamin K3 (vit CK3) has been shown to inhibit tumor growth and lung metastasis in vivo, but the mechanism of action is poorly understood. Herein, C57BL/6 mice were implanted (s.c.) with Lewis lung carcinoma (LLC) for 9 days before injection (i.p.) with low-dose (100 mg vit C/kg + 1 mg vit K3/kg), high-dose (1,000 mg vit C/kg + 10 mg vit K3/kg) vit CK3 twice a week for an additional 28 days. As expected, vit CK3 or cisplatin (6 mg/kg, as a positive control) significantly and dose-dependently inhibited tumor growth and lung metastasis in LLC-bearing mice. Vit CK3 restored the body weight of tumor-bearing mice to the level of tumor-free mice. Vit CK3 significantly decreased activities of plasma metalloproteinase (MMP)-2, -9, and urokinase plasminogen activator (uPA). In lung tissues, vit CK3 1) increased protein expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), TIMP-2, nonmetastatic protein 23 homolog 1 and plasminogen activator inhibitor-1; 2) reduced protein expression of MMP-2 and MMP-9; and 3) inhibited the proliferating cell nuclear antigen (PCNA). These results demonstrate that vit CK3 inhibits primary tumor growth and exhibits antimetastastic potential in vivo through attenuated tumor invasion and proliferation.

  15. Detection of early behavioral markers of Huntington's disease in R6/2 mice employing an automated social home cage

    DEFF Research Database (Denmark)

    Rudenko, Olga; Tkach, Vadim; Berezin, Vladimir

    2009-01-01

    developed behavior screening system, the IntelliCage, allows automated testing of mouse behavior in the home cage employing individual recognition of animals living in social groups. The present study validates the ability of the IntelliCage system to detect behavioral and cognitive dysfunction in R6/2 mice......Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder, for which no known cure or effective treatment exists. To facilitate the search for new potential treatments of HD, an automated system for analyzing the behavior of transgenic HD mice is urgently needed. A recently...

  16. A Comparison of the Effects of Benzalkonium Chloride on Ocular Surfaces between C57BL/6 and BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Qian Yang

    2017-02-01

    Full Text Available Models of benzalkonium chloride (BAC-induced ocular disruption have been created and are widely used in various animals. This study aimed to compare the effects of BAC on the ocular surfaces of C57BL/6 and BALB/c mice. C57BL/6 and BALB/c mice were treated separately with BAC eye-drops at different concentrations. Eyes were evaluated by scoring epithelial disruption, corneal opacity and neovascularization in vivo, and by histological assays with hematoxylin/eosin (H/E and periodic acid-Schiff stainings and by determining the expression of inflammatory factors in vitro on Days 7 and 14. The in vivo corneal epithelial disruption, corneal edema/opacity and neovascularization, which were in accordance with the results of the H/E staining and peaked at Day 7, were observed in a dose-dependent manner in the BAC-treated mice, with more severe signs in the C57BL/6 mice than the BALB/c mice. The loss of conjunctival goblet cells in the conjunctivas and the increasing expression of monocyte chemoattractant protein 1 (MCP-1, growth-regulated protein alpha (GROa and macrophage inflammatory protein-1 alpha (MIP-1a in the corneas were found in a dose-dependent manner in both strains of mice. Topical application of BAC can dramatically disrupt the ocular surfaces of C57BL/6 and BALB/c mice, and the disruptions were much more severe in the C57BL/6 mice that received high doses of BAC.

  17. Pharmacologic blockade of 12/15-lipoxygenase ameliorates memory deficits, Aβ and tau neuropathology in the triple-transgenic mice.

    Science.gov (United States)

    Chu, J; Li, J-G; Giannopoulos, P F; Blass, B E; Childers, W; Abou-Gharbia, M; Praticò, D

    2015-11-01

    The 12/15-lipoxygenase (12/15LO) enzyme is widely distributed within the central nervous system. Previous work showed that this protein is upregulated in Alzheimer's disease (AD), and plays an active role in the development of brain amyloidosis in amyloid beta (Aβ)-precursor protein transgenic mice (Tg2576). In the present paper, we studied the effect of its pharmacologic inhibition on the AD-like phenotype of a mouse model with plaques and tangles, the triple-transgenic mice. Compared with mice receiving placebo, the group treated with PD146176, a specific 12/15LO inhibitor, manifested a significant improvement of their memory deficits. The same animals had a significant reduction in Aβ levels and deposition, which was secondary to a decrease in the β-secretase pathway. In addition, while total tau-soluble levels were unchanged for both groups, PD146176-treated mice had a significant reduction in its phosphorylation state and insoluble fraction, which specifically associated with decrease in stress-activated protein kinase/c-Jun N-terminal kinase activity. In vitro study showed that the effect on tau and Aβ were independent from each other. These data establish a functional role for 12/15LO in the pathogenesis of the full spectrum of the AD-like phenotype and represent the successful completion of the initial step for the preclinical development of 12/15LO inhibitors as novel therapeutic agents for AD.

  18. Thioredoxin-1 overexpression in transgenic mice attenuates streptozotocin-induced diabetic osteopenia: a novel role of oxidative stress and therapeutic implications.

    Science.gov (United States)

    Hamada, Yasuhiro; Fujii, Hideki; Kitazawa, Riko; Yodoi, Junji; Kitazawa, Sohei; Fukagawa, Masafumi

    2009-05-01

    Diabetes mellitus is associated with increased risk of osteopenia and bone fracture. However, the mechanisms accounting for diabetic bone disorder are unclear. We have previously reported that streptozotocin-induced diabetic mice develop low turnover osteopenia associated with increased oxidative stress in the diabetic condition. To determine the role of oxidative stress in the development of diabetic osteopenia, we presently investigated the effect of overexpression of thioredoxin-1 (TRX), a major intracellular antioxidant, on the development of diabetic osteopenia, using TRX transgenic mice (TRX-Tg). TRX-Tg are C57BL/6 mice that carry the human TRX transgene under the control of beta-actin promoter. Eight-week-old male TRX-Tg mice and wild type (WT) littermates were intraperitoneally injected with either streptozotocin or vehicle. Mice were grouped as 1) non-diabetic WT, 2) non-diabetic TRX-Tg, 3) diabetic WT, and 4) diabetic TRX-Tg. After 12 weeks of streptozotocin treatment, oxidative stress on the whole body and bone was evaluated, and the physical properties of the femora, and histomorphometry parameters of the tibiae were assessed. TRX overexpression did not affect either body weight or hemoglobin A1c levels. There were no significant differences in renal function and in serum levels of calcium, phosphate, and intact parathyroid hormone among the four groups. On the other hand, urinary excretion of 8-hydroxydeoxyguanosine (8-OHdG), a marker of oxidative DNA damage, was significantly elevated in diabetic WT and attenuated in diabetic TRX-Tg. Immunohistochemical staining for 8-OHdG revealed marked intensity in the bone tissue of diabetic WT compared with non-diabetic WT, while staining was attenuated in diabetic TRX-Tg. TRX overexpression partially restored reduced bone mineral density and prevented the suppression of bone formation observed in diabetic WT. Increased oxidative stress in diabetic condition contributes to the development of diabetic osteopenia

  19. Spontaneous metastasis in congenic mice with transgenic breast cancer is unaffected by plasminogen gene ablation

    DEFF Research Database (Denmark)

    Almholt, Kasper; Juncker-Jensen, Anna; Lærum, Ole Didrik

    2013-01-01

    , suggesting that there is a functional redundancy with other proteases. To explore this functional overlap in the transgenic MMTV-PyMT breast cancer metastasis model, we have combined Plg deficiency and a pharmacological metalloprotease inhibitor, which is known to reduce metastasis in this model, and has...... been shown to synergistically inhibit other tissue remodeling events in Plg-deficient mice. While metalloprotease inhibition dramatically reduced metastasis, we found no effect of Plg deficiency on metastasis, either independently or in combination with metalloprotease inhibition. We further show...... that Plg gene deficiency is of no significant consequence in this metastasis model, when analyzed in two different congenic strains: the FVB strain, and a F1 hybrid of the FVB and C57BL/6J strains. We suggest that the extensive backcrossing performed prior to our studies has eliminated the confounding...

  20. TNP [N2-(m-Trifluorobenzyl, N6-(p-nitrobenzylpurine] ameliorates diet induced obesity and insulin resistance via inhibition of the IP6K1 pathway

    Directory of Open Access Journals (Sweden)

    Sarbani Ghoshal

    2016-10-01

    Full Text Available Objective: Obesity and type 2 diabetes (T2D lead to various life-threatening diseases such as coronary heart disease, stroke, osteoarthritis, asthma, and neurodegeneration. Therefore, extensive research is ongoing to identify novel pathways that can be targeted in obesity/T2D. Deletion of the inositol pyrophosphate (5-IP7 biosynthetic enzyme, inositol hexakisphosphate kinase-1 (IP6K1, protects mice from high fat diet (HFD induced obesity (DIO and insulin resistance. Yet, whether this pathway is a valid pharmacologic target in obesity/T2D is not known. Here, we demonstrate that TNP [N2-(m-Trifluorobenzyl, N6-(p-nitrobenzylpurine], a pan-IP6K inhibitor, has strong anti-obesity and anti-diabetic effects in DIO mice. Methods: Q-NMR, GTT, ITT, food intake, energy expenditure, QRT-PCR, ELISA, histology, and immunoblot studies were conducted in short (2.5-week- and long (10-week-term TNP treated DIO C57/BL6 WT and IP6K1-KO mice, under various diet and temperature conditions. Results: TNP, when injected at the onset of HFD-feeding, decelerates initiation of DIO and insulin resistance. Moreover, TNP facilitates weight loss and restores metabolic parameters, when given to DIO mice. However, TNP does not reduce weight gain in HFD-fed IP6K1-KO mice. TNP specifically enhances insulin sensitivity in DIO mice via Akt activation. TNP decelerates weight gain primarily by enhancing thermogenic energy expenditure in the adipose tissue. Accordingly, TNP's effect on body weight is partly abolished whereas its impact on glucose homeostasis is preserved at thermoneutral temperature. Conclusion: Pharmacologic inhibition of the inositol pyrophosphate pathway has strong therapeutic potential in obesity, T2D, and other metabolic diseases. Author Video: Author Video Watch what authors say about their articles Keywords: IP6K, Inositol pyrophosphate, Obesity, Energy expenditure, Diabetes, Akt

  1. S6K1 and 4E-BP1 are independent regulated and control cellular growth in bladder cancer.

    Directory of Open Access Journals (Sweden)

    Roman Nawroth

    Full Text Available Aberrant activation and mutation status of proteins in the phosphatidylinositol-3-kinase (PI3K/Akt/mammalian target of rapamycin (mTOR and the mitogen activated protein kinase (MAPK signaling pathways have been linked to tumorigenesis in various tumors including urothelial carcinoma (UC. However, anti-tumor therapy with small molecule inhibitors against mTOR turned out to be less successful than expected. We characterized the molecular mechanism of this pathway in urothelial carcinoma by interfering with different molecular components using small chemical inhibitors and siRNA technology and analyzed effects on the molecular activation status, cell growth, proliferation and apoptosis. In a majority of tested cell lines constitutive activation of the PI3K was observed. Manipulation of mTOR or Akt expression or activity only regulated phosphorylation of S6K1 but not 4E-BP1. Instead, we provide evidence for an alternative mTOR independent but PI3K dependent regulation of 4E-BP1. Only the simultaneous inhibition of both S6K1 and 4E-BP1 suppressed cell growth efficiently. Crosstalk between PI3K and the MAPK signaling pathway is mediated via PI3K and indirect by S6K1 activity. Inhibition of MEK1/2 results in activation of Akt but not mTOR/S6K1 or 4E-BP1. Our data suggest that 4E-BP1 is a potential new target molecule and stratification marker for anti cancer therapy in UC and support the consideration of a multi-targeting approach against PI3K, mTORC1/2 and MAPK.

