WorldWideScience

Sample records for k-nearest neighbor queries

  1. Multiple k Nearest Neighbor Query Processing in Spatial Network Databases

    DEFF Research Database (Denmark)

    Xuegang, Huang; Jensen, Christian Søndergaard; Saltenis, Simonas

    2006-01-01

    This paper concerns the efficient processing of multiple k nearest neighbor queries in a road-network setting. The assumed setting covers a range of scenarios such as the one where a large population of mobile service users that are constrained to a road network issue nearest-neighbor queries...... for points of interest that are accessible via the road network. Given multiple k nearest neighbor queries, the paper proposes progressive techniques that selectively cache query results in main memory and subsequently reuse these for query processing. The paper initially proposes techniques for the case...... where an upper bound on k is known a priori and then extends the techniques to the case where this is not so. Based on empirical studies with real-world data, the paper offers insight into the circumstances under which the different proposed techniques can be used with advantage for multiple k nearest...

  2. A Distributed Approach to Continuous Monitoring of Constrained k-Nearest Neighbor Queries in Road Networks

    Directory of Open Access Journals (Sweden)

    Hyung-Ju Cho

    2012-01-01

    Full Text Available Given two positive parameters k and r, a constrained k-nearest neighbor (CkNN query returns the k closest objects within a network distance r of the query location in road networks. In terms of the scalability of monitoring these CkNN queries, existing solutions based on central processing at a server suffer from a sudden and sharp rise in server load as well as messaging cost as the number of queries increases. In this paper, we propose a distributed and scalable scheme called DAEMON for the continuous monitoring of CkNN queries in road networks. Our query processing is distributed among clients (query objects and server. Specifically, the server evaluates CkNN queries issued at intersections of road segments, retrieves the objects on the road segments between neighboring intersections, and sends responses to the query objects. Finally, each client makes its own query result using this server response. As a result, our distributed scheme achieves close-to-optimal communication costs and scales well to large numbers of monitoring queries. Exhaustive experimental results demonstrate that our scheme substantially outperforms its competitor in terms of query processing time and messaging cost.

  3. Dimensional testing for reverse k-nearest neighbor search

    DEFF Research Database (Denmark)

    Casanova, Guillaume; Englmeier, Elias; Houle, Michael E.

    2017-01-01

    Given a query object q, reverse k-nearest neighbor (RkNN) search aims to locate those objects of the database that have q among their k-nearest neighbors. In this paper, we propose an approximation method for solving RkNN queries, where the pruning operations and termination tests are guided...... by a characterization of the intrinsic dimensionality of the data. The method can accommodate any index structure supporting incremental (forward) nearest-neighbor search for the generation and verification of candidates, while avoiding impractically-high preprocessing costs. We also provide experimental evidence...

  4. Frog sound identification using extended k-nearest neighbor classifier

    Science.gov (United States)

    Mukahar, Nordiana; Affendi Rosdi, Bakhtiar; Athiar Ramli, Dzati; Jaafar, Haryati

    2017-09-01

    Frog sound identification based on the vocalization becomes important for biological research and environmental monitoring. As a result, different types of feature extractions and classifiers have been employed to evaluate the accuracy of frog sound identification. This paper presents a frog sound identification with Extended k-Nearest Neighbor (EKNN) classifier. The EKNN classifier integrates the nearest neighbors and mutual sharing of neighborhood concepts, with the aims of improving the classification performance. It makes a prediction based on who are the nearest neighbors of the testing sample and who consider the testing sample as their nearest neighbors. In order to evaluate the classification performance in frog sound identification, the EKNN classifier is compared with competing classifier, k -Nearest Neighbor (KNN), Fuzzy k -Nearest Neighbor (FKNN) k - General Nearest Neighbor (KGNN)and Mutual k -Nearest Neighbor (MKNN) on the recorded sounds of 15 frog species obtained in Malaysia forest. The recorded sounds have been segmented using Short Time Energy and Short Time Average Zero Crossing Rate (STE+STAZCR), sinusoidal modeling (SM), manual and the combination of Energy (E) and Zero Crossing Rate (ZCR) (E+ZCR) while the features are extracted by Mel Frequency Cepstrum Coefficient (MFCC). The experimental results have shown that the EKNCN classifier exhibits the best performance in terms of accuracy compared to the competing classifiers, KNN, FKNN, GKNN and MKNN for all cases.

  5. Using K-Nearest Neighbor in Optical Character Recognition

    Directory of Open Access Journals (Sweden)

    Veronica Ong

    2016-03-01

    Full Text Available The growth in computer vision technology has aided society with various kinds of tasks. One of these tasks is the ability of recognizing text contained in an image, or usually referred to as Optical Character Recognition (OCR. There are many kinds of algorithms that can be implemented into an OCR. The K-Nearest Neighbor is one such algorithm. This research aims to find out the process behind the OCR mechanism by using K-Nearest Neighbor algorithm; one of the most influential machine learning algorithms. It also aims to find out how precise the algorithm is in an OCR program. To do that, a simple OCR program to classify alphabets of capital letters is made to produce and compare real results. The result of this research yielded a maximum of 76.9% accuracy with 200 training samples per alphabet. A set of reasons are also given as to why the program is able to reach said level of accuracy.

  6. Attribute Weighting Based K-Nearest Neighbor Using Gain Ratio

    Science.gov (United States)

    Nababan, A. A.; Sitompul, O. S.; Tulus

    2018-04-01

    K- Nearest Neighbor (KNN) is a good classifier, but from several studies, the result performance accuracy of KNN still lower than other methods. One of the causes of the low accuracy produced, because each attribute has the same effect on the classification process, while some less relevant characteristics lead to miss-classification of the class assignment for new data. In this research, we proposed Attribute Weighting Based K-Nearest Neighbor Using Gain Ratio as a parameter to see the correlation between each attribute in the data and the Gain Ratio also will be used as the basis for weighting each attribute of the dataset. The accuracy of results is compared to the accuracy acquired from the original KNN method using 10-fold Cross-Validation with several datasets from the UCI Machine Learning repository and KEEL-Dataset Repository, such as abalone, glass identification, haberman, hayes-roth and water quality status. Based on the result of the test, the proposed method was able to increase the classification accuracy of KNN, where the highest difference of accuracy obtained hayes-roth dataset is worth 12.73%, and the lowest difference of accuracy obtained in the abalone dataset of 0.07%. The average result of the accuracy of all dataset increases the accuracy by 5.33%.

  7. Introduction to machine learning: k-nearest neighbors.

    Science.gov (United States)

    Zhang, Zhongheng

    2016-06-01

    Machine learning techniques have been widely used in many scientific fields, but its use in medical literature is limited partly because of technical difficulties. k-nearest neighbors (kNN) is a simple method of machine learning. The article introduces some basic ideas underlying the kNN algorithm, and then focuses on how to perform kNN modeling with R. The dataset should be prepared before running the knn() function in R. After prediction of outcome with kNN algorithm, the diagnostic performance of the model should be checked. Average accuracy is the mostly widely used statistic to reflect the kNN algorithm. Factors such as k value, distance calculation and choice of appropriate predictors all have significant impact on the model performance.

  8. Credit scoring analysis using weighted k nearest neighbor

    Science.gov (United States)

    Mukid, M. A.; Widiharih, T.; Rusgiyono, A.; Prahutama, A.

    2018-05-01

    Credit scoring is a quatitative method to evaluate the credit risk of loan applications. Both statistical methods and artificial intelligence are often used by credit analysts to help them decide whether the applicants are worthy of credit. These methods aim to predict future behavior in terms of credit risk based on past experience of customers with similar characteristics. This paper reviews the weighted k nearest neighbor (WKNN) method for credit assessment by considering the use of some kernels. We use credit data from a private bank in Indonesia. The result shows that the Gaussian kernel and rectangular kernel have a better performance based on the value of percentage corrected classified whose value is 82.4% respectively.

  9. Clustered K nearest neighbor algorithm for daily inflow forecasting

    NARCIS (Netherlands)

    Akbari, M.; Van Overloop, P.J.A.T.M.; Afshar, A.

    2010-01-01

    Instance based learning (IBL) algorithms are a common choice among data driven algorithms for inflow forecasting. They are based on the similarity principle and prediction is made by the finite number of similar neighbors. In this sense, the similarity of a query instance is estimated according to

  10. k-Nearest Neighbors Algorithm in Profiling Power Analysis Attacks

    Directory of Open Access Journals (Sweden)

    Z. Martinasek

    2016-06-01

    Full Text Available Power analysis presents the typical example of successful attacks against trusted cryptographic devices such as RFID (Radio-Frequency IDentifications and contact smart cards. In recent years, the cryptographic community has explored new approaches in power analysis based on machine learning models such as Support Vector Machine (SVM, RF (Random Forest and Multi-Layer Perceptron (MLP. In this paper, we made an extensive comparison of machine learning algorithms in the power analysis. For this purpose, we implemented a verification program that always chooses the optimal settings of individual machine learning models in order to obtain the best classification accuracy. In our research, we used three datasets, the first containing the power traces of an unprotected AES (Advanced Encryption Standard implementation. The second and third datasets are created independently from public available power traces corresponding to a masked AES implementation (DPA Contest v4. The obtained results revealed some interesting facts, namely, an elementary k-NN (k-Nearest Neighbors algorithm, which has not been commonly used in power analysis yet, shows great application potential in practice.

  11. The Application of Determining Students’ Graduation Status of STMIK Palangkaraya Using K-Nearest Neighbors Method

    Science.gov (United States)

    Rusdiana, Lili; Marfuah

    2017-12-01

    K-Nearest Neighbors method is one of methods used for classification which calculate a value to find out the closest in distance. It is used to group a set of data such as students’ graduation status that are got from the amount of course credits taken by them, the grade point average (AVG), and the mini-thesis grade. The study is conducted to know the results of using K-Nearest Neighbors method on the application of determining students’ graduation status, so it can be analyzed from the method used, the data, and the application constructed. The aim of this study is to find out the application results by using K-Nearest Neighbors concept to determine students’ graduation status using the data of STMIK Palangkaraya students. The development of the software used Extreme Programming, since it was appropriate and precise for this study which was to quickly finish the project. The application was created using Microsoft Office Excel 2007 for the training data and Matlab 7 to implement the application. The result of K-Nearest Neighbors method on the application of determining students’ graduation status was 92.5%. It could determine the predicate graduation of 94 data used from the initial data before the processing as many as 136 data which the maximal training data was 50data. The K-Nearest Neighbors method is one of methods used to group a set of data based on the closest value, so that using K-Nearest Neighbors method agreed with this study. The results of K-Nearest Neighbors method on the application of determining students’ graduation status was 92.5% could determine the predicate graduation which is the maximal training data. The K-Nearest Neighbors method is one of methods used to group a set of data based on the closest value, so that using K-Nearest Neighbors method agreed with this study.

  12. An Improvement To The k-Nearest Neighbor Classifier For ECG Database

    Science.gov (United States)

    Jaafar, Haryati; Hidayah Ramli, Nur; Nasir, Aimi Salihah Abdul

    2018-03-01

    The k nearest neighbor (kNN) is a non-parametric classifier and has been widely used for pattern classification. However, in practice, the performance of kNN often tends to fail due to the lack of information on how the samples are distributed among them. Moreover, kNN is no longer optimal when the training samples are limited. Another problem observed in kNN is regarding the weighting issues in assigning the class label before classification. Thus, to solve these limitations, a new classifier called Mahalanobis fuzzy k-nearest centroid neighbor (MFkNCN) is proposed in this study. Here, a Mahalanobis distance is applied to avoid the imbalance of samples distribition. Then, a surrounding rule is employed to obtain the nearest centroid neighbor based on the distributions of training samples and its distance to the query point. Consequently, the fuzzy membership function is employed to assign the query point to the class label which is frequently represented by the nearest centroid neighbor Experimental studies from electrocardiogram (ECG) signal is applied in this study. The classification performances are evaluated in two experimental steps i.e. different values of k and different sizes of feature dimensions. Subsequently, a comparative study of kNN, kNCN, FkNN and MFkCNN classifier is conducted to evaluate the performances of the proposed classifier. The results show that the performance of MFkNCN consistently exceeds the kNN, kNCN and FkNN with the best classification rates of 96.5%.

  13. Text Categorization Using Weight Adjusted k-Nearest Neighbor Classification

    National Research Council Canada - National Science Library

    Han, Euihong; Karypis, George; Kumar, Vipin

    1999-01-01

    .... The authors present a nearest neighbor classification scheme for text categorization in which the importance of discriminating words is learned using mutual information and weight adjustment techniques...

  14. Finger vein identification using fuzzy-based k-nearest centroid neighbor classifier

    Science.gov (United States)

    Rosdi, Bakhtiar Affendi; Jaafar, Haryati; Ramli, Dzati Athiar

    2015-02-01

    In this paper, a new approach for personal identification using finger vein image is presented. Finger vein is an emerging type of biometrics that attracts attention of researchers in biometrics area. As compared to other biometric traits such as face, fingerprint and iris, finger vein is more secured and hard to counterfeit since the features are inside the human body. So far, most of the researchers focus on how to extract robust features from the captured vein images. Not much research was conducted on the classification of the extracted features. In this paper, a new classifier called fuzzy-based k-nearest centroid neighbor (FkNCN) is applied to classify the finger vein image. The proposed FkNCN employs a surrounding rule to obtain the k-nearest centroid neighbors based on the spatial distributions of the training images and their distance to the test image. Then, the fuzzy membership function is utilized to assign the test image to the class which is frequently represented by the k-nearest centroid neighbors. Experimental evaluation using our own database which was collected from 492 fingers shows that the proposed FkNCN has better performance than the k-nearest neighbor, k-nearest-centroid neighbor and fuzzy-based-k-nearest neighbor classifiers. This shows that the proposed classifier is able to identify the finger vein image effectively.

  15. Multidimensional k-nearest neighbor model based on EEMD for financial time series forecasting

    Science.gov (United States)

    Zhang, Ningning; Lin, Aijing; Shang, Pengjian

    2017-07-01

    In this paper, we propose a new two-stage methodology that combines the ensemble empirical mode decomposition (EEMD) with multidimensional k-nearest neighbor model (MKNN) in order to forecast the closing price and high price of the stocks simultaneously. The modified algorithm of k-nearest neighbors (KNN) has an increasingly wide application in the prediction of all fields. Empirical mode decomposition (EMD) decomposes a nonlinear and non-stationary signal into a series of intrinsic mode functions (IMFs), however, it cannot reveal characteristic information of the signal with much accuracy as a result of mode mixing. So ensemble empirical mode decomposition (EEMD), an improved method of EMD, is presented to resolve the weaknesses of EMD by adding white noise to the original data. With EEMD, the components with true physical meaning can be extracted from the time series. Utilizing the advantage of EEMD and MKNN, the new proposed ensemble empirical mode decomposition combined with multidimensional k-nearest neighbor model (EEMD-MKNN) has high predictive precision for short-term forecasting. Moreover, we extend this methodology to the case of two-dimensions to forecast the closing price and high price of the four stocks (NAS, S&P500, DJI and STI stock indices) at the same time. The results indicate that the proposed EEMD-MKNN model has a higher forecast precision than EMD-KNN, KNN method and ARIMA.

  16. A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality.

    Science.gov (United States)

    Wang, Xueyi

    2012-02-08

    The k-nearest neighbors (k-NN) algorithm is a widely used machine learning method that finds nearest neighbors of a test object in a feature space. We present a new exact k-NN algorithm called kMkNN (k-Means for k-Nearest Neighbors) that uses the k-means clustering and the triangle inequality to accelerate the searching for nearest neighbors in a high dimensional space. The kMkNN algorithm has two stages. In the buildup stage, instead of using complex tree structures such as metric trees, kd-trees, or ball-tree, kMkNN uses a simple k-means clustering method to preprocess the training dataset. In the searching stage, given a query object, kMkNN finds nearest training objects starting from the nearest cluster to the query object and uses the triangle inequality to reduce the distance calculations. Experiments show that the performance of kMkNN is surprisingly good compared to the traditional k-NN algorithm and tree-based k-NN algorithms such as kd-trees and ball-trees. On a collection of 20 datasets with up to 10(6) records and 10(4) dimensions, kMkNN shows a 2-to 80-fold reduction of distance calculations and a 2- to 60-fold speedup over the traditional k-NN algorithm for 16 datasets. Furthermore, kMkNN performs significant better than a kd-tree based k-NN algorithm for all datasets and performs better than a ball-tree based k-NN algorithm for most datasets. The results show that kMkNN is effective for searching nearest neighbors in high dimensional spaces.

  17. Penerapan Metode K-nearest Neighbor pada Penentuan Grade Dealer Sepeda Motor

    OpenAIRE

    Leidiyana, Henny

    2017-01-01

    The mutually beneficial cooperation is a very important thing for a leasing and dealer. Incentives for marketing is given in order to get consumers as much as possible. But sometimes the surveyor objectivity is lost due to the conspiracy on the field of marketing and surveyors. To overcome this, leasing a variety of ways one of them is doing ranking against the dealer. In this study the application of the k-Nearest Neighbor method and Euclidean distance measurement to determine the grade deal...

  18. Fast and Accuracy Control Chart Pattern Recognition using a New cluster-k-Nearest Neighbor

    OpenAIRE

    Samir Brahim Belhaouari

    2009-01-01

    By taking advantage of both k-NN which is highly accurate and K-means cluster which is able to reduce the time of classification, we can introduce Cluster-k-Nearest Neighbor as "variable k"-NN dealing with the centroid or mean point of all subclasses generated by clustering algorithm. In general the algorithm of K-means cluster is not stable, in term of accuracy, for that reason we develop another algorithm for clustering our space which gives a higher accuracy than K-means cluster, less ...

  19. Diagnosis of Diabetes Diseases Using an Artificial Immune Recognition System2 (AIRS2) with Fuzzy K-nearest Neighbor

    OpenAIRE

    CHIKH, Mohamed Amine; SAIDI, Meryem; SETTOUTI, Nesma

    2012-01-01

    The use of expert systems and artificial intelligence techniques in disease diagnosis has been increasing gradually. Artificial Immune Recognition System (AIRS) is one of the methods used in medical classification problems. AIRS2 is a more efficient version of the AIRS algorithm. In this paper, we used a modified AIRS2 called MAIRS2 where we replace the K- nearest neighbors algorithm with the fuzzy K-nearest neighbors to improve the diagnostic accuracy of diabetes diseases. The diabetes disea...

  20. Sistem Rekomendasi Pada E-Commerce Menggunakan K-Nearest Neighbor

    Directory of Open Access Journals (Sweden)

    Chandra Saha Dewa Prasetya

    2017-09-01

    The growing number of product information available on the internet brings challenges to both customer and online businesses in the e-commerce environment. Customer often have difficulty when looking for products on the internet because of the number of products sold on the internet. In addition, online businessman often experience difficulties because they has much data about products, customers and transactions, thus causing online businessman have difficulty to promote the right product to a particular customer target. A recommendation system was developed to address those problem with various methods such as Collaborative Filtering, ContentBased, and Hybrid. Collaborative filtering method uses customer’s rating data, content based using product content such as title or description, and hybrid using both as the basis of the recommendation. In this research, the k-nearest neighbor algorithm is used to determine the top-n product recommendations for each buyer. The result of this research method Content Based outperforms other methods because the sparse data, that is the condition where the number of rating given by the customers is relatively little compared the number of products available in e-commerce. Keywords: recomendation system, k-nearest neighbor, collaborative filtering, content based.

  1. Predicting Audience Location on the Basis of the k-Nearest Neighbor Multilabel Classification

    Directory of Open Access Journals (Sweden)

    Haitao Wu

    2014-01-01

    Full Text Available Understanding audience location information in online social networks is important in designing recommendation systems, improving information dissemination, and so on. In this paper, we focus on predicting the location distribution of audiences on YouTube. And we transform this problem to a multilabel classification problem, while we find there exist three problems when the classical k-nearest neighbor based algorithm for multilabel classification (ML-kNN is used to predict location distribution. Firstly, the feature weights are not considered in measuring the similarity degree. Secondly, it consumes considerable computing time in finding similar items by traversing all the training set. Thirdly, the goal of ML-kNN is to find relevant labels for every sample which is different from audience location prediction. To solve these problems, we propose the methods of measuring similarity based on weight, quickly finding similar items, and ranking a specific number of labels. On the basis of these methods and the ML-kNN, the k-nearest neighbor based model for audience location prediction (AL-kNN is proposed for predicting audience location. The experiments based on massive YouTube data show that the proposed model can more accurately predict the location of YouTube video audience than the ML-kNN, MLNB, and Rank-SVM methods.

  2. Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN classification method

    Directory of Open Access Journals (Sweden)

    D.A. Adeniyi

    2016-01-01

    Full Text Available The major problem of many on-line web sites is the presentation of many choices to the client at a time; this usually results to strenuous and time consuming task in finding the right product or information on the site. In this work, we present a study of automatic web usage data mining and recommendation system based on current user behavior through his/her click stream data on the newly developed Really Simple Syndication (RSS reader website, in order to provide relevant information to the individual without explicitly asking for it. The K-Nearest-Neighbor (KNN classification method has been trained to be used on-line and in Real-Time to identify clients/visitors click stream data, matching it to a particular user group and recommend a tailored browsing option that meet the need of the specific user at a particular time. To achieve this, web users RSS address file was extracted, cleansed, formatted and grouped into meaningful session and data mart was developed. Our result shows that the K-Nearest Neighbor classifier is transparent, consistent, straightforward, simple to understand, high tendency to possess desirable qualities and easy to implement than most other machine learning techniques specifically when there is little or no prior knowledge about data distribution.

  3. Quantum Algorithm for K-Nearest Neighbors Classification Based on the Metric of Hamming Distance

    Science.gov (United States)

    Ruan, Yue; Xue, Xiling; Liu, Heng; Tan, Jianing; Li, Xi

    2017-11-01

    K-nearest neighbors (KNN) algorithm is a common algorithm used for classification, and also a sub-routine in various complicated machine learning tasks. In this paper, we presented a quantum algorithm (QKNN) for implementing this algorithm based on the metric of Hamming distance. We put forward a quantum circuit for computing Hamming distance between testing sample and each feature vector in the training set. Taking advantage of this method, we realized a good analog for classical KNN algorithm by setting a distance threshold value t to select k - n e a r e s t neighbors. As a result, QKNN achieves O( n 3) performance which is only relevant to the dimension of feature vectors and high classification accuracy, outperforms Llyod's algorithm (Lloyd et al. 2013) and Wiebe's algorithm (Wiebe et al. 2014).

  4. Obstacle Detection for Intelligent Transportation Systems Using Deep Stacked Autoencoder and k-Nearest Neighbor Scheme

    KAUST Repository

    Dairi, Abdelkader; Harrou, Fouzi; Sun, Ying; Senouci, Mohamed

    2018-01-01

    Obstacle detection is an essential element for the development of intelligent transportation systems so that accidents can be avoided. In this study, we propose a stereovisionbased method for detecting obstacles in urban environment. The proposed method uses a deep stacked auto-encoders (DSA) model that combines the greedy learning features with the dimensionality reduction capacity and employs an unsupervised k-nearest neighbors algorithm (KNN) to accurately and reliably detect the presence of obstacles. We consider obstacle detection as an anomaly detection problem. We evaluated the proposed method by using practical data from three publicly available datasets, the Malaga stereovision urban dataset (MSVUD), the Daimler urban segmentation dataset (DUSD), and Bahnhof dataset. Also, we compared the efficiency of DSA-KNN approach to the deep belief network (DBN)-based clustering schemes. Results show that the DSA-KNN is suitable to visually monitor urban scenes.

  5. K-Nearest Neighbor Intervals Based AP Clustering Algorithm for Large Incomplete Data

    Directory of Open Access Journals (Sweden)

    Cheng Lu

    2015-01-01

    Full Text Available The Affinity Propagation (AP algorithm is an effective algorithm for clustering analysis, but it can not be directly applicable to the case of incomplete data. In view of the prevalence of missing data and the uncertainty of missing attributes, we put forward a modified AP clustering algorithm based on K-nearest neighbor intervals (KNNI for incomplete data. Based on an Improved Partial Data Strategy, the proposed algorithm estimates the KNNI representation of missing attributes by using the attribute distribution information of the available data. The similarity function can be changed by dealing with the interval data. Then the improved AP algorithm can be applicable to the case of incomplete data. Experiments on several UCI datasets show that the proposed algorithm achieves impressive clustering results.

  6. Obstacle Detection for Intelligent Transportation Systems Using Deep Stacked Autoencoder and k-Nearest Neighbor Scheme

    KAUST Repository

    Dairi, Abdelkader

    2018-04-30

    Obstacle detection is an essential element for the development of intelligent transportation systems so that accidents can be avoided. In this study, we propose a stereovisionbased method for detecting obstacles in urban environment. The proposed method uses a deep stacked auto-encoders (DSA) model that combines the greedy learning features with the dimensionality reduction capacity and employs an unsupervised k-nearest neighbors algorithm (KNN) to accurately and reliably detect the presence of obstacles. We consider obstacle detection as an anomaly detection problem. We evaluated the proposed method by using practical data from three publicly available datasets, the Malaga stereovision urban dataset (MSVUD), the Daimler urban segmentation dataset (DUSD), and Bahnhof dataset. Also, we compared the efficiency of DSA-KNN approach to the deep belief network (DBN)-based clustering schemes. Results show that the DSA-KNN is suitable to visually monitor urban scenes.

  7. Distance-Constraint k-Nearest Neighbor Searching in Mobile Sensor Networks.

    Science.gov (United States)

    Han, Yongkoo; Park, Kisung; Hong, Jihye; Ulamin, Noor; Lee, Young-Koo

    2015-07-27

    The κ-Nearest Neighbors ( κNN) query is an important spatial query in mobile sensor networks. In this work we extend κNN to include a distance constraint, calling it a l-distant κ-nearest-neighbors (l-κNN) query, which finds the κ sensor nodes nearest to a query point that are also at or greater distance from each other. The query results indicate the objects nearest to the area of interest that are scattered from each other by at least distance l. The l-κNN query can be used in most κNN applications for the case of well distributed query results. To process an l-κNN query, we must discover all sets of κNN sensor nodes and then find all pairs of sensor nodes in each set that are separated by at least a distance l. Given the limited battery and computing power of sensor nodes, this l-κNN query processing is problematically expensive in terms of energy consumption. In this paper, we propose a greedy approach for l-κNN query processing in mobile sensor networks. The key idea of the proposed approach is to divide the search space into subspaces whose all sides are l. By selecting κ sensor nodes from the other subspaces near the query point, we guarantee accurate query results for l-κNN. In our experiments, we show that the proposed method exhibits superior performance compared with a post-processing based method using the κNN query in terms of energy efficiency, query latency, and accuracy.

  8. A new approach to very short term wind speed prediction using k-nearest neighbor classification

    International Nuclear Information System (INIS)

    Yesilbudak, Mehmet; Sagiroglu, Seref; Colak, Ilhami

    2013-01-01

    Highlights: ► Wind speed parameter was predicted in an n-tupled inputs using k-NN classification. ► The effects of input parameters, nearest neighbors and distance metrics were analyzed. ► Many useful and reasonable inferences were uncovered using the developed model. - Abstract: Wind energy is an inexhaustible energy source and wind power production has been growing rapidly in recent years. However, wind power has a non-schedulable nature due to wind speed variations. Hence, wind speed prediction is an indispensable requirement for power system operators. This paper predicts wind speed parameter in an n-tupled inputs using k-nearest neighbor (k-NN) classification and analyzes the effects of input parameters, nearest neighbors and distance metrics on wind speed prediction. The k-NN classification model was developed using the object oriented programming techniques and includes Manhattan and Minkowski distance metrics except from Euclidean distance metric on the contrary of literature. The k-NN classification model which uses wind direction, air temperature, atmospheric pressure and relative humidity parameters in a 4-tupled space achieved the best wind speed prediction for k = 5 in the Manhattan distance metric. Differently, the k-NN classification model which uses wind direction, air temperature and atmospheric pressure parameters in a 3-tupled inputs gave the worst wind speed prediction for k = 1 in the Minkowski distance metric

  9. Geometric k-nearest neighbor estimation of entropy and mutual information

    Science.gov (United States)

    Lord, Warren M.; Sun, Jie; Bollt, Erik M.

    2018-03-01

    Nonparametric estimation of mutual information is used in a wide range of scientific problems to quantify dependence between variables. The k-nearest neighbor (knn) methods are consistent, and therefore expected to work well for a large sample size. These methods use geometrically regular local volume elements. This practice allows maximum localization of the volume elements, but can also induce a bias due to a poor description of the local geometry of the underlying probability measure. We introduce a new class of knn estimators that we call geometric knn estimators (g-knn), which use more complex local volume elements to better model the local geometry of the probability measures. As an example of this class of estimators, we develop a g-knn estimator of entropy and mutual information based on elliptical volume elements, capturing the local stretching and compression common to a wide range of dynamical system attractors. A series of numerical examples in which the thickness of the underlying distribution and the sample sizes are varied suggest that local geometry is a source of problems for knn methods such as the Kraskov-Stögbauer-Grassberger estimator when local geometric effects cannot be removed by global preprocessing of the data. The g-knn method performs well despite the manipulation of the local geometry. In addition, the examples suggest that the g-knn estimators can be of particular relevance to applications in which the system is large, but the data size is limited.

  10. An RFID Indoor Positioning Algorithm Based on Bayesian Probability and K-Nearest Neighbor.

    Science.gov (United States)

    Xu, He; Ding, Ye; Li, Peng; Wang, Ruchuan; Li, Yizhu

    2017-08-05

    The Global Positioning System (GPS) is widely used in outdoor environmental positioning. However, GPS cannot support indoor positioning because there is no signal for positioning in an indoor environment. Nowadays, there are many situations which require indoor positioning, such as searching for a book in a library, looking for luggage in an airport, emergence navigation for fire alarms, robot location, etc. Many technologies, such as ultrasonic, sensors, Bluetooth, WiFi, magnetic field, Radio Frequency Identification (RFID), etc., are used to perform indoor positioning. Compared with other technologies, RFID used in indoor positioning is more cost and energy efficient. The Traditional RFID indoor positioning algorithm LANDMARC utilizes a Received Signal Strength (RSS) indicator to track objects. However, the RSS value is easily affected by environmental noise and other interference. In this paper, our purpose is to reduce the location fluctuation and error caused by multipath and environmental interference in LANDMARC. We propose a novel indoor positioning algorithm based on Bayesian probability and K -Nearest Neighbor (BKNN). The experimental results show that the Gaussian filter can filter some abnormal RSS values. The proposed BKNN algorithm has the smallest location error compared with the Gaussian-based algorithm, LANDMARC and an improved KNN algorithm. The average error in location estimation is about 15 cm using our method.

  11. An RFID Indoor Positioning Algorithm Based on Bayesian Probability and K-Nearest Neighbor

    Directory of Open Access Journals (Sweden)

    He Xu

    2017-08-01

    Full Text Available The Global Positioning System (GPS is widely used in outdoor environmental positioning. However, GPS cannot support indoor positioning because there is no signal for positioning in an indoor environment. Nowadays, there are many situations which require indoor positioning, such as searching for a book in a library, looking for luggage in an airport, emergence navigation for fire alarms, robot location, etc. Many technologies, such as ultrasonic, sensors, Bluetooth, WiFi, magnetic field, Radio Frequency Identification (RFID, etc., are used to perform indoor positioning. Compared with other technologies, RFID used in indoor positioning is more cost and energy efficient. The Traditional RFID indoor positioning algorithm LANDMARC utilizes a Received Signal Strength (RSS indicator to track objects. However, the RSS value is easily affected by environmental noise and other interference. In this paper, our purpose is to reduce the location fluctuation and error caused by multipath and environmental interference in LANDMARC. We propose a novel indoor positioning algorithm based on Bayesian probability and K-Nearest Neighbor (BKNN. The experimental results show that the Gaussian filter can filter some abnormal RSS values. The proposed BKNN algorithm has the smallest location error compared with the Gaussian-based algorithm, LANDMARC and an improved KNN algorithm. The average error in location estimation is about 15 cm using our method.

  12. CATEGORIZATION OF GELAM, ACACIA AND TUALANG HONEY ODORPROFILE USING K-NEAREST NEIGHBORS

    Directory of Open Access Journals (Sweden)

    Nurdiyana Zahed

    2018-02-01

    Full Text Available Honey authenticity refer to honey types is of great importance issue and interest in agriculture. In current research, several documents of specific types of honey have their own usage in medical field. However, it is quite challenging task to classify different types of honey by simply using our naked eye. This work demostrated a successful an electronic nose (E-nose application as an instrument for identifying odor profile pattern of three common honey in Malaysia (Gelam, Acacia and Tualang honey. The applied E-nose has produced signal for odor measurement in form of numeric resistance (Ω. The data reading have been pre-processed using normalization technique for standardized scale of unique features. Mean features is extracted and boxplot used as the statistical tool to present the data pattern according to three types of honey. Mean features that have been extracted were employed into K-Nearest Neighbors classifier as an input features and evaluated using several splitting ratio. Excellent results were obtained by showing 100% rate of accuracy, sensitivity and specificity of classification from KNN using weigh (k=1, ratio 90:10 and Euclidean distance. The findings confirmed the ability of KNN classifier as intelligent classification to classify different honey types from E-nose calibration. Outperform of other classifier, KNN required less parameter optimization and achieved promising result.

  13. Improved Fuzzy K-Nearest Neighbor Using Modified Particle Swarm Optimization

    Science.gov (United States)

    Jamaluddin; Siringoringo, Rimbun

    2017-12-01

    Fuzzy k-Nearest Neighbor (FkNN) is one of the most powerful classification methods. The presence of fuzzy concepts in this method successfully improves its performance on almost all classification issues. The main drawbackof FKNN is that it is difficult to determine the parameters. These parameters are the number of neighbors (k) and fuzzy strength (m). Both parameters are very sensitive. This makes it difficult to determine the values of ‘m’ and ‘k’, thus making FKNN difficult to control because no theories or guides can deduce how proper ‘m’ and ‘k’ should be. This study uses Modified Particle Swarm Optimization (MPSO) to determine the best value of ‘k’ and ‘m’. MPSO is focused on the Constriction Factor Method. Constriction Factor Method is an improvement of PSO in order to avoid local circumstances optima. The model proposed in this study was tested on the German Credit Dataset. The test of the data/The data test has been standardized by UCI Machine Learning Repository which is widely applied to classification problems. The application of MPSO to the determination of FKNN parameters is expected to increase the value of classification performance. Based on the experiments that have been done indicating that the model offered in this research results in a better classification performance compared to the Fk-NN model only. The model offered in this study has an accuracy rate of 81%, while. With using Fk-NN model, it has the accuracy of 70%. At the end is done comparison of research model superiority with 2 other classification models;such as Naive Bayes and Decision Tree. This research model has a better performance level, where Naive Bayes has accuracy 75%, and the decision tree model has 70%

  14. A Regression-based K nearest neighbor algorithm for gene function prediction from heterogeneous data

    Directory of Open Access Journals (Sweden)

    Ruzzo Walter L

    2006-03-01

    Full Text Available Abstract Background As a variety of functional genomic and proteomic techniques become available, there is an increasing need for functional analysis methodologies that integrate heterogeneous data sources. Methods In this paper, we address this issue by proposing a general framework for gene function prediction based on the k-nearest-neighbor (KNN algorithm. The choice of KNN is motivated by its simplicity, flexibility to incorporate different data types and adaptability to irregular feature spaces. A weakness of traditional KNN methods, especially when handling heterogeneous data, is that performance is subject to the often ad hoc choice of similarity metric. To address this weakness, we apply regression methods to infer a similarity metric as a weighted combination of a set of base similarity measures, which helps to locate the neighbors that are most likely to be in the same class as the target gene. We also suggest a novel voting scheme to generate confidence scores that estimate the accuracy of predictions. The method gracefully extends to multi-way classification problems. Results We apply this technique to gene function prediction according to three well-known Escherichia coli classification schemes suggested by biologists, using information derived from microarray and genome sequencing data. We demonstrate that our algorithm dramatically outperforms the naive KNN methods and is competitive with support vector machine (SVM algorithms for integrating heterogenous data. We also show that by combining different data sources, prediction accuracy can improve significantly. Conclusion Our extension of KNN with automatic feature weighting, multi-class prediction, and probabilistic inference, enhance prediction accuracy significantly while remaining efficient, intuitive and flexible. This general framework can also be applied to similar classification problems involving heterogeneous datasets.

  15. Using K-Nearest Neighbor Classification to Diagnose Abnormal Lung Sounds

    Directory of Open Access Journals (Sweden)

    Chin-Hsing Chen

    2015-06-01

    Full Text Available A reported 30% of people worldwide have abnormal lung sounds, including crackles, rhonchi, and wheezes. To date, the traditional stethoscope remains the most popular tool used by physicians to diagnose such abnormal lung sounds, however, many problems arise with the use of a stethoscope, including the effects of environmental noise, the inability to record and store lung sounds for follow-up or tracking, and the physician’s subjective diagnostic experience. This study has developed a digital stethoscope to help physicians overcome these problems when diagnosing abnormal lung sounds. In this digital system, mel-frequency cepstral coefficients (MFCCs were used to extract the features of lung sounds, and then the K-means algorithm was used for feature clustering, to reduce the amount of data for computation. Finally, the K-nearest neighbor method was used to classify the lung sounds. The proposed system can also be used for home care: if the percentage of abnormal lung sound frames is > 30% of the whole test signal, the system can automatically warn the user to visit a physician for diagnosis. We also used bend sensors together with an amplification circuit, Bluetooth, and a microcontroller to implement a respiration detector. The respiratory signal extracted by the bend sensors can be transmitted to the computer via Bluetooth to calculate the respiratory cycle, for real-time assessment. If an abnormal status is detected, the device will warn the user automatically. Experimental results indicated that the error in respiratory cycles between measured and actual values was only 6.8%, illustrating the potential of our detector for home care applications.

  16. Diagnosis of diabetes diseases using an Artificial Immune Recognition System2 (AIRS2) with fuzzy K-nearest neighbor.

    Science.gov (United States)

    Chikh, Mohamed Amine; Saidi, Meryem; Settouti, Nesma

    2012-10-01

    The use of expert systems and artificial intelligence techniques in disease diagnosis has been increasing gradually. Artificial Immune Recognition System (AIRS) is one of the methods used in medical classification problems. AIRS2 is a more efficient version of the AIRS algorithm. In this paper, we used a modified AIRS2 called MAIRS2 where we replace the K- nearest neighbors algorithm with the fuzzy K-nearest neighbors to improve the diagnostic accuracy of diabetes diseases. The diabetes disease dataset used in our work is retrieved from UCI machine learning repository. The performances of the AIRS2 and MAIRS2 are evaluated regarding classification accuracy, sensitivity and specificity values. The highest classification accuracy obtained when applying the AIRS2 and MAIRS2 using 10-fold cross-validation was, respectively 82.69% and 89.10%.

  17. PERBANDINGAN K-NEAREST NEIGHBOR DAN NAIVE BAYES UNTUK KLASIFIKASI TANAH LAYAK TANAM POHON JATI

    Directory of Open Access Journals (Sweden)

    Didik Srianto

    2016-10-01

    Full Text Available Data mining adalah proses menganalisa data dari perspektif yang berbeda dan menyimpulkannya menjadi informasi-informasi penting yang dapat dipakai untuk meningkatkan keuntungan, memperkecil biaya pengeluaran, atau bahkan keduanya. Secara teknis, data mining dapat disebut sebagai proses untuk menemukan korelasi atau pola dari ratusan atau ribuan field dari sebuah relasional database yang besar. Pada perum perhutani KPH SEMARANG saat ini masih menggunakan cara manual untuk menentukan jenis tanaman (jati / non jati. K-Nearest Neighbour atau k-NN merupakan algoritma data mining yang dapat digunakan untuk proses klasifikasi dan regresi. Naive bayes Classifier merupakan suatu teknik yang dapat digunakan untuk teknik klasifikasi. Pada penelitian ini k-NN dan Naive Bayes akan digunakan untuk mengklasifikasi data pohon jati dari perum perhutani KPH SEMARANG. Yang mana hasil klasifikasi dari k-NN dan Naive Bayes akan dibandingkan hasilnya. Pengujian dilakukan menggunakan software RapidMiner. Setelah dilakukan pengujian k-NN dianggap lebih baik dari Naife Bayes dengan akurasi 96.66% dan 82.63. Kata kunci -k-NN,Klasifikasi,Naive Bayes,Penanaman Pohon Jati

  18. Eksperimen Seleksi Fitur Pada Parameter Proyek Untuk Software Effort Estimation dengan K-Nearest Neighbor

    Directory of Open Access Journals (Sweden)

    Fachruddin Fachruddin

    2017-07-01

    Full Text Available Software Effort Estimation adalah proses estimasi biaya perangkat lunak sebagai suatu proses penting dalam melakukan proyek perangkat lunak. Berbagai penelitian terdahulu telah melakukan estimasi usaha perangkat lunak dengan berbagai metode, baik metode machine learning  maupun non machine learning. Penelitian ini mengadakan set eksperimen seleksi atribut pada parameter proyek menggunakan teknik k-nearest neighbours sebagai estimasinya dengan melakukan seleksi atribut menggunakan information gain dan mutual information serta bagaimana menemukan  parameter proyek yang paling representif pada software effort estimation. Dataset software estimation effort yang digunakan pada eksperimen adalah  yakni albrecht, china, kemerer dan mizayaki94 yang dapat diperoleh dari repositori data khusus Software Effort Estimation melalui url http://openscience.us/repo/effort/. Selanjutnya peneliti melakukan pembangunan aplikasi seleksi atribut untuk menyeleksi parameter proyek. Sistem ini menghasilkan dataset arff yang telah diseleksi. Aplikasi ini dibangun dengan bahasa java menggunakan IDE Netbean. Kemudian dataset yang telah di-generate merupakan parameter hasil seleksi yang akan dibandingkan pada saat melakukan Software Effort Estimation menggunakan tool WEKA . Seleksi Fitur berhasil menurunkan nilai error estimasi (yang diwakilkan oleh nilai RAE dan RMSE. Artinya bahwa semakin rendah nilai error (RAE dan RMSE maka semakin akurat nilai estimasi yang dihasilkan. Estimasi semakin baik setelah di lakukan seleksi fitur baik menggunakan information gain maupun mutual information. Dari nilai error yang dihasilkan maka dapat disimpulkan bahwa dataset yang dihasilkan seleksi fitur dengan metode information gain lebih baik dibanding mutual information namun, perbedaan keduanya tidak terlalu signifikan.

  19. Applying an efficient K-nearest neighbor search to forest attribute imputation

    Science.gov (United States)

    Andrew O. Finley; Ronald E. McRoberts; Alan R. Ek

    2006-01-01

    This paper explores the utility of an efficient nearest neighbor (NN) search algorithm for applications in multi-source kNN forest attribute imputation. The search algorithm reduces the number of distance calculations between a given target vector and each reference vector, thereby, decreasing the time needed to discover the NN subset. Results of five trials show gains...

  20. Novel qsar combination forecast model for insect repellent coupling support vector regression and k-nearest-neighbor

    International Nuclear Information System (INIS)

    Wang, L.F.; Bai, L.Y.

    2013-01-01

    To improve the precision of quantitative structure-activity relationship (QSAR) modeling for aromatic carboxylic acid derivatives insect repellent, a novel nonlinear combination forecast model was proposed integrating support vector regression (SVR) and K-nearest neighbor (KNN): Firstly, search optimal kernel function and nonlinearly select molecular descriptors by the rule of minimum MSE value using SVR. Secondly, illuminate the effects of all descriptors on biological activity by multi-round enforcement resistance-selection. Thirdly, construct the sub-models with predicted values of different KNN. Then, get the optimal kernel and corresponding retained sub-models through subtle selection. Finally, make prediction with leave-one-out (LOO) method in the basis of reserved sub-models. Compared with previous widely used models, our work shows significant improvement in modeling performance, which demonstrates the superiority of the present combination forecast model. (author)

  1. A Diagnosis Method for Rotation Machinery Faults Based on Dimensionless Indexes Combined with K-Nearest Neighbor Algorithm

    Directory of Open Access Journals (Sweden)

    Jianbin Xiong

    2015-01-01

    Full Text Available It is difficult to well distinguish the dimensionless indexes between normal petrochemical rotating machinery equipment and those with complex faults. When the conflict of evidence is too big, it will result in uncertainty of diagnosis. This paper presents a diagnosis method for rotation machinery fault based on dimensionless indexes combined with K-nearest neighbor (KNN algorithm. This method uses a KNN algorithm and an evidence fusion theoretical formula to process fuzzy data, incomplete data, and accurate data. This method can transfer the signals from the petrochemical rotating machinery sensors to the reliability manners using dimensionless indexes and KNN algorithm. The input information is further integrated by an evidence synthesis formula to get the final data. The type of fault will be decided based on these data. The experimental results show that the proposed method can integrate data to provide a more reliable and reasonable result, thereby reducing the decision risk.

  2. Automated analysis of long-term grooming behavior in Drosophila using a k-nearest neighbors classifier

    Science.gov (United States)

    Allen, Victoria W; Shirasu-Hiza, Mimi

    2018-01-01

    Despite being pervasive, the control of programmed grooming is poorly understood. We addressed this gap by developing a high-throughput platform that allows long-term detection of grooming in Drosophila melanogaster. In our method, a k-nearest neighbors algorithm automatically classifies fly behavior and finds grooming events with over 90% accuracy in diverse genotypes. Our data show that flies spend ~13% of their waking time grooming, driven largely by two major internal programs. One of these programs regulates the timing of grooming and involves the core circadian clock components cycle, clock, and period. The second program regulates the duration of grooming and, while dependent on cycle and clock, appears to be independent of period. This emerging dual control model in which one program controls timing and another controls duration, resembles the two-process regulatory model of sleep. Together, our quantitative approach presents the opportunity for further dissection of mechanisms controlling long-term grooming in Drosophila. PMID:29485401

  3. ESTIMATING PHOTOMETRIC REDSHIFTS OF QUASARS VIA THE k-NEAREST NEIGHBOR APPROACH BASED ON LARGE SURVEY DATABASES

    International Nuclear Information System (INIS)

    Zhang Yanxia; Ma He; Peng Nanbo; Zhao Yongheng; Wu Xuebing

    2013-01-01

    We apply one of the lazy learning methods, the k-nearest neighbor (kNN) algorithm, to estimate the photometric redshifts of quasars based on various data sets from the Sloan Digital Sky Survey (SDSS), the UKIRT Infrared Deep Sky Survey (UKIDSS), and the Wide-field Infrared Survey Explorer (WISE; the SDSS sample, the SDSS-UKIDSS sample, the SDSS-WISE sample, and the SDSS-UKIDSS-WISE sample). The influence of the k value and different input patterns on the performance of kNN is discussed. kNN performs best when k is different with a special input pattern for a special data set. The best result belongs to the SDSS-UKIDSS-WISE sample. The experimental results generally show that the more information from more bands, the better performance of photometric redshift estimation with kNN. The results also demonstrate that kNN using multiband data can effectively solve the catastrophic failure of photometric redshift estimation, which is met by many machine learning methods. Compared with the performance of various other methods of estimating the photometric redshifts of quasars, kNN based on KD-Tree shows superiority, exhibiting the best accuracy.

  4. ESTIMATING PHOTOMETRIC REDSHIFTS OF QUASARS VIA THE k-NEAREST NEIGHBOR APPROACH BASED ON LARGE SURVEY DATABASES

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yanxia; Ma He; Peng Nanbo; Zhao Yongheng [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing (China); Wu Xuebing, E-mail: zyx@bao.ac.cn [Department of Astronomy, Peking University, 100871 Beijing (China)

    2013-08-01

    We apply one of the lazy learning methods, the k-nearest neighbor (kNN) algorithm, to estimate the photometric redshifts of quasars based on various data sets from the Sloan Digital Sky Survey (SDSS), the UKIRT Infrared Deep Sky Survey (UKIDSS), and the Wide-field Infrared Survey Explorer (WISE; the SDSS sample, the SDSS-UKIDSS sample, the SDSS-WISE sample, and the SDSS-UKIDSS-WISE sample). The influence of the k value and different input patterns on the performance of kNN is discussed. kNN performs best when k is different with a special input pattern for a special data set. The best result belongs to the SDSS-UKIDSS-WISE sample. The experimental results generally show that the more information from more bands, the better performance of photometric redshift estimation with kNN. The results also demonstrate that kNN using multiband data can effectively solve the catastrophic failure of photometric redshift estimation, which is met by many machine learning methods. Compared with the performance of various other methods of estimating the photometric redshifts of quasars, kNN based on KD-Tree shows superiority, exhibiting the best accuracy.

  5. Highway Travel Time Prediction Using Sparse Tensor Completion Tactics and K-Nearest Neighbor Pattern Matching Method

    Directory of Open Access Journals (Sweden)

    Jiandong Zhao

    2018-01-01

    Full Text Available Remote transportation microwave sensor (RTMS technology is being promoted for China’s highways. The distance is about 2 to 5 km between RTMSs, which leads to missing data and data sparseness problems. These two problems seriously restrict the accuracy of travel time prediction. Aiming at the data-missing problem, based on traffic multimode characteristics, a tensor completion method is proposed to recover the lost RTMS speed and volume data. Aiming at the data sparseness problem, virtual sensor nodes are set up between real RTMS nodes, and the two-dimensional linear interpolation and piecewise method are applied to estimate the average travel time between two nodes. Next, compared with the traditional K-nearest neighbor method, an optimal KNN method is proposed for travel time prediction. optimization is made in three aspects. Firstly, the three original state vectors, that is, speed, volume, and time of the day, are subdivided into seven periods. Secondly, the traffic congestion level is added as a new state vector. Thirdly, the cross-validation method is used to calibrate the K value to improve the adaptability of the KNN algorithm. Based on the data collected from Jinggangao highway, all the algorithms are validated. The results show that the proposed method can improve data quality and prediction precision of travel time.

