WorldWideScience

Sample records for jwst testbed telescope

  1. JWST Pathfinder Telescope Integration

    Science.gov (United States)

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  2. James Webb Space Telescope Optical Simulation Testbed I: Overview and First Results

    CERN Document Server

    Perrin, Marshall D; Choquet, Élodie; N'Diaye, Mamadou; Levecq, Olivier; Lajoie, Charles-Phillipe; Ygouf, Marie; Leboulleux, Lucie; Egron, Sylvain; Anderson, Rachel; Long, Chris; Elliott, Erin; Hartig, George; Pueyo, Laurent; van der Marel, Roeland; Mountain, Matt

    2014-01-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop workbench to study aspects of wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing optomechanical testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope, TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science & Operations Center. We have developed an optical design that reproduces the physics of JWST's three-mirror anastigmat using three aspheric lenses; it provides similar image quality as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at HeNe wavelength. A segmented deformable mirror stands in for the segmented primary mirror and allows control of the 18 segments in piston, tip, and tilt, while the secondary can be controlled in tip, tilt and x, y, z position. This will be sufficient to model many commissioning activities, to investigate field depende...

  3. Emulating JWST Exoplanet Transit Observations in a Testbed laboratory experiment

    Science.gov (United States)

    Touli, D.; Beichman, C. A.; Vasisht, G.; Smith, R.; Krist, J. E.

    2014-12-01

    The transit technique is used for the detection and characterization of exoplanets. The combination of transit and radial velocity (RV) measurements gives information about a planet's radius and mass, respectively, leading to an estimate of the planet's density (Borucki et al. 2011) and therefore to its composition and evolutionary history. Transit spectroscopy can provide information on atmospheric composition and structure (Fortney et al. 2013). Spectroscopic observations of individual planets have revealed atomic and molecular species such as H2O, CO2 and CH4 in atmospheres of planets orbiting bright stars, e.g. Deming et al. (2013). The transit observations require extremely precise photometry. For instance, Jupiter transit results to a 1% brightness decrease of a solar type star while the Earth causes only a 0.0084% decrease (84 ppm). Spectroscopic measurements require still greater precision ppm. The Precision Projector Laboratory (PPL) is a collaboration between the Jet Propulsion Laboratory (JPL) and California Institute of Technology (Caltech) to characterize and validate detectors through emulation of science images. At PPL we have developed a testbed to project simulated spectra and other images onto a HgCdTe array in order to assess precision photometry for transits, weak lensing etc. for Explorer concepts like JWST, WFIRST, EUCLID. In our controlled laboratory experiment, the goal is to demonstrate ability to extract weak transit spectra as expected for NIRCam, NIRIS and NIRSpec. Two lamps of variable intensity, along with spectral line and photometric simulation masks emulate the signals from a star-only, from a planet-only and finally, from a combination of a planet + star. Three masks have been used to simulate spectra in monochromatic light. These masks, which are fabricated at JPL, have a length of 1000 pixels and widths of 2 pixels, 10 pixels and 1 pixel to correspond respectively to the noted above JWST instruments. From many-hour long observing

  4. The James Webb Space Telescope (JWST), The First Light Machine

    Science.gov (United States)

    Stahl, H. Philip

    2013-01-01

    Scheduled to begin its 10 year mission after 2018, the James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world s largest space telescope. This talk reviews science objectives for JWST and how they drive the JWST architecture, e.g. aperture, wavelength range and operating temperature. Additionally, the talk provides an overview of the JWST primary mirror technology development and fabrication status.

  5. James Webb Space Telescope optical simulation testbed III: first experimental results with linear-control alignment

    Science.gov (United States)

    Egron, Sylvain; Lajoie, Charles-Philippe; Leboulleux, Lucie; N'Diaye, Mamadou; Pueyo, Laurent; Choquet, Élodie; Perrin, Marshall D.; Ygouf, Marie; Michau, Vincent; Bonnefois, Aurélie; Fusco, Thierry; Escolle, Clément; Ferrari, Marc; Hugot, Emmanuel; Soummer, Rémi

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science and Operations Center. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the full linear control alignment infrastructure developed for JOST, with an emphasis on multi-field wavefront sensing and control. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is experimentally tested. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by small misalignments of the three lenses, are tested and validated on simulations.

  6. James Webb Space Telescope Optical Simulation Testbed II. Design of a Three-Lens Anastigmat Telescope Simulator

    CERN Document Server

    Choquet, Élodie; N'Diaye, Mamadou; Perrin, Marshall D; Soummer, Rémi

    2014-01-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to reproduce the main aspects of wavefront sensing and control (WFSC) for JWST. To replicate the key optical physics of JWST's three-mirror anastigmat (TMA) design at optical wavelengths we have developed a three-lens anastigmat optical system. This design uses custom lenses (plano-convex, plano-concave, and bi-convex) with fourth-order aspheric terms on powered surfaces to deliver the equivalent image quality and sampling of JWST NIRCam at the WFSC wavelength (633~nm, versus JWST's 2.12~micron). For active control, in addition to the segmented primary mirror simulator, JOST reproduces the secondary mirror alignment modes with five degrees of freedom. We present the testbed requirements and its optical and optomechanical design. We study the linearity of the main aberration modes (focus, astigmatism, coma) both as a function of field point and level of misalignments of the secondary mirror. We find that t...

  7. Titan Science with the James Webb Space Telescope (JWST)

    CERN Document Server

    Nixon, Conor A; Adamkovics, Mate; Bezard, Bruno; Bjoraker, Gordon L; Cornet, Thomas; Hayes, Alexander G; Lellouch, Emmanuel; Lemmon, Mark T; Lopez-Puertas, Manuel; Rodriguez, Sebastien; Sotin, Christophe; Teanby, Nicholas A; Turtle, Elizabeth P; West, Robert A

    2015-01-01

    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 $\\mu$m ). In this paper we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (i) surface (ii) tropospheric clouds (iii) tropospheric gases (iv) stratospheric composition and (v) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities and limitations of the instrument suite, and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors - sufficient to encompass Titan, but with significantly fas...

  8. James Webb Space Telescope (JWST) and Star Formation

    Science.gov (United States)

    Greene, Thomas P.

    2010-01-01

    The 6.5-m aperture James Webb Space Telescope (JWST) will be a powerful tool for studying and advancing numerous areas of astrophysics. Its Fine Guidance Sensor, Near-Infrared Camera, Near-Infrared Spectrograph, and Mid-Infrared Instrument will be capable of making very sensitive, high angular resolution imaging and spectroscopic observations spanning 0.7 - 28 ?m wavelength. These capabilities are very well suited for probing the conditions of star formation in the distant and local Universe. Indeed, JWST has been designed to detect first light objects as well as to study the fine details of jets, disks, chemistry, envelopes, and the central cores of nearby protostars. We will be able to use its cameras, coronagraphs, and spectrographs (including multi-object and integral field capabilities) to study many aspects of star forming regions throughout the galaxy, the Local Group, and more distant regions. I will describe the basic JWST scientific capabilities and illustrate a few ways how they can be applied to star formation issues and conditions with a focus on Galactic regions.

  9. Calibration results using highly aberrated images for aligning the JWST instruments to the telescope

    Science.gov (United States)

    Smith, Koby Z.; Acton, D. Scott; Gallagher, Ben B.; Knight, J. Scott; Dean, Bruce H.; Jurling, Alden S.; Zielinski, Thomas P.

    2016-07-01

    The James Webb Space Telescope (JWST) project is an international collaboration led by NASA's Goddard Space Flight Center (GSFC) in Greenbelt, MD. JWST is NASA's flagship observatory that will operate nearly a million miles away from Earth at the L2 Lagrange point. JWST's optical design is a three-mirror anastigmat with four main optical components; 1) the eighteen Primary Mirror Segment Assemblies (PMSA), 2) a single Secondary Mirror Assembly (SMA), 3) an Aft-Optics Subsystem (AOS) consisting of a Tertiary Mirror and Fine Steering Mirror, and 4) an Integrated Science Instrument Module consisting of the various instruments for JWST. JWST's optical system has been designed to accommodate a significant amount of alignment capability and risk with the PMSAs and SMA having rigid body motion available on-orbit just for alignment purposes. However, the Aft-Optics Subsystem (AOS) and Integrated Science Instrument Module (ISIM) are essentially fixed optical subsystems within JWST, and therefore the cryogenic alignment of the AOS to the ISIM is critical to the optical performance and mission success of JWST. In support of this cryogenic alignment of the AOS to ISIM, an array of fiber optic sources, known as the AOS Source Plate Assembly (ASPA), are placed near the intermediate image location of JWST (between the secondary and tertiary mirrors) during thermal vacuum ground-test operations. The AOS produces images of the ASPA fiber optic sources at the JWST focal surface location, where they are captured by the various science instruments. In this manner, the AOS provides an optical yardstick by which the instruments within ISIM can evaluate their relative positions to and the alignment of the AOS to ISIM can be quantified. However, since the ASPA is located at the intermediate image location of the JWST three-mirror anastigmat design, the images of these fiber optic sources produced by the AOS are highly aberrated with approximately 2-3μm RMS wavefront error consisting

  10. Prospects for Habitable World Detections Using James Webb Space Telescope (JWST)

    Science.gov (United States)

    Deming, Drake

    2010-01-01

    Doppler and transit surveys are finding extrasolar planets of ever smaller mass and radius, and are now sampling the domain of superEarths. Recent results from the Doppler surveys suggest that discovery of a transiting superEarth in the habitable zone of a lower main sequence star may be possible. We evaluate the prospects for an all-sky transit survey targeted to the brightest stars I that would find the most favorable cases for photometric and spectroscopic characterization using the James Webb Space Telescope. We use the proposed Transiting Exoplanet Survey Satellite (TESS) as representative of an all-sky survey. We couple the simulated TESS yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. Our sensitivity model includes all currently known and anticipated sources of random and systematic error for these instruments. We focus on the TESS planets with radii between Earth and Neptune. Our simulations consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11- and 15- micron bands to measure carbon dioxide absorption in superEarths, as well as JWST!NIRSpec spectroscopy of water absorption from 1.7-3.0 microns, and carbon dioxide absorption at 4.3 microns. We find that JWST will be capable of characterizing dozens of TESS superEarths with temperatures above the habitable range, using both MIRI and NIRspec. We project that TESS will discover about eight nearby habitable transiting superEarths, all orbiting lower main sequence stars. The principal sources of uncertainty in the prospects for JWST characterization of habitable superEarths are superEarth frequency and the nature of superEarth atmospheres. Based on our estimates of these uncertainties, we project that JWST will be able to measure the temperature, and identify molecular absorptions (water, carbon dioxide) in one to four nearby habitable TESS superEarths orbiting lower main sequence stars.

  11. Observing Planetary Nebulae with JWST and Extremely Large Telescopes

    Science.gov (United States)

    Sahai, Raghvendra

    2015-01-01

    Most stars in the Universe that leave the main sequence in a Hubble time will end their lives evolving through the Planetary Nebula (PN) evolutionary phase. The heavy mass loss which occurs during the preceding AGB phase is important across astrophysics, dramatically changing the course of stellar evolution, dominantly contributing to the dust content of the interstellar medium, and influencing its chemical composition. The evolution from the AGB phase to the PN phases remains poorly understood, especially the dramatic transformation that occurs in the morphology of the mass-ejecta as AGB stars and their round circumstellar envelopes evolve into mostly PNe, the majority of which deviate strongly from spherical symmetry. In addition, although the PN [OIII] luminosity function (PNLF) has been used as a standard candle (on par with distance indicators such as Cepheids), we do not understand why it works. It has been argued that the resolution of these issues may be linked to binarity and associated processes such as mass transfer and common envelope evolution.Thus, understanding the formation and evolution of PNe is of wide astrophysical importance. PNe have long been known to emit across a very large span of wavelengths, from the radio to X-rays. Extensive use of space-based observatories at X-ray (Chandra/ XMM-Newton), optical (HST) and far-infrared (Spitzer, Herschel) wavelengths in recent years has produced significant new advances in our knowledge of these objects. Given the expected advent of the James Webb Space Telescope in the near future, and ground-based Extremely Large Telescope(s) somewhat later, this talk will focus on future high-angular-resolution, high-sensitivity observations at near and mid-IR wavelengths with these facilities that can help in addressing the major unsolved problems in the study of PNe.

  12. Mechanical blind gap measurement tool for alignment of the JWST Optical Telescope Element

    Science.gov (United States)

    Liepmann, Till

    2016-09-01

    This paper describes a novel gap gauge tool that is used to provide an independent check of the James Webb Space Telescope (JWST) Optical Telescope Element (OTE) primary mirror alignment. Making accurate measurements of the mechanical gaps between the OTE mirror segments is needed to verify that the segments were properly aligned relative to each other throughout the integration and test of the 6.6 meter telescope. The gap between the Primary Mirror Segment Assemblies (PMSA) is a sensitive indicator of the relative clocking and decenter. Further, the gap measurements are completely independent of all the other measurements use in the alignment process (e.g. laser trackers and laser radar). The gap measurement is a challenge, however, that required a new approach. Commercial gap measurements tools were investigated; however no suitable solution is available. The challenge of this measurement is due to the required 0.1 mm accuracy, the close spacing of the mirrors segments (approximately 3-9mm), the acute angle between the segment sides (approximately 4 degrees), and the difficult access to the blind gap. Several techniques were considered and tested before selecting the gauge presented here. This paper presents the theory, construction and calibration of the JWST gap gauge that is being used to measure and verify alignment of the OTE primary mirror segments.

  13. Performance of the primary mirror center-of-curvature optical metrology system during cryogenic testing of the JWST Pathfinder telescope

    Science.gov (United States)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-07-01

    The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse and fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment and phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development and spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software and procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate and efficient cryogenic testing of the JWST flight telescope.

  14. First results of the Test-Bed Telescopes (TBT) project: Cebreros telescope commissioning

    CERN Document Server

    Ocaña, Francisco; Racero, Elena; Montero, Ángel; Doubek, Jirí; Ruiz, Vicente

    2016-01-01

    The TBT project is being developed under ESA's General Studies and Technology Programme (GSTP), and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario within the Space Situational Awareness (SSA) programme of the European Space Agency (ESA). The goal of the project is to provide two fully robotic telescopes, which will serve as prototypes for development of a future network. The system consists of two telescopes, one in Spain and the second one in the Southern Hemisphere. The telescope is a fast astrograph with a large Field of View of 2.5 x 2.5 square-degrees and a plate scale of 2.2 arcsec/pixel. The tube is mounted on a fast direct-drive mount moving with speed up to 20 degrees per second. The focal plane hosts a 2-port 4K x 4K back-illuminated CCD with readout speeds up to 1MHz per port. Detection software and hardware are optimised for the detection of NEOs and objects in high Earth orbits (objects moving from 0.1-40 arcsec/second). Every night...

  15. Slitless spectroscopy with the James Webb Space Telescope Near-Infrared Camera (JWST NIRCam)

    CERN Document Server

    Greene, Thomas P; Egami, Eiichi; Hodapp, Klaus W; Kelly, Douglas M; Leisenring, Jarron; Rieke, Marcia; Robberto, Massimo; Schlawin, Everett; Stansberry, John

    2016-01-01

    The James Webb Space Telescope near-infrared camera (JWST NIRCam) has two 2.'2 $\\times$ 2.'2 fields of view that are capable of either imaging or spectroscopic observations. Either of two $R \\sim 1500$ grisms with orthogonal dispersion directions can be used for slitless spectroscopy over $\\lambda = 2.4 - 5.0$ $\\mu$m in each module, and shorter wavelength observations of the same fields can be obtained simultaneously. We present the latest predicted grism sensitivities, saturation limits, resolving power, and wavelength coverage values based on component measurements, instrument tests, and end-to-end modeling. Short wavelength (0.6 -- 2.3 $\\mu$m) imaging observations of the 2.4 -- 5.0 $\\mu$m spectroscopic field can be performed in one of several different filter bands, either in-focus or defocused via weak lenses internal to NIRCam. Alternatively, the possibility of 1.0 -- 2.0 $\\mu$m spectroscopy (simultaneously with 2.4 -- 5.0 $\\mu$m) using dispersed Hartmann sensors (DHSs) is being explored. The grisms, wea...

  16. High-contrast imager for Complex Aperture Telescopes (HiCAT): 1. Testbed design

    CERN Document Server

    N'Diaye, Mamadou; Pueyo, Laurent; Elliot, Erin; Perrin, Marshall D; Wallace, J Kent; Groff, Tyler; Carlotti, Alexis; Mawet, Dimitri; Sheckells, Matt; Shaklan, Stuart; Macintosh, Bruce; Kasdin, N Jeremy; Soummer, Rémi

    2014-01-01

    Searching for nearby habitable worlds with direct imaging and spectroscopy will require a telescope large enough to provide angular resolution and sensitivity to planets around a significant sample of stars. Segmented telescopes are a compelling option to obtain such large apertures. However, these telescope designs have a complex geometry (central obstruction, support structures, segmentation) that makes high-contrast imaging more challenging. We are developing a new high-contrast imaging testbed at STScI to provide an integrated solution for wavefront control and starlight suppression on complex aperture geometries. We present our approach for the testbed optical design, which defines the surface requirements for each mirror to minimize the amplitude-induced errors from the propagation of out-of-pupil surfaces. Our approach guarantees that the testbed will not be limited by these Fresnel propagation effects, but only by the aperture geometry. This approach involves iterations between classical ray-tracing o...

  17. First results of the Test-Bed Telescopes (TBT) project: Cebreros telescope commissioning

    Science.gov (United States)

    Ocaña, Francisco; Ibarra, Aitor; Racero, Elena; Montero, Ángel; Doubek, Jirí; Ruiz, Vicente

    2016-07-01

    The TBT project is being developed under ESA's General Studies and Technology Programme (GSTP), and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario within the Space Situational Awareness (SSA) programme of the European Space Agency (ESA). The goal of the project is to provide two fully robotic telescopes, which will serve as prototypes for development of a future network. The system consists of two telescopes, one in Spain and the second one in the Southern Hemisphere. The telescope is a fast astrograph with a large Field of View (FoV) of 2.5 x 2.5 square-degrees and a plate scale of 2.2 arcsec/pixel. The tube is mounted on a fast direct-drive mount moving with speed up to 20 degrees per second. The focal plane hosts a 2-port 4K x 4K back-illuminated CCD with readout speeds up to 1MHz per port. All these characteristics ensure good survey performance for transients and fast moving objects. Detection software and hardware are optimised for the detection of NEOs and objects in high Earth orbits (objects moving from 0.1-40 arcsec/second). Nominal exposures are in the range from 2 to 30 seconds, depending on the observational strategy. Part of the validation scenario involves the scheduling concept integrated in the robotic operations for both sensors. Every night it takes all the input needed and prepares a schedule following predefined rules allocating tasks for the telescopes. Telescopes are managed by RTS2 control software, that performs the real-time scheduling of the observation and manages all the devices at the observatory.1 At the end of the night the observing systems report astrometric positions and photometry of the objects detected. The first telescope was installed in Cebreros Satellite Tracking Station in mid-2015. It is currently in the commissioning phase and we present here the first results of the telescope. We evaluate the site characteristics and the performance of the TBT Cebreros

  18. Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST), Publications of the Astronomical Society of the Pacific (PASP), December 2014

    CERN Document Server

    Beichman, Charles; Knutson, Heather; Smith, Roger; Dressing, Courtney; Latham, David; Deming, Drake; Lunine, Jonathan; Lagage, Pierre-Olivier; Sozzetti, Alessandro; Beichman, Charles; Sing, David; Kempton, Eliza; Ricker, George; Bean, Jacob; Kreidberg, Laura; Bouwman, Jeroen; Crossfield, Ian; Christiansen, Jessie; Ciardi, David; Fortney, Jonathan; Albert, Loïc; Doyon, René; Rieke, Marcia; Rieke, George; Clampin, Mark; Greenhouse, Matt; Goudfrooij, Paul; Hines, Dean; Keyes, Tony; Lee, Janice; McCullough, Peter; Robberto, Massimo; Stansberry, John; Valenti, Jeff; Deroo, Pieter D; Mandell, Avi; Ressler, Michael E; Shporer, Avi; Swain, Mark; Vasisht, Gautam; Carey, Sean; Krick, Jessica; Birkmann, Stephan; Ferruit, Pierre; Giardino, Giovanna; Greene, Tom; Howell, Steve

    2014-01-01

    This article summarizes a workshop held on March, 2014, on the potential of the James Webb Space Telescope (JWST) to revolutionize our knowledge of the physical properties of exoplanets through transit observations. JWST's unique combination of high sensitivity and broad wavelength coverage will enable the accurate measurement of transits with high signal-to-noise. Most importantly, JWST spectroscopy will investigate planetary atmospheres to determine atomic and molecular compositions, to probe vertical and horizontal structure, and to follow dynamical evolution, i.e. exoplanet weather. JWST will sample a diverse population of planets of varying masses and densities in a wide variety of environments characterized by a range of host star masses and metallicities, orbital semi-major axes and eccentricities. A broad program of exoplanet science could use a substantial fraction of the overall JWST mission.

  19. High-contrast imager for Complex Aperture Telescopes (HiCAT): testbed design and coronagraph developments

    Science.gov (United States)

    N'Diaye, Mamadou; Choquet, E.; Pueyo, L.; Elliot, E.; Perrin, M. D.; Wallace, J.; Anderson, R. E.; Carlotti, A.; Groff, T. D.; Hartig, G. F.; Kasdin, J.; Lajoie, C.; Levecq, O.; Long, C.; Macintosh, B.; Mawet, D.; Norman, C. A.; Shaklan, S.; Sheckells, M.; Sivaramakrishnan, A.; Soummer, R.

    2014-01-01

    We present a new high-contrast imaging testbed designed to provide complete solutions for wavefront sensing and control and starlight suppression with complex aperture telescopes (NASA APRA; Soummer PI). This includes geometries with central obstruction, support structures, and/or primary mirror segmentation. Complex aperture telescopes are often associated with large telescope designs, which are considered for future space missions. However, these designs makes high-contrast imaging challenging because of additional diffraction features in the point spread function. We present a novel optimization approach for the testbed optical and opto-mechanical design that minimizes the impact of both phase and amplitude errors from the wave propagation of testbed optics surface errors. This design approach allows us to define the specification for the bench optics, which we then compare to the manufactured parts. We discuss the testbed alignment and first results. We also present our coronagraph design for different testbed pupil shapes (AFTA or ATLAST), which involves a new method for the optimization of Apodized Pupil Lyot Coronagraphs (APLC).

  20. High-contrast imaging testbed for Complex Aperture Telescopes (HiCAT) for future space missions

    Science.gov (United States)

    Choquet, E.; N'Diaye, M.; Pueyo, L.; Elliot, E.; Perrin, M. D.; Wallace, J. K.; Anderson, R.; Carlotti, A.; Groff, T.; Hartig, G.; Kasdin, N. J.; Lajoie, C.; Levecq, O.; Long, C.; Mawet, D.; Macintosh, B.; Norman, C.; Shaklan, S.; Sheckells, M.; Sivaramakrishnan, An; Soummer, R.

    2014-03-01

    Searching for nearby habitable worlds with direct imaging and spectroscopy will require a telescope large enough to provide angular resolution and sensitivity to planets around a significant sample of stars. Segmented telescopes are a compelling option to obtain such large apertures. However, these designs have a complex geometry (central obstruction, support structures, segmentation) that makes high contrast imaging challenging. We are developing a new high-contrast imaging testbed at STScI to provide an integrated solution for wavefront control and starlight suppression on complex aperture geometries. We present a novel optimization approach for the testbed optical and opto-mechanical design that minimizes the impact of both phase and amplitude errors from the wave propagation of testbed optics surface errors. This design approach allows us to define the specification for the bench optics, which we then compare to the manufactured parts. We discuss the testbed alignment and first results. We also present our coronagraph design for different testbed pupil shapes (AFTA or ATLAST), which involves a new method for the optimization of Apodized Pupil Lyot Coronagraphs (APLC).

  1. High-contrast imager for complex aperture telescopes (HiCAT): 1. testbed design

    Science.gov (United States)

    N'Diaye, Mamadou; Choquet, Elodie; Pueyo, Laurent; Elliot, Erin; Perrin, Marshall D.; Wallace, J. Kent; Groff, Tyler; Carlotti, Alexis; Mawet, Dimitri; Sheckells, Matt; Shaklan, Stuart; Macintosh, Bruce; Kasdin, N. Jeremy; Soummer, Rémi

    2013-09-01

    Searching for nearby habitable worlds with direct imaging and spectroscopy will require a telescope large enough to provide angular resolution and sensitivity to planets around a significant sample of stars. Segmented telescopes are a compelling option to obtain such large apertures. However, these telescope designs have a complex geometry (central obstruction, support structures, segmentation) that makes high-contrast imaging more challenging. We are developing a new high-contrast imaging testbed at STScI to provide an integrated solution for wavefront control and starlight suppression on complex aperture geometries. We present our approach for the testbed optical design, which defines the surface requirements for each mirror to minimize the amplitude-induced errors from the propagation of out-of-pupil surfaces. Our approach guarantees that the testbed will not be limited by these Fresnel propagation effects, but only by the aperture geometry. This approach involves iterations between classical ray-tracing optical design optimization, and end-to-end Fresnel propagation with wavefront control (e.g. Electric Field Conjugation / Stroke Minimization). The construction of the testbed is planned to start in late Fall 2013.

  2. OpTIIX: An ISS-Based Testbed Paving the Roadmap Toward a Next Generation Large Aperture UV/Optical Space Telescope

    Science.gov (United States)

    Carpenter, Kenneth G.; Etemad, Shar; Seery, Bernard D.; Thronson, Harley; Burdick, Gary M.; Coulter, Dan; Goullioud, Renaud; Green, Joseph J.; Liu, Fengchuan; Ess, Kim; hide

    2012-01-01

    The next generation large aperture UV/Optical space telescope will need a diameter substantially larger than even that of JWST in order to address some of the most compelling unanswered scientific quests. These quests include understanding the earliest phases of the Universe and detecting life on exo-planets by studying spectra of their atmospheres. Such 8-16 meter telescopes face severe challenges in terms of cost and complexity and are unlikely to be affordable unless a new paradigm is adopted for their design and construction. The conventional approach is to use monolithic or preassembled segmented mirrors requiring complicated and risky deployments and relying on future heavy-lift vehicles, large fairings and complex geometry. The new paradigm is to launch component modules on relatively small vehicles and then perform in-orbit robotic assembly of those modules. The Optical Testbed and Integration on ISS eXperiment (OpTIIX) is designed to demonstrate, at low cost by leveraging the infrastructure provided by ISS, telescope assembly technologies and end-to-end optical system technologies. The use of ISS as a testbed permits the concentration of resources on reducing the technical risks associated with robotically integrating the components. These include laser metrology and wavefront sensing and control (WFS&C) systems, an imaging instrument, lightweight, low-cost deformable primary mirror segments and the secondary mirror. These elements are then aligned to a diffraction-limited optical system in space. The capability to assemble the optical system and remove and replace components via the existing ISS robotic systems like the Special Purpose Dexterous Manipulator (SPDM), or by the ISS flight crew, allows for future experimentation, as well as repair.

  3. Alignment Test Results of the JWST Pathfinder Telescope Mirrors in the Cryogenic Environment

    Science.gov (United States)

    Whitman, Tony L.; Wells, Conrad; Hadaway, James; Knight, J. Scott; Lunt, Sharon

    2016-01-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASAs Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the SI detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

  4. Alignment test results of the JWST Pathfinder Telescope mirrors in the cryogenic environment

    Science.gov (United States)

    Whitman, Tony L.; Wells, Conrad; Hadaway, James B.; Knight, J. Scott; Lunt, Sharon

    2016-07-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the Science Instrument (SI) detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

  5. Transiting Exoplanets with JWST

    CERN Document Server

    Seager, S; Valenti, J A

    2008-01-01

    The era of exoplanet characterization is upon us. For a subset of exoplanets -- the transiting planets -- physical properties can be measured, including mass, radius, and atmosphere characteristics. Indeed, measuring the atmospheres of a further subset of transiting planets, the hot Jupiters, is now routine with the Spitzer Space Telescope. The James Webb Space Telescope (JWST) will continue Spitzer's legacy with its large mirror size and precise thermal stability. JWST is poised for the significant achievement of identifying habitable planets around bright M through G stars--rocky planets lacking extensive gas envelopes, with water vapor and signs of chemical disequilibrium in their atmospheres. Favorable transiting planet systems, are, however, anticipated to be rare and their atmosphere observations will require tens to hundreds of hours of JWST time per planet. We review what is known about the physical characteristics of transiting planets, summarize lessons learned from Spitzer high-contrast exoplanet m...

  6. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Science.gov (United States)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) F-number and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated and/or rotated across the exit pupil of the system. Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish

  7. EMC Testing on the Integrated Science Instrument Module (ISIM) - A Summary of the EMC Test Campaign for the Science Payload of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    McCloskey, John

    2016-01-01

    This paper describes the electromagnetic compatibility (EMC) tests performed on the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope (JWST), at NASAs Goddard Space Flight Center (GSFC) in August 2015. By its very nature of being an integrated payload, it could be treated as neither a unit level test nor an integrated spacecraft/observatory test. Non-standard test criteria are described along with non-standard test methods that had to be developed in order to evaluate them. Results are presented to demonstrate that all test criteria were met in less than the time allocated.

  8. Wavefront-error performance characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) science instruments

    Science.gov (United States)

    Aronstein, David L.; Smith, J. S.; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-07-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES) test chamber. In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing, and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) f/# and pupil-distortion measurements made using a pseudo-nonredundant mask (PNRM), and 3) pupil-geometry predictions for each SI field point tested, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse-translation diversity (TTD) sweeps instead of focus sweeps, in which a subaperture is translated and/or rotated across the exit pupil of the system from one image to the next. Several optical-performance requirements that were verified during this ISIM Element-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also gives an overview of the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis

  9. The 2012 status of the MCAO testbed for the GREGOR solar telescope

    Science.gov (United States)

    Schmidt, Dirk; Berkefeld, Thomas; Heidecke, Frank

    2012-07-01

    We look back on two years of experience with the laboratory MCAO testbed for the GREGOR solar telescope. GREGOR’s MCAO features four adaptive mirrors, i. e. one tip-tilt mirror, and three DMs to compensate for turbulence around 0 km, 5 km, and 15.5 km above ground. Two different Hartmann-Shack wavefront sensor units are used for wavefront tomography. A sensor with a narrow field of view and smaller subapertures is dedicated to high-order aberrations on the optical axis. This sensor directly follows the pupil plane DM and does not see the high-altitude DMs. The second sensor features larger subapertures and 19 guide regions spread over a wide field of view for off-axis wavefront sensing. We show that high-altitude DMs cause rapidly changing pupil distortions and thus misregistration, which renders the interaction of a pupil-plane DM and a subsequent wavefront sensor non-linear. We rewrote the control software for cleaner and more flexible code, and we switched to modal wavefront reconstruction from direct reconstruction. The original digital interfacing of the DMs high-voltage electronics didn’t prove to be reliable. Thus, we developed a new interface board that is based on CameraLink/ChannelLink technology to transmit the DM commands from the control computer. In this paper we present the innovations and some of the first experimental performance measurements with two DMs. One DM failed before scientific grade data was recorded with three DMs. This DM will be replaced soon. We conclude that GREGOR’s MCAO system is now ready for first on-sky tests at the telescope.

  10. Optical Modeling Activities for NASA's James Webb Space Telescope (JWST). 4; Overview and Introduction of Matlab Based Toolkits used to Interface with Optical Design Software

    Science.gov (United States)

    Howard, Joseph

    2007-01-01

    This is part four of a series on the ongoing optical modeling activities for James Webb Space Telescope (JWST). The first two discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The work here introduces some of the math software tools used to perform the work of the previous three papers of this series. NASA has recently approved these in-house tools for public release as open source, so this presentation also serves as a quick tutorial on their use. The tools are collections of functions written in Matlab, which interface with optical design software (CodeV, OSLO, and Zemax) using either COM or DDE communication protocol. The functions are discussed, and examples are given.

  11. Solar System Observations with JWST

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid- infrared, with sensitivity and spatial-spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.

  12. AGN studies with JWST/MIRI

    NARCIS (Netherlands)

    Caputi, K.

    2015-01-01

    The forthcoming James Webb Space Telescope (JWST) will revolutionize galaxy evolution studies from the epoch of reionisation to the present day. In particular, a new era will be open for mid-IR astronomy, as the JWST Mid-Infrared Instrument (MIRI) will improve by an order of magnitude the sensitivit

  13. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Cryo-Vacuum (CV) Test at GSFC

    Science.gov (United States)

    Yew, Calinda M.

    2014-01-01

    JWST ISIM has entered into its system-level testing program at NASA Goddard Space Flight Center (GSFC). In December 2013, ISIM successfully completed the first in a series of three cryo-vacuum tests, which included two flight science instruments. Since then, there have been full-fledged efforts towards the CV2 test scheduled to finish at the end of 2014. The complexity of the mission has generated challenging requirements that demand highly reliable system performance and capabilities from the Space Environment Simulator (SES) vacuum chamber. In order to satisfy the program requirements, GSFC had to develop unique structural and thermal hardware to test ISIM. Most noteworthy is a helium shroud structure and cooling system built in order to achieve operational temperatures below 20K (-253C). This paper: (1) provides an overview of the integrated mechanical and thermal facility systems required to achieve the objectives of JWST ISIM testing, (2) communicates the performance and challenges of the SES during the first ISIM test, and (3) summarizes the action plan to improve the system prior to the next test.

  14. Observing Dark Stars with JWST

    CERN Document Server

    Ilie, Cosmin; Valluri, Monica; Iliev, Ilian T; Shapiro, Paul

    2011-01-01

    We study the capability of the James Webb Space Telescope (JWST) to detect Supermassive Dark Stars (SMDS). If the first stars are powered by dark matter heating in triaxial dark matter haloes, they may grow to be very large and very bright, visible in deep imaging with JWST and even Hubble Space Telescope (HST). We use HST surveys to place bounds on the numbers of SMDSs that may be detected in future JWST imaging surveys. We showed that SMDS in the mass range $10^6-10^7 M_\\odot$ are bright enough to be detected in all the wavelength bands of the NIRCam on JWST . If SMDSs exist at z ~10, 12, and 14, they will be detectable as J-band, H-band, or K-band dropouts, respectively. With a total survey area of 150 arcmin^2 (assuming a multi-year deep parallel survey with JWST), we find that typically the number of $10^6 M_\\odot$ SMDSs found as H or K-band dropouts is ~10^5\\fsmds, where the fraction of early DM haloes hosting DS is likely to be small, \\fsmds10 from SMDSs would be possible with spectroscopy: the SMDS (w...

  15. Cryogenic Thermal Distortion Model Validation for the JWST ISIM Structure

    Science.gov (United States)

    Johnston, John; Cofie, Emmanuel

    2011-01-01

    The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope consisting of an Optical telescope element (OTE), Integrated science instrument module (ISIM), a Spacecraft, and a Sunshield. The Integrated Science Instrument Module (ISIM) consists of the JWST science instruments (NIRCam, MIRI, NIRSpec), a fine guidance sensor (FGS), the ISIM Structure, and thermal and electrical subsystems. JWST's instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, and the instruments and telescope operate at cryogenic temperatures (approximately 35 K for the instruments).

  16. The ``One Archive'' for JWST

    Science.gov (United States)

    Greene, G.; Kyprianou, M.; Levay, K.; Sienkewicz, M.; Donaldson, T.; Dower, T.; Swam, M.; Bushouse, H.; Greenfield, P.; Kidwell, R.; Wolfe, D.; Gardner, L.; Nieto-Santisteban, M.; Swade, D.; McLean, B.; Abney, F.; Alexov, A.; Binegar, S.; Aloisi, A.; Slowinski, S.; Gousoulin, J.

    2015-09-01

    The next generation for the Space Telescope Science Institute data management system is gearing up to provide a suite of archive system services supporting the operation of the James Webb Space Telescope. We are now completing the initial stage of integration and testing for the preliminary ground system builds of the JWST Science Operations Center which includes multiple components of the Data Management Subsystem (DMS). The vision for astronomical science and research with the JWST archive introduces both solutions to formal mission requirements and innovation derived from our existing mission systems along with the collective shared experience of our global user community. We are building upon the success of the Hubble Space Telescope archive systems, standards developed by the International Virtual Observatory Alliance, and collaborations with our archive data center partners. In proceeding forward, the “one archive” architectural model presented here is designed to balance the objectives for this new and exciting mission. The STScI JWST archive will deliver high quality calibrated science data products, support multi-mission data discovery and analysis, and provide an infrastructure which supports bridges to highly valued community tools and services.