  2. Inhibiting the Activity of CA1 Hippocampal Neurons Prevents the Recall of Contextual Fear Memory in Inducible ArchT Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Masanori Sakaguchi

    Full Text Available The optogenetic manipulation of light-activated ion-channels/pumps (i.e., opsins can reversibly activate or suppress neuronal activity with precise temporal control. Therefore, optogenetic techniques hold great potential to establish causal relationships between specific neuronal circuits and their function in freely moving animals. Due to the critical role of the hippocampal CA1 region in memory function, we explored the possibility of targeting an inhibitory opsin, ArchT, to CA1 pyramidal neurons in mice. We established a transgenic mouse line in which tetracycline trans-activator induces ArchT expression. By crossing this line with a CaMKIIα-tTA transgenic line, the delivery of light via an implanted optrode inhibits the activity of excitatory CA1 neurons. We found that light delivery to the hippocampus inhibited the recall of a contextual fear memory. Our results demonstrate that this optogenetic mouse line can be used to investigate the neuronal circuits underlying behavior.

  3. Heterologous production of a ginsenoside saponin (compound K) and its precursors in transgenic tobacco impairs the vegetative and reproductive growth.

    Science.gov (United States)

    Gwak, Yu Shin; Han, Jung Yeon; Adhikari, Prakash Babu; Ahn, Chang Ho; Choi, Yong Eui

    2017-06-01

    Production of compound K (a ginsenoside saponin) and its precursors in transgenic tobacco resulted in stunted growth and seed set failure, which may be caused by strong autotoxicity of heterologously produced phytochemicals against the tobacco itself. Panax ginseng roots contain various saponins (ginsenosides), which are major bioactive compounds. A monoglucosylated saponin, compound K (20-O-(β-D-glucopyranosyl)-20(S)-protopanaxadiol), has high medicinal and cosmetic values but is present in undetectable amounts in naturally grown ginseng roots. The production of compound K (CK) requires complicated deglycosylation of ginsenosides using physicochemical and/or enzymatic degradation. In this work, we report the production of CK in transgenic tobacco by co-overexpressing three genes (PgDDS, CYP716A47 and UGT71A28) isolated from P. ginseng. Introduction and expression of the transgenes in tobacco lines were confirmed by genomic PCR and RT-PCR. All the lines of transgenic tobacco produced CK including its precursors, protopanaxadiol and dammarenediol-II (DD). The concentrations of CK in the leaves ranged from 1.55 to 2.64 µg/g dry weight, depending on the transgenic line. Interestingly, production of CK in tobacco brought stunted plant growth and gave rise to seed set failure. This seed set failure was caused by both long-styled flowers and abnormal pollen development in transgenic tobacco. Both CK and DD treatments highly suppressed in vitro germination and tube growth in wild-type pollens. Based on these results, metabolic engineering for CK production in transgenic tobacco was successfully achieved, but the production of CK and its precursors in tobacco severely affects vegetative and reproductive growth due to the cytotoxicity of phytochemicals that are heterologously produced in transgenic tobacco.

  4. Strain-specific patterns of autonomic nervous system activity and heart failure susceptibility in mice.

    Science.gov (United States)

    Shusterman, Vladimir; Usiene, Irmute; Harrigal, Chivonne; Lee, Joon Sup; Kubota, Toru; Feldman, Arthur M; London, Barry

    2002-06-01

    Transgenic mice are widely used to study cardiac function, but strain-dependent differences in autonomic nervous system activity (ANSA) have not been explored. We compared 1) short-term pharmacological responses of cardiac rhythm in FVB vs. C57Black6/SV129 wild-type mice and 2) long-term physiological dynamics of cardiac rhythm and survival in tumor necrosis factor (TNF)-alpha transgenic mice with heart failure (TNF-alpha mice) on defined backgrounds. Ambulatory telemetry electrocardiographic recordings and response to saline, adrenergic, and cholinergic agents were examined in FVB and C57Black6/SV129 mice. In FVB mice, baseline heart rate (HR) was higher and did not change after injection of isoproterenol or atropine but decreased with propranolol. In C57Black6/SV129 mice, HR did not change with propranolol but increased with isoproterenol or atropine. Mean HR, but not indexes of HR variability, was an excellent predictor of response to autonomic agents. The proportion of surviving animals was higher in TNF-alpha mice on an FVB background than on a mixed FVB/C57Black6 background. The homeostatic states of ANSA are strain specific, which can explain the interstrain differences in mean HR, pharmacological responses, and survival of animals with congestive heart failure. Strain-specific differences should be considered in selecting the strains of mice used for transgenic and gene targeting experiments.

  5. Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon; Kim, Nam-Hee; Kim, Hyun-Jung [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Chan-Wha, E-mail: cwkim@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A transgenic mouse model expressing NSE-htau23 was used. Black-Right-Pointing-Pointer 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. Black-Right-Pointing-Pointer Differentially expressed spots in different stages of AD were identified. Black-Right-Pointing-Pointer GSTP1 and CAII were downregulated with the progression of AD. Black-Right-Pointing-Pointer SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer's disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between tau and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The

  6. The wheat NHX antiporter gene TaNHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium.

    Science.gov (United States)

    Zhang, Yan-Min; Zhang, Hong-Mei; Liu, Zi-Hui; Li, Hui-Cong; Guo, Xiu-Lin; Li, Guo-Liang

    2015-02-01

    Previous studies have shown that TaNHX2 transgenic alfalfa (Medicago sativa L.) accumulated more K(+) and less Na(+) in leaves than did the wild-type plants. To investigate whether the increased K(+) accumulation in transgenic plants is attributed to TaNHX2 gene expression and whether the compartmentalization of Na(+) into vacuoles or the intracellular compartmentalization of potassium is the critical mechanism for TaNHX2-dependent salt tolerance in transgenic alfalfa, aerated hydroponic culture was performed under three different stress conditions: control condition (0.1 mM Na(+) and 6 mM K(+) inside culture solution), K(+)-sufficient salt stress (100 mM NaCl and 6 mM K(+)) and K(+)-insufficient salt stress (100 mM NaCl and 0.1 mM K(+)). The transgenic alfalfa plants had lower K(+) efflux through specific K(+) channels and higher K(+) absorption through high-affinity K(+) transporters than did the wild-type plants. Therefore, the transgenic plants had greater K(+) contents and [K(+)]/[Na(+)] ratios in leaf tissue and cell sap. The intracellular compartmentalization of potassium is critical for TaNHX2-induced salt tolerance in transgenic alfalfa.

  7. Comparison of two new angiogenesis PET tracers 68Ga-NODAGA-E[c(RGDyK)]2 and 64Cu-NODAGA-E[c(RGDyK)]2; in vivo imaging studies in human xenograft tumors

    DEFF Research Database (Denmark)

    Oxbøl, Jytte; Brandt-Larsen, Malene; Schjøth-Eskesen, Christina

    2014-01-01

    INTRODUCTION: The aim of this study was to synthesize and perform a side-by-side comparison of two new tumor-angiogenesis PET tracers (68)Ga-NODAGA-E[c(RGDyK)](2) and (64)Cu-NODAGA-E[c(RGDyK)](2) in vivo using human xenograft tumors in mice. Human radiation burden was estimated to evaluate...... potential for future use as clinical PET tracers for imaging of neo-angiogenesis. METHODS: A (68)Ge/(68)Ga generator was used for the synthesis of (68)Ga-NODAGA-E[c(RGDyK)](2). (68)Ga and (64)Cu labeled NODAGA-E[c(RGDyK)](2) tracers were administrated in nude mice bearing either human glioblastoma (U87MG......) or human neuroendocrine (H727) xenograft tumors. PET/CT scans at 3 time points were used for calculating the tracer uptake in tumors (%ID/g), integrin αVβ3 target specificity was shown by blocking with cold NODAGA-E[c(RGDyK)](2), and biodistribution in normal organs were also examined. From biodistribution...

  8. Curcumin regulates insulin pathways and glucose metabolism in the brains of APPswe/PS1dE9 mice.

    Science.gov (United States)

    Wang, Pengwen; Su, Caixin; Feng, Huili; Chen, Xiaopei; Dong, Yunfang; Rao, Yingxue; Ren, Ying; Yang, Jinduo; Shi, Jing; Tian, Jinzhou; Jiang, Shucui

    2017-03-01

    Recent studies have shown the therapeutic potential of curcumin in Alzheimer's disease (AD). In 2014, our lab found that curcumin reduced Aβ40, Aβ42 and Aβ-derived diffusible ligands in the mouse hippocampus, and improved learning and memory. However, the mechanisms underlying this biological effect are only partially known. There is considerable evidence in brain metabolism studies indicating that AD might be a brain-specific type of diabetes with progressive impairment of glucose utilisation and insulin signalling. We hypothesised that curcumin might target both the glucose metabolism and insulin signalling pathways. In this study, we monitored brain glucose metabolism in living APPswe/PS1dE9 double transgenic mice using a micro-positron emission tomography (PET) technique. The study showed an improvement in cerebral glucose uptake in AD mice. For a more in-depth study, we used immunohistochemical (IHC) staining and western blot techniques to examine key factors in both glucose metabolism and brain insulin signalling pathways. The results showed that curcumin ameliorated the defective insulin signalling pathway by upregulating insulin-like growth factor (IGF)-1R, IRS-2, PI3K, p-PI3K, Akt and p-Akt protein expression while downregulating IR and IRS-1. Our study found that curcumin improved spatial learning and memory, at least in part, by increasing glucose metabolism and ameliorating the impaired insulin signalling pathways in the brain.

  9. T(2)-weighted microMRI and evoked potential of the visual system measurements during the development of hypomyelinated transgenic mice.

    Science.gov (United States)

    Martin, Melanie; Reyes, Samuel D; Hiltner, Timothy D; Givogri, M Irene; Tyszka, J Michael; Fisher, Robin; Campagnoni, Anthony T; Fraser, Scott E; Jacobs, Russell E; Readhead, Carol

    2007-02-01

    Our objective was to follow the course of a dysmyelinating disease followed by partial recovery in transgenic mice using non-invasive high-resolution (117 x 117 x 70 microm) magnetic resonance (microMRI) and evoked potential of the visual system (VEP) techniques. We used JOE (for J37 golli overexpressing) transgenic mice engineered to overexpress golli J37, a product of the Golli-mbp gene complex, specifically in oligodendrocytes. Individual JOE transgenics and their unaffected siblings were followed from 21 until 75-days-old using non-invasive in vivo VEPs and 3D T2-weighted microMRI on an 11.7 T scanner, performing what we believe is the first longitudinal study of its kind. The microMRI data indicated clear, global hypomyelination during the period of peak myelination (21-42 days), which was partially corrected at later ages (>60 days) in the JOE mice compared to controls. These microMRI data correlated well with [Campagnoni AT (1995) "Molecular biology of myelination". In: Ransom B, Kettenmann H (eds) Neuroglia--a Treatise. Oxford University Press, London, pp 555-570] myelin staining, [Campagnoni AT, Macklin WB (1988) Cellular and molecular aspects of myelin protein gene-expression. Mol Neurobiol 2:41-89] a transient intention tremor during the peak period of myelination, which abated at later ages, and [Lees MB, Brostoff SW (1984) Proteins in myelin. In: Morell (ed) Myelin. Plenum Press, New York and London, pp 197-224] VEPs which all indicated a significant delay of CNS myelin development and persistent hypomyelination in JOE mice. Overall these non-invasive techniques are capable of spatially resolving the increase in myelination in the normally developing and developmentally delayed mouse brain.

  10. T-Cell Mediated Immune Responses Induced in ret Transgenic Mouse Model of Malignant Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Abschuetz, Oliver [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Osen, Wolfram [Division of Translational Immunology, German Cancer Center, Heidelberg 69120 (Germany); Frank, Kathrin [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Kato, Masashi [Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi 487-8501 (Japan); Schadendorf, Dirk [Department of Dermatology, University Hospital Essen, Essen 45122 (Germany); Umansky, Viktor, E-mail: v.umansky@dkfz.de [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany)

    2012-04-26

    Poor response of human malignant melanoma to currently available treatments requires a development of innovative therapeutic strategies. Their evaluation should be based on animal models that resemble human melanoma with respect to genetics, histopathology and clinical features. Here we used a transgenic mouse model of spontaneous skin melanoma, in which the ret transgene is expressed in melanocytes under the control of metallothionein-I promoter. After a short latency, around 25% mice develop macroscopic skin melanoma metastasizing to lymph nodes, bone marrow, lungs and brain, whereas other transgenic mice showed only metastatic lesions without visible skin tumors. We found that tumor lesions expressed melanoma associated antigens (MAA) tyrosinase, tyrosinase related protein (TRP)-1, TRP-2 and gp100, which could be applied as targets for the immunotherapy. Upon peptide vaccination, ret transgenic mice without macroscopic melanomas were able to generate T cell responses not only against a strong model antigen ovalbumin but also against typical MAA TRP-2. Although mice bearing macroscopic primary tumors could also display an antigen-specific T cell reactivity, it was significantly down-regulated as compared to tumor-free transgenic mice or non-transgenic littermates. We suggest that ret transgenic mice could be used as a pre-clinical model for the evaluation of novel strategies of melanoma immunotherapy.