  6. A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Weide Li

    2017-05-01

    Full Text Available Electric load forecasting plays an important role in electricity markets and power systems. Because electric load time series are complicated and nonlinear, it is very difficult to achieve a satisfactory forecasting accuracy. In this paper, a hybrid model, Wavelet Denoising-Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EWKM, which combines k-Nearest Neighbor (KNN and Extreme Learning Machine (ELM based on a wavelet denoising technique is proposed for short-term load forecasting. The proposed hybrid model decomposes the time series into a low frequency-associated main signal and some detailed signals associated with high frequencies at first, then uses KNN to determine the independent and dependent variables from the low-frequency signal. Finally, the ELM is used to get the non-linear relationship between these variables to get the final prediction result for the electric load. Compared with three other models, Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EKM, Wavelet Denoising-Extreme Learning Machine (WKM and Wavelet Denoising-Back Propagation Neural Network optimized by k-Nearest Neighbor Regression (WNNM, the model proposed in this paper can improve the accuracy efficiently. New South Wales is the economic powerhouse of Australia, so we use the proposed model to predict electric demand for that region. The accurate prediction has a significant meaning.

  7. SISTEM PEMBAGIAN KELAS KULIAH MAHASISWA DENGAN METODE K-MEANS DAN K-NEAREST NEIGHBORS UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN

    Directory of Open Access Journals (Sweden)

    Gede Aditra Pradnyana

    2018-01-01

    Full Text Available Permasalahan yang terjadi saat pembentukan atau pembagian kelas mahasiswa adalah perbedaan kemampuan yang dimiliki oleh mahasiswa di setiap kelasnya yang dapat berdampak pada tidak efektifnya proses pembelajaran yang berlangsung. Pengelompokkan mahasiswa dengan kemampuan yang sama merupakan hal yang sangat penting dalam rangka meningkatkan kualitas proses belajar mengajar yang dilakukan. Dengan pengelompokkan mahasiswa yang tepat, mereka akan dapat saling membantu dalam proses pembelajaran. Selain itu, membagi kelas mahasiswa sesuai dengan kemampuannya dapat mempermudah tenaga pendidik dalam menentukan metode atau strategi pembelajaran yang sesuai. Penggunaan metode dan strategi pembelajaran yang tepat akan meningkatkan efektifitas proses belajar mengajar. Pada penelitian ini dirancang sebuah metode baru untuk pembagian kelas kuliah mahasiswa dengan mengkombinasikan metode K-Means dan K-Nearest Neighbors (KNN. Metode K-means digunakan untuk pembagian kelas kuliah mahasiswa berdasarkan komponen penilaian dari mata kuliah prasyaratnya. Adapun fitur yang digunakan dalam pengelompokkan adalah nilai tugas, nilai ujian tengah semester, nilai ujian akhir semester, dan indeks prestasi kumulatif (IPK. Metode KNN digunakan untuk memprediksi kelulusan seoarang mahasiswa di sebuah matakuliah berdasarkan data sebelumnya. Hasil prediksi ini akan digunakan sebagai fitur tambahan yang digunakan dalam pembentukan kelas mahasiswa menggunakan metode K-means. Pendekatan yang digunakan dalam penelitian ini adalah Software Development Live Cycle (SDLC dengan model waterfall. Berdasarkan hasil pengujian yang dilakukan diperoleh kesimpulan bahwa jumlah cluster atau kelas dan jumlah data yang digunakan mempengaruhi dari kualitas cluster yang dibentuk oleh metode K-Means dan KNN yang digunakan. Nilai Silhouette Indeks tertinggi diperolah saat menggunakan 100 data dengan jumlah cluster 10 sebesar 0,534 yang tergolong kelas dengan kualitas medium structure.

  8. The Islands Approach to Nearest Neighbor Querying in Spatial Networks

    DEFF Research Database (Denmark)

    Huang, Xuegang; Jensen, Christian Søndergaard; Saltenis, Simonas

    2005-01-01

    , and versatile approach to k nearest neighbor computation that obviates the need for using several k nearest neighbor approaches for supporting a single service scenario. The experimental comparison with the existing techniques uses real-world road network data and considers both I/O and CPU performance...

  9. Correction of dental artifacts within the anatomical surface in PET/MRI using active shape models and k-nearest-neighbors

    DEFF Research Database (Denmark)

    Ladefoged, Claes N.; Andersen, Flemming L.; Keller, Sune H.

    2014-01-01

    n combined PET/MR, attenuation correction (AC) is performed indirectly based on the available MR image information. Metal implant-induced susceptibility artifacts and subsequent signal voids challenge MR-based AC. Several papers acknowledge the problem in PET attenuation correction when dental...... artifacts are ignored, but none of them attempts to solve the problem. We propose a clinically feasible correction method which combines Active Shape Models (ASM) and k- Nearest-Neighbors (kNN) into a simple approach which finds and corrects the dental artifacts within the surface boundaries of the patient...... anatomy. ASM is used to locate a number of landmarks in the T1-weighted MR-image of a new patient. We calculate a vector of offsets from each voxel within a signal void to each of the landmarks. We then use kNN to classify each voxel as belonging to an artifact or an actual signal void using this offset...

  10. A Sensor Data Fusion System Based on k-Nearest Neighbor Pattern Classification for Structural Health Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Jaime Vitola

    2017-02-01

    Full Text Available Civil and military structures are susceptible and vulnerable to damage due to the environmental and operational conditions. Therefore, the implementation of technology to provide robust solutions in damage identification (by using signals acquired directly from the structure is a requirement to reduce operational and maintenance costs. In this sense, the use of sensors permanently attached to the structures has demonstrated a great versatility and benefit since the inspection system can be automated. This automation is carried out with signal processing tasks with the aim of a pattern recognition analysis. This work presents the detailed description of a structural health monitoring (SHM system based on the use of a piezoelectric (PZT active system. The SHM system includes: (i the use of a piezoelectric sensor network to excite the structure and collect the measured dynamic response, in several actuation phases; (ii data organization; (iii advanced signal processing techniques to define the feature vectors; and finally; (iv the nearest neighbor algorithm as a machine learning approach to classify different kinds of damage. A description of the experimental setup, the experimental validation and a discussion of the results from two different structures are included and analyzed.

  11. Comparison of Two Classifiers; K-Nearest Neighbor and Artificial Neural Network, for Fault Diagnosis on a Main Engine Journal-Bearing

    Directory of Open Access Journals (Sweden)

    A. Moosavian

    2013-01-01

    Full Text Available Vibration analysis is an accepted method in condition monitoring of machines, since it can provide useful and reliable information about machine working condition. This paper surveys a new scheme for fault diagnosis of main journal-bearings of internal combustion (IC engine based on power spectral density (PSD technique and two classifiers, namely, K-nearest neighbor (KNN and artificial neural network (ANN. Vibration signals for three different conditions of journal-bearing; normal, with oil starvation condition and extreme wear fault were acquired from an IC engine. PSD was applied to process the vibration signals. Thirty features were extracted from the PSD values of signals as a feature source for fault diagnosis. KNN and ANN were trained by training data set and then used as diagnostic classifiers. Variable K value and hidden neuron count (N were used in the range of 1 to 20, with a step size of 1 for KNN and ANN to gain the best classification results. The roles of PSD, KNN and ANN techniques were studied. From the results, it is shown that the performance of ANN is better than KNN. The experimental results dèmonstrate that the proposed diagnostic method can reliably separate different fault conditions in main journal-bearings of IC engine.

  12. Predicting persistence in the sediment compartment with a new automatic software based on the k-Nearest Neighbor (k-NN) algorithm.

    Science.gov (United States)

    Manganaro, Alberto; Pizzo, Fabiola; Lombardo, Anna; Pogliaghi, Alberto; Benfenati, Emilio

    2016-02-01

    The ability of a substance to resist degradation and persist in the environment needs to be readily identified in order to protect the environment and human health. Many regulations require the assessment of persistence for substances commonly manufactured and marketed. Besides laboratory-based testing methods, in silico tools may be used to obtain a computational prediction of persistence. We present a new program to develop k-Nearest Neighbor (k-NN) models. The k-NN algorithm is a similarity-based approach that predicts the property of a substance in relation to the experimental data for its most similar compounds. We employed this software to identify persistence in the sediment compartment. Data on half-life (HL) in sediment were obtained from different sources and, after careful data pruning the final dataset, containing 297 organic compounds, was divided into four experimental classes. We developed several models giving satisfactory performances, considering that both the training and test set accuracy ranged between 0.90 and 0.96. We finally selected one model which will be made available in the near future in the freely available software platform VEGA. This model offers a valuable in silico tool that may be really useful for fast and inexpensive screening. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A novel method for the detection of R-peaks in ECG based on K-Nearest Neighbors and Particle Swarm Optimization

    Science.gov (United States)

    He, Runnan; Wang, Kuanquan; Li, Qince; Yuan, Yongfeng; Zhao, Na; Liu, Yang; Zhang, Henggui

    2017-12-01

    Cardiovascular diseases are associated with high morbidity and mortality. However, it is still a challenge to diagnose them accurately and efficiently. Electrocardiogram (ECG), a bioelectrical signal of the heart, provides crucial information about the dynamical functions of the heart, playing an important role in cardiac diagnosis. As the QRS complex in ECG is associated with ventricular depolarization, therefore, accurate QRS detection is vital for interpreting ECG features. In this paper, we proposed a real-time, accurate, and effective algorithm for QRS detection. In the algorithm, a proposed preprocessor with a band-pass filter was first applied to remove baseline wander and power-line interference from the signal. After denoising, a method combining K-Nearest Neighbor (KNN) and Particle Swarm Optimization (PSO) was used for accurate QRS detection in ECGs with different morphologies. The proposed algorithm was tested and validated using 48 ECG records from MIT-BIH arrhythmia database (MITDB), achieved a high averaged detection accuracy, sensitivity and positive predictivity of 99.43, 99.69, and 99.72%, respectively, indicating a notable improvement to extant algorithms as reported in literatures.

  14. Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation

    Directory of Open Access Journals (Sweden)

    CARLOS ALBERTO SILVA

    Full Text Available ABSTRACT Accurate forest inventory is of great economic importance to optimize the entire supply chain management in pulp and paper companies. The aim of this study was to estimate stand dominate and mean heights (HD and HM and tree density (TD of Pinus taeda plantations located in South Brazil using in-situ measurements, airborne Light Detection and Ranging (LiDAR data and the non- k-nearest neighbor (k-NN imputation. Forest inventory attributes and LiDAR derived metrics were calculated at 53 regular sample plots and we used imputation models to retrieve the forest attributes at plot and landscape-levels. The best LiDAR-derived metrics to predict HD, HM and TD were H99TH, HSD, SKE and HMIN. The Imputation model using the selected metrics was more effective for retrieving height than tree density. The model coefficients of determination (adj.R2 and a root mean squared difference (RMSD for HD, HM and TD were 0.90, 0.94, 0.38m and 6.99, 5.70, 12.92%, respectively. Our results show that LiDAR and k-NN imputation can be used to predict stand heights with high accuracy in Pinus taeda. However, furthers studies need to be realized to improve the accuracy prediction of TD and to evaluate and compare the cost of acquisition and processing of LiDAR data against the conventional inventory procedures.

  15. Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation.

    Science.gov (United States)

    Silva, Carlos Alberto; Klauberg, Carine; Hudak, Andrew T; Vierling, Lee A; Liesenberg, Veraldo; Bernett, Luiz G; Scheraiber, Clewerson F; Schoeninger, Emerson R

    2018-01-01

    Accurate forest inventory is of great economic importance to optimize the entire supply chain management in pulp and paper companies. The aim of this study was to estimate stand dominate and mean heights (HD and HM) and tree density (TD) of Pinus taeda plantations located in South Brazil using in-situ measurements, airborne Light Detection and Ranging (LiDAR) data and the non- k-nearest neighbor (k-NN) imputation. Forest inventory attributes and LiDAR derived metrics were calculated at 53 regular sample plots and we used imputation models to retrieve the forest attributes at plot and landscape-levels. The best LiDAR-derived metrics to predict HD, HM and TD were H99TH, HSD, SKE and HMIN. The Imputation model using the selected metrics was more effective for retrieving height than tree density. The model coefficients of determination (adj.R2) and a root mean squared difference (RMSD) for HD, HM and TD were 0.90, 0.94, 0.38m and 6.99, 5.70, 12.92%, respectively. Our results show that LiDAR and k-NN imputation can be used to predict stand heights with high accuracy in Pinus taeda. However, furthers studies need to be realized to improve the accuracy prediction of TD and to evaluate and compare the cost of acquisition and processing of LiDAR data against the conventional inventory procedures.

  16. Large-Scale Mapping of Carbon Stocks in Riparian Forests with Self-Organizing Maps and the k-Nearest-Neighbor Algorithm

    Directory of Open Access Journals (Sweden)

    Leonhard Suchenwirth

    2014-07-01

    Full Text Available Among the machine learning tools being used in recent years for environmental applications such as forestry, self-organizing maps (SOM and the k-nearest neighbor (kNN algorithm have been used successfully. We applied both methods for the mapping of organic carbon (Corg in riparian forests due to their considerably high carbon storage capacity. Despite the importance of floodplains for carbon sequestration, a sufficient scientific foundation for creating large-scale maps showing the spatial Corg distribution is still missing. We estimated organic carbon in a test site in the Danube Floodplain based on RapidEye remote sensing data and additional geodata. Accordingly, carbon distribution maps of vegetation, soil, and total Corg stocks were derived. Results were compared and statistically evaluated with terrestrial survey data for outcomes with pure remote sensing data and for the combination with additional geodata using bias and the Root Mean Square Error (RMSE. Results show that SOM and kNN approaches enable us to reproduce spatial patterns of riparian forest Corg stocks. While vegetation Corg has very high RMSEs, outcomes for soil and total Corg stocks are less biased with a lower RMSE, especially when remote sensing and additional geodata are conjointly applied. SOMs show similar percentages of RMSE to kNN estimations.

  17. Discrimination of soft tissues using laser-induced breakdown spectroscopy in combination with k nearest neighbors (kNN) and support vector machine (SVM) classifiers

    Science.gov (United States)

    Li, Xiaohui; Yang, Sibo; Fan, Rongwei; Yu, Xin; Chen, Deying

    2018-06-01

    In this paper, discrimination of soft tissues using laser-induced breakdown spectroscopy (LIBS) in combination with multivariate statistical methods is presented. Fresh pork fat, skin, ham, loin and tenderloin muscle tissues are manually cut into slices and ablated using a 1064 nm pulsed Nd:YAG laser. Discrimination analyses between fat, skin and muscle tissues, and further between highly similar ham, loin and tenderloin muscle tissues, are performed based on the LIBS spectra in combination with multivariate statistical methods, including principal component analysis (PCA), k nearest neighbors (kNN) classification, and support vector machine (SVM) classification. Performances of the discrimination models, including accuracy, sensitivity and specificity, are evaluated using 10-fold cross validation. The classification models are optimized to achieve best discrimination performances. The fat, skin and muscle tissues can be definitely discriminated using both kNN and SVM classifiers, with accuracy of over 99.83%, sensitivity of over 0.995 and specificity of over 0.998. The highly similar ham, loin and tenderloin muscle tissues can also be discriminated with acceptable performances. The best performances are achieved with SVM classifier using Gaussian kernel function, with accuracy of 76.84%, sensitivity of over 0.742 and specificity of over 0.869. The results show that the LIBS technique assisted with multivariate statistical methods could be a powerful tool for online discrimination of soft tissues, even for tissues of high similarity, such as muscles from different parts of the animal body. This technique could be used for discrimination of tissues suffering minor clinical changes, thus may advance the diagnosis of early lesions and abnormalities.

  18. Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery

    International Nuclear Information System (INIS)

    Hu, Chao; Jain, Gaurav; Zhang, Puqiang; Schmidt, Craig; Gomadam, Parthasarathy; Gorka, Tom

    2014-01-01

    Highlights: • We develop a data-driven method for the battery capacity estimation. • Five charge-related features that are indicative of the capacity are defined. • The kNN regression model captures the dependency of the capacity on the features. • Results with 10 years’ continuous cycling data verify the effectiveness of the method. - Abstract: Reliability of lithium-ion (Li-ion) rechargeable batteries used in implantable medical devices has been recognized as of high importance from a broad range of stakeholders, including medical device manufacturers, regulatory agencies, physicians, and patients. To ensure Li-ion batteries in these devices operate reliably, it is important to be able to assess the battery health condition by estimating the battery capacity over the life-time. This paper presents a data-driven method for estimating the capacity of Li-ion battery based on the charge voltage and current curves. The contributions of this paper are three-fold: (i) the definition of five characteristic features of the charge curves that are indicative of the capacity, (ii) the development of a non-linear kernel regression model, based on the k-nearest neighbor (kNN) regression, that captures the complex dependency of the capacity on the five features, and (iii) the adaptation of particle swarm optimization (PSO) to finding the optimal combination of feature weights for creating a kNN regression model that minimizes the cross validation (CV) error in the capacity estimation. Verification with 10 years’ continuous cycling data suggests that the proposed method is able to accurately estimate the capacity of Li-ion battery throughout the whole life-time

  19. [Classification of Children with Attention-Deficit/Hyperactivity Disorder and Typically Developing Children Based on Electroencephalogram Principal Component Analysis and k-Nearest Neighbor].

    Science.gov (United States)

    Yang, Jiaojiao; Guo, Qian; Li, Wenjie; Wang, Suhong; Zou, Ling

    2016-04-01

    This paper aims to assist the individual clinical diagnosis of children with attention-deficit/hyperactivity disorder using electroencephalogram signal detection method.Firstly,in our experiments,we obtained and studied the electroencephalogram signals from fourteen attention-deficit/hyperactivity disorder children and sixteen typically developing children during the classic interference control task of Simon-spatial Stroop,and we completed electroencephalogram data preprocessing including filtering,segmentation,removal of artifacts and so on.Secondly,we selected the subset electroencephalogram electrodes using principal component analysis(PCA)method,and we collected the common channels of the optimal electrodes which occurrence rates were more than 90%in each kind of stimulation.We then extracted the latency(200~450ms)mean amplitude features of the common electrodes.Finally,we used the k-nearest neighbor(KNN)classifier based on Euclidean distance and the support vector machine(SVM)classifier based on radial basis kernel function to classify.From the experiment,at the same kind of interference control task,the attention-deficit/hyperactivity disorder children showed lower correct response rates and longer reaction time.The N2 emerged in prefrontal cortex while P2 presented in the inferior parietal area when all kinds of stimuli demonstrated.Meanwhile,the children with attention-deficit/hyperactivity disorder exhibited markedly reduced N2 and P2amplitude compared to typically developing children.KNN resulted in better classification accuracy than SVM classifier,and the best classification rate was 89.29%in StI task.The results showed that the electroencephalogram signals were different in the brain regions of prefrontal cortex and inferior parietal cortex between attention-deficit/hyperactivity disorder and typically developing children during the interference control task,which provided a scientific basis for the clinical diagnosis of attention

  20. Experimental Validation of an Efficient Fan-Beam Calibration Procedure for k-Nearest Neighbor Position Estimation in Monolithic Scintillator Detectors

    Science.gov (United States)

    Borghi, Giacomo; Tabacchini, Valerio; Seifert, Stefan; Schaart, Dennis R.

    2015-02-01

    Monolithic scintillator detectors can achieve excellent spatial resolution and coincidence resolving time. However, their practical use for positron emission tomography (PET) and other applications in the medical imaging field is still limited due to drawbacks of the different methods used to estimate the position of interaction. Common statistical methods for example require the collection of an extensive dataset of reference events with a narrow pencil beam aimed at a fine grid of reference positions. Such procedures are time consuming and not straightforwardly implemented in systems composed of many detectors. Here, we experimentally demonstrate for the first time a new calibration procedure for k-nearest neighbor ( k-NN) position estimation that utilizes reference data acquired with a fan beam. The procedure is tested on two detectors consisting of 16 mm ×16 mm ×10 mm and 16 mm ×16 mm ×20 mm monolithic, Ca-codoped LSO:Ce crystals and digital photon counter (DPC) arrays. For both detectors, the spatial resolution and the bias obtained with the new method are found to be practically the same as those obtained with the previously used method based on pencil-beam irradiation, while the calibration time is reduced by a factor of 20. Specifically, a FWHM of 1.1 mm and a FWTM of 2.7 mm were obtained using the fan-beam method with the 10 mm crystal, whereas a FWHM of 1.5 mm and a FWTM of 6 mm were achieved with the 20 mm crystal. Using a fan beam made with a 4.5 MBq 22Na point-source and a tungsten slit collimator with 0.5 mm aperture, the total measurement time needed to acquire the reference dataset was 3 hours for the thinner crystal and 2 hours for the thicker one.

  1. Remaining Useful Life Estimation of Insulated Gate Biploar Transistors (IGBTs Based on a Novel Volterra k-Nearest Neighbor Optimally Pruned Extreme Learning Machine (VKOPP Model Using Degradation Data

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2017-11-01

    Full Text Available The insulated gate bipolar transistor (IGBT is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs’ RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM and Volterra series is proposed to track the IGBT’s degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs’ ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the k-nearest neighbor method (KNN and least squares estimation (LSE method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches.

  2. Nearest Neighbor Queries in Road Networks

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Kolar, Jan; Pedersen, Torben Bach

    2003-01-01

    in road networks. Such queries may be of use in many services. Specifically, we present an easily implementable data model that serves well as a foundation for such queries. We also present the design of a prototype system that implements the queries based on the data model. The algorithm used...

  3. Secure Nearest Neighbor Query on Crowd-Sensing Data

    Directory of Open Access Journals (Sweden)

    Ke Cheng

    2016-09-01

    Full Text Available Nearest neighbor queries are fundamental in location-based services, and secure nearest neighbor queries mainly focus on how to securely and quickly retrieve the nearest neighbor in the outsourced cloud server. However, the previous big data system structure has changed because of the crowd-sensing data. On the one hand, sensing data terminals as the data owner are numerous and mistrustful, while, on the other hand, in most cases, the terminals find it difficult to finish many safety operation due to computation and storage capability constraints. In light of they Multi Owners and Multi Users (MOMU situation in the crowd-sensing data cloud environment, this paper presents a secure nearest neighbor query scheme based on the proxy server architecture, which is constructed by protocols of secure two-party computation and secure Voronoi diagram algorithm. It not only preserves the data confidentiality and query privacy but also effectively resists the collusion between the cloud server and the data owners or users. Finally, extensive theoretical and experimental evaluations are presented to show that our proposed scheme achieves a superior balance between the security and query performance compared to other schemes.

  4. Approximate furthest neighbor with application to annulus query

    DEFF Research Database (Denmark)

    Pagh, Rasmus; Silvestri, Francesco; Sivertsen, Johan von Tangen

    2016-01-01

    -dimensional Euclidean space. The method builds on the technique of Indyk (SODA 2003), storing random projections to provide sublinear query time for AFN. However, we introduce a different query algorithm, improving on Indyk׳s approximation factor and reducing the running time by a logarithmic factor. We also present......, the query-dependent approach is used for deriving a data structure for the approximate annulus query problem, which is defined as follows: given an input set S and two parameters r>0 and w≥1, construct a data structure that returns for each query point q a point p∈S such that the distance between p and q...

  5. K-nearest uphill clustering in the protein structure space

    KAUST Repository

    Cui, Xuefeng

    2016-08-26

    The protein structure classification problem, which is to assign a protein structure to a cluster of similar proteins, is one of the most fundamental problems in the construction and application of the protein structure space. Early manually curated protein structure classifications (e.g., SCOP and CATH) are very successful, but recently suffer the slow updating problem because of the increased throughput of newly solved protein structures. Thus, fully automatic methods to cluster proteins in the protein structure space have been designed and developed. In this study, we observed that the SCOP superfamilies are highly consistent with clustering trees representing hierarchical clustering procedures, but the tree cutting is very challenging and becomes the bottleneck of clustering accuracy. To overcome this challenge, we proposed a novel density-based K-nearest uphill clustering method that effectively eliminates noisy pairwise protein structure similarities and identifies density peaks as cluster centers. Specifically, the density peaks are identified based on K-nearest uphills (i.e., proteins with higher densities) and K-nearest neighbors. To our knowledge, this is the first attempt to apply and develop density-based clustering methods in the protein structure space. Our results show that our density-based clustering method outperforms the state-of-the-art clustering methods previously applied to the problem. Moreover, we observed that computational methods and human experts could produce highly similar clusters at high precision values, while computational methods also suggest to split some large superfamilies into smaller clusters. © 2016 Elsevier B.V.

  6. ReliefSeq: a gene-wise adaptive-K nearest-neighbor feature selection tool for finding gene-gene interactions and main effects in mRNA-Seq gene expression data.

    Directory of Open Access Journals (Sweden)

    Brett A McKinney

    Full Text Available Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest neighbors (k for each gene to optimize the Relief-F test statistics (importance scores for finding both main effects and interactions. We compare this gene-wise adaptive-k (gwak Relief-F method with standard RNA-seq feature selection tools, such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools used for analysis of mRNA-Seq data; it has power to

  7. A Novel Quantum Solution to Privacy-Preserving Nearest Neighbor Query in Location-Based Services

    Science.gov (United States)

    Luo, Zhen-yu; Shi, Run-hua; Xu, Min; Zhang, Shun

    2018-04-01

    We present a cheating-sensitive quantum protocol for Privacy-Preserving Nearest Neighbor Query based on Oblivious Quantum Key Distribution and Quantum Encryption. Compared with the classical related protocols, our proposed protocol has higher security, because the security of our protocol is based on basic physical principles of quantum mechanics, instead of difficulty assumptions. Especially, our protocol takes single photons as quantum resources and only needs to perform single-photon projective measurement. Therefore, it is feasible to implement this protocol with the present technologies.

  8. Arabic Text Categorization Using Improved k-Nearest neighbour Algorithm

    Directory of Open Access Journals (Sweden)

    Wail Hamood KHALED

    2014-10-01

    Full Text Available The quantity of text information published in Arabic language on the net requires the implementation of effective techniques for the extraction and classifying of relevant information contained in large corpus of texts. In this paper we presented an implementation of an enhanced k-NN Arabic text classifier. We apply the traditional k-NN and Naive Bayes from Weka Toolkit for comparison purpose. Our proposed modified k-NN algorithm features an improved decision rule to skip the classes that are less similar and identify the right class from k nearest neighbours which increases the accuracy. The study evaluates the improved decision rule technique using the standard of recall, precision and f-measure as the basis of comparison. We concluded that the effectiveness of the proposed classifier is promising and outperforms the classical k-NN classifier.

  9. Medical Information Retrieval Enhanced with User's Query Expanded with Tag-Neighbors

    DEFF Research Database (Denmark)

    Durao, Frederico; Bayyapu, Karunakar Reddy; Xu, Guandong

    2013-01-01

    Under-specified queries often lead to undesirable search results that do not contain the information needed. This problem gets worse when it comes to medical information, a natural human demand everywhere. Existing search engines on the Web often are unable to handle medical search well because...

  10. Approximate and exact hybrid algorithms for private nearest-neighbor queries with database protection

    KAUST Repository

    Ghinita, Gabriel; Kalnis, Panos; Kantarcioǧlu, Murâ t; Bertino, Elisa

    2010-01-01

    Mobile devices with global positioning capabilities allow users to retrieve points of interest (POI) in their proximity. To protect user privacy, it is important not to disclose exact user coordinates to un-trusted entities that provide location-based services. Currently, there are two main approaches to protect the location privacy of users: (i) hiding locations inside cloaking regions (CRs) and (ii) encrypting location data using private information retrieval (PIR) protocols. Previous work focused on finding good trade-offs between privacy and performance of user protection techniques, but disregarded the important issue of protecting the POI dataset D. For instance, location cloaking requires large-sized CRs, leading to excessive disclosure of POIs (O({pipe}D{pipe}) in the worst case). PIR, on the other hand, reduces this bound to O(√{pipe}D{pipe}), but at the expense of high processing and communication overhead. We propose hybrid, two-step approaches for private location-based queries which provide protection for both the users and the database. In the first step, user locations are generalized to coarse-grained CRs which provide strong privacy. Next, a PIR protocol is applied with respect to the obtained query CR. To protect against excessive disclosure of POI locations, we devise two cryptographic protocols that privately evaluate whether a point is enclosed inside a rectangular region or a convex polygon. We also introduce algorithms to efficiently support PIR on dynamic POI sub-sets. We provide solutions for both approximate and exact NN queries. In the approximate case, our method discloses O(1) POI, orders of magnitude fewer than CR- or PIR-based techniques. For the exact case, we obtain optimal disclosure of a single POI, although with slightly higher computational overhead. Experimental results show that the hybrid approaches are scalable in practice, and outperform the pure-PIR approach in terms of computational and communication overhead. © 2010

  11. Approximate and exact hybrid algorithms for private nearest-neighbor queries with database protection

    KAUST Repository

    Ghinita, Gabriel

    2010-12-15

    Mobile devices with global positioning capabilities allow users to retrieve points of interest (POI) in their proximity. To protect user privacy, it is important not to disclose exact user coordinates to un-trusted entities that provide location-based services. Currently, there are two main approaches to protect the location privacy of users: (i) hiding locations inside cloaking regions (CRs) and (ii) encrypting location data using private information retrieval (PIR) protocols. Previous work focused on finding good trade-offs between privacy and performance of user protection techniques, but disregarded the important issue of protecting the POI dataset D. For instance, location cloaking requires large-sized CRs, leading to excessive disclosure of POIs (O({pipe}D{pipe}) in the worst case). PIR, on the other hand, reduces this bound to O(√{pipe}D{pipe}), but at the expense of high processing and communication overhead. We propose hybrid, two-step approaches for private location-based queries which provide protection for both the users and the database. In the first step, user locations are generalized to coarse-grained CRs which provide strong privacy. Next, a PIR protocol is applied with respect to the obtained query CR. To protect against excessive disclosure of POI locations, we devise two cryptographic protocols that privately evaluate whether a point is enclosed inside a rectangular region or a convex polygon. We also introduce algorithms to efficiently support PIR on dynamic POI sub-sets. We provide solutions for both approximate and exact NN queries. In the approximate case, our method discloses O(1) POI, orders of magnitude fewer than CR- or PIR-based techniques. For the exact case, we obtain optimal disclosure of a single POI, although with slightly higher computational overhead. Experimental results show that the hybrid approaches are scalable in practice, and outperform the pure-PIR approach in terms of computational and communication overhead. © 2010

  12. Colorectal Cancer and Colitis Diagnosis Using Fourier Transform Infrared Spectroscopy and an Improved K-Nearest-Neighbour Classifier.

    Science.gov (United States)

    Li, Qingbo; Hao, Can; Kang, Xue; Zhang, Jialin; Sun, Xuejun; Wang, Wenbo; Zeng, Haishan

    2017-11-27

    Combining Fourier transform infrared spectroscopy (FTIR) with endoscopy, it is expected that noninvasive, rapid detection of colorectal cancer can be performed in vivo in the future. In this study, Fourier transform infrared spectra were collected from 88 endoscopic biopsy colorectal tissue samples (41 colitis and 47 cancers). A new method, viz., entropy weight local-hyperplane k-nearest-neighbor (EWHK), which is an improved version of K-local hyperplane distance nearest-neighbor (HKNN), is proposed for tissue classification. In order to avoid limiting high dimensions and small values of the nearest neighbor, the new EWHK method calculates feature weights based on information entropy. The average results of the random classification showed that the EWHK classifier for differentiating cancer from colitis samples produced a sensitivity of 81.38% and a specificity of 92.69%.

  13. A Coupled k-Nearest Neighbor Algorithm for Multi-Label Classification

    Science.gov (United States)

    2015-05-22

    classification, an image may contain several concepts simultaneously, such as beach, sunset and kangaroo . Such tasks are usually denoted as multi-label...informatics, a gene can belong to both metabolism and transcription classes; and in music categorization, a song may labeled as Mozart and sad. In the

  14. Combining Fourier and lagged k-nearest neighbor imputation for biomedical time series data.

    Science.gov (United States)

    Rahman, Shah Atiqur; Huang, Yuxiao; Claassen, Jan; Heintzman, Nathaniel; Kleinberg, Samantha

    2015-12-01

    Most clinical and biomedical data contain missing values. A patient's record may be split across multiple institutions, devices may fail, and sensors may not be worn at all times. While these missing values are often ignored, this can lead to bias and error when the data are mined. Further, the data are not simply missing at random. Instead the measurement of a variable such as blood glucose may depend on its prior values as well as that of other variables. These dependencies exist across time as well, but current methods have yet to incorporate these temporal relationships as well as multiple types of missingness. To address this, we propose an imputation method (FLk-NN) that incorporates time lagged correlations both within and across variables by combining two imputation methods, based on an extension to k-NN and the Fourier transform. This enables imputation of missing values even when all data at a time point is missing and when there are different types of missingness both within and across variables. In comparison to other approaches on three biological datasets (simulated and actual Type 1 diabetes datasets, and multi-modality neurological ICU monitoring) the proposed method has the highest imputation accuracy. This was true for up to half the data being missing and when consecutive missing values are a significant fraction of the overall time series length. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Combining Fourier and lagged k-nearest neighbor imputation for biomedical time series data

    OpenAIRE

    Rahman, Shah Atiqur; Huang, Yuxiao; Claassen, Jan; Heintzman, Nathaniel; Kleinberg, Samantha

    2015-01-01

    Most clinical and biomedical data contain missing values. A patient’s record may be split across multiple institutions, devices may fail, and sensors may not be worn at all times. While these missing values are often ignored, this can lead to bias and error when the data are mined. Further, the data are not simply missing at random. Instead the measurement of a variable such as blood glucose may depend on its prior values as well as that of other variables. These dependencies exist across tim...

  16. PENINGKATAN KECERDASAN COMPUTER PLAYER PADA GAME PERTARUNGAN BERBASIS K-NEAREST NEIGHBOR BERBOBOT

    Directory of Open Access Journals (Sweden)

    M Ihsan Alfani Putera

    2018-02-01

    Full Text Available Salah satu teknologi komputer yang berkembang dan perubahannya cukup pesat adalah game. Tujuan dibuatnya game adalah sebagai sarana hiburan dan memberikan kesenangan bagi penggunanya. Contoh elemen dalam pembuatan game yang penting adalah adanya tantangan yang seimbang sesuai level. Dalam hal ini, adanya kecerdasan buatan atau AI merupakan salah satu unsur yang diperlukan dalam pembentukan game. Penggunaan AI yang tidak beradaptasi ke strategi lawan akan  mudah diprediksi dan repetitif. Jika AI terlalu pintar maka player akan kesulitan dalam memainkan game tersebut. Dengan keadaan seperti itu akan menurunkan tingkat enjoyment dari pemain. Oleh karena itu, dibutuhkan suatu metode AI yang dapat beradaptasi dengan kemampuan dari player yang bermain. Sehingga tingkat kesulitan yang dihadapi dapat mengikuti kemampuan pemainnya dan pengalaman enjoyment ketika bermain game terus terjaga. Pada penelitian sebelumnya, metode AI yang sering digunakan pada game berjenis pertarungan adalah K-NN. Namun metode tersebut menganggap semua atribut dalam game adalah sama sehingga hal ini mempengaruhi hasil learning AI menjadi kurang optimal.Penelitian ini mengusulkan metode untuk AI dengan menggunakan metode K-NN berbobot pada game berjenis pertarungan. Dimana, pembobotan tersebut dilakukan untuk memberikan pengaruh setiap atribut dengan bobot disesuaikan dengan aksi player. Dari hasil evaluasi yang dilakukan terhadap 50 kali pertandingan pada 3 skenario uji coba, metode yang diusulkan yaitu K-NN berbobot mampu menghasilkan tingkat kecerdasan AI dengan akurasi sebesar 51%. Sedangkan, metode sebelumnya yaitu K-NN tanpa bobot hanya menghasilkan tingkat kecerdasan AI sebesar 38% dan metode random menghasilkan tingkat kecerdasan AI sebesar 25%.

  17. PENINGKATAN KECERDASAN COMPUTER PLAYER PADA GAME PERTARUNGAN BERBASIS K-NEAREST NEIGHBOR BERBOBOT

    OpenAIRE

    M Ihsan Alfani Putera; Darlis Heru Murti

    2018-01-01

    Salah satu teknologi komputer yang berkembang dan perubahannya cukup pesat adalah game. Tujuan dibuatnya game adalah sebagai sarana hiburan dan memberikan kesenangan bagi penggunanya. Contoh elemen dalam pembuatan game yang penting adalah adanya tantangan yang seimbang sesuai level. Dalam hal ini, adanya kecerdasan buatan atau AI merupakan salah satu unsur yang diperlukan dalam pembentukan game. Penggunaan AI yang tidak beradaptasi ke strategi lawan akan  mudah diprediksi dan repetitif. Jika ...

  18. Processing of extreme moving-object update and query workloads in main memory

    DEFF Research Database (Denmark)

    Sidlauskas, Darius; Saltenis, Simonas; Jensen, Christian S.

    2014-01-01

    traditional transaction processing in the context of our target domain and propose new semantics that enable a high degree of parallelism and ensure up-to-date query results. We define the new semantics for range and k-nearest neighbor queries. Then, we present a main-memory indexing technique called parallel...... grid that implements the proposed semantics as well as two other variants supporting different semantics. This enables us to quantify the effects that different degrees of consistency have on performance. We also present an alternative time-partitioning approach. Empirical studies with the above...

  19. Empirical mode decomposition and k-nearest embedding vectors for timely analyses of antibiotic resistance trends.

    Science.gov (United States)

    Teodoro, Douglas; Lovis, Christian

    2013-01-01

    Antibiotic resistance is a major worldwide public health concern. In clinical settings, timely antibiotic resistance information is key for care providers as it allows appropriate targeted treatment or improved empirical treatment when the specific results of the patient are not yet available. To improve antibiotic resistance trend analysis algorithms by building a novel, fully data-driven forecasting method from the combination of trend extraction and machine learning models for enhanced biosurveillance systems. We investigate a robust model for extraction and forecasting of antibiotic resistance trends using a decade of microbiology data. Our method consists of breaking down the resistance time series into independent oscillatory components via the empirical mode decomposition technique. The resulting waveforms describing intrinsic resistance trends serve as the input for the forecasting algorithm. The algorithm applies the delay coordinate embedding theorem together with the k-nearest neighbor framework to project mappings from past events into the future dimension and estimate the resistance levels. The algorithms that decompose the resistance time series and filter out high frequency components showed statistically significant performance improvements in comparison with a benchmark random walk model. We present further qualitative use-cases of antibiotic resistance trend extraction, where empirical mode decomposition was applied to highlight the specificities of the resistance trends. The decomposition of the raw signal was found not only to yield valuable insight into the resistance evolution, but also to produce novel models of resistance forecasters with boosted prediction performance, which could be utilized as a complementary method in the analysis of antibiotic resistance trends.

  20. Efficient computation of k-Nearest Neighbour Graphs for large high-dimensional data sets on GPU clusters.

    Directory of Open Access Journals (Sweden)

    Ali Dashti

    Full Text Available This paper presents an implementation of the brute-force exact k-Nearest Neighbor Graph (k-NNG construction for ultra-large high-dimensional data cloud. The proposed method uses Graphics Processing Units (GPUs and is scalable with multi-levels of parallelism (between nodes of a cluster, between different GPUs on a single node, and within a GPU. The method is applicable to homogeneous computing clusters with a varying number of nodes and GPUs per node. We achieve a 6-fold speedup in data processing as compared with an optimized method running on a cluster of CPUs and bring a hitherto impossible [Formula: see text]-NNG generation for a dataset of twenty million images with 15 k dimensionality into the realm of practical possibility.

  1. Segmenting Multiple Sclerosis Lesions using a Spatially Constrained K-Nearest Neighbour approach

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Larsen, Rasmus; Sørensen, Per Soelberg

    2012-01-01

    We propose a method for the segmentation of Multiple Sclerosis lesions. The method is based on probability maps derived from a K-Nearest Neighbours classication. These are used as a non parametric likelihood in a Bayesian formulation with a prior that assumes connectivity of neighbouring voxels. ...

  2. A LITERATURE SURVEY ON VARIOUS ILLUMINATION NORMALIZATION TECHNIQUES FOR FACE RECOGNITION WITH FUZZY K NEAREST NEIGHBOUR CLASSIFIER

    Directory of Open Access Journals (Sweden)

    A. Thamizharasi

    2015-05-01

    Full Text Available The face recognition is popular in video surveillance, social networks and criminal identifications nowadays. The performance of face recognition would be affected by variations in illumination, pose, aging and partial occlusion of face by Wearing Hats, scarves and glasses etc. The illumination variations are still the challenging problem in face recognition. The aim is to compare the various illumination normalization techniques. The illumination normalization techniques include: Log transformations, Power Law transformations, Histogram equalization, Adaptive histogram equalization, Contrast stretching, Retinex, Multi scale Retinex, Difference of Gaussian, DCT, DCT Normalization, DWT, Gradient face, Self Quotient, Multi scale Self Quotient and Homomorphic filter. The proposed work consists of three steps. First step is to preprocess the face image with the above illumination normalization techniques; second step is to create the train and test database from the preprocessed face images and third step is to recognize the face images using Fuzzy K nearest neighbor classifier. The face recognition accuracy of all preprocessing techniques is compared using the AR face database of color images.

  3. Query and Update Efficient B+-Tree Based Indexing of Moving Objects

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Lin, Dan; Ooi, Beng Chin

    2004-01-01

    . This motivates the design of a solution that enables the B+-tree to manage moving objects. We represent moving-object locations as vectors that are timestamped based on their update time. By applying a novel linearization technique to these values, it is possible to index the resulting values using a single B...... are streamed to a database. Indexes for moving objects must support queries efficiently, but must also support frequent updates. Indexes based on minimum bounding regions (MBRs) such as the R-tree exhibit high concurrency overheads during node splitting, and each individual update is known to be quite costly......+-tree that partitions values according to their timestamp and otherwise preserves spatial proximity. We develop algorithms for range and k nearest neighbor queries, as well as continuous queries. The proposal can be grafted into existing database systems cost effectively. An extensive experimental study explores...

  4. Analysis and implementation of cross lingual short message service spam filtering using graph-based k-nearest neighbor

    Science.gov (United States)

    Ayu Cyntya Dewi, Dyah; Shaufiah; Asror, Ibnu

    2018-03-01

    SMS (Short Message Service) is on e of the communication services that still be the main choice, although now the phone grow with various applications. Along with the development of various other communication media, some countries lowered SMS rates to keep the interest of mobile users. It resulted in increased spam SMS that used by several parties, one of them for advertisement. Given the kind of multi-lingual documents in a message SMS, the Web, and others, necessary for effective multilingual or cross-lingual processing techniques is becoming increasingly important. The steps that performed in this research is data / messages first preprocessing then represented into a graph model. Then calculated using GKNN method. From this research we get the maximum accuracy is 98.86 with training data in Indonesian language and testing data in indonesian language with K 10 and threshold 0.001.

  5. Identifikasi Tumbuhan Obat Herbal Berdasarkan Citra Daun Menggunakan Algoritma Gray Level Co-occurence Matrix dan K-Nearest Neighbor

    Directory of Open Access Journals (Sweden)

    Fittria Shofrotun Ni'mah

    2018-03-01

    Full Text Available Medicinal plants can be used as an alternative natural treatment, instead of chemical drugs. But because of too many types of plants and lack of knowledge, it will be difficult to identify these herbs. Computer assistance can be used to facilitate the identification of these herbs. This research proposes the identification of herbal plants based on leaf image using texture analysis. There are 10 types of herbal medicinal plants used in this study. The texture analysis used was GLCM by extracting contrast, correlation, energy, and homogeneity. Classification is done by KNN. The result of the experiment showed that the accuracy of identification using 9-fold cross-cross validation method was 83.33% using 9 subsets. Tumbuhan obat herbal bisa dijadikan sebagai alternatif pengobatan yang alami, selain obat-obatan kimia. Namun karena terlalu banyak jenis tumbuhan dan kurangnya pengetahuan, identifikasi tumbuhan berkhasiat akan sulit. Bantuan komputer dapat digunakan untuk memudahkan mengidentifikasi tumbuhan herbal tersebut. Penelitian ini mengusulkan identifikasi tumbuhan herbal berdasarkan citra daun menggunakan analisis tekstur. Ada 10 spesies tumbuhan obat herbal yang digunakan dalam penelitian ini. Analisis tekstur yang digunakan adalah GLCM dengan mengekstrak nilai kontras, korelasi, energi dan homogenitas. Klasifikasi dilakukan dengan KNN. Hasil percobaan menunjukkan akurasi identifikasi menggunakan metode 9-fold cross validation mencapai 83.33% dengan menggunakan 9 subset.

  6. Estimation and Mapping Forest Attributes Using “k Nearest Neighbor” Method on IRS-P6 LISS III Satellite Image Data

    Directory of Open Access Journals (Sweden)

    Amir Eslam Bonyad

    2015-06-01

    Full Text Available In this study, we explored the utility of k Nearest Neighbor (kNN algorithm to integrate IRS-P6 LISS III satellite imagery data and ground inventory data for application in forest attributes (DBH, trees height, volume, basal area, density and forest cover type estimation and mapping. The ground inventory data was based on a systematic-random sampling grid and the numbers of sampling plots were 408 circular plots in a plantation in Guilan province, north of Iran. We concluded that kNN method was useful tool for mapping at a fine accuracy between 80% and 93.94%. Values of k between 5 and 8 seemed appropriate. The best distance metrics were found Euclidean, Fuzzy and Mahalanobis. Results showed that kNN was accurate enough for practical applicability for mapping forest areas.

  7. Recognition Number of The Vehicle Plate Using Otsu Method and K-Nearest Neighbour Classification

    Directory of Open Access Journals (Sweden)

    Maulidia Rahmah Hidayah

    2017-05-01

    Full Text Available The current topic that is interesting as a solution of the impact of public service improvement toward vehicle is License Plate Recognition (LPR, but it still needs to develop the research of LPR method. Some of the previous researchs showed that K-Nearest Neighbour (KNN succeed in car license plate recognition. The Objectives of this research was to determine the implementation and accuracy of Otsu Method toward license plate recognition. The method of this research was Otsu method to extract the characteristics and image of the plate into binary image and KNN as recognition classification method of each character. The development of the license plate recognition program by using Otsu method and classification of KNN is following the steps of pattern recognition, such as input and sensing, pre-processing, extraction feature Otsu method binary, segmentation, KNN classification method and post-processing by calculating the level of accuracy. The study showed that this program can recognize by 82% from 100 test plate with 93,75% of number recognition accuracy and 91,92% of letter recognition accuracy. 

  8. Time series classification using k-Nearest neighbours, Multilayer Perceptron and Learning Vector Quantization algorithms

    Directory of Open Access Journals (Sweden)

    Jiří Fejfar

    2012-01-01

    Full Text Available We are presenting results comparison of three artificial intelligence algorithms in a classification of time series derived from musical excerpts in this paper. Algorithms were chosen to represent different principles of classification – statistic approach, neural networks and competitive learning. The first algorithm is a classical k-Nearest neighbours algorithm, the second algorithm is Multilayer Perceptron (MPL, an example of artificial neural network and the third one is a Learning Vector Quantization (LVQ algorithm representing supervised counterpart to unsupervised Self Organizing Map (SOM.After our own former experiments with unlabelled data we moved forward to the data labels utilization, which generally led to a better accuracy of classification results. As we need huge data set of labelled time series (a priori knowledge of correct class which each time series instance belongs to, we used, with a good experience in former studies, musical excerpts as a source of real-world time series. We are using standard deviation of the sound signal as a descriptor of a musical excerpts volume level.We are describing principle of each algorithm as well as its implementation briefly, giving links for further research. Classification results of each algorithm are presented in a confusion matrix showing numbers of misclassifications and allowing to evaluate overall accuracy of the algorithm. Results are compared and particular misclassifications are discussed for each algorithm. Finally the best solution is chosen and further research goals are given.

  9. Development of K-Nearest Neighbour Regression Method in Forecasting River Stream Flow

    Directory of Open Access Journals (Sweden)

    Mohammad Azmi

    2012-07-01

    Full Text Available Different statistical, non-statistical and black-box methods have been used in forecasting processes. Among statistical methods, K-nearest neighbour non-parametric regression method (K-NN due to its natural simplicity and mathematical base is one of the recommended methods for forecasting processes. In this study, K-NN method is explained completely. Besides, development and improvement approaches such as best neighbour estimation, data transformation functions, distance functions and proposed extrapolation method are described. K-NN method in company with its development approaches is used in streamflow forecasting of Zayandeh-Rud Dam upper basin. Comparing between final results of classic K-NN method and modified K-NN (number of neighbour 5, transformation function of Range Scaling, distance function of Mahanalobis and proposed extrapolation method shows that modified K-NN in criteria of goodness of fit, root mean square error, percentage of volume of error and correlation has had performance improvement 45% , 59% and 17% respectively. These results approve necessity of applying mentioned approaches to derive more accurate forecasts.

  10. Evaluating a k-nearest neighbours-based classifier for locating faulty areas in power systems

    Directory of Open Access Journals (Sweden)

    Juan José Mora Flórez

    2008-09-01

    Full Text Available This paper reports a strategy for identifying and locating faults in a power distribution system. The strategy was based on the K-nearest neighbours technique. This technique simply helps to estimate a distance from the features used for describing a particu-lar fault being classified to the faults presented during the training stage. If new data is presented to the proposed fault locator, it is classified according to the nearest example recovered. A characterisation of the voltage and current measurements obtained at one single line end is also presented in this document for assigning the area in the case of a fault in a power system. The pro-posed strategy was tested in a real power distribution system, average 93% confidence indexes being obtained which gives a good indicator of the proposal’s high performance. The results showed how a fault could be located by using features obtained from voltage and current, improving utility response and thereby improving system continuity indexes in power distribution sys-tems.