  17. Preparing the Public for JWST

    Science.gov (United States)

    Green, Joel D.; Smith, Denise A.; Lawton, Brandon L.; Jirdeh, Hussein; Meinke, Bonnie K.

    2016-01-01

    The James Webb Space Telescope is the successor to the Hubble Space Telescope. STScI and the Office of Public Outreach are committed to bringing awareness of the technology, the excitement, and the future science potential of this great observatory to the public, to educators and students, and to the scientific community, prior to its 2018 launch. The challenges in ensuring the high profile of JWST (understanding the infrared, the vast distance to the telescope's final position, and the unfamiliar science territory) requires us to lay the proper background. We currently engage the full range of the public and scientific communities using a variety of high impact, memorable initiatives, in combination with modern technologies to extend reach, linking the science goals of Webb to the ongoing discoveries being made by Hubble. We have injected Webb-specific content into ongoing E/PO programs: for example, simulated scientifically inspired but aesthetic JWST scenes, illustrating the differences between JWST and previous missions; partnering with high impact science communicators such as MinutePhysics to produce timely and concise content; educational materials in vast networks of schools through products like the Star Witness News.

  18. KAPAO-Alpha: An On-The-Sky Testbed for Adaptive Optics on Small Aperture Telescopes

    Science.gov (United States)

    Morrison, Will; Choi, P. I.; Severson, S. A.; Spjut, E.; Contreras, D. S.; Gilbreth, B. N.; McGonigle, L. P.; Rudy, A. R.; Xue, A.; Baranec, C.; Riddle, R.

    2012-05-01

    We present initial in-lab and on-sky results of a natural guide star adaptive optics instrument, KAPAO-Alpha, being deployed on Pomona College’s 1-meter telescope at Table Mountain Observatory. The instrument is an engineering prototype designed to help us identify and solve design and integration issues before building KAPAO, a low-cost, dual-band, natural guide star AO system currently in active development and scheduled for first light in 2013. The Alpha system operates at visible wavelengths, employs Shack-Hartmann wavefront sensing, and is assembled entirely from commercially available components that include: off-the-shelf optics, a 140-actuator BMC deformable mirror, a high speed SciMeasure Lil’ Joe camera, and an EMCCD for science image acquisition. Wavefront reconstruction operating at 1-kHz speeds is handled with a consumer-grade computer running custom software adopted from the Robo-AO project. The assembly and integration of the Alpha instrument has been undertaken as a Pomona College undergraduate thesis. As part of the larger KAPAO project, it is supported by the National Science Foundation under Grant No. 0960343.

  19. Origin of the Universe: From the First Stars to Planets with JWST

    Science.gov (United States)

    Clampin, Mark

    2008-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, protoplanetary systems, and the formation of evolution of planetary systems. We will review the motivations for JWST's science goals in the context of recent Hubble Space Telescope, and Spitzer Space Telescope observations and review the status of the JWST Observatory.

  20. Preservation of Thermal Control Specular Gold Baffle Surface on the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC)

    Science.gov (United States)

    MonteedeGarcia, Kristina; Patel, Jignasha; Perry, Radford, III

    2010-01-01

    Extremely tight thermal control property degradation allowances on the vapor-deposited, gold-coated IEC baffle surface, made necessary by the cryogenic JWST Observatory operations, dictate tight contamination requirements on adjacent surfaces. Theoretical degradation in emittance with contaminant thickness was calculated. Maximum allowable source outgassing rates were calculated using worst case view factors from source to baffle surface. Tight requirements pushed the team to change the design of the adjacent surfaces to minimize the outgassing sources

  1. NASA 3D Models: James Webb Space Telescope

    Data.gov (United States)

    National Aeronautics and Space Administration — The James Webb Space Telescope (JWST) will be a large infrared telescope with a 6.5-meter primary mirror. The project is working to a 2018 launch date. The JWST will...

  2. Lenses for JWST

    Science.gov (United States)

    Ebeling, Harald; Richard, Johan; Kneib, Jean-Paul; Repp, Andrew; Atek, Hakim; Egami, Eiichi; Windhorst, Rogier; Edge, Alastair

    2016-08-01

    JWST will dramatically advance our knowledge and understanding of the first generations of galaxies at z>10, their role in the re-ionization of the Universe, and the evolutionary processes that gave rise to the complexity and diversity of galaxies at the current epoch. As demonstrated by HST legacy projects like CLASH and the Hubble Frontier Fields, gravitational amplification by massive galaxy clusters can significantly extend the depth of the required observations. However, for JWST, reducing any diffuse background light will be just as crucial. We here propose Spitzer/IRAC observations of six massive cluster lenses, specifically selected as candidates for observation with JWST. By (a) quantifying the amount of intra-cluster light and (b) enabling us to improve our current lens models, the data resulting from the requested observations will be instrumental for the final selection of cluster targets that maximize the scientific returns of deep JWST observations.

  3. JWST observations of stellar occultations by solar system bodies and rings

    CERN Document Server

    Santos-Sanz, P; Pinilla-Alonso, N; Stansberry, J; Lin, Z-Y; Zhang, Z-W; Vilenius, E; Müller, Th; Ortiz, J L; Braga-Ribas, F; Bosh, A; Duffard, R; Lellouch, E; Tancredi, G; Young, L

    2015-01-01

    In this paper we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of solar system bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings, and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun-Earth Lagrange-point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a by-product of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.

  4. Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism Used in the Testing and Calibration of the Integrated Science Instrument Module (ISIM) on the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Mitchell, Alissa; Capon, Thomas; Guzek, Jeffrey; Hakun, Claef; Haney, Paul; Koca, Corina

    2014-01-01

    Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion.

  5. The JWST science instrument payload: mission context and status

    Science.gov (United States)

    Greenhouse, Matthew A.

    2016-07-01

    The James Webb Space Telescope (JWST) is the scientific successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 m2 aperture (6 m class) telescope that will achieve diffraction limited angular resolution at a wavelength of 2 um. The science instrument payload includes four passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronography, as well as multi-object and integral-field spectroscopy over the 0.6 Construction, integration and verification testing is underway in all areas of the program. The JWST is on schedule for launch during 2018.

  6. Emerging Technologies and Outreach with JWST

    Science.gov (United States)

    Green, Joel D.; Smith, Denise A.; Meinke, Bonnie K.; Lawton, Brandon L.; Kenney, Jessica; Jirdeh, Hussein

    2017-06-01

    The James Webb Space Telescope (JWST), NASA’s next great observatory launching in October 2018, required a dozen new technologies to develop. How will we maintain the prestige and cultural impact of Hubble as the torch passes to Webb? Emerging technologies such as augmented and virtual reality bring the viewer into the data and the concept in previously unimaginable immersive detail. Adoption of mobile devices has expanded access to information for wide swaths of the public. Software like Worldwide Telescope to hardware like the Occulus Rift are providing new avenues for learning. If we develop materials properly tailored to this medium, we can reach more diverse audiences than ever before. STScI is pioneering some tools related to JWST for showcasing at AAS, and in local events, which I highlight here.

  7. Status of the JWST Science Instrument Payload

    Science.gov (United States)

    Greenhouse, Matt

    2016-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) system consists of five sensors (4 science): Mid-Infrared Instrument (MIRI), Near Infrared Imager and Slitless Spectrograph (NIRISS), Fine Guidance Sensor (FGS), Near InfraRed Camera (NIRCam), Near InfraRed Spectrograph (NIRSpec); and nine instrument support systems: Optical metering structure system, Electrical Harness System; Harness Radiator System, ISIM Electronics Compartment, ISIM Remote Services Unit, Cryogenic Thermal Control System, Command and Data Handling System, Flight Software System, Operations Scripts System.

  8. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Electronics Compartment (IEC) Conformal Shields Composite Bond Structure Qualification Test Method

    Science.gov (United States)

    Yew, Calinda; Stephens, Matt

    2015-01-01

    The JWST IEC conformal shields are mounted onto a composite frame structure that must undergo qualification testing to satisfy mission assurance requirements. The composite frame segments are bonded together at the joints using epoxy, EA 9394. The development of a test method to verify the integrity of the bonded structure at its operating environment introduces challenges in terms of requirements definition and the attainment of success criteria. Even though protoflight thermal requirements were not achieved, the first attempt in exposing the structure to cryogenic operating conditions in a thermal vacuum environment resulted in approximately 1 bonded joints failure during mechanical pull tests performed at 1.25 times the flight loads. Failure analysis concluded that the failure mode was due to adhesive cracks that formed and propagated along stress concentrated fillets as a result of poor bond squeeze-out control during fabrication. Bond repairs were made and the structures successfully re-tested with an improved LN2 immersion test method to achieve protoflight thermal requirements.

  9. Observer's Interface for JWST Observation Specifications

    Science.gov (United States)

    Link, Miranda; Douglas, Robert; Moriarty, Christopher; Roman, Anthony

    2016-01-01

    In support of the launch of the James Webb Space Telescope, various teams at STScI (the Space Telescope Science Institute) have collaborated on how to re-structure the view of a an observing program within the Astronomer's Proposal Tool (APT) to accommodate for the differences between HST and JWST. For HST APT programs, the structure is visit-dominant, and there is one generic form for entering observing information that spans all instruments with their required fields and options. This can result in sometimes showing irrelevant fields to the user for a given observing goal. Also, the generation of mosaicked observations in HST requires the user to manually calculate the position of each tile within the mosaic, accounting for positional offsets and the roll of the telescope, which is a time consuming process. Now, for JWST programs in APT, the description of the observations has been segregated by instrument and mode into discrete observing templates. Each template's form allows instrument specific choices and displays of relevant information. APT will manually manage the number of visits needed to perform the observation. This is particularly useful for mosaics and dithering with JWST. For example, users will select how they would like a mosaic to be tiled at the observation level, and the visits are automatically created. In this, visits have been re-structured to be purely informational; all editing is done at the observation level. These options and concepts are illustrated to future users via the corresponding poster.

  10. JWST science instrument pupil alignment measurements

    Science.gov (United States)

    Kubalak, Dave; Sullivan, Joe; Ohl, Ray; Antonille, Scott; Beaton, Alexander; Coulter, Phillip; Hartig, George; Kelly, Doug; Lee, David; Maszkiewicz, Michael; Schweiger, Paul; Telfer, Randal; Te Plate, Maurice; Wells, Martyn

    2016-09-01

    NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy ( 40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI), including a guider. OSIM is a full field, cryogenic, optical simulator of the JWST OTE. It is the "Master Tool" for verifying the cryogenic alignment and optical performance of ISIM by providing simulated point source/star images to each of the four Science Instruments in ISIM. Included in OSIM is a Pupil Imaging Module (PIM) - a large format CCD used for measuring pupil alignment. Located at a virtual stop location within OSIM, the PIM records superimposed shadow images of pupil alignment reference (PAR) targets located in the OSIM and SI pupils. The OSIM Pupil Imaging Module was described by Brent Bos, et al, at SPIE in 2011 prior to ISIM testing. We have recently completed the third and final ISIM cryogenic performance verification test before ISIM was integrated with the OTE. In this paper, we describe PIM implementation, performance, and measurement results.

  11. Key Exoplanets in the Era of JWST

    Science.gov (United States)

    Batalha, Natasha; Mandell, Avi; Lewis, Nikole K.; Pontoppidan, Klaus

    2017-01-01

    In 2018, exoplanet science will enter a new era with the launch of the James Webb Space Telescope (JWST). With JWST's observing power, several studies have sought to characterize how the instruments will perform and what atmospheric spectral features could theoretically be detected using transmission spectroscopy. With just two years left until launch, it is imperative that the exoplanet community begins to digest and integrate these studies into their observing plans and strategies. In order to encourage this and to allow all members of the community access to JWST simulations, we present here an open source tool for creating observation simulations of all observatory-supported time-series spectroscopy modes. We describe our tool, PandExo and use it to calculate the expected signal-to-noise ratio (SNR) for every confirmed planetary system with Jhours are needed to attain a SNR of 5 on key molecular absorption bands of H2O, CH4, and CO. We end by determining the number of planets (hot Jupiters, warm Neptunes, super-Earths, etc.) that are currently attainable with JWST.

  12. The Impact of JWST Broadband Filter Choice on Photometric Redshift Estimation

    DEFF Research Database (Denmark)

    Bisigello, L.; Caputi, K. I.; Colina, L.;

    2016-01-01

    The determination of galaxy redshifts in the James Webb Space Telescope's (JWST) blank-field surveys will mostly rely on photometric estimates, based on the data provided by JWST's Near-Infrared Camera (NIRCam) at 0.6–5.0 μm and Mid Infrared Instrument (MIRI) at λ 5.0 μm. In this work we analyze ...

  13. Status of the JWST sunshield and spacecraft

    Science.gov (United States)

    Arenberg, J.; Flynn, J.; Cohen, A.; Lynch, R.; Cooper, J.

    2016-07-01

    This paper reports on the development, manufacture and integration of the James Webb Space Telescope's sunshield and spacecraft. Both of these JWST elements have completed design and development testing. This paper will review basic architecture and roles of these systems. Also to be presented is the current state of manufacture, assembly integration and test. This paper will conclude with a look at the road ahead for each subsystem prior to integration with the integrated telescope and instrument elements at Northrop Grumman's Space Park facility in late 2017.

  14. WebbPSF for JWST and WFIRST

    Science.gov (United States)

    Long, Joseph D.; Perrin, Marshall D.; Zimmerman, Neil T.; Brooks, Keira

    2017-01-01

    Modeling a telescope's point spread function accurately is key to predicting its performance and extracting information from observations. WebbPSF is a flexible Python-based PSF simulation tool for JWST and WFIRST, developed at STScI. The WebbPSF-WFIRST module implements a model for the proposed Wide Field Instrument, as well as a proof-of-concept model for the Coronagraph Instrument. Since its announcement and public release at the Winter 2016 AAS, WebbPSF-WFIRST has been enhanced with the Cycle 6 design updates to the wide field instrument model. Additionally, the JupyterHub-based WFIRST Tools Server effort at STScI has provided access to these tools for dozens of users without the overhead of installing the software locally. For JWST, the optical models have been updated based on the latest test data and metrology for the instruments and the telescope flight hardware, including as-built mirror surface figures, variation between different field points, and updated optical budgets for in flight performance. WebbPSF has been checked against instrument test data from previous campaigns, and analysis of the PSF images taken during the JWST CV3 cryo-vac test campaign is currently underway.

  15. Focus Groups for Solar System Investigations with the JWST

    Science.gov (United States)

    Hines, Dean C.; Milam, Stefanie N.; Stansberry, John; Hammel, Heidi B.; Sonneborn, George; Lunine, Jonathan; Rivkin, Andrew; Woodward, Charles; Norwood, Jim; Villanueva, Geronimo; Thomas, Cristina; Santos-Sanz, Pablo; Tiscareno, Matthew; Kestay, Laszlo; Nixon, Conor; Parker, Alex

    2014-11-01

    The unprecedented sensitivity and angular resolution of the James Webb Space Telescope (JWST) will make it NASA’s premier space-based facility for infrared astronomy. This 6.5-meter telescope, which is optimized for observations in the near and mid infrared, will be equipped with four state-of-the-art instruments that include imaging, spectroscopy, and coronagraphy. These instruments, along with the telescope’s moving target capabilities, will enable the infrared study of solar system objects with unprecedented detail. A new white paper (Norwood et al., 2014) provides a general overview of JWST observatory and instrument capabilities for Solar System science, and updates and expands upon an earlier study by Lunine et al. (2010). In order to fully realize the potential of JWST for Solar System observations, we have recently organized 10 focus groups to explore various science use cases in more detail on topics including: Asteroids, Comets, Giant Planets, Mars, Near Earth Objects, Occultations, Rings, Satellites, Titan, and Trans-Neptunian Objects. The findings from these groups will help guide the project as it develops and implements planning tools, observing templates, the data pipeline and archives so that they enable a broad range of Solar System Science investigations. The purpose of this presentation is to raise awareness of the JWST Solar System planning, and to invite participation of DPS members with our Focus Groups and other pre-launch activities.References:Lunine, J., Hammel, H., Schaller, E., Sonneborn, G., Orton, G., Rieke, G., and Rieke, M. 2010, JWST Planetary Observations within the Solar System, http://www.stsci.edu/jwst/doc-archive/white-papers.Norwood, J., Hammel, H., Milam, S.,Stansberry, J., Lunine, J., Chanover, N., Hines, D., Sonneborn, G., Tiscareno, M., Brown, M. and Ferruit, P., 2014, ArXiv e-prints, 1403.6845.

  16. Planning JWST NIRSpec MSA spectroscopy using NIRCam pre-images

    Science.gov (United States)

    Beck, Tracy L.; Ubeda, Leonardo; Kassin, Susan A.; Gilbert, Karoline; Karakla, Diane M.; Reid, I. N.; Blair, William P.; Keyes, Charles D.; Soderblom, D. R.; Peña-Guerrero, Maria A.

    2016-07-01

    The Near-Infrared Spectrograph (NIRSpec) is the work-horse spectrograph at 1-5microns for the James Webb Space Telescope (JWST). A showcase observing mode of NIRSpec is the multi-object spectroscopy with the Micro-Shutter Arrays (MSAs), which consist of a quarter million tiny configurable shutters that are 0. ''20×0. ''46 in size. The NIRSpec MSA shutters can be opened in adjacent rows to create flexible and positionable spectroscopy slits on prime science targets of interest. Because of the very small shutter width, the NIRSpec MSA spectral data quality will benefit significantly from accurate astrometric knowledge of the positions of planned science sources. Images acquired with the Hubble Space Telescope (HST) have the optimal relative astrometric accuracy for planning NIRSpec observations of 5-10 milli-arcseconds (mas). However, some science fields of interest might have no HST images, galactic fields can have moderate proper motions at the 5mas level or greater, and extragalactic images with HST may have inadequate source information at NIRSpec wavelengths beyond 2 microns. Thus, optimal NIRSpec spectroscopy planning may require pre-imaging observations with the Near-Infrared Camera (NIRCam) on JWST to accurately establish source positions for alignment with the NIRSpec MSAs. We describe operational philosophies and programmatic considerations for acquiring JWST NIRCam pre-image observations for NIRSpec MSA spectroscopic planning within the same JWST observing Cycle.

  17. Studying the spectral properties of Active Galactic Nuclei in the JWST era

    CERN Document Server

    Nakos, Th; Alonso-Herrero, A; Labiano, A

    2009-01-01

    The James Webb Space Telescope (JWST), due to launch in 2014, shall provide an unprecedented wealth of information in the near and mid-infrared wavelengths, thanks to its high-sensitivity instruments and its 6.5 m primary mirror, the largest ever launched into space. NIRSpec and MIRI, the two spectrographs onboard JWST, will play a key role in the study of the spectral features of Active Galactic Nuclei in the 0.6-28 micron wavelength range. This talk aims at presenting an overview of the possibilities provided by these two instruments, in order to prepare the astronomical community for the JWST era.

  18. Observing Outer Planet Satellites (except Titan) with JWST: Science Justification and Observational Requirements

    CERN Document Server

    Keszthelyi, Laszlo; Stansberry, John; Sivaramakrishnan, Anand; Thatte, Deepashri; Gudipati, Murthy; Tsang, Constantine; Greenbaum, Alexandra; McGruder, Chima

    2015-01-01

    The James Webb Space Telescope (JWST) will allow observations with a unique combination of spectral, spatial, and temporal resolution for the study of outer planet satellites within our Solar System. We highlight the infrared spectroscopy of icy moons and temporal changes on geologically active satellites as two particularly valuable avenues of scientific inquiry. While some care must be taken to avoid saturation issues, JWST has observation modes that should provide excellent infrared data for such studies.

  19. Observing outer planet satellites (except Titan) with JWST: Science justification and observational requirements

    Science.gov (United States)

    Kestay, Laszlo P.; Grundy, Will; Stansberry, John; Sivaramakrishnan, Anand; Thatte, Deepashri; Gudipati, Murthy; Tsang, Constantine; Greenbaum, Alexandra; McGruder, Chima

    2016-01-01

    The James Webb Space Telescope (JWST) will allow observations with a unique combination of spectral, spatial, and temporal resolution for the study of outer planet satellites within our Solar System. We highlight the infrared spectroscopy of icy moons and temporal changes on geologically active satellites as two particularly valuable avenues of scientific inquiry. While some care must be taken to avoid saturation issues, JWST has observation modes that should provide excellent infrared data for such studies.

  20. CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Thomas P. [NASA Ames Research Center, Space Science and Astrobiology Division, M.S. 245-6, Moffett Field, CA 94035 (United States); Line, Michael R.; Montero, Cezar; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lustig-Yaeger, Jacob [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Luther, Kyle, E-mail: tom.greene@nasa.gov [Department of Physics, University of California, 366 LeConte Hall MC 7300, Berkeley, CA 94720 (United States)

    2016-01-20

    We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH{sub 4}, CO, CO{sub 2}, H{sub 2}O, NH{sub 3}) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high F{sub p} and high F{sub p}/F{sub *}. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.

  1. JWST Near-Infrared Detector Degradation: Finding the Problem, Fixing the Problem, and Moving Forward

    Science.gov (United States)

    Rauscher, Bernard J.; Stahle, Carl; Hill, Bob; Greenhouse, Matt; Beletic, James; Babu, Sachidananda; Blake, Peter; Cleveland, Keith; Cofie, Emmanuel; Eegholm, Bente; Engelbracht, Chad; Hall, Don; Hoffman, Alan; Jeffers, Basil; Jhabvala, Christine; Kimble, Randy; Kopp, Robert; Lee, Don; Leidecker, Henning; Lindler, Don; McMurray, Bob; Mott, D. Brent; Ohl, Ray; Polis, Don; Pontius, Jim

    2012-01-01

    The James Webb Space Telescope (JWST) is the successor to the Hubble Space Telescope. JWST will be an infrared optimized telescope, with an approximately 6.5 m diameter primary mirror, that is located at the Sun-Earth L2 Lagrange point. Three of JWST's four science instruments use Teledyne HgCdTe HAWAII-2RG (H2RG) near infrared detector arrays. During 2010, the JWST Project noticed that a few of its 5 micron cutoff H2RG detectors were degrading during room temperature storage, and NASA chartered a "Detector Degradation Failure Review Board" (DD-FRB) to investigate. The DD-FRB determined that the root cause was a design flaw that allowed indium to interdiffuse with the gold contacts and migrate into the HgCdTe detector layer. Fortunately, Teledyne already had an improved design that eliminated this degradation mechanism. During early 2012, the improved H2RG design was qualified for flight and JWST began making additional H2RGs. In this article we present the two public DD-FRB "Executiye Summaries" that: (1) determined the root cause of the detector degradation and (2) defined tests to determine whether the existing detectors are qualified for flight. We supplement these with a brief introduction to H2RG detector arrays, and a discussion of how the JWST Project is using cryogenic storage to retard the degradation rate of the existing flight spare H2RGs.

  2. Characterizing transiting exoplanet atmospheres with JWST

    CERN Document Server

    Greene, Thomas P; Montero, Cezar; Fortney, Jonathan J; Lustig-Yeager, Jacob; Luther, Kyle

    2015-01-01

    We explore how well James Webb Space Telescope (JWST) spectra will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with clear, cloudy, or high mean molecular weight atmospheres. Next we simulate the $\\lambda = 1 - 11$ $\\mu$m transmission and emission spectra of these systems for several JWST instrument modes for single transit and eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH$_4$, CO, CO$_2$, H$_2$O, NH$_3$) can be constrained. We find that $\\lambda = 1 - 2.5$ $\\mu$m transmission spectra will often constrain the major molecular constituents of clear solar composition atmospheres well. Cloudy or high mean molecular weight atmospheres will often require full $1 - 11$ $\\mu$m spectra for good constraints, and emission data may be more useful in cases of sufficiently high $F_p$ and high $F_p/F_*$. Strong t...

  3. Synergy with HST and JWST Data Management Systems

    Science.gov (United States)

    Greene, Gretchen; Space Telescope Data Management Team

    2014-01-01

    The data processing and archive systems for the JWST will contain a petabyte of science data and the best news is that users will have fast access to the latest calibrations through a variety of new services. With a synergistic approach currently underway with the STScI science operations between the Hubble Space Telescope and James Webb Space Telescope data management subsystems (DMS), operational verification is right around the corner. Next year the HST archive will provide scientists on-demand fully calibrated data products via the Mikulski Archive for Space Telescopes (MAST), which takes advantage of an upgraded DMS. This enhanced system, developed jointly with the JWST DMS is based on a new CONDOR distributed processing system capable of reprocessing data using a prioritization queue which runs in the background. A Calibration Reference Data System manages the latest optimal configuration for each scientific instrument pipeline. Science users will be able to search and discover the growing MAST archive calibrated datasets from these missions along with the other multiple mission holdings both local to MAST and available through the Virtual Observatory. JWST data systems will build upon the successes and lessons learned from the HST legacy and move us forward into the next generation of multi-wavelength archive research.

  4. Cryo-vacuum testing of the JWST Integrated Science Instrument Module (SPIE)

    Science.gov (United States)

    Kimble, Randy A.; Vila, M. Begona; Van Campen, Julie; Birkmann, Stephan M.; Comber, Brian J.; Fatig, Curtis C.; Glasse, Alistair C. H.; Glazer, Stuart D.; Kelly, Douglas M.; Mann, Steven D.; Martel, Andre R.; Novo-Gradac, Kevin J.; Ohl, Raymond G.; Penanen, Konstantin; Rohrbach, Scott O.; Sullivan, Joseph F.; Zak, Dean; Zhou, Julia

    2016-01-01

    In late 2015/early 2016, a major cryo-vacuum test was carried out for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST). This test comprised the final cryo-certification and calibration test of the ISIM, after its ambient environmental test program (vibration, acoustics, EMI/EMC), and before its delivery for integration with the rest of the JWST observatory. Over the 108-day period of the round-the-clock test program, the full complement of ISIM flight instruments, structure, harness radiator, and electronics were put through a comprehensive program of thermal, optical, electrical, and operational tests. The test verified the health and excellent performance of the instruments and ISIM systems, proving the ISIM element's readiness for integration with the telescope. We report here on the context, goals, setup, execution, and key results for this critical JWST milestone.

  5. JWST and Exoplanets

    Science.gov (United States)

    Mather, John C.

    2009-01-01

    The James Webb Space Telescope is on track for a launch in 2013. The author reviews the status and progress on the key hardware. The first primary mirror segments are already at MSFC for cryogenic tests, the mid IR instrument (MIRI) has already had successful tests of the engineering model, and the detectors are showing excellent performance. The author also describes the scientific objectives of the mission, with emphasis on the predicted capabilities for observing planets by the transit technique and through direct imaging. Recent direct observations of planets by HST and by adaptive optics from the ground have shown that, under favorable circumstances, much can be learned.

  6. Exploring JWST's Capability to Constrain Habitability on Simulated Terrestrial TESS Planets

    Science.gov (United States)

    Tremblay, Luke; Britt, Amber; Batalha, Natasha; Schwieterman, Edward; Arney, Giada; Domagal-Goldman, Shawn; Mandell, Avi; Planetary Systems Laboratory; Virtual Planetary Laboratory

    2017-01-01

    In the following, we have worked to develop a flexible "observability" scale of biologically relevant molecules in the atmospheres of newly discovered exoplanets for the instruments aboard NASA's next flagship mission, the James Webb Space Telescope (JWST). We sought to create such a scale in order to provide the community with a tool with which to optimize target selection for JWST observations based on detections of the upcoming Transiting Exoplanet Satellite Survey (TESS). Current literature has laid the groundwork for defining both biologically relevant molecules as well as what characteristics would make a new world "habitable", but it has so far lacked a cohesive analysis of JWST's capabilities to observe these molecules in exoplanet atmospheres and thereby constrain habitability. In developing our Observability Scale, we utilized a range of hypothetical planets (over planetary radii and stellar insolation) and generated three self-consistent atmospheric models (of dierent molecular compositions) for each of our simulated planets. With these planets and their corresponding atmospheres, we utilized the most accurate JWST instrument simulator, created specically to process transiting exoplanet spectra. Through careful analysis of these simulated outputs, we were able to determine the relevant parameters that effected JWST's ability to constrain each individual molecular bands with statistical accuracy and therefore generate a scale based on those key parameters. As a preliminary test of our Observability Scale, we have also applied it to the list of TESS candidate stars in order to determine JWST's observational capabilities for any soon-to-be-detected planet in those solar systems.

  7. Bringing the Science of JWST to the Public

    Science.gov (United States)

    Green, Joel D.; Smith, Denise A.; Lawton, Brandon L.; Meinke, Bonnie K.; Jirdeh, Hussein

    2017-01-01

    The James Webb Space Telescope is the successor to the Hubble Space Telescope. STScI and the Office of Public Outreach are committed to bringing awareness of the technology, the excitement, and the future science potential of this great observatory to the public and to the scientific community, prior to its 2018 launch. The challenges in ensuring the high profile of JWST (understanding the infrared, the vast distance to the telescope's final position, and the unfamiliar science territory) requires us to lay the proper background, particularly in the area of spectroscopy. We currently engage the full range of the public and scientific communities using a variety of high impact, memorable initiatives, in combination with modern technologies to extend reach, linking the science goals of Webb to the ongoing discoveries being made by Hubble. Webbtelescope.org, the public hub for scientific information related to JWST, is now open. We have injected Webb-specific content into ongoing outreach programs: for example, partnering with high impact science communicators such as MinutePhysics to produce timely and concise content; partnering with musicians and artists to link science and art. Augmented reality apps showcase NASA’s telescopes in a format usable by anyone with a smartphone, and visuals from increasingly affordable 3D VR technologies.

  8. Performance of the optical communication adaptive optics testbed

    Science.gov (United States)

    Troy, Mitchell; Roberts, Jennifer; Guiwits, Steve; Azevedo, Steve; Bikkannavar, Siddarayappa; Brack, Gary; Garkanian, Vachik; Palmer, Dean; Platt, Benjamin; Truong, Tuan; Wilson, Keith; Wallace, Kent

    2005-01-01

    We describe the current performance of an adaptive optics testbed for optical communication. This adaptive optics system allows for simulation of night and day-time observing on a 1 meter telescope with a 97 actuator deformable mirror.

  9. Spitzer/JWST Cross Calibration: IRAC Observations of Potential Calibrators for JWST

    Science.gov (United States)

    Carey, Sean J.; Gordon, Karl D.; Lowrance, Patrick; Ingalls, James G.; Glaccum, William J.; Grillmair, Carl J.; E Krick, Jessica; Laine, Seppo J.; Fazio, Giovanni G.; Hora, Joseph L.; Bohlin, Ralph

    2017-06-01

    We present observations at 3.6 and 4.5 microns using IRAC on the Spitzer Space Telescope of a set of main sequence A stars and white dwarfs that are potential calibrators across the JWST instrument suite. The stars range from brightnesses of 4.4 to 15 mag in K band. The calibration observations use a similar redundancy to the observing strategy for the IRAC primary calibrators (Reach et al. 2005) and the photometry is obtained using identical methods and instrumental photometric corrections as those applied to the IRAC primary calibrators (Carey et al. 2009). The resulting photometry is then compared to the predictions based on spectra from the CALSPEC Calibration Database (http://www.stsci.edu/hst/observatory/crds/calspec.html) and the IRAC bandpasses. These observations are part of an ongoing collaboration between IPAC and STScI investigating absolute calibration in the infrared.

  10. Community Targets for JWST's Early Release Science Program: Evaluation of Transiting Exoplanet WASP-63b.

    Science.gov (United States)

    Kilpatrick, Brian; Cubillos, Patricio; Bruno, Giovanni; Lewis, Nikole K.; Stevenson, Kevin B.; Wakeford, Hannah; Blecic, Jasmina; Burrows, Adam Seth; Deming, Drake; Heng, Kevin; Line, Michael R.; Madhusudhan, Nikku; Morley, Caroline; Waldmann, Ingo P.; Transiting Exoplanet Early Release Science Community (Stevenson et al. 2016)

    2017-06-01

    We present observations of the Hubble Space Telescope (HST) ``A Preparatory Program to Identify the Single Best Transiting Exoplanet for JWST Early Release Science" for WASP-63b, one of the community targets proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS) program. A large collaboration of transiting exoplanet scientists identified a set of ``community targets" which meet a certain set of criteria for ecliptic latitude, period, host star brightness, well constrained orbital parameters, and strength of spectroscopic features. WASP-63b was one of the targets identified as a potential candidate for the ERS program. It is presented as an inflated planet with a large signal. It will be accessible to JWST approximately six months after the planned start of Cycle 1/ERS in April 2019 making it an ideal candidate should there be any delays in the JWST timetable. Here, we observe WASP-63b to evaluate its suitability as the best target to test the capabilities of JWST. Ideally, a clear atmosphere will be best suited for bench marking the instruments ability to detect spectroscopic features. We can use the strength of the water absorption feature at 1.4 μm as a way to determine the presence of obscuring clouds/hazes. The results of atmospheric retrieval are presented along with a discussion on the suitability of WASP-63b as the best target to be observed during the ERS Program.

  11. Progress by the JWST Science Working Group

    Science.gov (United States)

    Gardner, Jonathan P.

    2007-01-01

    The JWST Science Working Group recently published a comprehensive, top-level review of JWST science in the journal Space Science Reviews (Gardner et al. 2006, SSR, 123, 485). That review paper gives details of the 4 JWST science themes, and describes the design of the observatory and ground system. Since publication, the SWG, working with members of the astronomical community, has continued to develop the science case for JWST, giving more details in a series of white papers. The white paper topics include first light, galaxy surveys, AGN, supernovae, stellar populations, and exoplanets. The white papers are in various stages of completion. In this poster, I will review recent progress.

  12. Recovering the Properties of High-redshift Galaxies with Different JWST Broadband Filters

    DEFF Research Database (Denmark)

    Bisigello, L.; Caputi, K. I.; Colina, L.

    2017-01-01

    Imaging with the James Webb Space Telescope (JWST) will allow observations of the bulk of distant galaxies at the epoch of reionization. The recovery of their properties, such as age, color excess , specific star formation rate (sSFR), and stellar mass, will mostly rely on spectral energy distrib...

  13. Astrophysics in the Next Decade: JWST and Concurrent Facilities

    CERN Document Server

    Thronson, Harley A; Tielens, Alexander; The James Webb Space Telescope and Concurrent Facilities

    2009-01-01

    NASA’s James Webb Space Telescope (JWST), planned for operation in about five years, will have the capability to investigate – and answer – some of the most challenging questions in astronomy. Although motivated and designed to study the very early Universe, the performance of the observatory’s instruments over a very wide wavelength range will allow the world’s scientific community unequaled ability to study cosmic phenomena as diverse as small bodies in the Solar System and the formation of galaxies. As part of preparation to use JWST, a conference was held in Tucson, Arizona in 2007 that brought together astronomers from around the world to discuss the mission, other major facilities that will operate in the coming decade, and major scientific goals for them. This book is a compilation of those presentations by some of the leading researchers from all branches of astronomy. This book also includes a "pre-history" of JWST, describing the lengthy process and some of the key individuals that initiat...

  14. Improving JWST Coronagraphic Performance with Accurate Image Registration

    Science.gov (United States)

    Van Gorkom, Kyle; Pueyo, Laurent; Lajoie, Charles-Philippe; JWST Coronagraphs Working Group

    2016-06-01

    The coronagraphs on the James Webb Space Telescope (JWST) will enable high-contrast observations of faint objects at small separations from bright hosts, such as circumstellar disks, exoplanets, and quasar disks. Despite attenuation by the coronagraphic mask, bright speckles in the host’s point spread function (PSF) remain, effectively washing out the signal from the faint companion. Suppression of these bright speckles is typically accomplished by repeating the observation with a star that lacks a faint companion, creating a reference PSF that can be subtracted from the science image to reveal any faint objects. Before this reference PSF can be subtracted, however, the science and reference images must be aligned precisely, typically to 1/20 of a pixel. Here, we present several such algorithms for performing image registration on JWST coronagraphic images. Using both simulated and pre-flight test data (taken in cryovacuum), we assess (1) the accuracy of each algorithm at recovering misaligned scenes and (2) the impact of image registration on achievable contrast. Proper image registration, combined with post-processing techniques such as KLIP or LOCI, will greatly improve the performance of the JWST coronagraphs.