  11. Helper-dependent adenovirus achieve more efficient and persistent liver transgene expression in non-human primates under immunosuppression.

    Science.gov (United States)

    Unzu, C; Melero, I; Hervás-Stubbs, S; Sampedro, A; Mancheño, U; Morales-Kastresana, A; Serrano-Mendioroz, I; de Salamanca, R E; Benito, A; Fontanellas, A

    2015-11-01

    Helper-dependent adenoviral (HDA) vectors constitute excellent gene therapy tools for metabolic liver diseases. We have previously shown that an HDA vector encoding human porphobilinogen deaminase (PBGD) corrects acute intermittent porphyria mice. Now, six non-human primates were injected in the left hepatic lobe with the PBGD-encoding HDA vector to study levels and persistence of transgene expression. Intrahepatic administration of 5 × 10(12) viral particles kg(-1) (10(10) infective units kg(-1)) of HDA only resulted in transient (≈14 weeks) transgene expression in one out of three individuals. In contrast, a more prolonged 90-day immunosuppressive regimen (tacrolimus, mycophenolate, rituximab and steroids) extended meaningful transgene expression for over 76 weeks in two out of two cases. Transgene expression under immunosuppression (IS) reached maximum levels 6 weeks after HDA administration and gradually declined reaching a stable plateau within the therapeutic range for acute porphyria. The non-injected liver lobes also expressed the transgene because of vector circulation. IS controlled anticapsid T-cell responses and decreased the induction of neutralizing antibodies. Re-administration of HDA-hPBGD at week +78 achieved therapeutically meaningful transgene expression only in those animals receiving IS again at the time of this second vector exposure. Overall, immunity against adenoviral capsids poses serious hurdles for long-term HDA-mediated liver transduction, which can be partially circumvented by pharmacological IS.

  12. Combination therapy with gefitinib and doxorubicin inhibits tumor growth in transgenic mice with adrenal neuroblastoma

    International Nuclear Information System (INIS)

    Kawano, Kumi; Hattori, Yoshiyuki; Iwakura, Hiroshi; Akamizu, Takashi; Maitani, Yoshie

    2013-01-01

    Highly relevant mouse models of human neuroblastoma (NB) are needed to evaluate new therapeutic strategies against NB. In this study, we characterized transgenic mice with bilateral adrenal tumors. On the basis of information from the tumoral gene expression profiles, we examined the antitumor effects of unencapsulated and liposomal doxorubicin (DXR), alone and in combination with gefitinib, on adrenal NB. We showed that intravenous injection of unencapsulated or liposomal DXR alone inhibited tumor growth in a dose-dependent manner, as assessed by magnetic resonance imaging (MRI). However, liposomal DXR did not exhibit greater antitumor effect than unencapsulated DXR. Immunohistochemical analysis revealed that the adrenal tumor vasculature with abundant pericyte coverage was a less leaky structure for liposomes. Combination therapy with unencapsulated or liposomal DXR plus gefitinib strongly suppressed tumor growth and delayed tumor regrowth than treatment with unencapsulated or liposomal DXR alone, even at a lower dose of DXR. Dynamic contrast-enhanced MRI analysis revealed that gefitinib treatment increased blood flow in the tumor, indicating that gefitinib treatment changes the tumor vascular environment in a manner that may increase the antitumor effect of DXR. In conclusion, the combination of gefitinib and DXR induces growth inhibition of adrenal NBs in transgenic mice. These findings will provide helpful insights into new treatments for NB

  13. A Protein Aggregation Inhibitor, Leuco-Methylthioninium Bis(Hydromethanesulfonate, Decreases α-Synuclein Inclusions in a Transgenic Mouse Model of Synucleinopathy

    Directory of Open Access Journals (Sweden)

    Karima Schwab

    2018-01-01

    Full Text Available α-Synuclein (α-Syn aggregation is a pathological feature of synucleinopathies, neurodegenerative disorders that include Parkinson’s disease (PD. We have tested whether N,N,N′,N′-tetramethyl-10H-phenothiazine-3,7-diaminium bis(hydromethanesulfonate (leuco-methylthioninium bis(hydromethanesulfonate; LMTM, a tau aggregation inhibitor, affects α-Syn aggregation in vitro and in vivo. Both cellular and transgenic models in which the expression of full-length human α-Syn (h-α-Syn fused with a signal sequence peptide to promote α-Syn aggregation were used. Aggregated α-Syn was observed following differentiation of N1E-115 neuroblastoma cells transfected with h-α-Syn. The appearance of aggregated α-Syn was inhibited by LMTM, with an EC50 of 1.1 μM, with minimal effect on h-α-Syn mRNA levels being observed. Two independent lines of mice (L58 and L62 transgenic for the same fusion protein accumulated neuronal h-α-Syn that, with aging, developed into fibrillary inclusions characterized by both resistance to proteinase K (PK-cleavage and their ability to bind thiazin red. There was a significant decrease in α-Syn-positive neurons in multiple brain regions following oral treatment of male and female mice with LMTM administered daily for 6 weeks at 5 and 15 mg MT/kg. The early aggregates of α-Syn and the late-stage fibrillar inclusions were both susceptible to inhibition by LMTM, a treatment that also resulted in the rescue of movement and anxiety-related traits in these mice. The results suggest that LMTM may provide a potential disease modification therapy in PD and other synucleinopathies through the inhibition of α-Syn aggregation.

  14. Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology.

    LENUS (Irish Health Repository)

    Tudor, E L

    2010-05-19

    Cytoplasmic ubiquitin-positive inclusions containing TAR-DNA-binding protein-43 (TDP-43) within motor neurons are the hallmark pathology of sporadic amyotrophic lateral sclerosis (ALS). TDP-43 is a nuclear protein and the mechanisms by which it becomes mislocalized and aggregated in ALS are not properly understood. A mutation in the vesicle-associated membrane protein-associated protein-B (VAPB) involving a proline to serine substitution at position 56 (VAPBP56S) is the cause of familial ALS type-8. To gain insight into the molecular mechanisms by which VAPBP56S induces disease, we created transgenic mice that express either wild-type VAPB (VAPBwt) or VAPBP56S in the nervous system. Analyses of both sets of mice revealed no overt motor phenotype nor alterations in survival. However, VAPBP56S but not VAPBwt transgenic mice develop cytoplasmic TDP-43 accumulations within spinal cord motor neurons that were first detected at 18 months of age. Our results suggest a link between abnormal VAPBP56S function and TDP-43 mislocalization.

  15. Antiatherogenic effects of oleanolic acid in apolipoprotein E knockout mice

    DEFF Research Database (Denmark)

    Buus, Niels Henrik; Hansson, Nicolaj Christopher; Rodriguez-Rodriguez, Rosalia

    2011-01-01

    were investigated in vitro. Inducible nitric oxide synthase (iNOS) was visualized using immunoblotting. As opposed to WT and fluvastatin- and vehicle-treated mice, OA-fed ApoE(-/-) mice gained no weight during the treatment period. Plasma concentrations of total-cholesterol and triglyceride were...... in combination with OA (100 mg/kg/day), fluvastatin (5 mg/kg/day) or vehicle, with wild type (WT) mice serving as controls. After 8 weeks of treatment atherosclerotic plaque areas in the aortic arch and plasma lipid concentrations were determined. Vasoconstriction and relaxation of the proximal part of aorta...... not significantly reduced by OA- or fluvastatin treatment. Plaque area of vehicle-treated mice was 25%, but only 14% in OA- and 19% in fluvastatin-treated mice. As compared to WT, vasoconstriction to phenylephrine was attenuated in ApoE(-/-) mice. The NOS inhibitor asymmetric dimethylarginine (ADMA) enhanced...

  16. Vitamin K2 can suppress the expression of Toll-like receptor 2 (TLR2) and TLR4, and inhibit calcification of aortic intima in ApoE-/- mice as well as smooth muscle cells.

    Science.gov (United States)

    Wang, Zhaojun; Wang, Zhongqun; Zhu, Jie; Long, Xinguang; Yan, Jinchuan

    2018-02-01

    Background and objectives Vascular calcification is a common complication in atherosclerosis. Accumulating evidence showed that Toll-like receptors (TLRs) mediate pro-inflammatory and atherosclerosis. Recent studies demonstrated that vascular calcification is one of the detrimental effects of vitamin K (Vit K) antagonists. However, the effects of Vit K on the expression of TLR2 and 4 and intimal calcification in artery remained unidentified. Methods and results Eighteen ApoE -/- mice were randomly divided into model group, Vit K-treated group, and control group. The mice of model and Vit K-treated group were fed with high-fat diet, while control group mice were fed with normal diet. Mice of Vit K-treated group were administered orally with vitamin K2 (40 mg.kg -1 .day -1 ) for 12 weeks. Twelve weeks later the aortic sections of mice were acquired and stained with hematoxylin and eosin and von Kossa, respectively. Calcium content and activity of alkaline phosphatase (ALP) at aortic tissues were measured. The expression levels of TLR2 and TLR4 in aorta sections were detected by immunohistochemisty and RT-PCR, respectively. The effects of Vit K on cellular calcification were further studied in A7r5 SMCs. Results demonstrated that high-fat diet induced typical atherosclerosis with intimal calcification in ApoE -/- mice, while in Vit K-treated group atherosclerosis and calcium deposits were not serious; Vit K2 also inhibited cellular calcification in A7r5 SMCs. Quantitative analysis showed that calcium and ALP activity at aortic tissues in the Vit K-treated mice were significantly lower than that of the model group ( P < 0.01); Compared to the control group, the expression levels of TLR2 and TLR4 in the model group were significantly higher ( P < 0.05), while in Vit K-treated group the levels of TLR2 and 4 were significantly lower than that in the model group. Furthermore, the content of calcium was positively related to the expression levels of TLR2 and TLR4

  17. Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein.

    Science.gov (United States)

    Watts, Joel C; Giles, Kurt; Stöhr, Jan; Oehler, Abby; Bhardwaj, Sumita; Grillo, Sunny K; Patel, Smita; DeArmond, Stephen J; Prusiner, Stanley B

    2012-02-28

    Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Therefore, we constructed transgenic (Tg) mice expressing WT BVPrP. Tg(BVPrP) mice developed spontaneous CNS dysfunction between 108 and 340 d of age and recapitulated the hallmarks of prion disease, including spongiform degeneration, pronounced astrogliosis, and deposition of alternatively folded PrP in the brain. Brain homogenates of ill Tg(BVPrP) mice transmitted disease to Tg(BVPrP) mice in ∼35 d, to Tg mice overexpressing mouse PrP in under 100 d, and to WT mice in ∼185 d. Our studies demonstrate experimentally that WT PrP can spontaneously form infectious prions in vivo. Thus, Tg(BVPrP) mice may be useful for studying the spontaneous formation of prions, and thus may provide insight into the etiology of sporadic CJD.

  18. Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocular Herpesvirus Infection.