  11. Raman spectroscopy combined with principal component analysis and k nearest neighbour analysis for non-invasive detection of colon cancer

    Science.gov (United States)

    Li, Xiaozhou; Yang, Tianyue; Li, Siqi; Wang, Deli; Song, Youtao; Zhang, Su

    2016-03-01

    This paper attempts to investigate the feasibility of using Raman spectroscopy for the diagnosis of colon cancer. Serum taken from 75 healthy volunteers, 65 colon cancer patients and 60 post-operation colon cancer patients was measured in this experiment. In the Raman spectra of all three groups, the Raman peaks at 750, 1083, 1165, 1321, 1629 and 1779 cm-1 assigned to nucleic acids, amino acids and chromophores were consistently observed. All of these six Raman peaks were observed to have statistically significant differences between groups. For quantitative analysis, the multivariate statistical techniques of principal component analysis (PCA) and k nearest neighbour analysis (KNN) were utilized to develop diagnostic algorithms for classification. In PCA, several peaks in the principal component (PC) loadings spectra were identified as the major contributors to the PC scores. Some of the peaks in the PC loadings spectra were also reported as characteristic peaks for colon tissues, which implies correlation between peaks in PC loadings spectra and those in the original Raman spectra. KNN was also performed on the obtained PCs, and a diagnostic accuracy of 91.0% and a specificity of 92.6% were achieved.

  12. Raman spectroscopy combined with principal component analysis and k nearest neighbour analysis for non-invasive detection of colon cancer

    International Nuclear Information System (INIS)

    Li, Xiaozhou; Yang, Tianyue; Wang, Deli; Li, Siqi; Song, Youtao; Zhang, Su

    2016-01-01

    This paper attempts to investigate the feasibility of using Raman spectroscopy for the diagnosis of colon cancer. Serum taken from 75 healthy volunteers, 65 colon cancer patients and 60 post-operation colon cancer patients was measured in this experiment. In the Raman spectra of all three groups, the Raman peaks at 750, 1083, 1165, 1321, 1629 and 1779 cm −1 assigned to nucleic acids, amino acids and chromophores were consistently observed. All of these six Raman peaks were observed to have statistically significant differences between groups. For quantitative analysis, the multivariate statistical techniques of principal component analysis (PCA) and k nearest neighbour analysis (KNN) were utilized to develop diagnostic algorithms for classification. In PCA, several peaks in the principal component (PC) loadings spectra were identified as the major contributors to the PC scores. Some of the peaks in the PC loadings spectra were also reported as characteristic peaks for colon tissues, which implies correlation between peaks in PC loadings spectra and those in the original Raman spectra. KNN was also performed on the obtained PCs, and a diagnostic accuracy of 91.0% and a specificity of 92.6% were achieved. (paper)

  13. Model-based mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories

    Science.gov (United States)

    Steen Magnussen; Ronald E. McRoberts; Erkki O. Tomppo

    2009-01-01

    New model-based estimators of the uncertainty of pixel-level and areal k-nearest neighbour (knn) predictions of attribute Y from remotely-sensed ancillary data X are presented. Non-parametric functions predict Y from scalar 'Single Index Model' transformations of X. Variance functions generated...

  14. Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition

    International Nuclear Information System (INIS)

    Shen Hongbin; Chou Kuochen

    2005-01-01

    The nucleus is the brain of eukaryotic cells that guides the life processes of the cell by issuing key instructions. For in-depth understanding of the biochemical process of the nucleus, the knowledge of localization of nuclear proteins is very important. With the avalanche of protein sequences generated in the post-genomic era, it is highly desired to develop an automated method for fast annotating the subnuclear locations for numerous newly found nuclear protein sequences so as to be able to timely utilize them for basic research and drug discovery. In view of this, a novel approach is developed for predicting the protein subnuclear location. It is featured by introducing a powerful classifier, the optimized evidence-theoretic K-nearest classifier, and using the pseudo amino acid composition [K.C. Chou, PROTEINS: Structure, Function, and Genetics, 43 (2001) 246], which can incorporate a considerable amount of sequence-order effects, to represent protein samples. As a demonstration, identifications were performed for 370 nuclear proteins among the following 9 subnuclear locations: (1) Cajal body, (2) chromatin, (3) heterochromatin, (4) nuclear diffuse, (5) nuclear pore, (6) nuclear speckle, (7) nucleolus, (8) PcG body, and (9) PML body. The overall success rates thus obtained by both the re-substitution test and jackknife cross-validation test are significantly higher than those by existing classifiers on the same working dataset. It is anticipated that the powerful approach may also become a useful high throughput vehicle to bridge the huge gap occurring in the post-genomic era between the number of gene sequences in databases and the number of gene products that have been functionally characterized. The OET-KNN classifier will be available at www.pami.sjtu.edu.cn/people/hbshen

  15. Fast Most Similar Neighbor (MSN) classifiers for Mixed Data

    OpenAIRE

    Hernández Rodríguez, Selene

    2010-01-01

    The k nearest neighbor (k-NN) classifier has been extensively used in Pattern Recognition because of its simplicity and its good performance. However, in large datasets applications, the exhaustive k-NN classifier becomes impractical. Therefore, many fast k-NN classifiers have been developed; most of them rely on metric properties (usually the triangle inequality) to reduce the number of prototype comparisons. Hence, the existing fast k-NN classifiers are applicable only when the comparison f...

  16. Query deforestation

    OpenAIRE

    Grust, Torsten; Scholl, Marc H.

    1998-01-01

    The construction of a declarative query engine for a DBMS includes the challenge of compiling algebraic queries into efficient execution plans that can be run on top of the persistent storage. This work pursues the goal of employing foldr-build deforestation for the derivation of efficient streaming programs - programs that do not allocate intermediate data structures to perform their task - from algebraic (combinator) query plans. The query engine is based on the insertion representation of ...

  17. Superfund Query

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Superfund Query allows users to retrieve data from the Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) database.

  18. Personalised news filtering and recommendation system using Chi-square statistics-based K-nearest neighbour (χ2SB-KNN) model

    Science.gov (United States)

    Adeniyi, D. A.; Wei, Z.; Yang, Y.

    2017-10-01

    Recommendation problem has been extensively studied by researchers in the field of data mining, database and information retrieval. This study presents the design and realisation of an automated, personalised news recommendations system based on Chi-square statistics-based K-nearest neighbour (χ2SB-KNN) model. The proposed χ2SB-KNN model has the potential to overcome computational complexity and information overloading problems, reduces runtime and speeds up execution process through the use of critical value of χ2 distribution. The proposed recommendation engine can alleviate scalability challenges through combined online pattern discovery and pattern matching for real-time recommendations. This work also showcases the development of a novel method of feature selection referred to as Data Discretisation-Based feature selection method. This is used for selecting the best features for the proposed χ2SB-KNN algorithm at the preprocessing stage of the classification procedures. The implementation of the proposed χ2SB-KNN model is achieved through the use of a developed in-house Java program on an experimental website called OUC newsreaders' website. Finally, we compared the performance of our system with two baseline methods which are traditional Euclidean distance K-nearest neighbour and Naive Bayesian techniques. The result shows a significant improvement of our method over the baseline methods studied.

  19. A Comparison of the Spatial Linear Model to Nearest Neighbor (k-NN) Methods for Forestry Applications

    Science.gov (United States)

    Jay M. Ver Hoef; Hailemariam Temesgen; Sergio Gómez

    2013-01-01

    Forest surveys provide critical information for many diverse interests. Data are often collected from samples, and from these samples, maps of resources and estimates of aerial totals or averages are required. In this paper, two approaches for mapping and estimating totals; the spatial linear model (SLM) and k-NN (k-Nearest Neighbor) are compared, theoretically,...

  20. Query responses

    Directory of Open Access Journals (Sweden)

    Paweł Łupkowski

    2017-05-01

    Full Text Available In this article we consider the phenomenon of answering a query with a query. Although such answers are common, no large scale, corpus-based characterization exists, with the exception of clarification requests. After briefly reviewing different theoretical approaches on this subject, we present a corpus study of query responses in the British National Corpus and develop a taxonomy for query responses. We point at a variety of response categories that have not been formalized in previous dialogue work, particularly those relevant to adversarial interaction. We show that different response categories have significantly different rates of subsequent answer provision. We provide a formal analysis of the response categories in the framework of KoS.

  1. Nearest neighbors by neighborhood counting.

    Science.gov (United States)

    Wang, Hui

    2006-06-01

    Finding nearest neighbors is a general idea that underlies many artificial intelligence tasks, including machine learning, data mining, natural language understanding, and information retrieval. This idea is explicitly used in the k-nearest neighbors algorithm (kNN), a popular classification method. In this paper, this idea is adopted in the development of a general methodology, neighborhood counting, for devising similarity functions. We turn our focus from neighbors to neighborhoods, a region in the data space covering the data point in question. To measure the similarity between two data points, we consider all neighborhoods that cover both data points. We propose to use the number of such neighborhoods as a measure of similarity. Neighborhood can be defined for different types of data in different ways. Here, we consider one definition of neighborhood for multivariate data and derive a formula for such similarity, called neighborhood counting measure or NCM. NCM was tested experimentally in the framework of kNN. Experiments show that NCM is generally comparable to VDM and its variants, the state-of-the-art distance functions for multivariate data, and, at the same time, is consistently better for relatively large k values. Additionally, NCM consistently outperforms HEOM (a mixture of Euclidean and Hamming distances), the "standard" and most widely used distance function for multivariate data. NCM has a computational complexity in the same order as the standard Euclidean distance function and NCM is task independent and works for numerical and categorical data in a conceptually uniform way. The neighborhood counting methodology is proven sound for multivariate data experimentally. We hope it will work for other types of data.

  2. The classification of hunger behaviour of Lates Calcarifer through the integration of image processing technique and k-Nearest Neighbour learning algorithm

    Science.gov (United States)

    Taha, Z.; Razman, M. A. M.; Ghani, A. S. Abdul; Majeed, A. P. P. Abdul; Musa, R. M.; Adnan, F. A.; Sallehudin, M. F.; Mukai, Y.

    2018-04-01

    Fish Hunger behaviour is essential in determining the fish feeding routine, particularly for fish farmers. The inability to provide accurate feeding routines (under-feeding or over-feeding) may lead the death of the fish and consequently inhibits the quantity of the fish produced. Moreover, the excessive food that is not consumed by the fish will be dissolved in the water and accordingly reduce the water quality through the reduction of oxygen quantity. This problem also leads the death of the fish or even spur fish diseases. In the present study, a correlation of Barramundi fish-school behaviour with hunger condition through the hybrid data integration of image processing technique is established. The behaviour is clustered with respect to the position of the school size as well as the school density of the fish before feeding, during feeding and after feeding. The clustered fish behaviour is then classified through k-Nearest Neighbour (k-NN) learning algorithm. Three different variations of the algorithm namely cosine, cubic and weighted are assessed on its ability to classify the aforementioned fish hunger behaviour. It was found from the study that the weighted k-NN variation provides the best classification with an accuracy of 86.5%. Therefore, it could be concluded that the proposed integration technique may assist fish farmers in ascertaining fish feeding routine.

  3. Comparative Performance Analysis of Support Vector Machine, Random Forest, Logistic Regression and k-Nearest Neighbours in Rainbow Trout (Oncorhynchus Mykiss) Classification Using Image-Based Features.

    Science.gov (United States)

    Saberioon, Mohammadmehdi; Císař, Petr; Labbé, Laurent; Souček, Pavel; Pelissier, Pablo; Kerneis, Thierry

    2018-03-29

    The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout ( Oncorhynchus mykiss ) were fed either a fish-meal based diet (80 fish) or a 100% plant-based diet (80 fish) and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF), Support vector machine (SVM), Logistic regression (LR) and k -Nearest neighbours ( k -NN). The SVM with radial based kernel provided the best classifier with correct classification rate (CCR) of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k -NN was the least accurate (40%) classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet's effects on fish skin.

  4. Comparative Performance Analysis of Support Vector Machine, Random Forest, Logistic Regression and k-Nearest Neighbours in Rainbow Trout (Oncorhynchus Mykiss Classification Using Image-Based Features

    Directory of Open Access Journals (Sweden)

    Mohammadmehdi Saberioon

    2018-03-01

    Full Text Available The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout (Oncorhynchus mykiss were fed either a fish-meal based diet (80 fish or a 100% plant-based diet (80 fish and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF, Support vector machine (SVM, Logistic regression (LR and k-Nearest neighbours (k-NN. The SVM with radial based kernel provided the best classifier with correct classification rate (CCR of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k-NN was the least accurate (40% classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet’s effects on fish skin.

  5. The application of k-Nearest Neighbour in the identification of high potential archers based on relative psychological coping skills variables

    Science.gov (United States)

    Taha, Zahari; Muazu Musa, Rabiu; Majeed, Anwar P. P. Abdul; Razali Abdullah, Mohamad; Muaz Alim, Muhammad; Nasir, Ahmad Fakhri Ab

    2018-04-01

    The present study aims at classifying and predicting high and low potential archers from a collection of psychological coping skills variables trained on different k-Nearest Neighbour (k-NN) kernels. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from various archery programmes completed a one end shooting score test. Psychological coping skills inventory which evaluates the archers level of related coping skills were filled out by the archers prior to their shooting tests. k-means cluster analysis was applied to cluster the archers based on their scores on variables assessed k-NN models, i.e. fine, medium, coarse, cosine, cubic and weighted kernel functions, were trained on the psychological variables. The k-means clustered the archers into high psychologically prepared archers (HPPA) and low psychologically prepared archers (LPPA), respectively. It was demonstrated that the cosine k-NN model exhibited good accuracy and precision throughout the exercise with an accuracy of 94% and considerably fewer error rate for the prediction of the HPPA and the LPPA as compared to the rest of the models. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from the selected psychological coping skills variables examined which would consequently save time and energy during talent identification and development programme.

  6. Improving case-based reasoning systems by combining k-nearest neighbour algorithm with logistic regression in the prediction of patients' registration on the renal transplant waiting list.

    Directory of Open Access Journals (Sweden)

    Boris Campillo-Gimenez

    Full Text Available Case-based reasoning (CBR is an emerging decision making paradigm in medical research where new cases are solved relying on previously solved similar cases. Usually, a database of solved cases is provided, and every case is described through a set of attributes (inputs and a label (output. Extracting useful information from this database can help the CBR system providing more reliable results on the yet to be solved cases.We suggest a general framework where a CBR system, viz. K-Nearest Neighbour (K-NN algorithm, is combined with various information obtained from a Logistic Regression (LR model, in order to improve prediction of access to the transplant waiting list.LR is applied, on the case database, to assign weights to the attributes as well as the solved cases. Thus, five possible decision making systems based on K-NN and/or LR were identified: a standalone K-NN, a standalone LR and three soft K-NN algorithms that rely on the weights based on the results of the LR. The evaluation was performed under two conditions, either using predictive factors known to be related to registration, or using a combination of factors related and not related to registration.The results show that our suggested approach, where the K-NN algorithm relies on both weighted attributes and cases, can efficiently deal with non relevant attributes, whereas the four other approaches suffer from this kind of noisy setups. The robustness of this approach suggests interesting perspectives for medical problem solving tools using CBR methodology.

  7. Approximate dictionary queries

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Gasieniec, Leszek

    1996-01-01

    Given a set of n binary strings of length m each. We consider the problem of answering d-queries. Given a binary query string of length m, a d-query is to report if there exists a string in the set within Hamming distance d of . We present a data structure of size O(nm) supporting 1-queries in ti...

  8. Learning via Query Synthesis

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2017-01-01

    Active learning is a subfield of machine learning that has been successfully used in many applications. One of the main branches of active learning is query synthe- sis, where the learning agent constructs artificial queries from scratch in order

  9. Learning semantic query suggestions

    NARCIS (Netherlands)

    Meij, E.; Bron, M.; Hollink, L.; Huurnink, B.; de Rijke, M.

    2009-01-01

    An important application of semantic web technology is recognizing human-defined concepts in text. Query transformation is a strategy often used in search engines to derive queries that are able to return more useful search results than the original query and most popular search engines provide

  10. Recommending Multidimensional Queries

    Science.gov (United States)

    Giacometti, Arnaud; Marcel, Patrick; Negre, Elsa

    Interactive analysis of datacube, in which a user navigates a cube by launching a sequence of queries is often tedious since the user may have no idea of what the forthcoming query should be in his current analysis. To better support this process we propose in this paper to apply a Collaborative Work approach that leverages former explorations of the cube to recommend OLAP queries. The system that we have developed adapts Approximate String Matching, a technique popular in Information Retrieval, to match the current analysis with the former explorations and help suggesting a query to the user. Our approach has been implemented with the open source Mondrian OLAP server to recommend MDX queries and we have carried out some preliminary experiments that show its efficiency for generating effective query recommendations.

  11. Unemployment Insurance Query (UIQ)

    Data.gov (United States)

    Social Security Administration — The Unemployment Insurance Query (UIQ) provides State Unemployment Insurance agencies real-time online access to SSA data. This includes SSN verification and Title...

  12. Optimizing Temporal Queries

    DEFF Research Database (Denmark)

    Toman, David; Bowman, Ivan Thomas

    2003-01-01

    Recent research in the area of temporal databases has proposed a number of query languages that vary in their expressive power and the semantics they provide to users. These query languages represent a spectrum of solutions to the tension between clean semantics and efficient evaluation. Often, t...

  13. Mastering jQuery

    CERN Document Server

    Libby, Alex

    2015-01-01

    If you are a developer who is already familiar with using jQuery and wants to push your skill set further, then this book is for you. The book assumes an intermediate knowledge level of jQuery, JavaScript, HTML5, and CSS.

  14. Query recommendation for children

    NARCIS (Netherlands)

    Duarte Torres, Sergio; Hiemstra, Djoerd; Weber, Ingmar; Serdyukov, Pavel

    2012-01-01

    One of the biggest problems that children experience while searching the web occurs during the query formulation process. Children have been found to struggle formulating queries based on keywords given their limited vocabulary and their difficulty to choose the right keywords. In this work we

  15. Collective spatial keyword querying

    DEFF Research Database (Denmark)

    Cao, Xin; Cong, Gao; Jensen, Christian S.

    2011-01-01

    With the proliferation of geo-positioning and geo-tagging, spatial web objects that possess both a geographical location and a textual description are gaining in prevalence, and spatial keyword queries that exploit both location and textual description are gaining in prominence. However, the quer......With the proliferation of geo-positioning and geo-tagging, spatial web objects that possess both a geographical location and a textual description are gaining in prevalence, and spatial keyword queries that exploit both location and textual description are gaining in prominence. However......, the queries studied so far generally focus on finding individual objects that each satisfy a query rather than finding groups of objects where the objects in a group collectively satisfy a query. We define the problem of retrieving a group of spatial web objects such that the group's keywords cover the query......'s keywords and such that objects are nearest to the query location and have the lowest inter-object distances. Specifically, we study two variants of this problem, both of which are NP-complete. We devise exact solutions as well as approximate solutions with provable approximation bounds to the problems. We...

  16. Range-clustering queries

    NARCIS (Netherlands)

    Abrahamsen, M.; de Berg, M.T.; Buchin, K.A.; Mehr, M.; Mehrabi, A.D.

    2017-01-01

    In a geometric k -clustering problem the goal is to partition a set of points in R d into k subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set S : given a query box Q and an integer k>2 , compute

  17. Querying Workflow Logs

    Directory of Open Access Journals (Sweden)

    Yan Tang

    2018-01-01

    Full Text Available A business process or workflow is an assembly of tasks that accomplishes a business goal. Business process management is the study of the design, configuration/implementation, enactment and monitoring, analysis, and re-design of workflows. The traditional methodology for the re-design and improvement of workflows relies on the well-known sequence of extract, transform, and load (ETL, data/process warehousing, and online analytical processing (OLAP tools. In this paper, we study the ad hoc queryiny of process enactments for (data-centric business processes, bypassing the traditional methodology for more flexibility in querying. We develop an algebraic query language based on “incident patterns” with four operators inspired from Business Process Model and Notation (BPMN representation, allowing the user to formulate ad hoc queries directly over workflow logs. A formal semantics of this query language, a preliminary query evaluation algorithm, and a group of elementary properties of the operators are provided.

  18. Indexing for summary queries

    DEFF Research Database (Denmark)

    Yi, Ke; Wang, Lu; Wei, Zhewei

    2014-01-01

    ), of a particular attribute of these records. Aggregation queries are especially useful in business intelligence and data analysis applications where users are interested not in the actual records, but some statistics of them. They can also be executed much more efficiently than reporting queries, by embedding...... returned by reporting queries. In this article, we design indexing techniques that allow for extracting a statistical summary of all the records in the query. The summaries we support include frequent items, quantiles, and various sketches, all of which are of central importance in massive data analysis....... Our indexes require linear space and extract a summary with the optimal or near-optimal query cost. We illustrate the efficiency and usefulness of our designs through extensive experiments and a system demonstration....

  19. Classification in medical image analysis using adaptive metric k-NN

    DEFF Research Database (Denmark)

    Chen, Chen; Chernoff, Konstantin; Karemore, Gopal

    2010-01-01

    The performance of the k-nearest neighborhoods (k-NN) classifier is highly dependent on the distance metric used to identify the k nearest neighbors of the query points. The standard Euclidean distance is commonly used in practice. This paper investigates the performance of k-NN classifier...

  20. jQuery cookbook

    CERN Document Server

    2010-01-01

    jQuery simplifies building rich, interactive web frontends. Getting started with this JavaScript library is easy, but it can take years to fully realize its breadth and depth; this cookbook shortens the learning curve considerably. With these recipes, you'll learn patterns and practices from 19 leading developers who use jQuery for everything from integrating simple components into websites and applications to developing complex, high-performance user interfaces. Ideal for newcomers and JavaScript veterans alike, jQuery Cookbook starts with the basics and then moves to practical use cases w

  1. CUFID-query: accurate network querying through random walk based network flow estimation.

    Science.gov (United States)

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive

  2. Knowledge Query Language (KQL)

    Science.gov (United States)

    2016-02-12

    described as a sparse, distributed multidimensional sorted map. Unlike a relational database , BigTable has no multicolumn primary keys or constraints. The...in query languages such as SQL. Figure 3. Address expression-based querying. Each circled step in Figure 3 is described below. Datastore/ Database ...implementation we describe in later sections stores the instance of registry ontology in JSON files. 7 Throughout the rest of this report, we use the

  3. NeighborHood

    OpenAIRE

    Corominola Ocaña, Víctor

    2015-01-01

    NeighborHood és una aplicació basada en el núvol, adaptable a qualsevol dispositiu (mòbil, tablet, desktop). L'objectiu d'aquesta aplicació és poder permetre als usuaris introduir a les persones del seu entorn més immediat i que aquestes persones siguin visibles per a la resta d'usuaris. NeighborHood es una aplicación basada en la nube, adaptable a cualquier dispositivo (móvil, tablet, desktop). El objetivo de esta aplicación es poder permitir a los usuarios introducir a las personas de su...

  4. Neighbors United for Health

    Science.gov (United States)

    Westhoff, Wayne W.; Corvin, Jaime; Virella, Irmarie

    2009-01-01

    Modeled upon the ecclesiastic community group concept of Latin America to unite and strengthen the bond between the Church and neighborhoods, a community-based organization created Vecinos Unidos por la Salud (Neighbors United for Health) to bring health messages into urban Latino neighborhoods. The model is based on five tenants, and incorporates…

  5. KoralQuery -- A General Corpus Query Protocol

    DEFF Research Database (Denmark)

    Bingel, Joachim; Diewald, Nils

    2015-01-01

    . In this paper, we present KoralQuery, a JSON-LD based general corpus query protocol, aiming to be independent of particular QLs, tasks and corpus formats. In addition to describing the system of types and operations that KoralQuery is built on, we exemplify the representation of corpus queries in the serialized...

  6. jQuery Mobile

    CERN Document Server

    Reid, Jon

    2011-01-01

    Native apps have distinct advantages, but the future belongs to mobile web apps that function on a broad range of smartphones and tablets. Get started with jQuery Mobile, the touch-optimized framework for creating apps that look and behave consistently across many devices. This concise book provides HTML5, CSS3, and JavaScript code examples, screen shots, and step-by-step guidance to help you build a complete working app with jQuery Mobile. If you're already familiar with the jQuery JavaScript library, you can use your existing skills to build cross-platform mobile web apps right now. This b

  7. Code query by example

    Science.gov (United States)

    Vaucouleur, Sebastien

    2011-02-01

    We introduce code query by example for customisation of evolvable software products in general and of enterprise resource planning systems (ERPs) in particular. The concept is based on an initial empirical study on practices around ERP systems. We motivate our design choices based on those empirical results, and we show how the proposed solution helps with respect to the infamous upgrade problem: the conflict between the need for customisation and the need for upgrade of ERP systems. We further show how code query by example can be used as a form of lightweight static analysis, to detect automatically potential defects in large software products. Code query by example as a form of lightweight static analysis is particularly interesting in the context of ERP systems: it is often the case that programmers working in this field are not computer science specialists but more of domain experts. Hence, they require a simple language to express custom rules.

  8. User perspectives on query difficulty

    DEFF Research Database (Denmark)

    Lioma, Christina; Larsen, Birger; Schütze, Hinrich

    2011-01-01

    be difficult for the system to address? (2) Are users aware of specific features in their query (e.g., domain-specificity, vagueness) that may render their query difficult for an IR system to address? A study of 420 queries from a Web search engine query log that are pre-categorised as easy, medium, hard...

  9. Flexible Query Answering Systems

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 10th International Conference on Flexible Query Answering Systems, FQAS 2013, held in Granada, Spain, in September 2013. The 59 full papers included in this volume were carefully reviewed and selected from numerous submissions. The papers...... are organized in a general session train and a parallel special session track. The general session train covers the following topics: querying-answering systems; semantic technology; patterns and classification; personalization and recommender systems; searching and ranking; and Web and human...

  10. Learning jQuery

    CERN Document Server

    Chaffer, Jonathan

    2013-01-01

    Step through each of the core concepts of the jQuery library, building an overall picture of its capabilities. Once you have thoroughly covered the basics, the book returns to each concept to cover more advanced examples and techniques.This book is for web designers who want to create interactive elements for their designs, and for developers who want to create the best user interface for their web applications. Basic JavaScript programming and knowledge of HTML and CSS is required. No knowledge of jQuery is assumed, nor is experience with any other JavaScript libraries.

  11. Spatial Keyword Query Processing

    DEFF Research Database (Denmark)

    Chen, Lisi; Jensen, Christian S.; Wu, Dingming

    2013-01-01

    Geo-textual indices play an important role in spatial keyword query- ing. The existing geo-textual indices have not been compared sys- tematically under the same experimental framework. This makes it difficult to determine which indexing technique best supports specific functionality. We provide...... an all-around survey of 12 state- of-the-art geo-textual indices. We propose a benchmark that en- ables the comparison of the spatial keyword query performance. We also report on the findings obtained when applying the bench- mark to the indices, thus uncovering new insights that may guide index...

  12. Forecasting of steel consumption with use of nearest neighbors method

    Directory of Open Access Journals (Sweden)

    Rogalewicz Michał

    2017-01-01

    Full Text Available In the process of building a steel construction, its design is usually commissioned to the design office. Then a quotation is made and the finished offer is delivered to the customer. Its final shape is influenced by steel consumption to a great extent. Correct determination of the potential consumption of this material most often determines the profitability of the project. Because of a long waiting time for a final project from the design office, it is worthwhile to pre-analyze the project’s profitability and feasibility using historical data on already realized orders. The paper presents an innovative approach to decision-making support in one of the Polish construction companies. The authors have defined and prioritized the most important factors that differentiate the executed orders and have the greatest impact on steel consumption. These are, among others: height and width of steel structure, number of aisles, type of roof, etc. Then they applied and adapted the method of k-nearest neighbors to the specificity of the discussed problem. The goal was to search a set of historical orders and find the most similar to the analyzed one. On this basis, consumption of steel can be estimated. The method was programmed within the EXPLOR application.

  13. Spatial Keyword Querying

    DEFF Research Database (Denmark)

    Cao, Xin; Chen, Lisi; Cong, Gao

    2012-01-01

    The web is increasingly being used by mobile users. In addition, it is increasingly becoming possible to accurately geo-position mobile users and web content. This development gives prominence to spatial web data management. Specifically, a spatial keyword query takes a user location and user-sup...... different kinds of functionality as well as the ideas underlying their definition....

  14. Manchester visual query language

    Science.gov (United States)

    Oakley, John P.; Davis, Darryl N.; Shann, Richard T.

    1993-04-01

    We report a database language for visual retrieval which allows queries on image feature information which has been computed and stored along with images. The language is novel in that it provides facilities for dealing with feature data which has actually been obtained from image analysis. Each line in the Manchester Visual Query Language (MVQL) takes a set of objects as input and produces another, usually smaller, set as output. The MVQL constructs are mainly based on proven operators from the field of digital image analysis. An example is the Hough-group operator which takes as input a specification for the objects to be grouped, a specification for the relevant Hough space, and a definition of the voting rule. The output is a ranked list of high scoring bins. The query could be directed towards one particular image or an entire image database, in the latter case the bins in the output list would in general be associated with different images. We have implemented MVQL in two layers. The command interpreter is a Lisp program which maps each MVQL line to a sequence of commands which are used to control a specialized database engine. The latter is a hybrid graph/relational system which provides low-level support for inheritance and schema evolution. In the paper we outline the language and provide examples of useful queries. We also describe our solution to the engineering problems associated with the implementation of MVQL.

  15. Approximating terminological queries

    NARCIS (Netherlands)

    Stuckenschmidt, Heiner; Van Harmelen, Frank

    2002-01-01

    Current proposals for languages to encode terminological knowledge in intelligent systems support logical reasoning for answering user queries about objects and classes. An application of these languages on the World Wide Web, however, is hampered by the limitations of logical reasoning in terms

  16. Flexible Query Answering Systems

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 12th International Conference on Flexible Query Answering Systems, FQAS 2017, held in London, UK, in June 2017. The 21 full papers presented in this book together with 4 short papers were carefully reviewed and selected from 43 submissions...

  17. Learning via Query Synthesis

    KAUST Repository

    Alabdulmohsin, Ibrahim Mansour

    2017-05-07

    Active learning is a subfield of machine learning that has been successfully used in many applications. One of the main branches of active learning is query synthe- sis, where the learning agent constructs artificial queries from scratch in order to reveal sensitive information about the underlying decision boundary. It has found applications in areas, such as adversarial reverse engineering, automated science, and computational chemistry. Nevertheless, the existing literature on membership query synthesis has, generally, focused on finite concept classes or toy problems, with a limited extension to real-world applications. In this thesis, I develop two spectral algorithms for learning halfspaces via query synthesis. The first algorithm is a maximum-determinant convex optimization method while the second algorithm is a Markovian method that relies on Khachiyan’s classical update formulas for solving linear programs. The general theme of these methods is to construct an ellipsoidal approximation of the version space and to synthesize queries, afterward, via spectral decomposition. Moreover, I also describe how these algorithms can be extended to other settings as well, such as pool-based active learning. Having demonstrated that halfspaces can be learned quite efficiently via query synthesis, the second part of this thesis proposes strategies for mitigating the risk of reverse engineering in adversarial environments. One approach that can be used to render query synthesis algorithms ineffective is to implement a randomized response. In this thesis, I propose a semidefinite program (SDP) for learning a distribution of classifiers, subject to the constraint that any individual classifier picked at random from this distributions provides reliable predictions with a high probability. This algorithm is, then, justified both theoretically and empirically. A second approach is to use a non-parametric classification method, such as similarity-based classification. In this

  18. QUERY SUPPORT FOR GMZ

    Directory of Open Access Journals (Sweden)

    A. Khandelwal

    2017-07-01

    Full Text Available Generic text-based compression models are simple and fast but there are two issues that needs to be addressed. They cannot leverage the structure that exists in data to achieve better compression and there is an unnecessary decompression step before the user can actually use the data. To address these issues, we came up with GMZ, a lossless compression model aimed at achieving high compression ratios. The decision to design GMZ (Khandelwal and Rajan, 2017 exclusively for GML's Simple Features Profile (SFP seems fair because of the high use of SFP in WFS and that it facilitates high optimisation of the compression model. This is an extension of our work on GMZ. In a typical server-client model such as Web Feature Service, the server is the primary creator and provider of GML, and therefore, requires compression and query capabilities. On the other hand, the client is the primary consumer of GML, and therefore, requires decompression and visualisation capabilities. In the first part of our work, we demonstrated compression using a python script that can be plugged in a server architecture, and decompression and visualisation in a web browser using a Firefox addon. The focus of this work is to develop the already existing tools to provide query capability to server. Our model provides the ability to decompress individual features in isolation, which is an essential requirement for realising query in compressed state. We con - struct an R-Tree index for spatial data and a custom index for non-spatial data and store these in a separate index file to prevent alter - ing the compression model. This facilitates independent use of compressed GMZ file where index can be constructed when required. The focus of this work is the bounding-box or range query commonly used in webGIS with provision for other spatial and non-spatial queries. The decrement in compression ratios due to the new index file is in the range of 1–3 percent which is trivial considering

  19. Google BigQuery analytics

    CERN Document Server

    Tigani, Jordan

    2014-01-01

    How to effectively use BigQuery, avoid common mistakes, and execute sophisticated queries against large datasets Google BigQuery Analytics is the perfect guide for business and data analysts who want the latest tips on running complex queries and writing code to communicate with the BigQuery API. The book uses real-world examples to demonstrate current best practices and techniques, and also explains and demonstrates streaming ingestion, transformation via Hadoop in Google Compute engine, AppEngine datastore integration, and using GViz with Tableau to generate charts of query results. In addit

  20. Querying on Federated Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zuhal Can

    2016-09-01

    Full Text Available A Federated Sensor Network (FSN is a network of geographically distributed Wireless Sensor Networks (WSNs called islands. For querying on an FSN, we introduce the Layered Federated Sensor Network (L-FSN Protocol. For layered management, L-FSN provides communication among islands by its inter-island querying protocol by which a query packet routing path is determined according to some path selection policies. L-FSN allows autonomous management of each island by island-specific intra-island querying protocols that can be selected according to island properties. We evaluate the applicability of L-FSN and compare the L-FSN protocol with various querying protocols running on the flat federation model. Flat federation is a method to federate islands by running a single querying protocol on an entire FSN without distinguishing communication among and within islands. For flat federation, we select a querying protocol from geometrical, hierarchical cluster-based, hash-based, and tree-based WSN querying protocol categories. We found that a layered federation of islands by L-FSN increases the querying performance with respect to energy-efficiency, query resolving distance, and query resolving latency. Moreover, L-FSN’s flexibility of choosing intra-island querying protocols regarding the island size brings advantages on energy-efficiency and query resolving latency.

  1. Conceptual querying through ontologies

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik

    2009-01-01

    is motivated by an obvious need for users to survey huge volumes of objects in query answers. An ontology formalism and a special notion of-instantiated ontology" are introduced. The latter is a structure reflecting the content in the document collection in that; it is a restriction of a general world......We present here ail approach to conceptual querying where the aim is, given a collection of textual database objects or documents, to target an abstraction of the entire database content in terms of the concepts appearing in documents, rather than the documents in the collection. The approach...... knowledge ontology to the concepts instantiated in the collection. The notion of ontology-based similarity is briefly described, language constructs for direct navigation and retrieval of concepts in the ontology are discussed and approaches to conceptual summarization are presented....

  2. Query optimization over crowdsourced data

    KAUST Repository

    Park, Hyunjung; Widom, Jennifer

    2013-01-01

    Deco is a comprehensive system for answering declarative queries posed over stored relational data together with data obtained on-demand from the crowd. In this paper we describe Deco's cost-based query optimizer, building on Deco's data model

  3. SpaceTwist

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Jensen, Christian Søndergaard; Xuegang, Huang

    2008-01-01

    -based matching generally fall short in offering practical query accuracy guarantees. Our proposed framework, called SpaceTwist, rectifies these shortcomings for k nearest neighbor (kNN) queries. Starting with a location different from the user's actual location, nearest neighbors are retrieved incrementally...

  4. Mastering jQuery mobile

    CERN Document Server

    Lambert, Chip

    2015-01-01

    You've started down the path of jQuery Mobile, now begin mastering some of jQuery Mobile's higher level topics. Go beyond jQuery Mobile's documentation and master one of the hottest mobile technologies out there. Previous JavaScript and PHP experience can help you get the most out of this book.

  5. Query optimization over crowdsourced data

    KAUST Repository

    Park, Hyunjung

    2013-08-26

    Deco is a comprehensive system for answering declarative queries posed over stored relational data together with data obtained on-demand from the crowd. In this paper we describe Deco\\'s cost-based query optimizer, building on Deco\\'s data model, query language, and query execution engine presented earlier. Deco\\'s objective in query optimization is to find the best query plan to answer a query, in terms of estimated monetary cost. Deco\\'s query semantics and plan execution strategies require several fundamental changes to traditional query optimization. Novel techniques incorporated into Deco\\'s query optimizer include a cost model distinguishing between "free" existing data versus paid new data, a cardinality estimation algorithm coping with changes to the database state during query execution, and a plan enumeration algorithm maximizing reuse of common subplans in a setting that makes reuse challenging. We experimentally evaluate Deco\\'s query optimizer, focusing on the accuracy of cost estimation and the efficiency of plan enumeration.

  6. A Hybrid Instance Selection Using Nearest-Neighbor for Cross-Project Defect Prediction

    Institute of Scientific and Technical Information of China (English)

    Duksan Ryu; Jong-In Jang; Jongmoon Baik; Member; ACM; IEEE

    2015-01-01

    Software defect prediction (SDP) is an active research field in software engineering to identify defect-prone modules. Thanks to SDP, limited testing resources can be effectively allocated to defect-prone modules. Although SDP requires suffcient local data within a company, there are cases where local data are not available, e.g., pilot projects. Companies without local data can employ cross-project defect prediction (CPDP) using external data to build classifiers. The major challenge of CPDP is different distributions between training and test data. To tackle this, instances of source data similar to target data are selected to build classifiers. Software datasets have a class imbalance problem meaning the ratio of defective class to clean class is far low. It usually lowers the performance of classifiers. We propose a Hybrid Instance Selection Using Nearest-Neighbor (HISNN) method that performs a hybrid classification selectively learning local knowledge (via k-nearest neighbor) and global knowledge (via na¨ıve Bayes). Instances having strong local knowledge are identified via nearest-neighbors with the same class label. Previous studies showed low PD (probability of detection) or high PF (probability of false alarm) which is impractical to use. The experimental results show that HISNN produces high overall performance as well as high PD and low PF.

  7. Quality and efficiency in high dimensional Nearest neighbor search

    KAUST Repository

    Tao, Yufei; Yi, Ke; Sheng, Cheng; Kalnis, Panos

    2009-01-01

    Nearest neighbor (NN) search in high dimensional space is an important problem in many applications. Ideally, a practical solution (i) should be implementable in a relational database, and (ii) its query cost should grow sub-linearly with the dataset size, regardless of the data and query distributions. Despite the bulk of NN literature, no solution fulfills both requirements, except locality sensitive hashing (LSH). The existing LSH implementations are either rigorous or adhoc. Rigorous-LSH ensures good quality of query results, but requires expensive space and query cost. Although adhoc-LSH is more efficient, it abandons quality control, i.e., the neighbor it outputs can be arbitrarily bad. As a result, currently no method is able to ensure both quality and efficiency simultaneously in practice. Motivated by this, we propose a new access method called the locality sensitive B-tree (LSB-tree) that enables fast highdimensional NN search with excellent quality. The combination of several LSB-trees leads to a structure called the LSB-forest that ensures the same result quality as rigorous-LSH, but reduces its space and query cost dramatically. The LSB-forest also outperforms adhoc-LSH, even though the latter has no quality guarantee. Besides its appealing theoretical properties, the LSB-tree itself also serves as an effective index that consumes linear space, and supports efficient updates. Our extensive experiments confirm that the LSB-tree is faster than (i) the state of the art of exact NN search by two orders of magnitude, and (ii) the best (linear-space) method of approximate retrieval by an order of magnitude, and at the same time, returns neighbors with much better quality. © 2009 ACM.

  8. Instant Cassandra query language

    CERN Document Server

    Singh, Amresh

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. It's an Instant Starter guide.Instant Cassandra Query Language is great for those who are working with Cassandra databases and who want to either learn CQL to check data from the console or build serious applications using CQL. If you're looking for something that helps you get started with CQL in record time and you hate the idea of learning a new language syntax, then this book is for you.

  9. Enhanced Approximate Nearest Neighbor via Local Area Focused Search.

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Antonio [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blazier, Nicholas Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Approximate Nearest Neighbor (ANN) algorithms are increasingly important in machine learning, data mining, and image processing applications. There is a large family of space- partitioning ANN algorithms, such as randomized KD-Trees, that work well in practice but are limited by an exponential increase in similarity comparisons required to optimize recall. Additionally, they only support a small set of similarity metrics. We present Local Area Fo- cused Search (LAFS), a method that enhances the way queries are performed using an existing ANN index. Instead of a single query, LAFS performs a number of smaller (fewer similarity comparisons) queries and focuses on a local neighborhood which is refined as candidates are identified. We show that our technique improves performance on several well known datasets and is easily extended to general similarity metrics using kernel projection techniques.

  10. Moving Spatial Keyword Queries

    DEFF Research Database (Denmark)

    Wu, Dingming; Yiu, Man Lung; Jensen, Christian S.

    2013-01-01

    propose two algorithms for computing safe zones that guarantee correct results at any time and that aim to optimize the server-side computation as well as the communication between the server and the client. We exploit tight and conservative approximations of safe zones and aggressive computational space...... text data. State-of-the-art solutions for moving queries employ safe zones that guarantee the validity of reported results as long as the user remains within the safe zone associated with a result. However, existing safe-zone methods focus solely on spatial locations and ignore text relevancy. We...... pruning. We present techniques that aim to compute the next safe zone efficiently, and we present two types of conservative safe zones that aim to reduce the communication cost. Empirical studies with real data suggest that the proposals are efficient. To understand the effectiveness of the proposed safe...

  11. From Questions to Queries

    Directory of Open Access Journals (Sweden)

    M. Drlík

    2007-12-01

    Full Text Available The extension of (Internet databases forceseveryone to become more familiar with techniques of datastorage and retrieval because users’ success often dependson their ability to pose right questions and to be able tointerpret their answers. University programs pay moreattention to developing database programming skills than todata exploitation skills. To educate our students to become“database users”, the authors intensively exploit supportivetools simplifying the production of database elements astables, queries, forms, reports, web pages, and macros.Videosequences demonstrating “standard operations” forcompleting them have been prepared to enhance out-ofclassroomlearning. The use of SQL and other professionaltools is reduced to the cases when the wizards are unable togenerate the intended construct.

  12. Ranking Queries on Uncertain Data

    CERN Document Server

    Hua, Ming

    2011-01-01

    Uncertain data is inherent in many important applications, such as environmental surveillance, market analysis, and quantitative economics research. Due to the importance of those applications and rapidly increasing amounts of uncertain data collected and accumulated, analyzing large collections of uncertain data has become an important task. Ranking queries (also known as top-k queries) are often natural and useful in analyzing uncertain data. Ranking Queries on Uncertain Data discusses the motivations/applications, challenging problems, the fundamental principles, and the evaluation algorith

  13. Research Issues in Mobile Querying

    DEFF Research Database (Denmark)

    Breunig, M.; Jensen, Christian Søndergaard; Klein, M.

    2004-01-01

    This document reports on key aspects of the discussions conducted within the working group. In particular, the document aims to offer a structured and somewhat digested summary of the group's discussions. The document first offers concepts that enable characterization of "mobile queries" as well...... as the types of systems that enable such queries. It explores the notion of context in mobile queries. The document ends with a few observations, mainly regarding challenges....

  14. Optimizing queries in distributed systems

    Directory of Open Access Journals (Sweden)

    Ion LUNGU

    2006-01-01

    Full Text Available This research presents the main elements of query optimizations in distributed systems. First, data architecture according with system level architecture in a distributed environment is presented. Then the architecture of a distributed database management system (DDBMS is described on conceptual level followed by the presentation of the distributed query execution steps on these information systems. The research ends with presentation of some aspects of distributed database query optimization and strategies used for that.

  15. The CMS DBS query language

    International Nuclear Information System (INIS)

    Kuznetsov, Valentin; Riley, Daniel; Afaq, Anzar; Sekhri, Vijay; Guo Yuyi; Lueking, Lee

    2010-01-01

    The CMS experiment has implemented a flexible and powerful system enabling users to find data within the CMS physics data catalog. The Dataset Bookkeeping Service (DBS) comprises a database and the services used to store and access metadata related to CMS physics data. To this, we have added a generalized query system in addition to the existing web and programmatic interfaces to the DBS. This query system is based on a query language that hides the complexity of the underlying database structure by discovering the join conditions between database tables. This provides a way of querying the system that is simple and straightforward for CMS data managers and physicists to use without requiring knowledge of the database tables or keys. The DBS Query Language uses the ANTLR tool to build the input query parser and tokenizer, followed by a query builder that uses a graph representation of the DBS schema to construct the SQL query sent to underlying database. We will describe the design of the query system, provide details of the language components and overview of how this component fits into the overall data discovery system architecture.

  16. The role of economics in the QUERI program: QUERI Series.

    Science.gov (United States)

    Smith, Mark W; Barnett, Paul G

    2008-04-22

    The United States (U.S.) Department of Veterans Affairs (VA) Quality Enhancement Research Initiative (QUERI) has implemented economic analyses in single-site and multi-site clinical trials. To date, no one has reviewed whether the QUERI Centers are taking an optimal approach to doing so. Consistent with the continuous learning culture of the QUERI Program, this paper provides such a reflection. We present a case study of QUERI as an example of how economic considerations can and should be integrated into implementation research within both single and multi-site studies. We review theoretical and applied cost research in implementation studies outside and within VA. We also present a critique of the use of economic research within the QUERI program. Economic evaluation is a key element of implementation research. QUERI has contributed many developments in the field of implementation but has only recently begun multi-site implementation trials across multiple regions within the national VA healthcare system. These trials are unusual in their emphasis on developing detailed costs of implementation, as well as in the use of business case analyses (budget impact analyses). Economics appears to play an important role in QUERI implementation studies, only after implementation has reached the stage of multi-site trials. Economic analysis could better inform the choice of which clinical best practices to implement and the choice of implementation interventions to employ. QUERI economics also would benefit from research on costing methods and development of widely accepted international standards for implementation economics.

  17. Smart query answering for marine sensor data.

    Science.gov (United States)

    Shahriar, Md Sumon; de Souza, Paulo; Timms, Greg

    2011-01-01

    We review existing query answering systems for sensor data. We then propose an extended query answering approach termed smart query, specifically for marine sensor data. The smart query answering system integrates pattern queries and continuous queries. The proposed smart query system considers both streaming data and historical data from marine sensor networks. The smart query also uses query relaxation technique and semantics from domain knowledge as a recommender system. The proposed smart query benefits in building data and information systems for marine sensor networks.

  18. Smart Query Answering for Marine Sensor Data

    Directory of Open Access Journals (Sweden)

    Paulo de Souza

    2011-03-01

    Full Text Available We review existing query answering systems for sensor data. We then propose an extended query answering approach termed smart query, specifically for marine sensor data. The smart query answering system integrates pattern queries and continuous queries. The proposed smart query system considers both streaming data and historical data from marine sensor networks. The smart query also uses query relaxation technique and semantics from domain knowledge as a recommender system. The proposed smart query benefits in building data and information systems for marine sensor networks.

  19. Enhancing Recall in Semantic Querying

    DEFF Research Database (Denmark)

    Rouces, Jacobo

    2013-01-01

    lexically and structurally different, which we will introduce in the next section. As RDF graphs from different sources are expected to be linked, the modeling heterogeneities will make the federated graph become sparser and inconsistent. This is detrimental to the recall of SPARQL queries, as the query...

  20. Hyperplane distance neighbor clustering based on local discriminant analysis for complex chemical processes monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chunhong; Xiao, Shaoqing; Gu, Xiaofeng [Jiangnan University, Wuxi (China)

    2014-11-15

    The collected training data often include both normal and faulty samples for complex chemical processes. However, some monitoring methods, such as partial least squares (PLS), principal component analysis (PCA), independent component analysis (ICA) and Fisher discriminant analysis (FDA), require fault-free data to build the normal operation model. These techniques are applicable after the preliminary step of data clustering is applied. We here propose a novel hyperplane distance neighbor clustering (HDNC) based on the local discriminant analysis (LDA) for chemical process monitoring. First, faulty samples are separated from normal ones using the HDNC method. Then, the optimal subspace for fault detection and classification can be obtained using the LDA approach. The proposed method takes the multimodality within the faulty data into account, and thus improves the capability of process monitoring significantly. The HDNC-LDA monitoring approach is applied to two simulation processes and then compared with the conventional FDA based on the K-nearest neighbor (KNN-FDA) method. The results obtained in two different scenarios demonstrate the superiority of the HDNC-LDA approach in terms of fault detection and classification accuracy.