  15. Simulating Exoplanet Transit and Eclipse Observations with JWST

    Science.gov (United States)

    Greene, Tom

    2011-01-01

    The James Webb Space Telescope (JWST) will be a nearly ideal machine for acquiring the transmission and emission spectra of transiting exoplanets over its large wavelength range 0.7 - 28 microns. The NIRSpec, NIRCam, nTFI, and MIRI instruments will have spectroscopic capabilities that span spectral resolutions from 20 - 3000 and can cover up to 2 - 3 octaves in wavelength simultaneously. This will allow observing multiple molecular features at once, facilitating the separation of atmospheric temperature and abundance effects on spectra. Many transiting planets will also be able to be observed with both transmission and eclipse spectroscopy, providing further insights and constraints on planetary thermal structures and energy transport. Simulated JWST spectra of planets ranging from mini-Neptunes to gas giants will be presented. These simulations include planets ranging from mini-Neptunes to gas giants will be presented. These simulations include current best estimates of actual instrument throughput, resolution, spectral range, systematic noise, and random noise terms. They show that JWST will be able to determine the atmospheric parameters of a wide variety of planets, often when observing only one or a few transit or eclipse event sequences. The thermal emissions of rocky super-Earths will also be quickly detectable via mid-IR eclipse observations if such planets are found around nearby M star hosts beforehand.

  16. Commentary: JWST near-infrared detector degradation— finding the problem, fixing the problem, and moving forward

    Directory of Open Access Journals (Sweden)

    Bernard J. Rauscher

    2012-06-01

    Full Text Available The James Webb Space Telescope (JWST is the successor to the Hubble Space Telescope. JWST will be an infrared-optimized telescope, with an approximately 6.5 m diameter primary mirror, that is located at the Sun-Earth L2 Lagrange point. Three of JWST’s four science instruments use Teledyne HgCdTe HAWAII-2RG (H2RG near infrared detector arrays. During 2010, the JWST Project noticed that a few of its 5 μm cutoff H2RG detectors were degrading during room temperature storage, and NASA chartered a “Detector Degradation Failure Review Board” (DD-FRB to investigate. The DD-FRB determined that the root cause was a design flaw that allowed indium to interdiffuse with the gold contacts and migrate into the HgCdTe detector layer. Fortunately, Teledyne already had an improved design that eliminated this degradation mechanism. During early 2012, the improved H2RG design was qualified for flight and JWST began making additional H2RGs. In this article, we present the two public DD-FRB “Executive Summaries” that: (1 determined the root cause of the detector degradation and (2 defined tests to determine whether the existing detectors are qualified for flight. We supplement these with a brief introduction to H2RG detector arrays, some recent measurements showing that the performance of the improved design meets JWST requirements, and a discussion of how the JWST Project is using cryogenic storage to retard the degradation rate of the existing flight spare H2RGs.

  17. Extrasolar Planets Observed with JWST and the ELTs

    Science.gov (United States)

    Deming, L. Drake

    2010-01-01

    The advent of cryogenic space-borne infrared observatories such as the Spitzer Space Telescope has lead to a revolution in the study of planets and planetary systems orbiting sun-like stars. Already Spitzer has characterized the emergent infrared spectra of close-in giant exoplanets using transit and eclipse techniques. The James Webb Space Telescope (JWST) will be able to extend these studies to superEarth exoplanets orbiting in the habitable zones of M-dwarf stars in the near solar neighborhood. The forthcoming ground-based Extremely Large Telescopes (ELTs) will playa key role in these studies, being especially valuable for spectroscopy at higher spectral resolving powers where large photon fluxes are needed. The culmination of this work within the next two decades will be the detection and spectral characterization of the major molecular constituents in the atmosphere of a habitable superEarth orbiting a nearby lower main sequence star.

  18. Preparing for JWST wavefront sensing and control operations

    Science.gov (United States)

    Perrin, Marshall D.; Acton, D. Scott; Lajoie, Charles-Philippe; Knight, J. Scott; Lallo, Matthew D.; Allen, Marsha; Baggett, Wayne; Barker, Elizabeth; Comeau, Thomas; Coppock, Eric; Dean, Bruce H.; Hartig, George; Hayden, William L.; Jordan, Margaret; Jurling, Alden; Kulp, Trey; Long, Joseph; McElwain, Michael W.; Meza, Luis; Nelan, Edmund P.; Soummer, Remi; Stansberry, John; Stark, Christopher; Telfer, Randal; Welsh, Andria L.; Zielinski, Thomas P.; Zimmerman, Neil T.

    2016-07-01

    The James Webb Space Telescopes segmented primary and deployable secondary mirrors will be actively con- trolled to achieve optical alignment through a complex series of steps that will extend across several months during the observatory's commissioning. This process will require an intricate interplay between individual wavefront sensing and control tasks, instrument-level checkout and commissioning, and observatory-level calibrations, which involves many subsystems across both the observatory and the ground system. Furthermore, commissioning will often exercise observatory capabilities under atypical circumstances, such as fine guiding with unstacked or defocused images, or planning targeted observations in the presence of substantial time-variable offsets to the telescope line of sight. Coordination for this process across the JWST partnership has been conducted through the Wavefront Sensing and Control Operations Working Group. We describe at a high level the activities of this group and the resulting detailed commissioning operations plans, supporting software tools development, and ongoing preparations activities at the Science and Operations Center. For each major step in JWST's wavefront sensing and control, we also explain the changes and additions that were needed to turn an initial operations concept into a flight-ready plan with proven tools. These efforts are leading to a robust and well-tested process and preparing the team for an efficient and successful commissioning of JWSTs active telescope.

  19. High Contrast Imaging with the JWST NIRCAM Coronagraph

    Science.gov (United States)

    Green, Joseph J.; Beichman, Charles; Basinger, Scott A.; Horner, Scott; Meyer, Michael; Redding, David C.; Rieke, Marcia; Trauger, John T.

    2005-01-01

    Relative to ground-based telescopes, the James Webb Space Telescope (JWST) will have a substantial sensitivity advantage in the 2.2-5pm wavelength range where brown dwarfs and hot Jupiters are thought to have significant brightness enhancements. To facilitate high contrast imaging within this band, the Near-Infrared Camera (NIRCAM) will employ a Lyot coronagraph with an array of band-limited image-plane occulting spots. In this paper, we provide the science motivation for high contrast imaging with NIRCAM, comparing its expected performance to that of the Keck, Gemini and 30 m (TMT) telescopes equipped with Adaptive Optics systems of different capabilities. We then describe our design for the NIRCAM coronagraph that enables imaging over the entire sensitivity range of the instrument while providing significant operational flexibility. We describe the various design tradeoffs that were made in consideration of alignment and aberration sensitivities and present contrast performance in the presence of JWST's expected optical aberrations. Finally we show an example of a that can provide 10-5 companion sensitivity at sub-arcsecond separations.

  20. Observing Planetary Rings with JWST: Science Justification and Observation Requirements

    CERN Document Server

    Tiscareno, Matthew S; Cuzzi, Jeffrey N; de Pater, Imke; Hamilton, Douglas P; Hedman, Matthew M; Nicholson, Philip D; Showalter, Mark R; Tamayo, Daniel; Verbiscer, Anne J

    2014-01-01

    The rings that adorn the four giant planets are of prime importance as accessible natural laboratories for disk processes, as clues to the origin and evolution of planetary systems, and as shapers as well as detectors of their planetary environments. The retinue of small moons accompanying all known ring systems are intimately connected as both sources and products, as well as shepherds and perturbers, of the rings. Leading sources of data on ring systems include spacecraft such as Cassini and Voyager, but also space telescopes such as Hubble and Spitzer as well as ground-based telescopes. The James Webb Space Telescope (JWST) is being prepared for launch in 2018 to begin a planned five-year mission. JWST will have the capability to observe solar system objects as close as Mars. Although most of the hardware is already designed and under construction if not completed, work continues on the development of operations guidelines and software and the completion of calibration tasks. The purpose of this white pape...

  1. Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system?

    Science.gov (United States)

    Barstow, J. K.; Irwin, P. G. J.

    2016-09-01

    The recent discovery of three Earth-sized, potentially habitable planets around a nearby cool star, TRAPPIST-1, has provided three key targets for the upcoming James Webb Space Telescope (JWST). Depending on their atmospheric characteristics and precise orbit configurations, it is possible that any of the three planets may be in the liquid water habitable zone, meaning that they may be capable of supporting life. We find that present-day Earth levels of ozone, if present, would be detectable if JWST observes 60 transits for innermost planet 1b and 30 transits for 1c and 1d.

  2. Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system?

    CERN Document Server

    Barstow, Joanna K

    2016-01-01

    The recent discovery of three Earth-sized, potentially habitable planets around a nearby cool star, TRAPPIST-1, has provided three key targets for the upcoming James Webb Space Telescope (JWST). Depending on their atmospheric characteristics and precise orbit configurations, it is possible that any of the three planets may be in the liquid water habitable zone, meaning that they may be capable of supporting life. We find that present-day Earth levels of ozone, if present, would be detectable if JWST observes 60 transits for innermost planet 1b and 30 transits for 1c and 1d.

  3. Large Space Optics: From Hubble to JWST and Beyond

    Science.gov (United States)

    Stahl, H. Philip

    2008-01-01

    If necessity truly is the mother of invention, then advances in lightweight space mirror technology have been driven by launch vehicle mass and volume constraints. In the late 1970 s, at the start of Hubble development, the state of the art in ground based telescopes was 3 to 4 meter monolithic primary mirrors with masses of 6000 to 10,000 kg - clearly too massive for the planned space shuttle 25,000 kg capability to LEO. Necessity led Hubble to a different solution. Launch vehicle mass constraints (and cost) resulted in the development of a 2.4 meter lightweight eggcrate mirror. At 810 kg (180 kg/m2), this mirror was approximately 7.4% of HST s total 11,110 kg mass. And, the total observatory structure at 4.3 m x 13.2 m fit snuggly inside the space shuttle 4.6 m x 18.3 m payload bay. In the early 1990 s, at the start of JWST development, the state of the art in ground based telescopes was 8 meter class monolithic primary mirrors (16,000 to 23,000 kg) and 10 meter segmented mirrors (14,400 kg). Unfortunately, launch vehicles were still constrained to 4.5 meter payloads and 25,000 kg to LEO or 6,600 kg to L2. Furthermore, science now demanded a space telescope with 6 to 8 meter aperture operating at L2. Mirror technology was identified as a critical capability necessary to enable the next generation of large aperture space telescopes. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996 (1). These studies identified two significant architectural constraints: segmentation and areal density. Because the launch vehicle fairing payload dynamic envelop diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. And, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density of 20 kg/m2. At the inception of

  4. From the Big Bang to the Nobel Prize and the JWST

    Science.gov (United States)

    Mather, John C.

    2007-01-01

    I will describe the history of the universe, from the Big Bang to 2013, when the JWST is to be launched to look back towards our beginnings. I will discuss how the COBE results led to the Nobel Prize, how the COBE results have been confirmed and extended, and their implications for future observations. The James Webb Space Telescope will be used to examine every part of our history from the first stars and galaxies to the formation of individual stars and planets and the delivery of life-supporting materials to the Earth. I will describe the plans for the JWST and how observers may use it. With luck, the JWST may produce a Nobel Prize for some discovery we can only guess today.

  5. Giant Planet Observations with the James Webb Space Telescope

    CERN Document Server

    Norwood, James; Fletcher, Leigh N; Orton, Glenn; Irwin, Patrick G J; Atreya, Sushil; Rages, Kathy; Cavalié, Thibault; Sánchez-Lavega, Agustin; Hueso, Ricardo; Chanover, Nancy

    2015-01-01

    This white paper examines the benefit of the upcoming James Webb Space Telescope for studies of the Solar System's four giant planets: Jupiter, Saturn, Uranus, and Neptune. JWST's superior sensitivity, combined with high spatial and spectral resolution, will enable near- and mid-infrared imaging and spectroscopy of these objects with unprecedented quality. In this paper we discuss some of the myriad scientific investigations possible with JWST regarding the giant planets. This discussion is preceded by the specifics of JWST instrumentation most relevant to giant planet observations. We conclude with identification of desired pre-launch testing and operational aspects of JWST that would greatly benefit future studies of the giant planets.

  6. A 16-m Telescope for the Advanced Technology Large Aperture Telescope (ATLAST) Mission

    Science.gov (United States)

    Lillie, Charles F.; Dailey, D. R.; Polidan, R. S.

    2010-01-01

    Future space observatories will require increasingly large telescopes to study the earliest stars and galaxies, as well as faint nearby objects. Technologies now under development will enable telescopes much larger than the 6.5-meter diameter James Webb Space Telescope (JWST) to be developed at comparable costs. Current segmented mirror and deployable optics technology enables the 6.5 meter JWST telescope to be folded for launch in the 5-meter diameter Ariane 5 payload fairing, and deployed autonomously after reaching orbit. Late in the next decade, when the Ares V Cargo Launch Vehicle payload fairing becomes operational, even larger telescope can be placed in orbit. In this paper we present our concept for a 16-meter JWST derivative, chord-fold telescope which could be stowed in the 10-m diameter Ares V fairing, plus a description of the new technologies that enable ATLAST to be developed at an affordable price.

  7. Terrestrial Plume Impingement Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Masten Space Systems proposes to create a terrestrial plume impingement testbed for generating novel datasets for extraterrestrial robotic missions. This testbed...

  8. James Webb Space Telescope Observations of Stellar Occultations by Solar System Bodies and Rings

    Science.gov (United States)

    Santos-Sanz, P.; French, R. G.; Pinilla-Alonso, N.; Stansberry, J.; Lin, Z-Y.; Zhang, Z-W.; Vilenius, E.; Mueller, Th.; Ortiz, J. L.; Braga-Ribas, F.; hide

    2016-01-01

    In this paper, we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of Solar System bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun–Earth Lagrange point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a byproduct of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.

  9. Can JWST Follow Up on Gravitational-Wave Detections?

    Science.gov (United States)

    Kohler, Susanna

    2016-02-01

    Bitten by the gravitational-wave bug? While we await Thursdays press conference, heres some food for thought: if LIGO were able to detect gravitational waves from compact-object mergers, how could we follow up on the detections? A new study investigates whether the upcoming James Webb Space Telescope (JWST) will be able to observe electromagnetic signatures of some compact-object mergers.Hunting for MergersStudying compact-object mergers (mergers of black holes and neutron stars) can help us understand a wealth of subjects, like high-energy physics, how matter behaves at nuclear densities, how stars evolve, and how heavy elements in the universe were created.The Laser Interferometer Gravitational-Wave Observatory (LIGO) is searching for the signature ripples in spacetime identifying these mergers, but gravitational waves are squirrelly: LIGO will only be able to localize wave sources to tens of square degrees. If we want to find out more about any mergers LIGO discovers in gravitational waves, well need a follow-up search for electromagnetic counterparts with other observatories.The Kilonova KeyOne possible electromagnetic counterpart is kilonovae, explosions that can be produced during a merger of a binary neutron star or a neutron starblack hole system. If the neutron star is disrupted during the merger, some of the hot mass is flung outward and shines brightly by radioactive decay.Kilonovae are especially promising as electromagnetic counterparts to gravitational waves for three reasons:They emit isotropically, so the number of observable mergers isnt limited by relativistic beaming.They shine for a week, giving follow-up observatories time to search for them.The source location can beeasily recovered.The only problem? We dont currently have any sensitive survey instruments in the near-infrared band (where kilonova emission peaks) that can provide coverage over tens of square degrees. Luckily, we will soon have just the thing: JWST, launching in 2018!JWSTs

  10. Advanced cryogenic thermal switches for JWST

    Science.gov (United States)

    Bugby, David; Beres, Matthew; Stouffer, Charles; Rodriguez, Jose

    2005-08-01

    This paper describes two cryogenic thermal switches (CTSWs) under development for instruments on the James Webb Space Telescope (JWST). The first thermal switch was designed to extend the life of the solid H2 dewar for the 6 K Mid Infrared Instrument (MIRI) while the second thermal switch is needed for contamination and over-temperature control of three 35 K instruments on the Integrated Science Instrument Module (ISIM). In both cases, differential thermal expansion (DTE) between two materials having differing CTE values is the process that underpins the thermal switching. The patented DTE-CTSW design utilizes two metallic end-pieces, one cup-shaped and the other disc-shaped (both MIRI end-pieces are Al while ISIM uses an Al/Invar cup and an Al disc), joined by an axially centered Ultem rod, which creates a narrow, flat gap between the cup (rim) and disc. A heater is bonded to the rod center. Upon cooling one or both end-pieces, the rod contracts relative to the end-pieces and the gap closes, turning the CTSW ON. When the rod heater is turned on, the rod expands relative to the end-pieces and the gap opens, turning the CTSW OFF. During testing from 6-35 K, ON conductances of 0.3-12 W/K and OFF resistances greater than 2500 K/W were measured. Of particular importance at 6 K was the Al oxide layer, which was found to significantly decrease DTE-CTSW ON conductance when the mating surfaces were bare Al. When the mating surfaces were gold-plated, the adverse impact of the oxide layer was mitigated. This paper will describe both efforts from design through model correlation.

  11. Metrology for Trending Alignment of the James Webb Space Telescope Before and After Ambient Environmental Testing

    Science.gov (United States)

    Hadjimichael, Theo; Ohl, Raymond G.; Berrier, Joshua; Gum, Jeffery; Hayden, Joseph; Khreishi, Manal; McLean, Kyle; Redman, Kevin; Sullivan, Joseph; Wenzel, Greg; hide

    2017-01-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, theJWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to determine any changes in subassembly alignment, including primary mirror segments with respect to each other, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ultimately to the ISIM.

  12. An Update on Simulating Imaging, Spectroscopic, and Coronagraphic PSFs for JWST (and WFIRST too!)

    Science.gov (United States)

    Perrin, Marshall D.; Long, Joseph D.; Zimmerman, Neil T.; Van Gorkom, Kyle

    2016-06-01

    Simulated point spread functions (PSFs) are an essential tool in preparing for future space telescopes, supporting pre-launch science simulations, observation planning, and analysis software development. The open-source Python package WebbPSF provides simulated PSFs for all of JWST's instruments and observing modes. We present the latest updates to WebbPSF based on both updated models ofthe assembled telescope optics and recent cryo-test data for the science instruments. Outputs from this latest version of WebbPSF will support the JWST Exposure Time Calculator and the first calls for proposals in the year ahead, among many other uses by the community. Furthermore, the same toolkit also now provides support for simulating PSFs for both the WFI and CGI instruments planned for WFIRST.

  13. Exoplanets with JWST: degeneracy, systematics and how to avoid them

    Science.gov (United States)

    Barstow, Joanna K.; Irwin, Patrick G. J.; Kendrew, Sarah; Aigrain, Suzanne

    2016-07-01

    The high sensitivity and broad wavelength coverage of the James Webb Space Telescope will transform the field of exoplanet transit spectroscopy. Transit spectra are inferred from minute, wavelength-dependent variations in the depth of a transit or eclipse as the planet passes in front of or is obscured by its star, and the spectra contain information about the composition, structure and cloudiness of exoplanet atmospheres. Atmospheric retrieval is the preferred technique for extracting information from these spectra, but the process can be confused by astrophysical and instrumental systematic noise. We present results of retrieval tests based on synthetic, noisy JWST spectra, for clear and cloudy planets and active and inactive stars. We find that the ability to correct for stellar activity is likely to be a limiting factor for cloudy planets, as the effects of unocculted star spots may mimic the presence of a scattering slope due to clouds. We discuss the pros and cons of the available JWST instrument combinations for transit spectroscopy, and consider the effect of clouds and aerosols on the spectra. Aerosol high in a planet's atmosphere obscures molecular absorption features in transmission, reducing the information content of spectra in wavelength regions where the cloud is optically thick. We discuss the usefulness of particular wavelength regions for identifying the presence of cloud, and suggest strategies for solving the highly-degenerate retrieval problem for these objects.

  14. Unique Spectroscopy and Imaging of Mars with JWST

    CERN Document Server

    Villanueva, Geronimo L; Clancy, Todd R; Encrenaz, Therese; Fouchet, Thierry; Hartogh, Paul; Lellouch, Emmanuel; Lopez-Valverde, Miguel A; Mumma, Michael J; Novak, Robert E; Smith, Michael D; Vandaele, Ann-Carine; Wolff, Michael J; Ferruit, Pierre; Milam, Stefanie N

    2015-01-01

    In this document, we summarize the main capabilities of the James Webb Space Telescope (JWST) for performing observations of Mars. The distinctive vantage point of JWST at the Sun-Earth Lagrange point (L2) will allow sampling the full observable disk, permitting the study of short-term phenomena, diurnal processes (across the East-West axis) and latitudinal processes between the hemispheres (including seasonal effects) with excellent spatial resolutions (0.07 arcsec at 2 {\\mu}m). Spectroscopic observations will be achievable in the 0.7-5 {\\mu}m spectral region with NIRSpec at a maximum resolving power of 2700, and with 8000 in the 1-1.25 {\\mu}m range. Imaging will be attainable with NIRCam at 4.3 {\\mu}m and with two narrow filters near 2 {\\mu}m, while the nightside will be accessible with several filters in the 0.5 to 2 {\\mu}m. Such a powerful suite of instruments will be a major asset for the exploration and characterization of Mars. Some science cases include the mapping of the water D/H ratio, investigatio...

  15. The Fizeau Interferometer Testbed

    CERN Document Server

    Zhang, X; Lyon, R G; Huet, H; Marzouk, J; Solyar, G; Zhang, Xiaolei; Carpenter, Kenneth G.; Lyon, Richard G.; Huet, Hubert; Marzouk, Joe; Solyar, Gregory

    2002-01-01

    The Fizeau Interferometer Testbed (FIT) is a collaborative effort between NASA's Goddard Space Flight Center, the Naval Research Laboratory, Sigma Space Corporation, and the University of Maryland. The testbed will be used to explore the principles of and the requirements for the full, as well as the pathfinder, Stellar Imager mission concept. It has a long term goal of demonstrating closed-loop control of a sparse array of numerous articulated mirrors to keep optical beams in phase and optimize interferometric synthesis imaging. In this paper we present the optical and data acquisition system design of the testbed, and discuss the wavefront sensing and control algorithms to be used. Currently we have completed the initial design and hardware procurement for the FIT. The assembly and testing of the Testbed will be underway at Goddard's Instrument Development Lab in the coming months.

  16. Virtual Factory Testbed

    Data.gov (United States)

    Federal Laboratory Consortium — The Virtual Factory Testbed (VFT) is comprised of three physical facilities linked by a standalone network (VFNet). The three facilities are the Smart and Wireless...

  17. The Palomar Testbed Interferometer

    OpenAIRE

    Colavita, M. M.; Wallace, J. K.

    1998-01-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in July 1995. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40-cm apertures can be combined pair-wise to provide baselines to 110 m. The interferomet...

  18. Spherical Primary Optical Telescope Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The SPOT test bed consists of three one-meter-class segments on tip/tilt and piston actuators.  The purpose of the test bed is to demonstrate wavefront sensing...

  19. The Fourier-Kelvin Stellar Interferometer (FKSI): A Progress Report and Preliminary Results from Our Laboratory Testbed

    Science.gov (United States)

    Berry, Richard; Rajagopa, J.; Danchi, W. C.; Allen, R. J.; Benford, D. J.; Deming, D.; Gezari, D. Y.; Kuchner, M.; Leisawitz, D. T.; Linfield, R.

    2005-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer for the near-infrared to mid-infrared spectral region (3-8 microns). FKSI is conceived as a scientific and technological pathfinder to TPF/DARWIN as well as SPIRIT, SPECS, and SAFIR. It will also be a high angular resolution system complementary to JWST. The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will also search for brown dwarfs and Jupiter mass and smaller planets, and could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We report additional studies of the imaging capabilities of the FKSI with various configurations of two to five telescopes, studies of the capabilities of FKSI assuming an increase in long wavelength response to 10 or 12 microns (depending on availability of detectors), and preliminary results from our nulling testbed.

  20. JWST tunable filter imager: etalon prototype test results

    Science.gov (United States)

    Touahri, D.; Cameron, P.; Evans, C.; Greenberg, E.; Rowlands, N.; Scott, A.; Doyon, R.; Beaulieu, M.; Djazovski, O.

    2008-07-01

    We present the prototyping results and laboratory characterization of a narrow band Fabry-Perot etalon flight model which is one of the wavelength selecting elements of the Tunable Filter Imager. The latter is a part of the Fine Guidance Sensor which represents the Canadian contribution to NASA's James Webb Space Telescope. The unique design of this etalon provides the JWST observatory with the ability to image at 30 Kelvin, a 2.2'x2.2' portion of its field of view in a narrow spectral bandwidth of R~100 at any wavelength ranging between 1.6 and 4.9 μm (with a gap in coverage between 2.5 and 3.2 μm). Extensive testing has resulted in better understanding of the thermal properties of the piezoelectric transducers used as an actuation system for the etalon gap tuning. Good throughput, spectral resolution and contrast have been demonstrated for the full wavelength range.

  1. Solar System Science with the James Webb Space Telescope

    Science.gov (United States)

    Hammel, Heidi B.; Norwood, J.; Chanover, N.; Hines, D. C.; Stansberry, J.; Lunine, J. I.; Tiscareno, M. S.; Milam, S. N.; Sonneborn, G.; Brown, M.

    2013-10-01

    The James Webb Space Telescope (JWST) will succeed the Hubble Space Telescope as NASA’s premier space-based platform for observational astronomy. This 6.5-meter telescope, which is optimized for observations in the near and mid infrared, will be equipped with four state-of-the-art imaging, spectroscopic, and coronagraphic instruments. These instruments, along with the telescope’s moving target capabilities, will enable the infrared study of solar system objects with unprecedented detail (see companion presentation by Sonneborn et al.). This poster features highlights for planetary science applications, extracted from a white paper in preparation. We present a number of hypothetical solar system observations as a means of demonstrating potential planetary science observing scenarios; the list of applications discussed here is far from comprehensive. The goal of this poster and the subsequent white paper is to stimulate discussion and encourage participation in JWST planning among members of the planetary science community, and to encourage feedback to the JWST Project on any desired observing capabilities, data products, and analysis procedures that would enhance the use of JWST for solar system studies. The upcoming white paper updates and supersedes the solar system white paper published by the JWST Project in 2010 (Lunine et al., 2010), and is based in part on JWST events held at the 2012 DPS, the 2013 LPSC meeting, and this DPS (JWST Town Hall, Thursday, 10 October 2013, 12-1 pm).

  2. Solar System Observations with the James Webb Space Telescope

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2016-01-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  3. MIT's interferometer CST testbed

    Science.gov (United States)

    Hyde, Tupper; Kim, Ed; Anderson, Eric; Blackwood, Gary; Lublin, Leonard

    1990-12-01

    The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances.

  4. Testbed for Advanced Mobile Solutions

    OpenAIRE

    Apell, Maria; Erman, David; Popescu, Adrian

    2010-01-01

    This paper describes the implementation of an IMS testbed, based on open source technologies and operating systems. The testbed provides rich communication services, i.e., Instant Messaging, Network Address Book and Presence as well as VoIP and PSTN interconnectivity. Our validation tests indicate that the performance of the testbed is comparable to similar testbeds, but that operating system virtualization signi ficantly aff ects signalling delays.

  5. NIRCam: Development and Testing of the JWST Near-Infrared Camera

    Science.gov (United States)

    Greene, Thomas; Beichman, Charles; Gully-Santiago, Michael; Jaffe, Daniel; Kelly, Douglas; Krist, John; Rieke, Marcia; Smith, Eric H.

    2011-01-01

    The Near Infrared Camera (NIRCam) is one of the four science instruments of the James Webb Space Telescope (JWST). Its high sensitivity, high spatial resolution images over the 0.6 - 5 microns wavelength region will be essential for making significant findings in many science areas as well as for aligning the JWST primary mirror segments and telescope. The NIRCam engineering test unit was recently assembled and has undergone successful cryogenic testing. The NIRCam collimator and camera optics and their mountings are also progressing, with a brass-board system demonstrating relatively low wavefront error across a wide field of view. The flight model?s long-wavelength Si grisms have been fabricated, and its coronagraph masks are now being made. Both the short (0.6 - 2.3 microns) and long (2.4 - 5.0 microns) wavelength flight detectors show good performance and are undergoing final assembly and testing. The flight model subsystems should all be completed later this year through early 2011, and NIRCam will be cryogenically tested in the first half of 2011 before delivery to the JWST integrated science instrument module (ISIM).

  6. Observing transiting planets with JWST -- Prime targets and their synthetic spectral observations

    CERN Document Server

    Mollière, Paul; Bouwman, Jeroen; Henning, Thomas; Lagage, Pierre-Olivier; Min, Michiel

    2016-01-01

    The James Webb Space Telescope will enable astronomers to obtain exoplanet spectra of unprecedented precision. Especially the MIRI instrument may shed light on the nature of the cloud particles obscuring planetary transmission spectra in the optical and near-infrared. We provide self-consistent atmospheric models and synthetic JWST observations for prime exoplanet targets in order to identify spectral regions of interest and estimate the number of transits needed to distinguish between model setups. We select targets which span a wide range in planetary temperature and surface gravity, ranging from super-Earths to giant planets, and have a high expected SNR. For all targets we vary the enrichment, C/O ratio, presence of optical absorbers (TiO/VO) and cloud treatment. We calculate atmospheric structures and emission and transmission spectra for all targets and use a radiometric model to obtain simulated observations. We analyze JWST's ability to distinguish between various scenarios. We find that in very cloud...

  7. Exploring Biases of Atmospheric Retrievals in Simulated JWST Transmission Spectra of Hot Jupiters

    CERN Document Server

    Rocchetto, M; Venot, O; Lagage, P -O; Tinetti, G

    2016-01-01

    With a scheduled launch in October 2018, the James Webb Space Telescope (JWST) is expected to revolutionise the field of atmospheric characterization of exoplanets. The broad wavelength coverage and high sensitivity of its instruments will allow us to extract far more information from exoplanet spectra than what has been possible with current observations. In this paper, we investigate whether current retrieval methods will still be valid in the era of JWST, exploring common approximations used when retrieving transmission spectra of hot Jupiters. To assess biases, we use 1D photochemical models to simulate typical hot Jupiter cloud-free atmospheres and generate synthetic observations for a range of carbon-to-oxygen ratios. Then, we retrieve these spectra using TauREx, a Bayesian retrieval tool, using two methodologies: one assuming an isothermal atmosphere, and one assuming a parametrized temperature profile. Both methods assume constant-with-altitude abundances. We found that the isothermal approximation bi...

  8. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    CERN Document Server

    Stevenson, Kevin B; Bean, Jacob L; Beichman, Charles; Fraine, Jonathan; Kilpatrick, Brian M; Krick, J E; Lothringer, Joshua D; Mandell, Avi M; Valenti, Jeff A; Agol, Eric; Angerhausen, Daniel; Barstow, Joanna K; Birkmann, Stephan M; Burrows, Adam; Cowan, Nicolas B; Crouzet, Nicolas; Cubillos, Patricio E; Curry, S M; Dalba, Paul A; de Wit, Julien; Deming, Drake; Desert, Jean-Michel; Doyon, Rene; Dragomir, Diana; Ehrenreich, David; Fortney, Jonathan J; Munoz, Antonio Garcia; Gibson, Neale P; Gizis, John E; Greene, Thomas P; Harrington, Joseph; Heng, Kevin; Kataria, Tiffany; Kempton, Eliza M -R; Knutson, Heather; Kreidberg, Laura; Lafreniere, David; Lagage, Pierre-Olivier; Line, Michael R; Lopez-Morales, Mercedes; Madhusudhan, Nikku; Morley, Caroline V; Rocchetto, Marco; Schlawin, Everett; Shkolnik, Evgenya L; Shporer, Avi; Sing, David K; Todorov, Kamen O; Tucker, Gregory S; Wakeford, Hannah R

    2016-01-01

    The James Webb Space Telescope will revolutionize transiting exoplanet atmospheric science due to its capability for continuous, long-duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful future transiting exoplanet characterization programs. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions...

  9. Observing Resolved Stellar Populations with the JWST Near-Infrared Spectrograph

    Science.gov (United States)

    Gilbert, K. M.; Beck, T. L.; Karakla, D. M.

    2016-10-01

    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) will provide a multi-object spectroscopy (MOS) mode through the Micro-Shutter Array (MSA). Each MSA quadrant is a grid of contiguous shutters that can be configured to form slits on more than 100 astronomical targets simultaneously. The combination of JWST's sensitivity and superb resolution in the infrared and NIRSpec's full wavelength coverage over 0.6 to 5 μm will open new parameter space for studies of galaxies and resolved stellar populations alike. We describe a NIRSpec MSA observing scenario of spectroscopy of individual stars in an external galaxy, and investigate the technical challenges posed by this scenario. This use case and others, including a deep galaxy survey and observations of Galactic HII regions, are guiding development of the NIRSpec user interfaces including proposal planning and pipeline calibrations.

  10. Network testbed creation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.; Watts, Kristopher K.; Sweeney, Andrew John

    2017-03-21

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.

  11. Network testbed creation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.; Watts, Kristopher K.; Sweeney, Andrew John

    2017-04-18

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.

  12. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    Science.gov (United States)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  13. Advanced UVOIR Mirror Technology Development for Very Large Space Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future UV/Optical telescopes will require increasingly large apertures to answer the questions raised by HST, JWST, Planck and Hershel, and to complement the = 30-m...

  14. Bayesian Approach for Reliability Assessment of Sunshield Deployment on JWST

    Science.gov (United States)

    Kaminskiy, Mark P.; Evans, John W.; Gallo, Luis D.

    2013-01-01

    Deployable subsystems are essential to mission success of most spacecraft. These subsystems enable critical functions including power, communications and thermal control. The loss of any of these functions will generally result in loss of the mission. These subsystems and their components often consist of unique designs and applications, for which various standardized data sources are not applicable for estimating reliability and for assessing risks. In this study, a Bayesian approach for reliability estimation of spacecraft deployment was developed for this purpose. This approach was then applied to the James Webb Space Telescope (JWST) Sunshield subsystem, a unique design intended for thermal control of the observatory's telescope and science instruments. In order to collect the prior information on deployable systems, detailed studies of "heritage information", were conducted extending over 45 years of spacecraft launches. The NASA Goddard Space Flight Center (GSFC) Spacecraft Operational Anomaly and Reporting System (SOARS) data were then used to estimate the parameters of the conjugative beta prior distribution for anomaly and failure occurrence, as the most consistent set of available data and that could be matched to launch histories. This allows for an emperical Bayesian prediction for the risk of an anomaly occurrence of the complex Sunshield deployment, with credibility limits, using prior deployment data and test information.

  15. Exoplanets and debris disk imaging with JWST

    Science.gov (United States)

    Pueyo, Laurent; Soummer, Remi; Perrin, Marshall D.

    2017-06-01

    Dramatic progress in exoplanetary systems imaging has occurred since the first generation of space coronagraphs on HST (NICMOS, STIS, ACS). While HST remains at forefront of both exoplanetary and circumstellar disk science, ground-based instruments have improved by three orders of magnitudes over the past decade. JWST will extend the current state of the art with a larger set of superior coronagraphs and greater sensitivity across more than a factor of 10 in wavelength, making it extraordinarily capable for detailed imaging characterization of planets and disks. We will address specific questions about nearby exoplanetary systems, while also optimizing observing strategies across the breadth of JWST’s high-contrast imaging modes, as follows: (a) Deep, multi-wavelength observations of selected nearby stars hosting known debris disks & planets. We will use the NIRCam and MIRI coronagraphs across the full range of JWST wavelengths, and perhaps MIRI MRS spatially resolved spectroscopy. Each comprehensive dataset will support a variety of investigations addressing both disk characterization and exoplanet detection & characterization. (b) Characterization of Planetary Systems around Cool M Stars. We will observe young and dusty M dwarfs, to complement observations of the closer but older M dwarf samples under consideration by other GTO groups. JWST observations will dramatically exceed HST images in their ability to address questions about the properties of dust rings, while the more favorable contrast ratios of planets relative to M dwarf hosts will enable sensitivity to relatively low mass planetary companions.

  16. Characterization of the JWST Pathfinder Mirror Dynamics Using the Center of Curvature Optical Assembly (CoCOA)

    Science.gov (United States)

    Wells, C.; Hadaway, J.; Olczak, G.; Cosentino, J.; Johnston, J.; Whitman, T.; Connolly, M.; Chaney, D.; Knight, J.; Telfer, R.

    2016-01-01

    The JWST (James Webb Space Telescope) Optical Telescope Element (OTE) consists of a 6.6 meter clear aperture, 18-segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at NASA Johnson Space Center using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  17. Characterization of the JWST Pathfinder mirror dynamics using the center of curvature optical assembly (CoCOA)

    Science.gov (United States)

    Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, 18 segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  18. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Science.gov (United States)

    Stevenson, Kevin B.; "Enabling Transiting Exoplanet Science with JWST" workshop attendees

    2016-10-01

    The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science; however, it is unclear precisely how well it will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. We will describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We will also present a list of "community targets" that are well suited to achieving these goals. Since most of the community targets do not have well-characterized atmospheres, we have initiated a preparatory HST + Spitzer observing program to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. We will present preliminary results from this preparatory observing program and discuss their implications on the pending JWST ERS proposal deadline in mid-2017.