    Science.gov (United States)

    Srivastava, Ruchi; Khan, Arif A; Garg, Sumit; Syed, Sabrina A; Furness, Julie N; Vahed, Hawa; Pham, Tiffany; Yu, Howard T; Nesburn, Anthony B; BenMohamed, Lbachir

    2017-01-15

    Herpes simplex virus 1 (HSV-1) infection is widespread among humans. The HSV-1 virion protein 13/14 (VP13/14), also known as UL47, is a tegument antigen targeted by CD8 + T cells from HSV-seropositive individuals. However, whether VP13/14-specific CD8 + T cells play a role in the natural protection seen in asymptomatic (ASYMP) individuals (individuals who have never had a clinical herpetic disease) has not been elucidated. Using predictive computer-assisted algorithms, we identified 10 potential HLA-A*02:01-restricted CD8 + T-cell epitopes from the 693-amino-acid sequence of the VP13/14 protein. Three out of 10 epitopes exhibited a high to moderate affinity of binding to soluble HLA-A*02:01 molecules. The phenotype and function of CD8 + T cells specific for each epitope were compared in HLA-A*02:01-positive ASYMP individuals and symptomatic (SYMP) individuals (individuals who have frequent clinical herpetic diseases) using determination of a combination of tetramer frequency and the levels of granzyme B, granzyme K, perforin, gamma interferon, tumor necrosis factor alpha, and interleukin-2 production and CD107 a/b cytotoxic degranulation. High frequencies of multifunctional CD8 + T cells directed against three epitopes, VP13/14 from amino acids 286 to 294 (VP13/14 286-294 ), VP13/14 from amino acids 504 to 512 (VP13/14 504-512 ), and VP13/14 from amino acids 544 to 552 (VP13/14 544-552 ), were detected in ASYMP individuals, while only low frequencies were detected in SYMP individuals. The three epitopes also predominantly recalled more CD45RA low CD44 high CCR7 low CD62L low CD8 + effector memory T cells (T EM cells) in ASYMP individuals than SYMP individuals. Moreover, immunization of HLA-A*02:01 transgenic mice with the three CD8 + T EM -cell epitopes from ASYMP individuals induced robust and polyfunctional HSV-specific CD8 + T EM cells associated with strong protective immunity against ocular herpesvirus infection and disease. Our findings outline the phenotypic

  19. Transmission and Adaptation of Chronic Wasting Disease to Hamsters and Transgenic Mice: Evidence for Strains▿

    OpenAIRE

    Raymond, Gregory J.; Raymond, Lynne D.; Meade-White, Kimberly D.; Hughson, Andrew G.; Favara, Cynthia; Gardner, Donald; Williams, Elizabeth S.; Miller, Michael W.; Race, Richard E.; Caughey, Byron

    2007-01-01

    In vitro screening using the cell-free prion protein conversion system indicated that certain rodents may be susceptible to chronic wasting disease (CWD). Therefore, CWD isolates from mule deer, white-tailed deer, and elk were inoculated intracerebrally into various rodent species to assess the rodents' susceptibility and to develop new rodent models of CWD. The species inoculated were Syrian golden, Djungarian, Chinese, Siberian, and Armenian hamsters, transgenic mice expressing the Syrian g...

  20. Lactation Defect in a Widely Used MMTV-Cre Transgenic Line of Mice

    Science.gov (United States)

    Yuan, Taichang; Wang, Yongping; Pao, Lily; Anderson, Steve M.; Gu, Haihua

    2011-01-01

    Background MMTV-Cre mouse lines have played important roles in our understanding about the functions of numerous genes in mouse mammary epithelial cells during mammary gland development and tumorigenesis. However, numerous studies have not included MMTV-Cre mice as controls, and many investigators have not indicated which of the different MMTV-Cre founder lines were used in their studies. Here, we describe a lactation defect that severely limits the use of one of the most commonly used MMTV-Cre founder lines. Methodology/Principal Findings To explore the role of protein tyrosine phosphatase Shp1 in mammary gland development, mice bearing the floxed Shp1 gene were crossed with MMTV-Cre mice and mammary gland development was examined by histological and biochemical techniques, while lactation competency was assessed by monitoring pup growth. Surprisingly, both the Shp1fl/+;MMTV-Cre and MMTV-Cre female mice displayed a severe lactation defect when compared to the Shp1 fl/+ control mice. Histological and biochemical analyses reveal that female mice expressing the MMTV-Cre transgene, either alone or in combination with floxed genes, exhibit defects in lobuloalveolar expansion, presence of large cytoplasmic lipid droplets in luminal alveolar epithelial cells postpartum, and precocious induction of involution. Using a PCR-based genotyping method, the three different founder lines can be distinguished, and we determined that the MMTV-Cre line A, the most widely used MMTV-Cre founder line, exhibits a profound lactation defect that limits its use in studies on mammary gland development. Conclusions/Significance The identification of a lactation defect in the MMTV-Cre line A mice indicates that investigators must use MMTV-Cre alone mice as control in studies that utilize Cre recombinase to excise genes of interest from mammary epithelial cells. Our results also suggest that previous results obtained in studies using the MMTV-Cre line A line should be re-evaluated if the

  1. Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice.

    Science.gov (United States)

    Chan, Elizabeth S; Chen, Christopher; Cole, Gregory M; Wong, Boon-Seng

    2015-09-08

    It is unclear how human apolipoprotein E4 (ApoE4) increases the risk for Alzheimer's disease (AD). Although Aβ levels can lead to insulin signaling impairment, these experiments were done in the absence of human ApoE. To examine ApoE role, we crossed the human ApoE-targeted replacement mice with mutant human amyloid precursor protein (APP) mice. In 26 week old mice with lower Aβ levels, the expression and phosphorylation of insulin signaling proteins remained comparable among APP, ApoE3xAPP and ApoE4xAPP mouse brains. When the mice aged to 78 weeks, these proteins were markedly reduced in APP and ApoE4xAPP mouse brains. While Aβ can bind to insulin receptor, how ApoE isoforms modulate this interaction remains unknown. Here, we showed that ApoE3 had greater association with insulin receptor as compared to ApoE4, regardless of Aβ42 concentration. In contrast, ApoE4 bound more Aβ42 with increasing peptide levels. Using primary hippocampal neurons, we showed that ApoE3 and ApoE4 neurons are equally sensitive to physiological levels of insulin. However, in the presence of Aβ42, insulin failed to elicit a downstream response only in ApoE4 hippocampal neurons. Taken together, our data show that ApoE genotypes can modulate this Aβ-mediated insulin signaling impairment.

  2. Comparison of the antiviral potential among soluble forms of herpes simplex virus type-2 glycoprotein D receptors, herpes virus entry mediator A, nectin-1 and nectin-2, in transgenic mice.

    Science.gov (United States)

    Fujimoto, Yoshikazu; Tomioka, Yukiko; Ozaki, Kinuyo; Takeda, Keiko; Suyama, Haruka; Yamamoto, Sayo; Takakuwa, Hiroki; Morimatsu, Masami; Uede, Toshimitsu; Ono, Etsuro

    2017-07-01

    Herpesvirus entry mediator A (HVEM), nectin-1 and nectin-2 are cellular receptors of glycoprotein D (gD) of herpes simplex virus type-2 (HSV-2). It has been shown that soluble forms of HSV gD receptors have the antiviral potential in cultured cells and transgenic mice. Here, to compare antiviral potential of soluble forms of HVEM, nectin-1 and nectin-2 against HSV-2 infections in vivo, transgenic mice expressing fusion proteins consisting of the entire ectodomain of HVEM, nectin-1 or nectin-2 and the Fc portion of human IgG (HVEMIg, nectin-1Ig and nectin-2Ig, respectively) were intraperitoneally infected with HSV-2. In the infection with 3 MLD50 (50 % mouse lethal dose), effective resistance was not observed in transgenic mice expressing nectin-2Ig. In a transgenic mouse line with high expression of nectin-1Ig, significant protection from the infection with 30 and 300 MLD50 was observed (survival rate of 100 and 71 %, respectively). On the other hand, transgenic mice expressing HVEMIg showed a complete resistance to the lethal infection even with 300 MLD50 (survival rate of 100 %). These results demonstrated that HVEMIg could exert effective antiviral activities against HSV-2 infections in vivo as compared with other soluble forms of HSV gD receptors.

  3. Comparison of intravenous and intraperitoneal [{sup 123}I]IBZM injection for dopamine D2 receptor imaging in mice

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philipp T. [Department of Neurology, University Hospital Aachen, 52074 Aachen (Germany); Department of Nuclear Medicine, University Hospital Aachen, 52074 Aachen (Germany)], E-mail: pmeyer@ukaachen.de; Salber, Dagmar [C. and O. Vogt Institute of Brain Research, University Hospital Duesseldorf, 40225 Duesseldorf (Germany); Schiefer, Johannes [Department of Neurology, University Hospital Aachen, 52074 Aachen (Germany); Cremer, Markus [Institute of Neurosciences and Biophysics - Medicine, Research Center Juelich, 52425 Juelich (Germany); Schaefer, Wolfgang M. [Department of Nuclear Medicine, University Hospital Aachen, 52074 Aachen (Germany); Kosinski, Christoph M. [Department of Neurology, University Hospital Aachen, 52074 Aachen (Germany); Langen, Karl-Josef [Institute of Neurosciences and Biophysics - Medicine, Research Center Juelich, 52425 Juelich (Germany)

    2008-07-15

    Introduction: Intraperitoneal (IP) injection represents an attractive alternative route of radiotracer administration for small animal imaging, e.g., for longitudinal studies in transgenic mouse models. We explored the cerebral kinetics of the reversible dopamine D2 receptor ligand [{sup 123}I]IBZM after IP injection in mice. Methods: Cerebral [{sup 123}I]IBZM kinetics were assessed by ex vivo autoradiography in mice sacrificed between 30 and 200 min after IP or intravenous (IV) injection. The striatum-to-cerebellum (S/C) uptake ratio at 140 min was evaluated in wild-type mice and R6/2 transgenic mice (a Huntington's disease model) in comparison with in vitro autoradiography using [{sup 3}H]raclopride. Results: [{sup 123}I]IBZM uptake was slower and lower after IP injection [maximum uptake in striatum 5.6% injected dose per gram (ID/g) at 60 min] than IV injection (10.5%ID/g at 30 min). Between 60 and 120 min, striatal (cerebellar) uptake after IP injection reached 63% (91%) of the uptake after IV injection. The S/C uptake ratio increased to 15.5 at 200 min after IP injection, which corresponds to 87% of the IV injection value (17.8). Consistent with in vitro [{sup 3}H]raclopride autoradiography, the S/C ratio given by ex vivo [{sup 123}I]IBZM autoradiography (140 min after IP injection) was significantly reduced in R6/2 mice. Conclusions: Although IP injection resulted in slower kinetics, relevant measures of dopamine D2 receptor availability were comparable. Thus, IP injection represents a promising route of tracer administration for small animal [{sup 123}I]IBZM SPECT. This should considerably simplify the implementation of longitudinal small animal neuroimaging studies, e.g., in transgenic mouse models.

  4. A transgenic rat expressing human APP with the Swedish Alzheimer's disease mutation

    DEFF Research Database (Denmark)

    Folkesson, Ronnie; Malkiewicz, Katarzyna; Kloskowska, Ewa

    2007-01-01

    In recent years, transgenic mice have become valuable tools for studying mechanisms of Alzheimer's disease (AD). With the aim of developing an animal model better for memory and neurobehavioural testing, we have generated a transgenic rat model of AD. These animals express human amyloid precursor...... in cerebrovascular blood vessels with very rare diffuse plaques. We believe that crossing these animals with mutant PS1 transgenic rats will result in accelerated plaque formation similar to that seen in transgenic mice....

  5. Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus.

    Directory of Open Access Journals (Sweden)

    Guangyu Zhao

    Full Text Available The Middle East Respiratory Syndrome Coronavirus (MERS-CoV causes severe acute respiratory failure and considerable extrapumonary organ dysfuction with substantial high mortality. For the limited number of autopsy reports, small animal models are urgently needed to study the mechanisms of MERS-CoV infection and pathogenesis of the disease and to evaluate the efficacy of therapeutics against MERS-CoV infection. In this study, we developed a transgenic mouse model globally expressing codon-optimized human dipeptidyl peptidase 4 (hDPP4, the receptor for MERS-CoV. After intranasal inoculation with MERS-CoV, the mice rapidly developed severe pneumonia and multi-organ damage, with viral replication being detected in the lungs on day 5 and in the lungs, kidneys and brains on day 9 post-infection. In addition, the mice exhibited systemic inflammation with mild to severe pneumonia accompanied by the injury of liver, kidney and spleen with neutrophil and macrophage infiltration. Importantly, the mice exhibited symptoms of paralysis with high viral burden and viral positive neurons on day 9. Taken together, this study characterizes the tropism of MERS-CoV upon infection. Importantly, this hDPP4-expressing transgenic mouse model will be applicable for studying the pathogenesis of MERS-CoV infection and investigating the efficacy of vaccines and antiviral agents designed to combat MERS-CoV infection.