  1. Hyperplane distance neighbor clustering based on local discriminant analysis for complex chemical processes monitoring

    International Nuclear Information System (INIS)

    Lu, Chunhong; Xiao, Shaoqing; Gu, Xiaofeng

    2014-01-01

    The collected training data often include both normal and faulty samples for complex chemical processes. However, some monitoring methods, such as partial least squares (PLS), principal component analysis (PCA), independent component analysis (ICA) and Fisher discriminant analysis (FDA), require fault-free data to build the normal operation model. These techniques are applicable after the preliminary step of data clustering is applied. We here propose a novel hyperplane distance neighbor clustering (HDNC) based on the local discriminant analysis (LDA) for chemical process monitoring. First, faulty samples are separated from normal ones using the HDNC method. Then, the optimal subspace for fault detection and classification can be obtained using the LDA approach. The proposed method takes the multimodality within the faulty data into account, and thus improves the capability of process monitoring significantly. The HDNC-LDA monitoring approach is applied to two simulation processes and then compared with the conventional FDA based on the K-nearest neighbor (KNN-FDA) method. The results obtained in two different scenarios demonstrate the superiority of the HDNC-LDA approach in terms of fault detection and classification accuracy

  2. jQuery Pocket Reference

    CERN Document Server

    Flanagan, David

    2010-01-01

    "As someone who uses jQuery on a regular basis, it was surprising to discover how much of the library I'm not using. This book is indispensable for anyone who is serious about using jQuery for non-trivial applications."-- Raffaele Cecco, longtime developer of video games, including Cybernoid, Exolon, and Stormlord jQuery is the "write less, do more" JavaScript library. Its powerful features and ease of use have made it the most popular client-side JavaScript framework for the Web. This book is jQuery's trusty companion: the definitive "read less, learn more" guide to the library. jQuery P

  3. jQuery UI cookbook

    CERN Document Server

    Boduch, Adam

    2013-01-01

    Filled with a practical collection of recipes, jQuery UI Cookbook is full of clear, step-by-step instructions that will help you harness the powerful UI framework in jQuery. Depending on your needs, you can dip in and out of the Cookbook and its recipes, or follow the book from start to finish.If you are a jQuery UI developer looking to improve your existing applications, extract ideas for your new application, or to better understand the overall widget architecture, then jQuery UI Cookbook is a must-have for you. The reader should at least have a rudimentary understanding of what jQuery UI is

  4. Instant jQuery selectors

    CERN Document Server

    De Rosa, Aurelio

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. Instant jQuery Selectors follows a simple how-to format with recipes aimed at making you well versed with the wide range of selectors that jQuery has to offer through a myriad of examples.Instant jQuery Selectors is for web developers who want to delve into jQuery from its very starting point: selectors. Even if you're already familiar with the framework and its selectors, you could find several tips and tricks that you aren't aware of, especially about performance and how jQuery ac

  5. In-context query reformulation for failing SPARQL queries

    Science.gov (United States)

    Viswanathan, Amar; Michaelis, James R.; Cassidy, Taylor; de Mel, Geeth; Hendler, James

    2017-05-01

    Knowledge bases for decision support systems are growing increasingly complex, through continued advances in data ingest and management approaches. However, humans do not possess the cognitive capabilities to retain a bird's-eyeview of such knowledge bases, and may end up issuing unsatisfiable queries to such systems. This work focuses on the implementation of a query reformulation approach for graph-based knowledge bases, specifically designed to support the Resource Description Framework (RDF). The reformulation approach presented is instance-and schema-aware. Thus, in contrast to relaxation techniques found in the state-of-the-art, the presented approach produces in-context query reformulation.

  6. The role of economics in the QUERI program: QUERI Series

    Directory of Open Access Journals (Sweden)

    Smith Mark W

    2008-04-01

    Full Text Available Abstract Background The United States (U.S. Department of Veterans Affairs (VA Quality Enhancement Research Initiative (QUERI has implemented economic analyses in single-site and multi-site clinical trials. To date, no one has reviewed whether the QUERI Centers are taking an optimal approach to doing so. Consistent with the continuous learning culture of the QUERI Program, this paper provides such a reflection. Methods We present a case study of QUERI as an example of how economic considerations can and should be integrated into implementation research within both single and multi-site studies. We review theoretical and applied cost research in implementation studies outside and within VA. We also present a critique of the use of economic research within the QUERI program. Results Economic evaluation is a key element of implementation research. QUERI has contributed many developments in the field of implementation but has only recently begun multi-site implementation trials across multiple regions within the national VA healthcare system. These trials are unusual in their emphasis on developing detailed costs of implementation, as well as in the use of business case analyses (budget impact analyses. Conclusion Economics appears to play an important role in QUERI implementation studies, only after implementation has reached the stage of multi-site trials. Economic analysis could better inform the choice of which clinical best practices to implement and the choice of implementation interventions to employ. QUERI economics also would benefit from research on costing methods and development of widely accepted international standards for implementation economics.

  7. Multi-Dimensional Path Queries

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    1998-01-01

    to create nested path structures. We present an SQL-like query language that is based on path expressions and we show how to use it to express multi-dimensional path queries that are suited for advanced data analysis in decision support environments like data warehousing environments......We present the path-relationship model that supports multi-dimensional data modeling and querying. A path-relationship database is composed of sets of paths and sets of relationships. A path is a sequence of related elements (atoms, paths, and sets of paths). A relationship is a binary path...

  8. Recommendation Sets and Choice Queries

    DEFF Research Database (Denmark)

    Viappiani, Paolo Renato; Boutilier, Craig

    2011-01-01

    Utility elicitation is an important component of many applications, such as decision support systems and recommender systems. Such systems query users about their preferences and offer recommendations based on the system's belief about the user's utility function. We analyze the connection between...... the problem of generating optimal recommendation sets and the problem of generating optimal choice queries, considering both Bayesian and regret-based elicitation. Our results show that, somewhat surprisingly, under very general circumstances, the optimal recommendation set coincides with the optimal query....

  9. Querying XML Data with SPARQL

    Science.gov (United States)

    Bikakis, Nikos; Gioldasis, Nektarios; Tsinaraki, Chrisa; Christodoulakis, Stavros

    SPARQL is today the standard access language for Semantic Web data. In the recent years XML databases have also acquired industrial importance due to the widespread applicability of XML in the Web. In this paper we present a framework that bridges the heterogeneity gap and creates an interoperable environment where SPARQL queries are used to access XML databases. Our approach assumes that fairly generic mappings between ontology constructs and XML Schema constructs have been automatically derived or manually specified. The mappings are used to automatically translate SPARQL queries to semantically equivalent XQuery queries which are used to access the XML databases. We present the algorithms and the implementation of SPARQL2XQuery framework, which is used for answering SPARQL queries over XML databases.

  10. Robust Optimization of Database Queries

    Indian Academy of Sciences (India)

    JAYANT

    2011-07-06

    Jul 6, 2011 ... Based on first-order logic. ○ Edgar ... Cost-based Query Optimizer s choice of execution plan ... Determines the values of goods shipped between nations in a time period select ..... Born: 1881 Elected: 1934 Section: Medicine.

  11. Schedule Sales Query Raw Data

    Data.gov (United States)

    General Services Administration — Schedule Sales Query presents sales volume figures as reported to GSA by contractors. The reports are generated as quarterly reports for the current year and the...

  12. jQuery For Dummies

    CERN Document Server

    Beighley, Lynn

    2010-01-01

    Learn how jQuery can make your Web page or blog stand out from the crowd!. jQuery is free, open source software that allows you to extend and customize Joomla!, Drupal, AJAX, and WordPress via plug-ins. Assuming no previous programming experience, Lynn Beighley takes you through the basics of jQuery from the very start. You'll discover how the jQuery library separates itself from other JavaScript libraries through its ease of use, compactness, and friendliness if you're a beginner programmer. Written in the easy-to-understand style of the For Dummies brand, this book demonstrates how you can a

  13. Flexible Query Answering Systems 2006

    DEFF Research Database (Denmark)

    -computer interaction. The overall theme of the FQAS conferences is innovative query systems aimed at providing easy, flexible, and intuitive access to information. Such systems are intended to facilitate retrieval from information repositories such as databases, libraries, and the World-Wide Web. These repositories......This volume constitutes the proceedings of the Seventh International Conference on Flexible Query Answering Systems, FQAS 2006, held in Milan, Italy, on June 7--10, 2006. FQAS is the premier conference for researchers and practitioners concerned with the vital task of providing easy, flexible...... are typically equipped with standard query systems which are often inadequate, and the focus of FQAS is the development of query systems that are more expressive, informative, cooperative, and productive. These proceedings contain contributions from invited speakers and 53 original papers out of about 100...

  14. Incremental Query Rewriting with Resolution

    Science.gov (United States)

    Riazanov, Alexandre; Aragão, Marcelo A. T.

    We address the problem of semantic querying of relational databases (RDB) modulo knowledge bases using very expressive knowledge representation formalisms, such as full first-order logic or its various fragments. We propose to use a resolution-based first-order logic (FOL) reasoner for computing schematic answers to deductive queries, with the subsequent translation of these schematic answers to SQL queries which are evaluated using a conventional relational DBMS. We call our method incremental query rewriting, because an original semantic query is rewritten into a (potentially infinite) series of SQL queries. In this chapter, we outline the main idea of our technique - using abstractions of databases and constrained clauses for deriving schematic answers, and provide completeness and soundness proofs to justify the applicability of this technique to the case of resolution for FOL without equality. The proposed method can be directly used with regular RDBs, including legacy databases. Moreover, we propose it as a potential basis for an efficient Web-scale semantic search technology.

  15. Dynamic Planar Range Maxima Queries

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Tsakalidis, Konstantinos

    2011-01-01

    We consider the dynamic two-dimensional maxima query problem. Let P be a set of n points in the plane. A point is maximal if it is not dominated by any other point in P. We describe two data structures that support the reporting of the t maximal points that dominate a given query point, and allow...... for insertions and deletions of points in P. In the pointer machine model we present a linear space data structure with O(logn + t) worst case query time and O(logn) worst case update time. This is the first dynamic data structure for the planar maxima dominance query problem that achieves these bounds...... are integers in the range U = {0, …,2 w  − 1 }. We present a linear space data structure that supports 3-sided range maxima queries in O(logn/loglogn+t) worst case time and updates in O(logn/loglogn) worst case time. These are the first sublogarithmic worst case bounds for all operations in the RAM model....

  16. Neighboring and Urbanism: Commonality versus Friendship.

    Science.gov (United States)

    Silverman, Carol J.

    1986-01-01

    Examines a dimension of neighboring that need not assume friendship as the role model. When the model assumes only a sense of connectedness as defining neighboring, then the residential correlation, shown in many studies between urbanism and neighboring, disappears. Theories of neighboring, study variables, methods, and analysis are discussed.…

  17. Man vs. Machine: Differences in SPARQL Queries

    NARCIS (Netherlands)

    Rietveld, L.; Hoekstra, R.

    2014-01-01

    Server-side SPARQL query logs have been a topic of study for some time now. The USEWOD collection of query logs is currently the primary source of information for researchers. A recurring problem is that these logs leave application queries and queries created by humans indistinguishable. In this

  18. Fingerprinting Keywords in Search Queries over Tor

    Directory of Open Access Journals (Sweden)

    Oh Se Eun

    2017-10-01

    Full Text Available Search engine queries contain a great deal of private and potentially compromising information about users. One technique to prevent search engines from identifying the source of a query, and Internet service providers (ISPs from identifying the contents of queries is to query the search engine over an anonymous network such as Tor.

  19. Querying Natural Logic Knowledge Bases

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik; Jensen, Per Anker

    2017-01-01

    This paper describes the principles of a system applying natural logic as a knowledge base language. Natural logics are regimented fragments of natural language employing high level inference rules. We advocate the use of natural logic for knowledge bases dealing with querying of classes...... in ontologies and class-relationships such as are common in life-science descriptions. The paper adopts a version of natural logic with recursive restrictive clauses such as relative clauses and adnominal prepositional phrases. It includes passive as well as active voice sentences. We outline a prototype...... for partial translation of natural language into natural logic, featuring further querying and conceptual path finding in natural logic knowledge bases....

  20. Head First jQuery

    CERN Document Server

    Benedetti, Ryan

    2011-01-01

    Want to add more interactivity and polish to your websites? Discover how jQuery can help you build complex scripting functionality in just a few lines of code. With Head First jQuery, you'll quickly get up to speed on this amazing JavaScript library by learning how to navigate HTML documents while handling events, effects, callbacks, and animations. By the time you've completed the book, you'll be incorporating Ajax apps, working seamlessly with HTML and CSS, and handling data with PHP, MySQL and JSON. If you want to learn-and understand-how to create interactive web pages, unobtrusive scrip

  1. SPARK: Adapting Keyword Query to Semantic Search

    Science.gov (United States)

    Zhou, Qi; Wang, Chong; Xiong, Miao; Wang, Haofen; Yu, Yong

    Semantic search promises to provide more accurate result than present-day keyword search. However, progress with semantic search has been delayed due to the complexity of its query languages. In this paper, we explore a novel approach of adapting keywords to querying the semantic web: the approach automatically translates keyword queries into formal logic queries so that end users can use familiar keywords to perform semantic search. A prototype system named 'SPARK' has been implemented in light of this approach. Given a keyword query, SPARK outputs a ranked list of SPARQL queries as the translation result. The translation in SPARK consists of three major steps: term mapping, query graph construction and query ranking. Specifically, a probabilistic query ranking model is proposed to select the most likely SPARQL query. In the experiment, SPARK achieved an encouraging translation result.

  2. Expanding user’s query with tag-neighbors for effective medical information retrieval

    DEFF Research Database (Denmark)

    Durao, Frederico; Bayyapu, Karunakar Reddy; Xu, Guandong

    2014-01-01

    Medical information is a natural human demand. Existing search engines on the Web often are unable to handle medical search well because they do not consider its special requirements. Often a medical information searcher is uncertain about his exact questions and unfamiliar with medical terminology...

  3. Fuzzy Querying: Issues and Perspectives..

    Czech Academy of Sciences Publication Activity Database

    Kacprzyk, J.; Pasi, G.; Vojtáš, Peter; Zadrozny, S.

    2000-01-01

    Roč. 36, č. 6 (2000), s. 605-616 ISSN 0023-5954 Institutional research plan: AV0Z1030915 Keywords : flexible querying * information retrieval * fuzzy databases Subject RIV: BA - General Mathematics http://dml.cz/handle/10338.dmlcz/135376

  4. Automatically Preparing Safe SQL Queries

    Science.gov (United States)

    Bisht, Prithvi; Sistla, A. Prasad; Venkatakrishnan, V. N.

    We present the first sound program source transformation approach for automatically transforming the code of a legacy web application to employ PREPARE statements in place of unsafe SQL queries. Our approach therefore opens the way for eradicating the SQL injection threat vector from legacy web applications.

  5. Querying Large Biological Network Datasets

    Science.gov (United States)

    Gulsoy, Gunhan

    2013-01-01

    New experimental methods has resulted in increasing amount of genetic interaction data to be generated every day. Biological networks are used to store genetic interaction data gathered. Increasing amount of data available requires fast large scale analysis methods. Therefore, we address the problem of querying large biological network datasets.…

  6. Optimizing Temporal Queries: Efficient Handling of Duplicates

    DEFF Research Database (Denmark)

    Toman, David; Bowman, Ivan Thomas

    2001-01-01

    , these query languages are implemented by translating temporal queries into standard relational queries. However, the compiled queries are often quite cumbersome and expensive to execute even using state-of-the- art relational products. This paper presents an optimization technique that produces more efficient...... translated SQL queries by taking into account the properties of the encoding used for temporal attributes. For concreteness, this translation technique is presented in the context of SQL/TP; however, these techniques are also applicable to other temporal query languages....

  7. Querying Sentiment Development over Time

    DEFF Research Database (Denmark)

    Andreasen, Troels; Christiansen, Henning; Have, Christian Theil

    2013-01-01

    A new language is introduced for describing hypotheses about fluctuations of measurable properties in streams of timestamped data, and as prime example, we consider trends of emotions in the constantly flowing stream of Twitter messages. The language, called EmoEpisodes, has a precise semantics...... that measures how well a hypothesis characterizes a given time interval; the semantics is parameterized so it can be adjusted to different views of the data. EmoEpisodes is extended to a query language with variables standing for unknown topics and emotions, and the query-answering mechanism will return...... instantiations for topics and emotions as well as time intervals that provide the largest deflections in this measurement. Experiments are performed on a selection of Twitter data to demonstrates the usefulness of the approach....

  8. Query containment in entity SQL

    OpenAIRE

    Rull Fort, Guillem; Bernstein, Philip A.; Garcia dos Santos, Ivo; Katsis, Yannis; Melnik, Sergey; Teniente López, Ernest

    2013-01-01

    We describe a software architecture we have developed for a constructive containment checker of Entity SQL queries defined over extended ER schemas expressed in Microsoft's Entity Data Model. Our application of interest is compilation of object-to-relational mappings for Microsoft's ADO.NET Entity Framework, which has been shipping since 2007. The supported language includes several features which have been individually addressed in the past but, to the best of our knowledge, they have not be...

  9. Query Optimizations over Decentralized RDF Graphs

    KAUST Repository

    Abdelaziz, Ibrahim; Mansour, Essam; Ouzzani, Mourad; Aboulnaga, Ashraf; Kalnis, Panos

    2017-01-01

    Applications in life sciences, decentralized social networks, Internet of Things, and statistical linked dataspaces integrate data from multiple decentralized RDF graphs via SPARQL queries. Several approaches have been proposed to optimize query

  10. K-nearest uphill clustering in the protein structure space

    KAUST Repository

    Cui, Xuefeng; Gao, Xin

    2016-01-01

    The protein structure classification problem, which is to assign a protein structure to a cluster of similar proteins, is one of the most fundamental problems in the construction and application of the protein structure space. Early manually curated

  11. On tractable query evaluation for SPARQL

    OpenAIRE

    Mengel, Stefan; Skritek, Sebastian

    2017-01-01

    Despite much work within the last decade on foundational properties of SPARQL - the standard query language for RDF data - rather little is known about the exact limits of tractability for this language. In particular, this is the case for SPARQL queries that contain the OPTIONAL-operator, even though it is one of the most intensively studied features of SPARQL. The aim of our work is to provide a more thorough picture of tractable classes of SPARQL queries. In general, SPARQL query evaluatio...

  12. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    Science.gov (United States)

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  13. Advanced Query Formulation in Deductive Databases.

    Science.gov (United States)

    Niemi, Timo; Jarvelin, Kalervo

    1992-01-01

    Discusses deductive databases and database management systems (DBMS) and introduces a framework for advanced query formulation for end users. Recursive processing is described, a sample extensional database is presented, query types are explained, and criteria for advanced query formulation from the end user's viewpoint are examined. (31…

  14. SCRY: Enabling quantitative reasoning in SPARQL queries

    NARCIS (Netherlands)

    Meroño-Peñuela, A.; Stringer, Bas; Loizou, Antonis; Abeln, Sanne; Heringa, Jaap

    2015-01-01

    The inability to include quantitative reasoning in SPARQL queries slows down the application of Semantic Web technology in the life sciences. SCRY, our SPARQL compatible service layer, improves this by executing services at query time and making their outputs query-accessible, generating RDF data on

  15. On the formulation of performant sparql queries

    NARCIS (Netherlands)

    Loizou, A.; Angles, R.; Groth, P.T.

    2014-01-01

    Abstract The combination of the flexibility of RDF and the expressiveness of SPARQL provides a powerful mechanism to model, integrate and query data. However, these properties also mean that it is nontrivial to write performant SPARQL queries. Indeed, it is quite easy to create queries that tax even

  16. How Good Are Query Optimizers, Really?

    NARCIS (Netherlands)

    Leis, Viktor; Gubichev, Andrey; Mirchev, Atanas; Boncz, Peter; Kemper, Alfons; Neumann, Thomas

    2016-01-01

    Finding a good join order is crucial for query performance. In this paper, we introduce the Join Order Benchmark (JOB) and experimentally revisit the main components in the classic query optimizer architecture using a complex, real-world data set and realistic multi-join queries. We investigate the

  17. Predecessor queries in dynamic integer sets

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting

    1997-01-01

    We consider the problem of maintaining a set of n integers in the range 0.2w–1 under the operations of insertion, deletion, predecessor queries, minimum queries and maximum queries on a unit cost RAM with word size w bits. Let f (n) be an arbitrary nondecreasing smooth function satisfying n...

  18. Mobile Information Access with Spoken Query Answering

    DEFF Research Database (Denmark)

    Brøndsted, Tom; Larsen, Henrik Legind; Larsen, Lars Bo

    2006-01-01

    window focused over the part which most likely contains an answer to the query. The two systems are integrated into a full spoken query answering system. The prototype can answer queries and questions within the chosen football (soccer) test domain, but the system has the flexibility for being ported...

  19. Truth Space Method for Caching Database Queries

    Directory of Open Access Journals (Sweden)

    S. V. Mosin

    2015-01-01

    Full Text Available We propose a new method of client-side data caching for relational databases with a central server and distant clients. Data are loaded into the client cache based on queries executed on the server. Every query has the corresponding DB table – the result of the query execution. These queries have a special form called "universal relational query" based on three fundamental Relational Algebra operations: selection, projection and natural join. We have to mention that such a form is the closest one to the natural language and the majority of database search queries can be expressed in this way. Besides, this form allows us to analyze query correctness by checking lossless join property. A subsequent query may be executed in a client’s local cache if we can determine that the query result is entirely contained in the cache. For this we compare truth spaces of the logical restrictions in a new user’s query and the results of the queries execution in the cache. Such a comparison can be performed analytically , without need in additional Database queries. This method may be used to define lacking data in the cache and execute the query on the server only for these data. To do this the analytical approach is also used, what distinguishes our paper from the existing technologies. We propose four theorems for testing the required conditions. The first and the third theorems conditions allow us to define the existence of required data in cache. The second and the fourth theorems state conditions to execute queries with cache only. The problem of cache data actualizations is not discussed in this paper. However, it can be solved by cataloging queries on the server and their serving by triggers in background mode. The article is published in the author’s wording.

  20. A Framework for WWW Query Processing

    Science.gov (United States)

    Wu, Binghui Helen; Wharton, Stephen (Technical Monitor)

    2000-01-01

    Query processing is the most common operation in a DBMS. Sophisticated query processing has been mainly targeted at a single enterprise environment providing centralized control over data and metadata. Submitting queries by anonymous users on the web is different in such a way that load balancing or DBMS' accessing control becomes the key issue. This paper provides a solution by introducing a framework for WWW query processing. The success of this framework lies in the utilization of query optimization techniques and the ontological approach. This methodology has proved to be cost effective at the NASA Goddard Space Flight Center Distributed Active Archive Center (GDAAC).

  1. Web development with jQuery

    CERN Document Server

    York, Richard

    2015-01-01

    Newly revised and updated resource on jQuery's many features and advantages Web Development with jQuery offers a major update to the popular Beginning JavaScript and CSS Development with jQuery from 2009. More than half of the content is new or updated, and reflects recent innovations with regard to mobile applications, jQuery mobile, and the spectrum of associated plugins. Readers can expect thorough revisions with expanded coverage of events, CSS, AJAX, animation, and drag and drop. New chapters bring developers up to date on popular features like jQuery UI, navigation, tables, interacti

  2. EquiX-A Search and Query Language for XML.

    Science.gov (United States)

    Cohen, Sara; Kanza, Yaron; Kogan, Yakov; Sagiv, Yehoshua; Nutt, Werner; Serebrenik, Alexander

    2002-01-01

    Describes EquiX, a search language for XML that combines querying with searching to query the data and the meta-data content of Web pages. Topics include search engines; a data model for XML documents; search query syntax; search query semantics; an algorithm for evaluating a query on a document; and indexing EquiX queries. (LRW)

  3. Optimal Planar Orthogonal Skyline Counting Queries

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Larsen, Kasper Green

    2014-01-01

    counting queries, i.e. given a query rectangle R to report the size of the skyline of P\\cap R. We present a data structure for storing n points with integer coordinates having query time O(lg n/lglg n) and space usage O(n). The model of computation is a unit cost RAM with logarithmic word size. We prove...

  4. Adding query privacy to robust DHTs

    DEFF Research Database (Denmark)

    Backes, Michael; Goldberg, Ian; Kate, Aniket

    2012-01-01

    intermediate peers that (help to) route the queries towards their destinations. In this paper, we satisfy this requirement by presenting an approach for providing privacy for the keys in DHT queries. We use the concept of oblivious transfer (OT) in communication over DHTs to preserve query privacy without...... privacy over robust DHTs. Finally, we compare the performance of our privacy-preserving protocols with their more privacy-invasive counterparts. We observe that there is no increase in the message complexity...

  5. jQuery Tools UI Library

    CERN Document Server

    Libby, Alex

    2012-01-01

    A practical tutorial with powerful yet simple projects that are quick to implement. This book is aimed at developers who have prior jQuery knowledge, but may not have any prior experience with jQuery Tools. It is possible that they may have started with the basics of jQuery Tools, but want to learn more about how it can be used, as well as get ideas for future projects.

  6. Secure Skyline Queries on Cloud Platform.

    Science.gov (United States)

    Liu, Jinfei; Yang, Juncheng; Xiong, Li; Pei, Jian

    2017-04-01

    Outsourcing data and computation to cloud server provides a cost-effective way to support large scale data storage and query processing. However, due to security and privacy concerns, sensitive data (e.g., medical records) need to be protected from the cloud server and other unauthorized users. One approach is to outsource encrypted data to the cloud server and have the cloud server perform query processing on the encrypted data only. It remains a challenging task to support various queries over encrypted data in a secure and efficient way such that the cloud server does not gain any knowledge about the data, query, and query result. In this paper, we study the problem of secure skyline queries over encrypted data. The skyline query is particularly important for multi-criteria decision making but also presents significant challenges due to its complex computations. We propose a fully secure skyline query protocol on data encrypted using semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol, which can be also used as a building block for other queries. Finally, we provide both serial and parallelized implementations and empirically study the protocols in terms of efficiency and scalability under different parameter settings, verifying the feasibility of our proposed solutions.

  7. A structural query system for Han characters

    DEFF Research Database (Denmark)

    Skala, Matthew

    2016-01-01

    The IDSgrep structural query system for Han character dictionaries is presented. This dictionary search system represents the spatial structure of Han characters using Extended Ideographic Description Sequences (EIDSes), a data model and syntax based on the Unicode IDS concept. It includes a query...... language for EIDS databases, with a freely available implementation and format translation from popular third-party IDS and XML character databases. The system is designed to suit the needs of font developers and foreign language learners. The search algorithm includes a bit vector index inspired by Bloom...... filters to support faster query operations. Experimental results are presented, evaluating the effect of the indexing on query performance....

  8. Adding Query Privacy to Robust DHTs

    DEFF Research Database (Denmark)

    Backes, Michael; Goldberg, Ian; Kate, Aniket

    2011-01-01

    intermediate peers that (help to) route the queries towards their destinations. In this paper, we satisfy this requirement by presenting an approach for providing privacy for the keys in DHT queries. We use the concept of oblivious transfer (OT) in communication over DHTs to preserve query privacy without...... of obtaining query privacy over robust DHTs. Finally, we compare the performance of our privacy-preserving protocols with their more privacy-invasive counterparts. We observe that there is no increase in the message complexity and only a small overhead in the computational complexity....

  9. Genetic algorithms for RDF chain query optimization

    NARCIS (Netherlands)

    Hogenboom, A.C.; Milea, D.V.; Frasincar, F.; Kaymak, U.; Calders, T.; Tuyls, K.; Pechenizkiy, M.

    2009-01-01

    The application of Semantic Web technologies in an Electronic Commerce environment implies a need for good support tools. Fast query engines are required for efficient real-time querying of large amounts of data, usually represented using RDF. We focus on optimizing a special class of SPARQL

  10. How Do Children Reformulate Their Search Queries?

    Science.gov (United States)

    Rutter, Sophie; Ford, Nigel; Clough, Paul

    2015-01-01

    Introduction: This paper investigates techniques used by children in year 4 (age eight to nine) of a UK primary school to reformulate their queries, and how they use information retrieval systems to support query reformulation. Method: An in-depth study analysing the interactions of twelve children carrying out search tasks in a primary school…

  11. Towards Verbalizing SPARQL Queries in Arabic

    Directory of Open Access Journals (Sweden)

    I. Al Agha

    2016-04-01

    Full Text Available With the wide spread of Open Linked Data and Semantic Web technologies, a larger amount of data has been published on the Web in the RDF and OWL formats. This data can be queried using SPARQL, the Semantic Web Query Language. SPARQL cannot be understood by ordinary users and is not directly accessible to humans, and thus they will not be able to check whether the retrieved answers truly correspond to the intended information need. Driven by this challenge, natural language generation from SPARQL data has recently attracted a considerable attention. However, most existing solutions to verbalize SPARQL in natural language focused on English and Latin-based languages. Little effort has been made on the Arabic language which has different characteristics and morphology. This work aims to particularly help Arab users to perceive SPARQL queries on the Semantic Web by translating SPARQL to Arabic. It proposes an approach that gets a SPARQL query as an input and generates a query expressed in Arabic as an output. The translation process combines both morpho-syntactic analysis and language dependencies to generate a legible and understandable Arabic query. The approach was preliminary assessed with a sample query set, and results indicated that 75% of the queries were correctly translated into Arabic.

  12. The Data Cyclotron query processing scheme

    NARCIS (Netherlands)

    Goncalves, R.; Kersten, M.

    2011-01-01

    A grand challenge of distributed query processing is to devise a self-organizing architecture which exploits all hardware resources optimally to manage the database hot set, minimize query response time, and maximize throughput without single point global coordination. The Data Cyclotron

  13. The Data Cyclotron query processing scheme.

    NARCIS (Netherlands)

    R.A. Goncalves (Romulo); M.L. Kersten (Martin)

    2011-01-01

    htmlabstractA grand challenge of distributed query processing is to devise a self-organizing architecture which exploits all hardware resources optimally to manage the database hot set, minimize query response time, and maximize throughput without single point global coordination. The Data Cyclotron

  14. Querying and Mining Strings Made Easy

    KAUST Repository

    Sahli, Majed

    2017-10-13

    With the advent of large string datasets in several scientific and business applications, there is a growing need to perform ad-hoc analysis on strings. Currently, strings are stored, managed, and queried using procedural codes. This limits users to certain operations supported by existing procedural applications and requires manual query planning with limited tuning opportunities. This paper presents StarQL, a generic and declarative query language for strings. StarQL is based on a native string data model that allows StarQL to support a large variety of string operations and provide semantic-based query optimization. String analytic queries are too intricate to be solved on one machine. Therefore, we propose a scalable and efficient data structure that allows StarQL implementations to handle large sets of strings and utilize large computing infrastructures. Our evaluation shows that StarQL is able to express workloads of application-specific tools, such as BLAST and KAT in bioinformatics, and to mine Wikipedia text for interesting patterns using declarative queries. Furthermore, the StarQL query optimizer shows an order of magnitude reduction in query execution time.

  15. Exploiting External Collections for Query Expansion

    NARCIS (Netherlands)

    Weerkamp, W.; Balog, K.; de Rijke, M.

    2012-01-01

    A persisting challenge in the field of information retrieval is the vocabulary mismatch between a user’s information need and the relevant documents. One way of addressing this issue is to apply query modeling: to add terms to the original query and reweigh the terms. In social media, where

  16. Improving Web Search for Difficult Queries

    Science.gov (United States)

    Wang, Xuanhui

    2009-01-01

    Search engines have now become essential tools in all aspects of our life. Although a variety of information needs can be served very successfully, there are still a lot of queries that search engines can not answer very effectively and these queries always make users feel frustrated. Since it is quite often that users encounter such "difficult…

  17. A semantic perspective on query log analysis

    NARCIS (Netherlands)

    Hofmann, K.; de Rijke, M.; Huurnink, B.; Meij, E.

    2009-01-01

    We present our views on the CLEF log file analysis task. We argue for a task definition that focuses on the semantic enrichment of query logs. In addition, we discuss how additional information about the context in which queries are being made could further our understanding of users’ information

  18. A general approach to query flattening

    NARCIS (Netherlands)

    van Ruth, J.

    The translation of queries from complex data models to simpler data models is a recurring theme in the construction of efficient data management systems. In this paper we propose a general framework to guide the translation from data models with nested types to a flat relational model (query

  19. A Multi-Query Optimizer for Monet

    NARCIS (Netherlands)

    S. Manegold (Stefan); A.J. Pellenkoft (Jan); M.L. Kersten (Martin)

    2000-01-01

    textabstractDatabase systems allow for concurrent use of several applications (and query interfaces). Each application generates an ``optimal'' plan---a sequence of low-level database operators---for accessing the database. The queries posed by users through the same application can be optimized

  20. A multi-query optimizer for Monet

    NARCIS (Netherlands)

    S. Manegold (Stefan); A.J. Pellenkoft (Jan); M.L. Kersten (Martin)

    2000-01-01

    textabstractDatabase systems allow for concurrent use of several applications (and query interfaces). Each application generates an ``optimal'' plan---a sequence of low-level database operators---for accessing the database. The queries posed by users through the same application can be optimized

  1. Path Minima Queries in Dynamic Weighted Trees

    DEFF Research Database (Denmark)

    Davoodi, Pooya; Brodal, Gerth Stølting; Satti, Srinivasa Rao

    2011-01-01

    In the path minima problem on a tree, each edge is assigned a weight and a query asks for the edge with minimum weight on a path between two nodes. For the dynamic version of the problem, where the edge weights can be updated, we give data structures that achieve optimal query time\\todo{what about...

  2. Querying Business Process Models with VMQL

    DEFF Research Database (Denmark)

    Störrle, Harald; Acretoaie, Vlad

    2013-01-01

    The Visual Model Query Language (VMQL) has been invented with the objectives (1) to make it easier for modelers to query models effectively, and (2) to be universally applicable to all modeling languages. In previous work, we have applied VMQL to UML, and validated the first of these two claims. ...

  3. Identifying influential neighbors in animal flocking.

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2017-11-01

    Full Text Available Schools of fish and flocks of birds can move together in synchrony and decide on new directions of movement in a seamless way. This is possible because group members constantly share directional information with their neighbors. Although detecting the directionality of other group members is known to be important to maintain cohesion, it is not clear how many neighbors each individual can simultaneously track and pay attention to, and what the spatial distribution of these influential neighbors is. Here, we address these questions on shoals of Hemigrammus rhodostomus, a species of fish exhibiting strong schooling behavior. We adopt a data-driven analysis technique based on the study of short-term directional correlations to identify which neighbors have the strongest influence over the participation of an individual in a collective U-turn event. We find that fish mainly react to one or two neighbors at a time. Moreover, we find no correlation between the distance rank of a neighbor and its likelihood to be influential. We interpret our results in terms of fish allocating sequential and selective attention to their neighbors.

  4. Identifying influential neighbors in animal flocking.

    Science.gov (United States)

    Jiang, Li; Giuggioli, Luca; Perna, Andrea; Escobedo, Ramón; Lecheval, Valentin; Sire, Clément; Han, Zhangang; Theraulaz, Guy

    2017-11-01

    Schools of fish and flocks of birds can move together in synchrony and decide on new directions of movement in a seamless way. This is possible because group members constantly share directional information with their neighbors. Although detecting the directionality of other group members is known to be important to maintain cohesion, it is not clear how many neighbors each individual can simultaneously track and pay attention to, and what the spatial distribution of these influential neighbors is. Here, we address these questions on shoals of Hemigrammus rhodostomus, a species of fish exhibiting strong schooling behavior. We adopt a data-driven analysis technique based on the study of short-term directional correlations to identify which neighbors have the strongest influence over the participation of an individual in a collective U-turn event. We find that fish mainly react to one or two neighbors at a time. Moreover, we find no correlation between the distance rank of a neighbor and its likelihood to be influential. We interpret our results in terms of fish allocating sequential and selective attention to their neighbors.

  5. Efficient Approximate OLAP Querying Over Time Series

    DEFF Research Database (Denmark)

    Perera, Kasun Baruhupolage Don Kasun Sanjeewa; Hahmann, Martin; Lehner, Wolfgang

    2016-01-01

    The ongoing trend for data gathering not only produces larger volumes of data, but also increases the variety of recorded data types. Out of these, especially time series, e.g. various sensor readings, have attracted attention in the domains of business intelligence and decision making. As OLAP...... queries play a major role in these domains, it is desirable to also execute them on time series data. While this is not a problem on the conceptual level, it can become a bottleneck with regards to query run-time. In general, processing OLAP queries gets more computationally intensive as the volume...... of data grows. This is a particular problem when querying time series data, which generally contains multiple measures recorded at fine time granularities. Usually, this issue is addressed either by scaling up hardware or by employing workload based query optimization techniques. However, these solutions...

  6. A Local Weighted Nearest Neighbor Algorithm and a Weighted and Constrained Least-Squared Method for Mixed Odor Analysis by Electronic Nose Systems

    Directory of Open Access Journals (Sweden)

    Jyuo-Min Shyu

    2010-11-01

    Full Text Available A great deal of work has been done to develop techniques for odor analysis by electronic nose systems. These analyses mostly focus on identifying a particular odor by comparing with a known odor dataset. However, in many situations, it would be more practical if each individual odorant could be determined directly. This paper proposes two methods for such odor components analysis for electronic nose systems. First, a K-nearest neighbor (KNN-based local weighted nearest neighbor (LWNN algorithm is proposed to determine the components of an odor. According to the component analysis, the odor training data is firstly categorized into several groups, each of which is represented by its centroid. The examined odor is then classified as the class of the nearest centroid. The distance between the examined odor and the centroid is calculated based on a weighting scheme, which captures the local structure of each predefined group. To further determine the concentration of each component, odor models are built by regressions. Then, a weighted and constrained least-squares (WCLS method is proposed to estimate the component concentrations. Experiments were carried out to assess the effectiveness of the proposed methods. The LWNN algorithm is able to classify mixed odors with different mixing ratios, while the WCLS method can provide good estimates on component concentrations.

  7. Query Optimizations over Decentralized RDF Graphs

    KAUST Repository

    Abdelaziz, Ibrahim

    2017-05-18

    Applications in life sciences, decentralized social networks, Internet of Things, and statistical linked dataspaces integrate data from multiple decentralized RDF graphs via SPARQL queries. Several approaches have been proposed to optimize query processing over a small number of heterogeneous data sources by utilizing schema information. In the case of schema similarity and interlinks among sources, these approaches cause unnecessary data retrieval and communication, leading to poor scalability and response time. This paper addresses these limitations and presents Lusail, a system for scalable and efficient SPARQL query processing over decentralized graphs. Lusail achieves scalability and low query response time through various optimizations at compile and run times. At compile time, we use a novel locality-aware query decomposition technique that maximizes the number of query triple patterns sent together to a source based on the actual location of the instances satisfying these triple patterns. At run time, we use selectivity-awareness and parallel query execution to reduce network latency and to increase parallelism by delaying the execution of subqueries expected to return large results. We evaluate Lusail using real and synthetic benchmarks, with data sizes up to billions of triples on an in-house cluster and a public cloud. We show that Lusail outperforms state-of-the-art systems by orders of magnitude in terms of scalability and response time.

  8. Federated query processing for the semantic web

    CERN Document Server

    Buil-Aranda, C

    2014-01-01

    During the last years, the amount of RDF data has increased exponentially over the Web, exposed via SPARQL endpoints. These SPARQL endpoints allow users to direct SPARQL queries to the RDF data. Federated SPARQL query processing allows to query several of these RDF databases as if they were a single one, integrating the results from all of them. This is a key concept in the Web of Data and it is also a hot topic in the community. Besides of that, the W3C SPARQL-WG has standardized it in the new Recommendation SPARQL 1.1.This book provides a formalisation of the W3C proposed recommendation. Thi

  9. Relative aggregation operator in database fuzzy querying

    Directory of Open Access Journals (Sweden)

    Luminita DUMITRIU

    2005-12-01

    Full Text Available Fuzzy selection criteria querying relational databases include vague terms; they usually refer linguistic values form the attribute linguistic domains, defined as fuzzy sets. Generally, when a vague query is processed, the definitions of vague terms must already exist in a knowledge base. But there are also cases when vague terms must be dynamically defined, when a particular operation is used to aggregate simple criteria in a complex selection. The paper presents a new aggregation operator and the corresponding algorithm to evaluate the fuzzy query.

  10. Experimental quantum private queries with linear optics

    International Nuclear Information System (INIS)

    De Martini, Francesco; Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Nagali, Eleonora; Sansoni, Linda; Sciarrino, Fabio

    2009-01-01

    The quantum private query is a quantum cryptographic protocol to recover information from a database, preserving both user and data privacy: the user can test whether someone has retained information on which query was asked and the database provider can test the amount of information released. Here we discuss a variant of the quantum private query algorithm that admits a simple linear optical implementation: it employs the photon's momentum (or time slot) as address qubits and its polarization as bus qubit. A proof-of-principle experimental realization is implemented.

  11. Instant MDX queries for SQL Server 2012

    CERN Document Server

    Emond, Nicholas

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This short, focused guide is a great way to get stated with writing MDX queries. New developers can use this book as a reference for how to use functions and the syntax of a query as well as how to use Calculated Members and Named Sets.This book is great for new developers who want to learn the MDX query language from scratch and install SQL Server 2012 with Analysis Services

  12. Responsive web design with jQuery

    CERN Document Server

    Carlos, Gilberto

    2013-01-01

    Responsive Web Design with jQuery follows a standard tutorial-based approach, covering various aspects of responsive web design by building a comprehensive website.""Responsive Web Design with jQuery"" is aimed at web designers who are interested in building device-agnostic websites. You should have a grasp of standard HTML, CSS, and JavaScript development, and have a familiarity with graphic design. Some exposure to jQuery and HTML5 will be beneficial but isn't essential.

  13. Elastic Spatial Query Processing in OpenStack Cloud Computing Environment for Time-Constraint Data Analysis

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2017-03-01

    Full Text Available Geospatial big data analysis (GBDA is extremely significant for time-constraint applications such as disaster response. However, the time-constraint analysis is not yet a trivial task in the cloud computing environment. Spatial query processing (SQP is typical computation-intensive and indispensable for GBDA, and the spatial range query, join query, and the nearest neighbor query algorithms are not scalable without using MapReduce-liked frameworks. Parallel SQP algorithms (PSQPAs are trapped in screw-processing, which is a known issue in Geoscience. To satisfy time-constrained GBDA, we propose an elastic SQP approach in this paper. First, Spark is used to implement PSQPAs. Second, Kubernetes-managed Core Operation System (CoreOS clusters provide self-healing Docker containers for running Spark clusters in the cloud. Spark-based PSQPAs are submitted to Docker containers, where Spark master instances reside. Finally, the horizontal pod auto-scaler (HPA would scale-out and scale-in Docker containers for supporting on-demand computing resources. Combined with an auto-scaling group of virtual instances, HPA helps to find each of the five nearest neighbors for 46,139,532 query objects from 834,158 spatial data objects in less than 300 s. The experiments conducted on an OpenStack cloud demonstrate that auto-scaling containers can satisfy time-constraint GBDA in clouds.

  14. Vectorization vs. compilation in query execution

    NARCIS (Netherlands)

    J. Sompolski (Juliusz); M. Zukowski (Marcin); P.A. Boncz (Peter)

    2011-01-01

    textabstractCompiling database queries into executable (sub-) programs provides substantial benefits comparing to traditional interpreted execution. Many of these benefits, such as reduced interpretation overhead, better instruction code locality, and providing opportunities to use SIMD

  15. Algebraic Optimization of Recursive Database Queries

    DEFF Research Database (Denmark)

    Hansen, Michael Reichhardt

    1988-01-01

    Queries are expressed by relational algebra expressions including a fixpoint operation. A condition is presented under which a natural join commutes with a fixpoint operation. This condition is a simple check of attribute sets of sub-expressions of the query. The work may be considered a generali......Queries are expressed by relational algebra expressions including a fixpoint operation. A condition is presented under which a natural join commutes with a fixpoint operation. This condition is a simple check of attribute sets of sub-expressions of the query. The work may be considered...... a generalization of Aho and Ullman, (1979). The result is interpreted in function free logic database terms as a transformation of the recursively defined predicate involving: (a) elimination of an argument, and (b) propagation of selections (instantiations) to the extensionally defined predicates. A collection...

  16. Pro PHP and jQuery

    CERN Document Server

    Lengstorf, Jason

    2010-01-01

    This book is for intermediate programmers interested in building AJAX web applications using jQuery and PHP. Along with teaching some advanced PHP techniques, it will teach you how to take your dynamic applications to the next level by adding a JavaScript layer with jQuery. * Learn to utilize built-in PHP functions to build calendar tools.* Learn how jQuery can be used for AJAX, animation, client-side validation, and more.What you'll learn* Use PHP to build a calendar application that allows users to post, view, edit, and delete events.* Use jQuery to allow the calendar app to be viewed and ed

  17. Clean Air Markets - Allowances Query Wizard

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Allowances Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The Allowances...

  18. Clean Air Markets - Compliance Query Wizard

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Compliance Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://ampd.epa.gov/ampd/. The Compliance module provides...

  19. Schedule Sales Query Report Generation System

    Data.gov (United States)

    General Services Administration — Schedule Sales Query presents sales volume figures as reported to GSA by contractors. The reports are generated as quarterly reports for the current year and the...

  20. A Query System Implementation Case Study.

    Science.gov (United States)

    Hiser, Judith N.; Neil, M. Elizabeth

    1985-01-01

    The Department of Administrative Programming Services of Clemson University investigated products available in user-friendly retrieval systems. The test of INTELLECT, a natural language query system written by Artifical Intelligence Corporation, is described. (Author/MLW)

  1. Path-based Queries on Trajectory Data

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Pelekis, Nikos; Theodoridis, Yannis

    2014-01-01

    In traffic research, management, and planning a number of path-based analyses are heavily used, e.g., for computing turn-times, evaluating green waves, or studying traffic flow. These analyses require retrieving the trajectories that follow the full path being analyzed. Existing path queries cannot...... sufficiently support such path-based analyses because they retrieve all trajectories that touch any edge in the path. In this paper, we define and formalize the strict path query. This is a novel query type tailored to support path-based analysis, where trajectories must follow all edges in the path...... a specific path by only retrieving data from the first and last edge in the path. To correctly answer strict path queries existing network-constrained trajectory indexes must retrieve data from all edges in the path. An extensive performance study of NETTRA using a very large real-world trajectory data set...

  2. Querying temporal databases via OWL 2 QL

    CSIR Research Space (South Africa)

    Klarman, S

    2014-06-01

    Full Text Available SQL:2011, the most recently adopted version of the SQL query language, has unprecedentedly standardized the representation of temporal data in relational databases. Following the successful paradigm of ontology-based data access, we develop a...

  3. Evaluating Trajectory Queries over Imprecise Location Data

    DEFF Research Database (Denmark)

    Xie, Scott, Xike; Cheng, Reynold; Yiu, Man Lung

    2012-01-01

    Trajectory queries, which retrieve nearby objects for every point of a given route, can be used to identify alerts of potential threats along a vessel route, or monitor the adjacent rescuers to a travel path. However, the locations of these objects (e.g., threats, succours) may not be precisely...... obtained due to hardware limitations of measuring devices, as well as the constantly-changing nature of the external environment. Ignoring data uncertainty can render low query quality, and cause undesirable consequences such as missing alerts of threats and poor response time in rescue operations. Also......, the query is quite time-consuming, since all the points on the trajectory are considered. In this paper, we study how to efficiently evaluate trajectory queries over imprecise location data, by proposing a new concept called the u-bisector. In general, the u-bisector is an extension of bisector to handle...

  4. Menangkal Serangan SQL Injection Dengan Parameterized Query

    Directory of Open Access Journals (Sweden)

    Yulianingsih Yulianingsih

    2016-06-01

    Full Text Available Semakin meningkat pertumbuhan layanan informasi maka semakin tinggi pula tingkat kerentanan keamanan dari suatu sumber informasi. Melalui tulisan ini disajikan penelitian yang dilakukan secara eksperimen yang membahas tentang kejahatan penyerangan database secara SQL Injection. Penyerangan dilakukan melalui halaman autentikasi dikarenakan halaman ini merupakan pintu pertama akses yang seharusnya memiliki pertahanan yang cukup. Kemudian dilakukan eksperimen terhadap metode Parameterized Query untuk mendapatkan solusi terhadap permasalahan tersebut.   Kata kunci— Layanan Informasi, Serangan, eksperimen, SQL Injection, Parameterized Query.

  5. Evaluating SPARQL queries on massive RDF datasets

    KAUST Repository

    Al-Harbi, Razen

    2015-08-01

    Distributed RDF systems partition data across multiple computer nodes. Partitioning is typically based on heuristics that minimize inter-node communication and it is performed in an initial, data pre-processing phase. Therefore, the resulting partitions are static and do not adapt to changes in the query workload; as a result, existing systems are unable to consistently avoid communication for queries that are not favored by the initial data partitioning. Furthermore, for very large RDF knowledge bases, the partitioning phase becomes prohibitively expensive, leading to high startup costs. In this paper, we propose AdHash, a distributed RDF system which addresses the shortcomings of previous work. First, AdHash initially applies lightweight hash partitioning, which drastically minimizes the startup cost, while favoring the parallel processing of join patterns on subjects, without any data communication. Using a locality-aware planner, queries that cannot be processed in parallel are evaluated with minimal communication. Second, AdHash monitors the data access patterns and adapts dynamically to the query load by incrementally redistributing and replicating frequently accessed data. As a result, the communication cost for future queries is drastically reduced or even eliminated. Our experiments with synthetic and real data verify that AdHash (i) starts faster than all existing systems, (ii) processes thousands of queries before other systems become online, and (iii) gracefully adapts to the query load, being able to evaluate queries on billion-scale RDF data in sub-seconds. In this demonstration, audience can use a graphical interface of AdHash to verify its performance superiority compared to state-of-the-art distributed RDF systems.

  6. Evaluating SPARQL queries on massive RDF datasets

    KAUST Repository

    Al-Harbi, Razen; Abdelaziz, Ibrahim; Kalnis, Panos; Mamoulis, Nikos

    2015-01-01

    In this paper, we propose AdHash, a distributed RDF system which addresses the shortcomings of previous work. First, AdHash initially applies lightweight hash partitioning, which drastically minimizes the startup cost, while favoring the parallel processing of join patterns on subjects, without any data communication. Using a locality-aware planner, queries that cannot be processed in parallel are evaluated with minimal communication. Second, AdHash monitors the data access patterns and adapts dynamically to the query load by incrementally redistributing and replicating frequently accessed data. As a result, the communication cost for future queries is drastically reduced or even eliminated. Our experiments with synthetic and real data verify that AdHash (i) starts faster than all existing systems, (ii) processes thousands of queries before other systems become online, and (iii) gracefully adapts to the query load, being able to evaluate queries on billion-scale RDF data in sub-seconds. In this demonstration, audience can use a graphical interface of AdHash to verify its performance superiority compared to state-of-the-art distributed RDF systems.