  19. The Planning Process for Multi-Object Spectroscopy with the JWST Near-Infrared Spectrograph

    Science.gov (United States)

    Beck, Tracy L.; Karakla, D. M.; Shyrokov, A.; Pontoppidan, K.; Soderblom, D. R.; Valenti, J. A.; Kassin, S. A.; Gilbert, K.; Blair, W. P.; Muzerolle, J.; Tumlinson, J.; Keyes, C. D.; Pavlovsky, C. M.; LeBlanc, T.

    2014-01-01

    The Near-Infrared Spectrograph (NIRSpec) for the James Webb Space Telescope (JWST) will have a powerful multi-object spectroscopy mode using four configurable Micro-Shutter Arrays (MSAs). The contiguous MSA shutters can be opened to form slits on astronomical targets, for simultaneous spectroscopy of up to 100 sources per exposure. The NIRSpec MSA shutters are in a fixed grid pattern, and careful analysis in the observation planning process will be crucial for optimal definition of science exposures. Our goal is to maximize the number of astronomical science sources observed in the fewest number of MSA slit configurations. We are developing algorithms in the NIRSpec MSA Planning Tool (MPT) to improve the quality of planned observations using several common science observing strategies as test use cases. For example, the needs for planning extremely deep exposures on a small number of JWST discovered z > 10 galaxy candidates will differ significantly from the requirements for planning spectral observations on a representative sample of stars from a galactic star cluster catalog. In this poster, we present a high level overview of our plans to develop and optimize the MPT for the JWST NIRSpec multi-object spectroscopy mode.

  20. Electronic speckle pattern interferometric testing of JWST primary mirror segment assembly

    Science.gov (United States)

    Smith, Koby Z.; Chaney, David M.; Saif, Babak N.

    2011-09-01

    The James Webb Space Telescope (JWST) Primary Mirror Segment Assembly (PMSA) was required to meet NASA Technology Readiness Level (TRL) 06 requirements in the summer of 2006. These TRL06 requirements included verifying all mirror technology systems level readiness in simulated end-to-end operating conditions. In order to support the aggressive development and technology readiness schedule for the JWST Primary Mirror Segment Assembly (PMSA), a novel approach was implemented to verify the nanometer surface figure distortion effects on an in-process non-polished beryllium mirror surface. At the time that the TRL06 requirements needed to be met, a polished mirror segment had not yet been produced that could have utilized the baselined interferometric optical test station. The only JWST mirror segment available was a finished machined segment with an acid-etched optical surface. Therefore an Electronic Speckle Pattern Interferometer (ESPI) was used in coordination with additional metrology techniques to perform interferometric level optical testing on a non-optical surface. An accelerated, rigorous certification program was quickly developed for the ESPI to be used with the unfinished optical surface of the primary mirror segment. The ESPI was quickly implemented into the PMSA test program and optical testing was very successful in quantifying the nanometer level surface figure deformation changes in the PMSA due to assembly, thermal cycling, vibration, and acoustic testing. As a result of the successful testing, the PMSA passed all NASA TRL06 readiness requirements.

  1. Phase-Retrieval Uncertainty Estimation and Algorithm Comparison for the JWST-ISIM Test Campaign

    Science.gov (United States)

    Aronstein, David L.; Smith, J. Scott

    2016-01-01

    Phase retrieval, the process of determining the exitpupil wavefront of an optical instrument from image-plane intensity measurements, is the baseline methodology for characterizing the wavefront for the suite of science instruments (SIs) in the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST). JWST is a large, infrared space telescope with a 6.5-meter diameter primary mirror. JWST is currently NASA's flagship mission and will be the premier space observatory of the next decade. ISIM contains four optical benches with nine unique instruments, including redundancies. ISIM was characterized at the Goddard Space Flight Center (GSFC) in Greenbelt, MD in a series of cryogenic vacuum tests using a telescope simulator. During these tests, phase-retrieval algorithms were used to characterize the instruments. The objective of this paper is to describe the Monte-Carlo simulations that were used to establish uncertainties (i.e., error bars) for the wavefronts of the various instruments in ISIM. Multiple retrieval algorithms were used in the analysis of ISIM phase-retrieval focus-sweep data, including an iterativetransform algorithm and a nonlinear optimization algorithm. These algorithms emphasize the recovery of numerous optical parameters, including low-order wavefront composition described by Zernike polynomial terms and high-order wavefront described by a point-by-point map, location of instrument best focus, focal ratio, exit-pupil amplitude, the morphology of any extended object, and optical jitter. The secondary objective of this paper is to report on the relative accuracies of these algorithms for the ISIM instrument tests, and a comparison of their computational complexity and their performance on central and graphical processing unit clusters. From a phase-retrieval perspective, the ISIM test campaign includes a variety of source illumination bandwidths, various image-plane sampling criteria above and below the Nyquist- Shannon

  2. Phase and Pupil Amplitude Recovery for JWST Space-Optics Control

    Science.gov (United States)

    Dean, B. H.; Zielinski, T. P.; Smith, J. S.; Bolcar, M. R.; Aronstein, D. L.; Fienup, J. R.

    2010-01-01

    This slide presentation reviews the phase and pupil amplitude recovery for the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam). It includes views of the Integrated Science Instrument Module (ISIM), the NIRCam, examples of Phase Retrieval Data, Ghost Irradiance, Pupil Amplitude Estimation, Amplitude Retrieval, Initial Plate Scale Estimation using the Modulation Transfer Function (MTF), Pupil Amplitude Estimation vs lambda, Pupil Amplitude Estimation vs. number of Images, Pupil Amplitude Estimation vs Rotation (clocking), and Typical Phase Retrieval Results Also included is information about the phase retrieval approach, Non-Linear Optimization (NLO) Optimized Diversity Functions, and Least Square Error vs. Starting Pupil Amplitude.

  3. Laser Metrology in the Micro-Arcsecond Metrology Testbed

    Science.gov (United States)

    An, Xin; Marx, D.; Goullioud, Renaud; Zhao, Feng

    2004-01-01

    The Space Interferometer Mission (SIM), scheduled for launch in 2009, is a space-born visible light stellar interferometer capable of micro-arcsecond-level astrometry. The Micro-Arcsecond Metrology testbed (MAM) is the ground-based testbed that incorporates all the functionalities of SIM minus the telescope, for mission-enabling technology development and verification. MAM employs a laser heterodyne metrology system using the Sub-Aperture Vertex-to-Vertex (SAVV) concept. In this paper, we describe the development and modification of the SAVV metrology launchers and the metrology instrument electronics, precision alignments and pointing control, locating cyclic error sources in the MAM testbed and methods to mitigate the cyclic errors, as well as the performance under the MAM performance metrics.

  4. High Contrast Imaging Testbed for the Terrestrial Planet Finder Coronagraph

    Science.gov (United States)

    Lowmman, Andrew E.; Trauger, John T.; Gordon, Brian; Green, Joseph J.; Moody, Dwight; Niessner, Albert F.; Shi, Fang

    2004-01-01

    The Terrestrial Planet Finder (TPF) mission is planning to launch a visible coronagraphic space telescope in 2014. To achieve TPF science goals, the coronagraph must have extreme levels of wavefront correction (less than 1 Angstrom rms over controllable spatial frequencies) and stability to get the necessary suppression of diffracted starlight (approximately l0(exp -10)) contrast at an angular separation approximately 4 (lamda)/D). TPF Coronagraph's primary platform for experimentation is the High Contrast Imaging Testbed, which will provide laboratory validation of key technologies as well as demonstration of a flight-traceable approach to implementation. Precision wavefront control in the testbed is provided by a high actuator density deformable mirror. Diffracted light control is achieved through use of occulting or apodizing masks and stops. Contrast measurements will establish the technical feasibility of TPF requirements, while model and error budget validation will demonstrate implementation viability. This paper describes the current testbed design, development approach, and recent experimental results.

  5. The JWST/NIRCam Coronagraph: Mask Design and Fabrication

    Science.gov (United States)

    Krista, John E.; Balasubramanian, Kunjithapatha; Beichman, Charles A.; Echternach, Pierre M.; Green, Joseph J.; Liewer, Kurt M.; Muller, Richard E.; Serabyn, Eugene; Shaklan, Stuart B.; Trauger, John T.; Wilson, Daniel W.; Horner, Scott D.; Mao, Yalan; Somerstein, Stephen F.; Vasudevan, Gopal; Kelly, Douglas M.; Rieke, Marcia J.

    2009-01-01

    The NIRCam instrument on the James Webb Space Telescope will provide coronagraphic imaging from lambda =1-5 microns of high contrast sources such as extrasolar planets and circumstellar disks. A Lyot coronagraph with a variety of circular and wedge-shaped occulting masks and matching Lyot pupil stops will be implemented. The occulters approximate grayscale transmission profiles using halftone binary patterns comprising wavelength-sized metal dots on anti-reflection coated sapphire substrates. The mask patterns are being created in the Micro Devices Laboratory at the Jet Propulsion Laboratory using electron beam lithography. Samples of these occulters have been successfully evaluated in a coronagraphic testbed. In a separate process, the complex apertures that form the Lyot stops will be deposited onto optical wedges. The NIRCam coronagraph flight components are expected to be completed this year.

  6. The James Webb Space Telescope Integrated Science Instrument Module

    Science.gov (United States)

    Greenhouse, M. A.; Boyce, L. A.; Glazer, S. D.; Johnson, E. L.; McCloskey, J. C.; Sullivan, P. C.; Voyton, M. F.

    2005-12-01

    In this poster, we describe the major design features of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM). The JWST mission is under development by NASA in partnership with the European and Canadian Space Agencies for launch during 2013. The JWST is designed to enable a five year science mission that is focused on four themes: [1] observation of the first luminous objects after the Big Bang, [2] the assembly of these objects into galaxies, [3] the birth of stars and planetary systems, and [4] the formation of planets and the origins of life. The above science themes require high sensitivity and HST-like angular resolution over the near- to mid-infrared spectrum. A 40 K cryogenic radiatively cooled telescope with a 25 m2 collecting area was selected to meet these requirments. A mission architecture involving a Lissajous orbit about the Earth-Sun L2 point was chosen to meet optical stability and data downlink requirments. A modular flight segment architecture was selected to enable incremental integration and test of the cryogenic payload. The ISIM is one key feature of this modular architecture that enables a feasible cryogenic test program. The ISIM element is the science instrument payload of the observatory. It contains 70 million infrared detector pixels allocated among four science instrument systems and a fine guidance sensor system. Brief instrument descriptions are available at: www.stsci.edu/jwst/docs/flyers. The ISIM also contains a passive 40 K thermal control system, a 6 K cryo-cooler system, a command and data handling system, a flight software system, and an optical metering structure system. The ISIM element is responsible for acquisition of the JWST science data, fine guidance data for telescope pointing control, and wavefront sensing data for in-flight adjustment of the telescope optics. Further information about the JWST mission is available at: www.jwst.nasa.gov.

  7. Comparing and Contrasting Detectors: JWST NIR vs HST WFC3

    Science.gov (United States)

    Rauscher, Bernard J.

    2015-01-01

    In many ways, WFC3s IR channel is a good indicator for what to expect with JWST. There are some differences, most of which should be beneficial in JWST- JWSTs lower operating temperature will freeze out charge traps that would affect WFC3. Benefits should include lower dark current, lower persistence, and better reciprocity- JWSTs more recent HgCdTe process has lower defect density. The benefits are as described above- JWST uses better indium barriers. The benefits should include fewer RC type pixels. One area where more study might be beneficial is stability. The detector electronics play a significant role in determining how stable a detector system is(v.s. bias drifts and photometry). JWSTs SIDECARs are completely WFC3s Ball electronics- Studies comparing the bias and photometric stability of WFC3 and JWST might be useful to informing data acquisition and calibration strategies for JWST.

  8. Characterizing Exoplanet Atmospheres with the James Webb Space Telescope

    Science.gov (United States)

    Greene, Tom

    2017-01-01

    The James Webb Space Telescope (JWST) will have numerous modes for acquiring photometry and spectra of stars, planets, galaxies, and other astronomical objects over wavelengths of 0.6 - 28 microns. Several of these modes are well-suited for observing atomic and molecular features in the atmospheres of transiting or spatially resolved exoplanets. I will present basic information on JWST capabilities, highlight modes that are well-suited for observing exoplanets, and give examples of what may be learned from JWST observations. This will include simulated spectra and expected retrieved chemical abundance, composition, equilibrium, and thermal information and uncertainties. JWST Cycle 1 general observer proposals are expected to be due in March 2018 with launch in October 2018, and the greater scientific community is encouraged to propose investigations to study exoplanet atmospheres and other topics.

  9. Predicting the High Redshift Galaxy Population for JWST

    Science.gov (United States)

    Flynn, Zoey; Benson, Andrew

    2017-01-01

    The James Webb Space Telescope will be launched in Oct 2018 with the goal of observing galaxies in the redshift range of z = 10 - 15. As redshift increases, the age of the Universe decreases, allowing us to study objects formed only a few hundred million years after the Big Bang. This will provide a valuable opportunity to test and improve current galaxy formation theory by comparing predictions for mass, luminosity, and number density to the observed data. We have made testable predictions with the semi-analytical galaxy formation model Galacticus. The code uses Markov Chain Monte Carlo methods to determine viable sets of model parameters that match current astronomical data. The resulting constrained model was then set to match the specifications of the JWST Ultra Deep Field Imaging Survey. Predictions utilizing up to 100 viable parameter sets were calculated, allowing us to assess the uncertainty in current theoretical expectations. We predict that the planned UDF will be able to observe a significant number of objects past redshift z > 9 but nothing at redshift z > 11. In order to detect these faint objects at redshifts z = 11-15 we need to increase exposure time by at least a factor of 1.66.

  10. Capabilities of the James Webb Space Telescope for Exoplanet Science

    Science.gov (United States)

    Clampin, Mark

    2009-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 m to 28 m. JWST s primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. We also review the expected scientific performance of the observatory for observations of exosolar planets by means of transit photometry and spectroscopy, and direct coronagraphic imaging.

  11. Non-redundant Aperture Masking Interferometry (AMI) and segment phasing with JWST-NIRISS

    Science.gov (United States)

    Sivaramakrishnan, Anand; Lafrenière, David; Ford, K. E. Saavik; McKernan, Barry; Cheetham, Anthony; Greenbaum, Alexandra Z.; Tuthill, Peter G.; Lloyd, James P.; Ireland, Michael J.; Doyon, René; Beaulieu, Mathilde; Martel, André; Koekemoer, Anton; Martinache, Frantz; Teuben, Peter

    2012-09-01

    The Aperture Masked Interferometry (AMI) mode on JWST-NIRISS is implemented as a 7-hole, 15% throughput, non-redundant mask (NRM) that operates with 5-8% bandwidth filters at 3.8, 4.3, and 4.8 microns. We present refined estimates of AMI's expected point-source contrast, using realizations of noise matched to JWST pointing requirements, NIRISS detector noise, and Rev-V JWST wavefront error models for the telescope and instrument. We describe our point-source binary data reduction algorithm, which we use as a standardized method to compare different observational strategies. For a 7.5 magnitude star we report a 10-a detection at between 8.7 and 9.2 magnitudes of contrast between 100 mas to 400 mas respectively, using closure phases and squared visibilities in the absence of bad pixels, but with various other noise sources. With 3% of the pixels unusable, the expected contrast drops by about 0.5 magnitudes. AMI should be able to reach targets as bright as M=5. There will be significant overlap between Gemini-GPI and ESO-SPHERE targets and AMI's search space, and a complementarity with NIRCam's coronagraph. We also illustrate synthesis imaging with AMI, demonstrating an imaging dynamic range of 25 at 100 mas scales. We tailor existing radio interferometric methods to retrieve a faint bar across a bright nucleus, and explain the similarities to synthesis imaging at radio wavelengths. Modest contrast observations of dusty accretion flows around AGNs will be feasible for NIRISS AMI. We show our early results of image-plane deconvolution as well. Finally, we report progress on an NRM-inspired approach to mitigate mission-level risk associated with JWST's specialized wavefront sensing hardware. By combining narrow band and medium band Nyquist-sampled images taken with a science camera we can sense JWST primary mirror segment tip-tilt to lOmas, and piston to a few nm. We can sense inter-segment piston errors of up to 5 coherence lengths of the broadest bandpass filter used

  12. Optical Network Testbeds Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Joe Mambretti

    2007-06-01

    This is the summary report of the third annual Optical Networking Testbed Workshop (ONT3), which brought together leading members of the international advanced research community to address major challenges in creating next generation communication services and technologies. Networking research and development (R&D) communities throughout the world continue to discover new methods and technologies that are enabling breakthroughs in advanced communications. These discoveries are keystones for building the foundation of the future economy, which requires the sophisticated management of extremely large qualities of digital information through high performance communications. This innovation is made possible by basic research and experiments within laboratories and on specialized testbeds. Initial network research and development initiatives are driven by diverse motives, including attempts to solve existing complex problems, the desire to create powerful new technologies that do not exist using traditional methods, and the need to create tools to address specific challenges, including those mandated by large scale science or government agency mission agendas. Many new discoveries related to communications technologies transition to wide-spread deployment through standards organizations and commercialization. These transition paths allow for new communications capabilities that drive many sectors of the digital economy. In the last few years, networking R&D has increasingly focused on advancing multiple new capabilities enabled by next generation optical networking. Both US Federal networking R&D and other national R&D initiatives, such as those organized by the National Institute of Information and Communications Technology (NICT) of Japan are creating optical networking technologies that allow for new, powerful communication services. Among the most promising services are those based on new types of multi-service or hybrid networks, which use new optical networking

  13. Holodeck Testbed Project

    Science.gov (United States)

    Arias, Adriel (Inventor)

    2016-01-01

    The main objective of the Holodeck Testbed is to create a cost effective, realistic, and highly immersive environment that can be used to train astronauts, carry out engineering analysis, develop procedures, and support various operations tasks. Currently, the Holodeck testbed allows to step into a simulated ISS (International Space Station) and interact with objects; as well as, perform Extra Vehicular Activities (EVA) on the surface of the Moon or Mars. The Holodeck Testbed is using the products being developed in the Hybrid Reality Lab (HRL). The HRL is combining technologies related to merging physical models with photo-realistic visuals to create a realistic and highly immersive environment. The lab also investigates technologies and concepts that are needed to allow it to be integrated with other testbeds; such as, the gravity offload capability provided by the Active Response Gravity Offload System (ARGOS). My main two duties were to develop and animate models for use in the HRL environments and work on a new way to interface with computers using Brain Computer Interface (BCI) technology. On my first task, I was able to create precise computer virtual tool models (accurate down to the thousandths or hundredths of an inch). To make these tools even more realistic, I produced animations for these tools so they would have the same mechanical features as the tools in real life. The computer models were also used to create 3D printed replicas that will be outfitted with tracking sensors. The sensor will allow the 3D printed models to align precisely with the computer models in the physical world and provide people with haptic/tactile feedback while wearing a VR (Virtual Reality) headset and interacting with the tools. Getting close to the end of my internship the lab bought a professional grade 3D Scanner. With this, I was able to replicate more intricate tools at a much more time-effective rate. The second task was to investigate the use of BCI to control

  14. A Retrieval Architecture for JWST Observations of Directly Imaged Exoplanets

    Science.gov (United States)

    Howe, Alex

    2017-06-01

    I present a new modeling and retrieval code for atmospheres of directly imaged exoplanets designed for use on JWST observations, extending my previous work on transiting planets. I perform example retrievals of temperature-pressure profiles, common molecular abundances, and basic cloud properties on existing lower-resolution spectra and on simulated JWST data using forward model emission spectra for planned NIRISS and NIRCam targets. From these results, I estimate the expected return on prospective JWST observations in information-theoretic terms using the mutual information metric.

  15. Developing an instrument simulator: experience feedback from the JWST/NIRSpec and VLT/MUSE simulators

    Science.gov (United States)

    Jarno, Aurélien; Piqueras, Laure; Bacon, Roland; Ferruit, Pierre; Legros, Emeline; Pécontal-Rousset, Arlette; Gnata, Xavier; Streicher, Ole; Weilbacher, Peter

    2012-09-01

    The Centre de Recherche Astrophysique de Lyon (CRAL) has recently developed two instrument simulators for spectrographic instruments. They are based on Fourier optics, and model the whole chain of acquisition, taking into account both optical aberrations and diffraction effects, by propagating a wavefront through the instrument, according to the Fourier optics concept. One simulates the NIRSpec instrument, a near-infrared multi-object spectrograph for the future James Webb Space Telescope (JWST). The other one models the Multi Unit Spectroscopic Explorer (MUSE) instrument, a second-generation integral-field spectrograph for the Very Large Telescope (VLT). The two simulators have been developed in different contexts (subcontracted versus developed internally), and for very different instruments (space-based versus ground-based), which strengthen the CRAL experience. This paper describes the lessons learned while developing these simulators: development methods, phasing with the project, points to focus on, getting data, interacting with scientists and users, etc.

  16. New Frontiers for Massive Star Winds: Imaging and Spectroscopy with the James Webb Space Telescope

    Science.gov (United States)

    Sonneborn, George

    2007-01-01

    The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2013. JWST will find the first stars and galaxies that formed in the early universe, connecting the Big Bang to our own Milky Way galaxy. JWST will peer through dusty clouds to see stars forming planetary systems, connecting the Milky Way to our own Solar System. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 microns, with some capability in the visible range. JWST will have a large mirror, 6.5 meters in diameter, and will be diffraction-limited at 2 microns (0.1 arcsec resolution). JWST will be placed in an L2 orbit about 1.5 million km from the Earth. The instruments will provide imaging, coronography, and multi-object and integral-field spectroscopy across the full 1 - 28 micron wavelength range. The breakthrough capabilities of JWST will enable new studies of massive star winds from the Milky Way to the early universe.

  17. Gemini Planet Imager Coronagraph Testbed Results

    Energy Technology Data Exchange (ETDEWEB)

    Sivaranmakrishnan, A.; Carr, G.; Soummer, R.; Oppenheimer, B.R.; Mey, J.L.; Brenner, D.; Mandeville, C.W.; Zimmerman, N. Macintosh, B.A.; Graham, J.R.; Saddlemyer, L.; Bauman, B.; Carlotti, A.; Pueyo, L.; Tuthill, P.G.; Dorrer, C.; Roberts, R.; Greenbaum, A.

    2010-12-08

    The Gemini Planet Imager (GPI) is an extreme AO coronagraphic integral field unit YJHK spectrograph destined for first light on the 8m Gemini South telescope in 2011. GPI fields a 1500 channel AO system feeding an apodized pupil Lyot coronagraph, and a nIR non-common-path slow wavefront sensor. It targets detection and characterizion of relatively young (<2GYr), self luminous planets up to 10 million times as faint as their primary star. We present the coronagraph subsystem's in-lab performance, and describe the studies required to specify and fabricate the coronagraph. Coronagraphic pupil apodization is implemented with metallic half-tone screens on glass, and the focal plane occulters are deep reactive ion etched holes in optically polished silicon mirrors. Our JH testbed achieves H-band contrast below a million at separations above 5 resolution elements, without using an AO system. We present an overview of the coronagraphic masks and our testbed coronagraphic data. We also demonstrate the performance of an astrometric and photometric grid that enables coronagraphic astrometry relative to the primary star in every exposure, a proven technique that has yielded on-sky precision of the order of a milliarsecond.

  18. The James Webb Space Telescope and its Potential for Exoplanet Science

    Science.gov (United States)

    Clampin, Mark

    2008-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 microns to 28 microns. JWST s primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. Recent progress in hardware development for the observatory will be presented, including a discussion of the status of JWST s optical system and Beryllium mirror fabrication, progress with sunshield prototypes, and recent changes in the integration and test configuration. We also review the expected scientific performance of the observatory for observations of exosolar planets by means of transit imaging and spectroscopy and direct imaging. We also review the recent discovery of Fomalhaut B and implications for debris disk imaging nd exoplanet detection with JWST.

  19. The James Webb Space Telescope and its Capability for for Exoplanet Observations

    Science.gov (United States)

    Clampin, Mark

    2012-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 .meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 micron to 28 micron. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. In this presentation we will discuss the status of the JWST project and review the expected scientific performance of the observatory for observations of exosolar planets by means of transit observations, and direct coronagraphic imaging. In particular we will discuss recent simulations of photometric and spectroscopic transit observations that demonstrate the capabilities of JWST to characterize superearth atmospheres in the light of recent Kepler and Corot discoveries

  20. The James Webb Space Telescope: Capabilities for Exoplanet Science

    Science.gov (United States)

    Clampin, Mark

    2011-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 micron to 28 micron. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, stellar and planetary system formation, and the formation and evolution of planetary systems. We will review the design of JWST, and discuss the current status of the project, with emphasis on recent progress in the construction of the observatory. We also review the capabilities of the observatory for observations of exosolar planets and debris disks by means of coronagraphic imaging, and high contrast imaging and spectroscopy. This discussion will focus on the optical and thermal performance of the observatory, and will include the current predictions for the performance of the observatory, with special reference to the demands of exoplanet science observations.

  1. The Molecular Universe as seen by JWST-MIRI

    Science.gov (United States)

    Lahuis, F.; van Dishoeck, E. F.; Wright, G.; Rieke, G.

    2011-05-01

    The Mid-InfraRed Instrument (MIRI, Wright et al. 2003) on board the James Webb Space Telescope (JWST) will be the next major mid-infrared facility in space. It combines a high sensitivity with medium resolution spectroscopy and subarcsec imaging. This makes it one of the prime facilities for astrochemical studies in the next decade. Mid-infrared spectroscopy is a very powerful astrochemical tool. Molecules without permanent dipoles such as CH_4, C_2H_2 and CO_2 can only be observed through their vibration-rotation transitions while atmospheric species, in particular H_2O, require space-based facilities. PAH and solid-state material have prominent features in the mid-infrared, and the pure rotational transitions of the dominant molecule in the universe, H_2, also occur in this band. The wealth of mid-infrared spectroscopy has been demonstrated by results from the ISO satellite (see van Dishoeck 2004 for a review), pioneering ground-based studies and most recently by the Spitzer Space Telescope. The targeted sources are extremely diverse and include objects in the local and distant universe. Variations in features allow both qualitative and quantitative studies of physical and chemical processes. MIRI consists of an imager (including low resolution (R=λ/Δλ≈100) spectroscopy and coronography) and a medium resolution spectrometer (R=2000-3000) operating in the 5-28μm wavelength range using 1024x1024 pixel Si:As arrays. The spectrometer uses four IFUs with fields ranging from 3.5 to 7 arcsec. MIRIs sensitivity, orders of magnitude higher compared to Spitzer and 8-m class ground-based telescopes, spatial and spectral resolution make it particularly well suited for studying gases and solids in disks around young stars and in the nuclei of (starburst) galaxies. The sensitive low resolution spectrometer will be ideal to characterize exoplanet atmospheres. MIRI is built in partnership by a European Consortium and the US. The MIRI flight model (FM) is now fully

  2. Matlab based Toolkits used to Interface with Optical Design Software for NASA's James Webb Space Telescope

    Science.gov (United States)

    Howard, Joseph

    2007-01-01

    The viewgraph presentation provides an introduction to the James Webb Space Telescope (JWST). The first part provides a brief overview of Matlab toolkits including CodeV, OSLO, and Zemax Toolkits. The toolkit overview examines purpose, layout, how Matlab gets data from CodeV, function layout, and using cvHELP. The second part provides examples of use with JWST, including wavefront sensitivities and alignment simulations.

  3. TeraHertz Space Telescope (TST)

    Science.gov (United States)

    Dunn, Marina Madeline; Lesser, David; O'Dougherty, Stephan; Swift, Brandon; Pat, Terrance; Cortez, German; Smith, Steve; Goldsmith, Paul; Walker, Christopher K.

    2017-01-01

    The Terahertz Space Telescope (TST) utilizes breakthrough inflatable technology to create a ~25 m far-infrared observing system at a fraction of the cost of previous space telescopes. As a follow-on to JWST and Herschel, TST will probe the FIR/THz regime with unprecedented sensitivity and angular resolution, answering fundamental questions concerning the origin and destiny of the cosmos. Prior and planned space telescopes have barely scratched the surface of what can be learned in this wavelength region. TST will pick up where JWST and Herschel leave off. At ~30µm TST will have ~10x the sensitivity and ~3x the angular resolution of JWST. At longer wavelengths it will have ~1000x the sensitivity of Herschel and ~7 times the angular resolution. TST can achieve this at low cost through the innovative use of inflatable technology. A recently-completed NIAC Phase II study (Large Balloon Reflector) validated, both analytically and experimentally, the concept of a large inflatable spherical reflector and demonstrated critical telescope functions. In our poster we will introduce the TST concept and compare its performance to past, present, and proposed far-infrared observatories.

  4. Adaptive Signal Processing Testbed

    Science.gov (United States)

    Parliament, Hugh A.

    1991-09-01

    The design and implementation of a system for the acquisition, processing, and analysis of signal data is described. The initial application for the system is the development and analysis of algorithms for excision of interfering tones from direct sequence spread spectrum communication systems. The system is called the Adaptive Signal Processing Testbed (ASPT) and is an integrated hardware and software system built around the TMS320C30 chip. The hardware consists of a radio frequency data source, digital receiver, and an adaptive signal processor implemented on a Sun workstation. The software components of the ASPT consists of a number of packages including the Sun driver package; UNIX programs that support software development on the TMS320C30 boards; UNIX programs that provide the control, user interaction, and display capabilities for the data acquisition, processing, and analysis components of the ASPT; and programs that perform the ASPT functions including data acquisition, despreading, and adaptive filtering. The performance of the ASPT system is evaluated by comparing actual data rates against their desired values. A number of system limitations are identified and recommendations are made for improvements.

  5. Optical Coating Performance for Heat Reflectors of the JWST-ISIM Electronic Component

    Science.gov (United States)

    Rashford, Robert A.; Perrygo, Charles M.; Garrison, Matthew B.; White, Bryant K.; Threat, Felix T.; Quijada, Manuel A.; Jeans, James W.; Huber, Frank K.; Bousquet, Robert R.; Shaw, Dave

    2011-01-01

    A document discusses a thermal radiator design consisting of lightweight composite materials and low-emittance metal coatings for use on the James Webb Space Telescope (JWST) structure. The structure will have a Thermal Subsystem unit to provide passive cooling to the Integrated Science Instrument Module (ISIM) control electronics. The ISIM, in the JWST observatory, is the platform that provides the mounting surfaces for the instrument control electronics. Dissipating the control electronic generated-heat away from JWST is of paramount importance so that the spacecraft s own heat does not interfere with the infrared-light gathering of distant cosmic sources. The need to have lateral control in the emission direction of the IEC (ISIM Electronics Compartment) radiators led to the development of a directional baffle design that uses multiple curved mirrorlike surfaces. This concept started out from the so-called Winston non-imaging optical concentrators that use opposing parabolic reflector surfaces, where each parabola has its focus at the opposite edge of the exit aperture. For this reason they are often known as compound parabolic concentrators or CPCs. This radiator system with the circular section was chosen for the IEC reflectors because it offers two advantages over other designs. The first is that the area of the reflector strips for a given radiator area is less, which results in a lower mass baffle assembly. Secondly, the fraction of energy emitted by the radiator strips and subsequently reflected by the baffle is less. These fewer reflections reduced the amount of energy that is absorbed and eventually re-emitted, typically in a direction outside the design emission range angle. A baffle frame holds the mirrors in position above a radiator panel on the IEC. Together, these will direct the majority of the heat from the IEC above the sunshield away towards empty space.

  6. AN IMAGE-PLANE ALGORITHM FOR JWST'S NON-REDUNDANT APERTURE MASK DATA

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Alexandra Z. [Johns Hopkins University Department of Physics and Astronomy 3400 North Charles, Baltimore, MD 21218 (United States); Pueyo, Laurent; Sivaramakrishnan, Anand [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lacour, Sylvestre [LESIA, CNRS/UMR-8109, Observatoire de Paris, UPMC, Université Paris Diderot 5 place Jules Janssen, 92195 Meudon (France)

    2015-01-10

    The high angular resolution technique of non-redundant masking (NRM) or aperture masking interferometry (AMI) has yielded images of faint protoplanetary companions of nearby stars from the ground. AMI on James Webb Space Telescope (JWST)'s Near Infrared Imager and Slitless Spectrograph (NIRISS) has a lower thermal background than ground-based facilities and does not suffer from atmospheric instability. NIRISS AMI images are likely to have 90%-95% Strehl ratio between 2.77 and 4.8 μm. In this paper we quantify factors that limit the raw point source contrast of JWST NRM. We develop an analytic model of the NRM point spread function which includes different optical path delays (pistons) between mask holes and fit the model parameters with image plane data. It enables a straightforward way to exclude bad pixels, is suited to limited fields of view, and can incorporate effects such as intra-pixel sensitivity variations. We simulate various sources of noise to estimate their effect on the standard deviation of closure phase, σ{sub CP} (a proxy for binary point source contrast). If σ{sub CP} < 10{sup –4} radians—a contrast ratio of 10 mag—young accreting gas giant planets (e.g., in the nearby Taurus star-forming region) could be imaged with JWST NIRISS. We show the feasibility of using NIRISS' NRM with the sub-Nyquist sampled F277W, which would enable some exoplanet chemistry characterization. In the presence of small piston errors, the dominant sources of closure phase error (depending on pixel sampling, and filter bandwidth) are flat field errors and unmodeled variations in intra-pixel sensitivity. The in-flight stability of NIRISS will determine how well these errors can be calibrated by observing a point source. Our results help develop efficient observing strategies for space-based NRM.

  7. Unveiling the First Black Holes With JWST:Multi-wavelength Spectral Predictions

    Science.gov (United States)

    Natarajan, Priyamvada; Pacucci, Fabio; Ferrara, Andrea; Agarwal, Bhaskar; Ricarte, Angelo; Zackrisson, Erik; Cappelluti, Nico

    2017-04-01

    Growing supermassive black holes (∼ {10}9 {M}ȯ ) that power luminous z> 6 quasars from light seeds—the remnants of the first stars—within a Gyr of the Big Bang poses a timing challenge. The formation of massive black hole seeds via direct collapse with initial masses ∼ {10}4{--}{10}5 {M}ȯ alleviates this problem. Viable direct-collapse black hole formation sites, the satellite halos of star-forming galaxies, merge and acquire stars to produce a new, transient class of high-redshift objects, obese black hole galaxies (OBGs). The accretion luminosity outshines that of the stars in OBGs. We predict the multi-wavelength energy output of OBGs and growing Pop III remnants at z = 9 for standard and slim disk accretion, as well as high and low metallicities of the associated stellar population. We derive robust selection criteria for OBGs—a pre-selection to eliminate blue sources, followed by color–color cuts ([{F}090W-{F}220W]> 0;-0.3< [{F}200W-{F}444W]< 0.3) and the ratio of X-ray flux to rest-frame optical flux ({F}X/{F}444W\\gg 1). Our cuts sift out OBGs from other bright, high- and low-redshift contaminants in the infrared. OBGs with predicted {M}{AB}< 25 are unambiguously detectable by the Mid-Infrared Instrument (MIRI), on the upcoming James Webb Space Telescope (JWST). For parameters explored here, growing Pop III remnants with predicted {M}{AB}< 30 will likely be undetectable by JWST. We demonstrate that JWST has the power to discriminate between initial seeding mechanisms.

  8. Preparing the Public for the James Webb Space Telescope and its Exploration of the Solar System

    Science.gov (United States)

    Green, Joel D.; Smith, Denise A.; Meinke, Bonnie K.; Jirdeh, Hussein; Office of Public Outreach

    2016-10-01

    The James Webb Space Telescope (JWST) is the successor to the Hubble Space Telescope. STScI and the Office of Public Outreach are committed to bringing awareness of the technology, the excitement, and the future science potential of this great observatory to the public and to the scientific community, prior to its 2018 launch. The challenges in ensuring the high profile of JWST (understanding the infrared, the vast distance to the telescope's final position, and the unfamiliar science territory) requires us to lay the proper background. We currently engage the full range of the public and scientific communities using a variety of high impact, memorable initiatives, in combination with modern technologies to extend reach, linking the science goals of Webb to the ongoing discoveries being made by Hubble. We have injected Webb-specific content into ongoing outreach programs: for example, simulated, scientifically-inspired but aesthetic JWST scenes (illustrating the differences between JWST and previous missions); partnering with high impact science communicators such as MinutePhysics to produce timely and concise content; incorporating JWST science into activities at large scale events. JWST has unique observational capabilities that optimize its ability ot study the Solar System: monitoring weather, tracking and measuring dusty objects, collaborative parallax observations with other observatories, and more. We discuss some of the ways we engage the public on these concepts.