  6. Human Islet Amyloid Polypeptide Transgenic Mice: In Vivo and Ex Vivo Models for the Role of hIAPP in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    J. W. M. Höppener

    2008-01-01

    Full Text Available Human islet amyloid polypeptide (hIAPP, a pancreatic islet protein of 37 amino acids, is the main component of islet amyloid, seen at autopsy in patients with type 2 diabetes mellitus (DM2. To investigate the roles of hIAPP and islet amyloid in DM2, we generated transgenic mice expressing hIAPP in their islet beta cells. In this study, we found that after a long-term, high-fat diet challenge islet amyloid was observed in only 4 of 19 hIAPP transgenic mice. hIAPP transgenic females exhibited severe glucose intolerance, which was associated with a downregulation of GLUT-2 mRNA expression. In isolated islets from hIAPP males cultured for 3 weeks on high-glucose medium, the percentage of amyloid containing islets increased from 5.5% to 70%. This ex vivo system will allow a more rapid, convenient, and specific study of factors influencing islet amyloidosis as well as of therapeutic strategies to interfere with this pathological process.

  7. Transgenic Mice Overexpressing Vitamin D Receptor (VDR) Show Anti-Inflammatory Effects in Lung Tissues.

    Science.gov (United States)

    Ishii, Masaki; Yamaguchi, Yasuhiro; Isumi, Kyoko; Ogawa, Sumito; Akishita, Masahiro

    2017-12-01

    Vitamin D insufficiency is increasingly recognized as a prevalent problem worldwide, especially in patients with a chronic lung disease. Chronic obstructive pulmonary disease (COPD) is a type of chronic inflammatory lung disease. Previous clinical studies have shown that COPD leads to low vitamin D levels, which further increase the severity of COPD. Vitamin D homeostasis represents one of the most important factors that potentially determine the severity of COPD. Nonetheless, the mechanisms underlying the anti-inflammatory effects of vitamin D receptor (VDR) in lung tissues are still unclear. To investigate the anti-inflammatory effects of VDR, we generated transgenic mice that show lung-specific VDR overexpression under the control of the surfactant protein C promoter (TG mice). The TG mice were used to study the expression patterns of proinflammatory cytokines using real-time polymerase chain reaction and immunohistochemistry. The TG mice had lower levels of T helper 1 (Th1)-related cytokines than wild-type (WT) mice did. No significant differences in the expression of Th2 cytokines were observed between TG and WT mice. This study is the first to achieve lung-specific overexpression of VDR in TG mice: an interesting animal model useful for studying the relation between airway cell inflammation and vitamin D signaling. VDR expression is an important factor that influences anti-inflammatory responses in lung tissues. Our results show the crucial role of VDR in anti-inflammatory effects in lungs; these data are potentially useful for the treatment or prevention of COPD.

  8. Effect of catalpol on senile plaques and spatial learning and memory ability in amyloid-β protein precursor/presenilin 1 double transgenic mice

    Institute of Scientific and Technical Information of China (English)

    宋冲

    2013-01-01

    Objective To investigate whether catalpol affects senile plaque formation and spatial learning and memory ability in the amyloid-βprotein precursor/presenilin 1(APP/PS1)double transgenic mice.Methods

  9. Exercise-Induced Neuroprotection of Hippocampus in APP/PS1 Transgenic Mice via Upregulation of Mitochondrial 8-Oxoguanine DNA Glycosylase

    Directory of Open Access Journals (Sweden)

    Hai Bo

    2014-01-01

    Full Text Available Improving mitochondrial function has been proposed as a reasonable therapeutic strategy to reduce amyloid-β (Aβ load and to modify the progression of Alzheimer’s disease (AD. However, the relationship between mitochondrial adaptation and brain neuroprotection caused by physical exercise in AD is poorly understood. This study was undertaken to investigate the effects of long-term treadmill exercise on mitochondrial 8-oxoguanine DNA glycosylase-1 (OGG1 level, mtDNA oxidative damage, and mitochondrial function in the hippocampus of APP/PS1 transgenic mouse model of AD. In the present study, twenty weeks of treadmill training significantly improved the cognitive function and reduced the expression of Aβ-42 in APP/PS1 transgenic (Tg mice. Training also ameliorated mitochondrial respiratory function by increasing the complexes I, and IV and ATP synthase activities, whereas it attenuated ROS generation and mtDNA oxidative damage in Tg mice. Furthermore, the impaired mitochondrial antioxidant enzymes and mitochondrial OGG1 activities seen in Tg mice were restored with training. Acetylation level of mitochondrial OGG1 and MnSOD was markedly suppressed in Tg mice after exercise training, in parallel with increased level of SIRT3. These findings suggest that exercise training could increase mtDNA repair capacity in the mouse hippocampus, which in turn would result in protection against AD-related mitochondrial dysfunction and phenotypic deterioration.

  10. Heterologous human/rat HER2-specific exosome-targeted T cell vaccine stimulates potent humoral and CTL responses leading to enhanced circumvention of HER2 tolerance in double transgenic HLA-A2/HER2 mice.

    Science.gov (United States)

    Xie, Yufeng; Wu, Jie; Xu, Aizhang; Ahmeqd, Shahid; Sami, Amer; Chibbar, Rajni; Freywald, Andrew; Zheng, Changyu; Xiang, Jim

    2018-03-07

    DNA vaccines composed of heterologous human HER2 and rat neu sequences induce stronger antibody response and protective antitumor immunity than either HER2 or neu DNA vaccines in transgenic mice. We previously developed HER2-specific exosome-targeted T-cell vaccine HER2-T EXO capable of stimulating HER2-specific CD8 + T-cell responses, but only leading to partial protective immunity in double-transgenic HLA-A2/HER2 mice with self-immune tolerance to HER2. Here, we constructed an adenoviral vector AdV HuRt expressing HuRt fusion protein composed of NH 2 -HER2 1-407 (Hu) and COOH-neu 408-690 (Rt) fragments, and developed a heterologous human/rat HER2-specific exosome-targeted T-cell vaccine HuRt-T EXO using polyclonal CD4 + T-cells uptaking exosomes released by AdV HuRt -transfected dendritic cells. We found that the HuRt-T EXO vaccine stimulates enhanced CD4 + T-cell responses leading to increased induction of HER2-specific antibody (∼70 µg/ml) compared to that (∼40 µg/ml) triggered by the homologous HER2-T EXO vaccine. By using PE-H-2K d /HER2 23-71 tetramer, we determined that HuRt-T EXO stimulates stronger HER2-specific CD8 + T-cell responses eradicating 90% of HER2-specific target cells, while HER2-T EXO -induced CD8 + T-cell responses only eliminating 53% targets. Furthermore, HuRt-T EXO , but not HER2-T EXO vaccination, is capable of suppressing early stage-established HER2-expressing 4T1 HER2 breast cancer in its lung metastasis or subcutaneous form in BALB/c mice, and of completely protecting transgenic HLA-A2/HER2 mice from growth of HLA-A2/HER2-expressing BL6-10 A2/HER2 melanoma. HuRt-T EXO -stimulated HER2-specific CD8 + T-cells not only are cytolytic to trastuzumab-resistant HLA-A2/HER2-expressing BT474/A2 breast tumor cells in vitro but also eradicates pre-established BT474/A2 tumors in athymic nude mice. Therefore, our novel heterologous human/rat HER2-specific T-cell vaccine HuRt-T EXO, circumventing HER2 tolerance, may provide a new

  11. Transgenic increase in N-3/n-6 Fatty Acid ratio reduces maternal obesity-associated inflammation and limits adverse developmental programming in mice.

    Directory of Open Access Journals (Sweden)

    Margaret J R Heerwagen

    Full Text Available Maternal and pediatric obesity has risen dramatically over recent years, and is a known predictor of adverse long-term metabolic outcomes in offspring. However, which particular aspects of obese pregnancy promote such outcomes is less clear. While maternal obesity increases both maternal and placental inflammation, it is still unknown whether this is a dominant mechanism in fetal metabolic programming. In this study, we utilized the Fat-1 transgenic mouse to test whether increasing the maternal n-3/n-6 tissue fatty acid ratio could reduce the consequences of maternal obesity-associated inflammation and thereby mitigate downstream developmental programming. Eight-week-old WT or hemizygous Fat-1 C57BL/6J female mice were placed on a high-fat diet (HFD or control diet (CD for 8 weeks prior to mating with WT chow-fed males. Only WT offspring from Fat-1 mothers were analyzed. WT-HFD mothers demonstrated increased markers of infiltrating adipose tissue macrophages (P<0.02, and a striking increase in 12 serum pro-inflammatory cytokines (P<0.05, while Fat1-HFD mothers remained similar to WT-CD mothers, despite equal weight gain. E18.5 Fetuses from WT-HFD mothers had larger placentas (P<0.02, as well as increased placenta and fetal liver TG deposition (P<0.01 and P<0.02, respectively and increased placental LPL TG-hydrolase activity (P<0.02, which correlated with degree of maternal insulin resistance (r = 0.59, P<0.02. The placentas and fetal livers from Fat1-HFD mothers were protected from this excess placental growth and fetal-placental lipid deposition. Importantly, maternal protection from excess inflammation corresponded with improved metabolic outcomes in adult WT offspring. While the offspring from WT-HFD mothers weaned onto CD demonstrated increased weight gain (P<0.05, body and liver fat (P<0.05 and P<0.001, respectively, and whole body insulin resistance (P<0.05, these were prevented in WT offspring from Fat1-HFD mothers. Our results

  12. Radiation arteriopathy in the transgenic arteriovenous fistula model.

    Science.gov (United States)

    Lawton, Michael T; Arnold, Christine M; Kim, Yung J; Bogarin, Ernesto A; Stewart, Campbell L; Wulfstat, Amanda A; Derugin, Nikita; Deen, Dennis; Young, William L

    2008-05-01

    The transgenic arteriovenous fistula model, surgically constructed with transgenic mouse aorta interposed in common carotid artery-to-external jugular vein fistulae in nude rats, has a 4-month experimental window because patency and transgenic phenotype are lost over time. We adapted this model to investigate occlusive arteriopathy in brain arteriovenous malformations after radiosurgery by radiating grafted aorta before insertion in the fistula. We hypothesized that high-dose radiation would reproduce the arteriopathy observed clinically within the experimental time window and that deletions of endoglin (ENG) and endothelial nitric oxide synthase (eNOS) genes would modify the radiation response. Radiation arteriopathy in the common carotid arteries of 171 wild-type mice was examined with doses of 25, 80, 120, or 200 Gy (Experiment 1). Radiation arteriopathy in 68 wild-type arteriovenous fistulae was examined histologically and morphometrically with preoperative radiation doses of 0, 25, or 200 Gy (Experiment 2). Radiation arteriopathy in 51 transgenic arteriovenous fistulae (36 ENG and 15 eNOS knock-out fistulae) was examined using preoperative radiation doses of 0, 25, or 200 Gy (Experiment 3). High-dose radiation (200 Gy) of mouse common carotid arteries induced only mild arteriopathy (mean score, 0.66) without intimal hyperplasia and with high mortality (68%). Radiation arteriopathy in wild-type arteriovenous fistulae was severe (mean score, 3.5 at 200 Gy), with intimal hyperplasia and medial disruption at 3 months, decreasing luminal areas with increasing dose, and no mortality. Arteriopathy was robust in transgenic arteriovenous fistulae with ENG +/- and with eNOS +/-, with thick intimal hyperplasia in the former and distinct smooth muscle cell proliferation in the latter. The transgenic arteriovenous fistula model can be adapted to rapidly reproduce radiation arteriopathy observed in resected brain arteriovenous malformations after radiosurgery. High

  13. The system K2NbF7-K2TiF6-KCl

    International Nuclear Information System (INIS)

    Kamenskaya, L.A.; Matveev, A.M.