  7. A Query Cache Tool for Optimizing Repeatable and Parallel OLAP Queries

    Science.gov (United States)

    Santos, Ricardo Jorge; Bernardino, Jorge

    On-line analytical processing against data warehouse databases is a common form of getting decision making information for almost every business field. Decision support information oftenly concerns periodic values based on regular attributes, such as sales amounts, percentages, most transactioned items, etc. This means that many similar OLAP instructions are periodically repeated, and simultaneously, between the several decision makers. Our Query Cache Tool takes advantage of previously executed queries, storing their results and the current state of the data which was accessed. Future queries only need to execute against the new data, inserted since the queries were last executed, and join these results with the previous ones. This makes query execution much faster, because we only need to process the most recent data. Our tool also minimizes the execution time and resource consumption for similar queries simultaneously executed by different users, putting the most recent ones on hold until the first finish and returns the results for all of them. The stored query results are held until they are considered outdated, then automatically erased. We present an experimental evaluation of our tool using a data warehouse based on a real-world business dataset and use a set of typical decision support queries to discuss the results, showing a very high gain in query execution time.

  8. Recrafting the Neighbor-Joining Method

    DEFF Research Database (Denmark)

    Mailund; Brodal, Gerth Stølting; Fagerberg, Rolf

    2006-01-01

    Background: The neighbor-joining method by Saitou and Nei is a widely used method for constructing phylogenetic trees. The formulation of the method gives rise to a canonical Θ(n3) algorithm upon which all existing implementations are based. Methods: In this paper we present techniques for speeding...... up the canonical neighbor-joining method. Our algorithms construct the same phylogenetic trees as the canonical neighbor-joining method. The best-case running time of our algorithms are O(n2) but the worst-case remains O(n3). We empirically evaluate the performance of our algoritms on distance...... matrices obtained from the Pfam collection of alignments. Results: The experiments indicate that the running time of our algorithms evolve as Θ(n2) on the examined instance collection. We also compare the running time with that of the QuickTree tool, a widely used efficient implementation of the canonical...

  9. The clinic as a good corporate neighbor.

    Science.gov (United States)

    Sass, Hans-Martin

    2013-02-01

    Clinics today specialize in health repair services similar to car repair shops; procedures and prices are standardized, regulated, and inflexibly uniform. Clinics of the future have to become Health Care Centers in order to be more respected and more effective corporate neighbors in offering outreach services in health education and preventive health care. The traditional concept of care for health is much broader than repair management and includes the promotion of lay health competence and responsibility in healthy social and natural environments. The corporate profile and ethics of the clinic as a good and competitive local neighbor will have to focus on [a] better personalized care, [b] education and services in preventive care, [c] direct or web-based information and advice for general, seasonal, or age related health risks, and on developing and improving trustworthy character traits of the clinic as a corporate person and a good neighbor.

  10. Lectures on the nearest neighbor method

    CERN Document Server

    Biau, Gérard

    2015-01-01

    This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods. Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).   .

  11. New Sliding Puzzle with Neighbors Swap Motion

    OpenAIRE

    Prihardono, Ariyanto; Kawagoe, Kenichi

    2015-01-01

    The sliding puzzles (15-puzzle, 8-puzzle, 5-puzzle) are known to have 2 kind of puz-zle: solvable puzzle and unsolvable puzzle. In this thesis, we make a new puzzle with only 1 kind of it, solvable puzzle. This new puzzle is made by adopting sliding puzzle with several additional rules from M13 puzzle; the puzzle that is formed form The Mathieu group M13. This puzzle has a movement that called a neighbors swap motion, a rule of movement that enables every neighboring points to swap. This extr...

  12. SPARQL Assist language-neutral query composer

    Science.gov (United States)

    2012-01-01

    Background SPARQL query composition is difficult for the lay-person, and even the experienced bioinformatician in cases where the data model is unfamiliar. Moreover, established best-practices and internationalization concerns dictate that the identifiers for ontological terms should be opaque rather than human-readable, which further complicates the task of synthesizing queries manually. Results We present SPARQL Assist: a Web application that addresses these issues by providing context-sensitive type-ahead completion during SPARQL query construction. Ontological terms are suggested using their multi-lingual labels and descriptions, leveraging existing support for internationalization and language-neutrality. Moreover, the system utilizes the semantics embedded in ontologies, and within the query itself, to help prioritize the most likely suggestions. Conclusions To ensure success, the Semantic Web must be easily available to all users, regardless of locale, training, or preferred language. By enhancing support for internationalization, and moreover by simplifying the manual construction of SPARQL queries through the use of controlled-natural-language interfaces, we believe we have made some early steps towards simplifying access to Semantic Web resources. PMID:22373327

  13. SPARQL assist language-neutral query composer.

    Science.gov (United States)

    McCarthy, Luke; Vandervalk, Ben; Wilkinson, Mark

    2012-01-25

    SPARQL query composition is difficult for the lay-person, and even the experienced bioinformatician in cases where the data model is unfamiliar. Moreover, established best-practices and internationalization concerns dictate that the identifiers for ontological terms should be opaque rather than human-readable, which further complicates the task of synthesizing queries manually. We present SPARQL Assist: a Web application that addresses these issues by providing context-sensitive type-ahead completion during SPARQL query construction. Ontological terms are suggested using their multi-lingual labels and descriptions, leveraging existing support for internationalization and language-neutrality. Moreover, the system utilizes the semantics embedded in ontologies, and within the query itself, to help prioritize the most likely suggestions. To ensure success, the Semantic Web must be easily available to all users, regardless of locale, training, or preferred language. By enhancing support for internationalization, and moreover by simplifying the manual construction of SPARQL queries through the use of controlled-natural-language interfaces, we believe we have made some early steps towards simplifying access to Semantic Web resources.

  14. Enabling Semantic Queries Against the Spatial Database

    Directory of Open Access Journals (Sweden)

    PENG, X.

    2012-02-01

    Full Text Available The spatial database based upon the object-relational database management system (ORDBMS has the merits of a clear data model, good operability and high query efficiency. That is why it has been widely used in spatial data organization and management. However, it cannot express the semantic relationships among geospatial objects, making the query results difficult to meet the user's requirement well. Therefore, this paper represents an attempt to combine the Semantic Web technology with the spatial database so as to make up for the traditional database's disadvantages. In this way, on the one hand, users can take advantages of ORDBMS to store and manage spatial data; on the other hand, if the spatial database is released in the form of Semantic Web, the users could describe a query more concisely with the cognitive pattern which is similar to that of daily life. As a consequence, this methodology enables the benefits of both Semantic Web and the object-relational database (ORDB available. The paper discusses systematically the semantic enriched spatial database's architecture, key technologies and implementation. Subsequently, we demonstrate the function of spatial semantic queries via a practical prototype system. The query results indicate that the method used in this study is feasible.

  15. Recrafting the neighbor-joining method

    Directory of Open Access Journals (Sweden)

    Pedersen Christian NS

    2006-01-01

    Full Text Available Abstract Background The neighbor-joining method by Saitou and Nei is a widely used method for constructing phylogenetic trees. The formulation of the method gives rise to a canonical Θ(n3 algorithm upon which all existing implementations are based. Results In this paper we present techniques for speeding up the canonical neighbor-joining method. Our algorithms construct the same phylogenetic trees as the canonical neighbor-joining method. The best-case running time of our algorithms are O(n2 but the worst-case remains O(n3. We empirically evaluate the performance of our algoritms on distance matrices obtained from the Pfam collection of alignments. The experiments indicate that the running time of our algorithms evolve as Θ(n2 on the examined instance collection. We also compare the running time with that of the QuickTree tool, a widely used efficient implementation of the canonical neighbor-joining method. Conclusion The experiments show that our algorithms also yield a significant speed-up, already for medium sized instances.

  16. Heuristic query optimization for query multiple table and multiple clausa on mobile finance application

    Science.gov (United States)

    Indrayana, I. N. E.; P, N. M. Wirasyanti D.; Sudiartha, I. KG

    2018-01-01

    Mobile application allow many users to access data from the application without being limited to space, space and time. Over time the data population of this application will increase. Data access time will cause problems if the data record has reached tens of thousands to millions of records.The objective of this research is to maintain the performance of data execution for large data records. One effort to maintain data access time performance is to apply query optimization method. The optimization used in this research is query heuristic optimization method. The built application is a mobile-based financial application using MySQL database with stored procedure therein. This application is used by more than one business entity in one database, thus enabling rapid data growth. In this stored procedure there is an optimized query using heuristic method. Query optimization is performed on a “Select” query that involves more than one table with multiple clausa. Evaluation is done by calculating the average access time using optimized and unoptimized queries. Access time calculation is also performed on the increase of population data in the database. The evaluation results shown the time of data execution with query heuristic optimization relatively faster than data execution time without using query optimization.

  17. jQuery Mobile Up and Running

    CERN Document Server

    Firtman, Maximiliano

    2012-01-01

    Would you like to build one mobile web application that works on iPad and Kindle Fire as well as iPhone and Android smartphones? This introductory guide to jQuery Mobile shows you how. Through a series of hands-on exercises, you'll learn the best ways to use this framework's many interface components to build customizable, multiplatform apps. You don't need any programming skills or previous experience with jQuery to get started. By the time you finish this book, you'll know how to create responsive, Ajax-based interfaces that work on a variety of smartphones and tablets, using jQuery Mobile

  18. jQuery for designers beginner's guide

    CERN Document Server

    MacLees, Natalie

    2014-01-01

    A step-by-step guide that spices up your web pages and designs them in the way you want using the most widely used JavaScript library, jQuery. The beginner-friendly and easy-to-understand approach of the book will help get to grips with jQuery in no time. If you know the fundamentals of HTML and CSS, and want to extend your knowledge by learning to use JavaScript, then this is just the book for you. jQuery makes JavaScript straightforward and approachable - you'll be surprised at how easy it can be to add animations and special effects to your beautifully designed pages.

  19. Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Wang Chuan; Hao Liang; Zhao Lian-Jie

    2011-01-01

    We present a modified protocol for the realization of a quantum private query process on a classical database. Using one-qubit query and CNOT operation, the query process can be realized in a two-mode database. In the query process, the data privacy is preserved as the sender would not reveal any information about the database besides her query information, and the database provider cannot retain any information about the query. We implement the quantum private query protocol in a nuclear magnetic resonance system. The density matrix of the memory registers are constructed. (general)

  20. Templates and Queries in Contextual Hypermedia

    DEFF Research Database (Denmark)

    Anderson, Kenneth Mark; Hansen, Frank Allan; Bouvin, Niels Olof

    2006-01-01

    discuss a framework, HyConSC, that implements this model and describe how it can be used to build new contextual hypermedia systems. Our framework aids the developer in the iterative development of contextual queries (via a dynamic query browser) and offers support for con-text matching, a key feature...... of contextual hypermedia. We have tested the framework with data and sensors taken from the HyCon contextual hypermedia system and are now migrating HyCon to this new framework....

  1. SPARQL Query Re-writing Using Partonomy Based Transformation Rules

    Science.gov (United States)

    Jain, Prateek; Yeh, Peter Z.; Verma, Kunal; Henson, Cory A.; Sheth, Amit P.

    Often the information present in a spatial knowledge base is represented at a different level of granularity and abstraction than the query constraints. For querying ontology's containing spatial information, the precise relationships between spatial entities has to be specified in the basic graph pattern of SPARQL query which can result in long and complex queries. We present a novel approach to help users intuitively write SPARQL queries to query spatial data, rather than relying on knowledge of the ontology structure. Our framework re-writes queries, using transformation rules to exploit part-whole relations between geographical entities to address the mismatches between query constraints and knowledge base. Our experiments were performed on completely third party datasets and queries. Evaluations were performed on Geonames dataset using questions from National Geographic Bee serialized into SPARQL and British Administrative Geography Ontology using questions from a popular trivia website. These experiments demonstrate high precision in retrieval of results and ease in writing queries.

  2. Answering SPARQL queries modulo RDF Schema with paths

    OpenAIRE

    Alkhateeb, Faisal; Euzenat, Jérôme

    2013-01-01

    alkhateeb2013a; SPARQL is the standard query language for RDF graphs. In its strict instantiation, it only offers querying according to the RDF semantics and would thus ignore the semantics of data expressed with respect to (RDF) schemas or (OWL) ontologies. Several extensions to SPARQL have been proposed to query RDF data modulo RDFS, i.e., interpreting the query with RDFS semantics and/or considering external ontologies. We introduce a general framework which allows for expressing query ans...

  3. Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines.

    Science.gov (United States)

    Majid, Abdul; Ali, Safdar; Iqbal, Mubashar; Kausar, Nabeela

    2014-03-01

    This study proposes a novel prediction approach for human breast and colon cancers using different feature spaces. The proposed scheme consists of two stages: the preprocessor and the predictor. In the preprocessor stage, the mega-trend diffusion (MTD) technique is employed to increase the samples of the minority class, thereby balancing the dataset. In the predictor stage, machine-learning approaches of K-nearest neighbor (KNN) and support vector machines (SVM) are used to develop hybrid MTD-SVM and MTD-KNN prediction models. MTD-SVM model has provided the best values of accuracy, G-mean and Matthew's correlation coefficient of 96.71%, 96.70% and 71.98% for cancer/non-cancer dataset, breast/non-breast cancer dataset and colon/non-colon cancer dataset, respectively. We found that hybrid MTD-SVM is the best with respect to prediction performance and computational cost. MTD-KNN model has achieved moderately better prediction as compared to hybrid MTD-NB (Naïve Bayes) but at the expense of higher computing cost. MTD-KNN model is faster than MTD-RF (random forest) but its prediction is not better than MTD-RF. To the best of our knowledge, the reported results are the best results, so far, for these datasets. The proposed scheme indicates that the developed models can be used as a tool for the prediction of cancer. This scheme may be useful for study of any sequential information such as protein sequence or any nucleic acid sequence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Evolutionary Algorithms for Boolean Queries Optimization

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Snášel, Václav; Neruda, Roman; Owais, S.S.J.; Krömer, P.

    2006-01-01

    Roč. 3, č. 1 (2006), s. 15-20 ISSN 1790-0832 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * information retrieval * Boolean query Subject RIV: BA - General Mathematics

  5. Boolean Queries Optimization by Genetic Algorithms

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Owais, S.S.J.; Krömer, P.; Snášel, Václav

    2005-01-01

    Roč. 15, - (2005), s. 395-409 ISSN 1210-0552 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * genetic programming * information retrieval * Boolean query Subject RIV: BB - Applied Statistics, Operational Research

  6. External query expansion in the blogosphere

    NARCIS (Netherlands)

    Weerkamp, W.; de Rijke, M.; Voorhees, E.M.; Buckland, L.P.

    2009-01-01

    We describe the participation of the University of Amsterdam’s ILPS group in the blog track at TREC 2008. We mainly explored different ways of using external corpora to expand the original query. In the blog post retrieval task we did not succeed in improving over a simple baseline (equal weights

  7. Advanced SPARQL querying in small molecule databases.

    Science.gov (United States)

    Galgonek, Jakub; Hurt, Tomáš; Michlíková, Vendula; Onderka, Petr; Schwarz, Jan; Vondrášek, Jiří

    2016-01-01

    In recent years, the Resource Description Framework (RDF) and the SPARQL query language have become more widely used in the area of cheminformatics and bioinformatics databases. These technologies allow better interoperability of various data sources and powerful searching facilities. However, we identified several deficiencies that make usage of such RDF databases restrictive or challenging for common users. We extended a SPARQL engine to be able to use special procedures inside SPARQL queries. This allows the user to work with data that cannot be simply precomputed and thus cannot be directly stored in the database. We designed an algorithm that checks a query against data ontology to identify possible user errors. This greatly improves query debugging. We also introduced an approach to visualize retrieved data in a user-friendly way, based on templates describing visualizations of resource classes. To integrate all of our approaches, we developed a simple web application. Our system was implemented successfully, and we demonstrated its usability on the ChEBI database transformed into RDF form. To demonstrate procedure call functions, we employed compound similarity searching based on OrChem. The application is publicly available at https://bioinfo.uochb.cas.cz/projects/chemRDF.

  8. C-SPARQL : SPARQL for continuous querying

    OpenAIRE

    Barbieri, Davide Francesco; Braga, Daniele; Ceri, Stefano; Valle, Emanuele Della; Grossniklaus, Michael

    2009-01-01

    C-SPARQL is an extension of SPARQL to support continuous queries, registered and continuously executed over RDF data streams, considering windows of such streams. Supporting streams in RDF format guarantees interoperability and opens up important applications, in which reasoners can deal with knowledge that evolves over time. We present C-SPARQL by means of examples in Urban Computing.

  9. The data cyclotron query processing scheme

    NARCIS (Netherlands)

    R.A. Goncalves (Romulo); M.L. Kersten (Martin)

    2010-01-01

    htmlabstractDistributed database systems exploit static workload characteristics to steer data fragmentation and data allocation schemes. However, the grand challenge of distributed query processing is to come up with a self-organizing architecture, which exploits all resources to manage the hot

  10. Enabling Incremental Query Re-Optimization.

    Science.gov (United States)

    Liu, Mengmeng; Ives, Zachary G; Loo, Boon Thau

    2016-01-01

    As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs , and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries ; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations.

  11. XAL: An algebra for XML query optimization

    NARCIS (Netherlands)

    Frasincar, F.; Houben, G.J.P.M.; Pau, C.D.; Zhou, Xiaofang

    2002-01-01

    This paper proposes XAL, an XML ALgebra. Its novelty is based on the simplicity of its data model and its well-defined logical operators, which makes it suitable for composability, optimizability, and semantics definition of a query language for XML data. At the heart of the algebra resides the

  12. Combining the power of searching and querying

    NARCIS (Netherlands)

    Cohen, S.; Kanza, Y.; Kogan, Y.A.; Nutt, W.; Sagiv, Y.; Serebrenik, A.; Etzion, O.; Scheuermann, P.

    2000-01-01

    EquiX is a search language for XML that combines the power of querying with the simplicity of searching. Requirements for search languages are discussed and it is shown that EquiX meets the necessary criteria. Both a graphical abstract syntax and a formal concrete syntax are presented for EquiX

  13. Beginning SQL queries from novice to professional

    CERN Document Server

    Churcher, Clare

    2016-01-01

    Anyone who does any work at all with databases needs to know something of SQL. This is a friendly and easy-to-read guide to writing queries with the all-important - in the database world - SQL language. The author writes with exceptional clarity.

  14. Web-Based Distributed XML Query Processing

    NARCIS (Netherlands)

    Smiljanic, M.; Feng, L.; Jonker, Willem; Blanken, Henk; Grabs, T.; Schek, H-J.; Schenkel, R.; Weikum, G.

    2003-01-01

    Web-based distributed XML query processing has gained in importance in recent years due to the widespread popularity of XML on the Web. Unlike centralized and tightly coupled distributed systems, Web-based distributed database systems are highly unpredictable and uncontrollable, with a rather

  15. Flattening Queries over Nested Data Types

    NARCIS (Netherlands)

    van Ruth, J.

    2006-01-01

    The theory developed in this thesis provides a method to improve the efficiency of querying nested data. The roots of this research lie in the tension between data model expressiveness and performance. Obviously, more expressive data models are more convenient for application programmers. For many

  16. Sonata: Query-Driven Network Telemetry

    KAUST Repository

    Gupta, Arpit; Harrison, Rob; Pawar, Ankita; Birkner, Rü diger; Canini, Marco; Feamster, Nick; Rexford, Jennifer; Willinger, Walter

    2017-01-01

    Operating networks depends on collecting and analyzing measurement data. Current technologies do not make it easy to do so, typically because they separate data collection (e.g., packet capture or flow monitoring) from analysis, producing either too much data to answer a general question or too little data to answer a detailed question. In this paper, we present Sonata, a network telemetry system that uses a uniform query interface to drive the joint collection and analysis of network traffic. Sonata takes the advantage of two emerging technologies---streaming analytics platforms and programmable network devices---to facilitate joint collection and analysis. Sonata allows operators to more directly express network traffic analysis tasks in terms of a high-level language. The underlying runtime partitions each query into a portion that runs on the switch and another that runs on the streaming analytics platform iteratively refines the query to efficiently capture only the traffic that pertains to the operator's query, and exploits sketches to reduce state in switches in exchange for more approximate results. Through an evaluation of a prototype implementation, we demonstrate that Sonata can support a wide range of network telemetry tasks with less state in the network, and lower data rates to streaming analytics systems, than current approaches can achieve.

  17. Sonata: Query-Driven Network Telemetry

    KAUST Repository

    Gupta, Arpit

    2017-05-02

    Operating networks depends on collecting and analyzing measurement data. Current technologies do not make it easy to do so, typically because they separate data collection (e.g., packet capture or flow monitoring) from analysis, producing either too much data to answer a general question or too little data to answer a detailed question. In this paper, we present Sonata, a network telemetry system that uses a uniform query interface to drive the joint collection and analysis of network traffic. Sonata takes the advantage of two emerging technologies---streaming analytics platforms and programmable network devices---to facilitate joint collection and analysis. Sonata allows operators to more directly express network traffic analysis tasks in terms of a high-level language. The underlying runtime partitions each query into a portion that runs on the switch and another that runs on the streaming analytics platform iteratively refines the query to efficiently capture only the traffic that pertains to the operator\\'s query, and exploits sketches to reduce state in switches in exchange for more approximate results. Through an evaluation of a prototype implementation, we demonstrate that Sonata can support a wide range of network telemetry tasks with less state in the network, and lower data rates to streaming analytics systems, than current approaches can achieve.

  18. Dimensionality reduction with unsupervised nearest neighbors

    CERN Document Server

    Kramer, Oliver

    2013-01-01

    This book is devoted to a novel approach for dimensionality reduction based on the famous nearest neighbor method that is a powerful classification and regression approach. It starts with an introduction to machine learning concepts and a real-world application from the energy domain. Then, unsupervised nearest neighbors (UNN) is introduced as efficient iterative method for dimensionality reduction. Various UNN models are developed step by step, reaching from a simple iterative strategy for discrete latent spaces to a stochastic kernel-based algorithm for learning submanifolds with independent parameterizations. Extensions that allow the embedding of incomplete and noisy patterns are introduced. Various optimization approaches are compared, from evolutionary to swarm-based heuristics. Experimental comparisons to related methodologies taking into account artificial test data sets and also real-world data demonstrate the behavior of UNN in practical scenarios. The book contains numerous color figures to illustr...

  19. PERANGKAT BANTU UNTUK OPTIMASI QUERY PADA ORACLE DENGAN RESTRUKTURISASI SQL

    Directory of Open Access Journals (Sweden)

    Darlis Heru Murti

    2006-07-01

    Full Text Available Query merupakan bagian dari bahasa pemrograman SQL (Structured Query Language yang berfungsi untuk mengambil data (read dalam DBMS (Database Management System, termasuk Oracle [3]. Pada Oracle, ada tiga tahap proses yang dilakukan dalam pengeksekusian query, yaitu Parsing, Execute dan Fetch. Sebelum proses execute dijalankan, Oracle terlebih dahulu membuat execution plan yang akan menjadi skenario dalam proses excute.Dalam proses pengeksekusian query, terdapat faktor-faktor yang mempengaruhi kinerja query, di antaranya access path (cara pengambilan data dari sebuah tabel dan operasi join (cara menggabungkan data dari dua tabel. Untuk mendapatkan query dengan kinerja optimal, maka diperlukan pertimbangan-pertimbangan dalam menyikapi faktor-faktor tersebut.  Optimasi query merupakan suatu cara untuk mendapatkan query dengan kinerja seoptimal mungkin, terutama dilihat dari sudut pandang waktu. Ada banyak metode untuk mengoptimasi query, tapi pada Penelitian ini, penulis membuat sebuah aplikasi untuk mengoptimasi query dengan metode restrukturisasi SQL statement. Pada metode ini, objek yang dianalisa adalah struktur klausa yang membangun sebuah query. Aplikasi ini memiliki satu input dan lima jenis output. Input dari aplikasi ini adalah sebuah query sedangkan kelima jenis output aplikasi ini adalah berupa query hasil optimasi, saran perbaikan, saran pembuatan indeks baru, execution plan dan data statistik. Cara kerja aplikasi ini dibagi menjadi empat tahap yaitu mengurai query menjadi sub query, mengurai query per-klausa, menentukan access path dan operasi join dan restrukturisasi query.Dari serangkaian ujicoba yang dilakukan penulis, aplikasi telah dapat berjalan sesuai dengan tujuan pembuatan Penelitian ini, yaitu mendapatkan query dengan kinerja optimal.Kata Kunci : Query, SQL, DBMS, Oracle, Parsing, Execute, Fetch, Execution Plan, Access Path, Operasi Join, Restrukturisasi SQL statement.

  20. Neighbor Rupture Degree of Some Middle Graphs

    Directory of Open Access Journals (Sweden)

    Gökşen BACAK-TURAN

    2017-12-01

    Full Text Available Networks have an important place in our daily lives. Internet networks, electricity networks, water networks, transportation networks, social networks and biological networks are some of the networks we run into every aspects of our lives. A network consists of centers connected by links. A network is represented when centers and connections modelled by vertices and edges, respectively. In consequence of the failure of some centers or connection lines, measurement of the resistance of the network until the communication interrupted is called vulnerability of the network. In this study, neighbor rupture degree which is a parameter that explores the vulnerability values of the resulting graphs due to the failure of some centers of a communication network and its neighboring centers becoming nonfunctional were applied to some middle graphs and neighbor rupture degree of the $M(C_{n},$ $M(P_{n},$ $M(K_{1,n},$ $M(W_{n},$ $M(P_{n}\\times K_{2}$ and $M(C_{n}\\times K_{2}$ have been found.

  1. Query-by-example surgical activity detection.

    Science.gov (United States)

    Gao, Yixin; Vedula, S Swaroop; Lee, Gyusung I; Lee, Mija R; Khudanpur, Sanjeev; Hager, Gregory D

    2016-06-01

    Easy acquisition of surgical data opens many opportunities to automate skill evaluation and teaching. Current technology to search tool motion data for surgical activity segments of interest is limited by the need for manual pre-processing, which can be prohibitive at scale. We developed a content-based information retrieval method, query-by-example (QBE), to automatically detect activity segments within surgical data recordings of long duration that match a query. The example segment of interest (query) and the surgical data recording (target trial) are time series of kinematics. Our approach includes an unsupervised feature learning module using a stacked denoising autoencoder (SDAE), two scoring modules based on asymmetric subsequence dynamic time warping (AS-DTW) and template matching, respectively, and a detection module. A distance matrix of the query against the trial is computed using the SDAE features, followed by AS-DTW combined with template scoring, to generate a ranked list of candidate subsequences (substrings). To evaluate the quality of the ranked list against the ground-truth, thresholding conventional DTW distances and bipartite matching are applied. We computed the recall, precision, F1-score, and a Jaccard index-based score on three experimental setups. We evaluated our QBE method using a suture throw maneuver as the query, on two tool motion datasets (JIGSAWS and MISTIC-SL) captured in a training laboratory. We observed a recall of 93, 90 and 87 % and a precision of 93, 91, and 88 % with same surgeon same trial (SSST), same surgeon different trial (SSDT) and different surgeon (DS) experiment setups on JIGSAWS, and a recall of 87, 81 and 75 % and a precision of 72, 61, and 53 % with SSST, SSDT and DS experiment setups on MISTIC-SL, respectively. We developed a novel, content-based information retrieval method to automatically detect multiple instances of an activity within long surgical recordings. Our method demonstrated adequate recall

  2. jQuery UI 1.10 the user interface library for jQuery

    CERN Document Server

    Libby, Alex

    2013-01-01

    This book consists of an easy-to-follow, example-based approach that leads you step-by-step through the implementation and customization of each library component.This book is for frontend designers and developers who need to learn how to use jQuery UI quickly. To get the most out of this book, you should have a good working knowledge of HTML, CSS, and JavaScript, and should ideally be comfortable using jQuery.

  3. Graphical modeling and query language for hospitals.

    Science.gov (United States)

    Barzdins, Janis; Barzdins, Juris; Rencis, Edgars; Sostaks, Agris

    2013-01-01

    So far there has been little evidence that implementation of the health information technologies (HIT) is leading to health care cost savings. One of the reasons for this lack of impact by the HIT likely lies in the complexity of the business process ownership in the hospitals. The goal of our research is to develop a business model-based method for hospital use which would allow doctors to retrieve directly the ad-hoc information from various hospital databases. We have developed a special domain-specific process modelling language called the MedMod. Formally, we define the MedMod language as a profile on UML Class diagrams, but we also demonstrate it on examples, where we explain the semantics of all its elements informally. Moreover, we have developed the Process Query Language (PQL) that is based on MedMod process definition language. The purpose of PQL is to allow a doctor querying (filtering) runtime data of hospital's processes described using MedMod. The MedMod language tries to overcome deficiencies in existing process modeling languages, allowing to specify the loosely-defined sequence of the steps to be performed in the clinical process. The main advantages of PQL are in two main areas - usability and efficiency. They are: 1) the view on data through "glasses" of familiar process, 2) the simple and easy-to-perceive means of setting filtering conditions require no more expertise than using spreadsheet applications, 3) the dynamic response to each step in construction of the complete query that shortens the learning curve greatly and reduces the error rate, and 4) the selected means of filtering and data retrieving allows to execute queries in O(n) time regarding the size of the dataset. We are about to continue developing this project with three further steps. First, we are planning to develop user-friendly graphical editors for the MedMod process modeling and query languages. The second step is to do evaluation of usability the proposed language and tool

  4. The New Mechanism to Query Multi-Dimensional Database%多维数据库检索查询的新机制

    Institute of Scientific and Technical Information of China (English)

    彭敏; 曹加恒; 揭志忠; 刘茂福; 刘娟

    2001-01-01

    结合数据立方体和R树两种索引方法快速灵活地进行数据查询,设计了最近邻接快速查询算法FNN,解决了一般R树查询中无法快速查询高维度数据的问题,使查询更高效、应用更广泛.%A new querying mechanism is put forward to combine data cubes with R-trees to query the databases quickly and neatly. A nearest neighbor algorithm FNN is designed to improve the efficiency of high-dimensional data querying and this make the application of our query method more efficient and broad.

  5. Cumulative query method for influenza surveillance using search engine data.

    Science.gov (United States)

    Seo, Dong-Woo; Jo, Min-Woo; Sohn, Chang Hwan; Shin, Soo-Yong; Lee, JaeHo; Yu, Maengsoo; Kim, Won Young; Lim, Kyoung Soo; Lee, Sang-Il

    2014-12-16

    Internet search queries have become an important data source in syndromic surveillance system. However, there is currently no syndromic surveillance system using Internet search query data in South Korea. The objective of this study was to examine correlations between our cumulative query method and national influenza surveillance data. Our study was based on the local search engine, Daum (approximately 25% market share), and influenza-like illness (ILI) data from the Korea Centers for Disease Control and Prevention. A quota sampling survey was conducted with 200 participants to obtain popular queries. We divided the study period into two sets: Set 1 (the 2009/10 epidemiological year for development set 1 and 2010/11 for validation set 1) and Set 2 (2010/11 for development Set 2 and 2011/12 for validation Set 2). Pearson's correlation coefficients were calculated between the Daum data and the ILI data for the development set. We selected the combined queries for which the correlation coefficients were .7 or higher and listed them in descending order. Then, we created a cumulative query method n representing the number of cumulative combined queries in descending order of the correlation coefficient. In validation set 1, 13 cumulative query methods were applied, and 8 had higher correlation coefficients (min=.916, max=.943) than that of the highest single combined query. Further, 11 of 13 cumulative query methods had an r value of ≥.7, but 4 of 13 combined queries had an r value of ≥.7. In validation set 2, 8 of 15 cumulative query methods showed higher correlation coefficients (min=.975, max=.987) than that of the highest single combined query. All 15 cumulative query methods had an r value of ≥.7, but 6 of 15 combined queries had an r value of ≥.7. Cumulative query method showed relatively higher correlation with national influenza surveillance data than combined queries in the development and validation set.

  6. Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm

    Directory of Open Access Journals (Sweden)

    E. Parvinnia

    2014-01-01

    Full Text Available Electroencephalogram (EEG signals are often used to diagnose diseases such as seizure, alzheimer, and schizophrenia. One main problem with the recorded EEG samples is that they are not equally reliable due to the artifacts at the time of recording. EEG signal classification algorithms should have a mechanism to handle this issue. It seems that using adaptive classifiers can be useful for the biological signals such as EEG. In this paper, a general adaptive method named weighted distance nearest neighbor (WDNN is applied for EEG signal classification to tackle this problem. This classification algorithm assigns a weight to each training sample to control its influence in classifying test samples. The weights of training samples are used to find the nearest neighbor of an input query pattern. To assess the performance of this scheme, EEG signals of thirteen schizophrenic patients and eighteen normal subjects are analyzed for the classification of these two groups. Several features including, fractal dimension, band power and autoregressive (AR model are extracted from EEG signals. The classification results are evaluated using Leave one (subject out cross validation for reliable estimation. The results indicate that combination of WDNN and selected features can significantly outperform the basic nearest-neighbor and the other methods proposed in the past for the classification of these two groups. Therefore, this method can be a complementary tool for specialists to distinguish schizophrenia disorder.

  7. Mathematical Formula Search using Natural Language Queries

    Directory of Open Access Journals (Sweden)

    YANG, S.

    2014-11-01

    Full Text Available This paper presents how to search mathematical formulae written in MathML when given plain words as a query. Since the proposed method allows natural language queries like the traditional Information Retrieval for the mathematical formula search, users do not need to enter any complicated math symbols and to use any formula input tool. For this, formula data is converted into plain texts, and features are extracted from the converted texts. In our experiments, we achieve an outstanding performance, a MRR of 0.659. In addition, we introduce how to utilize formula classification for formula search. By using class information, we finally achieve an improved performance, a MRR of 0.690.

  8. TEMPORAL QUERY PROCESSIG USING SQL SERVER

    OpenAIRE

    Vali Shaik, Mastan; Sujatha, P

    2017-01-01

    Most data sources in real-life are not static but change their information in time. This evolution of data in time can give valuable insights to business analysts. Temporal data refers to data, where changes over time or temporal aspects play a central role. Temporal data denotes the evaluation of object characteristics over time. One of the main unresolved problems that arise during the data mining process is treating data that contains temporal information. Temporal queries on time evolving...

  9. Advanced SPARQL querying in small molecule databases

    Czech Academy of Sciences Publication Activity Database

    Galgonek, Jakub; Hurt, T.; Michlíková, V.; Onderka, P.; Schwarz, J.; Vondrášek, Jiří

    2016-01-01

    Roč. 8, Jun 6 (2016), č. článku 31. ISSN 1758-2946 R&D Projects: GA MŠk(CZ) LM2015047 Institutional support: RVO:61388963 Keywords : Resource Description Framework * SPARQL query language * Database of small molecules Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.220, year: 2016 http://jcheminf.springeropen.com/articles/10.1186/s13321-016-0144-4

  10. ACTION RECOGNITION USING SALIENT NEIGHBORING HISTOGRAMS

    DEFF Research Database (Denmark)

    Ren, Huamin; Moeslund, Thomas B.

    2013-01-01

    Combining spatio-temporal interest points with Bag-of-Words models achieves state-of-the-art performance in action recognition. However, existing methods based on “bag-ofwords” models either are too local to capture the variance in space/time or fail to solve the ambiguity problem in spatial...... and temporal dimensions. Instead, we propose a salient vocabulary construction algorithm to select visual words from a global point of view, and form compact descriptors to represent discriminative histograms in the neighborhoods. Those salient neighboring histograms are then trained to model different actions...

  11. A dumbed-down approach to unite Fermilab, its neighbors

    CERN Multimedia

    Constable, B

    2004-01-01

    "...Fermilab is reaching out to its suburban neighbors...With the nation on orange alert, Fermilab scientists no longer can sit on the front porch and invite neighbors in for coffee and quasars" (1 page).

  12. Linking Health Records for Federated Query Processing

    Directory of Open Access Journals (Sweden)

    Dewri Rinku

    2016-07-01

    Full Text Available A federated query portal in an electronic health record infrastructure enables large epidemiology studies by combining data from geographically dispersed medical institutions. However, an individual’s health record has been found to be distributed across multiple carrier databases in local settings. Privacy regulations may prohibit a data source from revealing clear text identifiers, thereby making it non-trivial for a query aggregator to determine which records correspond to the same underlying individual. In this paper, we explore this problem of privately detecting and tracking the health records of an individual in a distributed infrastructure. We begin with a secure set intersection protocol based on commutative encryption, and show how to make it practical on comparison spaces as large as 1010 pairs. Using bigram matching, precomputed tables, and data parallelism, we successfully reduced the execution time to a matter of minutes, while retaining a high degree of accuracy even in records with data entry errors. We also propose techniques to prevent the inference of identifier information when knowledge of underlying data distributions is known to an adversary. Finally, we discuss how records can be tracked utilizing the detection results during query processing.

  13. SM4MQ: A Semantic Model for Multidimensional Queries

    DEFF Research Database (Denmark)

    Varga, Jovan; Dobrokhotova, Ekaterina; Romero, Oscar

    2017-01-01

    metadata artifacts (e.g., queries) to assist users with the analysis. However, modeling and sharing of most of these artifacts are typically overlooked. Thus, in this paper we focus on the query metadata artifact in the Exploratory OLAP context and propose an RDF-based vocabulary for its representation......, sharing, and reuse on the SW. As OLAP is based on the underlying multidimensional (MD) data model we denote such queries as MD queries and define SM4MQ: A Semantic Model for Multidimensional Queries. Furthermore, we propose a method to automate the exploitation of queries by means of SPARQL. We apply...... the method to a use case of transforming queries from SM4MQ to a vector representation. For the use case, we developed the prototype and performed an evaluation that shows how our approach can significantly ease and support user assistance such as query recommendation....

  14. Accelerating SPARQL Queries and Analytics on RDF Data

    KAUST Repository

    Al-Harbi, Razen

    2016-01-01

    The complexity of SPARQL queries and RDF applications poses great challenges on distributed RDF management systems. SPARQL workloads are dynamic and con- sist of queries with variable complexities. Hence, systems that use static partitioning su

  15. A Revisit of Query Expansion with Different Semantic Levels

    DEFF Research Database (Denmark)

    Zhang, Ce; Cui, Bin; Cong, Gao

    2009-01-01

    Query expansion has received extensive attention in information retrieval community. Although semantic based query expansion appears to be promising in improving retrieval performance, previous research has shown that it cannot consistently improve retrieval performance. It is a tricky problem to...

  16. Semantic querying of data guided by Formal Concept Analysis

    OpenAIRE

    Codocedo , Victor; Lykourentzou , Ioanna; Napoli , Amedeo

    2012-01-01

    International audience; In this paper we present a novel approach to handle querying over a concept lattice of documents and annotations. We focus on the problem of "non-matching documents", which are those that, despite being semantically relevant to the user query, do not contain the query's elements and hence cannot be retrieved by typical string matching approaches. In order to find these documents, we modify the initial user query using the concept lattice as a guide. We achieve this by ...

  17. QUERY RESPONSE TIME COMPARISON NOSQLDB MONGODB WITH SQLDB ORACLE

    Directory of Open Access Journals (Sweden)

    Humasak T. A. Simanjuntak

    2015-01-01

    Full Text Available Penyimpanan data saat ini terdapat dua jenis yakni relational database dan non-relational database. Kedua jenis DBMS (Database Managemnet System tersebut berbeda dalam berbagai aspek seperti per-formansi eksekusi query, scalability, reliability maupun struktur penyimpanan data. Kajian ini memiliki tujuan untuk mengetahui perbandingan performansi DBMS antara Oracle sebagai jenis relational data-base dan MongoDB sebagai jenis non-relational database dalam mengolah data terstruktur. Eksperimen dilakukan untuk mengetahui perbandingan performansi kedua DBMS tersebut untuk operasi insert, select, update dan delete dengan menggunakan query sederhana maupun kompleks pada database Northwind. Untuk mencapai tujuan eksperimen, 18 query yang terdiri dari 2 insert query, 10 select query, 2 update query dan 2 delete query dieksekusi. Query dieksekusi melalui sebuah aplikasi .Net yang dibangun sebagai perantara antara user dengan basis data. Eksperimen dilakukan pada tabel dengan atau tanpa relasi pada Oracle dan embedded atau bukan embedded dokumen pada MongoDB. Response time untuk setiap eksekusi query dibandingkan dengan menggunakan metode statistik. Eksperimen menunjukkan response time query untuk proses select, insert, dan update pada MongoDB lebih cepatdaripada Oracle. MongoDB lebih cepat 64.8 % untuk select query;MongoDB lebihcepat 72.8 % untuk insert query dan MongoDB lebih cepat 33.9 % untuk update query. Pada delete query, Oracle lebih cepat 96.8 % daripada MongoDB untuk table yang berelasi, tetapi MongoDB lebih cepat 83.8 % daripada Oracle untuk table yang tidak memiliki relasi.Untuk query kompleks dengan Map Reduce pada MongoDB lebih lambat 97.6% daripada kompleks query dengan aggregate function pada Oracle.

  18. Visual Querying in Chemical Databases using SMARTS Patterns

    OpenAIRE

    Šípek, Vojtěch

    2014-01-01

    The purpose of this thesis is to create framework for visual querying in chemical databases which will be implemented as a web application. By using graphical editor, which is a part of client side, the user creates queries which are translated into chemical query language SMARTS. This query is parsed on the application server which is connected to the chemical database. This framework also contains tooling for creating the database and index structure above it. 1

  19. Cryptosporidiosis in Saudi Arabia and neighboring countries

    International Nuclear Information System (INIS)

    Areeshi, Mohammed Y.; Hart, C.A.; Beeching, N.J.

    2007-01-01

    Cryptosporidium is a coccidian protozoan parasite of the intestinal tract that causes severe and sometimes fatal watery diarrhea in immunocompromised patients and self-limiting but prolonged diarrheal disease in immunocompetent individuals. It exists naturally in animals and can be zoonotic. Although cryptosporidiosis is a significant cause of diarrheal disease in both developing and developed countries, it is more prevalent in developing countries and in tropical environments. We examined the epidemiology and disease burden of Cryptosporidium in Saudi Arabia and neighboring countries by reviewing 23 published studies of Cryptosporidium and etiology of diarrhea in between 1986 and 2006. The prevalence of Cryptosporidium infection in human's ranged from 1% to 37% with a median of 4%, while in animals it was for different species of animals and geographic locations of the studies. Most cases of cryptosporidiosis occurred among children less than 7 years of age and particularly in the first two years of life. The seasonality of Cryptosporidium varied depending on the geographic locations of the studies but it generally most prevalent in the rainy season. The most commonly identified species was Cryptosporidium parvum while C.hominis was detected only in one study from Kuwait. The cumulative experience from Saudi Arabia and four neighboring countries (Kuwait, Oman, Jordan and Iraq) suggest that Cryptosporidium is an important cause of diarrhea in human and cattle. However, the findings of this review also demonstrate the limitations of the available data regarding Cryptosporidium species and strains in circulation in these countries. (author)

  20. Parallelizing Federated SPARQL Queries in Presence of Replicated Data

    DEFF Research Database (Denmark)

    Minier, Thomas; Montoya, Gabriela; Skaf-Molli, Hala

    2017-01-01

    Federated query engines have been enhanced to exploit new data localities created by replicated data, e.g., Fedra. However, existing replication aware federated query engines mainly focus on pruning sources during the source selection and query decomposition in order to reduce intermediate result...

  1. A Relational Algebra Query Language for Programming Relational Databases

    Science.gov (United States)

    McMaster, Kirby; Sambasivam, Samuel; Anderson, Nicole

    2011-01-01

    In this paper, we describe a Relational Algebra Query Language (RAQL) and Relational Algebra Query (RAQ) software product we have developed that allows database instructors to teach relational algebra through programming. Instead of defining query operations using mathematical notation (the approach commonly taken in database textbooks), students…

  2. Result diversification based on query-specific cluster ranking

    NARCIS (Netherlands)

    He, J.; Meij, E.; de Rijke, M.

    2011-01-01

    Result diversification is a retrieval strategy for dealing with ambiguous or multi-faceted queries by providing documents that cover as many facets of the query as possible. We propose a result diversification framework based on query-specific clustering and cluster ranking, in which diversification

  3. Result Diversification Based on Query-Specific Cluster Ranking

    NARCIS (Netherlands)

    J. He (Jiyin); E. Meij; M. de Rijke (Maarten)

    2011-01-01

    htmlabstractResult diversification is a retrieval strategy for dealing with ambiguous or multi-faceted queries by providing documents that cover as many facets of the query as possible. We propose a result diversification framework based on query-specific clustering and cluster ranking,

  4. Efficient Processing of Multiple DTW Queries in Time Series Databases

    DEFF Research Database (Denmark)

    Kremer, Hardy; Günnemann, Stephan; Ivanescu, Anca-Maria

    2011-01-01

    . In many of today’s applications, however, large numbers of queries arise at any given time. Existing DTW techniques do not process multiple DTW queries simultaneously, a serious limitation which slows down overall processing. In this paper, we propose an efficient processing approach for multiple DTW...... for multiple DTW queries....

  5. Modeling Large Time Series for Efficient Approximate Query Processing

    DEFF Research Database (Denmark)

    Perera, Kasun S; Hahmann, Martin; Lehner, Wolfgang

    2015-01-01

    query statistics derived from experiments and when running the system. Our approach can also reduce communication load by exchanging models instead of data. To allow seamless integration of model-based querying into traditional data warehouses, we introduce a SQL compatible query terminology. Our...

  6. Extracting Rankings for Spatial Keyword Queries from GPS Data

    DEFF Research Database (Denmark)

    Keles, Ilkcan; Jensen, Christian Søndergaard; Saltenis, Simonas

    2018-01-01

    Studies suggest that many search engine queries have local intent. We consider the evaluation of ranking functions important for such queries. The key challenge is to be able to determine the “best” ranking for a query, as this enables evaluation of the results of ranking functions. We propose...

  7. An Adaptive Directed Query Dissemination Scheme for Wireless Sensor Networks

    NARCIS (Netherlands)

    Chatterjea, Supriyo; De Luigi, Simone; Havinga, Paul J.M.; Sun, M.T.

    This paper describes a directed query dissemination scheme, DirQ that routes queries to the appropriate source nodes based on both constant and dynamicvalued attributes such as sensor types and sensor values. Unlike certain other query dissemination schemes, location information is not essential for

  8. Automatic Query Generation and Query Relevance Measurement for Unsupervised Language Model Adaptation of Speech Recognition

    Directory of Open Access Journals (Sweden)

    Suzuki Motoyuki

    2009-01-01

    Full Text Available Abstract We are developing a method of Web-based unsupervised language model adaptation for recognition of spoken documents. The proposed method chooses keywords from the preliminary recognition result and retrieves Web documents using the chosen keywords. A problem is that the selected keywords tend to contain misrecognized words. The proposed method introduces two new ideas for avoiding the effects of keywords derived from misrecognized words. The first idea is to compose multiple queries from selected keyword candidates so that the misrecognized words and correct words do not fall into one query. The second idea is that the number of Web documents downloaded for each query is determined according to the "query relevance." Combining these two ideas, we can alleviate bad effect of misrecognized keywords by decreasing the number of downloaded Web documents from queries that contain misrecognized keywords. Finally, we examine a method of determining the number of iterative adaptations based on the recognition likelihood. Experiments have shown that the proposed stopping criterion can determine almost the optimum number of iterations. In the final experiment, the word accuracy without adaptation (55.29% was improved to 60.38%, which was 1.13 point better than the result of the conventional unsupervised adaptation method (59.25%.

  9. Automatic Query Generation and Query Relevance Measurement for Unsupervised Language Model Adaptation of Speech Recognition

    Directory of Open Access Journals (Sweden)

    Akinori Ito

    2009-01-01

    Full Text Available We are developing a method of Web-based unsupervised language model adaptation for recognition of spoken documents. The proposed method chooses keywords from the preliminary recognition result and retrieves Web documents using the chosen keywords. A problem is that the selected keywords tend to contain misrecognized words. The proposed method introduces two new ideas for avoiding the effects of keywords derived from misrecognized words. The first idea is to compose multiple queries from selected keyword candidates so that the misrecognized words and correct words do not fall into one query. The second idea is that the number of Web documents downloaded for each query is determined according to the “query relevance.” Combining these two ideas, we can alleviate bad effect of misrecognized keywords by decreasing the number of downloaded Web documents from queries that contain misrecognized keywords. Finally, we examine a method of determining the number of iterative adaptations based on the recognition likelihood. Experiments have shown that the proposed stopping criterion can determine almost the optimum number of iterations. In the final experiment, the word accuracy without adaptation (55.29% was improved to 60.38%, which was 1.13 point better than the result of the conventional unsupervised adaptation method (59.25%.

  10. Model of directed lines for square ice with second-neighbor and third-neighbor interactions

    Science.gov (United States)

    Kirov, Mikhail V.

    2018-02-01

    The investigation of the properties of nanoconfined systems is one of the most rapidly developing scientific fields. Recently it has been established that water monolayer between two graphene sheets forms square ice. Because of the energetic disadvantage, in the structure of the square ice there are no longitudinally arranged molecules. The result is that the structure is formed by unidirectional straight-lines of hydrogen bonds only. A simple but accurate discrete model of square ice with second-neighbor and third-neighbor interactions is proposed. According to this model, the ground state includes all configurations which do not contain three neighboring unidirectional chains of hydrogen bonds. Each triplet increases the energy by the same value. This new model differs from an analogous model with long-range interactions where in the ground state all neighboring chains are antiparallel. The new model is suitable for the corresponding system of point electric (and magnetic) dipoles on the square lattice. It allows separately estimating the different contributions to the total binding energy and helps to understand the properties of infinite monolayers and finite nanostructures. Calculations of the binding energy for square ice and for point dipole system are performed using the packages TINKER and LAMMPS.

  11. Lost in translation? A multilingual Query Builder improves the quality of PubMed queries: a randomised controlled trial.