  9. Challenges with Electrical, Electronics, and Electromechanical Parts for James Webb Space Telescope

    Science.gov (United States)

    Jah, Muzar A.; Jeffers, Basil S.

    2016-01-01

    James Webb Space Telescope (JWST) is the space-based observatory that will extend the knowledge gained by the Hubble Space Telescope (HST). Hubble focuses on optical and ultraviolet wavelengths while JWST focuses on the infrared portion of the electromagnetic spectrum, to see the earliest stars and galaxies that formed in the Universe and to look deep into nearby dust clouds to study the formation of stars and planets. JWST, which commenced creation in 1996, is scheduled to launch in 2018. It includes a suite of four instruments, the spacecraft bus, optical telescope element, Integrated Science Instrument Module (ISIM, the platform to hold the instruments), and a sunshield. The mass of JWST is approximately 6200 kg, including observatory, on-orbit consumables and launch vehicle adaptor. Many challenges were overcome while providing the electrical and electronic components for the Goddard Space Flight Center hardware builds. Other difficulties encountered included developing components to work at cryogenic temperatures, failures of electronic components during development and flight builds, Integration and Test electronic parts problems, and managing technical issues with international partners. This paper will present the context of JWST from a EEE (electrical, electronic, and electromechanical) perspective with examples of challenges and lessons learned throughout the design, development, and fabrication of JWST in cooperation with our associated partners including the Canadian Space Agency (CSA), the European Space Agency (ESA), Lockheed Martin and their respective associated partners. Technical challenges and lessons learned will be discussed.

  10. Astrochemistry with the Mid-InfraRed Instrument on JWST

    Science.gov (United States)

    van Dishoeck, E. F.; Merín, B.; Brandl, B.; Böker, T.; Greene, T.; Meixner, M.; Ressler, M.; Rieke, G.; Waelkens, C.; Wright, G.; Miri Team

    JWST-MIRI will have imaging and medium resolution (λ/Δλ ≍ 2000-3000) integral field spectroscopy with orders of magnitude improvements in sensitivity and/or spatial resolution compared with existing facilities. It will be a prime facility for astrochemical studies of gases and solids in a wide variety of objects in the next decade. 1. Introduction Mid-infrared spectroscopy is becoming a powerful tool in astrochemistry, with studies of molecules and sources that are highly complementary to those at millimeter wavelengths. Molecules without permanent dipole moments such CH4, C2H2 and CO2 can only be observed through their vibration-rotation transitions. Space-based missions open up the possibility to study molecules which are abundant in ouw own atmosphere, in particular H2O. Polycyclic Aromatic Hydrocarbons have their most prominent features at mid-infrared wavelengths, and the pure rotational transitions of the dominant molecule in the universe, H2, also occur in this band. Solid-state material is uniquely probed in the mid-infrared, including characteric bands of ices, silicates, oxides, carbides, carbonates and sulfides. The wealth of mid-infrared spectroscopy has been demonstrated by results from the ISO satellite (see van Dishoeck & Tielens 2001, van Dishoeck 2004 for reviews), by pioneering ground-based studies (Lacy et al. 1989, Evans et al. 1990) and most recently by the Spitzer Space Telescope. Targets include molecular clouds, PDRs, shocks, deeply embedded young stellar objects, UC HII regions, protoplanetary disks, planetary atmospheres, comets, evolved stars and even entire galaxies. In addition to an inventory of gaseous and solid-state material, the lines and line ratios provide powerful diagnostics of temperatures, densities, UV field, elemental abundances, etc. Systematic variations in features from region to region allow the physical and chemical processes to be traced. The MidInfraRed Instrument (MIRI) on board the 6m James Webb Space

  11. Pupil Alignment Considerations for Large, Deployable Space Telescopes

    Science.gov (United States)

    Bos, Brent J.; Ohl, Raymond G.; Kubalak, Daivd A.

    2011-01-01

    For many optical systems the properties and alignment of the internal apertures and pupils are not critical or controlled with high precision during optical system design, fabrication or assembly. In wide angle imaging systems, for instance, the entrance pupil position and orientation is typically unconstrained and varies over the system s field of view in order to optimize image quality. Aperture tolerances usually do not receive the same amount of scrutiny as optical surface aberrations or throughput characteristics because performance degradation is typically graceful with misalignment, generally only causing a slight reduction in system sensitivity due to vignetting. But for a large deployable space-based observatory like the James Webb Space Telescope (JWST), we have found that pupil alignment is a key parameter. For in addition to vignetting, JWST pupil errors cause uncertainty in the wavefront sensing process that is used to construct the observatory on-orbit. Furthermore they also open stray light paths that degrade the science return from some of the telescope s instrument channels. In response to these consequences, we have developed several pupil measurement techniques for the cryogenic vacuum test where JWST science instrument pupil alignment is verified. These approaches use pupil alignment references within the JWST science instruments; pupil imaging lenses in three science instrument channels; and unique pupil characterization features in the optical test equipment. This will allow us to verify and crosscheck the lateral pupil alignment of the JWST science instruments to approximately 1-2% of their pupil diameters.

  12. NASA Robotic Neurosurgery Testbed

    Science.gov (United States)

    Mah, Robert

    1997-01-01

    The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations, In neurosurgery, the needle used in the standard stereotactic CT or MRI guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled "Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification" is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.

  13. NASA Robotic Neurosurgery Testbed

    Science.gov (United States)

    Mah, Robert

    1997-01-01

    The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations, In neurosurgery, the needle used in the standard stereotactic CT or MRI guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled "Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification" is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.

  14. Hartmann test for the James Webb Space Telescope

    Science.gov (United States)

    Knight, J. Scott; Feinberg, Lee; Howard, Joseph; Acton, D. Scott; Whitman, Tony L.; Smith, Koby

    2016-07-01

    The James Webb Space Telescope's (JWST) end-to-end optical system will be tested in a cryogenic vacuum environment before launch at NASA Johnson Space Center's (JSC) Apollo-era, historic Chamber A thermal vacuum facility. During recent pre-test runs with a prototype "Pathfinder" telescope, the vibration in this environment was found to be challenging for the baseline test approach, which uses phase retrieval of images created by three sub-apertures of the telescope. To address the vibration, an alternate strategy implemented using classic Hartmann test principles combined with precise mirror mechanisms to provide a testing approach that is insensitive to the dynamics environment of the chamber. The measurements and sensitivities of the Hartmann approach are similar to those using phase retrieval over the original sparse aperture test. The Hartmann test concepts have been implemented on the JWST Test Bed Telescope, which provided the rationale and empirical evidence indicating that this Hartmann style approach would be valuable in supplementing the baseline test approach. This paper presents a Hartmann approach implemented during the recent Pathfinder test along with the test approach that is currently being considered for the full optical system test of JWST. Comparisons are made between the baseline phase retrieval approach and the Hartmann approach in addition to demonstrating how the two test methodologies support each other to reduce risk during the JWST full optical system test.

  15. Telescope Innovations Improve Speed, Accuracy of Eye Surgery

    Science.gov (United States)

    2013-01-01

    One of the main components of NASA's vision for the future of space exploration will actually have a keen eye for the past. The James Webb Space Telescope (JWST), scheduled to launch in 2018, will have spectacular sight, after it reaches orbit, one of its main goals is to observe the first galaxies that formed in the early universe. "JWST offers new capabilities in the infrared well beyond what we can see from current telescopes, either on the ground or in space. It will let us explore the early universe, extrasolar planets, and really, all branches of astrophysics," says Lee Feinberg, optical telescope element manager for the JWST at Goddard Space Flight Center. Building such a keen space telescope is an astronomic task. Because JWST will gaze over such incredible distances, it requires very large mirrors. In fact, the primary mirror will be more than two stories in diameter and consists of 18 separate segments. Each segment must be perfectly smooth, flat, and scratch-free in order to deliver a view 13 billion light years away. Construction of the 18 mirror segments involved measuring, grinding, polishing, and testing - and more measuring, grinding, polishing, and testing - and more measuring, grinding, polishing, and testing (you get the idea). One of the most time consuming steps of the mirror development process, the grinding phase, can take years.

  16. Fate of James Webb Space Telescope murky

    Science.gov (United States)

    Showstack, Randy

    2011-07-01

    The James Webb Space Telescope (JWST), the next-generation successor to the Hubble Space Telescope, was put on the chopping block by the U.S. House of Representatives Appropriations Subcommittee on Commerce, Justice, Science, and Related Agencies. The subcommittee approved a measure on 7 July that “terminates funding for [JWST], which is billions of dollars over budget and plagued by poor management.” Then, on 13 July, Rep. Adam Schiff (D-Calif.), whose district includes NASA's Jet Propulsion Laboratory, tried to insert a funding amendment—transferring $200 million from NASA's Cross-Agency Support budget to JWST—when the full House Committee on Appropriations voted. That amendment failed in a voice vote.

  17. Fading testbed for free-space optical communications

    Science.gov (United States)

    Shrestha, Amita; Giggenbach, Dirk; Mustafa, Ahmad; Pacheco-Labrador, Jorge; Ramirez, Julio; Rein, Fabian

    2016-10-01

    Free-space optical (FSO) communication is a very attractive technology offering very high throughput without spectral regulation constraints, yet allowing small antennas (telescopes) and tap-proof communication. However, the transmitted signal has to travel through the atmosphere where it gets influenced by atmospheric turbulence, causing scintillation of the received signal. In addition, climatic effects like fogs, clouds and rain also affect the signal significantly. Moreover, FSO being a line of sight communication requires precise pointing and tracking of the telescopes, which otherwise also causes fading. To achieve error-free transmission, various mitigation techniques like aperture averaging, adaptive optics, transmitter diversity, sophisticated coding and modulation schemes are being investigated and implemented. Evaluating the performance of such systems under controlled conditions is very difficult in field trials since the atmospheric situation constantly changes, and the target scenario (e.g. on aircraft or satellites) is not easily accessible for test purposes. Therefore, with the motivation to be able to test and verify a system under laboratory conditions, DLR has developed a fading testbed that can emulate most realistic channel conditions. The main principle of the fading testbed is to control the input current of a variable optical attenuator such that it attenuates the incoming signal according to the loaded power vector. The sampling frequency and mean power of the vector can be optionally changed according to requirements. This paper provides a brief introduction to software and hardware development of the fading testbed and measurement results showing its accuracy and application scenarios.

  18. New and Better Near-Infrared Detectors for JWST Near Infrared Spectrograph

    Science.gov (United States)

    Rauscher, Bernard J.; Mott, D. Brent; Wen, Yiting; Linder, Don; Greenhouse, Matthew A.; Hill, Robert J.

    2014-01-01

    ESA and NASA recently selected two 5 m cutoff Teledyne H2RG sensor chip assemblies (SCA) for flight on the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). These HgCdTe SCAs incorporate Teledynes improved barrier layer design that eliminates the degradation that affected earlier JWST H2RGs(Rauscher et al. 2012a). The better indium barrier, together with other design changes, has improved the performance and reliability of JWSTs SCAs. In this article, we describe the measured performance characteristics that most directly affect scientific observations including read noise, total noise, dark current, quantum efficiency (QE), and image persistence. As part of measuring QE, we measured the quantum yield as a function of photon energy,, and found that it exceeds unity for photon energies E (2.65.2) Eg, where Eg is the HgCdTe bandgap energy. This corresponds to. 2 m for NIRSpecs 5 m cutoff HgCdTe. Our measurements agree well with a previous measurement by McCullough et al. (2008) for. 1.3. For 1.3, we find a slower increase in with photon energy than McCullough et al. did. However, and as McCullough et al. note, their two state model of the yield process is not valid for large 1.

  19. The impact of JWST broad-band filter choice on photometric redshift estimation

    CERN Document Server

    Bisigello, L; Colina, L; Fèvre, O Le; Nørgaard-Nielsen, H U; Pérez-González, P G; Pye, J; van der Werf, P; Ilbert, O; Grogin, N; Koekemoer, A

    2016-01-01

    The determination of galaxy redshifts in James Webb Space Telescope (JWST)'s blank-field surveys will mostly rely on photometric estimates, based on the data provided by JWST's Near-Infrared Camera (NIRCam) at 0.6-5.0 {\\mu}m and Mid Infrared Instrument (MIRI) at {\\lambda}>5.0 {\\mu}m. In this work we analyse the impact of choosing different combinations of NIRCam and MIRI broad-band filters (F070W to F770W), as well as having ancillary data at {\\lambda}=10, but the zphot quality significantly degrades at S/N<=5. Adding MIRI photometry with one magnitude brighter depth than the NIRCam depth allows for a redshift recovery of 83-99%, depending on SED type, and its effect is particularly noteworthy for galaxies with nebular emission. The vast majority of NIRCam galaxies with [F150W]=29 AB mag at z=7-10 will be detected with MIRI at [F560W, F770W]<28 mag if these sources are at least mildly evolved or have spectra with emission lines boosting the mid-infrared fluxes.

  20. The James Webb STEM Innovation Project: Bringing JWST to the Education Community

    Science.gov (United States)

    Eisenhamer, Bonnie; Harris, J.; Ryer, H.; Taylor, J.; Bishop, M.

    2012-01-01

    Building awareness of a NASA mission prior to launch and connecting that mission to the education community can be challenging. In order to address this challenge, the Space Telescope Science Institute's Office of Public Outreach has developed the James Webb STEM innovation Project (SIP) - an interdisciplinary project that focuses on the engineering aspects and potential scientific discoveries of JWST, while incorporating elements of project-based learning. Students in participating schools will use skills from multiple subject areas to research an aspect of the JWST's design or potential science and create models, illustrated essays, or technology-based projects to demonstrate their learning. Student projects will be showcased during special events at select venues in the project states - thus allowing parents and community members to also be benefactors of the project. Currently, the SIP is being piloted in New York, California, and Maryland. In addition, we will be implementing the SIP in partnership with NASA Explorer Schools in the states of New Mexico, Michigan, Texas, Tennessee, and Iowa.

  1. An image-plane algorithm for JWST's non-redundant aperture mask data

    CERN Document Server

    Greenbaum, Alexandra Z; Sivaramakrishnan, Anand; Lacour, Sylvestre

    2014-01-01

    The high angular resolution technique of non-redundant masking (NRM) or aperture masking interferometry (AMI) has yielded images of faint protoplanetary companions of nearby stars from the ground. AMI on James Webb Space Telescope (JWST)'s Near Infrared Imager and Slitless Spectrograph (NIRISS) has a lower thermal background than ground-based facilites and does not suffer from atmospheric instability. NIRISS AMI images are likely to have 90 - 95% Strehl ratio between 2.77 and 4.8 micron. In this paper we quantify factors that limit the raw point source contrast of JWST NRM. We develop an analytic model of the NRM point spread function which includes different optical path delays (pistons) between mask holes and fit the model parameters with image plane data. It enables a straightforward way to exclude bad pixels, is suited to limited fields of view, and can incorporate effects such as intra-pixel sensitivity variations. We simulate various sources of noise to estimate their effect on the standard deviation of...

  2. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Science.gov (United States)

    Stevenson, Kevin B.; Lewis, Nikole K.; Bean, Jacob L.; Beichman, Charles A.; Fraine, Jonathan; Kilpatrick, Brian M.; Krick, J. E.; Lothringer, Joshua D.; Mandell, Avi M.; Valenti, Jeff A.; Agol, Eric; Angerhausen, Daniel; Barstow, Joanna K.; Birkmann, Stephan M.; Burrows, Adam; Charbonneau, David; Cowan, Nicolas B.; Greene, Thomas P.; Line, Michael R.; Wakeford, Hanna R.

    2016-01-01

    The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science, due to a combination of its capability for continuous, long duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed community targets'') that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations. The latter are a unique challenge

  3. Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Science.gov (United States)

    Stevenson, Kevin B.; Lewis, Nikole K.; Bean, Jacob L.; Beichman, Charles; Fraine, Jonathan; Kilpatrick, Brian M.; Krick, J. E.; Lothringer, Joshua D.; Mandell, Avi M.; Valenti, Jeff A.; Agol, Eric; Angerhausen, Daniel; Barstow, Joanna K.; Birkmann, Stephan M.; Burrows, Adam; Charbonneau, David; Cowan, Nicolas B.; Crouzet, Nicolas; Cubillos, Patricio E.; Curry, S. M.; Dalba, Paul A.; de Wit, Julien; Deming, Drake; Désert, Jean-Michel; Doyon, René; Dragomir, Diana; Ehrenreich, David; Fortney, Jonathan J.; García Muñoz, Antonio; Gibson, Neale P.; Gizis, John E.; Greene, Thomas P.; Harrington, Joseph; Heng, Kevin; Kataria, Tiffany; Kempton, Eliza M.-R.; Knutson, Heather; Kreidberg, Laura; Lafrenière, David; Lagage, Pierre-Olivier; Line, Michael R.; Lopez-Morales, Mercedes; Madhusudhan, Nikku; Morley, Caroline V.; Rocchetto, Marco; Schlawin, Everett; Shkolnik, Evgenya L.; Shporer, Avi; Sing, David K.; Todorov, Kamen O.; Tucker, Gregory S.; Wakeford, Hannah R.

    2016-09-01

    The James Webb Space Telescope (JWST) will likely revolutionize transiting exoplanet atmospheric science, due to a combination of its capability for continuous, long duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) Cycle 1 program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful transiting exoplanet characterization programs in later cycles. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed “community targets”) that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations. The latter are a unique challenge

  4. Advanced Artificial Intelligence Technology Testbed

    Science.gov (United States)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  5. Environment Emulation For Wsn Testbed

    Directory of Open Access Journals (Sweden)

    Radosław Kapłoniak

    2012-01-01

    Full Text Available The development of applications for wireless sensor networks is a challenging task. For this reason, several testbed platforms have been created. They simplify the manageability of nodes by offering easy ways of programming and debugging sensor nodes. These platforms, sometimes composed of dozens of sensors, provide a convenient way for carrying out research on medium access control and data exchange between nodes. In this article, we propose the extension of the WSN testbed, which could be used for evaluating and testing the functionality of sensor networks applications by emulating a real-world environment.

  6. Measuring segmented primary mirror WFE in the presence of vibration and thermal drift on the light-weighted JWST

    Science.gov (United States)

    Whitman, Tony L.; Dziak, Kenneth J.; Wells, Conrad; Olczak, Gene

    2012-09-01

    The light-weighted design of the Optical Telescope Element (OTE) of the James Webb Telescope (JWST) leads to additional sensitivity to vibration from the ground - an important consideration to the measurement uncertainty of the wavefront error (WFE) in the primary mirror. Furthermore, segmentation of the primary mirror leads to rigid-body movements of segment areas in the WFE. The ground vibrations are minimized with modifications to the test facility, and by the architecture of the equipment supporting the load. Additional special test equipment (including strategically placed isolators, tunable mass dampers, and cryogenic magnetic dampers) mitigates the vibration and the response sensitivity before reaching the telescope. A multi-wavelength interferometer is designed and operated to accommodate the predicted residual vibration. Thermal drift also adds to the measurement variation. Test results of test equipment components, measurement theory, and finite element analysis combine to predict the test uncertainty in the future measurement of the primary mirror. The vibration input to the finite element model comes from accelerometer measurements of the facility with the environmental control pumps operating. One of the isolators have been built and tested to validate the dynamic performance. A preliminary model of the load support equipment and the OTE with the Integrated Science Instrument Module (ISIM) is complete. The performance of the add-on dampers have been established in previous applications. And operation of the multi-wavelength interferometer was demonstrated on a scaled hardware version of the JWST in an environment with vibration and thermal drift.

  7. The infrared signatures of very small grains in the Universe seen by JWST

    CERN Document Server

    Pilleri, Paolo; Joblin, Christine

    2015-01-01

    The near- and mid-IR spectrum of many astronomical objects is dominated by emission bands due to UV-excited polycyclic aromatic hydrocarbons (PAH) and evaporating very small grains (eVSG). Previous studies with the ISO, Spitzer and AKARI space telescopes have shown that the spectral variations of these features are directly related to the local physical conditions that induce a photo-chemical evolution of the band carriers. Because of the limited sensitivity and spatial resolution, these studies have focused mainly on galactic star-forming regions. We discuss how the advent of JWST will allow to extend these studies to previously unresolved sources such as near-by galaxies, and how the analysis of the infrared signatures of PAHs and eVSGs can be used to determine their physical conditions and chemical composition.

  8. The Mid-Infrared Instrument for JWST, II: Design and Build

    CERN Document Server

    Wright, G S; Goodson, G B; Rieke, G H; Aitink-Kroes, Gabby; Amiaux, J; Aricha-Yanguas, Ana; Azzolini, Ruyman; Banks, Kimberly; Barrado-Navascues, D; Belenguer-Davila, T; Bloemmart, J A D L; Bouchet, Patrice; Brandl, B R; Colina, L; Detre, Ors; Diaz-Catala, Eva; Eccleston, Paul; Friedman, Scott D; Garcia-Marin, Macarena; Guedel, Manuel; Glasse, Alistair; Glauser, Adrian M; Greene, T P; Groezinger, Uli; Grundy, Tim; Hastings, Peter; Henning, Th; Hofferbert, Ralph; Hunter, Faye; Jessen, N C; Justtanont, K; Karnik, Avinash R; Khorrami, Mori A; Krause, Oliver; Labiano, Alvaro; Lagage, P -O; Langer, Ulrich; Lemke, Dietrich; Lim, Tanya; Lorenzo-Alvarez, Jose; Mazy, Emmanuel; McGowan, Norman; Meixner, M E; Morris, Nigel; Morrison, Jane E; Mueller, Friedrich; Norgaard-Nielson, H -U; Olofsson, Goeran; O'Sullivan, Brian; Pel, J -W; Penanen, Konstantin; Petach, M B; Pye, J P; Ray, T P; Renotte, Etienne; Renouf, Ian; Ressler, M E; Samara-Ratna, Piyal; Scheithauer, Silvia; Schneider, Analyn; Shaughnessy, Bryan; Stevenson, Tim; Sukhatme, Kalyani; Swinyard, Bruce; Sykes, Jon; Thatcher, John; Tikkanen, Tuomo; van Dishoeck, E F; Waelkens, C; Walker, Helen; Wells, Martyn; Zhender, Alex

    2015-01-01

    The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28.5 microns. MIRI has, within a single 'package', four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R ~ 100) spectroscopy, and medium-resolving power (R ~ 1500 to 3500) integral field spectroscopy. An associated cooler system maintains MIRI at its operating temperature of < 6.7 K. This paper describes the driving principles behind the design of MIRI, the primary design parameters, and their realization in terms of the 'as-built' instrument. It also describes the test program that led to delivery of the tested and calibrated Flight Model to NASA in 2012, and the confirmation after delivery of the key interface requirements.

  9. Model predictions and observed performance of JWST's cryogenic position metrology system

    Science.gov (United States)

    Lunt, Sharon R.; Rhodes, David; DiAntonio, Andrew; Boland, John; Wells, Conrad; Gigliotti, Trevis; Johanning, Gary

    2016-07-01

    The James Webb Space Telescope (JWST) cryogenic testing requires measurement systems that both obtain a very high degree of accuracy and can function in that environment. Close-range photogrammetry was identified as meeting those criteria. Testing the capability of a close-range photogrammetric system prior to its existence is a challenging problem. Computer simulation was chosen over building a scaled mock-up to allow for increased flexibility in testing various configurations. Extensive validation work was done to ensure that the actual as-built system meets accuracy and repeatability requirements. The simulated image data predicted the uncertainty in measurement to be within specification and this prediction was borne out experimentally. Uncertainty at all levels was verified experimentally to be <0.1 mm.

  10. NEOs in the mid-infrared: from Spitzer to JWST

    Science.gov (United States)

    Mueller, Michael; Thomas, Cristina A.

    2016-10-01

    Near-Earth Objects (NEOs) account for a surprisingly large fraction of the Spitzer observing time devoted to Solar System science. As a community, we should think of ways to repeat that success with JWST. JWST is planning an open Early Release Science Program, with the expected deadline for letters of intent in early 2017. We can't wait for next year's DPS to develop ideas. The time is now!In order to stir up the discussion, we will present ideas for NEO observing programs that are well adapted to JWST's capabilities and limitations, based on our recent PASP paper (Thomas et al., 2016). Obvious measurement objectives would include* size and albedo from thermal continuum (MIRI photometry)* thermal inertia for objects with well-known shape and spin state (MIRI)* taxonomy through reflection spectroscopy and emission spectroscopy in the NIR and MIR; NIR colors for faint objects.In all cases, JWST's sensitivity will allow us to go deeper than currently possible by at least an order of magnitude. Meter-sized NEOs similar to 2009 BD or 2011 MD are easy targets for MIRI spectrophotometry!The following limitations must be kept in mind, however: JWST's large size makes it slow to move. Most problematic for NEOs is probably the resulting 'speed limit': non-sidereal tracking is supported up to a rate of 30 mas/s, NEOs can easily move faster than that (ways to relax this constraint are under discussion). The average slew to a new target is budgeted to take 30 min, effectively ruling out programs many-target programs like ExploreNEOs or NEOSurvey (see D. Trilling's paper). Additionally, JWST will only observe close to quadrature, translating to large solar phase angles for NEO observations; this is familiar from other space-based IR facilities.

  11. Cryogenic optical test planning using the Optical Telescope Element Simulator with the James Webb Space Telescope Integrated Science Instrument Module

    Science.gov (United States)

    Reichard, Timothy A.; Bond, Nicholas A.; Greeley, Bradford W.; Malumuth, Eliot M.; Melendez, Marcio; Shiri, Ron; Alves de Oliveira, Catarina; Antonille, Scott R.; Birkmann, Stephan; Davis, Clinton; Dixon, William V.; Martel, André R.; Miskey, Cherie L.; Ohl, Raymond G.; Sabatke, Derek; Sullivan, Joseph

    2016-09-01

    NASA's James Webb Space Telescope (JWST) is a 6.5 m diameter, segmented, deployable telescope for cryogenic infrared space astronomy ( 40 K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SIs), including a guider. The SI and guider units are integrated to the ISIM structure and optically tested at NASA Goddard Space Flight Center as an instrument suite using a telescope simulator (Optical Telescope Element SIMulator; OSIM). OSIM is a high-fidelity, cryogenic JWST telescope simulator that features a 1.5m diameter powered mirror. The SIs are aligned to the flight structure's coordinate system under ambient, clean room conditions using optomechanical metrology and customized interfaces. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors and metrology in six degrees of freedom. SI performance, including focus, pupil shear, pupil roll, boresight, wavefront error, and image quality, is evaluated at the operating temperature using OSIM. The comprehensive optical test plans include drafting OSIM source configurations for thousands of exposures ahead of the start of a cryogenic test campaign. We describe how we predicted the performance of OSIM light sources illuminating the ISIM detectors to aide in drafting these optical tests before a test campaign began. We also discuss the actual challenges and successes of those exposure predictions encountered during a test campaign to fulfill the demands of the ISIM optical performance verification.

  12. A 4K x 4K HgCdTe astronomical camera enabled by the JWST NIR detector development program

    Science.gov (United States)

    Hall, Donald N. B.; Luppino, Gerard; Hodapp, Klaus W.; Garnett, James D.; Loose, Markus; Zandian, Majid

    2004-09-01

    The ambitious science goals of the James Webb Space Telescope (JWST) have driven spectacular advances in λco ~ 5um detector technology over the past five years. This paper reviews both the UH/RSC team"s Phase A development and evaluation of 2Kx2K arrays exceeding the detector requirements for JWST"s near infrared instruments and also the hardware integration of these into a 4Kx4K (16Mpxl) close packed mosaic focal plane array housed in an Ultra Low Background test facility. Both individual first generation 2Kx2K SCA"s and 4Kx4K mosaic focal planes have been extensively characterized in the laboratory and, since September 2003, a NIR camera utilizing the 4Kx4K mosaic focal plane has been in use for nearly 100 nights at the UH 2.2 m telescope on Mauna Kea. Typical test results for the first generation 2Kx2K arrays and their integration into 4Kx4K mosaic focal planes are reported. Demonstration of the design concepts and both array and mosaic focal plane performance in actual hardware, as described here, has provided the foundation for design iterations leading to later generations of 2Kx2K arrays and 4Kx4K mosaic focal planes. Four major technology developments leading to first generation hardware demonstrations of both 2Kx2K SCA"s and a 4Kx4K mosaic FPA are reviewed. These are: 1) improvement in test equipment and procedures to characterize the detectors against JWST requirements and goals, primarily at 37K but with the capability to test from 30K to 100K; 2) optimization of λc ~ 5 um MBE HgCdTe material on a CZT substrate for low dark current (goal of 0.003 e-/sec at 37K) with high quantum efficiency, low cross-talk and greatly reduced image persistence; 3) development of the 2Kx2K HAWAII-2RG multiplexer designed specifically to take full advantage of these detector characteristics for a wide range of astronomical applications (and fully compatible with an ASIC controller developed under the JWST Instrument Technology Development initiative) and 4) development of

  13. High-contrast imager for Complex Aperture Telescopes (HiCAT): 2. Design overview and first light results

    CERN Document Server

    N'Diaye, Mamadou; Egron, Sylvain; Pueyo, Laurent; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D; Elliot, Erin; Wallace, J Kent; Hugot, Emmanuel; Marcos, Michel; Ferrari, Marc; Long, Chris A; Anderson, Rachel; DiFelice, Audrey; Soummer, Rémi

    2014-01-01

    We present a new high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The testbed was designed to enable a wide range of studies of the effects of such telescope geometries, with primary mirror segmentation, central obstruction, and spiders. The associated diffraction features in the point spread function make high-contrast imaging more challenging. In particular the testbed will be compatible with both AFTA-like and ATLAST-like aperture shapes, respectively on-axis monolithic, and on-axis segmented telescopes. The testbed optical design was developed using a novel approach to define the layout and surface error requirements to minimize amplitude-induced errors at the target contrast level performance. In this communication we compare the as-built surface errors for each optic to their specifications based on end-to-end Fresnel modeling of the testbed. We also report on the testbed optical and optomechani...

  14. James Webb Space Telescope: The First Light Machine

    Science.gov (United States)

    Stahl, H. Philip

    2014-01-01

    NASA James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world's largest space telescope. Its architecture, e.g. aperture, wavelength range and operating temperature, is driven by JWST's science objectives. Introduction: Scheduled to start its 5 year mission after 2018, JWST will study the origin and evolution of galaxies, stars and planetary systems. Its science mission is to: Identify the first bright objects that formed in the early Universe, and follow the ionization history. Determine how galaxies form. Determine how galaxies and dark matter, including gas, stars, metals, overall morphology and active nuclei evolved to the present day. Observe the birth and early development of stars and the formation of planets. And, study the physical and chemical properties of solar systems for the building blocks of Life. Principle: To accomplish the JWST science objectives requires a larger aperture infrared cryogenic space telescope. A large aperture is required because the objects are very faint. The infrared spectral range is required because the objects are so far away that their ultraviolet and visible wavelength spectral lines are red-shifted into the infrared. Because the telescope is infrared, it needs to be cryogenic. And, because of the telescope is infrared, it must operate above the Earth's atmosphere, i.e. in space. JWST is probably the single most complicated mission that humanity has attempted. It is certainly the most difficult optical fabrication and testing challenge of our generation. The JWST 6.5 m diameter primary mirror is nearly a parabola with a conic constant of -0.9967 and radius of curvature at 30K of 15.880 m. The primary mirror is divided into 18 segments with 3 different prescriptions; each with its own off-axis distance and aspheric departure. The radius of curvature

  15. Visible Nulling Coronagraphy Testbed Development for Exoplanet Detection

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Chen, Andrew; Petrone, Peter; Booth, Andrew; Madison, Timothy; Bolcar, Matthew; Noecker, M. Charley; Kendrick, Stephen; Melnick, Gary; Tolls, Volker

    2010-01-01

    Three of the recently completed NASA Astrophysics Strategic Mission Concept (ASMC) studies addressed the feasibility of using a Visible Nulling Coronagraph (VNC) as the prime instrument for exoplanet science. The VNC approach is one of the few approaches that works with filled, segmented and sparse or diluted aperture telescope systems and thus spans the space of potential ASMC exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies and has developed an incremental sequence of VNC testbeds to advance the this approach and the technologies associated with it. Herein we report on the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under high bandwidth closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible light nulling milestones of sequentially higher contrasts of 10(exp 8) , 10(exp 9) and 10(exp 10) at an inner working angle of 2*lambda/D and ultimately culminate in spectrally broadband (>20%) high contrast imaging. Each of the milestones, one per year, is traceable to one or more of the ASMC studies. The VNT uses a modified Mach-Zehnder nulling interferometer, modified with a modified "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. Discussed will be the optical configuration laboratory results, critical technologies and the null sensing and control approach.

  16. High-contrast imaging testbed

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K; Silva, D; Poyneer, L; Macintosh, B; Bauman, B; Palmer, D; Remington, T; Delgadillo-Lariz, M

    2008-01-23

    Several high-contrast imaging systems are currently under construction to enable the detection of extra-solar planets. In order for these systems to achieve their objectives, however, there is considerable developmental work and testing which must take place. Given the need to perform these tests, a spatially-filtered Shack-Hartmann adaptive optics system has been assembled to evaluate new algorithms and hardware configurations which will be implemented in these future high-contrast imaging systems. In this article, construction and phase measurements of a membrane 'woofer' mirror are presented. In addition, results from closed-loop operation of the assembled testbed with static phase plates are presented. The testbed is currently being upgraded to enable operation at speeds approaching 500 hz and to enable studies of the interactions between the woofer and tweeter deformable mirrors.

  17. Mobile Testbeds with an Attitude

    CERN Document Server

    Moon, Sungwook

    2010-01-01

    There have been significant recent advances in mobile networks, specifically in multi-hop wireless networks including DTNs and sensor networks. It is critical to have a testing environment to realistically evaluate such networks and their protocols and services. Towards this goal, we propose a novel, mobile testbed of two main components. The first consists of a network of robots with personality- mimicking, human-encounter behaviors, which will be the focus of this demo. The personality is build upon behavioral profiling of mobile users based on extensive wireless-network measurements and analysis. The second component combines the testbed with the human society using a new concept that we refer to as participatory testing utilizing crowd sourcing.

  18. Generalized Nanosatellite Avionics Testbed Lab

    Science.gov (United States)

    Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt

    2015-01-01

    The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.

  19. Augmented Method to Improve Thermal Data for the Figure Drift Thermal Distortion Predictions of the JWST OTIS Cryogenic Vacuum Test

    Science.gov (United States)

    Park, Sang C.; Carnahan, Timothy M.; Cohen, Lester M.; Congedo, Cherie B.; Eisenhower, Michael J.; Ousley, Wes; Weaver, Andrew; Yang, Kan

    2017-01-01

    The JWST Optical Telescope Element (OTE) assembly is the largest optically stable infrared-optimized telescope currently being manufactured and assembled, and is scheduled for launch in 2018. The JWST OTE, including the 18 segment primary mirror, secondary mirror, and the Aft Optics Subsystem (AOS) are designed to be passively cooled and operate near 45K. These optical elements are supported by a complex composite backplane structure. As a part of the structural distortion model validation efforts, a series of tests are planned during the cryogenic vacuum test of the fully integrated flight hardware at NASA JSC Chamber A. The successful ends to the thermal-distortion phases are heavily dependent on the accurate temperature knowledge of the OTE structural members. However, the current temperature sensor allocations during the cryo-vac test may not have sufficient fidelity to provide accurate knowledge of the temperature distributions within the composite structure. A method based on an inverse distance relationship among the sensors and thermal model nodes was developed to improve the thermal data provided for the nanometer scale WaveFront Error (WFE) predictions. The Linear Distance Weighted Interpolation (LDWI) method was developed to augment the thermal model predictions based on the sparse sensor information. This paper will encompass the development of the LDWI method using the test data from the earlier pathfinder cryo-vac tests, and the results of the notional and as tested WFE predictions from the structural finite element model cases to characterize the accuracies of this LDWI method.

  20. A remote integrated testbed for cooperating objects

    CERN Document Server

    Dios, Jose Ramiro Martinez-de; Bernabe, Alberto de San; Ollero, Anibal

    2013-01-01

    Testbeds are gaining increasing relevance in research domains and also in industrial applications. However, very few books devoted to testbeds have been published. To the best of my knowledge no book on this topic has been published. This book is particularly interesting for the growing community of testbed developers. I believe the book is also very interesting for researchers in robot-WSN cooperation.This book provides detailed description of a system that can be considered the first testbed that allows full peer-to-peer interoperability between heterogeneous robots and ubiquitous systems su

  1. Titan Science with the James Webb Space Telescope

    Science.gov (United States)

    Nixon, Conor A.; Achterberg, Richard K.; Ádámkovics, Máté; Bézard, Bruno; Bjoraker, Gordon L.; Cornet, Thomas; Hayes, Alexander G.; Lellouch, Emmanuel; Lemmon, Mark T.; López-Puertas, Manuel; Rodriguez, Sébastien; Sotin, Christophe; Teanby, Nicholas A.; Turtle, Elizabeth P.; West, Robert A.