    1984-01-01

    Using visual-polythermal and thermographical methods the ternary system K 2 NbF 7 -K 2 TiE 6 -KCl has been studied. Crystallization fields of initial components and the field of solid solutions of double compounds K 3 NbClF 7 and K 3 TiClF 6 are outlined. Ternary eutectics at 654 deg C, having the composition K 2 NbF 6 -41, K 2 TiP 6 -41, KCl-18 mol.%, is determined. Potassium fluoroniobate and fluorotitanate form continuous solid solutions unstable in the presence of the third component, potassium chloride

  14. Astragalus membranaceus-Polysaccharides Ameliorates Obesity, Hepatic Steatosis, Neuroinflammation and Cognition Impairment without Affecting Amyloid Deposition in Metabolically Stressed APPswe/PS1dE9 Mice

    Directory of Open Access Journals (Sweden)

    Yung-Cheng Huang

    2017-12-01

    Full Text Available Astragalus membranaceus is commonly used in traditional Chinese medicine for strengthening the host defense system. Astragalus membranaceus-polysaccharides is an effective component with various important bioactivities, such as immunomodulation, antioxidant, anti-diabetes, anti-inflammation and neuroprotection. In the present study, we determine the effects of Astragalus membranaceus-polysaccharides on metabolically stressed transgenic mice in order to develop this macromolecules for treatment of sporadic Alzheimer’s disease, a neurodegenerative disease with metabolic risk factors. Transgenic mice, at 10 weeks old prior to the appearance of senile plaques, were treated in combination of administrating high-fat diet and injecting low-dose streptozotocin to create the metabolically stressed mice model. Astragalus membranaceus-polysaccharides was administrated starting at 14 weeks for 7 weeks. We found that Astragalus membranaceus-polysaccharides reduced metabolic stress-induced increase of body weight, insulin and insulin and leptin level, insulin resistance, and hepatic triglyceride. Astragalus membranaceus-polysaccharides also ameliorated metabolic stress-exacerbated oral glucose intolerance, although the fasting blood glucose was only temporally reduced. In brain, metabolic stress-elicited astrogliosis and microglia activation in the vicinity of plaques was also diminished by Astragalus membranaceus-polysaccharides administration. The plaque deposition, however, was not significantly affected by Astragalus membranaceus-polysaccharides administration. These findings suggest that Astragalus membranaceus-polysaccharides may be used to ameliorate metabolic stress-induced diabesity and the subsequent neuroinflammation, which improved the behavior performance in metabolically stressed transgenic mice.

  15. Ultrasound Backscatter Microscopy Image-Guided Intraventricular Gene Delivery at Murine Embryonic Age 9.5 and 10.5 Produces Distinct Transgene Expression Patterns at the Adult Stage

    Directory of Open Access Journals (Sweden)

    Jiwon Jang

    2013-11-01

    Full Text Available In utero injection of a retroviral vector into the embryonic telencephalon aided by ultrasound backscatter microscopy permits introduction of a gene of interest at an early stage of development. In this study, we compared the tissue distribution of gene expression in adult mice injected with retroviral vectors at different embryonic ages in utero. Following ultrasound image-guided gene delivery (UIGD into the embryonic telencephalon, adult mice were subjected to whole-body luciferase imaging and immunohistochemical analysis at 6 weeks and 1 year postinjection. Luciferase activity was observed in a wide range of tissues in animals injected at embryonic age 9.5 (E9.5, whereas animals injected at E10.5 showed brain-localized reporter gene expression. These results suggest that mouse embryonic brain creates a closed and impermeable structure around E10. Therefore, by injecting a transgene before or after E10, transgene expression can be manipulated to be local or systemic. Our results also provide information that widens the applicability of UIGD beyond neuroscience studies.

  16. A subchronic feeding safety evaluation of transgenic milk containing human β-defensin 3 on reproductive system of C57BL/6J mouse.

    Science.gov (United States)

    Gao, Ming-Qing; Zhang, Ruiqi; Yang, Yange; Luo, Yuru; Jiang, Ming; Zhang, Yingli; Zhang, Yong; Qing, Suzhu

    2018-05-01

    Bovine mastitis is an infectious disease of the mammary gland which has been generally treated by antibiotic delivery. While the increasing drug-resistant bacteria and the high consumption of the antibiotic had become a noticeable concern. In a previous study, a mammary special vector expressing human β-defensin 3 (hBD3) was transfected into bovine fetal fibroblasts to produce mastitis-resistant bovine. This investigation focused on potential unintended effects of transgenic milk containing hBD3 produced by these mastitis-resistant bovine on the reproductive system of C57BL/6J mice. Mice were fed with diets containing transgenic milk or conventional milk, nutritionally balanced to an AIN93G diet for 90 days, and non-milk diet was selected as the negative group. The reproductive system was given special attention including reproductive organ/body ratios, necropsy and histopathology, serum sex hormone, sperm parameters, estrus cycle and the expression level of some specific genes which could indicate the development and function of reproductive system. No diet-related significant differences were observed among three groups in this 90-day feeding study. The results indicated that hBD3 milk does not appear to exert any effect on the reproductive system in C57BL/6J rats compared with conventional milk or the control diet. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer's disease-related pathologies in male triple-transgenic mice

    Directory of Open Access Journals (Sweden)

    Bowers William J

    2008-08-01

    Full Text Available Abstract Background Several transgenic animal models genetically predisposed to develop Alzheimer's disease (AD-like pathology have been engineered to facilitate the study of disease pathophysiology and the vetting of potential disease-modifying therapeutics. The triple transgenic mouse model of AD (3xTg-AD harbors three AD-related genetic loci: human PS1M146V, human APPswe, and human tauP301L. These mice develop both amyloid plaques and neurofibrillary tangle-like pathology in a progressive and age-dependent manner, while these pathological hallmarks are predominantly restricted to the hippocampus, amygdala, and the cerebral cortex the main foci of AD neuropathology in humans. This model represents, at present, one of the most advanced preclinical tools available and is being employed ever increasingly in the study of mechanisms underlying AD, yet a detailed regional and temporal assessment of the subtleties of disease-related pathologies has not been reported. Methods and results In this study, we immunohistochemically documented the evolution of AD-related transgene expression, amyloid deposition, tau phosphorylation, astrogliosis, and microglial activation throughout the hippocampus, entorhinal cortex, primary motor cortex, and amygdala over a 26-month period in male 3xTg-AD mice. Intracellular amyloid-beta accumulation is detectable the earliest of AD-related pathologies, followed temporally by phospho-tau, extracellular amyloid-beta, and finally paired helical filament pathology. Pathology appears to be most severe in medial and caudal hippocampus. While astrocytic staining remains relatively constant at all ages and regions assessed, microglial activation appears to progressively increase temporally, especially within the hippocampal formation. Conclusion These data fulfill an unmet need in the ever-widening community of investigators studying 3xTg-AD mice and provide a foundation upon which to design future experiments that seek to

  18. Transsynaptic transport of wheat germ agglutinin expressed in a subset of type II taste cells of transgenic mice

    Directory of Open Access Journals (Sweden)

    Mosinger Bedrich

    2008-10-01

    Full Text Available Abstract Background Anatomical tracing of neural circuits originating from specific subsets of taste receptor cells may shed light on interactions between taste cells within the taste bud and taste cell-to nerve interactions. It is unclear for example, if activation of type II cells leads to direct activation of the gustatory nerves, or whether the information is relayed through type III cells. To determine how WGA produced in T1r3-expressing taste cells is transported into gustatory neurons, transgenic mice expressing WGA-IRES-GFP driven by the T1r3 promoter were generated. Results Immunohistochemistry showed co-expression of WGA, GFP and endogenous T1r3 in the taste bud cells of transgenic mice: the only taste cells immunoreactive for WGA were the T1r3-expressing cells. The WGA antibody also stained intragemmal nerves. WGA, but not GFP immunoreactivity was found in the geniculate and petrosal ganglia of transgenic mice, indicating that WGA was transported across synapses. WGA immunoreactivity was also found in the trigeminal ganglion, suggesting that T1r3-expressing cells make synapses with trigeminal neurons. In the medulla, WGA was detected in the nucleus of the solitary tract but also in the nucleus ambiguus, the vestibular nucleus, the trigeminal nucleus and in the gigantocellular reticular nucleus. WGA was not detected in the parabrachial nucleus, or the gustatory cortex. Conclusion These results show the usefulness of genetically encoded WGA as a tracer for the first and second order neurons that innervate a subset of taste cells, but not for higher order neurons, and demonstrate that the main route of output from type II taste cells is the gustatory neuron, not the type III cells.

  19. Amino Acid Substitutions Associated with Avian H5N6 Influenza A Virus Adaptation to Mice

    Directory of Open Access Journals (Sweden)

    Chunmao Zhang

    2017-09-01

    Full Text Available At least 15 cases of human beings infected with H5N6 have been reported since 2014, of which at least nine were fatal. The highly pathogenic avian H5N6 influenza virus may pose a serious threat to both public health and the poultry industry. However, the molecular features promoting the adaptation of avian H5N6 influenza viruses to mammalian hosts is not well understood. Here, we sequentially passaged an avian H5N6 influenza A virus (A/Northern Shoveler/Ningxia/488-53/2015 10 times in mice to identify the adaptive amino acid substitutions that confer enhanced virulence to H5N6 in mammals. The 1st and 10th passages of the mouse-adapted H5N6 viruses were named P1 and P10, respectively. P1 and P10 displayed higher pathogenicity in mice than their parent strain. P10 showed significantly higher replication capability in vivo and could be detected in the brains of mice, whereas P1 displayed higher replication efficiency in their lungs but was not detectable in the brain. Similar to its parent strain, P10 remained no transmissible between guinea pigs. Using genome sequencing and alignment, multiple amino acid substitutions, including PB2 E627K, PB2 T23I, PA T97I, and HA R239H, were found in the adaptation of H5N6 to mice. In summary, we identified amino acid changes that are associated with H5N6 adaptation to mice.

  20. CD14 deficiency impacts glucose homeostasis in mice through altered adrenal tone.

    Directory of Open Access Journals (Sweden)

    James L Young

    Full Text Available The toll-like receptors comprise one of the most conserved components of the innate immune system, signaling the presence of molecules of microbial origin. It has been proposed that signaling through TLR4, which requires CD14 to recognize bacterial lipopolysaccharide (LPS, may generate low-grade inflammation and thereby affect insulin sensitivity and glucose metabolism. To examine the long-term influence of partial innate immune signaling disruption on glucose homeostasis, we analyzed knockout mice deficient in CD14 backcrossed into the diabetes-prone C57BL6 background at 6 or 12 months of age. CD14-ko mice, fed either normal or high-fat diets, displayed significant glucose intolerance compared to wild type controls. They also displayed elevated norepinephrine urinary excretion and increased adrenal medullary volume, as well as an enhanced norepinephrine secretory response to insulin-induced hypoglycemia. These results point out a previously unappreciated crosstalk between innate immune- and sympathoadrenal- systems, which exerts a major long-term effect on glucose homeostasis.