    Science.gov (United States)

    Schuers, Matthieu; Joulakian, Mher; Kerdelhué, Gaetan; Segas, Léa; Grosjean, Julien; Darmoni, Stéfan J; Griffon, Nicolas

    2017-07-03

    MEDLINE is the most widely used medical bibliographic database in the world. Most of its citations are in English and this can be an obstacle for some researchers to access the information the database contains. We created a multilingual query builder to facilitate access to the PubMed subset using a language other than English. The aim of our study was to assess the impact of this multilingual query builder on the quality of PubMed queries for non-native English speaking physicians and medical researchers. A randomised controlled study was conducted among French speaking general practice residents. We designed a multi-lingual query builder to facilitate information retrieval, based on available MeSH translations and providing users with both an interface and a controlled vocabulary in their own language. Participating residents were randomly allocated either the French or the English version of the query builder. They were asked to translate 12 short medical questions into MeSH queries. The main outcome was the quality of the query. Two librarians blind to the arm independently evaluated each query, using a modified published classification that differentiated eight types of errors. Twenty residents used the French version of the query builder and 22 used the English version. 492 queries were analysed. There were significantly more perfect queries in the French group vs. the English group (respectively 37.9% vs. 17.9%; p PubMed queries in particular for researchers whose first language is not English.

  12. Reformulating XQuery queries using GLAV mapping and complex unification

    Directory of Open Access Journals (Sweden)

    Saber Benharzallah

    2016-01-01

    Full Text Available This paper describes an algorithm for reformulation of XQuery queries. The mediation is based on an essential component called mediator. Its main role is to reformulate a user query, written in terms of global schema, into queries written in terms of source schemas. Our algorithm is based on the principle of logical equivalence, simple and complex unification, to obtain a better reformulation. It takes XQuery query, global schema (written in XMLSchema, and mappings GLAV as input parameters and provides resultant query written in terms of source schemas. The results of implementation show the proper functioning of the algorithm.

  13. Spatio-temporal databases complex motion pattern queries

    CERN Document Server

    Vieira, Marcos R

    2013-01-01

    This brief presents several new query processing techniques, called complex motion pattern queries, specifically designed for very large spatio-temporal databases of moving objects. The brief begins with the definition of flexible pattern queries, which are powerful because of the integration of variables and motion patterns. This is followed by a summary of the expressive power of patterns and flexibility of pattern queries. The brief then present the Spatio-Temporal Pattern System (STPS) and density-based pattern queries. STPS databases contain millions of records with information about mobi

  14. The surprising power of neighborly advice.

    Science.gov (United States)

    Gilbert, Daniel T; Killingsworth, Matthew A; Eyre, Rebecca N; Wilson, Timothy D

    2009-03-20

    Two experiments revealed that (i) people can more accurately predict their affective reactions to a future event when they know how a neighbor in their social network reacted to the event than when they know about the event itself and (ii) people do not believe this. Undergraduates made more accurate predictions about their affective reactions to a 5-minute speed date (n = 25) and to a peer evaluation (n = 88) when they knew only how another undergraduate had reacted to these events than when they had information about the events themselves. Both participants and independent judges mistakenly believed that predictions based on information about the event would be more accurate than predictions based on information about how another person had reacted to it.

  15. Observing Literacy Practices in Neighbor Institutions

    DEFF Research Database (Denmark)

    Reusch, Charlotte

    ’procedures on language and literacy. Based on this material, we developed an observation scheme and a guide for preschool teachers to follow, inspired by an action learning concept.During fall 2015, a pilot project is carried out. Preschool teachers from one institution visit a neighbor institution one by one during...... work hours, in order to observe and register how language and literacy events look like there. Afterwards, they share their registrations at a team meeting, and discuss and decide which procedures to test in their own institution. Thus, they form a professional learning network. In the pilot project......The Danish National Centre for Reading and a municipality in southern Denmark cooperate to develop a program to improve preschool children’s early literacy skills. The project aims to support preschool teachers’ ability to create a rich literacy environment for children age 3‒6. Recent research...

  16. Giant Planets: Good Neighbors for Habitable Worlds?

    Science.gov (United States)

    Georgakarakos, Nikolaos; Eggl, Siegfried; Dobbs-Dixon, Ian

    2018-04-01

    The presence of giant planets influences potentially habitable worlds in numerous ways. Massive celestial neighbors can facilitate the formation of planetary cores and modify the influx of asteroids and comets toward Earth analogs later on. Furthermore, giant planets can indirectly change the climate of terrestrial worlds by gravitationally altering their orbits. Investigating 147 well-characterized exoplanetary systems known to date that host a main-sequence star and a giant planet, we show that the presence of “giant neighbors” can reduce a terrestrial planet’s chances to remain habitable, even if both planets have stable orbits. In a small fraction of systems, however, giant planets slightly increase the extent of habitable zones provided that the terrestrial world has a high climate inertia. In providing constraints on where giant planets cease to affect the habitable zone size in a detrimental fashion, we identify prime targets in the search for habitable worlds.

  17. Raman scattering mediated by neighboring molecules

    Science.gov (United States)

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L.

    2016-05-01

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  18. Raman scattering mediated by neighboring molecules

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L., E-mail: david.andrews@physics.org [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2016-05-07

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  19. Optimizing queries in SQL Server 2008

    Directory of Open Access Journals (Sweden)

    Ion LUNGU

    2010-05-01

    Full Text Available Starting from the need to develop efficient IT systems, we intend to review theoptimization methods and tools that can be used by SQL Server database administratorsand developers of applications based on Microsoft technology, focusing on the latestversion of the proprietary DBMS, SQL Server 2008. We’ll reflect on the objectives tobe considered in improving the performance of SQL Server instances, we will tackle themostly used techniques for analyzing and optimizing queries and we will describe the“Optimize for ad hoc workloads”, “Plan Freezing” and “Optimize for unknown" newoptions, accompanied by relevant code examples.

  20. Deep web query interface understanding and integration

    CERN Document Server

    Dragut, Eduard C; Yu, Clement T

    2012-01-01

    There are millions of searchable data sources on the Web and to a large extent their contents can only be reached through their own query interfaces. There is an enormous interest in making the data in these sources easily accessible. There are primarily two general approaches to achieve this objective. The first is to surface the contents of these sources from the deep Web and add the contents to the index of regular search engines. The second is to integrate the searching capabilities of these sources and support integrated access to them. In this book, we introduce the state-of-the-art tech

  1. Downloading Multiple Records Using Query Strings

    Directory of Open Access Journals (Sweden)

    Adam Crymble

    2012-11-01

    Full Text Available Downloading a single record from a website is easy, but downloading many records at a time – an increasingly frequent need for a historian – is much more efficient using a programming language such as Python. In this lesson, we will write a program that will download a series of records from the Old Bailey Online using custom search criteria, and save them to a directory on our computer. This process involves interpreting and manipulating URL Query Strings. In this case, the tutorial will seek to download sources that contain references to people of African descent that were published in the Old Bailey Proceedings between 1700 and 1750.

  2. Protecting count queries in study design.

    Science.gov (United States)

    Vinterbo, Staal A; Sarwate, Anand D; Boxwala, Aziz A

    2012-01-01

    Today's clinical research institutions provide tools for researchers to query their data warehouses for counts of patients. To protect patient privacy, counts are perturbed before reporting; this compromises their utility for increased privacy. The goal of this study is to extend current query answer systems to guarantee a quantifiable level of privacy and allow users to tailor perturbations to maximize the usefulness according to their needs. A perturbation mechanism was designed in which users are given options with respect to scale and direction of the perturbation. The mechanism translates the true count, user preferences, and a privacy level within administrator-specified bounds into a probability distribution from which the perturbed count is drawn. Users can significantly impact the scale and direction of the count perturbation and can receive more accurate final cohort estimates. Strong and semantically meaningful differential privacy is guaranteed, providing for a unified privacy accounting system that can support role-based trust levels. This study provides an open source web-enabled tool to investigate visually and numerically the interaction between system parameters, including required privacy level and user preference settings. Quantifying privacy allows system administrators to provide users with a privacy budget and to monitor its expenditure, enabling users to control the inevitable loss of utility. While current measures of privacy are conservative, this system can take advantage of future advances in privacy measurement. The system provides new ways of trading off privacy and utility that are not provided in current study design systems.

  3. A few examples go a long way: Constructing query models from elaborate query formulations

    NARCIS (Netherlands)

    Balog, K.; Weerkamp, W.; de Rijke, M.; Myaeng, S.-H.; Oard, D.W.; Sebastiani, F.; Chua, T.-S.; Leong, M.-K.

    2008-01-01

    We address a specific enterprise document search scenario, where the information need is expressed in an elaborate manner. In our scenario, information needs are expressed using a short query (of a few keywords) together with examples of key reference pages. Given this setup, we investigate how the

  4. Query-Time Optimization Techniques for Structured Queries in Information Retrieval

    Science.gov (United States)

    Cartright, Marc-Allen

    2013-01-01

    The use of information retrieval (IR) systems is evolving towards larger, more complicated queries. Both the IR industrial and research communities have generated significant evidence indicating that in order to continue improving retrieval effectiveness, increases in retrieval model complexity may be unavoidable. From an operational perspective,…

  5. CrossQuery: a web tool for easy associative querying of transcriptome data.

    Directory of Open Access Journals (Sweden)

    Toni U Wagner

    Full Text Available Enormous amounts of data are being generated by modern methods such as transcriptome or exome sequencing and microarray profiling. Primary analyses such as quality control, normalization, statistics and mapping are highly complex and need to be performed by specialists. Thereafter, results are handed back to biomedical researchers, who are then confronted with complicated data lists. For rather simple tasks like data filtering, sorting and cross-association there is a need for new tools which can be used by non-specialists. Here, we describe CrossQuery, a web tool that enables straight forward, simple syntax queries to be executed on transcriptome sequencing and microarray datasets. We provide deep-sequencing data sets of stem cell lines derived from the model fish Medaka and microarray data of human endothelial cells. In the example datasets provided, mRNA expression levels, gene, transcript and sample identification numbers, GO-terms and gene descriptions can be freely correlated, filtered and sorted. Queries can be saved for later reuse and results can be exported to standard formats that allow copy-and-paste to all widespread data visualization tools such as Microsoft Excel. CrossQuery enables researchers to quickly and freely work with transcriptome and microarray data sets requiring only minimal computer skills. Furthermore, CrossQuery allows growing association of multiple datasets as long as at least one common point of correlated information, such as transcript identification numbers or GO-terms, is shared between samples. For advanced users, the object-oriented plug-in and event-driven code design of both server-side and client-side scripts allow easy addition of new features, data sources and data types.

  6. CrossQuery: a web tool for easy associative querying of transcriptome data.

    Science.gov (United States)

    Wagner, Toni U; Fischer, Andreas; Thoma, Eva C; Schartl, Manfred

    2011-01-01

    Enormous amounts of data are being generated by modern methods such as transcriptome or exome sequencing and microarray profiling. Primary analyses such as quality control, normalization, statistics and mapping are highly complex and need to be performed by specialists. Thereafter, results are handed back to biomedical researchers, who are then confronted with complicated data lists. For rather simple tasks like data filtering, sorting and cross-association there is a need for new tools which can be used by non-specialists. Here, we describe CrossQuery, a web tool that enables straight forward, simple syntax queries to be executed on transcriptome sequencing and microarray datasets. We provide deep-sequencing data sets of stem cell lines derived from the model fish Medaka and microarray data of human endothelial cells. In the example datasets provided, mRNA expression levels, gene, transcript and sample identification numbers, GO-terms and gene descriptions can be freely correlated, filtered and sorted. Queries can be saved for later reuse and results can be exported to standard formats that allow copy-and-paste to all widespread data visualization tools such as Microsoft Excel. CrossQuery enables researchers to quickly and freely work with transcriptome and microarray data sets requiring only minimal computer skills. Furthermore, CrossQuery allows growing association of multiple datasets as long as at least one common point of correlated information, such as transcript identification numbers or GO-terms, is shared between samples. For advanced users, the object-oriented plug-in and event-driven code design of both server-side and client-side scripts allow easy addition of new features, data sources and data types.

  7. Efficient and accurate nearest neighbor and closest pair search in high-dimensional space

    KAUST Repository

    Tao, Yufei

    2010-07-01

    Nearest Neighbor (NN) search in high-dimensional space is an important problem in many applications. From the database perspective, a good solution needs to have two properties: (i) it can be easily incorporated in a relational database, and (ii) its query cost should increase sublinearly with the dataset size, regardless of the data and query distributions. Locality-Sensitive Hashing (LSH) is a well-known methodology fulfilling both requirements, but its current implementations either incur expensive space and query cost, or abandon its theoretical guarantee on the quality of query results. Motivated by this, we improve LSH by proposing an access method called the Locality-Sensitive B-tree (LSB-tree) to enable fast, accurate, high-dimensional NN search in relational databases. The combination of several LSB-trees forms a LSB-forest that has strong quality guarantees, but improves dramatically the efficiency of the previous LSH implementation having the same guarantees. In practice, the LSB-tree itself is also an effective index which consumes linear space, supports efficient updates, and provides accurate query results. In our experiments, the LSB-tree was faster than: (i) iDistance (a famous technique for exact NN search) by two orders ofmagnitude, and (ii) MedRank (a recent approximate method with nontrivial quality guarantees) by one order of magnitude, and meanwhile returned much better results. As a second step, we extend our LSB technique to solve another classic problem, called Closest Pair (CP) search, in high-dimensional space. The long-term challenge for this problem has been to achieve subquadratic running time at very high dimensionalities, which fails most of the existing solutions. We show that, using a LSB-forest, CP search can be accomplished in (worst-case) time significantly lower than the quadratic complexity, yet still ensuring very good quality. In practice, accurate answers can be found using just two LSB-trees, thus giving a substantial

  8. Secure count query on encrypted genomic data.

    Science.gov (United States)

    Hasan, Mohammad Zahidul; Mahdi, Md Safiur Rahman; Sadat, Md Nazmus; Mohammed, Noman

    2018-05-01

    Human genomic information can yield more effective healthcare by guiding medical decisions. Therefore, genomics research is gaining popularity as it can identify potential correlations between a disease and a certain gene, which improves the safety and efficacy of drug treatment and can also develop more effective prevention strategies [1]. To reduce the sampling error and to increase the statistical accuracy of this type of research projects, data from different sources need to be brought together since a single organization does not necessarily possess required amount of data. In this case, data sharing among multiple organizations must satisfy strict policies (for instance, HIPAA and PIPEDA) that have been enforced to regulate privacy-sensitive data sharing. Storage and computation on the shared data can be outsourced to a third party cloud service provider, equipped with enormous storage and computation resources. However, outsourcing data to a third party is associated with a potential risk of privacy violation of the participants, whose genomic sequence or clinical profile is used in these studies. In this article, we propose a method for secure sharing and computation on genomic data in a semi-honest cloud server. In particular, there are two main contributions. Firstly, the proposed method can handle biomedical data containing both genotype and phenotype. Secondly, our proposed index tree scheme reduces the computational overhead significantly for executing secure count query operation. In our proposed method, the confidentiality of shared data is ensured through encryption, while making the entire computation process efficient and scalable for cutting-edge biomedical applications. We evaluated our proposed method in terms of efficiency on a database of Single-Nucleotide Polymorphism (SNP) sequences, and experimental results demonstrate that the execution time for a query of 50 SNPs in a database of 50,000 records is approximately 5 s, where each record

  9. Extending OLAP Querying to External Object

    DEFF Research Database (Denmark)

    Pedersen, Torben Bach; Shoshani, Arie; Gu, Junmin

    On-Line Analytical Processing (OLAP) systems based on a dimensional view of data have found widespread use in business applications and are being used increasingly in non-standard applications. These systems provide good performance and ease-of-use. However, the complex structures and relationships...... inherent in data in nonstandard applications are not accommodated well by OLAP systems. In contrast, object database systems are built to handle such complexity, but do not support OLAP-type querying well. This paper presents the concepts and techniques underlying a flexible, multi-model federated system...... that enables OLAP users to exploit simultaneously the features of OLAP and object systems. The system allows data to be handled using the most appropriate data model and technology: OLAP systems for dimensional data and object database systems for more complex, general data. Additionally, physical data...

  10. RCQ-GA: RDF Chain Query Optimization Using Genetic Algorithms

    Science.gov (United States)

    Hogenboom, Alexander; Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay

    The application of Semantic Web technologies in an Electronic Commerce environment implies a need for good support tools. Fast query engines are needed for efficient querying of large amounts of data, usually represented using RDF. We focus on optimizing a special class of SPARQL queries, the so-called RDF chain queries. For this purpose, we devise a genetic algorithm called RCQ-GA that determines the order in which joins need to be performed for an efficient evaluation of RDF chain queries. The approach is benchmarked against a two-phase optimization algorithm, previously proposed in literature. The more complex a query is, the more RCQ-GA outperforms the benchmark in solution quality, execution time needed, and consistency of solution quality. When the algorithms are constrained by a time limit, the overall performance of RCQ-GA compared to the benchmark further improves.

  11. GMB: An Efficient Query Processor for Biological Data

    Directory of Open Access Journals (Sweden)

    Taha Kamal

    2011-06-01

    Full Text Available Bioinformatics applications manage complex biological data stored into distributed and often heterogeneous databases and require large computing power. These databases are too big and complicated to be rapidly queried every time a user submits a query, due to the overhead involved in decomposing the queries, sending the decomposed queries to remote databases, and composing the results. There is also considerable communication costs involved. This study addresses the mentioned problems in Grid-based environment for bioinformatics. We propose a Grid middleware called GMB that alleviates these problems by caching the results of Frequently Used Queries (FUQ. Queries are classified based on their types and frequencies. FUQ are answered from the middleware, which improves their response time. GMB acts as a gateway to TeraGrid Grid: it resides between users’ applications and TeraGrid Grid. We evaluate GMB experimentally.

  12. Evaluation of Sub Query Performance in SQL Server

    Science.gov (United States)

    Oktavia, Tanty; Sujarwo, Surya

    2014-03-01

    The paper explores several sub query methods used in a query and their impact on the query performance. The study uses experimental approach to evaluate the performance of each sub query methods combined with indexing strategy. The sub query methods consist of in, exists, relational operator and relational operator combined with top operator. The experimental shows that using relational operator combined with indexing strategy in sub query has greater performance compared with using same method without indexing strategy and also other methods. In summary, for application that emphasized on the performance of retrieving data from database, it better to use relational operator combined with indexing strategy. This study is done on Microsoft SQL Server 2012.

  13. The SQL++ Query Language: Configurable, Unifying and Semi-structured

    OpenAIRE

    Ong, Kian Win; Papakonstantinou, Yannis; Vernoux, Romain

    2014-01-01

    NoSQL databases support semi-structured data, typically modeled as JSON. They also provide limited (but expanding) query languages. Their idiomatic, non-SQL language constructs, the many variations, and the lack of formal semantics inhibit deep understanding of the query languages, and also impede progress towards clean, powerful, declarative query languages. This paper specifies the syntax and semantics of SQL++, which is applicable to both JSON native stores and SQL databases. The SQL++ sem...

  14. Adaptive and Optimized RDF Query Interface for Distributed WFS Data

    Directory of Open Access Journals (Sweden)

    Tian Zhao

    2017-04-01

    Full Text Available Web Feature Service (WFS is a protocol for accessing geospatial data stores such as databases and Shapefiles over the Web. However, WFS does not provide direct access to data distributed in multiple servers. In addition, WFS features extracted from their original sources are not convenient for user access due to the lack of connection to high-level concepts. Users are facing the choices of either querying each WFS server first and then integrating the results, or converting the data from all WFS servers to a more expressive format such as RDF (Resource Description Framework and then querying the integrated data. The first choice requires additional programming while the second choice is not practical for large or frequently updated datasets. The new contribution of this paper is that we propose a novel adaptive and optimized RDF query interface to overcome the aforementioned limitation. Specifically, in this paper, we propose a novel algorithm to query and synthesize distributed WFS data through an RDF query interface, where users can specify data requests to multiple WFS servers using a single RDF query. Users can also define a simple configuration to associate WFS feature types, attributes, and values with RDF classes, properties, and values so that user queries can be written using a more uniform and informative vocabulary. The algorithm translates each RDF query written in SPARQL-like syntax to multiple WFS GetFeature requests, and then converts and integrates the multiple WFS results to get the answers to the original query. The generated GetFeature requests are sent asynchronously and simultaneously to WFS servers to take advantage of the server parallelism. The results of each GetFeature request are cached to improve query response time for subsequent queries that involve one or more of the cached requests. A JavaScript-based prototype is implemented and experimental results show that the query response time can be greatly reduced through

  15. Can Internet search queries help to predict stock market volatility?

    OpenAIRE

    Dimpfl, Thomas; Jank, Stephan

    2011-01-01

    This paper studies the dynamics of stock market volatility and retail investor attention measured by internet search queries. We find a strong co-movement of stock market indices’ realized volatility and the search queries for their names. Furthermore, Granger causality is bi-directional: high searches follow high volatility, and high volatility follows high searches. Using the latter feedback effect to predict volatility we find that search queries contain additional information about market...

  16. Common Nearest Neighbor Clustering—A Benchmark

    Directory of Open Access Journals (Sweden)

    Oliver Lemke

    2018-02-01

    Full Text Available Cluster analyses are often conducted with the goal to characterize an underlying probability density, for which the data-point density serves as an estimate for this probability density. We here test and benchmark the common nearest neighbor (CNN cluster algorithm. This algorithm assigns a spherical neighborhood R to each data point and estimates the data-point density between two data points as the number of data points N in the overlapping region of their neighborhoods (step 1. The main principle in the CNN cluster algorithm is cluster growing. This grows the clusters by sequentially adding data points and thereby effectively positions the border of the clusters along an iso-surface of the underlying probability density. This yields a strict partitioning with outliers, for which the cluster represents peaks in the underlying probability density—termed core sets (step 2. The removal of the outliers on the basis of a threshold criterion is optional (step 3. The benchmark datasets address a series of typical challenges, including datasets with a very high dimensional state space and datasets in which the cluster centroids are aligned along an underlying structure (Birch sets. The performance of the CNN algorithm is evaluated with respect to these challenges. The results indicate that the CNN cluster algorithm can be useful in a wide range of settings. Cluster algorithms are particularly important for the analysis of molecular dynamics (MD simulations. We demonstrate how the CNN cluster results can be used as a discretization of the molecular state space for the construction of a core-set model of the MD improving the accuracy compared to conventional full-partitioning models. The software for the CNN clustering is available on GitHub.

  17. ALIGNMENTS OF GROUP GALAXIES WITH NEIGHBORING GROUPS

    International Nuclear Information System (INIS)

    Wang Yougang; Chen Xuelei; Park, Changbom; Yang Xiaohu; Choi, Yun-Young

    2009-01-01

    Using a sample of galaxy groups found in the Sloan Digital Sky Survey Data Release 4, we measure the following four types of alignment signals: (1) the alignment between the distributions of the satellites of each group relative to the direction of the nearest neighbor group (NNG); (2) the alignment between the major axis direction of the central galaxy of the host group (HG) and the direction of the NNG; (3) the alignment between the major axes of the central galaxies of the HG and the NNG; and (4) the alignment between the major axes of the satellites of the HG and the direction of the NNG. We find strong signal of alignment between the satellite distribution and the orientation of central galaxy relative to the direction of the NNG, even when the NNG is located beyond 3r vir of the host group. The major axis of the central galaxy of the HG is aligned with the direction of the NNG. The alignment signals are more prominent for groups that are more massive and with early-type central galaxies. We also find that there is a preference for the two major axes of the central galaxies of the HG and NNG to be parallel for the system with both early central galaxies, however, not for the systems with both late-type central galaxies. For the orientation of satellite galaxies, we do not find any significant alignment signals relative to the direction of the NNG. From these four types of alignment measurements, we conclude that the large-scale environment traced by the nearby group affects primarily the shape of the host dark matter halo, and hence also affects the distribution of satellite galaxies and the orientation of central galaxies. In addition, the NNG directly affects the distribution of the satellite galaxies by inducing asymmetric alignment signals, and the NNG at very small separation may also contribute a second-order impact on the orientation of the central galaxy in the HG.

  18. AQBE — QBE Style Queries for Archetyped Data

    Science.gov (United States)

    Sachdeva, Shelly; Yaginuma, Daigo; Chu, Wanming; Bhalla, Subhash

    Large-scale adoption of electronic healthcare applications requires semantic interoperability. The new proposals propose an advanced (multi-level) DBMS architecture for repository services for health records of patients. These also require query interfaces at multiple levels and at the level of semi-skilled users. In this regard, a high-level user interface for querying the new form of standardized Electronic Health Records system has been examined in this study. It proposes a step-by-step graphical query interface to allow semi-skilled users to write queries. Its aim is to decrease user effort and communication ambiguities, and increase user friendliness.

  19. SM4MQ: A Semantic Model for Multidimensional Queries

    DEFF Research Database (Denmark)

    Varga, Jovan; Dobrokhotova, Ekaterina; Romero, Oscar

    2017-01-01

    On-Line Analytical Processing (OLAP) is a data analysis approach to support decision-making. On top of that, Exploratory OLAP is a novel initiative for the convergence of OLAP and the Semantic Web (SW) that enables the use of OLAP techniques on SW data. Moreover, OLAP approaches exploit different......, sharing, and reuse on the SW. As OLAP is based on the underlying multidimensional (MD) data model we denote such queries as MD queries and define SM4MQ: A Semantic Model for Multidimensional Queries. Furthermore, we propose a method to automate the exploitation of queries by means of SPARQL. We apply...

  20. VPipe: Virtual Pipelining for Scheduling of DAG Stream Query Plans

    Science.gov (United States)

    Wang, Song; Gupta, Chetan; Mehta, Abhay

    There are data streams all around us that can be harnessed for tremendous business and personal advantage. For an enterprise-level stream processing system such as CHAOS [1] (Continuous, Heterogeneous Analytic Over Streams), handling of complex query plans with resource constraints is challenging. While several scheduling strategies exist for stream processing, efficient scheduling of complex DAG query plans is still largely unsolved. In this paper, we propose a novel execution scheme for scheduling complex directed acyclic graph (DAG) query plans with meta-data enriched stream tuples. Our solution, called Virtual Pipelined Chain (or VPipe Chain for short), effectively extends the "Chain" pipelining scheduling approach to complex DAG query plans.

  1. Error Checking for Chinese Query by Mining Web Log

    Directory of Open Access Journals (Sweden)

    Jianyong Duan

    2015-01-01

    Full Text Available For the search engine, error-input query is a common phenomenon. This paper uses web log as the training set for the query error checking. Through the n-gram language model that is trained by web log, the queries are analyzed and checked. Some features including query words and their number are introduced into the model. At the same time data smoothing algorithm is used to solve data sparseness problem. It will improve the overall accuracy of the n-gram model. The experimental results show that it is effective.

  2. Multi-Dimensional Top-k Dominating Queries

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Mamoulis, Nikos

    2009-01-01

    The top-k dominating query returns k data objects which dominate the highest number of objects in a dataset. This query is an important tool for decision support since it provides data analysts an intuitive way for finding significant objects. In addition, it combines the advantages of top......-k and skyline queries without sharing their disadvantages: (i) the output size can be controlled, (ii) no ranking functions need to be specified by users, and (iii) the result is independent of the scales at different dimensions. Despite their importance, top-k dominating queries have not received adequate...

  3. The effect of query complexity on Web searching results

    Directory of Open Access Journals (Sweden)

    B.J. Jansen

    2000-01-01

    Full Text Available This paper presents findings from a study of the effects of query structure on retrieval by Web search services. Fifteen queries were selected from the transaction log of a major Web search service in simple query form with no advanced operators (e.g., Boolean operators, phrase operators, etc. and submitted to 5 major search engines - Alta Vista, Excite, FAST Search, Infoseek, and Northern Light. The results from these queries became the baseline data. The original 15 queries were then modified using the various search operators supported by each of the 5 search engines for a total of 210 queries. Each of these 210 queries was also submitted to the applicable search service. The results obtained were then compared to the baseline results. A total of 2,768 search results were returned by the set of all queries. In general, increasing the complexity of the queries had little effect on the results with a greater than 70% overlap in results, on average. Implications for the design of Web search services and directions for future research are discussed.

  4. PAQ: Persistent Adaptive Query Middleware for Dynamic Environments

    Science.gov (United States)

    Rajamani, Vasanth; Julien, Christine; Payton, Jamie; Roman, Gruia-Catalin

    Pervasive computing applications often entail continuous monitoring tasks, issuing persistent queries that return continuously updated views of the operational environment. We present PAQ, a middleware that supports applications' needs by approximating a persistent query as a sequence of one-time queries. PAQ introduces an integration strategy abstraction that allows composition of one-time query responses into streams representing sophisticated spatio-temporal phenomena of interest. A distinguishing feature of our middleware is the realization that the suitability of a persistent query's result is a function of the application's tolerance for accuracy weighed against the associated overhead costs. In PAQ, programmers can specify an inquiry strategy that dictates how information is gathered. Since network dynamics impact the suitability of a particular inquiry strategy, PAQ associates an introspection strategy with a persistent query, that evaluates the quality of the query's results. The result of introspection can trigger application-defined adaptation strategies that alter the nature of the query. PAQ's simple API makes developing adaptive querying systems easily realizable. We present the key abstractions, describe their implementations, and demonstrate the middleware's usefulness through application examples and evaluation.

  5. Group-by Skyline Query Processing in Relational Engines

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Luk, Ming-Hay; Lo, Eric

    2009-01-01

    the missing cost model for the BBS algorithm. Experimental results show that our techniques are able to devise the best query plans for a variety of group-by skyline queries. Our focus is on algorithms that can be directly implemented in today's commercial database systems without the addition of new access......The skyline operator was first proposed in 2001 for retrieving interesting tuples from a dataset. Since then, 100+ skyline-related papers have been published; however, we discovered that one of the most intuitive and practical type of skyline queries, namely, group-by skyline queries remains...

  6. Joint Top-K Spatial Keyword Query Processing

    DEFF Research Database (Denmark)

    Wu, Dingming; Yiu, Man Lung; Cong, Gao

    2012-01-01

    Web users and content are increasingly being geopositioned, and increased focus is being given to serving local content in response to web queries. This development calls for spatial keyword queries that take into account both the locations and textual descriptions of content. We study the effici......Web users and content are increasingly being geopositioned, and increased focus is being given to serving local content in response to web queries. This development calls for spatial keyword queries that take into account both the locations and textual descriptions of content. We study...... the efficient, joint processing of multiple top-k spatial keyword queries. Such joint processing is attractive during high query loads and also occurs when multiple queries are used to obfuscate a user's true query. We propose a novel algorithm and index structure for the joint processing of top-k spatial...... keyword queries. Empirical studies show that the proposed solution is efficient on real data sets. We also offer analytical studies on synthetic data sets to demonstrate the efficiency of the proposed solution. Index Terms IEEE Terms Electronic mail , Google , Indexes , Joints , Mobile communication...

  7. Facilitating Cohort Discovery by Enhancing Ontology Exploration, Query Management and Query Sharing for Large Clinical Data Repositories

    Science.gov (United States)

    Tao, Shiqiang; Cui, Licong; Wu, Xi; Zhang, Guo-Qiang

    2017-01-01

    To help researchers better access clinical data, we developed a prototype query engine called DataSphere for exploring large-scale integrated clinical data repositories. DataSphere expedites data importing using a NoSQL data management system and dynamically renders its user interface for concept-based querying tasks. DataSphere provides an interactive query-building interface together with query translation and optimization strategies, which enable users to build and execute queries effectively and efficiently. We successfully loaded a dataset of one million patients for University of Kentucky (UK) Healthcare into DataSphere with more than 300 million clinical data records. We evaluated DataSphere by comparing it with an instance of i2b2 deployed at UK Healthcare, demonstrating that DataSphere provides enhanced user experience for both query building and execution. PMID:29854239

  8. Facilitating Cohort Discovery by Enhancing Ontology Exploration, Query Management and Query Sharing for Large Clinical Data Repositories.

    Science.gov (United States)

    Tao, Shiqiang; Cui, Licong; Wu, Xi; Zhang, Guo-Qiang

    2017-01-01

    To help researchers better access clinical data, we developed a prototype query engine called DataSphere for exploring large-scale integrated clinical data repositories. DataSphere expedites data importing using a NoSQL data management system and dynamically renders its user interface for concept-based querying tasks. DataSphere provides an interactive query-building interface together with query translation and optimization strategies, which enable users to build and execute queries effectively and efficiently. We successfully loaded a dataset of one million patients for University of Kentucky (UK) Healthcare into DataSphere with more than 300 million clinical data records. We evaluated DataSphere by comparing it with an instance of i2b2 deployed at UK Healthcare, demonstrating that DataSphere provides enhanced user experience for both query building and execution.

  9. Design and analysis of a ranking approach to private location-based services

    DEFF Research Database (Denmark)

    Yiu, Ma Lung; Jensen, Christian S.; Møller, Jesper

    2011-01-01

    solution that expresses the server-side functionality in a single SQL statement. In its basic form, SpaceTwist utilizes well-known incremental NN query processing on the server. When augmented with a server-side granular search technique, SpaceTwist is capable of exploiting relaxed query accuracy......Twist, aims to offer location privacy for k nearest neighbor (kNN) queries at low communication cost without requiring a trusted anonymizer. The solution can be used with a conventional DBMS as well as with a server optimized for location-based services. In particular, we believe that this is the first...

  10. SkyQuery - A Prototype Distributed Query and Cross-Matching Web Service for the Virtual Observatory

    Science.gov (United States)

    Thakar, A. R.; Budavari, T.; Malik, T.; Szalay, A. S.; Fekete, G.; Nieto-Santisteban, M.; Haridas, V.; Gray, J.

    2002-12-01

    We have developed a prototype distributed query and cross-matching service for the VO community, called SkyQuery, which is implemented with hierarchichal Web Services. SkyQuery enables astronomers to run combined queries on existing distributed heterogeneous astronomy archives. SkyQuery provides a simple, user-friendly interface to run distributed queries over the federation of registered astronomical archives in the VO. The SkyQuery client connects to the portal Web Service, which farms the query out to the individual archives, which are also Web Services called SkyNodes. The cross-matching algorithm is run recursively on each SkyNode. Each archive is a relational DBMS with a HTM index for fast spatial lookups. The results of the distributed query are returned as an XML DataSet that is automatically rendered by the client. SkyQuery also returns the image cutout corresponding to the query result. SkyQuery finds not only matches between the various catalogs, but also dropouts - objects that exist in some of the catalogs but not in others. This is often as important as finding matches. We demonstrate the utility of SkyQuery with a brown-dwarf search between SDSS and 2MASS, and a search for radio-quiet quasars in SDSS, 2MASS and FIRST. The importance of a service like SkyQuery for the worldwide astronomical community cannot be overstated: data on the same objects in various archives is mapped in different wavelength ranges and looks very different due to different errors, instrument sensitivities and other peculiarities of each archive. Our cross-matching algorithm preforms a fuzzy spatial join across multiple catalogs. This type of cross-matching is currently often done by eye, one object at a time. A static cross-identification table for a set of archives would become obsolete by the time it was built - the exponential growth of astronomical data means that a dynamic cross-identification mechanism like SkyQuery is the only viable option. SkyQuery was funded by a

  11. Performance modeling of neighbor discovery in proactive routing protocols

    Directory of Open Access Journals (Sweden)

    Andres Medina

    2011-07-01

    Full Text Available It is well known that neighbor discovery is a critical component of proactive routing protocols in wireless ad hoc networks. However there is no formal study on the performance of proposed neighbor discovery mechanisms. This paper provides a detailed model of key performance metrics of neighbor discovery algorithms, such as node degree and the distribution of the distance to symmetric neighbors. The model accounts for the dynamics of neighbor discovery as well as node density, mobility, radio and interference. The paper demonstrates a method for applying these models to the evaluation of global network metrics. In particular, it describes a model of network connectivity. Validation of the models shows that the degree estimate agrees, within 5% error, with simulations for the considered scenarios. The work presented in this paper serves as a basis for the performance evaluation of remaining performance metrics of routing protocols, vital for large scale deployment of ad hoc networks.

  12. Query-Driven Visualization and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruebel, Oliver; Bethel, E. Wes; Prabhat, Mr.; Wu, Kesheng

    2012-11-01

    This report focuses on an approach to high performance visualization and analysis, termed query-driven visualization and analysis (QDV). QDV aims to reduce the amount of data that needs to be processed by the visualization, analysis, and rendering pipelines. The goal of the data reduction process is to separate out data that is "scientifically interesting'' and to focus visualization, analysis, and rendering on that interesting subset. The premise is that for any given visualization or analysis task, the data subset of interest is much smaller than the larger, complete data set. This strategy---extracting smaller data subsets of interest and focusing of the visualization processing on these subsets---is complementary to the approach of increasing the capacity of the visualization, analysis, and rendering pipelines through parallelism. This report discusses the fundamental concepts in QDV, their relationship to different stages in the visualization and analysis pipelines, and presents QDV's application to problems in diverse areas, ranging from forensic cybersecurity to high energy physics.

  13. Similarity queries for temporal toxicogenomic expression profiles.

    Directory of Open Access Journals (Sweden)

    Adam A Smith

    2008-07-01

    Full Text Available We present an approach for answering similarity queries about gene expression time series that is motivated by the task of characterizing the potential toxicity of various chemicals. Our approach involves two key aspects. First, our method employs a novel alignment algorithm based on time warping. Our time warping algorithm has several advantages over previous approaches. It allows the user to impose fairly strong biases on the form that the alignments can take, and it permits a type of local alignment in which the entirety of only one series has to be aligned. Second, our method employs a relaxed spline interpolation to predict expression responses for unmeasured time points, such that the spline does not necessarily exactly fit every observed point. We evaluate our approach using expression time series from the Edge toxicology database. Our experiments show the value of using spline representations for sparse time series. More significantly, they show that our time warping method provides more accurate alignments and classifications than previous standard alignment methods for time series.

  14. Query by image example: The CANDID approach

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P.M.; Cannon, M. [Los Alamos National Lab., NM (United States). Computer Research and Applications Group; Hush, D.R. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering

    1995-02-01

    CANDID (Comparison Algorithm for Navigating Digital Image Databases) was developed to enable content-based retrieval of digital imagery from large databases using a query-by-example methodology. A user provides an example image to the system, and images in the database that are similar to that example are retrieved. The development of CANDID was inspired by the N-gram approach to document fingerprinting, where a ``global signature`` is computed for every document in a database and these signatures are compared to one another to determine the similarity between any two documents. CANDID computes a global signature for every image in a database, where the signature is derived from various image features such as localized texture, shape, or color information. A distance between probability density functions of feature vectors is then used to compare signatures. In this paper, the authors present CANDID and highlight two results from their current research: subtracting a ``background`` signature from every signature in a database in an attempt to improve system performance when using inner-product similarity measures, and visualizing the contribution of individual pixels in the matching process. These ideas are applicable to any histogram-based comparison technique.

  15. On (dynamic) range minimum queries in external memory

    DEFF Research Database (Denmark)

    Arge, L.; Fischer, Johannes; Sanders, Peter

    2013-01-01

    We study the one-dimensional range minimum query (RMQ) problem in the external memory model. We provide the first space-optimal solution to the batched static version of the problem. On an instance with N elements and Q queries, our solution takes Θ(sort(N + Q)) = Θ( N+QB log M /B N+QB ) I...

  16. Dataflow Query Execution in a Parallel, Main-memory Environment

    NARCIS (Netherlands)

    Wilschut, A.N.; Apers, Peter M.G.

    In this paper, the performance and characteristics of the execution of various join-trees on a parallel DBMS are studied. The results of this study are a step into the direction of the design of a query optimization strategy that is fit for parallel execution of complex queries. Among others,

  17. Dataflow Query Execution in a Parallel Main-Memory Environment

    NARCIS (Netherlands)

    Wilschut, A.N.; Apers, Peter M.G.

    1991-01-01

    The performance and characteristics of the execution of various join-trees on a parallel DBMS are studied. The results are a step in the direction of the design of a query optimization strategy that is fit for parallel execution of complex queries. Among others, synchronization issues are identified

  18. On the Suitability of Skyline Queries for Data Exploration

    DEFF Research Database (Denmark)

    Chester, Sean; Mortensen, Michael Lind; Assent, Ira

    2014-01-01

    The skyline operator has been studied in database research for multi-criteria decision making. Until now the focus has been on the efficiency or accuracy of single queries. In practice, however, users are increasingly confronted with unknown data collections, where precise query formulation proves...

  19. Mining the SDSS SkyServer SQL queries log

    Science.gov (United States)

    Hirota, Vitor M.; Santos, Rafael; Raddick, Jordan; Thakar, Ani

    2016-05-01

    SkyServer, the Internet portal for the Sloan Digital Sky Survey (SDSS) astronomic catalog, provides a set of tools that allows data access for astronomers and scientific education. One of SkyServer data access interfaces allows users to enter ad-hoc SQL statements to query the catalog. SkyServer also presents some template queries that can be used as basis for more complex queries. This interface has logged over 330 million queries submitted since 2001. It is expected that analysis of this data can be used to investigate usage patterns, identify potential new classes of queries, find similar queries, etc. and to shed some light on how users interact with the Sloan Digital Sky Survey data and how scientists have adopted the new paradigm of e-Science, which could in turn lead to enhancements on the user interfaces and experience in general. In this paper we review some approaches to SQL query mining, apply the traditional techniques used in the literature and present lessons learned, namely, that the general text mining approach for feature extraction and clustering does not seem to be adequate for this type of data, and, most importantly, we find that this type of analysis can result in very different queries being clustered together.

  20. An Experimental Investigation of Complexity in Database Query Formulation Tasks

    Science.gov (United States)

    Casterella, Gretchen Irwin; Vijayasarathy, Leo

    2013-01-01

    Information Technology professionals and other knowledge workers rely on their ability to extract data from organizational databases to respond to business questions and support decision making. Structured query language (SQL) is the standard programming language for querying data in relational databases, and SQL skills are in high demand and are…

  1. Efficient processing of 3-sided range queries with probabilistic guarantees

    DEFF Research Database (Denmark)

    Kaporis, Alexis; Papadopoulos, Apostolos; Sioutas, Spyros

    2010-01-01

    This work studies the problem of 2-dimensional searching for the 3-sided range query of the form [a, b] x (-∞, c] in both main and external memory, by considering a variety of input distributions. A dynamic linear main memory solution is proposed, which answers 3-sided queries in O(log n + t) worst...

  2. Efficient external memory structures for range-aggregate queries

    DEFF Research Database (Denmark)

    Agarwal, P.K.; Yang, J.; Arge, L.

    2013-01-01

    We present external memory data structures for efficiently answering range-aggregate queries. The range-aggregate problem is defined as follows: Given a set of weighted points in Rd, compute the aggregate of the weights of the points that lie inside a d-dimensional orthogonal query rectangle. The...

  3. Video Stream Retrieval of Unseen Queries using Semantic Memory

    NARCIS (Netherlands)

    Cappallo, S.; Mensink, T.; Snoek, C.G.M.; Wilson, R.C.; Hancock, E.R.; Smith, W.A.P.

    2016-01-01

    Retrieval of live, user-broadcast video streams is an under-addressed and increasingly relevant challenge. The on-line nature of the problem requires temporal evaluation and the unforeseeable scope of potential queries motivates an approach which can accommodate arbitrary search queries. To account

  4. Efficient processing of containment queries on nested sets

    NARCIS (Netherlands)

    Ibrahim, A.; Fletcher, G.H.L.

    2013-01-01

    We study the problem of computing containment queries on sets which can have both atomic and set-valued objects as elements, i.e., nested sets. Containment is a fundamental query pattern with many basic applications. Our study of nested set containment is motivated by the ubiquity of nested data in

  5. Memory aware query scheduling in a database cluster

    NARCIS (Netherlands)

    F. Waas; M.L. Kersten (Martin)

    2000-01-01

    textabstractQuery throughput is one of the primary optimization goals in interactive web-based information systems in order to achieve the performance necessary to serve large user communities. Queries in this application domain differ significantly from those in traditional database applications:

  6. A Typed Text Retrieval Query Language for XML Documents.

    Science.gov (United States)

    Colazzo, Dario; Sartiani, Carlo; Albano, Antonio; Manghi, Paolo; Ghelli, Giorgio; Lini, Luca; Paoli, Michele

    2002-01-01

    Discussion of XML focuses on a description of Tequyla-TX, a typed text retrieval query language for XML documents that can search on both content and structures. Highlights include motivations; numerous examples; word-based and char-based searches; tag-dependent full-text searches; text normalization; query algebra; data models and term language;…

  7. Real SQL queries 50 challenges : practice for reporting and analysis

    CERN Document Server

    Cohen, Brian; Mishra, Neerja

    2015-01-01

    Queries improve when challenges are authentic. This book sets your learning on the fast track with realistic problems to solve. Topics span sales, marketing, human resources, purchasing, and production. Real SQL Queries: 50 Challenges is perfect for analysts, report writers, or anyone searching for a hands-on approach to learning SQL Server.

  8. Ontology Based Queries - Investigating a Natural Language Interface

    NARCIS (Netherlands)

    van der Sluis, Ielka; Hielkema, F.; Mellish, C.; Doherty, G.

    2010-01-01

    In this paper we look at what may be learned from a comparative study examining non-technical users with a background in social science browsing and querying metadata. Four query tasks were carried out with a natural language interface and with an interface that uses a web paradigm with hyperlinks.

  9. Query Classification and Study of University Students' Search Trends

    Science.gov (United States)

    Maabreh, Majdi A.; Al-Kabi, Mohammed N.; Alsmadi, Izzat M.

    2012-01-01

    Purpose: This study is an attempt to develop an automatic identification method for Arabic web queries and divide them into several query types using data mining. In addition, it seeks to evaluate the impact of the academic environment on using the internet. Design/methodology/approach: The web log files were collected from one of the higher…

  10. A framework for query optimization to support data mining

    NARCIS (Netherlands)

    S.R. Choenni (Sunil); A.P.J.M. Siebes (Arno)

    1996-01-01

    textabstractIn order to extract knowledge from databases, data mining algorithms heavily query the databases. Inefficient processing of these queries will inevitably have its impact on the performance of these algorithms, making them less valuable. In this paper, we describe an optimization

  11. A Fuzzy Query Mechanism for Human Resource Websites

    Science.gov (United States)

    Lai, Lien-Fu; Wu, Chao-Chin; Huang, Liang-Tsung; Kuo, Jung-Chih

    Users' preferences often contain imprecision and uncertainty that are difficult for traditional human resource websites to deal with. In this paper, we apply the fuzzy logic theory to develop a fuzzy query mechanism for human resource websites. First, a storing mechanism is proposed to store fuzzy data into conventional database management systems without modifying DBMS models. Second, a fuzzy query language is proposed for users to make fuzzy queries on fuzzy databases. User's fuzzy requirement can be expressed by a fuzzy query which consists of a set of fuzzy conditions. Third, each fuzzy condition associates with a fuzzy importance to differentiate between fuzzy conditions according to their degrees of importance. Fourth, the fuzzy weighted average is utilized to aggregate all fuzzy conditions based on their degrees of importance and degrees of matching. Through the mutual compensation of all fuzzy conditions, the ordering of query results can be obtained according to user's preference.

  12. Query Log Analysis of an Electronic Health Record Search Engine

    Science.gov (United States)

    Yang, Lei; Mei, Qiaozhu; Zheng, Kai; Hanauer, David A.

    2011-01-01

    We analyzed a longitudinal collection of query logs of a full-text search engine designed to facilitate information retrieval in electronic health records (EHR). The collection, 202,905 queries and 35,928 user sessions recorded over a course of 4 years, represents the information-seeking behavior of 533 medical professionals, including frontline practitioners, coding personnel, patient safety officers, and biomedical researchers for patient data stored in EHR systems. In this paper, we present descriptive statistics of the queries, a categorization of information needs manifested through the queries, as well as temporal patterns of the users’ information-seeking behavior. The results suggest that information needs in medical domain are substantially more sophisticated than those that general-purpose web search engines need to accommodate. Therefore, we envision there exists a significant challenge, along with significant opportunities, to provide intelligent query recommendations to facilitate information retrieval in EHR. PMID:22195150

  13. Pareto-depth for multiple-query image retrieval.

    Science.gov (United States)

    Hsiao, Ko-Jen; Calder, Jeff; Hero, Alfred O

    2015-02-01

    Most content-based image retrieval systems consider either one single query, or multiple queries that include the same object or represent the same semantic information. In this paper, we consider the content-based image retrieval problem for multiple query images corresponding to different image semantics. We propose a novel multiple-query information retrieval algorithm that combines the Pareto front method with efficient manifold ranking. We show that our proposed algorithm outperforms state of the art multiple-query retrieval algorithms on real-world image databases. We attribute this performance improvement to concavity properties of the Pareto fronts, and prove a theoretical result that characterizes the asymptotic concavity of the fronts.