    2016-01-01

    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 μm). In this paper, we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam, and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (1) surface (2) tropospheric clouds (3) tropospheric gases (4) stratospheric composition, and (5) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities, and limitations of the instrument suite and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors—sufficient to encompass Titan, but with significantly faster readout times. We find that JWST has very significant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a five- to ten-year expected lifetime for the observatory, for example, monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA, and next-generation ground-based telescopes (TMT, GMT, EELT).

  2. Reconstructing Emission from Pre-Reionization Sources with Cosmic Infrared Background Fluctuation Measurements by the JWST

    Science.gov (United States)

    Kashlinsky, A.; Mather, J. C.; Helgason, K.; Arendt, R. G.; Bromm, V.; Moseley, S. H.

    2015-01-01

    We present new methodology to use cosmic infrared background (CIB) fluctuations to probe sources at 10 less than or approx. equal to z less than or approx. equal to 30 from a James Webb Space Telescope (JWST) NIRCam configuration that will isolate known galaxies to 28 AB mag at 0.55 m. At present significant mutually consistent source-subtracted CIB fluctuations have been identified in the Spitzer and AKARI data at 25 m, but we demonstrate internal inconsistencies at shorter wavelengths in the recent CIBER data. We evaluate CIB contributions from remaining galaxies and show that the bulk of the high-z sources will be in the confusion noise of the NIRCam beam, requiring CIB studies. The accurate measurement of the angular spectrum of the fluctuations and probing the dependence of its clustering component on the remaining shot noise power would discriminate between the various currently proposed models for their origin and probe the flux distribution of its sources. We show that the contribution to CIB fluctuations from remaining galaxies is large at visible wavelengths for the current instruments precluding probing the putative Lyman-break of the CIB fluctuations. We demonstrate that with the proposed JWST configuration such measurements will enable probing the Lyman-break. We develop a Lyman-break tomography method to use the NIRCam wavelength coverage to identify or constrain, via the adjacent two-band subtraction, the history of emissions over 10 less than or approx. equal to z less than or approx. equal to 30 as the universe comes out of the Dark Ages. We apply the proposed tomography to the current SpitzerIRAC measurements at 3.6 and 4.5 m, to find that it already leads to interestingly low upper limit on emissions at z greater than or approx. equal to 30.

  3. Reconstructing Emission from Pre-reionization Sources with Cosmic Infrared Background Fluctuation Measurements by the JWST

    Science.gov (United States)

    Kashlinsky, A.; Mather, J. C.; Helgason, K.; Arendt, R. G.; Bromm, V.; Moseley, S. H.

    2015-05-01

    We present new methodology to use cosmic infrared background (CIB) fluctuations to probe sources at 10≲ z≲ 30 from a James Webb Space Telescope (JWST)/NIRCam configuration that will isolate known galaxies to 28 AB mag at 0.5-5 μm. At present significant mutually consistent source-subtracted CIB fluctuations have been identified in the Spitzer and AKARI data at ˜2-5 μm, but we demonstrate internal inconsistencies at shorter wavelengths in the recent CIBER data. We evaluate CIB contributions from remaining galaxies and show that the bulk of the high-z sources will be in the confusion noise of the NIRCam beam, requiring CIB studies. The accurate measurement of the angular spectrum of the fluctuations and probing the dependence of its clustering component on the remaining shot noise power would discriminate between the various currently proposed models for their origin and probe the flux distribution of its sources. We show that the contribution to CIB fluctuations from remaining galaxies is large at visible wavelengths for the current instruments precluding probing the putative Lyman-break of the CIB fluctuations. We demonstrate that with the proposed JWST configuration such measurements will enable probing the Lyman-break. We develop a Lyman-break tomography method to use the NIRCam wavelength coverage to identify or constrain, via the adjacent two-band subtraction, the history of emissions over 10≲ z≲ 30 as the universe comes out of the “Dark Ages.” We apply the proposed tomography to the current Spitzer/IRAC measurements at 3.6 and 4.5 μm, to find that it already leads to interestingly low upper limit on emissions at z≳ 30.

  4. The Galactic Center Seen Through the Precise, Multiplexed Eye of JWST

    Science.gov (United States)

    Lu, Jessica R.

    2013-01-01

    The Galactic center harbors the closest supermassive black hole and contains warm, turbulent molecular clouds, dense stellar populations, and some of the most active star forming regions in the Milky Way. These unique conditions make the Galactic Center a compelling target for understanding how star formation varies with environment, how nuclear star clusters in galaxies evolve, and how supermassive black holes influence their surroundings. Detailed studies of the Galactic center have previously been conducted with ground-based telescopes equipped with adaptive optics in pencil-beam studies. However, Galactic center studies can be dramatically expanded with JWST's combination of large fields-of-view (FOV) and high spatial resolution in the infrared. Of particular relevance for the Galactic Center are NIRCam's suite of narrow-band imaging filters and NIRSpec's IFU spectrograph. The narrow-band imaging should provide precise astrometry, rough spectral types, and emission line maps for ~50,000 stars within a 2' x 2' FOV, while follow up IFU spectroscopy will give precise types and radial velocities for the most interesting subsets of stars. Potential results include: (1) counting the intermediate age red and yellow supergiants that will give information about the recent star formation history; (2) measuring the initial mass function below 1 Msun and studying young stellar objects in known and new young star clusters; (3) using 3D dynamics to model the kinematic evolution of the entire nuclear cluster, find hypervelocity stars, and trace the orbits of gas features and clusters in the region. Galactic Center observations with JWST will give us a more complete picture of the gas, stars, black hole, and their interactions in this dynamic region.

  5. Exploring Biases of Atmospheric Retrievals in Simulated JWST Transmission Spectra of Hot Jupiters

    Science.gov (United States)

    Rocchetto, M.; Waldmann, I. P.; Venot, O.; Lagage, P.-O.; Tinetti, G.

    2016-12-01

    With a scheduled launch in 2018 October, the James Webb Space Telescope (JWST) is expected to revolutionize the field of atmospheric characterization of exoplanets. The broad wavelength coverage and high sensitivity of its instruments will allow us to extract far more information from exoplanet spectra than what has been possible with current observations. In this paper, we investigate whether current retrieval methods will still be valid in the era of JWST, exploring common approximations used when retrieving transmission spectra of hot Jupiters. To assess biases, we use 1D photochemical models to simulate typical hot Jupiter cloud-free atmospheres and generate synthetic observations for a range of carbon-to-oxygen ratios. Then, we retrieve these spectra using TauREx, a Bayesian retrieval tool, using two methodologies: one assuming an isothermal atmosphere, and one assuming a parameterized temperature profile. Both methods assume constant-with-altitude abundances. We found that the isothermal approximation biases the retrieved parameters considerably, overestimating the abundances by about one order of magnitude. The retrieved abundances using the parameterized profile are usually within 1σ of the true state, and we found the retrieved uncertainties to be generally larger compared to the isothermal approximation. Interestingly, we found that by using the parameterized temperature profile we could place tight constraints on the temperature structure. This opens the possibility of characterizing the temperature profile of the terminator region of hot Jupiters. Lastly, we found that assuming a constant-with-altitude mixing ratio profile is a good approximation for most of the atmospheres under study.

  6. The James Webb Space Telescope's Near-Infrared Camera (NIRCam): Making Models, Building Understanding

    Science.gov (United States)

    McCarthy, D. W., Jr.; Lebofsky, L. A.; Higgins, M. L.; Lebofsky, N. R.

    2011-09-01

    Since 2003, the Near Infrared Camear (NIRCam) science team for the James Webb Space Telescope (JWST) has conducted "Train the Trainer" workshops for adult leaders of the Girl Scout of the USA (GSUSA), engaging them in the process of scientific inquiry and equipping them to host astronomy-related activities at the troop level. Training includes topics in basic astronomy (night sky, phases of the Moon, the scale of the Solar System and beyond, stars, galaxies, telescopes, etc.) as well as JWST-specific research areas in extra-solar planetary systems and cosmology, to pave the way for girls and women to understand the first images from JWST. Participants become part of our world-wide network of 160 trainers teaching young women essential STEM-related concepts using astronomy, the night sky environment, applied math, engineering, and critical thinking.

  7. NASA's telemedicine testbeds: Commercial benefit

    Science.gov (United States)

    Doarn, Charles R.; Whitten, Raymond

    1998-01-01

    The National Aeronautics and Space Administration (NASA) has been developing and applying telemedicine to support space flight since the Agency's beginning. Telemetry of physiological parameters from spacecraft to ground controllers is critical to assess the health status of humans in extreme and remote environments. Requisite systems to support medical care and maintain readiness will evolve as mission duration and complexity increase. Developing appropriate protocols and procedures to support multinational, multicultural missions is a key objective of this activity. NASA has created an Agency-wide strategic plan that focuses on the development and integration of technology into the health care delivery systems for space flight to meet these challenges. In order to evaluate technology and systems that can enhance inflight medical care and medical education, NASA has established and conducted several testbeds. Additionally, in June of 1997, NASA established a Commercial Space Center (CSC) for Medical Informatics and Technology Applications at Yale University School of Medicine. These testbeds and the CSC foster the leveraging of technology and resources between government, academia and industry to enhance health care. This commercial endeavor will influence both the delivery of health care in space and on the ground. To date, NASA's activities in telemedicine have provided new ideas in the application of telecommunications and information systems to health care. NASA's Spacebridge to Russia, an Internet-based telemedicine testbed, is one example of how telemedicine and medical education can be conducted using the Internet and its associated tools. Other NASA activities, including the development of a portable telemedicine workstation, which has been demonstrated on the Crow Indian Reservation and in the Texas Prison System, show promise in serving as significant adjuncts to the delivery of health care. As NASA continues to meet the challenges of space flight, the

  8. Optical Coating Performance and Thermal Structure Design for Heat Reflectors of JWST Electronic Control Unit

    Science.gov (United States)

    Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert

    2008-01-01

    The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.

  9. In-focus phase retrieval using JWST-NIRISS's non-redundant mask

    Science.gov (United States)

    Greenbaum, Alexandra Z.; Gamper, Noah; Sivaramakrishnan, Anand

    2016-07-01

    The James Webb Space Telescope's Near InfraRed Imager and Slitless Spectrograph (NIRISS) contains a 7-hole non-redundant mask (NRM) in its pupil. NIRISS's Aperture Masking Interferometry (AMI) mode is useful both for science as well as wavefront sensing. In-focus science detector NRM and full pupil images of unresolved stars can be used to measure the wavefront without any dedicated wavefront sensing hardware or any moving mirrors. Using routine science operational sequences, these images can be taken before or after any science visit. NRM fringe phases constrain Gerchberg-Saxton phase retrieval to disambiguate the algorithm's two-fold degeneracy. We summarize how consecutive masked and unmasked exposures provide enough information to reconstruct a wavefront with up to ˜1-2 rms radians of error. We present our latest progress on using this approach on laboratory experiments, and discuss those results in the context of contingency for JWST segment phasing. We discuss extending our method to ground-based AO systems and future space telescopes.

  10. Characterizing Transiting Planets with JWST Spectra: Simulations and Retrievals

    Science.gov (United States)

    Greene, Tom; Line, Michael; Fortney, Jonathan

    2015-01-01

    There are now well over a thousand confirmed exoplanets, ranging from hot to cold and large to small worlds. JWST spectra will provide much more detailed information on the molecular constituents, chemical compositions, and thermal properties of the atmospheres of transiting planets than is now known. We explore this by modeling clear, cloudy,and high mean molecular weight atmospheres of typical hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets and then simulating their JWST transmission and emission spectra. These simulations were performed for several JWST instrument modes over 1 - 11 microns and incorporate realistic signal and noise components. We then performed state-of the art retrievals to determine how well temperatures and abundances (CO, CO2, H2O, NH3) will be constrained and over what pressures for these different planet types. Using these results, we appraise what instrument modes will be most useful for determining what properties of the different planets, and we assess how well we can constrain their compositions, CO ratios, and temperature profiles.

  11. The Mid-Infrared Instrument for the James Webb Space Telescope, II: Design and Build

    DEFF Research Database (Denmark)

    Wright, G. S.; Wright, David; Goodson, G. B.

    2015-01-01

    The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28: 5 µm. MIRI has, within a single "package," four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R similar...

  12. The Mid-Infrared Instrument for the James Webb Space Telescope, II: Design and Build

    NARCIS (Netherlands)

    Wright, G. S.; Wright, David; Goodson, G. B.; Rieke, G. H.; Aitink-Kroes, Gabby; Amiaux, J.; Aricha-Yanguas, Ana; Azzollini, Ruymán; Banks, Kimberly; Barrado-Navascues, D.; Belenguer-Davila, T.; Bloemmart, J. A. D. L.; Bouchet, Patrice; Brandl, B. R.; Colina, L.; Detre, Örs; Diaz-Catala, Eva; Eccleston, Paul; Friedman, Scott D.; García-Marín, Macarena; Güdel, Manuel; Glasse, Alistair; Glauser, Adrian M.; Greene, T. P.; Groezinger, Uli; Grundy, Tim; Hastings, Peter; Henning, Th.; Hofferbert, Ralph; Hunter, Faye; Jessen, N. C.; Justtanont, K.; Karnik, Avinash R.; Khorrami, Mori A.; Krause, Oliver; Labiano, Alvaro; Lagage, P.-O.; Langer, Ulrich; Lemke, Dietrich; Lim, Tanya; Lorenzo-Alvarez, Jose; Mazy, Emmanuel; McGowan, Norman; Meixner, M. E.; Morris, Nigel; Morrison, Jane E.; Müller, Friedrich; rgaard-Nielson, H.-U. Nø; Olofsson, Göran; O'Sullivan, Brian; Pel, J.-W.; Penanen, Konstantin; Petach, M. B.; Pye, J. P.; Ray, T. P.; Renotte, Etienne; Renouf, Ian; Ressler, M. E.; Samara-Ratna, Piyal; Scheithauer, Silvia; Schneider, Analyn; Shaughnessy, Bryan; Stevenson, Tim; Sukhatme, Kalyani; Swinyard, Bruce; Sykes, Jon; Thatcher, John; Tikkanen, Tuomo; van Dishoeck, E. F.; Waelkens, C.; Walker, Helen; Wells, Martyn; Zhender, Alex

    2015-01-01

    The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28.5 μm. MIRI has, within a single "package," four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R ~ 100) spectr

  13. Vacuum Nuller Testbed (VNT) Performance, Characterization and Null Control: Progress Report

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.; Noecker, M. Charley; Kendrick, Stephen; Helmbrecht, Michael

    2011-01-01

    Herein we report on the development. sensing and control and our first results with the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraph (VNC) for exoplanet coronagraphy. The VNC is one of the few approaches that works with filled. segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be Hown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies. and has developed an incremental sequence of VNC testbeds to advance this approach and the enabling technologies associated with it. We discuss the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). Tbe VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(sup 8), 10(sup 9) and ideally 10(sup 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the initial laboratory results, the optical configuration, critical technologies and the null sensing and control approach.

  14. System identification and structural control on the JPL Phase B testbed

    Science.gov (United States)

    Chu, Cheng-Chih; Obrien, John F.; Lurie, Boris J.

    1993-02-01

    The primary objective of NASA's CSI program at JPL is to develop and demonstrate the CSI technology required to achieve high precision structural stability on large complex optical class spacecraft. The focus mission for this work is an orbiting interferometer telescope. Toward the realization of such a mission, a series of evolutionary testbed structures are being constructed. The JPL's CSI Phase B testbed is the second structure constructed in this series which is designed to study the pathlength control problem of the optical train of a stellar interferometer telescope mounted on a large flexible structure. A detailed description of this testbed can be found. This paper describes our efforts in the first phase of active structural control experiments of Phase B testbed using the active control approach where a single piezoelectric active member is used as an actuation device and the measurements include both colocated and noncolocated sensors. Our goal for this experiment is to demonstrate the feasibility of active structural control using both colocated and noncolocated measurements by means of successive control design and loop closing. More specifically, the colocated control loop was designed and closed first to provide good damping improvement over the frequency range of interest. The noncolocated controller was then designed with respect to a partially controlled structure to further improve the performance. Based on our approach, experimental closed-loop results have demonstrated significant performance improvement with excellent stability margins.

  15. The James Webb Space Telescope

    CERN Document Server

    Gardner, J P; Clampin, M; Doyon, R; Greenhouse, M A; Hammel, H B; Hutchings, J B; Jakobsen, P; Lilly, S J; Long, K S; Lunine, J I; McCaughrean, M J; Mountain, M; Nella, J; Rieke, G H; Rieke, M J; Rix, H W; Smith, E P; Sonneborn, G; Stiavelli, M; Stockman, H S; Windhorst, R A; Wright, G S; Gardner, Jonathan P.; Mather, John C.; Clampin, Mark; Doyon, Rene; Greenhouse, Matthew A.; Hammel, Heidi B.; Hutchings, John B.; Jakobsen, Peter; Lilly, Simon J.; Long, Knox S.; Lunine, Jonathan I.; Caughrean, Mark J. Mc; Mountain, Matt; Nella, John; Rieke, George H.; Rieke, Marcia J.; Rix, Hans-Walter; Smith, Eric P.; Sonneborn, George; Stiavelli, Massimo; Windhorst, Rogier A.; Wright, Gillian S.

    2006-01-01

    The James Webb Space Telescope (JWST) is a large (6.6m), cold (50K), infrared-optimized space observatory that will be launched early in the next decade. The observatory will have four instruments: a near-infrared camera, a near-infrared multi-object spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 to 5.0 microns, while the mid-infrared instrument will do both imaging and spectroscopy from 5.0 to 29 microns. The JWST science goals are divided into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the early universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall on to dust-e...

  16. Two NIRCam channels are Better than One: How JWST Can Do More Science with NIRCam's Short-Wavelength Dispersed Hartmann Sensor

    CERN Document Server

    Schlawin, Everett; Leisenring, Jarron; Greene, Tom; Walker, Lisa May; Fraine, Jonathan; Kelly, Doug; Misselt, Karl; Line, Michael; Stansberry, John; Lewis, Nikole

    2016-01-01

    The James Webb Space Telescope (JWST) offers unprecedented sensitivity, stability, and wavelength coverage for transiting exoplanet studies, opening up new avenues for measuring atmospheric abundances, structure, and temperature profiles. Taking full advantage of JWST spectroscopy of planets from 0.6um to 28um, however, will require many observations with a combination of the NIRISS, NIRCam, NIRSpec, and MIRI instruments. In this white paper, we discuss a new NIRCam mode (not yet approved or implemented) that can reduce the number of necessary observations to cover the 1.0um to 5.0um wavelength range. Even though NIRCam was designed primarily as an imager, it also includes several grisms for phasing and aligning JWST's 18 hexagonal mirror segments. NIRCam's long-wavelength channel includes grisms that cover 2.4um to 5.0um with a resolving power of R = 1200 - 1550 using two separate configurations. The long-wavelength grisms have already been approved for science operations, including wide field and single obj...

  17. A Space Testbed for Photovoltaics

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.

    1998-01-01

    The Ohio Aerospace Institute and the NASA Lewis Research Center are designing and building a solar-cell calibration facility, the Photovoltaic Engineering Testbed (PET) to fly on the International Space Station to test advanced solar cell types in the space environment. A wide variety of advanced solar cell types have become available in the last decade. Some of these solar cells offer more than twice the power per unit area of the silicon cells used for the space station power system. They also offer the possibilities of lower cost, lighter weight, and longer lifetime. The purpose of the PET facility is to reduce the cost of validating new technologies and bringing them to spaceflight readiness. The facility will be used for three primary functions: calibration, measurement, and qualification. It is scheduled to be launched in June of 2002.

  18. Building the James Webb Space Telescope

    Science.gov (United States)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. JWST will make progress In almost every area of astronomy, from the first galaxies to form in the early universe to exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory Is confirmed for launch in 2018; the design is complete and it is in its construction phase. Innovations that make JWST possible include large-area low-noise infrared detectors, cryogenic ASICs, a MEMS micro-shutter array providing multi-object spectroscopy, a non-redundant mask for interferometric coronagraphy and diffraction-limited segmented beryllium mirrors with active wavefront sensing and control. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  19. The SMART-NAS Testbed

    Science.gov (United States)

    Aquilina, Rudolph A.

    2015-01-01

    The SMART-NAS Testbed for Safe Trajectory Based Operations Project will deliver an evaluation capability, critical to the ATM community, allowing full NextGen and beyond-NextGen concepts to be assessed and developed. To meet this objective a strong focus will be placed on concept integration and validation to enable a gate-to-gate trajectory-based system capability that satisfies a full vision for NextGen. The SMART-NAS for Safe TBO Project consists of six sub-projects. Three of the sub-projects are focused on exploring and developing technologies, concepts and models for evolving and transforming air traffic management operations in the ATM+2 time horizon, while the remaining three sub-projects are focused on developing the tools and capabilities needed for testing these advanced concepts. Function Allocation, Networked Air Traffic Management and Trajectory Based Operations are developing concepts and models. SMART-NAS Test-bed, System Assurance Technologies and Real-time Safety Modeling are developing the tools and capabilities to test these concepts. Simulation and modeling capabilities will include the ability to assess multiple operational scenarios of the national airspace system, accept data feeds, allowing shadowing of actual operations in either real-time, fast-time and/or hybrid modes of operations in distributed environments, and enable integrated examinations of concepts, algorithms, technologies, and NAS architectures. An important focus within this project is to enable the development of a real-time, system-wide safety assurance system. The basis of such a system is a continuum of information acquisition, analysis, and assessment that enables awareness and corrective action to detect and mitigate potential threats to continuous system-wide safety at all levels. This process, which currently can only be done post operations, will be driven towards "real-time" assessments in the 2035 time frame.

  20. Two NIRCam Channels are Better than One: How JWST Can Do More Science with NIRCam’s Short-wavelength Dispersed Hartmann Sensor

    Science.gov (United States)

    Schlawin, E.; Rieke, M.; Leisenring, J.; Walker, L. M.; Fraine, J.; Kelly, D.; Misselt, K.; Greene, T.; Line, M.; Lewis, N.; Stansberry, J.

    2017-01-01

    The James Webb Space Telescope (JWST) offers unprecedented sensitivity, stability, and wavelength coverage for transiting exoplanet studies, opening up new avenues for measuring atmospheric abundances, structure, and temperature profiles. Taking full advantage of JWST spectroscopy of planets from 0.6 to 28 μm, however, will require many observations with a combination of the NIRISS, NIRCam, NIRSpec, and MIRI instruments. In this white paper, we discuss a new NIRCam mode (not yet approved or implemented) that can reduce the number of necessary observations to cover the 1.0-5.0 μm wavelength range. Even though NIRCam was designed primarily as an imager, it also includes several grisms for phasing and aligning JWST’s 18 hexagonal mirror segments. NIRCam’s long-wavelength channel includes grisms that cover 2.4-5.0 μm with a resolving power of R = 1200-1550 using two separate configurations. The long-wavelength grisms have already been approved for science operations, including wide field and single object (time series) slitless spectroscopy. We propose a new mode that will simultaneously measure spectra for science targets in the 1.0-2.0 μm range using NIRCam’s short-wavelength channel. This mode, if approved, would take advantage of NIRCam’s Dispersed Hartmann Sensor (DHS), which produces 10 spatially separated spectra per source at R ˜ 300. We discuss the added benefit of the DHS in constraining abundances in exoplanet atmospheres as well as its ability to observe the brightest systems. The DHS essentially comes for free (at no time cost) with any NIRCam long-wavelength grism observation, but the detector integration parameters have to be selected to ensure that the long-wavelength grism observations do not saturate and that JWST data volume downlink constraints are not violated. Combining both of NIRCam’s channels will maximize the science potential of JWST, which is a limited life observatory.

  1. Shocks, star formation and the JWST

    Science.gov (United States)

    Gusdorf, A.

    2015-12-01

    The interstellar medium (ISM) is constantly evolving due to unremitting injection of energy in various forms. Energetic radiation transfers energy to the ISM: from the UV photons, emitted by the massive stars, to X- and γ-ray ones. Cosmic rays are another source of energy. Finally, mechanical energy is injected through shocks or turbulence. Shocks are ubiquitous in the interstellar medium of galaxies. They are associated to star formation (through jets and bipolar outflows), life (via stellar winds), and death (in AGB stellar winds or supernovae explosion). The dynamical processes leading to the formation of molecular clouds also generate shocks where flows of interstellar matter collide. Because of their ubiquity, the study of interstellar shocks is also a useful probe to the other mechanisms of energy injection in the ISM. This study must be conducted in order to understand the evolution of the interstellar medium as a whole, and to address various questions: what is the peculiar chemistry associated to shocks, and what is their contribution to the cycle of matter in galaxies ? What is the energetic impact of shocks on their surroundings on various scales, and hence what is the feedback of stars on the galaxies ? What are the scenarios of star formation, whether this star formation leads to the propagation of shocks, or whether it is triggered by shock propagation ? What is the role of shocks in the acceleration of cosmic rays ? Can they shed light on their composition and diffusion processes ? In order to progress on these questions, it is paramount to interpret the most precise observations with the most precise models of shocks. From the observational point of view, the James Webb Space Telescope represents a powerful tool to better address the above questions, as it will allow to observe numerous shock tracers in the infrared range at an unprecedented spatial and spectral resolution.

  2. XML: James Webb Space Telescope Database Issues, Lessons, and Status

    Science.gov (United States)

    Detter, Ryan; Mooney, Michael; Fatig, Curtis

    2003-01-01

    This paper will present the current concept using extensible Markup Language (XML) as the underlying structure for the James Webb Space Telescope (JWST) database. The purpose of using XML is to provide a JWST database, independent of any portion of the ground system, yet still compatible with the various systems using a variety of different structures. The testing of the JWST Flight Software (FSW) started in 2002, yet the launch is scheduled for 2011 with a planned 5-year mission and a 5-year follow on option. The initial database and ground system elements, including the commands, telemetry, and ground system tools will be used for 19 years, plus post mission activities. During the Integration and Test (I&T) phases of the JWST development, 24 distinct laboratories, each geographically dispersed, will have local database tools with an XML database. Each of these laboratories database tools will be used for the exporting and importing of data both locally and to a central database system, inputting data to the database certification process, and providing various reports. A centralized certified database repository will be maintained by the Space Telescope Science Institute (STScI), in Baltimore, Maryland, USA. One of the challenges for the database is to be flexible enough to allow for the upgrade, addition or changing of individual items without effecting the entire ground system. Also, using XML should allow for the altering of the import and export formats needed by the various elements, tracking the verification/validation of each database item, allow many organizations to provide database inputs, and the merging of the many existing database processes into one central database structure throughout the JWST program. Many National Aeronautics and Space Administration (NASA) projects have attempted to take advantage of open source and commercial technology. Often this causes a greater reliance on the use of Commercial-Off-The-Shelf (COTS), which is often limiting

  3. The Scientific Capabilities of the James Webb Space Telescope

    Science.gov (United States)

    Gardner, Jonathan P.

    2009-01-01

    The scientific capabilities of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and dark matter, gas, stars, metals morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. A comprehensive, top-level review of JWST sciences was published in the journal Space Science Reviews (Gardner et al. 2006, SSR, 123, 485). That paper gives details of the 4 JWST science themes, and describes the design of the observatory and ground system. Since that paper was published, the JWST Science Working Group, working with members of the astronomical community, has continued to develop the science case for JWST, giving more details in a series of white papers. In this poster, the main science themes and white papers are reviewed.

  4. Titan Science with the James Webb Space Telescope

    Science.gov (United States)

    Nixon, Conor A.; Achterberg, Richard; Adamkovics, Mate; Bezard, Bruno; Bjoraker, Gordon; Cornet, Thomas; Hayes, Alexander; Lellouch, Emmanuel; Lemmon, Mark; Lopez Puertas, Manuel; Rodriguez, Sebastien; Sotin, Christophe; Teanby, Nicholas; Turtle, Elizabeth; West, Robert

    2015-11-01

    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is an ambitious next-generation large-aperture (6.5 m) space observatory focused on pushing the boundaries of infrared astronomy (0.6-28.0 μm). This long-wavelength focus gives it very substantial potential for solar system science, since the thermal emissions from the surfaces and atmospheres of many planets, moons and small bodies peak in this part of the spectrum. Here we report the findings of a task team convened to examine the potential for Titan science using JWST. These can be divided into five broad areas: (i) the surface, especially the rotational lightcurve; (ii) clouds in the lower atmosphere from direct imaging and near-IR spectroscopy; (iii) composition of the lower atmosphere, especially methane relative humidity; (iv) composition of the middle atmosphere, including thermal and fluorescent emissions from gases; (v) hazes in the middle atmosphere, including seasonal changes in hemispheric contrast. The capability of the major JWST instruments in each area is considered, and limitations such as potential saturation is noted and mitigation strategies (such as sub-arraying) discussed. Overall we find that JWST can make significant contributions to Titan science in many areas, not least in temporal monitoring of seasonal change after the end of the Cassini mission in 2017, in partnership with other next-generation observing facilities (TMT, GMT, EELT, ALMA).

  5. Space Telescope.

    Science.gov (United States)

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  6. ADDING CONTEXT TO JAMES WEBB SPACE TELESCOPE SURVEYS WITH CURRENT AND FUTURE 21 cm RADIO OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, A. P.; Morales, M. F. [Department of Physics, University of Washington Seattle, WA 98195 (United States); Lidz, A.; Malloy, M. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Sutter, P. M., E-mail: beards@phys.washington.edu [INFN - National Institute for Nuclear Physics via Valerio 2, I-34127, Trieste (Italy)

    2015-02-20

    Infrared and radio observations of the Epoch of Reionization promise to revolutionize our understanding of the cosmic dawn, and major efforts with the JWST, MWA, and HERA are underway. While measurements of the ionizing sources with infrared telescopes and the effect of these sources on the intergalactic medium with radio telescopes should be complementary, to date the wildly disparate angular resolutions and survey speeds have made connecting proposed observations difficult. In this paper we develop a method to bridge the gap between radio and infrared studies. While the radio images may not have the sensitivity and resolution to identify individual bubbles with high fidelity, by leveraging knowledge of the measured power spectrum we are able to separate regions that are likely ionized from largely neutral, providing context for the JWST observations of galaxy counts and properties in each. By providing the ionization context for infrared galaxy observations, this method can significantly enhance the science returns of JWST and other infrared observations.

  7. The James Webb Space Telescope's Plan for Operations and Instrument Capabilities for Observations in the Solar System

    Science.gov (United States)

    Milam, Stefanie N.; Stansberry, John A.; Sonneborn, George; Thomas, Cristina

    2016-01-01

    The James Webb Space Telescope (JWST) is optimized for observations in the near- and mid-infrared and will provide essential observations for targets that cannot be conducted from the ground or other missions during its lifetime. The state-of-the-art science instruments, along with the telescope's moving target tracking, will enable the infrared study, with unprecedented detail, for nearly every object (Mars and beyond) in the Solar System. The goals of this special issue are to stimulate discussion and encourage participation in JWST planning among members of the planetary science community. Key science goals for various targets, observing capabilities for JWST, and highlights for the complementary nature with other missions/observatories are described in this paper.

  8. Versatile Electric Propulsion Aircraft Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  9. Habitat Testbed (HaT) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Goals of the DSH Testbed include:Function as a habitat systems integrator and technology pull across many domainsDevelop and integrate software-based models of...

  10. Wireless Sensor Networks TestBed: ASNTbed

    CSIR Research Space (South Africa)

    Dludla, AG

    2013-05-01

    Full Text Available Wireless sensor networks (WSNs) have been used in different types of applications and deployed within various environments. Simulation tools are essential for studying WSNs, especially for exploring large-scale networks. However, WSN testbeds...

  11. Mars Sample Transfer Testbed (MSTT) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The task will assess the requirements for a testbed to study the retrieval of a Mars sample cache from the Martian surface, or from a Mars caching rover, and...

  12. Improving active space telescope wavefront control using predictive thermal modeling

    Science.gov (United States)

    Gersh-Range, Jessica; Perrin, Marshall D.

    2015-01-01

    Active control algorithms for space telescopes are less mature than those for large ground telescopes due to differences in the wavefront control problems. Active wavefront control for space telescopes at L2, such as the James Webb Space Telescope (JWST), requires weighing control costs against the benefits of correcting wavefront perturbations that are a predictable byproduct of the observing schedule, which is known and determined in advance. To improve the control algorithms for these telescopes, we have developed a model that calculates the temperature and wavefront evolution during a hypothetical mission, assuming the dominant wavefront perturbations are due to changes in the spacecraft attitude with respect to the sun. Using this model, we show that the wavefront can be controlled passively by introducing scheduling constraints that limit the allowable attitudes for an observation based on the observation duration and the mean telescope temperature. We also describe the implementation of a predictive controller designed to prevent the wavefront error (WFE) from exceeding a desired threshold. This controller outperforms simpler algorithms even with substantial model error, achieving a lower WFE without requiring significantly more corrections. Consequently, predictive wavefront control based on known spacecraft attitude plans is a promising approach for JWST and other future active space observatories.

  13. A Test-Bed Configuration: Toward an Autonomous System

    Science.gov (United States)

    Ocaña, F.; Castillo, M.; Uranga, E.; Ponz, J. D.; TBT Consortium

    2015-09-01

    In the context of the Space Situational Awareness (SSA) program of ESA, it is foreseen to deploy several large robotic telescopes in remote locations to provide surveillance and tracking services for man-made as well as natural near-Earth objects (NEOs). The present project, termed Telescope Test Bed (TBT) is being developed under ESA's General Studies and Technology Programme, and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario, consisting of two telescopes located in Spain and Australia, to collect representative test data for precursor NEO services. In order to fulfill all the security requirements for the TBT project, the use of a autonomous emergency system (AES) is foreseen to monitor the control system. The AES will monitor remotely the health of the observing system and the internal and external environment. It will incorporate both autonomous and interactive actuators to force the protection of the system (i.e., emergency dome close out).

  14. A model-based approach to the spatial and spectral calibration of NIRSpec onboard JWST

    CERN Document Server

    Dorner, Bernhard; Ferruit, Pierre; de Oliveira, Catarina Alves; Birkmann, Stephan M; Böker, Torsten; De Marchi, Guido; Gnata, Xavier; Köhler, Jess; Sirianni, Marco; Jakobsen, Peter

    2016-01-01

    Context: The NIRSpec instrument for the James Webb Space Telescope (JWST) can be operated in multiobject (MOS), long-slit, and integral field (IFU) mode with spectral resolutions from 100 to 2700. Its MOS mode uses about a quarter of a million individually addressable minislits for object selection, covering a field of view of $\\sim$9 $\\mathrm{arcmin}^2$. Aims: The pipeline used to extract wavelength-calibrated spectra from NIRSpec detector images relies heavily on a model of NIRSpec optical geometry. We demonstrate how dedicated calibration data from a small subset of NIRSpec modes and apertures can be used to optimize this parametric model to the necessary levels of fidelity. Methods: Following an iterative procedure, the initial fiducial values of the model parameters are manually adjusted and then automatically optimized, so that the model predicted location of the images and spectral lines from the fixed slits, the IFU, and a small subset of the MOS apertures matches their measured location in the main o...

  15. Status of the JWST/MIRI Focal Plane System and Cooler

    Science.gov (United States)

    Ressler, Michael E.; Goodson, G. B.; Khorrami, M. A.; Larson, M. E.; Mahoney, J. C.; Sukhatme, K. G.

    2009-01-01

    The Mid-Infrared Instrument (MIRI) is a multipurpose imager, coronagraph, and spectrometer for the James Webb Space Telescope. It provides wavelength coverage from 5 through 28 microns and is an integral contributor to all four of JWST's primary science themes. MIRI is being developed as a partnership between NASA and ESA, with JPL providing the Focal Plane System (FPS, consisting of the detectors, control electronics, and flight software) and the cooler, and a consortium of European astronomical institutes providing the optical bench and structure. The flight FPS is being prepared for delivery to the European Consortium for its integration into the optical bench, while the cooler is nearing its Critical Design Review. We describe the capabilities of the FPS and cooler, present test results and the predicted sensitivity performance of the FPS, and update the current status of each these systems. The research described in this poster was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  16. Vacuum Nuller Testbed Performance, Characterization and Null Control

    Science.gov (United States)

    Lyon, R. G.; Clampin, M.; Petrone, P.; Mallik, U.; Madison, T.; Bolcar, M.; Noecker, C.; Kendrick, S.; Helmbrecht, M. A.