  1. CD14 Deficiency Impacts Glucose Homeostasis in Mice through Altered Adrenal Tone

    Science.gov (United States)

    Young, James L.; Mora, Alfonso; Cerny, Anna; Czech, Michael P.; Woda, Bruce; Kurt-Jones, Evelyn A.; Finberg, Robert W.; Corvera, Silvia

    2012-01-01

    The toll-like receptors comprise one of the most conserved components of the innate immune system, signaling the presence of molecules of microbial origin. It has been proposed that signaling through TLR4, which requires CD14 to recognize bacterial lipopolysaccharide (LPS), may generate low-grade inflammation and thereby affect insulin sensitivity and glucose metabolism. To examine the long-term influence of partial innate immune signaling disruption on glucose homeostasis, we analyzed knockout mice deficient in CD14 backcrossed into the diabetes-prone C57BL6 background at 6 or 12 months of age. CD14-ko mice, fed either normal or high-fat diets, displayed significant glucose intolerance compared to wild type controls. They also displayed elevated norepinephrine urinary excretion and increased adrenal medullary volume, as well as an enhanced norepinephrine secretory response to insulin-induced hypoglycemia. These results point out a previously unappreciated crosstalk between innate immune- and sympathoadrenal- systems, which exerts a major long-term effect on glucose homeostasis. PMID:22253759

  2. Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APP{sub swe}/PS1{sub {Delta}E9} transgenic mouse model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun [Department of Medical Genetics, Third Military Medical University, Chongqing 400038 (China); Department of Physiology, Third Military Medical University, Chongqing 400038 (China); Song, Min; Wang, Yanyan [Department of Medical Genetics, Third Military Medical University, Chongqing 400038 (China); Fan, Xiaotang [Department of Histology and Embryology, Third Military Medical University, Chongqing 400038 (China); Xu, Haiwei, E-mail: haiweixu2001@yahoo.com.cn [Department of Physiology, Third Military Medical University, Chongqing 400038 (China); Bai, Yun, E-mail: baiyungene@gmail.com [Department of Medical Genetics, Third Military Medical University, Chongqing 400038 (China)

    2009-07-31

    In addition to the subventricular zone, the dentate gyrus of the hippocampus is one of the few brain regions in which neurogenesis continues into adulthood. Perturbation of neurogenesis can alter hippocampal function, and previous studies have shown that neurogenesis is dysregulated in Alzheimer disease (AD) brain. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin have been shown to play important roles both in embryonic development and in the adult nervous system, and may regulate hippocampal neurogenesis. Previous data indicated that increased expression of BMP4 mRNA within the dentate gyrus might contribute to decreased hippocampal cell proliferation in the APP{sub swe}/PS1{sub {Delta}E9} mouse AD model. However, it is not known whether the BMP antagonist Noggin contributes to the regulation of neurogenesis. We therefore studied the relative expression levels and localization of BMP4 and its antagonist Noggin in the dentate gyrus and whether these correlated with changes in neurogenesis in 6-12 mo old APP{sub swe}/PS1{sub {Delta}E9} transgenic mice. Bromodeoxyuridine (BrdU) was used to label proliferative cells. We report that decreased neurogenesis in the APP/PS1 transgenic mice was accompanied by increased expression of BMP4 and decreased expression of Noggin at both the mRNA and protein levels; statistical analysis showed that the number of proliferative cells at different ages correlated positively with Noggin expression and negatively with BMP4 expression. Intraventricular administration of a chimeric Noggin/Fc protein was used to block the action of endogenous BMP4; this resulted in a significant increase in the number of BrdU-labeled cells in dentate gyrus subgranular zone and hilus in APP/PS1 mice. These results suggest that BMP4 and Noggin co-modulate neurogenesis.

  3. Gabapentin-lactam, but not gabapentin, reduces protein aggregates and improves motor performance in a transgenic mouse model of Huntington's disease.

    Science.gov (United States)

    Zucker, Birgit; Ludin, Dagmar E; Gerds, Thomas A; Lücking, Carl H; Landwehrmeyer, G Bernhard; Feuerstein, Thomas J

    2004-08-01

    Gabapentin (GBP), an anti-convulsant widely used in the treatment of neuropathic pain syndromes, has been suggested to have neuroprotective properties. There is evidence, however, that the neuroprotective properties attributed to GBP are rather associated with a derivative of GBP, gabapentin-lactam (GBP-L), which opens mitochondrial ATP-dependent K+ channels, in contrast to GBP. We explored whether GBP and GBP-L may attenuate the course of a monogenetic autosomal neurodegenerative disorder, Huntington's disease (HD), using a transgenic mouse model. R6/2 mice treated with GBP-L performed walking on a narrow beam better than mice receiving no treatment, vehicle or GBP, suggesting a beneficial effect of GBP-L on motor function. In addition, a marked reduction of neuronal nuclear and cytoplasmic inclusions was observed in brains of mice treated with GBP-L. The pharmacokinetics of GBP-L yielded a mean plasma concentration near the EC50 of GBP-L to open mitochondrial ATP-dependent K+ channels. These findings support the role of GBP-L as a novel neuroprotective substance in vivo.

  4. Early antibiotic administration but not antibody therapy directed against IL-6 improves survival in septic mice predicted to die on basis of high IL-6 levels.

    Science.gov (United States)

    Vyas, Dinesh; Javadi, Pardis; Dipasco, Peter J; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M

    2005-10-01

    Elevated interleukin (IL)-6 levels correlate with increased mortality following sepsis. IL-6 levels >14,000 pg/ml drawn 6 h after cecal ligation and puncture (CLP) are associated with 100% mortality in ND4 mice, even if antibiotic therapy is initiated 12 h after septic insult. Our first aim was to see whether earlier institution of antibiotic therapy could improve overall survival in septic mice and rescue the subset of animals predicted to die on the basis of high IL-6 levels. Mice (n = 184) were subjected to CLP, had IL-6 levels drawn 6 h later, and then were randomized to receive imipenem, a broad spectrum antimicrobial agent, beginning 6 or 12 h postoperatively. Overall 1-wk survival improved from 25.5 to 35.9% with earlier administration of antibiotics (P 14,000 pg/ml, 25% survived if imipenem was started at 6 h, whereas none survived if antibiotics were started later (P 14,000 pg/ml. These results demonstrate that earlier systemic therapy can improve outcome in a subset of mice predicted to die in sepsis, but we are unable to demonstrate any benefit in similar animals using targeted therapy directed at IL-6.

  5. Effect of running exercise on the number of the neurons in the hippocampus of young transgenic APP/PS1 mice.

    Science.gov (United States)

    Jiang, Lin; Ma, Jing; Zhang, Yi; Zhou, Chun-Ni; Zhang, Lei; Chao, Feng-Lei; Chen, Lin-Mu; Jiang, Rong; Wu, Hong; Tang, Yong

    2018-08-01

    To investigate the effect of running exercise on the number of the neurons in the hippocampus of young APP/PS1 mice, twenty 6-month-old male APP/ PS1 transgenic mice were randomly divided into the APP/PS1 control (AD control) group and the APP/PS1 running (AD running) group (10 mice per group), and ten wild-type mice of the littermate were regarded as the wild-type (WT) group. The AD running mice ran on motorized treadmill machiene for 4 months, while the WT mice and AD control mice were housed in standard condition without running. Then, Morris water maze tests (MWM) were used to assess the special learning and memory abilities of mice in three groups. The stereological methods were used to quantitatively evaluate the volume of the hippocampus, CA1/2, CA3 and the dentate gyrus (DG) and count the number of the neurons in CA1/2, CA3 and DG. We found that 4-month running effectively shortened the escape latency of young APP/PS1 control mice in MWM. More importantly, 4-month running effectively increased the volumes of the hippocampus, CA1/2, CA3 and DG and increased the number of neurons in CA1/2, CA3 and DG in young APP/PS1 mice. The present results suggested that 4-month running has significant beneficial effects on the spatial learning and memory capacities of young APP/PS1 mice and could delay the progress of atrophy of hippocampus and the neuron death in CA1/2, CA3 and DG in young APP/PS1 mice. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h.

    Science.gov (United States)

    Schepetilnikov, Mikhail; Dimitrova, Maria; Mancera-Martínez, Eder; Geldreich, Angèle; Keller, Mario; Ryabova, Lyubov A

    2013-04-17

    Mammalian target-of-rapamycin (mTOR) triggers S6 kinase (S6K) activation to phosphorylate targets linked to translation in response to energy, nutrients, and hormones. Pathways of TOR activation in plants remain unknown. Here, we uncover the role of the phytohormone auxin in TOR signalling activation and reinitiation after upstream open reading frame (uORF) translation, which in plants is dependent on translation initiation factor eIF3h. We show that auxin triggers TOR activation followed by S6K1 phosphorylation at T449 and efficient loading of uORF-mRNAs onto polysomes in a manner sensitive to the TOR inhibitor Torin-1. Torin-1 mediates recruitment of inactive S6K1 to polysomes, while auxin triggers S6K1 dissociation and recruitment of activated TOR instead. A putative target of TOR/S6K1-eIF3h-is phosphorylated and detected in polysomes in response to auxin. In TOR-deficient plants, polysomes were prebound by inactive S6K1, and loading of uORF-mRNAs and eIF3h was impaired. Transient expression of eIF3h-S178D in plant protoplasts specifically upregulates uORF-mRNA translation. We propose that TOR functions in polysomes to maintain the active S6K1 (and thus eIF3h) phosphorylation status that is critical for translation reinitiation.

  7. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets

    KAUST Repository

    Zhang, ShouDong; Zhan, Xiangqiang; Xu, Xiaoming; Cui, Peng; Zhu, Jian-Kang; Xia, Yiji; Xiong, Liming

    2015-01-01

    HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros1–1. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros1–1 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci.

  8. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets

    KAUST Repository

    Zhang, ShouDong

    2015-12-15

    HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros1–1. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros1–1 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci.

  9. Transgenic Overexpression of the Proprotein Convertase Furin Enhances Skin Tumor Growth

    Directory of Open Access Journals (Sweden)

    Jian Fu

    2012-04-01

    Full Text Available Furin, one of the members of the family of proprotein convertases (PCs, ubiquitously expressed as a type I membrane-bound proteinase, activates several proteins that contribute to tumor progression. In vitro studies using cancer cell lines and clinical specimens demonstrated that furin processes important substrates such as insulin-like growth factor 1 receptor (IGF-1R and transforming growth factor β, leading to increased tumor growth and progression. Despite the numerous studies associating furin with tumor development, its effects in preclinical models has not been comprehensively studied. In this study, we sought to determine the protumorigenic role of furin in vivo after a two-stage chemical carcinogenesis protocol in transgenic mice in which furin expression was targeted to the epidermal basal layer. We found that processing of the PC substrate IGF-1R and the proliferation rate of mouse epidermis was enhanced in transgenic mice when compared with their WT counterparts. Histopathologic diagnoses of the tumors demonstrated that furin transgenic mice (line F47 developed twice as many squamous carcinomas as the control, WT mice (P < .002. Similarly, tumors cells from transgenic mice were able to process PC substrates more efficiently than tumor cells from WT mice. Furthermore, furin expression resulted in a higher SCC volume in transgenic mice as well as an increase in the percentage of high-grade SCC, including poorly differentiated and spindle cell carcinomas. In conclusion, expression of furin in the basal layer of the epidermis increased tumor development and enhanced tumor growth, supporting the consideration of furin as a potential target for cancer treatment.

  10. Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system

    DEFF Research Database (Denmark)

    Taupin, V; Renno, T; Bourbonnière, L

    1997-01-01

    are a target of immune attack. TNF-alpha also regulates macrophage activity which could contribute to autoimmune inflammation. We have expressed TNF-alpha at disease-equivalent levels in the central nervous system of transgenic mice, using a myelin basic protein (MBP) promoter. These mice were normal...

  11. Characterization of the CD8+ T cell responses directed against respiratory syncytial virus during primary and secondary infection in C57BL/6 mice

    International Nuclear Information System (INIS)

    Lukens, Michael V.; Claassen, Erwin A.W.; Graaff, Patricia M.A. de; Dijk, Mariska E.A. van; Hoogerhout, Peter; Toebes, Mireille; Schumacher, Ton N.; Most, Robbert G. van der; Kimpen, Jan L.L.; Bleek, Grada M. van

    2006-01-01

    The BALB/c mouse model for human respiratory syncytial virus infection has contributed significantly to our understanding of the relative role for CD4 + and CD8 + T cells to immune protection and pathogenic immune responses. To enable comparison of RSV-specific T cell responses in different mouse strains and allow dissection of immune mechanisms by using transgenic and knockout mice that are mostly available on a C57BL/6 background, we characterized the specificity, level and functional capabilities of CD8 + T cells during primary and secondary responses in lung parenchyma, airways and spleens of C57BL/6 mice. During the primary response, epitopes were recognized originating from the matrix, fusion, nucleo- and attachment proteins, whereas the secondary response focused predominantly on the matrix epitope. C57BL/6 mice are less permissive for hRSV infection than BALB/c mice, yet we found CD8 + T cell responses in the lungs and bronchoalveolar lavage, comparable to the responses described for BALB/c mice

  12. Autoradiographic disposition of [1-methyl-14C]- and [2-14C]caffeine in mice

    International Nuclear Information System (INIS)

    Lachance, M.P.; Marlowe, C.; Waddell, W.J.