  14. Our Galactic Neighbor Hosts Complex Organic Molecules

    Science.gov (United States)

    Hensley, Kerry

    2018-03-01

    For the first time, data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the presence of methyl formate and dimethyl ether in a star-forming region outside our galaxy. This discovery has important implications for the formation and survival of complex organic compounds importantfor the formation of life in low-metallicity galaxies bothyoung and old.No Simple Picture of Complex Molecule FormationALMA, pictured here with the Magellanic Clouds above, has observed organic molecules in our Milky Way Galaxy and beyond. [ESO/C. Malin]Complex organic molecules (those with at least six atoms, one or more of which must be carbon) are the precursors to the building blocks of life. Knowing how and where complex organic molecules can form is a key part of understanding how life came to be on Earth and how it might arise elsewhere in the universe. From exoplanet atmospheres to interstellar space, complex organic molecules are ubiquitous in the Milky Way.In our galaxy, complex organic molecules are often found in the intense environments of hot cores clumps of dense molecular gas surrounding the sites of star formation. However, its not yet fully understood how the complex organic molecules found in hot cores come to be. One possibility is that the compounds condense onto cold dust grains long before the young stars begin heating their natal shrouds. Alternatively, they might assemble themselves from the hot, dense gas surrounding the blazing protostars.Composite infrared and optical image of the N 113 star-forming region in the LMC. The ALMA coverage is indicated by the gray line. Click to enlarge. [Sewio et al. 2018]Detecting Complexity, a Galaxy AwayUsing ALMA, a team of researchers led by Marta Sewio (NASA Goddard Space Flight Center) recently detected two complex organic molecules methyl formate and dimethyl ether for the first time in our neighboring galaxy, the Large Magellanic Cloud (LMC). Previous searches for organic molecules in the LMC detected

  15. Processing SPARQL queries with regular expressions in RDF databases

    Science.gov (United States)

    2011-01-01

    Background As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users’ requests for extracting information from the RDF data as well as the lack of users’ knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. Results In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Conclusions Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns. PMID:21489225

  16. Processing SPARQL queries with regular expressions in RDF databases

    Directory of Open Access Journals (Sweden)

    Cho Hune

    2011-03-01

    Full Text Available Abstract Background As the Resource Description Framework (RDF data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf or Bio2RDF (bio2rdf.org, SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users’ requests for extracting information from the RDF data as well as the lack of users’ knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. Results In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1 We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2 We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3 We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Conclusions Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns.

  17. Processing SPARQL queries with regular expressions in RDF databases.

    Science.gov (United States)

    Lee, Jinsoo; Pham, Minh-Duc; Lee, Jihwan; Han, Wook-Shin; Cho, Hune; Yu, Hwanjo; Lee, Jeong-Hoon

    2011-03-29

    As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users' requests for extracting information from the RDF data as well as the lack of users' knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns.

  18. Macromolecular query language (MMQL): prototype data model and implementation.

    Science.gov (United States)

    Shindyalov, I N; Chang, W; Pu, C; Bourne, P E

    1994-11-01

    Macromolecular query language (MMQL) is an extensible interpretive language in which to pose questions concerning the experimental or derived features of the 3-D structure of biological macromolecules. MMQL portends to be intuitive with a simple syntax, so that from a user's perspective complex queries are easily written. A number of basic queries and a more complex query--determination of structures containing a five-strand Greek key motif--are presented to illustrate the strengths and weaknesses of the language. The predominant features of MMQL are a filter and pattern grammar which are combined to express a wide range of interesting biological queries. Filters permit the selection of object attributes, for example, compound name and resolution, whereas the patterns currently implemented query primary sequence, close contacts, hydrogen bonding, secondary structure, conformation and amino acid properties (volume, polarity, isoelectric point, hydrophobicity and different forms of exposure). MMQL queries are processed by MMQLlib; a C++ class library, to which new query methods and pattern types are easily added. The prototype implementation described uses PDBlib, another C(++)-based class library from representing the features of biological macromolecules at the level of detail parsable from a PDB file. Since PDBlib can represent data stored in relational and object-oriented databases, as well as PDB files, once these data are loaded they too can be queried by MMQL. Performance metrics are given for queries of PDB files for which all derived data are calculated at run time and compared to a preliminary version of OOPDB, a prototype object-oriented database with a schema based on a persistent version of PDBlib which offers more efficient data access and the potential to maintain derived information. MMQLlib, PDBlib and associated software are available via anonymous ftp from cuhhca.hhmi.columbia.edu.

  19. jQuery UI 1.7 the user interface library for jQuery

    CERN Document Server

    Wellman, Dan

    2009-01-01

    An example-based approach leads you step-by-step through the implementation and customization of each library component and its associated resources in turn. To emphasize the way that jQuery UI takes the difficulty out of user interface design and implementation, each chapter ends with a 'fun with' section that puts together what you've learned throughout the chapter to make a usable and fun page. In these sections you'll often get to experiment with the latest associated technologies like AJAX and JSON. This book is for front-end designers and developers who need to quickly learn how to use t

  20. Color and neighbor edge directional difference feature for image retrieval

    Institute of Scientific and Technical Information of China (English)

    Chaobing Huang; Shengsheng Yu; Jingli Zhou; Hongwei Lu

    2005-01-01

    @@ A novel image feature termed neighbor edge directional difference unit histogram is proposed, in which the neighbor edge directional difference unit is defined and computed for every pixel in the image, and is used to generate the neighbor edge directional difference unit histogram. This histogram and color histogram are used as feature indexes to retrieve color image. The feature is invariant to image scaling and translation and has more powerful descriptive for the natural color images. Experimental results show that the feature can achieve better retrieval performance than other color-spatial features.

  1. Executing SPARQL Queries over the Web of Linked Data

    Science.gov (United States)

    Hartig, Olaf; Bizer, Christian; Freytag, Johann-Christoph

    The Web of Linked Data forms a single, globally distributed dataspace. Due to the openness of this dataspace, it is not possible to know in advance all data sources that might be relevant for query answering. This openness poses a new challenge that is not addressed by traditional research on federated query processing. In this paper we present an approach to execute SPARQL queries over the Web of Linked Data. The main idea of our approach is to discover data that might be relevant for answering a query during the query execution itself. This discovery is driven by following RDF links between data sources based on URIs in the query and in partial results. The URIs are resolved over the HTTP protocol into RDF data which is continuously added to the queried dataset. This paper describes concepts and algorithms to implement our approach using an iterator-based pipeline. We introduce a formalization of the pipelining approach and show that classical iterators may cause blocking due to the latency of HTTP requests. To avoid blocking, we propose an extension of the iterator paradigm. The evaluation of our approach shows its strengths as well as the still existing challenges.

  2. Fragger: a protein fragment picker for structural queries.

    Science.gov (United States)

    Berenger, Francois; Simoncini, David; Voet, Arnout; Shrestha, Rojan; Zhang, Kam Y J

    2017-01-01

    Protein modeling and design activities often require querying the Protein Data Bank (PDB) with a structural fragment, possibly containing gaps. For some applications, it is preferable to work on a specific subset of the PDB or with unpublished structures. These requirements, along with specific user needs, motivated the creation of a new software to manage and query 3D protein fragments. Fragger is a protein fragment picker that allows protein fragment databases to be created and queried. All fragment lengths are supported and any set of PDB files can be used to create a database. Fragger can efficiently search a fragment database with a query fragment and a distance threshold. Matching fragments are ranked by distance to the query. The query fragment can have structural gaps and the allowed amino acid sequences matching a query can be constrained via a regular expression of one-letter amino acid codes. Fragger also incorporates a tool to compute the backbone RMSD of one versus many fragments in high throughput. Fragger should be useful for protein design, loop grafting and related structural bioinformatics tasks.

  3. Query construction, entropy, and generalization in neural-network models

    Science.gov (United States)

    Sollich, Peter

    1994-05-01

    We study query construction algorithms, which aim at improving the generalization ability of systems that learn from examples by choosing optimal, nonredundant training sets. We set up a general probabilistic framework for deriving such algorithms from the requirement of optimizing a suitable objective function; specifically, we consider the objective functions entropy (or information gain) and generalization error. For two learning scenarios, the high-low game and the linear perceptron, we evaluate the generalization performance obtained by applying the corresponding query construction algorithms and compare it to training on random examples. We find qualitative differences between the two scenarios due to the different structure of the underlying rules (nonlinear and ``noninvertible'' versus linear); in particular, for the linear perceptron, random examples lead to the same generalization ability as a sequence of queries in the limit of an infinite number of examples. We also investigate learning algorithms which are ill matched to the learning environment and find that, in this case, minimum entropy queries can in fact yield a lower generalization ability than random examples. Finally, we study the efficiency of single queries and its dependence on the learning history, i.e., on whether the previous training examples were generated randomly or by querying, and the difference between globally and locally optimal query construction.

  4. Research in Mobile Database Query Optimization and Processing

    Directory of Open Access Journals (Sweden)

    Agustinus Borgy Waluyo

    2005-01-01

    Full Text Available The emergence of mobile computing provides the ability to access information at any time and place. However, as mobile computing environments have inherent factors like power, storage, asymmetric communication cost, and bandwidth limitations, efficient query processing and minimum query response time are definitely of great interest. This survey groups a variety of query optimization and processing mechanisms in mobile databases into two main categories, namely: (i query processing strategy, and (ii caching management strategy. Query processing includes both pull and push operations (broadcast mechanisms. We further classify push operation into on-demand broadcast and periodic broadcast. Push operation (on-demand broadcast relates to designing techniques that enable the server to accommodate multiple requests so that the request can be processed efficiently. Push operation (periodic broadcast corresponds to data dissemination strategies. In this scheme, several techniques to improve the query performance by broadcasting data to a population of mobile users are described. A caching management strategy defines a number of methods for maintaining cached data items in clients' local storage. This strategy considers critical caching issues such as caching granularity, caching coherence strategy and caching replacement policy. Finally, this survey concludes with several open issues relating to mobile query optimization and processing strategy.

  5. Algebra-Based Optimization of XML-Extended OLAP Queries

    DEFF Research Database (Denmark)

    Yin, Xuepeng; Pedersen, Torben Bach

    In today’s OLAP systems, integrating fast changing data, e.g., stock quotes, physically into a cube is complex and time-consuming. The widespread use of XML makes it very possible that this data is available in XML format on the WWW; thus, making XML data logically federated with OLAP systems...... is desirable. This report presents a complete foundation for such OLAP-XML federations. This includes a prototypical query engine, a simplified query semantics based on previous work, and a complete physical algebra which enables precise modeling of the execution tasks of an OLAP-XML query. Effective algebra...

  6. In-route skyline querying for location-based services

    DEFF Research Database (Denmark)

    Xuegang, Huang; Jensen, Kristian S.

    2005-01-01

    With the emergence of an infrastructure for location-aware mobile services, the processing of advanced, location-based queries that are expected to underlie such services is gaining in relevance, While much work has assumed that users move in Euclidean space, this paper assumes that movement...... their efficient computation. The queries take into account several spatial preferences. and they intuitively return a set of most interesting results for each result returned by the corresponding non-skyline queries. The paper also covers a performance study of the proposed techniques based on real point...

  7. Intelligent query processing for semantic mediation of information systems

    Directory of Open Access Journals (Sweden)

    Saber Benharzallah

    2011-11-01

    Full Text Available We propose an intelligent and an efficient query processing approach for semantic mediation of information systems. We propose also a generic multi agent architecture that supports our approach. Our approach focuses on the exploitation of intelligent agents for query reformulation and the use of a new technology for the semantic representation. The algorithm is self-adapted to the changes of the environment, offers a wide aptitude and solves the various data conflicts in a dynamic way; it also reformulates the query using the schema mediation method for the discovered systems and the context mediation for the other systems.

  8. A new weighted fuzzy grammar on object oriented database queries

    Directory of Open Access Journals (Sweden)

    Ali Haroonabadi

    2012-08-01

    Full Text Available The fuzzy object oriented database model is often used to handle the existing imprecise and complicated objects for many real-world applications. The main focus of this paper is on fuzzy queries and tries to analyze a complicated and complex query to get more meaningful and closer responses. The method permits the user to provide the possibility of allocating the weight to various parts of the query, which makes it easier to follow better goals and return the target objects.

  9. Relaxing rdf queries based on user and domain preferences

    DEFF Research Database (Denmark)

    Dolog, Peter; Stueckenschmidt, Heiner; Wache, Holger

    2009-01-01

    Research in cooperative query answering is triggered by the observation that users are often not able to correctly formulate queries to databases such that they return the intended result. Due to lacking knowledge about the contents and the structure of a database, users will often only be able t...... application in the context of e-learning systems....... knowledge and user preferences. We describe a framework for information access that combines query refinement and relaxation in order to provide robust, personalized access to heterogeneous resource description framework data as well as an implementation in terms of rewriting rules and explain its...

  10. Blink and it's done: Interactive queries on very large data

    OpenAIRE

    Agarwal, Sameer; Iyer, Anand P.; Panda, Aurojit; Mozafari, Barzan; Stoica, Ion; Madden, Samuel R.

    2012-01-01

    In this demonstration, we present BlinkDB, a massively parallel, sampling-based approximate query processing framework for running interactive queries on large volumes of data. The key observation in BlinkDB is that one can make reasonable decisions in the absence of perfect answers. BlinkDB extends the Hive/HDFS stack and can handle the same set of SPJA (selection, projection, join and aggregate) queries as supported by these systems. BlinkDB provides real-time answers along with statistical...

  11. jQuery 2.0 animation techniques beginner's guide

    CERN Document Server

    Culpepper, Adam

    2013-01-01

    This book is a guide to help you create attractive web page animations using jQuery. Written in a friendly and engaging approach this book is designed to be placed alongside your computer as a mentor.If you are a web designer or a frontend developer or if you want to learn how to animate the user interface of your web applications with jQuery, this book is for you. Experience with jQuery or Javascript would be helpful but solid knowledge base of HTML and CSS is assumed.

  12. Finding Shortest Paths on Terrains by Killing Two Birds with One Stone

    DEFF Research Database (Denmark)

    Kaul, Manohar; Wong, Raymond Chi-Wing; Yang, Bin

    2013-01-01

    With the increasing availability of terrain data, e.g., from aerial laser scans, the management of such data is attracting increasing at- tention in both industry and academia. In particular, spatial queries, e.g., k -nearest neighbor and reverse nearest neighbor queries, in Euclidean and spatial...... network spaces are being extended to ter- rains. Such queries all rely on an important operation, that of finding shortest surface distances. However, shortest surface dis- tance computation is very time consuming. We propose techniques that enable efficient computation of lower and upper bounds...... of the shortest surface distance, which enable faster query processing by eliminating expensive distance computations. Empirical studies show that our bounds are much tighter than the best-known bounds in many cases and that they enable speedups of up to 43 times for some well-known spatial querie...

  13. Scalable Nearest Neighbor Algorithms for High Dimensional Data.

    Science.gov (United States)

    Muja, Marius; Lowe, David G

    2014-11-01

    For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.

  14. The role of orthography in the semantic activation of neighbors.

    Science.gov (United States)

    Hino, Yasushi; Lupker, Stephen J; Taylor, Tamsen E

    2012-09-01

    There is now considerable evidence that a letter string can activate semantic information appropriate to its orthographic neighbors (e.g., Forster & Hector's, 2002, TURPLE effect). This phenomenon is the focus of the present research. Using Japanese words, we examined whether semantic activation of neighbors is driven directly by orthographic similarity alone or whether there is also a role for phonological similarity. In Experiment 1, using a relatedness judgment task in which a Kanji word-Katakana word pair was presented on each trial, an inhibitory effect was observed when the initial Kanji word was related to an orthographic and phonological neighbor of the Katakana word target but not when the initial Kanji word was related to a phonological but not orthographic neighbor of the Katakana word target. This result suggests that phonology plays little, if any, role in the activation of neighbors' semantics when reading familiar words. In Experiment 2, the targets were transcribed into Hiragana, a script they are typically not written in, requiring readers to engage in phonological coding. In that experiment, inhibitory effects were observed in both conditions. This result indicates that phonologically mediated semantic activation of neighbors will emerge when phonological processing is necessary in order to understand a written word (e.g., when that word is transcribed into an unfamiliar script). PsycINFO Database Record (c) 2012 APA, all rights reserved.

  15. ALGORITMA RC4 DALAM PROTEKSI TRANSMISI DAN HASIL QUERY UNTUK ORDBMS POSTGRESQL

    Directory of Open Access Journals (Sweden)

    Yuri Ariyanto

    2009-01-01

    Full Text Available In this research will be worked through about how cryptography RC4's algorithm implementation in protection to query result and of query, security by encryption and descryption up to both is in network. Implementation of this research which is build software in client that function access databases that is placed by the side of server. Software that building to have facility for encryption and descryption query result and of query that is sent from client goes to server and. transmission query result and of query can secure its security. Well guaranted transmission security him of query result and of query can be told to succeed if success software can encryption query result and of query which transmission so that in the event of scanning to both, scanning will not understand data content. Conclusion of this research that is woke up software succeed encryption query and result of query which transmission between application of client and of server databases. Abstract in Bahasa Indonesia: Pada penelitian ini dibahas mengenai bagaimana mengimplementasikan algoritma kriptografi RC4 dalam proteksi terhadap query dan hasil query, pengamanan dilakukan dengan cara melakukan enkripsi dan dekripsi selama keduanya berada di dalam jaringan. Pengimplementasian dari penelitian ini yaitu membangun sebuah software yang akan diletakkan di sisi client yang berfungsi mengakses database yang diletakkan di sisi server. Software yang dibangun memiliki fasilitas untuk mengenkripsi dan mendektipsi query dan hasil query yang dikirimkan dari client ke server dan juga sebaliknya. Dengan demikian tramsmisi query dan hasil query dapat terjamin keamanannya.Terjaminnya keamanan transmisi query dan hasil query dapat dikatakan berhasil jika software berhasil mengenkripsi query dan hasil query yang ditransmisikan sehingga apabila terjadi penyadapan terhadap keduanya, penyadap tidak akan mengerti isi data tersebut. Kesimpulan dari penelitian ini yaitu software yang dibangun

  16. Technologies for conceptual modelling and intelligent query formulation

    CSIR Research Space (South Africa)

    Alberts, R

    2008-11-01

    Full Text Available The aim of the project is to devise and evaluate algorithms, methodologies, techniques and interaction paradigms to build a tool for conceptual modelling and query management of complex data repositories based on a framework with solid formal...

  17. External Data Structures for Shortest Path Queries on Planar Digraphs

    DEFF Research Database (Denmark)

    Arge, Lars; Toma, Laura

    2005-01-01

    In this paper we present space-query trade-offs for external memory data structures that answer shortest path queries on planar directed graphs. For any S = Ω(N 1 + ε) and S = O(N2/B), our main result is a family of structures that use S space and answer queries in O(N2/ S B) I/Os, thus obtaining...... optimal space-query product O(N2/B). An S space structure can be constructed in O(√S · sort(N)) I/Os, where sort(N) is the number of I/Os needed to sort N elements, B is the disk block size, and N is the size of the graph....

  18. An Approach to Assist Designers With Their Queries and Designs

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2006-01-01

    Recent research investigating how engineers search for information has concluded that engineering designers acquire assistance when formulating queries. An approach to assist designers with their queries is presented. This approach forms part of a knowledge management system, where indexed...... documents are entered into the system (or are automatically indexed by tools within a system). The method builds up a network based upon indices assigned to documents. The network (or chunk) is presented back to the user once a search for knowledge has been completed. The network is build up as indexed...... documents are entered in to a knowledge-based system and is generated dynamically. The network can be used to assist a designer in searching for information; reformulating a query and; to prompt design tasks. This paper presents an approach to prompt designers with their design queries, along with some...

  19. An introduction to XML query processing and keyword search

    CERN Document Server

    Lu, Jiaheng

    2013-01-01

    This book systematically and comprehensively covers the latest advances in XML data searching. It presents an extensive overview of the current query processing and keyword search techniques on XML data.

  20. Determinacy in Static Analysis of jQuery

    DEFF Research Database (Denmark)

    Andreasen, Esben; Møller, Anders

    2014-01-01

    Static analysis for JavaScript can potentially help programmers find errors early during development. Although much progress has been made on analysis techniques, a major obstacle is the prevalence of libraries, in particular jQuery, which apply programming patterns that have detrimental conseque......Static analysis for JavaScript can potentially help programmers find errors early during development. Although much progress has been made on analysis techniques, a major obstacle is the prevalence of libraries, in particular jQuery, which apply programming patterns that have detrimental...... present a static dataflow analysis for JavaScript that infers and exploits determinacy information on-the-fly, to enable analysis of some of the most complex parts of jQuery. The techniques are implemented in the TAJS analysis tool and evaluated on a collection of small programs that use jQuery. Our...

  1. Parasol: An Architecture for Cross-Cloud Federated Graph Querying

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, Michael; Choudhury, Sutanay; Hughes, Marisa; Patrone, Dennis; Hider, Sandy; Piatko, Christine; Chapman, Matthew; Marple, JP; Silberberg, David

    2014-06-22

    Large scale data fusion of multiple datasets can often provide in- sights that examining datasets individually cannot. However, when these datasets reside in different data centers and cannot be collocated due to technical, administrative, or policy barriers, a unique set of problems arise that hamper querying and data fusion. To ad- dress these problems, a system and architecture named Parasol is presented that enables federated queries over graph databases residing in multiple clouds. Parasol’s design is flexible and requires only minimal assumptions for participant clouds. Query optimization techniques are also described that are compatible with Parasol’s lightweight architecture. Experiments on a prototype implementation of Parasol indicate its suitability for cross-cloud federated graph queries.

  2. Matching health information seekers' queries to medical terms.

    Science.gov (United States)

    Soualmia, Lina F; Prieur-Gaston, Elise; Moalla, Zied; Lecroq, Thierry; Darmoni, Stéfan J

    2012-01-01

    The Internet is a major source of health information but most seekers are not familiar with medical vocabularies. Hence, their searches fail due to bad query formulation. Several methods have been proposed to improve information retrieval: query expansion, syntactic and semantic techniques or knowledge-based methods. However, it would be useful to clean those queries which are misspelled. In this paper, we propose a simple yet efficient method in order to correct misspellings of queries submitted by health information seekers to a medical online search tool. In addition to query normalizations and exact phonetic term matching, we tested two approximate string comparators: the similarity score function of Stoilos and the normalized Levenshtein edit distance. We propose here to combine them to increase the number of matched medical terms in French. We first took a sample of query logs to determine the thresholds and processing times. In the second run, at a greater scale we tested different combinations of query normalizations before or after misspelling correction with the retained thresholds in the first run. According to the total number of suggestions (around 163, the number of the first sample of queries), at a threshold comparator score of 0.3, the normalized Levenshtein edit distance gave the highest F-Measure (88.15%) and at a threshold comparator score of 0.7, the Stoilos function gave the highest F-Measure (84.31%). By combining Levenshtein and Stoilos, the highest F-Measure (80.28%) is obtained with 0.2 and 0.7 thresholds respectively. However, queries are composed by several terms that may be combination of medical terms. The process of query normalization and segmentation is thus required. The highest F-Measure (64.18%) is obtained when this process is realized before spelling-correction. Despite the widely known high performance of the normalized edit distance of Levenshtein, we show in this paper that its combination with the Stoilos algorithm improved

  3. Haldane to Dimer Phase Transition in the Spin-1 Haldane System with Bond-Alternating Nearest-Neighbor and Uniform Next-Nearest-Neighbor Exchange Interactions

    OpenAIRE

    Takashi, Tonegawa; Makoto, Kaburagi; Takeshi, Nakao; Department of Physics, Faculty of Science, Kobe University; Faculty of Cross-Cultural Studies, Kobe University; Department of Physics, Faculty of Science, Kobe University

    1995-01-01

    The Haldane to dimer phase transition is studied in the spin-1 Haldane system with bond-alternating nearest-neighbor and uniform next-nearest-neighbor exchange interactions, where both interactions are antiferromagnetic and thus compete with each other. By using a method of exact diagonalization, the ground-state phase diagram on the ratio of the next-nearest-neighbor interaction constant to the nearest-neighbor one versus the bond-alternation parameter of the nearest-neighbor interactions is...

  4. Linked data querying through FCA-based schema indexing

    OpenAIRE

    Brosius, Dominik; Staab, Steffen

    2016-01-01

    The effciency of SPARQL query evaluation against Linked Open Data may benefit from schema-based indexing. However, many data items come with incomplete schema information or lack schema descriptions entirely. In this position paper, we outline an approach to an indexing of linked data graphs based on schemata induced through Formal Concept Analysis. We show how to map queries onto RDF graphs based on such derived schema information. We sketch next steps for realizing and optimizing the sugges...

  5. Inductive queries for a drug designing robot scientist

    OpenAIRE

    King, Ross D.; Schierz, Amanda; Clare, Amanda; Rowland, Jem; Sparkes, Andrew; Nijssen, Siegfried; Ramon, Jan

    2010-01-01

    It is increasingly clear that machine learning algorithms need to be integrated in an iterative scientific discovery loop, in which data is queried repeatedly by means of inductive queries and where the computer provides guidance to the experiments that are being performed. In this chapter, we summarise several key challenges in achieving this integration of machine learning and data mining algorithms in methods for the discovery of Quantitative Structure Activity Relationships (QSARs). We in...

  6. A distributed query execution engine of big attributed graphs.

    Science.gov (United States)

    Batarfi, Omar; Elshawi, Radwa; Fayoumi, Ayman; Barnawi, Ahmed; Sakr, Sherif

    2016-01-01

    A graph is a popular data model that has become pervasively used for modeling structural relationships between objects. In practice, in many real-world graphs, the graph vertices and edges need to be associated with descriptive attributes. Such type of graphs are referred to as attributed graphs. G-SPARQL has been proposed as an expressive language, with a centralized execution engine, for querying attributed graphs. G-SPARQL supports various types of graph querying operations including reachability, pattern matching and shortest path where any G-SPARQL query may include value-based predicates on the descriptive information (attributes) of the graph edges/vertices in addition to the structural predicates. In general, a main limitation of centralized systems is that their vertical scalability is always restricted by the physical limits of computer systems. This article describes the design, implementation in addition to the performance evaluation of DG-SPARQL, a distributed, hybrid and adaptive parallel execution engine of G-SPARQL queries. In this engine, the topology of the graph is distributed over the main memory of the underlying nodes while the graph data are maintained in a relational store which is replicated on the disk of each of the underlying nodes. DG-SPARQL evaluates parts of the query plan via SQL queries which are pushed to the underlying relational stores while other parts of the query plan, as necessary, are evaluated via indexless memory-based graph traversal algorithms. Our experimental evaluation shows the efficiency and the scalability of DG-SPARQL on querying massive attributed graph datasets in addition to its ability to outperform the performance of Apache Giraph, a popular distributed graph processing system, by orders of magnitudes.

  7. Two Dimensional Range Minimum Queries and Fibonacci Lattices

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Davoodi, Pooya; Lewenstein, Moshe

    2012-01-01

    technique—the discrepancy properties of Fibonacci lattices—we give an indexing data structure for 2D-RMQs that uses O(N/c) bits additional space with O(clogc(loglogc)2) query time, for any parameter c, 4 ≤ c ≤ N. Also, when the entries of the input matrix are from {0,1}, we show that the query time can...

  8. Optimasi Parameter K pada Algoritma K-nearest Neighbour untuk Klasifikasi Penyakit Diabetes Mellitus

    OpenAIRE

    Indrayanti, Indrayanti; Sugianti, Devi; Al Karomi, Adib

    2017-01-01

    Diabetes Mellitus merupakan salah satu penyakit kronis yang mematikan. Penyakit yang juga dikenal dengan nama penyakit kencing manis ini terjadi akibat kadar glukosa di dalam darah terlalu tinggi. Diabetes Mellitus banyak diteliti di banyak negara pada saat ini karena peningkatan penderita yang banyak dan sangat mengkhawatirkan. Menurut WHO saat ini lebih dari 246 juta jiwa menderita diabetes dan diperkirakan akan meningkat menjadi 380 juta jiwa pada tahun 2025 apabila tidak dilakukan penang...

  9. Labeling RDF Graphs for Linear Time and Space Querying

    Science.gov (United States)

    Furche, Tim; Weinzierl, Antonius; Bry, François

    Indices and data structures for web querying have mostly considered tree shaped data, reflecting the view of XML documents as tree-shaped. However, for RDF (and when querying ID/IDREF constraints in XML) data is indisputably graph-shaped. In this chapter, we first study existing indexing and labeling schemes for RDF and other graph datawith focus on support for efficient adjacency and reachability queries. For XML, labeling schemes are an important part of the widespread adoption of XML, in particular for mapping XML to existing (relational) database technology. However, the existing indexing and labeling schemes for RDF (and graph data in general) sacrifice one of the most attractive properties of XML labeling schemes, the constant time (and per-node space) test for adjacency (child) and reachability (descendant). In the second part, we introduce the first labeling scheme for RDF data that retains this property and thus achieves linear time and space processing of acyclic RDF queries on a significantly larger class of graphs than previous approaches (which are mostly limited to tree-shaped data). Finally, we show how this labeling scheme can be applied to (acyclic) SPARQL queries to obtain an evaluation algorithm with time and space complexity linear in the number of resources in the queried RDF graph.

  10. Concept-based query language approach to enterprise information systems

    Science.gov (United States)

    Niemi, Timo; Junkkari, Marko; Järvelin, Kalervo

    2014-01-01

    In enterprise information systems (EISs) it is necessary to model, integrate and compute very diverse data. In advanced EISs the stored data often are based both on structured (e.g. relational) and semi-structured (e.g. XML) data models. In addition, the ad hoc information needs of end-users may require the manipulation of data-oriented (structural), behavioural and deductive aspects of data. Contemporary languages capable of treating this kind of diversity suit only persons with good programming skills. In this paper we present a concept-oriented query language approach to manipulate this diversity so that the programming skill requirements are considerably reduced. In our query language, the features which need technical knowledge are hidden in application-specific concepts and structures. Therefore, users need not be aware of the underlying technology. Application-specific concepts and structures are represented by the modelling primitives of the extended RDOOM (relational deductive object-oriented modelling) which contains primitives for all crucial real world relationships (is-a relationship, part-of relationship, association), XML documents and views. Our query language also supports intensional and extensional-intensional queries, in addition to conventional extensional queries. In its query formulation, the end-user combines available application-specific concepts and structures through shared variables.

  11. Representation and alignment of sung queries for music information retrieval

    Science.gov (United States)

    Adams, Norman H.; Wakefield, Gregory H.

    2005-09-01

    The pursuit of robust and rapid query-by-humming systems, which search melodic databases using sung queries, is a common theme in music information retrieval. The retrieval aspect of this database problem has received considerable attention, whereas the front-end processing of sung queries and the data structure to represent melodies has been based on musical intuition and historical momentum. The present work explores three time series representations for sung queries: a sequence of notes, a ``smooth'' pitch contour, and a sequence of pitch histograms. The performance of the three representations is compared using a collection of naturally sung queries. It is found that the most robust performance is achieved by the representation with highest dimension, the smooth pitch contour, but that this representation presents a formidable computational burden. For all three representations, it is necessary to align the query and target in order to achieve robust performance. The computational cost of the alignment is quadratic, hence it is necessary to keep the dimension small for rapid retrieval. Accordingly, iterative deepening is employed to achieve both robust performance and rapid retrieval. Finally, the conventional iterative framework is expanded to adapt the alignment constraints based on previous iterations, further expediting retrieval without degrading performance.

  12. Rapid and Robust Cross-Correlation-Based Seismic Phase Identification Using an Approximate Nearest Neighbor Method

    Science.gov (United States)

    Tibi, R.; Young, C. J.; Gonzales, A.; Ballard, S.; Encarnacao, A. V.

    2016-12-01

    The matched filtering technique involving the cross-correlation of a waveform of interest with archived signals from a template library has proven to be a powerful tool for detecting events in regions with repeating seismicity. However, waveform correlation is computationally expensive, and therefore impractical for large template sets unless dedicated distributed computing hardware and software are used. In this study, we introduce an Approximate Nearest Neighbor (ANN) approach that enables the use of very large template libraries for waveform correlation without requiring a complex distributed computing system. Our method begins with a projection into a reduced dimensionality space based on correlation with a randomized subset of the full template archive. Searching for a specified number of nearest neighbors is accomplished by using randomized K-dimensional trees. We used the approach to search for matches to each of 2700 analyst-reviewed signal detections reported for May 2010 for the IMS station MKAR. The template library in this case consists of a dataset of more than 200,000 analyst-reviewed signal detections for the same station from 2002-2014 (excluding May 2010). Of these signal detections, 60% are teleseismic first P, and 15% regional phases (Pn, Pg, Sn, and Lg). The analyses performed on a standard desktop computer shows that the proposed approach performs the search of the large template libraries about 20 times faster than the standard full linear search, while achieving recall rates greater than 80%, with the recall rate increasing for higher correlation values. To decide whether to confirm a match, we use a hybrid method involving a cluster approach for queries with two or more matches, and correlation score for single matches. Of the signal detections that passed our confirmation process, 52% were teleseismic first P, and 30% were regional phases.

  13. Beyond formal groups: neighboring acts and watershed protection in Appalachia

    Directory of Open Access Journals (Sweden)

    Heather Lukacs

    2016-09-01

    Full Text Available This paper explores how watershed organizations in Appalachia have persisted in addressing water quality issues in areas with a history of coal mining. We identified two watershed groups that have taken responsibility for restoring local creeks that were previously highly degraded and sporadically managed. These watershed groups represent cases of self-organized commons governance in resource-rich, economically poor Appalachian communities. We describe the extent and characteristics of links between watershed group volunteers and watershed residents who are not group members. Through surveys, participant observation, and key-informant consultation, we found that neighbors – group members as well as non-group-members – supported the group's function through informal neighboring acts. Past research has shown that local commons governance institutions benefit from being nested in supportive external structures. We found that the persistence and success of community watershed organizations depends on the informal participation of local residents, affirming the necessity of looking beyond formal, organized groups to understand the resources, expertise, and information needed to address complex water pollution at the watershed level. Our findings augment the concept of nestedness in commons governance to include that of a formal organization acting as a neighbor that exchanges informal neighboring acts with local residents. In this way, we extend the concept of neighboring to include interactions between individuals and a group operating in the same geographic area.

  14. Nearest unlike neighbor (NUN): an aid to decision confidence estimation

    Science.gov (United States)

    Dasarathy, Belur V.

    1995-09-01

    The concept of nearest unlike neighbor (NUN), proposed and explored previously in the design of nearest neighbor (NN) based decision systems, is further exploited in this study to develop a measure of confidence in the decisions made by NN-based decision systems. This measure of confidence, on the basis of comparison with a user-defined threshold, may be used to determine the acceptability of the decision provided by the NN-based decision system. The concepts, associated methodology, and some illustrative numerical examples using the now classical Iris data to bring out the ease of implementation and effectiveness of the proposed innovations are presented.

  15. Accelerating SPARQL Queries and Analytics on RDF Data

    KAUST Repository

    Al-Harbi, Razen

    2016-11-09

    The complexity of SPARQL queries and RDF applications poses great challenges on distributed RDF management systems. SPARQL workloads are dynamic and con- sist of queries with variable complexities. Hence, systems that use static partitioning su↵er from communication overhead for workloads that generate excessive communi- cation. Concurrently, RDF applications are becoming more sophisticated, mandating analytical operations that extend beyond SPARQL queries. Being primarily designed and optimized to execute SPARQL queries, which lack procedural capabilities, exist- ing systems are not suitable for rich RDF analytics. This dissertation tackles the problem of accelerating SPARQL queries and RDF analytics on distributed shared-nothing RDF systems. First, a distributed RDF en- gine, coined AdPart, is introduced. AdPart uses lightweight hash partitioning for sharding triples using their subject values; rendering its startup overhead very low. The locality-aware query optimizer of AdPart takes full advantage of the partition- ing to (i) support the fully parallel processing of join patterns on subjects and (ii) minimize data communication for general queries by applying hash distribution of intermediate results instead of broadcasting, wherever possible. By exploiting hash- based locality, AdPart achieves better or comparable performance to systems that employ sophisticated partitioning schemes. To cope with workloads dynamism, AdPart is extended to dynamically adapt to workload changes. AdPart monitors the data access patterns and dynamically redis- tributes and replicates the instances of the most frequent patterns among workers.Consequently, the communication cost for future queries is drastically reduced or even eliminated. Experiments with synthetic and real data verify that AdPart starts faster than all existing systems and gracefully adapts to the query load. Finally, to support and accelerate rich RDF analytical tasks, a vertex-centric RDF analytics framework is

  16. Parallel Index and Query for Large Scale Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jerry; Wu, Kesheng; Ruebel, Oliver; Howison, Mark; Qiang, Ji; Prabhat,; Austin, Brian; Bethel, E. Wes; Ryne, Rob D.; Shoshani, Arie

    2011-07-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing of a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.

  17. Predicting Drug Recalls From Internet Search Engine Queries.

    Science.gov (United States)

    Yom-Tov, Elad

    2017-01-01

    Batches of pharmaceuticals are sometimes recalled from the market when a safety issue or a defect is detected in specific production runs of a drug. Such problems are usually detected when patients or healthcare providers report abnormalities to medical authorities. Here, we test the hypothesis that defective production lots can be detected earlier by monitoring queries to Internet search engines. We extracted queries from the USA to the Bing search engine, which mentioned one of the 5195 pharmaceutical drugs during 2015 and all recall notifications issued by the Food and Drug Administration (FDA) during that year. By using attributes that quantify the change in query volume at the state level, we attempted to predict if a recall of a specific drug will be ordered by FDA in a time horizon ranging from 1 to 40 days in future. Our results show that future drug recalls can indeed be identified with an AUC of 0.791 and a lift at 5% of approximately 6 when predicting a recall occurring one day ahead. This performance degrades as prediction is made for longer periods ahead. The most indicative attributes for prediction are sudden spikes in query volume about a specific medicine in each state. Recalls of prescription drugs and those estimated to be of medium-risk are more likely to be identified using search query data. These findings suggest that aggregated Internet search engine data can be used to facilitate in early warning of faulty batches of medicines.

  18. Application of Machine Learning Algorithms for the Query Performance Prediction

    Directory of Open Access Journals (Sweden)

    MILICEVIC, M.

    2015-08-01

    Full Text Available This paper analyzes the relationship between the system load/throughput and the query response time in a real Online transaction processing (OLTP system environment. Although OLTP systems are characterized by short transactions, which normally entail high availability and consistent short response times, the need for operational reporting may jeopardize these objectives. We suggest a new approach to performance prediction for concurrent database workloads, based on the system state vector which consists of 36 attributes. There is no bias to the importance of certain attributes, but the machine learning methods are used to determine which attributes better describe the behavior of the particular database server and how to model that system. During the learning phase, the system's profile is created using multiple reference queries, which are selected to represent frequent business processes. The possibility of the accurate response time prediction may be a foundation for automated decision-making for database (DB query scheduling. Possible applications of the proposed method include adaptive resource allocation, quality of service (QoS management or real-time dynamic query scheduling (e.g. estimation of the optimal moment for a complex query execution.

  19. Regular paths in SparQL: querying the NCI Thesaurus.

    Science.gov (United States)

    Detwiler, Landon T; Suciu, Dan; Brinkley, James F

    2008-11-06

    OWL, the Web Ontology Language, provides syntax and semantics for representing knowledge for the semantic web. Many of the constructs of OWL have a basis in the field of description logics. While the formal underpinnings of description logics have lead to a highly computable language, it has come at a cognitive cost. OWL ontologies are often unintuitive to readers lacking a strong logic background. In this work we describe GLEEN, a regular path expression library, which extends the RDF query language SparQL to support complex path expressions over OWL and other RDF-based ontologies. We illustrate the utility of GLEEN by showing how it can be used in a query-based approach to defining simpler, more intuitive views of OWL ontologies. In particular we show how relatively simple GLEEN-enhanced SparQL queries can create views of the OWL version of the NCI Thesaurus that match the views generated by the web-based NCI browser.

  20. Generating and Executing Complex Natural Language Queries across Linked Data.

    Science.gov (United States)

    Hamon, Thierry; Mougin, Fleur; Grabar, Natalia

    2015-01-01

    With the recent and intensive research in the biomedical area, the knowledge accumulated is disseminated through various knowledge bases. Links between these knowledge bases are needed in order to use them jointly. Linked Data, SPARQL language, and interfaces in Natural Language question-answering provide interesting solutions for querying such knowledge bases. We propose a method for translating natural language questions in SPARQL queries. We use Natural Language Processing tools, semantic resources, and the RDF triples description. The method is designed on 50 questions over 3 biomedical knowledge bases, and evaluated on 27 questions. It achieves 0.78 F-measure on the test set. The method for translating natural language questions into SPARQL queries is implemented as Perl module available at http://search.cpan.org/ thhamon/RDF-NLP-SPARQLQuery.

  1. Querying Large Physics Data Sets Over an Information Grid

    CERN Document Server

    Baker, N; Kovács, Z; Le Goff, J M; McClatchey, R

    2001-01-01

    Optimising use of the Web (WWW) for LHC data analysis is a complex problem and illustrates the challenges arising from the integration of and computation across massive amounts of information distributed worldwide. Finding the right piece of information can, at times, be extremely time-consuming, if not impossible. So-called Grids have been proposed to facilitate LHC computing and many groups have embarked on studies of data replication, data migration and networking philosophies. Other aspects such as the role of 'middleware' for Grids are emerging as requiring research. This paper positions the need for appropriate middleware that enables users to resolve physics queries across massive data sets. It identifies the role of meta-data for query resolution and the importance of Information Grids for high-energy physics analysis rather than just Computational or Data Grids. This paper identifies software that is being implemented at CERN to enable the querying of very large collaborating HEP data-sets, initially...

  2. Evolutionary Multiobjective Query Workload Optimization of Cloud Data Warehouses

    Science.gov (United States)

    Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan

    2014-01-01

    With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048

  3. Investigation in Query System Framework for High Energy Physics

    CERN Document Server

    Jatuphattharachat, Thanat

    2017-01-01

    We summarize an investigation in query system framework for HEP (High Energy Physics). Our work was an investigation on distributed server part of Femtocode, which is a query language that provides the ability for physicists to make plots and other aggregations in real-time. To make the system more robust and capable of processing large amount of data quickly, it is necessary to deploy the system on a redundant and distributed computing cluster. This project aims to investigate third party coordination and resource management frameworks which fit into the design of real-time distributed query system. Zookeeper, Mesos and Marathon are the main frameworks for this investigation. The results indicate that Zookeeper is good for job coordinator and job tracking as it provides robust, fast, simple and transparent read and write process for all connecting client across distributed Zookeeper server. Furthermore, it also supports high availability access and consistency guarantee within specific time bound.

  4. RDF-GL : a SPARQL-based graphical query language for RDF

    NARCIS (Netherlands)

    Hogenboom, F.P.; Milea, D.V.; Frasincar, F.; Kaymak, U.; Chbeir, R.; Badr, Y.; Abraham, A.; Hassanien, A.-E.

    2010-01-01

    This chapter presents RDF-GL, a graphical query language (GQL) for RDF. The GQL is based on the textual query language SPARQL and mainly focuses on SPARQL SELECT queries. The advantage of a GQL over textual query languages is that complexity is hidden through the use of graphical symbols. RDF-GL is

  5. Evaluating XML-Extended OLAP Queries Based on a Physical Algebra

    DEFF Research Database (Denmark)

    Yin, Xuepeng; Pedersen, Torben Bach

    2006-01-01

    . In this paper, we extend previous work on the logical federation of OLAP and XML data sources by presenting a simplified query semantics, a physical query algebra and a robust OLAP-XML query engine as well as the query evaluation techniques. Performance experiments with a prototypical implementation suggest...

  6. Query Expansion: Is It Necessary In Textual Case-Based Reasoning ...

    African Journals Online (AJOL)

    Query expansion (QE) is the process of transforming a seed query to improve retrieval performance in information retrieval operations. It is often intended to overcome a vocabulary mismatch between the query and the document collection. Query expansion is known to improve retrieval effectiveness of some information ...

  7. Energy-aware SQL query acceleration through FPGA-based dynamic partial reconfiguration

    NARCIS (Netherlands)

    Becher, Andreas; Bauer, Florian; Ziener, Daniel; Teich, Jürgen

    2014-01-01

    In this paper, we propose an approach for energy-aware FPGA-based query acceleration for databases on embedded devices. After the analysis of an incoming query, a query-specific hardware accelerator is generated on-the-fly and loaded on the FPGA for subsequent query execution using partial dynamic

  8. Contrasting demographic histories of the neighboring bonobo and chimpanzee

    DEFF Research Database (Denmark)

    Hvilsom, Christina; Carlsen, Frands; Heller, Rasmus

    2014-01-01

    of the neighboring bonobo remained constant. The changes in population size are likely linked to changes in habitat area due to climate oscillations during the late Pleistocene. Furthermore, the timing of population expansion for the rainforest-adapted chimpanzee is concurrent with the expansion of the savanna...

  9. Local randomization in neighbor selection improves PRM roadmap quality

    KAUST Repository

    McMahon, Troy

    2012-10-01

    Probabilistic Roadmap Methods (PRMs) are one of the most used classes of motion planning methods. These sampling-based methods generate robot configurations (nodes) and then connect them to form a graph (roadmap) containing representative feasible pathways. A key step in PRM roadmap construction involves identifying a set of candidate neighbors for each node. Traditionally, these candidates are chosen to be the k-closest nodes based on a given distance metric. In this paper, we propose a new neighbor selection policy called LocalRand(k,K\\'), that first computes the K\\' closest nodes to a specified node and then selects k of those nodes at random. Intuitively, LocalRand attempts to benefit from random sampling while maintaining the higher levels of local planner success inherent to selecting more local neighbors. We provide a methodology for selecting the parameters k and K\\'. We perform an experimental comparison which shows that for both rigid and articulated robots, LocalRand results in roadmaps that are better connected than the traditional k-closest policy or a purely random neighbor selection policy. The cost required to achieve these results is shown to be comparable to k-closest. © 2012 IEEE.

  10. Local randomization in neighbor selection improves PRM roadmap quality

    KAUST Repository

    McMahon, Troy; Jacobs, Sam; Boyd, Bryan; Tapia, Lydia; Amato, Nancy M.

    2012-01-01

    Probabilistic Roadmap Methods (PRMs) are one of the most used classes of motion planning methods. These sampling-based methods generate robot configurations (nodes) and then connect them to form a graph (roadmap) containing representative feasible pathways. A key step in PRM roadmap construction involves identifying a set of candidate neighbors for each node. Traditionally, these candidates are chosen to be the k-closest nodes based on a given distance metric. In this paper, we propose a new neighbor selection policy called LocalRand(k,K'), that first computes the K' closest nodes to a specified node and then selects k of those nodes at random. Intuitively, LocalRand attempts to benefit from random sampling while maintaining the higher levels of local planner success inherent to selecting more local neighbors. We provide a methodology for selecting the parameters k and K'. We perform an experimental comparison which shows that for both rigid and articulated robots, LocalRand results in roadmaps that are better connected than the traditional k-closest policy or a purely random neighbor selection policy. The cost required to achieve these results is shown to be comparable to k-closest. © 2012 IEEE.

  11. Near Neighbor Distribution in Sets of Fractal Nature

    Czech Academy of Sciences Publication Activity Database

    Jiřina, Marcel

    2013-01-01

    Roč. 5, č. 1 (2013), s. 159-166 ISSN 2150-7988 R&D Projects: GA MŠk(CZ) LG12020 Institutional support: RVO:67985807 Keywords : nearest neighbor * fractal set * multifractal * Erlang distribution Subject RIV: BB - Applied Statistics, Operational Research http://www.mirlabs.org/ijcisim/regular_papers_2013/Paper91.pdf

  12. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  13. Thermodynamic systematics of oxides of americium, curium, and neighboring elements

    International Nuclear Information System (INIS)

    Morss, L.R.

    1984-01-01

    Recently-obtained calorimetric data on the sesquioxides and dioxides of americium and curium are summarized. These data are combined with other properties of the actinide elements to elucidate the stability relationships among these oxides and to predict the behavior of neighboring actinide oxides. 45 references, 4 figures, 5 tables

  14. Randomized Approaches for Nearest Neighbor Search in Metric Space When Computing the Pairwise Distance Is Extremely Expensive

    Science.gov (United States)

    Wang, Lusheng; Yang, Yong; Lin, Guohui

    Finding the closest object for a query in a database is a classical problem in computer science. For some modern biological applications, computing the similarity between two objects might be very time consuming. For example, it takes a long time to compute the edit distance between two whole chromosomes and the alignment cost of two 3D protein structures. In this paper, we study the nearest neighbor search problem in metric space, where the pair-wise distance between two objects in the database is known and we want to minimize the number of distances computed on-line between the query and objects in the database in order to find the closest object. We have designed two randomized approaches for indexing metric space databases, where objects are purely described by their distances with each other. Analysis and experiments show that our approaches only need to compute O(logn) objects in order to find the closest object, where n is the total number of objects in the database.

  15. Tag cloud generation for results of multiple keywords queries

    DEFF Research Database (Denmark)

    Leginus, Martin; Dolog, Peter; Lage, Ricardo Gomes

    2013-01-01

    In this paper we study tag cloud generation for retrieved results of multiple keyword queries. It is motivated by many real world scenarios such as personalization tasks, surveillance systems and information retrieval tasks defined with multiple keywords. We adjust the state-of-the-art tag cloud...... generation techniques for multiple keywords query results. Consequently, we conduct the extensive evaluation on top of three distinct collaborative tagging systems. The graph-based methods perform significantly better for the Movielens and Bibsonomy datasets. Tag cloud generation based on maximal coverage...

  16. Web page sorting algorithm based on query keyword distance relation

    Science.gov (United States)

    Yang, Han; Cui, Hong Gang; Tang, Hao

    2017-08-01

    In order to optimize the problem of page sorting, according to the search keywords in the web page in the relationship between the characteristics of the proposed query keywords clustering ideas. And it is converted into the degree of aggregation of the search keywords in the web page. Based on the PageRank algorithm, the clustering degree factor of the query keyword is added to make it possible to participate in the quantitative calculation. This paper proposes an improved algorithm for PageRank based on the distance relation between search keywords. The experimental results show the feasibility and effectiveness of the method.

  17. On a Fuzzy Algebra for Querying Graph Databases

    OpenAIRE

    Pivert , Olivier; Thion , Virginie; Jaudoin , Hélène; Smits , Grégory

    2014-01-01

    International audience; This paper proposes a notion of fuzzy graph database and describes a fuzzy query algebra that makes it possible to handle such database, which may be fuzzy or not, in a flexible way. The algebra, based on fuzzy set theory and the concept of a fuzzy graph, is composed of a set of operators that can be used to express preference queries on fuzzy graph databases. The preferences concern i) the content of the vertices of the graph and ii) the structure of the graph. In a s...