    2011-01-01

    The Visible Nulling Coronagraph (VNC) can detect and characterize exoplanets with filled, segmented and sparse aperture telescopes, thereby spanning the choice of future internal coronagraph exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has developed a Vacuum Nuller Testbed (VNT) to advance this approach, and assess and advance technologies needed to realize a VNC as a flight instrument. The VNT is an ultra-stable testbed operating at 15 Hz in vacuum. It consists of a MachZehnder nulling interferometer; modified with a "W" configuration to accommodate a hexpacked MEMS based deformable mirror (DM), coherent fiber bundle and achromatic phase shifters. The 2-output channels are imaged with a vacuum photon counting camera and conventional camera. Error-sensing and feedback to DM and delay line with control algorithms are implemented in a real-time architecture. The inherent advantage of the VNC is that it is its own interferometer and directly controls its errors by exploiting images from bright and dark channels simultaneously. Conservation of energy requires the sum total of the photon counts be conserved independent of the VNC state. Thus sensing and control bandwidth is limited by the target stars throughput, with the net effect that the higher bandwidth offloads stressing stability tolerances within the telescope. We report our recent progress with the VNT towards achieving an incremental sequence of contrast milestones of 10(exp 8) , 10(exp 9) and 10(exp 10) respectively at inner working angles approaching 2A/D. Discussed will be the optics, lab results, technologies, and null control. Shown will be evidence that the milestones have been achieved.

  17. The CMS integration grid testbed

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Gregory E.

    2004-08-26

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

  18. The CMS Integration Grid Testbed

    CERN Document Server

    Graham, G E; Aziz, Shafqat; Bauerdick, L.A.T.; Ernst, Michael; Kaiser, Joseph; Ratnikova, Natalia; Wenzel, Hans; Wu, Yu-jun; Aslakson, Erik; Bunn, Julian; Iqbal, Saima; Legrand, Iosif; Newman, Harvey; Singh, Suresh; Steenberg, Conrad; Branson, James; Fisk, Ian; Letts, James; Arbree, Adam; Avery, Paul; Bourilkov, Dimitri; Cavanaugh, Richard; Rodriguez, Jorge Luis; Kategari, Suchindra; Couvares, Peter; DeSmet, Alan; Livny, Miron; Roy, Alain; Tannenbaum, Todd; Graham, Gregory E.; Aziz, Shafqat; Ernst, Michael; Kaiser, Joseph; Ratnikova, Natalia; Wenzel, Hans; Wu, Yujun; Aslakson, Erik; Bunn, Julian; Iqbal, Saima; Legrand, Iosif; Newman, Harvey; Singh, Suresh; Steenberg, Conrad; Branson, James; Fisk, Ian; Letts, James; Arbree, Adam; Avery, Paul; Bourilkov, Dimitri; Cavanaugh, Richard; Rodriguez, Jorge; Kategari, Suchindra; Couvares, Peter; Smet, Alan De; Livny, Miron; Roy, Alain; Tannenbaum, Todd

    2003-01-01

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distrib ution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuo us two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. ...

  19. The Open Cloud Testbed: A Wide Area Testbed for Cloud Computing Utilizing High Performance Network Services

    CERN Document Server

    Grossman, Robert; Sabala, Michal; Bennet, Collin; Seidman, Jonathan; Mambratti, Joe

    2009-01-01

    Recently, a number of cloud platforms and services have been developed for data intensive computing, including Hadoop, Sector, CloudStore (formerly KFS), HBase, and Thrift. In order to benchmark the performance of these systems, to investigate their interoperability, and to experiment with new services based on flexible compute node and network provisioning capabilities, we have designed and implemented a large scale testbed called the Open Cloud Testbed (OCT). Currently the OCT has 120 nodes in four data centers: Baltimore, Chicago (two locations), and San Diego. In contrast to other cloud testbeds, which are in small geographic areas and which are based on commodity Internet services, the OCT is a wide area testbed and the four data centers are connected with a high performance 10Gb/s network, based on a foundation of dedicated lightpaths. This testbed can address the requirements of extremely large data streams that challenge other types of distributed infrastructure. We have also developed several utiliti...

  20. James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (OTIS) Status

    Science.gov (United States)

    Feinberg, Lee; Voyton, Mark; Lander, Julie; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated ScienceInstrument Module (ISIM)are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirrorcenter of curvatureoptical tests, electrical and operational tests, acoustics and vibration testing at the Goddard SpaceFlight Center beforebeing shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparationfor the cryogenicoptical testing, the JWST project has built a Pathfinder telescope and has completed two OpticalGround SystemEquipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize opticaltest results todate and status the final Pathfinder test and the OTIS integration and environmental test preparations

  1. James Webb Space Telescope Optical Telescope Element/Integrated Science Instrument Module (OTIS) Status

    Science.gov (United States)

    Feinberg, Lee; Voyton, Mark; Lander, Juli; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirror center of curvature optical tests, electrical and operational tests, acoustics and vibration testing at the Goddard Space Flight Center before being shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparation for the cryogenic optical testing, the JWST project has built a Pathfinder telescope and has completed two Optical Ground System Equipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize optical test results to date and status the final Pathfinder test and the OTIS integration and environmental test preparations

  2. A cryogenic liquid-mirror telescope on the moon to study the early universe

    CERN Document Server

    Angel, Roger; Borra, Ermanno F; Eisenstein, Daniel J; Foing, Bernard; Hickson, Paul; Josset, Jean-Luc; Ma, Ki Bui; Seddiki, Omar; Sivanandam, Suresh; Thibault, Simon; van Susante, Paul

    2008-01-01

    We have studied the feasibility and scientific potential of zenith observing liquid mirror telescopes having 20 to 100 m diameters located on the moon. They would carry out deep infrared surveys to study the distant universe and follow up discoveries made with the 6 m James Webb Space Telescope (JWST), with more detailed images and spectroscopic studies. They could detect objects 100 times fainter than JWST, observing the first, high-red shift stars in the early universe and their assembly into galaxies. We explored the scientific opportunities, key technologies and optimum location of such telescopes. We have demonstrated critical technologies. For example, the primary mirror would necessitate a high-reflectivity liquid that does not evaporate in the lunar vacuum and remains liquid at less than 100K: We have made a crucial demonstration by successfully coating an ionic liquid that has negligible vapor pressure. We also successfully experimented with a liquid mirror spinning on a superconducting bearing, as w...

  3. Neutrino telescopes

    CERN Document Server

    Carr, J

    2002-01-01

    This review presents the scientific objectives and status of Neutrino Telescope Projects. The science program of these projects covers: neutrino astronomy, dark matter searches and measurements of neutrino oscillations. The two neutrino telescopes in operation: AMANDA and BAIKAL will be described together with the ANTARES neutrino telescope being built in the Mediterranean. (18 refs).

  4. The DataTAG transatlantic testbed

    CERN Document Server

    Martin, O; Martin-Flatin, J P; Moroni, P; Nae, D; Newman, H; Ravot, S

    2005-01-01

    Wide area network testbeds allow researchers and engineers to test out new equipment, protocols and services in real-life situations, without jeopardizing the stability and reliability of production networks. The Data TransAtlantic Grid (DataTAG) testbed, deployed in 2002 between CERN, Geneva, Switzerland and StarLight, Chicago, IL, USA, is probably the largest testbed built to date. Jointly managed by CERN and Caltech, it is funded by the European Commission, the U.S. Department of Energy and the U.S. National Science Foundation. The main objectives of this testbed are to improve the Grid community's understanding of the networking issues posed by data- intensive Grid applications over transoceanic gigabit networks, design and develop new Grid middleware services, and improve the interoperability of European and U.S. Grid applications in High- Energy and Nuclear Physics. In this paper, we give an overview of this testbed, describe its various topologies over time, and summarize the main lessons learned after...

  5. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal planeregion extending from 14 D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. TheVNC is a hybrid interferometriccoronagraphic approach for exoplanet science. It operates with high Lyot stopefficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential futureNASA flight telescopes. NASAGoddard Space Flight Center (GSFC) has a well-established effort to develop the VNCand its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and itsenabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry tounprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a W configurationto accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters.We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, criticaltechnologies and null sensing and control.

  6. Space Telescopes

    Science.gov (United States)

    2010-01-01

    Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 166 9. Space telescopes Figure 9.1: Paraboloid telescope. In the following sections, NI...planets nearby a brighter star. Normal-incidence telescopes One-mirror telescope The one-mirror telescope (mostly an off-axis paraboloid ; Figure 9.1) has...rotation of the whole instrument (see SUMER/SOHO, Wilhelm et al (1995) and EIS/Hinode, Culhane et al (2007)). The paraboloid field curvature (Petzval

  7. Development of a Tethered Formation Flight Testbed for ISS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of a testbed for the development and demonstration of technologies needed by tethered formation flying satellites is proposed. Such a testbed would...

  8. The Planets Testbed: Science for Digital Preservation

    Directory of Open Access Journals (Sweden)

    Seamus Ross

    2008-06-01

    Full Text Available The preservation of digital objects requires specific software tools or services. These can be characterisation tools that abstract the essential characteristics of a digital object from a file, migration tools that convert digital objects to different formats, or emulation tools that render digital objects in their original context on a new infrastructure. Until recently digital preservation has been characterised by practices and processes that could best be described as more art and craft than science. The Planets Testbed provides a controlled environment where preservation tools can be tested and evaluated, and where experiment results can be empirically compared. This paper presents an overview of the Testbed application, an analysis of the experiment methodology and a description of the Testbed's web service approach.

  9. Digital libraries: A testbed for multimedia technology

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Yue-ting

    2005-01-01

    A distinguishing feature of a digital library is that it has Terabyte volumes of multimedia resources. One challenge for researchers in the field of multimedia is to find a testbed for showing the potentials of multimedia technologies such as video summarization, semantic annotation, multimedia cross indexing and retrieval, and etc. Deeper research and wider applications of digital libraries revealed their indispensable role as testbed for multimedia technologies. This paper presents challenging issues of some key techniques used in digital libraries and their specific needs for multimedia technologies.

  10. The design and implementation of the LLNL gigabit testbed

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, D. [Lawrence Livermore National Labs., CA (United States)

    1994-12-01

    This paper will look at the design and implementation of the LLNL Gigabit testbed (LGTB), where various high speed networking products, can be tested in one environment. The paper will discuss the philosophy behind the design of and the need for the testbed, the tests that are performed in the testbed, and the tools used to implement those tests.

  11. A testbed for wide-field, high-resolution, gigapixel-class cameras.

    Science.gov (United States)

    Kittle, David S; Marks, Daniel L; Son, Hui S; Kim, Jungsang; Brady, David J

    2013-05-01

    The high resolution and wide field of view (FOV) of the AWARE (Advanced Wide FOV Architectures for Image Reconstruction and Exploitation) gigapixel class cameras present new challenges in calibration, mechanical testing, and optical performance evaluation. The AWARE system integrates an array of micro-cameras in a multiscale design to achieve gigapixel sampling at video rates. Alignment and optical testing of the micro-cameras is vital in compositing engines, which require pixel-level accurate mappings over the entire array of cameras. A testbed has been developed to automatically calibrate and measure the optical performance of the entire camera array. This testbed utilizes translation and rotation stages to project a ray into any micro-camera of the AWARE system. A spatial light modulator is projected through a telescope to form an arbitrary object space pattern at infinity. This collimated source is then reflected by an elevation stage mirror for pointing through the aperture of the objective into the micro-optics and eventually the detector of the micro-camera. Different targets can be projected with the spatial light modulator for measuring the modulation transfer function (MTF) of the system, fiducials in the overlap regions for registration and compositing, distortion mapping, illumination profiles, thermal stability, and focus calibration. The mathematics of the testbed mechanics are derived for finding the positions of the stages to achieve a particular incident angle into the camera, along with calibration steps for alignment of the camera and testbed coordinate axes. Measurement results for the AWARE-2 gigapixel camera are presented for MTF, focus calibration, illumination profile, fiducial mapping across the micro-camera for registration and distortion correction, thermal stability, and alignment of the camera on the testbed.

  12. ATLAST-9.2: A Deployable Large Aperture UVOIR Space Telescope

    Science.gov (United States)

    Oegerle, William R.; Feinberg, L.; Purves, L.; Hyde, T.; Thronson, H.; Townsend, J.; Postman, M.; Bolcar, M.; Budinoff, J.; Dean, B.; hide

    2010-01-01

    We present the results of a study of a deployable version of the Advanced Technology Large Aperture Space Telescope (ATLAST) that could be launched on an Evolved Expendable Launch Vehicle (EELV). ATLAST is a concept for a next-generation UVOIR observatory to follow HST and JWST. The observatory retains significant heritage from JWST, thereby taking advantage of technologies and engineering already developed for that mission. At the same time, we have identified several design changes to the JWST architecture, some of which are required due to the demanding wavefront error requirements at visible wavelengths. The optical telescope assembly has a segmented 9.2-meter aperture and consists of 36 hexagonal glass mirrors, each of which is I.3l5m in size (flat-to-flat). The telescope can be folded to fit in the 6.5m fairing on the planned upgrade to the Delta-IV heavy launch vehicle. Near-real time wavefront sensing and control is performed on-board the telescope using stars in the field of view to deliver diffraction limited imaging performance at 500nm wavelength. The optical design of the telescope provides an 8x20 arcmin FOV in which 4-5 instruments can be accommodated, plus fine guidance and wavefront sensors. Unlike JWST, the OTA sits at the end of a multi-gimbaled arm, allowing pitch and roll motion, and is isolated from the sunshield and spacecraft bus by an active isolation system. Our design permits servicing in order to extend the life of the observatory.

  13. ATLAST-9.2: A Deployable Large Aperture UVOIR Space Telescope

    Science.gov (United States)

    Oegerle, William R.; Feinberg, L.; Purves, L.; Hyde, T.; Thronson, H.; Townsend, J.; Postman, M.; Bolcar, M.; Budinoff, J.; Dean, B.; Clampin, M.; Ebbets, D.; Gong, Q.; Gull, T.; Howard, J.; Jones, A.; Lyon, R.; Pasquale, B.; Perrygo, C.; Smith, S.; Thompson, P.; Woodgate, B.

    2010-01-01

    We present the results of a study of a deployable version of the Advanced Technology Large Aperture Space Telescope (ATLAST) that could be launched on an Evolved Expendable Launch Vehicle (EELV). ATLAST is a concept for a next-generation UVOIR observatory to follow HST and JWST. The observatory retains significant heritage from JWST, thereby taking advantage of technologies and engineering already developed for that mission. At the same time, we have identified several design changes to the JWST architecture, some of which are required due to the demanding wavefront error requirements at visible wavelengths. The optical telescope assembly has a segmented 9.2-meter aperture and consists of 36 hexagonal glass mirrors, each of which is 1.315m in size (flat-to-flat). The telescope can be folded to fit in the 6.5m fairing on the planned upgrade to the Delta-IV heavy launch vehicle. Near-real time wavefront sensing and control is performed on-board the telescope using stars in the field of view to deliver diffraction limited imaging performance at 500nm wavelength. The optical design of the telescope provides an 8x20 arcmin FOV in which 4-5 instruments can be accommodated, plus fine guidance and wavefront sensors. Unlike JWST, the OTA sits at the end of a multi-gimbaled arm, allowing pitch and roll motion, and is isolated from the sunshield and spacecraft bus by an active isolation system. Our design permits servicing in order to extend the life of the observatory.

  14. A Laboratory Testbed for Embedded Fuzzy Control

    Science.gov (United States)

    Srivastava, S.; Sukumar, V.; Bhasin, P. S.; Arun Kumar, D.

    2011-01-01

    This paper presents a novel scheme called "Laboratory Testbed for Embedded Fuzzy Control of a Real Time Nonlinear System." The idea is based upon the fact that project-based learning motivates students to learn actively and to use their engineering skills acquired in their previous years of study. It also fosters initiative and focuses…

  15. Cognitive nonlinear radar test-bed

    Science.gov (United States)

    Hedden, Abigail S.; Wikner, David A.; Martone, Anthony; McNamara, David

    2013-05-01

    Providing situational awareness to the warfighter requires radar, communications, and other electronic systems that operate in increasingly cluttered and dynamic electromagnetic environments. There is a growing need for cognitive RF systems that are capable of monitoring, adapting to, and learning from their environments in order to maintain their effectiveness and functionality. Additionally, radar systems are needed that are capable of adapting to an increased number of targets of interest. Cognitive nonlinear radar may offer critical solutions to these growing problems. This work focuses on ongoing efforts at the U.S. Army Research Laboratory (ARL) to develop a cognitive nonlinear radar test-bed. ARL is working toward developing a test-bed that uses spectrum sensing to monitor the RF environment and dynamically change the transmit waveforms to achieve detection of nonlinear targets with high confidence. This work presents the architecture of the test-bed system along with a discussion of its current capabilities and limitations. A brief outlook is presented for the project along with a discussion of a future cognitive nonlinear radar test-bed.

  16. A Laboratory Testbed for Embedded Fuzzy Control

    Science.gov (United States)

    Srivastava, S.; Sukumar, V.; Bhasin, P. S.; Arun Kumar, D.

    2011-01-01

    This paper presents a novel scheme called "Laboratory Testbed for Embedded Fuzzy Control of a Real Time Nonlinear System." The idea is based upon the fact that project-based learning motivates students to learn actively and to use their engineering skills acquired in their previous years of study. It also fosters initiative and focuses…

  17. Flight Projects Office Information Systems Testbed (FIST)

    Science.gov (United States)

    Liggett, Patricia

    1991-01-01

    Viewgraphs on the Flight Projects Office Information Systems Testbed (FIST) are presented. The goal is to perform technology evaluation and prototyping of information systems to support SFOC and JPL flight projects in order to reduce risk in the development of operational data systems for such projects.

  18. A Business-to-Business Interoperability Testbed: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kulvatunyou, Boonserm [ORNL; Ivezic, Nenad [ORNL; Monica, Martin [Sun Microsystems, Inc.; Jones, Albert [National Institute of Standards and Technology (NIST)

    2003-10-01

    In this paper, we describe a business-to-business (B2B) testbed co-sponsored by the Open Applications Group, Inc. (OAGI) and the National Institute of Standard and Technology (NIST) to advance enterprise e-commerce standards. We describe the business and technical objectives and initial activities within the B2B Testbed. We summarize our initial lessons learned to form the requirements that drive the next generation testbed development. We also give an overview of a promising testing framework architecture in which to drive the testbed developments. We outline the future plans for the testbed development.

  19. A model-based approach to the spatial and spectral calibration of NIRSpec onboard JWST

    Science.gov (United States)

    Dorner, B.; Giardino, G.; Ferruit, P.; Alves de Oliveira, C.; Birkmann, S. M.; Böker, T.; De Marchi, G.; Gnata, X.; Köhler, J.; Sirianni, M.; Jakobsen, P.

    2016-08-01

    Context. The NIRSpec instrument for the James Webb Space Telescope (JWST) can be operated in multiobject spectroscopy (MOS), long-slit, and integral field unit (IFU) mode with spectral resolutions from 100 to 2700. Its MOS mode uses about a quarter of a million individually addressable minislits for object selection, covering a field of view of ~9 arcmin2. Aims: The pipeline used to extract wavelength-calibrated spectra from NIRSpec detector images relies heavily on a model of NIRSpec optical geometry. We demonstrate how dedicated calibration data from a small subset of NIRSpec modes and apertures can be used to optimize this parametric model to the necessary levels of fidelity. Methods: Following an iterative procedure, the initial fiducial values of the model parameters are manually adjusted and then automatically optimized, so that the model predicted location of the images and spectral lines from the fixed slits, the IFU, and a small subset of the MOS apertures matches their measured location in the main optical planes of the instrument. Results: The NIRSpec parametric model is able to reproduce the spatial and spectral position of the input spectra with high fidelity. The intrinsic accuracy (1-sigma, rms) of the model, as measured from the extracted calibration spectra, is better than 1/10 of a pixel along the spatial direction and better than 1/20 of a resolution element in the spectral direction for all of the grating-based spectral modes. This is fully consistent with the corresponding allocation in the spatial and spectral calibration budgets of NIRSpec.

  20. Information Content Analysis for Selection of Optimal JWST Observing Modes for Transiting Exoplanet Atmospheres

    Science.gov (United States)

    Batalha, Natasha E.; Line, M. R.

    2017-04-01

    The James Webb Space Telescope (JWST) is nearing its launch date of 2018, and is expected to revolutionize our knowledge of exoplanet atmospheres. In order to specifically identify which observing modes will be most useful for characterizing a diverse range of exoplanetary atmospheres, we use an information content (IC) based approach commonly used in the studies of solar system atmospheres. We develop a system based upon these IC methods to trace the instrumental and atmospheric model phase space in order to identify which observing modes are best suited for particular classes of planets, focusing on transmission spectra. Specifically, the atmospheric parameter space we cover is T = 600-1800 K, C/O = 0.55-1, [M/H] = 1-100 × Solar for an R = 1.39 R J , M = 0.59 M J planet orbiting a WASP-62-like star. We also explore the influence of a simplified opaque gray cloud on the IC. We find that obtaining broader wavelength coverage over multiple modes is preferred over higher precision in a single mode given the same amount of observing time. Regardless of the planet temperature and composition, the best modes for constraining terminator temperatures, C/O ratios, and metallicity are NIRISS SOSS+NIRSpec G395. If the target’s host star is dim enough such that the NIRSpec prism is applicable, then it can be used instead of NIRISS SOSS+NIRSpec G395. Lastly, observations that use more than two modes should be carefully analyzed because sometimes the addition of a third mode results in no gain of information. In these cases, higher precision in the original two modes is favorable.

  1. Rover Attitude and Pointing System Simulation Testbed

    Science.gov (United States)

    Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam

    2009-01-01

    The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.

  2. Sparse matrix methods research using the CSM testbed software system

    Science.gov (United States)

    Chu, Eleanor; George, J. Alan

    1989-01-01

    Research is described on sparse matrix techniques for the Computational Structural Mechanics (CSM) Testbed. The primary objective was to compare the performance of state-of-the-art techniques for solving sparse systems with those that are currently available in the CSM Testbed. Thus, one of the first tasks was to become familiar with the structure of the testbed, and to install some or all of the SPARSPAK package in the testbed. A suite of subroutines to extract from the data base the relevant structural and numerical information about the matrix equations was written, and all the demonstration problems distributed with the testbed were successfully solved. These codes were documented, and performance studies comparing the SPARSPAK technology to the methods currently in the testbed were completed. In addition, some preliminary studies were done comparing some recently developed out-of-core techniques with the performance of the testbed processor INV.

  3. Exploring Extrasolar Planetary Systems: New Observations of Extrasolar Planets Enabled by the James Webb Space Telescope

    Science.gov (United States)

    Clampin, Mark

    2012-01-01

    The search for extrasolar planets has been increasingly success over the last few years. In excess of 700 systems are now known, and Kepler has approx.2500 additional candidate systems, yet to be confirmed. Recently, progress has also been made in directly imaging extrasolar planets, both from the ground and in space. In this presentation will discuss the techniques employed to discover planetary systems, and highlight the capabilities, enabled by the James Webb Space Telescope (JWST). JWST is a large 6.5 meter aperture infrared telescope that is scheduled for launch in 2018, and will allow us to transition to characterizing the properties of these extrasolar planets and the planetary systems in which they reside.

  4. Deep IRAC Imaging Lensing Galaxy Clusters for JWST 'First Light' Search

    Science.gov (United States)

    Yan, Haojing; Conselice, Christopher; Windhorst, Rogier; Cohen, Seth; Alpaslan, Mehmet; Zitrin, Adi; Broadhurst, Tom; Frye, Brenda; Driver, Simon; Robotham, Aaron; Hopkins, Andrew; Wyithe, Staurt; Jansen, Rolf; Hathi, Nimish; Mechtley, Matthew; Ryan, Russell; Rutkowski, Michael; Finkelstein, Steven; Koekemoer, Anton

    2016-08-01

    JWST has a key goal to search for First Light objects beyond z>10. Our 110-hr JWST GTO program, 'Webb Medium-Deep Fields' (WMDF), will target both blank and lensed fields to probe both the bright and the faint ends of the galaxy luminosity function at z > 10. While a number of well studied lensing clusters exist, not all of them are optimal for the JWST search of First Light objects, either because of their low Ecliptic latitudes (and hence high Zodiacal background) or because of their strong intra-cluster light (ICL) at the critical curve regions corresponding to the redshifts of interest. For this reason, our WMDF candidate lensing targets will include some recently discovered, high-mass (log[M/Msun] ~ 15) galaxy clusters, which we choose either because of their high Ecliptic latitude (beta > 40 deg) or because of their extreme compactness that minimizes the impact of the ICL. As part of our effort to collect ancillary data for these new systems to finalize the target list, we propose IRAC observations for 13 of them that are lacking sufficient data. These 3.6/4.5um data will be critical for our guaranteed JWST program: (1) they will greatly facilitate the modeling of the straylight that JWST will suffer in 1--5 um (the key range to search for z>10--20 objects), a problem that has recently been identified. If left untreated, such straylight components would severely hamper the detection of faint sources in a lensing field. The JWST observations alone would be difficult to separate the ICL from the straylight at the level needed. (2) the new 3.6/4.5um data will best match our deep optical imaging and spectroscopy at HST, Gemini, LBT and MMT. We will derive accurate photometric redshifts for any lensed background galaxies (at znote that these data will be highly valuable for the study of these clusters themselves before the JWST mission.

  5. Cognitive Optical Network Testbed: EU Project CHRON

    DEFF Research Database (Denmark)

    Borkowski, Robert; Duran, Ramon J.; Kachris, Christoforos

    2015-01-01

    , and makes informed decisions based on its current status and knowledge about past decisions and their results. To test the operation of cognitive algorithms in real time, we created the first operational testbed of a cognitive optical network based on the Cognitive Heterogeneous Reconfigurable Optical...... Network (CHRON) architecture. In this experiment, an intelligent control plane, enabled by a cognitive decision system (CDS), was successfully combined with a flexible data plane. The testbed was used to test and validate different scenarios, demonstrating benefits obtained by network cognition......The aim of cognition in optical networks is to introduce intelligence into the control plane that allows for autonomous end-to-end performance optimization and minimization of required human intervention, particularly targeted at heterogeneous network scenarios. A cognitive network observes, learns...

  6. Mini-mast CSI testbed user's guide

    Science.gov (United States)

    Tanner, Sharon E.; Pappa, Richard S.; Sulla, Jeffrey L.; Elliott, Kenny B.; Miserentino, Robert; Bailey, James P.; Cooper, Paul A.; Williams, Boyd L., Jr.; Bruner, Anne M.

    1992-01-01

    The Mini-Mast testbed is a 20 m generic truss highly representative of future deployable trusses for space applications. It is fully instrumented for system identification and active vibrations control experiments and is used as a ground testbed at NASA-Langley. The facility has actuators and feedback sensors linked via fiber optic cables to the Advanced Real Time Simulation (ARTS) system, where user defined control laws are incorporated into generic controls software. The object of the facility is to conduct comprehensive active vibration control experiments on a dynamically realistic large space structure. A primary goal is to understand the practical effects of simplifying theoretical assumptions. This User's Guide describes the hardware and its primary components, the dynamic characteristics of the test article, the control law implementation process, and the necessary safeguards employed to protect the test article. Suggestions for a strawman controls experiment are also included.

  7. A Survey of Cyber Ranges and Testbeds

    Science.gov (United States)

    2013-10-01

    and GENI in the US. These projects currently link testbed resources to assist sharing and reuse among researchers. The review also identified...Defense DPI Deep packet inspection EW Electronic warfare FIRE Future internet research and experimentation (EU) GENI Global environment for...shared by researchers across the globe. An example of this in the US is the current Global Environment for Network Innovations ( GENI ) project sponsored

  8. Scanning measurement testbed for advanced nondestructive evaluation

    OpenAIRE

    Horne, Michael R

    1990-01-01

    New materials and manufacturing processes, and the quest for economy and user safety, have necessitated the development of nondestructive testing methods to quantify the life and reliability of a product during manufacture and service. Described herein, is a testbed to be used in the research and development of these testing methods. A brief motivation for using ultrasonics applied to nondestructive evaluation is followed by a chapter on the feasibility of using a unique testing method and an...

  9. Computer testbed for experiments on coordination

    OpenAIRE

    Orazbayev, Sultan

    2005-01-01

    Experimental studies of coordination games consistently show that large groups are unable to escape the inefficient equilibrium. Weber (2005) modifies experimental design and obtains large groups that coordinate on the efficient equilibrium. This feature is incorporated into a computer testbed. After examining both individual and social learning, it is found that experimental results cannot be described with a simple learning process. A discussion on possible explanations concludes the project.

  10. SSERVI Analog Regolith Simulant Testbed Facility

    Science.gov (United States)

    Minafra, Joseph; Schmidt, Gregory; Bailey, Brad; Gibbs, Kristina

    2016-10-01

    The Solar System Exploration Research Virtual Institute (SSERVI) at NASA's Ames Research Center in California's Silicon Valley was founded in 2013 to act as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD).Primary research goals of the Institute revolve around the integration of science and exploration to gain knowledge required for the future of human space exploration beyond low Earth orbit. SSERVI intends to leverage existing JSC1A regolith simulant resources into the creation of a regolith simulant testbed facility. The purpose of this testbed concept is to provide the planetary exploration community with a readily available capability to test hardware and conduct research in a large simulant environment.SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers.SSERVI provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment.The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area, including dust mitigation and safety oversight.Facility hardware and environment testing scenarios could include, Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, Surface features (i.e. grades and rocks)Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and

  11. Variable Dynamic Testbed Vehicle: Dynamics Analysis

    Science.gov (United States)

    Lee, A. Y.; Le, N. T.; Marriott, A. T.

    1997-01-01

    The Variable Dynamic Testbed Vehicle (VDTV) concept has been proposed as a tool to evaluate collision avoidance systems and to perform driving-related human factors research. The goal of this study is to analytically investigate to what extent a VDTV with adjustable front and rear anti-roll bar stiffnesses, programmable damping rates, and four-wheel-steering can emulate the lateral dynamics of a broad range of passenger vehicles.

  12. Cognitive Medical Wireless Testbed System (COMWITS)

    Science.gov (United States)

    2016-11-01

    class is described in continuation. Fifth generation ( 5G ) wireless networks are predicted to be optimized at each layer of the protocol stack to meet...findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position , policy or decision...among others, using software-defined radio (SDR) technology. The 48-node COgnitive Radio Network (CORNET) testbed spans the 4 floors of a campus

  13. SNAP telescope

    Energy Technology Data Exchange (ETDEWEB)

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  14. EMC Test Challenges for NASA's James Webb Space Telescope

    Science.gov (United States)

    McCloskey, John

    2016-01-01

    This presentation describes the electromagnetic compatibility (EMC) tests performed on the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope (JWST), at NASAs Goddard Space Flight Center (GSFC) in August 2015. By its very nature of being an integrated payload, it could be treated as neither a unit level test nor an integrated spacecraft observatory test. Non-standard test criteria are described along with non-standard test methods that had to be developed in order to evaluate them. Results are presented to demonstrate that all test criteria were met in less than the time allocated.

  15. EMC Test Challenges for NASAs James Webb Space Telescope

    Science.gov (United States)

    McCloskey, John

    2016-01-01

    This presentation describes the electromagnetic compatibility (EMC) tests performed on the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope (JWST), at NASAs Goddard Space Flight Center (GSFC) in August 2015. By its very nature of being an integrated payload, it could be treated as neither a unit level test nor an integrated spacecraft observatory test. Non-standard test criteria are described along with non-standard test methods that had to be developed in order to evaluate them. Results are presented to demonstrate that all test criteria were met in less than the time allocated.

  16. A novel testbed structure for nanoshell based devices

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Mohammad A [Department of Electrical Engineering, Pennsylvania State University, University Park, Pittsburgh, PA (United States); Geiger, Richard T [Department of Electrical Engineering, Pennsylvania State University, University Park, Pittsburgh, PA (United States); Kim, Jaekyun [Department of Electrical Engineering, Pennsylvania State University, University Park, Pittsburgh, PA (United States)

    2007-06-27

    The design and the fabrication of a novel testbed for nanoshell based devices is reported. We have identified six criteria for an ideal resistive nanodevice and show that our testbed satisfies most of these criteria. We describe how the unique design of the testbed minimizes most of the resilient problems in the current nanodevices, like non-uniformity, assembly, stray nanocomponents and cost. We have tested the testbed by using gold nanoshell coated silica spheres as the active device element. We discuss the nature and the implications of the contact resistance between a flat electrode and a spherical nanoshell. We suggest various applications of the testbed, from nanofuses to ultrafast oxide sensors and to bio-sensors. We describe methods and steps for miniaturization of the testbed.

  17. JWST NIRCam WFSS Ice Feature Spectroscopy in Nearby Molecular Cores

    Science.gov (United States)

    Chu, Laurie; Hodapp, Klaus W.; Rieke, Marcia J.; Meyer, Michael; Greene, Thomas P.; JWST NIRCam Science Team

    2017-06-01

    In molecular clouds above a few magnitudes of total visual extinction, some components of the molecular gas freeze out on the surfaces of dust grains. These ice mantles around dust grains are the site of complex surface chemistry that leads to the formation of simple organic molecules in these mantles. The icy surfaces also facilitate the coaggulation of the dust particles, setting the stage for grain growth and ultimately the formation of planetary bodies.As part of the JWST NIRCam GTO program, we plan to observe a selection of small molecular cores using the wide field grism spectroscopy mode of NIRCam.This poster presents the results of a preliminary study of several candidate molecular cores using UKIRT, Spitzer IRAC, IRTF SpeX, Keck MOSFIRE and Subaru MOIRCS data.After the prelimary studies we have selected three molecular cores in different evolutionary stages for the GTO program: B68, a quiescent molecular core, LDN 694-2, a collapsing pre-stellar core, and B335, a protostellar core. All these cores are seen against a dense background of stars in the inner Galaxy and offer the opportunity for spatially well resolved mapping of the ice feature distribution. We will obtain slitless grism spectroscopy in six filters covering the features of H2O, CO2, CO, CH3OH, and the XCN feature. Simulations using aXeSIM have shown that spectrum overlap will occur in a fraction of the spectra, but will not be a prohibitive problem.Our poster will discuss the details of observations planned out in the APT system.

  18. Recent Developments in the Alignment and Test Plans for the James Webb Space Telescope Integrated Science Instrument Module

    Science.gov (United States)

    Ohl, Raymond

    2008-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approximately 40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The SIs and Guider are mounted to a composite metering structure with outer dimensions of 2.1 x 2.2 x 1.9m. The SI and Guider units are integrated to the ISIM structure and optically tested at NASA/Goddard Space Flight Center as an instrument suite using an OTE SIMulator (OSIM). OSIM is a high-fidelity, cryogenic JWST telescope simulator that features a approximately 1.5m diameter powered mirror. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. Temperature-induced mechanical SI alignment and structural changes are measured using a photogrammetric measurement system at ambient and cryogenic temperatures. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors in six degrees of freedom. SI performance, including focus, pupil shear and wavefront error, is evaluated at the operating temperature using OSIM. We present an updated plan for the assembly and ambient and cryogenic optical alignment, test and verification of the ISIM element.

  19. Development and Acceptance Testing of the Dual Wheel Mechanism for the Tunable Filter Imager Cryogenic Instrument on the JWST

    Science.gov (United States)

    Leckie, Martin; Ahmad, Zakir

    2010-01-01

    The James Webb Space Telescope (JWST) will carry four scientific instruments, one of which is the Tunable Filter Imager (TFI), which is an instrument within the Fine Guidance Sensor. The Dual Wheel (DW) mechanism is being designed, built and tested by COM DEV Ltd. under contract from the Canadian Space Agency. The DW mechanism includes a pupil wheel (PW) holding seven coronagraphic masks and two calibration elements and a filter wheel (FW) holding nine blocking filters. The DW mechanism must operate at both room temperature and at 35K. Successful operation at 35K comprises positioning each optical element with the required repeatability, for several thousand occasions over the five year mission. The paper discusses the results of testing geared motors and bearings at the cryogenic temperature. In particular bearing retainer design and PGM-HT material, the effects of temperature gradients across bearings and the problems associated with cooling mechanisms down to cryogenic temperatures. The results of additional bearing tests are described that were employed to investigate an abnormally high initial torque experienced at cryogenic temperatures. The findings of these tests, was that the bearing retainer and the ball/race system could be adversely affected by the large temperature change from room temperature to cryogenic temperature and also the temperature gradient across the bearing. The DW mechanism is now performing successfully at both room temperature and at cryogenic temperature. The life testing of the mechanism is expected to be completed in the first quarter of 2010.