    1983-01-01

    Male, C57B1/6J mice received either [1-methyl-14C]caffeine or [2-14C]caffeine via the tail vein at a dose of 0.7 or 11 mg/kg, respectively. At 0.1, 0.33, 1, 3, 9, and 24 hr after treatment, the mice were anesthetized with ether and frozen by immersion in dry ice/hexane. The mice were processed for whole-body autoradiography by the Ullberg technique; this procedure does not allow thawing or contact with solvents. All autoradiographs revealed some retention of radioactivity at early time intervals in the lacrimal glands, seminal vesicle fluid, nasal and olfactory epithelium, and retinal melanocytes. The remaining portion of the animal was densitometrically uniform except for the lower levels noted in the CNS and adipose tissues. Excretion of radioactivity by the liver and kidneys seems to be the major routes of elimination. Localization in the liver at late time intervals was confined principally to the centrilobular region. Late sites of retention, observed only after [1-methyl-14C]caffeine administration, included the pancreas, minor and major salivary glands, splenic red pulp, thymal cortex, bone marrow, and gastrointestinal epithelium. Sites of localization present in both studies included the olfactory epithelium, lacrimal glands, hair follicles, and retinal melanocytes. Further studies are needed to determine whether the localization at these various sites is due to metabolic degradation, active transport, or possibly a specific receptor interaction

  13. Metallothionein 1+2 protect the CNS during neuroglial degeneration induced by 6-aminonicotinamide

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, Mercedes; Camats, Jordi

    2002-01-01

    6-Aminonicotinamide (6-AN) is a niacin antagonist, which leads to degeneration of gray matter astrocytes. Metallothionein 1+2 (MT-1+2) are neuroprotective factors in the central nervous system (CNS), and to determine the roles for MT after 6-AN, we have examined transgenic mice overexpressing MT-1...... (NITT), and the number of terminal deoxynucleotidyl transferase [TdT]-mediated deoxyuridine triphosphate [dUTP]-digoxigenin nick end labeling-positive (TUNEL+), caspase-3+ apoptotic cells were significantly increased in the brainstem of normal mice after 6-AN. In the TgMTI* mice, the 6-AN-induced tissue...... damage was decreased in comparison to control mice, and they showed significantly reduced numbers of recruited macrophages and T lymphocytes, and a drastic reduction of oxidative stress and apoptotic cell death. In addition, the accompanying reactive astrogliosis was increased in the transgenic mice...

  14. Chronic Exercise Reduces CETP and Mesterolone Treatment Counteracts Exercise Benefits on Plasma Lipoproteins Profile: Studies in Transgenic Mice.

    Science.gov (United States)

    Casquero, Andrea Camargo; Berti, Jairo Augusto; Teixeira, Laura Lauand Sampaio; de Oliveira, Helena Coutinho Franco

    2017-12-01

    Regular exercise and anabolic androgenic steroids have opposing effects on the plasma lipoprotein profile and risk of cardio-metabolic diseases in humans. Studies in humans and animal models show conflicting results. Here, we used a mice model genetically modified to mimic human lipoprotein profile and metabolism. They under-express the endogenous LDL receptor gene (R1) and express a human transgene encoding the cholesteryl ester transfer protein (CETP), normally absent in mice. The present study was designed to evaluate the independent and interactive effects of testosterone supplementation, exercise training and CETP expression on the plasma lipoprotein profile and CETP activity. CETP/R1 and R1 mice were submitted to a 6-week swimming training and mesterolone (MEST) supplementation in the last 3 weeks. MEST treatment increased markedly LDL levels (40%) in sedentary CETP/R1 mice and reduced HDL levels in exercised R1 mice (18%). A multifactorial ANOVA revealed the independent effects of each factor, as follows. CETP expression reduced HDL (21%) and increased non-HDL (15%) fractions. MEST treatment increased the VLDL concentrations (42%) regardless of other interventions. Exercise training reduced triacylglycerol (25%) and free fatty acids (20%), increased both LDL and HDL (25-33%), and reduced CETP (19%) plasma levels. Significant factor interactions showed that the increase in HDL induced by exercise is explained by reducing CETP activity and that MEST blunted the exercise-induced elevation of HDL-cholesterol. These results reinforce the positive metabolic effects of exercise, resolved a controversy about CETP response to exercise and evidenced MEST potency to counteract specific exercise benefits.

  15. Expression of a partially deleted gene of human type II procollagen (COL2A1) in transgenic mice produces a chondrodysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberg, P.; Khillan, J.S.; Prockop, D.J.; Helminen, H.; Kontusaari, S.; Ala-Kokko, L. (Thomas Jefferson Univ., Philadelphia, PA (United States))

    1991-09-01

    A minigene version of the human gene for type II procollagen (COL2AI) was prepared that lacked a large central region containing 12 of the 52 exons and therefore 291 of the 1523 codons of the gene. The construct was modeled after sporadic in-frame deletions of collagen genes that cause synthesis of shortened pro{alpha} chains that associate with normal pro{alpha} chains and thereby cause degradation of the shortened and normal pro{alpha} chains through a process called procollagen suicide. The gene construct was used to prepare five lines of transgenic mice expressing the minigene. A large proportion of the mice expressing the minigene developed a phenotype of a chondrodysplasia with dwarfism, short and thick limbs, a short snout, a cranial bulge, a cleft palate, and delayed mineralization of bone. A number of mice died shortly after birth. Microscopic examination of cartilage revealed decreased density and organization of collagen fibrils. In cultured chondrocytes from the transgenic mice, the minigene was expressed as shortened pro{alpha}1(II) chains that were disulfide-linked to normal mouse pro{alpha}1(II) chains. Therefore, the phenotype is probably explained by depletion of the endogenous mouse type II procollagen through the phenomenon of procollagen suicide.

  16. Learned helplessness: validity and reliability of depressive-like states in mice.

    Science.gov (United States)

    Chourbaji, S; Zacher, C; Sanchis-Segura, C; Dormann, C; Vollmayr, B; Gass, P

    2005-12-01

    The learned helplessness paradigm is a depression model in which animals are exposed to unpredictable and uncontrollable stress, e.g. electroshocks, and subsequently develop coping deficits for aversive but escapable situations (J.B. Overmier, M.E. Seligman, Effects of inescapable shock upon subsequent escape and avoidance responding, J. Comp. Physiol. Psychol. 63 (1967) 28-33 ). It represents a model with good similarity to the symptoms of depression, construct, and predictive validity in rats. Despite an increased need to investigate emotional, in particular depression-like behaviors in transgenic mice, so far only a few studies have been published using the learned helplessness paradigm. One reason may be the fact that-in contrast to rats (B. Vollmayr, F.A. Henn, Learned helplessness in the rat: improvements in validity and reliability, Brain Res. Brain Res. Protoc. 8 (2001) 1-7)--there is no generally accepted learned helplessness protocol available for mice. This prompted us to develop a reliable helplessness procedure in C57BL/6N mice, to exclude possible artifacts, and to establish a protocol, which yields a consistent fraction of helpless mice following the shock exposure. Furthermore, we validated this protocol pharmacologically using the tricyclic antidepressant imipramine. Here, we present a mouse model with good face and predictive validity that can be used for transgenic, behavioral, and pharmacological studies.

  17. Transgenic mice expressing a Huntington s disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity

    OpenAIRE

    Hansson, Oskar; Petersén, Åsa; Leist, Marcel; Nicotera, Pierluigi; Castilho, Roger F.; Brundin, Patrik

    1999-01-01

    Huntington’s disease (HD) is a hereditary neurodegenerative disorder presenting with chorea, dementia, and extensive striatal neuronal death. The mechanism through which the widely expressed mutant HD gene mediates a slowly progressing striatal neurotoxicity is unknown. Glutamate receptor-mediated excitotoxicity has been hypothesized to contribute to the pathogenesis of HD. Here we show that transgenic HD mice expressing exon 1 of a human HD gene with an expanded number of CAG repeats (line R...

  18. Learning strategy preference of 5XFAD transgenic mice depends on the sequence of place/spatial and cued training in the water maze task.

    Science.gov (United States)

    Cho, Woo-Hyun; Park, Jung-Cheol; Chung, ChiHye; Jeon, Won Kyung; Han, Jung-Soo

    2014-10-15

    Learning strategy preference was assessed in 5XFAD mice, which carry 5 familial Alzheimer's disease (AD) mutations. Mice were sequentially trained in cued and place/spatial versions of the water maze task. After training, a strategy preference test was conducted in which mice were required to choose between the spatial location where the platform had previously been during the place/spatial training, and a visible platform in a new location. 5XFAD and non-transgenic control mice showed equivalent escape performance in both training tasks. However, in the strategy preference test, 5XFAD mice preferred a cued strategy relative to control mice. When the training sequence was presented in the reverse order (i.e., place/spatial training before cued training), 5XFAD mice showed impairments in place/spatial training, but no differences in cued training or in the strategy preference test comparing to control. Analysis of regional Aβ42 deposition in brains of 5XFAD mice showed that the hippocampus, which is involved in the place/spatial learning strategy, had the highest levels of Aβ42 and the dorsal striatum, which is involved in cued learning strategy, showed a small increase in Aβ42 levels. The effect of training protocol order on performance, and regional differences in Aβ42 deposition observed in 5XFAD mice, suggest differential functional recruitment of brain structures related to learning in healthy and AD individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Alterations in gene expression in mutant amyloid precursor protein transgenic mice lacking Niemann-Pick type C1 protein.

    Directory of Open Access Journals (Sweden)

    Mahua Maulik

    Full Text Available Niemann-Pick type C (NPC disease, a rare autosomal recessive disorder caused mostly by mutation in NPC1 gene, is pathologically characterized by the accumulation of free cholesterol in brain and other tissues. This is accompanied by gliosis and loss of neurons in selected brain regions, including the cerebellum. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer's disease, including the presence of neurofibrillary tangles and increased levels of amyloid precursor protein (APP-derived β-amyloid (Aβ peptides in vulnerable brain neurons. To evaluate the role of Aβ in NPC disease, we determined the gene expression profile in selected brain regions of our recently developed bigenic ANPC mice, generated by crossing APP transgenic (Tg mice with heterozygous Npc1-deficient mice. The ANPC mice exhibited exacerbated neuronal and glial pathology compared to other genotypes [i.e., APP-Tg, double heterozygous (Dhet, Npc1-null and wild-type mice]. Analysis of expression profiles of 86 selected genes using real-time RT-PCR arrays showed a wide-spectrum of alterations in the four genotypes compared to wild-type controls. The changes observed in APP-Tg and Dhet mice are limited to only few genes involved mostly in the regulation of cholesterol metabolism, whereas Npc1-null and ANPC mice showed alterations in the expression profiles of a number of genes regulating cholesterol homeostasis, APP metabolism, vesicular trafficking and cell death mechanism in both hippocampus and cerebellum compared to wild-type mice. Intriguingly, ANPC and Npc1-null mice, with some exceptions, exhibited similar changes, although more genes were differentially expressed in the affected cerebellum than the relatively spared hippocampus. The altered gene profiles were found to match with the corresponding protein levels. These results suggest that lack of Npc1 protein can alter the expression profile of selected transcripts as well as proteins, and

  20. A poliomyelitis model through mucosal infection in transgenic mice bearing human poliovirus receptor, TgPVR21

    International Nuclear Information System (INIS)

    Nagata, Noriyo; Iwasaki, Takuya; Ami, Yasushi; Sato, Yuko; Hatano, Ikuyoshi; Harashima, Ayako; Suzaki, Yuriko; Yoshii, Takao; Hashikawa, Tsutomu; Sata, Tetsutaro; Horiuchi, Yoshinobu; Koike, Satoshi; Kurata, Takeshi; Nomoto, Akio

    2004-01-01

    Transgenic mice bearing the human poliovirus receptor (TgPVR) are less susceptible to oral inoculation, although they are susceptible to parenteral inoculation. We investigated the susceptibility of TgPVR 21 line [Arch. Virol. 130 (1994) 351] to poliovirus through various mucosal routes. Intranasal inoculation of a neurovirulent Mahoney strain (OM1) caused flaccid paralysis with viral replication in the central nervous system at a dose of 10 6 cell culture infectious dose (CCID 50 ), in contrast, no paralysis following oral or intragastric inoculation of the same dose. Intranasal inoculation of a vaccine strain, Sabin 1, at 10 6 CCID 50 , resulted in no paralysis. Initial replication of poliovirus in the nasal cavity was confirmed by virus isolation and detection of negative-stranded replicative intermediates by RT-PCR and viral antigens using a high-sensitive immunohistochemistry and genome/transcripts by in situ hybridization. Poliovirus-specific IgG antibodies were elevated in the sera of surviving TgPVR21. This model can be used as a mucosal infection model and for differentiation of neurovirulent and attenuated poliovirus strains