  18. Location-Dependent Query Processing Under Soft Real-Time Constraints

    Directory of Open Access Journals (Sweden)

    Zoubir Mammeri

    2009-01-01

    Full Text Available In recent years, mobile devices and applications achieved an increasing development. In database field, this development required methods to consider new query types like location-dependent queries (i.e. the query results depend on the query issuer location. Although several researches addressed problems related to location-dependent query processing, a few works considered timing requirements that may be associated with queries (i.e., the query results must be delivered to mobile clients on time. The main objective of this paper is to propose a solution for location-dependent query processing under soft real-time constraints. Hence, we propose methods to take into account client location-dependency and to maximize the percentage of queries respecting their deadlines. We validate our proposal by implementing a prototype based on Oracle DBMS. Performance evaluation results show that the proposed solution optimizes the percentage of queries meeting their deadlines and the communication cost.

  19. Keyword Query Expansion Paradigm Based on Recommendation and Interpretation in Relational Databases

    Directory of Open Access Journals (Sweden)

    Yingqi Wang

    2017-01-01

    Full Text Available Due to the ambiguity and impreciseness of keyword query in relational databases, the research on keyword query expansion has attracted wide attention. Existing query expansion methods expose users’ query intention to a certain extent, but most of them cannot balance the precision and recall. To address this problem, a novel two-step query expansion approach is proposed based on query recommendation and query interpretation. First, a probabilistic recommendation algorithm is put forward by constructing a term similarity matrix and Viterbi model. Second, by using the translation algorithm of triples and construction algorithm of query subgraphs, query keywords are translated to query subgraphs with structural and semantic information. Finally, experimental results on a real-world dataset demonstrate the effectiveness and rationality of the proposed method.

  20. Searching for rare diseases in PubMed: a blind comparison of Orphanet expert query and query based on terminological knowledge.

    Science.gov (United States)

    Griffon, N; Schuers, M; Dhombres, F; Merabti, T; Kerdelhué, G; Rollin, L; Darmoni, S J

    2016-08-02

    Despite international initiatives like Orphanet, it remains difficult to find up-to-date information about rare diseases. The aim of this study is to propose an exhaustive set of queries for PubMed based on terminological knowledge and to evaluate it versus the queries based on expertise provided by the most frequently used resource in Europe: Orphanet. Four rare disease terminologies (MeSH, OMIM, HPO and HRDO) were manually mapped to each other permitting the automatic creation of expended terminological queries for rare diseases. For 30 rare diseases, 30 citations retrieved by Orphanet expert query and/or query based on terminological knowledge were assessed for relevance by two independent reviewers unaware of the query's origin. An adjudication procedure was used to resolve any discrepancy. Precision, relative recall and F-measure were all computed. For each Orphanet rare disease (n = 8982), there was a corresponding terminological query, in contrast with only 2284 queries provided by Orphanet. Only 553 citations were evaluated due to queries with 0 or only a few hits. There were no significant differences between the Orpha query and terminological query in terms of precision, respectively 0.61 vs 0.52 (p = 0.13). Nevertheless, terminological queries retrieved more citations more often than Orpha queries (0.57 vs. 0.33; p = 0.01). Interestingly, Orpha queries seemed to retrieve older citations than terminological queries (p < 0.0001). The terminological queries proposed in this study are now currently available for all rare diseases. They may be a useful tool for both precision or recall oriented literature search.

  1. Incidence and Prevalence of Tuberculosis in Iran and Neighboring Countries

    Directory of Open Access Journals (Sweden)

    Arezoo Tavakoli

    2017-07-01

    Full Text Available Background Tuberculosis is one of the major public health concerns in many countries, however the available and effective treatment is known. Tuberculosis typically determined with socio-economic problems such as war, malnutrition and HIV prevalence. In Iran, many progresses are carried to control tuberculosis but, different factors such as immigration from neighboring countries are affective to tuberculosis infection. Objectives In this paper, the incidence and prevalence of tuberculosis is evaluated in different regions of Iran and neighboring countries. Methods The data are collected from different and valid sources such as Scopus, Pubmed and also many reports from world health organization (WHO and center of disease control and prevention (CDC for a period of 25 years (1990 - 2015 evaluated for Iran and neighboring countries. Results This study as a descriptive- analytical research is conducted cross- sectional among Iran and neighboring countries since 1990. The information is obtained from exact and valid informative data from web of sciences. The east and west border countries of Iran which are faced with war and immigration in Afghanistan, Pakistan and Iraq are source of tuberculosis infection that effect on tuberculosis prevalence in Iran. The data were analyzed by SPSS 22 and Excel 2013. Conclusions The incidence of tuberculosis in Iran has been decreased because of many controlling actions such as BCG vaccination, electronic reporting system for tuberculosis and free access to tuberculosis medication. Some of Iran neighboring countries such as Tajikistan and Pakistan have the highest incidence of tuberculosis which known as a challenge for tuberculosis control in Iran while Saudi Arabia and Turkey have the lowest incidence.

  2. Local biotic adaptation of trees and shrubs to plant neighbors

    Science.gov (United States)

    Grady, Kevin C.; Wood, Troy E.; Kolb, Thomas E.; Hersch-Green, Erika; Shuster, Stephen M.; Gehring, Catherine A.; Hart, Stephen C.; Allan, Gerard J.; Whitham, Thomas G.

    2017-01-01

    Natural selection as a result of plant–plant interactions can lead to local biotic adaptation. This may occur where species frequently interact and compete intensely for resources limiting growth, survival, and reproduction. Selection is demonstrated by comparing a genotype interacting with con- or hetero-specific sympatric neighbor genotypes with a shared site-level history (derived from the same source location), to the same genotype interacting with foreign neighbor genotypes (from different sources). Better genotype performance in sympatric than allopatric neighborhoods provides evidence of local biotic adaptation. This pattern might be explained by selection to avoid competition by shifting resource niches (differentiation) or by interactions benefitting one or more members (facilitation). We tested for local biotic adaptation among two riparian trees, Populus fremontii and Salix gooddingii, and the shrub Salix exigua by transplanting replicated genotypes from multiple source locations to a 17 000 tree common garden with sympatric and allopatric treatments along the Colorado River in California. Three major patterns were observed: 1) across species, 62 of 88 genotypes grew faster with sympatric neighbors than allopatric neighbors; 2) these growth rates, on an individual tree basis, were 44, 15 and 33% higher in sympatric than allopatric treatments for P. fremontii, S. exigua and S. gooddingii, respectively, and; 3) survivorship was higher in sympatric treatments for P. fremontiiand S. exigua. These results support the view that fitness of foundation species supporting diverse communities and dominating ecosystem processes is determined by adaptive interactions among multiple plant species with the outcome that performance depends on the genetic identity of plant neighbors. The occurrence of evolution in a plant-community context for trees and shrubs builds on ecological evolutionary research that has demonstrated co-evolution among herbaceous taxa, and

  3. An evaluation of multi-probe locality sensitive hashing for computing similarities over web-scale query logs.

    Directory of Open Access Journals (Sweden)

    Graham Cormode

    Full Text Available Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users' queries from commercial search engines, computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH methods and evaluate four variants in a distributed computing environment (specifically, Hadoop. We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with "vanilla" LSH, even when using the same amount of space.

  4. Exploring query execution strategies for JIT vectorization and SIMD

    NARCIS (Netherlands)

    T.K. Gubner (Tim); P.A. Boncz (Peter)

    2017-01-01

    textabstractThis paper partially explores the design space for efficient query processors on future hardware that is rich in SIMD capabilities. It departs from two well-known approaches: (1) interpreted block-at-a-time execution (a.k.a. "vectorization") and (2) "data-centric" JIT compilation, as in

  5. Active Learning by Querying Informative and Representative Examples.

    Science.gov (United States)

    Huang, Sheng-Jun; Jin, Rong; Zhou, Zhi-Hua

    2014-10-01

    Active learning reduces the labeling cost by iteratively selecting the most valuable data to query their labels. It has attracted a lot of interests given the abundance of unlabeled data and the high cost of labeling. Most active learning approaches select either informative or representative unlabeled instances to query their labels, which could significantly limit their performance. Although several active learning algorithms were proposed to combine the two query selection criteria, they are usually ad hoc in finding unlabeled instances that are both informative and representative. We address this limitation by developing a principled approach, termed QUIRE, based on the min-max view of active learning. The proposed approach provides a systematic way for measuring and combining the informativeness and representativeness of an unlabeled instance. Further, by incorporating the correlation among labels, we extend the QUIRE approach to multi-label learning by actively querying instance-label pairs. Extensive experimental results show that the proposed QUIRE approach outperforms several state-of-the-art active learning approaches in both single-label and multi-label learning.

  6. Querying UML models using OCL and Prolog: A performance study

    NARCIS (Netherlands)

    Chimiak-Opoka, J.; Felderer, M.; Lenz, C.; Lange, C.F.J.

    2008-01-01

    The size of unified modeling language (UML) models used in practice is very large and ranges up to hundreds and thousands of classes. Querying of these models is used to support their quality assessment by information filtering and aggregating. For both, human cognition and automated analysis, there

  7. Method of and device for querying of protected structured data

    NARCIS (Netherlands)

    Jonker, Willem; Brinkman, Richard; Doumen, J.M.; Schoenmakers, Berry

    2005-01-01

    Method of and device for querying of protected data structured in the form of a tree. A corresponding tree of node polynomials is constructed such that each node polynomial evaluates to zero for an input equal to an identifier assigned to a node name occurring in a branch of the data tree starting

  8. Method of and device for querying of protected structured data

    NARCIS (Netherlands)

    Brinkman, Richard; Doumen, J.M.; Jonker, Willem; Schoenmakers, B.

    Method of and device for querying of protected data structured in the form of a tree. A corresponding tree of node polynomials is constructed such that each node polynomial evaluates to zero for an input equal to an identifier assigned to a node name occurring in a branch of the data tree starting

  9. An empirical study on SAJQ (Sorting Algorithm for Join Queries

    Directory of Open Access Journals (Sweden)

    Hassan I. Mathkour

    2010-06-01

    Full Text Available Most queries that applied on database management systems (DBMS depend heavily on the performance of the used sorting algorithm. In addition to have an efficient sorting algorithm, as a primary feature, stability of such algorithms is a major feature that is needed in performing DBMS queries. In this paper, we study a new Sorting Algorithm for Join Queries (SAJQ that has both advantages of being efficient and stable. The proposed algorithm takes the advantage of using the m-way-merge algorithm in enhancing its time complexity. SAJQ performs the sorting operation in a time complexity of O(nlogm, where n is the length of the input array and m is number of sub-arrays used in sorting. An unsorted input array of length n is arranged into m sorted sub-arrays. The m-way-merge algorithm merges the sorted m sub-arrays into the final output sorted array. The proposed algorithm keeps the stability of the keys intact. An analytical proof has been conducted to prove that, in the worst case, the proposed algorithm has a complexity of O(nlogm. Also, a set of experiments has been performed to investigate the performance of the proposed algorithm. The experimental results have shown that the proposed algorithm outperforms other Stable–Sorting algorithms that are designed for join-based queries.

  10. Most Recent Match Queries in On-Line Suffix Trees

    DEFF Research Database (Denmark)

    Larsson, N. Jesper

    2014-01-01

    A suffix tree is able to efficiently locate a pattern in an indexed string, but not in general the most recent copy of the pattern in an online stream, which is desirable in some applications. We study the most general version of the problem of locating a most recent match: supporting queries...

  11. Algebra-Based Optimization of XML-Extended OLAP Queries

    DEFF Research Database (Denmark)

    Yin, Xuepeng; Pedersen, Torben Bach

    2006-01-01

    In today’s OLAP systems, integrating fast changing data physically into a cube is complex and time-consuming. Our solution, the “OLAP-XML Federation System,” makes it possible to reference the fast changing data in XML format in OLAP queries without physical integration. In this paper, we introduce...

  12. Performance of Distributed Query Optimization in Client/Server Systems

    NARCIS (Netherlands)

    Skowronek, J.; Blanken, Henk; Wilschut, A.N.

    The design, implementation and performance of an optimizer for a nested query language is considered. The optimizer operates in a client/server environment, in particular an Intranet setting. The paper deals with the scalability challenge by tackling the load of many clients by allocating optimizer

  13. CIRQuL: Complex Information Retrieval Query Language

    NARCIS (Netherlands)

    Mihajlovic, V.; Hiemstra, Djoerd; Apers, Peter M.G.

    In this paper we will present a new framework for the retrieval of XML documents. We will describe the extension for existing query languages (XPath and XQuery) geared toward ranked information retrieval and full-text search in XML documents. Furthermore we will present language models for ranked

  14. VIGOR: Interactive Visual Exploration of Graph Query Results.

    Science.gov (United States)

    Pienta, Robert; Hohman, Fred; Endert, Alex; Tamersoy, Acar; Roundy, Kevin; Gates, Chris; Navathe, Shamkant; Chau, Duen Horng

    2018-01-01

    Finding patterns in graphs has become a vital challenge in many domains from biological systems, network security, to finance (e.g., finding money laundering rings of bankers and business owners). While there is significant interest in graph databases and querying techniques, less research has focused on helping analysts make sense of underlying patterns within a group of subgraph results. Visualizing graph query results is challenging, requiring effective summarization of a large number of subgraphs, each having potentially shared node-values, rich node features, and flexible structure across queries. We present VIGOR, a novel interactive visual analytics system, for exploring and making sense of query results. VIGOR uses multiple coordinated views, leveraging different data representations and organizations to streamline analysts sensemaking process. VIGOR contributes: (1) an exemplar-based interaction technique, where an analyst starts with a specific result and relaxes constraints to find other similar results or starts with only the structure (i.e., without node value constraints), and adds constraints to narrow in on specific results; and (2) a novel feature-aware subgraph result summarization. Through a collaboration with Symantec, we demonstrate how VIGOR helps tackle real-world problems through the discovery of security blindspots in a cybersecurity dataset with over 11,000 incidents. We also evaluate VIGOR with a within-subjects study, demonstrating VIGOR's ease of use over a leading graph database management system, and its ability to help analysts understand their results at higher speed and make fewer errors.

  15. Query-dependent banding (QDB for faster RNA similarity searches.

    Directory of Open Access Journals (Sweden)

    Eric P Nawrocki

    2007-03-01

    Full Text Available When searching sequence databases for RNAs, it is desirable to score both primary sequence and RNA secondary structure similarity. Covariance models (CMs are probabilistic models well-suited for RNA similarity search applications. However, the computational complexity of CM dynamic programming alignment algorithms has limited their practical application. Here we describe an acceleration method called query-dependent banding (QDB, which uses the probabilistic query CM to precalculate regions of the dynamic programming lattice that have negligible probability, independently of the target database. We have implemented QDB in the freely available Infernal software package. QDB reduces the average case time complexity of CM alignment from LN(2.4 to LN(1.3 for a query RNA of N residues and a target database of L residues, resulting in a 4-fold speedup for typical RNA queries. Combined with other improvements to Infernal, including informative mixture Dirichlet priors on model parameters, benchmarks also show increased sensitivity and specificity resulting from improved parameterization.

  16. FTree query construction for virtual screening: a statistical analysis.

    Science.gov (United States)

    Gerlach, Christof; Broughton, Howard; Zaliani, Andrea

    2008-02-01

    FTrees (FT) is a known chemoinformatic tool able to condense molecular descriptions into a graph object and to search for actives in large databases using graph similarity. The query graph is classically derived from a known active molecule, or a set of actives, for which a similar compound has to be found. Recently, FT similarity has been extended to fragment space, widening its capabilities. If a user were able to build a knowledge-based FT query from information other than a known active structure, the similarity search could be combined with other, normally separate, fields like de-novo design or pharmacophore searches. With this aim in mind, we performed a comprehensive analysis of several databases in terms of FT description and provide a basic statistical analysis of the FT spaces so far at hand. Vendors' catalogue collections and MDDR as a source of potential or known "actives", respectively, have been used. With the results reported herein, a set of ranges, mean values and standard deviations for several query parameters are presented in order to set a reference guide for the users. Applications on how to use this information in FT query building are also provided, using a newly built 3D-pharmacophore from 57 5HT-1F agonists and a published one which was used for virtual screening for tRNA-guanine transglycosylase (TGT) inhibitors.

  17. The Odyssey Approach for Optimizing Federated SPARQL Queries

    DEFF Research Database (Denmark)

    Montoya, Gabriela; Skaf-Molli, Hala; Hose, Katja

    2017-01-01

    . Nevertheless, these plans may still exhibit a high number of intermediate results or high execution times because of heuristics and inaccurate cost estimations. In this paper, we present Odyssey, an approach that uses statistics that allow for a more accurate cost estimation for federated queries and therefore...

  18. Optimizing Aggregate SPARQL Queries Using Materialized RDF Views

    DEFF Research Database (Denmark)

    Ibragimov, Dilshod; Hose, Katja; Pedersen, Torben Bach

    2016-01-01

    , this paper proposes MARVEL (MAterialized Rdf Views with Entailment and incompLetness). The approach consists of a view selection algorithm based on an associated RDF-specific cost model, a view definition syntax, and an algorithm for rewriting SPARQL queries using materialized RDF views. The experimental...

  19. Developing responsive web applications with Ajax and jQuery

    CERN Document Server

    Patel, Sandeep Kumar

    2014-01-01

    This book is a standard tutorial for web application developers presented in a comprehensive, step-by-step manner to explain the nuances involved. It has an abundance of code and examples supporting explanations of each feature. This book is intended for Java developers wanting to create rich and responsive applications using AJAX. Basic experience of using jQuery is assumed.

  20. NoDB: efficient query execution on raw data files

    NARCIS (Netherlands)

    I. Alagiannis; R Borovica; M. Branco; S. Idreos (Stratos); A. Ailamaki

    2012-01-01

    htmlabstractAs data collections become larger and larger, data loading evolves to a major bottleneck. Many applications already avoid using database systems, e.g., scientific data analysis and social networks, due to the complexity and the increased data-to-query time. For such applications data

  1. Optimizing RDF Data Cubes for Efficient Processing of Analytical Queries

    DEFF Research Database (Denmark)

    Jakobsen, Kim Ahlstrøm; Andersen, Alex B.; Hose, Katja

    2015-01-01

    data warehouses and data cubes. Today, external data sources are essential for analytics and, as the Semantic Web gains popularity, more and more external sources are available in native RDF. With the recent SPARQL 1.1 standard, performing analytical queries over RDF data sources has finally become...

  2. Dictionary Writing System (DWS) + Corpus Query Package (CQP ...

    African Journals Online (AJOL)

    In this article the integrated corpus query functionality of the dictionary compilation software TshwaneLex is analysed. Attention is given to the handling of both raw corpus data and annotated corpus data. With regard to the latter it is shown how, with a minimum of human effort, machine learning techniques can be employed ...

  3. A Dynamic Extension of ATLAS Run Query Service

    CERN Document Server

    Buliga, Alexandru

    2015-01-01

    The ATLAS RunQuery is a primarily web-based service for the ATLAS community to access meta information about the data taking in a concise format. In order to provide a better user experience, the service was moved to use a new technology, involving concepts such as: Web Sockets, on demand data, client-side scripting, memory caching and parallelizing execution.

  4. MOCQL: A Declarative Language for Ad-Hoc Model Querying

    DEFF Research Database (Denmark)

    Störrle, Harald

    2013-01-01

    Language (MOCQL), an experimental declarative textual language to express queries (and constraints) on models. We introduce MOCQL by examples and its grammar, evaluate its usability by means of controlled experiments, and find that modelers perform better and experience less cognitive load when working...

  5. VMQL: A Visual Language for Ad-Hoc Model Querying

    DEFF Research Database (Denmark)

    Störrle, Harald

    2011-01-01

    In large scale model based development, analysis level models are more like knowledge bases than engineering artifacts. Their effectiveness depends, to a large degree, on the ability of domain experts to retrieve information from them ad hoc. For large scale models, however, existing query...

  6. Using Description Logics to Model Context Aware Query Preferences

    NARCIS (Netherlands)

    van Bunningen, A.H.; Feng, L.; Apers, Peter M.G.

    Users’ preferences have traditionally been exploited in query personalization to better serve their information needs. With the emerging ubiquitous computing technologies, users will be situated in an Ambient Intelligent (AmI) environment, where users’ database access will not occur at a single

  7. Spatio-temporal keyword queries in social networks

    DEFF Research Database (Denmark)

    Cozza, V.; Messina, Alessandro; Montesi, D.

    2013-01-01

    Due to the large amount of social network data produced at an ever growing speed and their complex nature, recent works have addressed the problem of efficiently querying such data according to social, temporal or spatial dimensions. In this work we propose a data model that keeps into account al...

  8. MRA Based Efficient Database Storing and Fast Querying Technique

    Directory of Open Access Journals (Sweden)

    Mitko Kostov

    2017-02-01

    Full Text Available In this paper we consider a specific way of organizing 1D signals or 2D image databases, such that a more efficient storage and faster querying is achieved. A multiresolution technique of data processing is used in order of saving the most significant processed data.

  9. Project Lefty: More Bang for the Search Query

    Science.gov (United States)

    Varnum, Ken

    2010-01-01

    This article describes the Project Lefty, a search system that, at a minimum, adds a layer on top of traditional federated search tools that will make the wait for results more worthwhile for researchers. At best, Project Lefty improves search queries and relevance rankings for web-scale discovery tools to make the results themselves more relevant…

  10. Approaches for parallel data loading and data querying

    Directory of Open Access Journals (Sweden)

    Vlad DIACONITA

    2015-07-01

    Full Text Available This paper aims to bring contributions in data loading and data querying using products from the Apache Hadoop ecosystem. Currently, we talk about Big Data at up to zettabytes scale (10^21 bytes. Research in this area is usually interdisciplinary combining elements from statistics, system integration, parallel processing and cloud computing.

  11. Four queries concerning the metaphysics of early human embryogenesis.

    Science.gov (United States)

    Howsepian, A A

    2008-04-01

    In this essay, I attempt to provide answers to the following four queries concerning the metaphysics of early human embryogenesis. (1) Following its first cellular fission, is it coherent to claim that one and only one of two "blastomeric" twins of a human zygote is identical with that zygote? (2) Following the fusion of two human pre-embryos, is it coherent to claim that one and only one pre-fusion pre-embryo is identical with that postfusion pre-embryo? (3) Does a live human being come into existence only when its brain comes into existence? (4) At implantation, does a pre-embryo become a mere part of its mother? I argue that either if things have quidditative properties or if criterialism is false, then queries (1) and (2) can be answered in the affirmative; that in light of recent developments in theories of human death and in light of a more "functional" theory of brains, query (3) can be answered in the negative; and that plausible mereological principles require a negative answer to query (4).

  12. Secure quantum private information retrieval using phase-encoded queries

    Energy Technology Data Exchange (ETDEWEB)

    Olejnik, Lukasz [CERN, 1211 Geneva 23, Switzerland and Poznan Supercomputing and Networking Center, Noskowskiego 12/14, PL-61-704 Poznan (Poland)

    2011-08-15

    We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett. 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.

  13. Secure quantum private information retrieval using phase-encoded queries

    International Nuclear Information System (INIS)

    Olejnik, Lukasz

    2011-01-01

    We propose a quantum solution to the classical private information retrieval (PIR) problem, which allows one to query a database in a private manner. The protocol offers privacy thresholds and allows the user to obtain information from a database in a way that offers the potential adversary, in this model the database owner, no possibility of deterministically establishing the query contents. This protocol may also be viewed as a solution to the symmetrically private information retrieval problem in that it can offer database security (inability for a querying user to steal its contents). Compared to classical solutions, the protocol offers substantial improvement in terms of communication complexity. In comparison with the recent quantum private queries [Phys. Rev. Lett. 100, 230502 (2008)] protocol, it is more efficient in terms of communication complexity and the number of rounds, while offering a clear privacy parameter. We discuss the security of the protocol and analyze its strengths and conclude that using this technique makes it challenging to obtain the unconditional (in the information-theoretic sense) privacy degree; nevertheless, in addition to being simple, the protocol still offers a privacy level. The oracle used in the protocol is inspired both by the classical computational PIR solutions as well as the Deutsch-Jozsa oracle.

  14. Multidimensional Data Model and Query Language for Informetrics.

    Science.gov (United States)

    Niemi, Timo; Hirvonen, Lasse; Jarvelin, Kalervo

    2003-01-01

    Discusses multidimensional data analysis, or online analytical processing (OLAP), which offer a single subject-oriented source for analyzing summary data based on various dimensions. Develops a conceptual/logical multidimensional model for supporting the needs of informetrics, including a multidimensional query language whose basic idea is to…

  15. Adaptive query parallelization in multi-core column stores

    NARCIS (Netherlands)

    M.M. Gawade (Mrunal); M.L. Kersten (Martin); M.M. Gawade (Mrunal); M.L. Kersten (Martin)

    2016-01-01

    htmlabstractWith the rise of multi-core CPU platforms, their optimal utilization for in-memory OLAP workloads using column store databases has become one of the biggest challenges. Some of the inherent limi- tations in the achievable query parallelism are due to the degree of parallelism

  16. Joint Top-K Spatial Keyword Query Processing

    DEFF Research Database (Denmark)

    Wu, Dinming; Yiu, Man Lung; Cong, Gao

    2012-01-01

    keyword queries. Empirical studies show that the proposed solution is efficient on real data sets. We also offer analytical studies on synthetic data sets to demonstrate the efficiency of the proposed solution. Index Terms IEEE Terms Electronic mail , Google , Indexes , Joints , Mobile communication...

  17. Persistent Identifiers for Improved Accessibility for Linked Data Querying

    Science.gov (United States)

    Shepherd, A.; Chandler, C. L.; Arko, R. A.; Fils, D.; Jones, M. B.; Krisnadhi, A.; Mecum, B.

    2016-12-01

    The adoption of linked open data principles within the geosciences has increased the amount of accessible information available on the Web. However, this data is difficult to consume for those who are unfamiliar with Semantic Web technologies such as Web Ontology Language (OWL), Resource Description Framework (RDF) and SPARQL - the RDF query language. Consumers would need to understand the structure of the data and how to efficiently query it. Furthermore, understanding how to query doesn't solve problems of poor precision and recall in search results. For consumers unfamiliar with the data, full-text searches are most accessible, but not ideal as they arrest the advantages of data disambiguation and co-reference resolution efforts. Conversely, URI searches across linked data can deliver improved search results, but knowledge of these exact URIs may remain difficult to obtain. The increased adoption of Persistent Identifiers (PIDs) can lead to improved linked data querying by a wide variety of consumers. Because PIDs resolve to a single entity, they are an excellent data point for disambiguating content. At the same time, PIDs are more accessible and prominent than a single data provider's linked data URI. When present in linked open datasets, PIDs provide balance between the technical and social hurdles of linked data querying as evidenced by the NSF EarthCube GeoLink project. The GeoLink project, funded by NSF's EarthCube initiative, have brought together data repositories include content from field expeditions, laboratory analyses, journal publications, conference presentations, theses/reports, and funding awards that span scientific studies from marine geology to marine ecosystems and biogeochemistry to paleoclimatology.

  18. Social dilemma alleviated by sharing the gains with immediate neighbors

    Science.gov (United States)

    Wu, Zhi-Xi; Yang, Han-Xin

    2014-01-01

    We study the evolution of cooperation in the evolutionary spatial prisoner's dilemma game (PDG) and snowdrift game (SG), within which a fraction α of the payoffs of each player gained from direct game interactions is shared equally by the immediate neighbors. The magnitude of the parameter α therefore characterizes the degree of the relatedness among the neighboring players. By means of extensive Monte Carlo simulations as well as an extended mean-field approximation method, we trace the frequency of cooperation in the stationary state. We find that plugging into relatedness can significantly promote the evolution of cooperation in the context of both studied games. Unexpectedly, cooperation can be more readily established in the spatial PDG than that in the spatial SG, given that the degree of relatedness and the cost-to-benefit ratio of mutual cooperation are properly formulated. The relevance of our model with the stakeholder theory is also briefly discussed.

  19. Grain price spikes and beggar-thy-neighbor policy responses

    DEFF Research Database (Denmark)

    Boysen, Ole; Jensen, Hans Grinsted

    on the agenda of various international policy fora, including the annual meetings of G20 countries in recent years. For that reason, recent studies have attempted to quantify the extent to which such policy actions contributed to the rise in food prices. A study by Jensen & Anderson (2014) uses the global AGE...... model GTAP and the corresponding database to quantify the global policy actions contributions to the raise in food prices by modeling the changes in distortions to agricultural incentives in the period 2006 to 2008. We link the results from this global model into a national AGE model, highlighting how...... global "Beggar-thy-Neighbor Policy Responses" impacted on poor households in Uganda. More specifically we examine the following research questions: What were the Ugandan economy-wide and poverty impacts of the price spikes? What was the impact of other countries "Beggar-thy-Neighbor Policy Responses...

  20. Nearest Neighbor Networks: clustering expression data based on gene neighborhoods

    Directory of Open Access Journals (Sweden)

    Olszewski Kellen L

    2007-07-01

    Full Text Available Abstract Background The availability of microarrays measuring thousands of genes simultaneously across hundreds of biological conditions represents an opportunity to understand both individual biological pathways and the integrated workings of the cell. However, translating this amount of data into biological insight remains a daunting task. An important initial step in the analysis of microarray data is clustering of genes with similar behavior. A number of classical techniques are commonly used to perform this task, particularly hierarchical and K-means clustering, and many novel approaches have been suggested recently. While these approaches are useful, they are not without drawbacks; these methods can find clusters in purely random data, and even clusters enriched for biological functions can be skewed towards a small number of processes (e.g. ribosomes. Results We developed Nearest Neighbor Networks (NNN, a graph-based algorithm to generate clusters of genes with similar expression profiles. This method produces clusters based on overlapping cliques within an interaction network generated from mutual nearest neighborhoods. This focus on nearest neighbors rather than on absolute distance measures allows us to capture clusters with high connectivity even when they are spatially separated, and requiring mutual nearest neighbors allows genes with no sufficiently similar partners to remain unclustered. We compared the clusters generated by NNN with those generated by eight other clustering methods. NNN was particularly successful at generating functionally coherent clusters with high precision, and these clusters generally represented a much broader selection of biological processes than those recovered by other methods. Conclusion The Nearest Neighbor Networks algorithm is a valuable clustering method that effectively groups genes that are likely to be functionally related. It is particularly attractive due to its simplicity, its success in the

  1. Crimean-Congo hemorrhagic fever in Iran and neighboring countries

    DEFF Research Database (Denmark)

    Chinikar, S; Ghiasi, Seyed Mojtaba; Hewson, R

    2010-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic viral disease that is asymptomatic in infected livestock, but a serious threat to humans. Human infections begin with nonspecific febrile symptoms, but progress to a serious hemorrhagic syndrome with a case fatality rate of 2-50%. Although the ...... in Iran and neighboring countries and provide evidence of over 5000 confirmed cases of CCHF in a single period/season....

  2. ENTROPY CHARACTERISTICS IN MODELS FOR COORDINATION OF NEIGHBORING ROAD SECTIONS

    Directory of Open Access Journals (Sweden)

    N. I. Kulbashnaya

    2016-01-01

    Full Text Available The paper considers an application of entropy characteristics as criteria to coordinate traffic conditions at neighboring road sections. It has been proved that the entropy characteristics are widely used in the methods that take into account information influence of the environment on drivers and in the mechanisms that create such traffic conditions which ensure preservation of the optimal level of driver’s emotional tension during the drive. Solution of such problem is considered in the aspect of coordination of traffic conditions at neighboring road sections that, in its turn, is directed on exclusion of any driver’s transitional processes. Methodology for coordination of traffic conditions at neighboring road sections is based on the E. V. Gavrilov’s concept on coordination of some parameters of road sections which can be expressed in the entropy characteristics. The paper proposes to execute selection of coordination criteria according to accident rates because while moving along neighboring road sections traffic conditions change drastically that can result in creation of an accident situation. Relative organization of a driver’s perception field and driver’s interaction with the traffic environment has been selected as entropy characteristics. Therefore, the given characteristics are made conditional to the road accidents rate. The investigation results have revealed a strong correlation between the relative organization of the driver’s perception field and the relative organization of the driver’s interaction with the traffic environment and the accident rate. Results of the executed experiment have proved an influence of the accident rate on the investigated entropy characteristics.

  3. Do alcohol compliance checks decrease underage sales at neighboring establishments?

    Science.gov (United States)

    Erickson, Darin J; Smolenski, Derek J; Toomey, Traci L; Carlin, Bradley P; Wagenaar, Alexander C

    2013-11-01

    Underage alcohol compliance checks conducted by law enforcement agencies can reduce the likelihood of illegal alcohol sales at checked alcohol establishments, and theory suggests that an alcohol establishment that is checked may warn nearby establishments that compliance checks are being conducted in the area. In this study, we examined whether the effects of compliance checks diffuse to neighboring establishments. We used data from the Complying with the Minimum Drinking Age trial, which included more than 2,000 compliance checks conducted at more than 900 alcohol establishments. The primary outcome was the sale of alcohol to a pseudo-underage buyer without the need for age identification. A multilevel logistic regression was used to model the effect of a compliance check at each establishment as well as the effect of compliance checks at neighboring establishments within 500 m (stratified into four equal-radius concentric rings), after buyer, license, establishment, and community-level variables were controlled for. We observed a decrease in the likelihood of establishments selling alcohol to underage youth after they had been checked by law enforcement, but these effects quickly decayed over time. Establishments that had a close neighbor (within 125 m) checked in the past 90 days were also less likely to sell alcohol to young-appearing buyers. The spatial effect of compliance checks on other establishments decayed rapidly with increasing distance. Results confirm the hypothesis that the effects of police compliance checks do spill over to neighboring establishments. These findings have implications for the development of an optimal schedule of police compliance checks.

  4. Single cell transcriptomics of neighboring hyphae of Aspergillus niger

    Science.gov (United States)

    2011-01-01

    Single cell profiling was performed to assess differences in RNA accumulation in neighboring hyphae of the fungus Aspergillus niger. A protocol was developed to isolate and amplify RNA from single hyphae or parts thereof. Microarray analysis resulted in a present call for 4 to 7% of the A. niger genes, of which 12% showed heterogeneous RNA levels. These genes belonged to a wide range of gene categories. PMID:21816052

  5. [Galaxy/quasar classification based on nearest neighbor method].

    Science.gov (United States)

    Li, Xiang-Ru; Lu, Yu; Zhou, Jian-Ming; Wang, Yong-Jun

    2011-09-01

    With the wide application of high-quality CCD in celestial spectrum imagery and the implementation of many large sky survey programs (e. g., Sloan Digital Sky Survey (SDSS), Two-degree-Field Galaxy Redshift Survey (2dF), Spectroscopic Survey Telescope (SST), Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) program and Large Synoptic Survey Telescope (LSST) program, etc.), celestial observational data are coming into the world like torrential rain. Therefore, to utilize them effectively and fully, research on automated processing methods for celestial data is imperative. In the present work, we investigated how to recognizing galaxies and quasars from spectra based on nearest neighbor method. Galaxies and quasars are extragalactic objects, they are far away from earth, and their spectra are usually contaminated by various noise. Therefore, it is a typical problem to recognize these two types of spectra in automatic spectra classification. Furthermore, the utilized method, nearest neighbor, is one of the most typical, classic, mature algorithms in pattern recognition and data mining, and often is used as a benchmark in developing novel algorithm. For applicability in practice, it is shown that the recognition ratio of nearest neighbor method (NN) is comparable to the best results reported in the literature based on more complicated methods, and the superiority of NN is that this method does not need to be trained, which is useful in incremental learning and parallel computation in mass spectral data processing. In conclusion, the results in this work are helpful for studying galaxies and quasars spectra classification.

  6. Evidence for cultural differences between neighboring chimpanzee communities.

    Science.gov (United States)

    Luncz, Lydia V; Mundry, Roger; Boesch, Christophe

    2012-05-22

    The majority of evidence for cultural behavior in animals has come from comparisons between populations separated by large geographical distances that often inhabit different environments. The difficulty of excluding ecological and genetic variation as potential explanations for observed behaviors has led some researchers to challenge the idea of animal culture. Chimpanzees (Pan troglodytes verus) in the Taï National Park, Côte d'Ivoire, crack Coula edulis nuts using stone and wooden hammers and tree root anvils. In this study, we compare for the first time hammer selection for nut cracking across three neighboring chimpanzee communities that live in the same forest habitat, which reduces the likelihood of ecological variation. Furthermore, the study communities experience frequent dispersal of females at maturity, which eliminates significant genetic variation. We compared key ecological factors, such as hammer availability and nut hardness, between the three neighboring communities and found striking differences in group-specific hammer selection among communities despite similar ecological conditions. Differences were found in the selection of hammer material and hammer size in response to changes in nut resistance over time. Our findings highlight the subtleties of cultural differences in wild chimpanzees and illustrate how cultural knowledge is able to shape behavior, creating differences among neighboring social groups. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Query optimization for graph analytics on linked data using SPARQL

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokyong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Sangkeun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lim, Seung -Hwan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sukumar, Sreenivas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vatsavai, Ranga Raju [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    Triplestores that support query languages such as SPARQL are emerging as the preferred and scalable solution to represent data and meta-data as massive heterogeneous graphs using Semantic Web standards. With increasing adoption, the desire to conduct graph-theoretic mining and exploratory analysis has also increased. Addressing that desire, this paper presents a solution that is the marriage of Graph Theory and the Semantic Web. We present software that can analyze Linked Data using graph operations such as counting triangles, finding eccentricity, testing connectedness, and computing PageRank directly on triple stores via the SPARQL interface. We describe the process of optimizing performance of the SPARQL-based implementation of such popular graph algorithms by reducing the space-overhead, simplifying iterative complexity and removing redundant computations by understanding query plans. Our optimized approach shows significant performance gains on triplestores hosted on stand-alone workstations as well as hardware-optimized scalable supercomputers such as the Cray XMT.

  8. Towards Automatic Improvement of Patient Queries in Health Retrieval Systems

    Directory of Open Access Journals (Sweden)

    Nesrine KSENTINI

    2016-07-01

    Full Text Available With the adoption of health information technology for clinical health, e-health is becoming usual practice today. Users of this technology find it difficult to seek information relevant to their needs due to the increasing amount of the clinical and medical data on the web, and the lack of knowledge of medical jargon. In this regards, a method is described to improve user's needs by automatically adding new related terms to their queries which appear in the same context of the original query in order to improve final search results. This method is based on the assessment of semantic relationships defined by a proposed statistical method between a set of terms or keywords. Experiments were performed on CLEF-eHealth-2015 database and the obtained results show the effectiveness of our proposed method.

  9. Integrating Non-Spatial Preferences into Spatial Location Queries

    DEFF Research Database (Denmark)

    Qu, Qiang; Liu, Siyuan; Yang, Bin

    2014-01-01

    Increasing volumes of geo-referenced data are becoming available. This data includes so-called points of interest that describe businesses, tourist attractions, etc. by means of a geo-location and properties such as a textual description or ratings. We propose and study the efficient implementation...... of a new kind of query on points of interest that takes into account both the locations and properties of the points of interest. The query takes a result cardinality, a spatial range, and property-related preferences as parameters, and it returns a compact set of points of interest with the given...... cardinality and in the given range that satisfies the preferences. Specifically, the points of interest in the result set cover so-called allying preferences and are located far from points of interest that possess so-called alienating preferences. A unified result rating function integrates the two kinds...

  10. A Foundation for Efficient Indoor Distance-Aware Query Processing

    DEFF Research Database (Denmark)

    Lu, Hua; Cao, Xin; Jensen, Christian Søndergaard

    2012-01-01

    model that integrates indoor distance seamlessly. To enable the use of the model as a foundation for query processing, we develop accompanying, efficient algorithms that compute indoor distances for different indoor entities like doors as well as locations. We also propose an indexing framework......Indoor spaces accommodate large numbers of spatial objects, e.g., points of interest (POIs), and moving populations. A variety of services, e.g., location-based services and security control, are relevant to indoor spaces. Such services can be improved substantially if they are capable of utilizing...... that accommodates indoor distances that are pre-computed using the proposed algorithms. On top of this foundation, we develop efficient algorithms for typical indoor, distance-aware queries. The results of an extensive experimental evaluation demonstrate the efficacy of the proposals....

  11. Managing and Querying Image Annotation and Markup in XML

    Science.gov (United States)

    Wang, Fusheng; Pan, Tony; Sharma, Ashish; Saltz, Joel

    2010-01-01

    Proprietary approaches for representing annotations and image markup are serious barriers for researchers to share image data and knowledge. The Annotation and Image Markup (AIM) project is developing a standard based information model for image annotation and markup in health care and clinical trial environments. The complex hierarchical structures of AIM data model pose new challenges for managing such data in terms of performance and support of complex queries. In this paper, we present our work on managing AIM data through a native XML approach, and supporting complex image and annotation queries through native extension of XQuery language. Through integration with xService, AIM databases can now be conveniently shared through caGrid. PMID:21218167

  12. Managing and Querying Image Annotation and Markup in XML.

    Science.gov (United States)

    Wang, Fusheng; Pan, Tony; Sharma, Ashish; Saltz, Joel

    2010-01-01

    Proprietary approaches for representing annotations and image markup are serious barriers for researchers to share image data and knowledge. The Annotation and Image Markup (AIM) project is developing a standard based information model for image annotation and markup in health care and clinical trial environments. The complex hierarchical structures of AIM data model pose new challenges for managing such data in terms of performance and support of complex queries. In this paper, we present our work on managing AIM data through a native XML approach, and supporting complex image and annotation queries through native extension of XQuery language. Through integration with xService, AIM databases can now be conveniently shared through caGrid.

  13. Web search queries can predict stock market volumes.

    Science.gov (United States)

    Bordino, Ilaria; Battiston, Stefano; Caldarelli, Guido; Cristelli, Matthieu; Ukkonen, Antti; Weber, Ingmar

    2012-01-01

    We live in a computerized and networked society where many of our actions leave a digital trace and affect other people's actions. This has lead to the emergence of a new data-driven research field: mathematical methods of computer science, statistical physics and sociometry provide insights on a wide range of disciplines ranging from social science to human mobility. A recent important discovery is that search engine traffic (i.e., the number of requests submitted by users to search engines on the www) can be used to track and, in some cases, to anticipate the dynamics of social phenomena. Successful examples include unemployment levels, car and home sales, and epidemics spreading. Few recent works applied this approach to stock prices and market sentiment. However, it remains unclear if trends in financial markets can be anticipated by the collective wisdom of on-line users on the web. Here we show that daily trading volumes of stocks traded in NASDAQ-100 are correlated with daily volumes of queries related to the same stocks. In particular, query volumes anticipate in many cases peaks of trading by one day or more. Our analysis is carried out on a unique dataset of queries, submitted to an important web search engine, which enable us to investigate also the user behavior. We show that the query volume dynamics emerges from the collective but seemingly uncoordinated activity of many users. These findings contribute to the debate on the identification of early warnings of financial systemic risk, based on the activity of users of the www.

  14. Fuzzy Approaches to Flexible Querying in XML Retrieval

    Directory of Open Access Journals (Sweden)

    Stefania Marrara

    2016-04-01

    Full Text Available In this paper we review some approaches to flexible querying in XML that apply several techniques among which Fuzzy Set Theory. In particular we focus on FleXy, a flexible extension of XQuery-FT that was developed as a library on the open source engine Base-X. We then present PatentLight, a tool for patent retrieval that was developed to show the expressive power of Flexy.

  15. Capturing Ridge Functions in High Dimensions from Point Queries

    KAUST Repository

    Cohen, Albert

    2011-12-21

    Constructing a good approximation to a function of many variables suffers from the "curse of dimensionality". Namely, functions on ℝ N with smoothness of order s can in general be captured with accuracy at most O(n -s/N) using linear spaces or nonlinear manifolds of dimension n. If N is large and s is not, then n has to be chosen inordinately large for good accuracy. The large value of N often precludes reasonable numerical procedures. On the other hand, there is the common belief that real world problems in high dimensions have as their solution, functions which are more amenable to numerical recovery. This has led to the introduction of models for these functions that do not depend on smoothness alone but also involve some form of variable reduction. In these models it is assumed that, although the function depends on N variables, only a small number of them are significant. Another variant of this principle is that the function lives on a low dimensional manifold. Since the dominant variables (respectively the manifold) are unknown, this leads to new problems of how to organize point queries to capture such functions. The present paper studies where to query the values of a ridge function f(x)=g(a · x) when both a∈ℝ N and g ∈ C[0,1] are unknown. We establish estimates on how well f can be approximated using these point queries under the assumptions that g ∈ C s[0,1]. We also study the role of sparsity or compressibility of a in such query problems. © 2011 Springer Science+Business Media, LLC.

  16. Spatiotemporal conceptual platform for querying archaeological information systems

    Science.gov (United States)

    Partsinevelos, Panagiotis; Sartzetaki, Mary; Sarris, Apostolos

    2015-04-01

    Spatial and temporal distribution of archaeological sites has been shown to associate with several attributes including marine, water, mineral and food resources, climate conditions, geomorphological features, etc. In this study, archeological settlement attributes are evaluated under various associations in order to provide a specialized query platform in a geographic information system (GIS). Towards this end, a spatial database is designed to include a series of archaeological findings for a secluded geographic area of Crete in Greece. The key categories of the geodatabase include the archaeological type (palace, burial site, village, etc.), temporal information of the habitation/usage period (pre Minoan, Minoan, Byzantine, etc.), and the extracted geographical attributes of the sites (distance to sea, altitude, resources, etc.). Most of the related spatial attributes are extracted with readily available GIS tools. Additionally, a series of conceptual data attributes are estimated, including: Temporal relation of an era to a future one in terms of alteration of the archaeological type, topologic relations of various types and attributes, spatial proximity relations between various types. These complex spatiotemporal relational measures reveal new attributes towards better understanding of site selection for prehistoric and/or historic cultures, yet their potential combinations can become numerous. Therefore, after the quantification of the above mentioned attributes, they are classified as of their importance for archaeological site location modeling. Under this new classification scheme, the user may select a geographic area of interest and extract only the important attributes for a specific archaeological type. These extracted attributes may then be queried against the entire spatial database and provide a location map of possible new archaeological sites. This novel type of querying is robust since the user does not have to type a standard SQL query but

  17. Can Google Trends search queries contribute to risk diversification?

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2013-01-01

    Roč. 3, č. 2713 (2013), s. 1-5 ISSN 2045-2322 R&D Projects: GA ČR GA402/09/0965 Institutional support: RVO:67985556 Keywords : Google Trends * diversification * portfolio Subject RIV: AH - Economics Impact factor: 5.078, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kristoufek-can google trends search queries contribute to risk diversification.pdf

  18. Generic multiset programming for language-integrated querying

    DEFF Research Database (Denmark)

    Henglein, Fritz; Larsen, Ken Friis

    2010-01-01

    This paper demonstrates how relational algebraic programming based on efficient symbolic representations of multisets and operations on them can be applied to the query sublanguage of SQL in a type-safe fashion. In essence, it provides a library for naïve programming with multisets in a generalized...... SQL-style fashion, but avoids many cases of asymptotically inefficient nested iteration through cross-products....

  19. Federated query services provided by the Seamless SAR Archive project

    Science.gov (United States)

    Baker, S.; Bryson, G.; Buechler, B.; Meertens, C. M.; Crosby, C. J.; Fielding, E. J.; Nicoll, J.; Youn, C.; Baru, C.

    2013-12-01

    The NASA Advancing Collaborative Connections for Earth System Science (ACCESS) seamless synthetic aperture radar (SAR) archive (SSARA) project is a 2-year collaboration between UNAVCO, the Alaska Satellite Facility (ASF), the Jet Propulsion Laboratory (JPL), and OpenTopography at the San Diego Supercomputer Center (SDSC) to design and implement a seamless distributed access system for SAR data and derived data products (i.e. interferograms). A major milestone for the first year of the SSARA project was a unified application programming interface (API) for SAR data search and results at ASF and UNAVCO (WInSAR and EarthScope data archives) through the use of simple web services. A federated query service was developed using the unified APIs, providing users a single search interface for both archives (http://www.unavco.org/ws/brokered/ssara/sar/search). A command line client that utilizes this new service is provided as an open source utility for the community on GitHub (https://github.com/bakerunavco/SSARA). Further API development and enhancements added more InSAR specific keywords and quality control parameters (Doppler centroid, faraday rotation, InSAR stack size, and perpendicular baselines). To facilitate InSAR processing, the federated query service incorporated URLs for DEM (from OpenTopography) and tropospheric corrections (from the JPL OSCAR service) in addition to the URLs for SAR data. This federated query service will provide relevant QC metadata for selecting pairs of SAR data for InSAR processing and all the URLs necessary for interferogram generation. Interest from the international community has prompted an effort to incorporate other SAR data archives (the ESA Virtual Archive 4 and the DLR TerraSAR-X_SSC Geohazard Supersites and Natural Laboratories collections) into the federated query service which provide data for researchers outside the US and North America.

  20. Web search queries can predict stock market volumes.

    Directory of Open Access Journals (Sweden)

    Ilaria Bordino

    Full Text Available We live in a computerized and networked society where many of our actions leave a digital trace and affect other people's actions. This has lead to the emergence of a new data-driven research field: mathematical methods of computer science, statistical physics and sociometry provide insights on a wide range of disciplines ranging from social science to human mobility. A recent important discovery is that search engine traffic (i.e., the number of requests submitted by users to search engines on the www can be used to track and, in some cases, to anticipate the dynamics of social phenomena. Successful examples include unemployment levels, car and home sales, and epidemics spreading. Few recent works applied this approach to stock prices and market sentiment. However, it remains unclear if trends in financial markets can be anticipated by the collective wisdom of on-line users on the web. Here we show that daily trading volumes of stocks traded in NASDAQ-100 are correlated with daily volumes of queries related to the same stocks. In particular, query volumes anticipate in many cases peaks of trading by one day or more. Our analysis is carried out on a unique dataset of queries, submitted to an important web search engine, which enable us to investigate also the user behavior. We show that the query volume dynamics emerges from the collective but seemingly uncoordinated activity of many users. These findings contribute to the debate on the identification of early warnings of financial systemic risk, based on the activity of users of the www.