  20. The JWST North Ecliptic Pole Survey Field for Time-domain Studies

    Science.gov (United States)

    Jansen, Rolf A.; Alpaslan, Mehmet; Ashby, Matthew; Ashcraft, Teresa; Cohen, Seth H.; Condon, James J.; Conselice, Christopher; Ferrara, Andrea; Frye, Brenda L.; Grogin, Norman A.; Hammel, Heidi B.; Hathi, Nimish P.; Joshi, Bhavin; Kim, Duho; Koekemoer, Anton M.; Mechtley, Matt; Milam, Stefanie N.; Rodney, Steven A.; Rutkowski, Michael J.; Strolger, Louis-Gregory; Trujillo, Chadwick A.; Willmer, Christopher; Windhorst, Rogier A.; Yan, Haojing

    2017-01-01

    The JWST North Ecliptic Pole (NEP) Survey field is located within JWST's northern Continuous Viewing Zone, will span ˜14‧ in diameter (˜10‧ with NIRISS coverage) and will be roughly circular in shape (initially sampled during Cycle 1 at 4 distinct orientations with JWST/NIRCam's 4.4‧×2.2‧ FoV —the JWST “windmill”) and will have NIRISS slitless grism spectroscopy taken in parallel, overlapping an alternate NIRCam orientation. This is the only region in the sky where JWST can observe a clean extragalactic deep survey field (free of bright foreground stars and with low Galactic foreground extinction AV) at arbitrary cadence or at arbitrary orientation. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei to brown dwarf atmospheres, as well as proper motions of extreme scattered Kuiper Belt and Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. We therefore welcome and encourage follow-up through GO programs of the initial GTO observations to realize its potential as a JWST time-domain community field. The JWST NEP Survey field was selected from an analysis of WISE 3.4+4.6 micron, 2MASS JHKs, and SDSS ugriz source counts and of Galactic foreground extinction, and is one of very few such ˜10‧ fields that are devoid of sources brighter than mAB = 16 mag. We have secured deep (mAB ˜ 26 mag) wide-field (˜23‧×25‧) Ugrz images of this field and its surroundings with LBT/LBC. We also expect that deep MMT/MMIRS YJHK images, deep 8-12 GHz VLA radio observations (pending), and possibly HST ACS/WFC and WFC3/UVIS ultraviolet-visible images will be available before JWST launches in Oct 2018.

  1. An Automated SVD for Alignment and Control of James Webb Space Telescope Mirrors

    Science.gov (United States)

    Shiri, Sharam; Howard, Joseph M.; Aronstein, David L.; Ha, Kong; Smith, J. Scott; Dean, Bruce

    2008-01-01

    The James Webb Space Telescope (JWST) is a three-mirror anastigmatic telescope. The alignment of the segmented primary and secondary mirrors in the wavefront sensing and control process involves a series of actuators to control the six degrees-of-freedom motion on each surface in addition to the radius of curvature. The control matrix developed from the alignment parameters is over-determined and singular value decomposition (SVD) method is used to solve it in the least square sense. An automated SVD scheme has been developed to identify the most contributing modes in a typical alignment process and reduce the impact of error-prone modes from the control process.

  2. The accretion/ejection paradigm in young stellar objects: from HST and Herschel to JWST

    Science.gov (United States)

    Podio, Linda

    2012-07-01

    Stellar jets and molecular outflows are observed in association with young accreting stars and are believed to play a key role in the star formation process. In this talk I will show how current and future space missions are of crucial importance to investigate the origin of stellar jets and their link to the accretion process. Thanks to its high angular (˜0.1") resolution, HST has been the first telescope allowing us to investigate the jet physics at optical/UV wavelengths down to the heart of the launching mechanism. We recently analysed a datacube of the jet emitted by the T Tauri star DG Tau obtaining spatio-kinematical maps of the hot atomic gas in the jet and of its physical conditions (Maurri et al., submitted). These data confirm the predictions of theoretical models including the fact that jets may extract the excess angular momentum from the system. In the last two years Herschel has further improved our comprehension of the ejection process observing the far infrared counterpart of fast and collimated atomic jets. PACS and HIFI observations, acquired within the GASPS (GAS in Protoplanetary Systems) Open Time Key Project (PI: B. Dent), show that T Tauri stars driving optical jets are also associated with a warm gas component emitting not only atomic ([OI], [CII]) but also molecular (high-J CO, H_2O, OH) lines. The comparison with Class 0 outflows highlights a clear evolutionary trend: the emission associated with evolved Class I/II sources is fainter and more compact and the estimated mass loss rates and lines cooling are one to two orders of magnitudes lower (Podio et al., to be submitted). The arrival of JWST will fill-in the gap between HST and Herschel opening a new window in the near and mid-infrared range at unprecedented angular resolution (down to 0.03"). This will allow resolving the emission in both atomic (e.g., [FeII]) and molecular (e.g., H_2) lines and understanding if the molecular gas is entrained by the atomic jet or launched with it

  3. Selecting Your First Telescope.

    Science.gov (United States)

    Harrington, Sherwood

    1982-01-01

    Designed for first-time telescope purchasers, provides information on how a telescope works; major telescope types (refractors, reflectors, compound telescopes); tripod, pier, altazimuth, and equatorial mounts; selecting a telescope; visiting an astronomy club; applications/limitations of telescope use; and tips on buying a telescope. Includes a…

  4. Application developer's tutorial for the CSM testbed architecture

    Science.gov (United States)

    Underwood, Phillip; Felippa, Carlos A.

    1988-01-01

    This tutorial serves as an illustration of the use of the programmer interface on the CSM Testbed Architecture (NICE). It presents a complete, but simple, introduction to using both the GAL-DBM (Global Access Library-Database Manager) and CLIP (Command Language Interface Program) to write a NICE processor. Familiarity with the CSM Testbed architecture is required.

  5. Multi-agent testbed for distributed space systems

    NARCIS (Netherlands)

    Osuman, A.; Guo, J.; Gill, E.K.A.

    2010-01-01

    Several industries are involved in the development of distributed systems, testbeds are needed to simulate the real world challenges that face the distributed systems. Presently, there are a number of testbeds in the world with very distinctive characteristics. Delft University of Technology is invo

  6. Nuclear Instrumentation and Control Cyber Testbed Considerations – Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Gray; Robert Anderson; Julio G. Rodriguez; Cheol-Kwon Lee

    2014-08-01

    Abstract: Identifying and understanding digital instrumentation and control (I&C) cyber vulnerabilities within nuclear power plants and other nuclear facilities, is critical if nation states desire to operate nuclear facilities safely, reliably, and securely. In order to demonstrate objective evidence that cyber vulnerabilities have been adequately identified and mitigated, a testbed representing a facility’s critical nuclear equipment must be replicated. Idaho National Laboratory (INL) has built and operated similar testbeds for common critical infrastructure I&C for over ten years. This experience developing, operating, and maintaining an I&C testbed in support of research identifying cyber vulnerabilities has led the Korean Atomic Energy Research Institute of the Republic of Korea to solicit the experiences of INL to help mitigate problems early in the design, development, operation, and maintenance of a similar testbed. The following information will discuss I&C testbed lessons learned and the impact of these experiences to KAERI.

  7. A Turbine-powered UAV Controls Testbed

    Science.gov (United States)

    Motter, Mark A.; High, James W.; Guerreiro, Nelson M.; Chambers, Ryan S.; Howard, Keith D.

    2007-01-01

    The latest version of the NASA Flying Controls Testbed (FLiC) integrates commercial-off-the-shelf components including airframe, autopilot, and a small turbine engine to provide a low cost experimental flight controls testbed capable of sustained speeds up to 200 mph. The series of flight tests leading up to the demonstrated performance of the vehicle in sustained, autopiloted 200 mph flight at NASA Wallops Flight Facility's UAV runway in August 2006 will be described. Earlier versions of the FLiC were based on a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate at Fort Eustis, Virginia and NASA Langley Research Center. The newer turbine powered platform (J-FLiC) builds on the successes using the relatively smaller, slower and less expensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches with the implementation of C-coded experimental controllers. Tracking video was taken during the test flights at Wallops and will be available for presentation at the conference. Analysis of flight data from both remotely piloted and autopiloted flights will be presented. Candidate experimental controllers for implementation will be discussed. It is anticipated that flight testing will resume in Spring 2007 and those results will be included, if possible.

  8. Cometary Science with the James Webb Space Telescope

    CERN Document Server

    Kelley, Michael S P; Bodewits, Dennis; Farnham, Tony L; Gudipati, Murthy S; Harker, David E; Hines, Dean C; Knight, Matthew M; Kolokolova, Ludmilla; Li, Aigen; de Pater, Imke; Protopapa, Silvia; Russell, Ray W; Sitko, Michael L; Wooden, Diane H

    2015-01-01

    The James Webb Space Telescope (JWST), as the largest space-based astronomical observatory with near- and mid-infrared instrumentation, will elucidate many mysterious aspects of comets. We summarize four cometary science themes especially suited for this telescope and its instrumentation: the drivers of cometary activity, comet nucleus heterogeneity, water ice in comae and on surfaces, and activity in faint comets and main-belt asteroids. With JWST, we can expect the most distant detections of gas, especially CO2, in what we now consider to be only moderately bright comets. For nearby comets, coma dust properties can be studied with their driving gases, measured simultaneously with the same instrument or contemporaneously with another. Studies of water ice and gas in the distant Solar System will help us test our understanding of cometary interiors and coma evolution. The question of cometary activity in main-belt comets will be further explored with the possibility of a direct detection of coma gas. We explo...

  9. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    Science.gov (United States)

    Gardner, Jonathan P.

    2009-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z greater than 6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z greater than 10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (less than 50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems, and discuss recent progress in constructing the observatory.

  10. Lessons from Coronagraphic Imaging with HST that may apply to JWST

    Science.gov (United States)

    Grady, C. A.; Hines, Dean C.; Schneider, Glenn; McElwain, Michael W.

    2017-06-01

    One of the major capabilities offered by JWST is coronagraphic imaging from space, covering the near through mid-IR and optimized for study of planet formation and the evolution of planetary systems. Planning for JWST has resulted in expectations for instrument performance, observation strategies and data reduction approaches. HST with 20 years of coronagraphic imaging offers some experience which may be useful to those planning for JWST. 1) Real astronomical sources do not necessarily conform to expectations. Debris disks may be accompanied by more distant material, and some systems may be conspicuous in scattered light when offering only modest IR excesses. Proto-planetary disks are not constantly illuminated, and thus a single epoch observation of the source may not be sufficient to reveal everything about it. 2) The early expectation with NICMOS was that shallow, 2-roll observations would reveal a wealth of debris disks imaged in scattered light, and that only a limited set of PSF observations would be required. Instead, building up a library of spatially resolved disks in scattered light has proven to require alternate observing strategies, is still on-going, and has taken far longer than expected. 3) A wealth of coronagraphic options with an instrument may not be scientifically informative, unless there is a similar time investment in acquisition of calibration data in support of the science observations. 4) Finally, no one anticipated what can be gleaned from coronagraphic imaging. We should expect similar, unexpected, and ultimately revolutionary discoveries with JWST.

  11. Optical Testing and Verification Methods for the James Webb Space Telescope Integrated Science Instrument Module Element

    Science.gov (United States)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; hide

    2016-01-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (40K). The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) that contains four science instruments (SI) and the fine guider. The SIs are mounted to a composite metering structure. The SI and guider units were integrated to the ISIM structure and optically tested at the NASA Goddard Space Flight Center as a suite using the Optical Telescope Element SIMulator (OSIM). OSIM is a full field, cryogenic JWST telescope simulator. SI performance, including alignment and wave front error, were evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  12. Optical testing and verification methods for the James Webb Space Telescope Integrated Science Instrument Module element

    Science.gov (United States)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; Eichhorn, William L.; Glasse, Alistair C.; Gracey, Renee; Hartig, George F.; Howard, Joseph M.; Kelly, Douglas M.; Kimble, Randy A.; Kirk, Jeffrey R.; Kubalak, David A.; Landsman, Wayne B.; Lindler, Don J.; Malumuth, Eliot M.; Maszkiewicz, Michael; Rieke, Marcia J.; Rowlands, Neil; Sabatke, Derek S.; Smith, Corbett T.; Smith, J. Scott; Sullivan, Joseph F.; Telfer, Randal C.; Te Plate, Maurice; Vila, M. Begoña.; Warner, Gerry D.; Wright, David; Wright, Raymond H.; Zhou, Julia; Zielinski, Thomas P.

    2016-09-01

    NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM), that contains four science instruments (SI) and the Fine Guidance Sensor (FGS). The SIs are mounted to a composite metering structure. The SIs and FGS were integrated to the ISIM structure and optically tested at NASA's Goddard Space Flight Center using the Optical Telescope Element SIMulator (OSIM). OSIM is a full-field, cryogenic JWST telescope simulator. SI performance, including alignment and wavefront error, was evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, implementation of associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  13. Supermassive Dark Stars: Detectable in JWST and HST

    CERN Document Server

    Freese, K; Valluri, M; Ilie, C; Spolyar, D; Bodenheimer, P

    2010-01-01

    The first stars to form in the history of the universe may have been powered by dark matter annihilation rather than by fusion. This new phase of stellar evolution may have lasted millions to billions of years. These dark stars can grow to be very large, > 10^5 solar masses, and are relatively cool (~10^4 K). They are also very bright, being potentially detectable in the upcoming James Webb Space Telescope or even the Hubble Space Telescope. Once the dark matter runs out, the dark stars have a short fusion phase, before collapsing into black holes (BH). The resulting BH could serve as seeds for the (unexplained) supermassive black holes at high redshift and at the centers of galaxies.

  14. The Mid-Infrared Instrument for the James Webb Space Telescope, X. Operations and Data Reduction

    CERN Document Server

    Gordon, Karl D; Anderson, Rachel E; Azzollini, Ruyman; Bergeron, L; Bouchet, Patrice; Bouwman, Jeroen; Cracraft, Misty; Fischer, Sebastian; Friedman, Scott D; Garcia-Marin, Macarena; Glasse, Alistair; Glauser, Adrian M; Goodson, G B; Greene, T P; Hines, Dean C; Khorrami, M A; Lahuis, Fred; Lajoie, C -P; Meixner, M E; Morrison, Jane E; O'Sullivan, Brian; Pontoppidan, K M; Regan, M W; Ressler, M E; Rieke, G H; Scheithauer, Silvia; Walker, Helen; Wright, G S

    2015-01-01

    We describe the operations concept and data reduction plan for the Mid- Infrared Instrument (MIRI) for the James Webb Space Telescope (JWST). The overall JWST operations concept is to use Observation Templates (OTs) to provide a straightforward and intuitive way for users to specify observations. MIRI has four OTs that correspond to the four observing modes: 1.) Imaging, 2.) Coronagraphy, 3.) Low Resolution Spectroscopy, and 4.) Medium Resolution Spectroscopy. We outline the user choices and expansion of these choices into detailed instrument operations. The data reduction plans for MIRI are split into three stages, where the specificity of the reduction steps to the observation type increases with stage. The reduction starts with integration ramps: stage 1 yields uncalibrated slope images; stage 2 calibrates the slope images; and then stage 3 combines multiple calibrated slope images into high level data products (e.g. mosaics, spectral cubes, and extracted source information). Finally, we give examples of t...

  15. Standardization of XML Database Exchanges and the James Webb Space Telescope Experience

    Science.gov (United States)

    Gal-Edd, Jonathan; Detter, Ryan; Jones, Ron; Fatig, Curtis C.

    2007-01-01

    Personnel from the National Aeronautics and Space Administration (NASA) James Webb Space Telescope (JWST) Project have been working with various standard communities such the Object Management Group (OMG) and the Consultative Committee for Space Data Systems (CCSDS) to assist in the definition of a common extensible Markup Language (XML) for database exchange format. The CCSDS and OMG standards are intended for the exchange of core command and telemetry information, not for all database information needed to exercise a NASA space mission. The mission-specific database, containing all the information needed for a space mission, is translated from/to the standard using a translator. The standard is meant to provide a system that encompasses 90% of the information needed for command and telemetry processing. This paper will discuss standardization of the XML database exchange format, tools used, and the JWST experience, as well as future work with XML standard groups both commercial and government.

  16. Testbed Demonstration of Low Order Wavefront Sensing and Control Technology for WFIRST Coronagraph

    Science.gov (United States)

    Shi, Fang; Balasubramanian, K.; Cady, E.; Kern, B.; Lam, R.; Mandic, M.; Patterson, K.; Poberezhskiy, I.; Shields, J.; Seo, J.; Tang, H.; Truong, T.; Wilson, D.

    2017-01-01

    NASA’s WFIRST-AFTA Coronagraph will be capable of directly imaging and spectrally characterizing giant exoplanets similar to Neptune and Jupiter, and possibly even super-Earths, around nearby stars. To maintain the required coronagraph performance in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The LOWFS/C will use the rejected stellar light to sense and suppress the telescope pointing drift and jitter as well as low order wavefront errors due to the changes in thermal loading of the telescope and the rest of the observatory. The LOWFS/C uses a Zernike phase contrast wavefront sensor with the phase shifting disk combined with the stellar light rejecting occulting mask, a key concept to minimize the non-common path error. Developed as a part of the Dynamic High Contrast Imaging Testbed (DHCIT), the LOWFS/C subsystem also consists of an Optical Telescope Assembly Simulator (OTA-S) to generate the realistic line-of-sight (LoS) drift and jitter as well as low order wavefront error from WFIRST-AFTA telescope’s vibration and thermal drift. The entire LOWFS/C subsystem have been integrated, calibrated, and tested in the Dynamic High Contrast Imaging Testbed. In this presentation we will show the results of LOWFS/C performance during the dynamic coronagraph tests in which we have demonstrated that LOWFS/C is able to maintain the coronagraph contrast with the presence of WFIRST like line-of-sight drift and jitter as well as low order wavefront drifts.

  17. WFIRST-AFTA Coronagraphic Operations: Lessons Learned from the Hubble Space Telescope and the James Webb Space Telescope

    CERN Document Server

    Debes, John H; Choquet, Elodie; Hines, Dean C; Perrin, Marshall; Golimowski, David A; Lajoie, Charles-Phillipe; Mazoyer, Johan; Pueyo, Laurent; Soummer, Remi; van der Marel, Roeland

    2015-01-01

    The coronagraphic instrument currently proposed for the WFIRST-AFTA mission will be the first example of a space-based coronagraph optimized for extremely high contrasts that are required for the direct imaging of exoplanets reflecting the light of their host star. While the design of this instrument is still in progress, this early stage of development is a particularly beneficial time to consider the operation of such an instrument. In this paper, we review current or planned operations on the Hubble Space Telescope (HST) and the James Webb Space Telescope (JWST) with a focus on which operational aspects will have relevance to the planned WFIRST-AFTA coronagraphic instrument. We identify five key aspects of operations that will require attention: 1) detector health and evolution, 2) wavefront control, 3) observing strategies/post-processing, 4) astrometric precision/target acquisition, and 5) polarimetry. We make suggestions on a path forward for each of these items.

  18. Development of a Scalable Testbed for Mobile Olfaction Verification.

    Science.gov (United States)

    Zakaria, Syed Muhammad Mamduh Syed; Visvanathan, Retnam; Kamarudin, Kamarulzaman; Yeon, Ahmad Shakaff Ali; Md Shakaff, Ali Yeon; Zakaria, Ammar; Kamarudin, Latifah Munirah

    2015-12-09

    The lack of information on ground truth gas dispersion and experiment verification information has impeded the development of mobile olfaction systems, especially for real-world conditions. In this paper, an integrated testbed for mobile gas sensing experiments is presented. The integrated 3 m × 6 m testbed was built to provide real-time ground truth information for mobile olfaction system development. The testbed consists of a 72-gas-sensor array, namely Large Gas Sensor Array (LGSA), a localization system based on cameras and a wireless communication backbone for robot communication and integration into the testbed system. Furthermore, the data collected from the testbed may be streamed into a simulation environment to expedite development. Calibration results using ethanol have shown that using a large number of gas sensor in the LGSA is feasible and can produce coherent signals when exposed to the same concentrations. The results have shown that the testbed was able to capture the time varying characteristics and the variability of gas plume in a 2 h experiment thus providing time dependent ground truth concentration maps. The authors have demonstrated the ability of the mobile olfaction testbed to monitor, verify and thus, provide insight to gas distribution mapping experiment.

  19. Development of a Scalable Testbed for Mobile Olfaction Verification

    Directory of Open Access Journals (Sweden)

    Syed Muhammad Mamduh Syed Zakaria

    2015-12-01

    Full Text Available The lack of information on ground truth gas dispersion and experiment verification information has impeded the development of mobile olfaction systems, especially for real-world conditions. In this paper, an integrated testbed for mobile gas sensing experiments is presented. The integrated 3 m × 6 m testbed was built to provide real-time ground truth information for mobile olfaction system development. The testbed consists of a 72-gas-sensor array, namely Large Gas Sensor Array (LGSA, a localization system based on cameras and a wireless communication backbone for robot communication and integration into the testbed system. Furthermore, the data collected from the testbed may be streamed into a simulation environment to expedite development. Calibration results using ethanol have shown that using a large number of gas sensor in the LGSA is feasible and can produce coherent signals when exposed to the same concentrations. The results have shown that the testbed was able to capture the time varying characteristics and the variability of gas plume in a 2 h experiment thus providing time dependent ground truth concentration maps. The authors have demonstrated the ability of the mobile olfaction testbed to monitor, verify and thus, provide insight to gas distribution mapping experiment.

  20. Aerodynamic design of the National Rotor Testbed.

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.

  1. The Wide Field Imaging Interferometry Testbed

    CERN Document Server

    Zhang, X; Leisawitz, D T; Leviton, D B; Martino, A J; Mather, J C; Zhang, Xiaolei; Feinberg, Lee; Leisawitz, Dave; Leviton, Douglas B.; Martino, Anthony J.; Mather, John C.

    2001-01-01

    We are developing a Wide-Field Imaging Interferometry Testbed (WIIT) in support of design studies for NASA's future space interferometry missions, in particular the SPIRIT and SPECS far-infrared/submillimeter interferometers. WIIT operates at optical wavelengths and uses Michelson beam combination to achieve both wide-field imaging and high-resolution spectroscopy. It will be used chiefly to test the feasibility of using a large-format detector array at the image plane of the sky to obtain wide-field interferometry images through mosaicing techniques. In this setup each detector pixel records interferograms corresponding to averaging a particular pointing range on the sky as the optical path length is scanned and as the baseline separation and orientation is varied. The final image is constructed through spatial and spectral Fourier transforms of the recorded interferograms for each pixel, followed by a mosaic/joint-deconvolution procedure of all the pixels. In this manner the image within the pointing range ...

  2. Supersonic combustion engine testbed, heat lightning

    Science.gov (United States)

    Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.

    1990-01-01

    The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.

  3. Advanced Technology Large-Aperture Space Telescope (ATLAST): A Technology Roadmap for the Next Decade

    CERN Document Server

    Postman, Marc

    2009-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation of UVOIR space observatory with a primary aperture diameter in the 8-m to 16-m range that will allow us to perform some of the most challenging observations to answer some of our most compelling questions, including "Is there life elsewhere in the Galaxy?" We have identified two different telescope architectures, but with similar optical designs, that span the range in viable technologies. The architectures are a telescope with a monolithic primary mirror and two variations of a telescope with a large segmented primary mirror. This approach provides us with several pathways to realizing the mission, which will be narrowed to one as our technology development progresses. The concepts invoke heritage from HST and JWST design, but also take significant departures from these designs to minimize complexity, mass, or both. Our report provides details on the mission concepts, shows the extraordinary s...

  4. Development of Hardware-in-the-loop Microgrid Testbed

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Bailu [ORNL; Prabakar, Kumaraguru [ORNL; Starke, Michael R [ORNL; Liu, Guodong [ORNL; Dowling, Kevin [University of Tennessee, Knoxville (UTK); Ollis, T Ben [ORNL; Irminger, Philip [ORNL; Xu, Yan [ORNL; Dimitrovski, Aleksandar D [ORNL

    2015-01-01

    A hardware-in-the-loop (HIL) microgrid testbed for the evaluation and assessment of microgrid operation and control system has been presented in this paper. The HIL testbed is composed of a real-time digital simulator (RTDS) for modeling of the microgrid, multiple NI CompactRIOs for device level control, a prototype microgrid energy management system (MicroEMS), and a relay protection system. The applied communication-assisted hybrid control system has been also discussed. Results of function testing of HIL controller, communication, and the relay protection system are presented to show the effectiveness of the proposed HIL microgrid testbed.

  5. Detecting Proxima b’s Atmosphere with JWST Targeting CO2 at 15 μm Using a High-pass Spectral Filtering Technique

    Science.gov (United States)

    Snellen, I. A. G.; Désert, J.-M.; Waters, L. B. F. M.; Robinson, T.; Meadows, V.; van Dishoeck, E. F.; Brandl, B. R.; Henning, T.; Bouwman, J.; Lahuis, F.; Min, M.; Lovis, C.; Dominik, C.; Van Eylen, V.; Sing, D.; Anglada-Escudé, G.; Birkby, J. L.; Brogi, M.

    2017-08-01

    Exoplanet Proxima b will be an important laboratory for the search for extraterrestrial life for the decades ahead. Here, we discuss the prospects of detecting carbon dioxide at 15 μm using a spectral filtering technique with the Medium Resolution Spectrograph (MRS) mode of the Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST). At superior conjunction, the planet is expected to show a contrast of up to 100 ppm with respect to the star. At a spectral resolving power of R = 1790-2640, about 100 spectral CO2 features are visible within the 13.2-15.8 μm (3B) band, which can be combined to boost the planet atmospheric signal by a factor of 3-4, depending on the atmospheric temperature structure and CO2 abundance. If atmospheric conditions are favorable (assuming an Earth-like atmosphere), with this new application to the cross-correlation technique, carbon dioxide can be detected within a few days of JWST observations. However, this can only be achieved if both the instrumental spectral response and the stellar spectrum can be determined to a relative precision of ≤1 × 10-4 between adjacent spectral channels. Absolute flux calibration is not required, and the method is insensitive to the strong broadband variability of the host star. Precise calibration of the spectral features of the host star may only be attainable by obtaining deep observations of the system during inferior conjunction that serve as a reference. The high-pass filter spectroscopic technique with the MIRI MRS can be tested on warm Jupiters, Neptunes, and super-Earths with significantly higher planet/star contrast ratios than the Proxima system.

  6. Robotic Telescopes

    Science.gov (United States)

    Akerlof, C. W.

    2001-05-01

    Since the discovery of gamma-ray bursts, a number of groups have attempted to detect correlated optical transients from these elusive objects. Following the flight of the BATSE instrument on the Compton Gamma-Ray Observatory in 1991, a prompt burst coordinate alert service, BACODINE (now GCN) became available to ground-based telescopes. Several instruments were built to take advantage of this facility, culminating in the discovery of a bright optical flash associated with GRB990123. To date, that single observation remains unique - no other prompt flashes have been seen for a dozen or so other bursts observed with comparably short response times. Thus, GRB prompt optical luminosities may be considerably dimmer than observed for the GRB990123 event or even absent altogether. A new generation of instruments is prepared to explore these possibilties using burst coordinates provided by HETE-2, Swift, Ballerina, Agile and other satellite missions. These telescopes have response times as short as a few seconds and reach limiting magnitudes, m_v 20, guaranteeing a sensitivity sufficient to detect the afterglow many hours later. Results from these experiments should provide important new data about the dynamics and locale of GRBs.

  7. Prime focus architectures for large space telescopes: reduce surfaces to save cost

    Science.gov (United States)

    Breckinridge, J. B.; Lillie, C. F.

    2016-07-01

    Conceptual architectures are now being developed to identify future directions for post JWST large space telescope systems to operate in the UV Optical and near IR regions of the spectrum. Here we show that the cost of optical surfaces within large aperture telescope/instrument systems can exceed $100M/reflection when expressed in terms of the aperture increase needed to over come internal absorption loss. We recommend a program in innovative optical design to minimize the number of surfaces by considering multiple functions for mirrors. An example is given using the Rowland circle imaging spectrometer systems for UV space science. With few exceptions, current space telescope architectures are based on systems optimized for ground-based astronomy. Both HST and JWST are classical "Cassegrain" telescopes derived from the ground-based tradition to co-locate the massive primary mirror and the instruments at the same end of the metrology structure. This requirement derives from the dual need to minimize observatory dome size and cost in the presence of the Earth's 1-g gravitational field. Space telescopes, however function in the zero gravity of space and the 1- g constraint is relieved to the advantage of astronomers. Here we suggest that a prime focus large aperture telescope system in space may have potentially have higher transmittance, better pointing, improved thermal and structural control, less internal polarization and broader wavelength coverage than Cassegrain telescopes. An example is given showing how UV astronomy telescopes use single optical elements for multiple functions and therefore have a minimum number of reflections.

  8. Simulation of Telescope Detectivity for Geo Survey and Tracking

    Science.gov (United States)

    Richard, P.

    2014-09-01

    As the number of space debris on Earths Orbit increases steadily, the need to survey, track and catalogue them becomes of key importance. In this context, CNES has been using the TAROT Telescopes (Rapid Telescopes for Transient Objects owned and operated by CNRS) for several years to conduct studies about space surveillance and tracking. Today, two testbeds of services using the TAROT telescopes are running every night: one for GEO situational awareness and the second for debris tracking. Additionally to the CNES research activity on space surveillance and tracking domain, an operational collision avoidance service for LEO and GEO satellites is in place at CNES for several years. This service named CAESAR (Conjunction Analysis and Evaluation: Alerts and Recommendations) is used by CNES as well as by external customers. As the optical debris tracking testbed based on TAROT telescopes is the first step toward an operational provider of GEO measures that could be used by CAESAR, simulations have been done to help choosing the sites and types of telescopes that could be added in the GEO survey and debris tracking telescope network. One of the distinctive characteristics of the optical observation of space debris compared to traditional astronomic observation is the need to observe objects at low elevations. The two mains reasons for this are the need to observe the GEO belt from non-equatorial sites and the need to observe debris at longitudes far from the telescope longitude. This paper presents the results of simulations of the detectivity for GEO debris of various telescopes and sites, based on models of the GEO belt, the atmosphere and the instruments. One of the conclusions is that clever detection of faint streaks and spread sources by image processing is one of the major keys to improve the detection of debris on the GEO belt.

  9. Alignment of the James Webb Space Telescope Integrated Science Instrument Module Element

    Science.gov (United States)

    Hadjimichael, Theo; Ohl, Raymond G.; Antonille, Scott; Aronstein, David L.; Bartoszyk, Andrew; Berrier, Josh; Cofie, Emmanuel; Coulter, Phil; Gracey, Renee; Hayden, Joseph; Howard, Joseph; Hylan, Jason; Kubalak, David; McLean, Kyle; Miskey, Cherie; Redman, Kevin; Rohrbach, Scott; Sabatke, Derek; Telfer, Randal; Wenzel, Greg; Zielinski, Thomas; Sullivan, Joseph; Hartig, George; Eichhorn, William

    2016-10-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SI), including a guider. The SIs and guider are mounted to a composite metering structure with outer envelope approximate measurements of 2.2x2.2x1.7m. These SI units are integrated to the ISIM structure and optically tested at NASA Goddard Space Flight Center as an instrument suite using an Optical telescope element SIMulator (OSIM). OSIM is a high-fidelity, cryogenic JWST simulator that features a 1.5m diameter powered mirror. The SIs are aligned to the flight structure's coordinate system under ambient, clean room conditions using opto-mechanical metrology and customized interfaces. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors and metrology in six degrees of freedom. SI performance, including focus, pupil shear, pupil roll, boresight, wavefront error, and image quality, is evaluated at the operating temperature using OSIM. This work reports on the as-run ambient assembly and ambient alignment steps for the flight ISIM, including SI interface fixtures and customization and kinematic mount adjustment. The ISIM alignment plan consists of multiple steps to meet the "absolute" alignment requirements of the SIs and OSIM to the flight coordinate system. In this paper, we focus on key aspects of absolute, optical-mechanical alignment. We discuss various metrology and alignment techniques. In addition, we summarize our approach for dealing with and the results of ground-test factors, such as gravity.

  10. Cryogenic Testing of the Thermal Vacuum Chamber and Ground Support Equipment for the James Webb Space Telescope in Chamber A at Johnson Space Center

    Science.gov (United States)

    DiPirro, M.; Homan, J.; Havey, K.; Ousley, W.

    2017-01-01

    The James Webb Space Telescope (JWST) is the largest cryogenic instrument telescope to be developed for space flight. The telescope will be passively cooled to 50 K and the instrument package will be at 40 K with the mid-infrared instrument at 6 K. The final cryogenic test of the Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) as an assembly (OTE + ISIM OTIS) will be performed in the largest 15 K chamber in the world, Chamber A at Johnson Space Center. The planned duration of this test will be 100 days in the middle of 2017. Needless to say, this ultimate test of OTIS, the cryogenic portion of JWST will be crucial in verifying the end-to-end performance of JWST. A repeat of this test would not only be expensive, but would delay the launch schedule (currently October 2018). Therefore a series of checkouts and verifications of the chamber and ground support equipment were planned and carried out between 2012 and 2016. This paper will provide a top-level summary of those tests, trades in coming up with the test plan, as well as some details of individual issues that were encountered and resolved in the course of testing.

  11. DTDWS-DESIGN OF TESTBED FOR DISTRIBUTED WEB SERVICE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    D.CHANDRAMOHAN,

    2011-03-01

    Full Text Available Designing and developing a testbed to evaluate the features of web service properties and their service interfaces in a distributed web service environment. This testbed interface helps the clients and their tools to build automatically with the corresponding web services and to identify its related issues in which it can communicate and cooperate among services in a distributed environment. By establishing set of policy and preferences for relevant supporting tools to evaluate the semantic technology of service and enhancing the tuning features by avoiding interoperability among web services. A light weighted application having unique and specific structure for designing testbed for istributed web service environment (DTDWS with a build in concepts encoded with XML (Extensible Mark-up Language. This proposal breed a trustful zone in a distributed environment by an automated simulation,composition and testing techniques are put into service. Many service conflicts are resolved in a timely and consistent approach all the way through our proposed testbed .

  12. Prognostics-Enabled Power Supply for ADAPT Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop's role is to develop electronic prognostics for sensing power systems in support of NASA/Ames ADAPT testbed. The prognostic enabled power systems from...

  13. ATLAS and CMS applications on the WorldGrid testbed

    OpenAIRE

    Ciaschini, V.; Donno, F.; Fanfani, A.; Fanzago, F.; Garbellotto, V.; Verlato, M.; Vaccarossa, L.

    2003-01-01

    WorldGrid is an intercontinental testbed spanning Europe and the US integrating architecturally different Grid implementations based on the Globus toolkit. It has been developed in the context of the DataTAG and iVDGL projects, and successfully demonstrated during the WorldGrid demos at IST2002 (Copenhagen) and SC2002 (Baltimore). Two HEP experiments, ATLAS and CMS, successful exploited the WorldGrid testbed for executing jobs simulating the response of their detectors to physics eve nts prod...

  14. Holographic telescope

    Science.gov (United States)

    Odhner, Jefferson E.

    2016-07-01

    Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.

  15. Novel In-Space Manufacturing Concepts for the Development of Large Space Telescopes

    Science.gov (United States)

    Mooney, James T.; Reardon, Patrick; Gregory Don; Manning, Andrew; Blackmon, Jim; Howsman, Tom; Williams, Philip; Brantley, Whitt; Rakoczy, John; Herren, Kenneth

    2006-01-01

    There is a continuous demand for larger, lighter, and higher quality telescopes. Over the past several decades, we have seen the evolution from launchable 2 meter-class telescopes (such as Hubble), to today s demand for deployable 6 meter-class telescopes (such as JWST), to tomorrow s need for up to 150 meter-class telescopes. As the apertures continue to grow, it will become much more difficult and expensive to launch assembled telescope structures. To address this issue, we are seeing the emergence of new novel structural concepts, such as inflatable structures and membrane optics. While these structural concepts do show promise, it is very difficult to achieve and maintain high surface figure quality. Another potential solution to develop large space telescopes is to move the fabrication facility into space and launch the raw materials. In this paper we present initial in-space manufacturing concepts to enable the development of large telescopes. This includes novel approaches for the fabrication of both the optical elements and the telescope support structure. We will also discuss potential optical designs for large space telescopes and describe their relation to the fabrication methods. These concepts are being developed to meet the demanding requirements of DARPA s LASSO (Large Aperture Space Surveillance Optic) program which currently requires a 150 meter optical aperture with a 17 degree field of view.

  16. Low-signal, coronagraphic wavefront estimation with Kalman filtering in the high contrast imaging testbed

    Science.gov (United States)

    Riggs, A. J. Eldorado; Cady, Eric J.; Prada, Camilo M.; Kern, Brian D.; Zhou, Hanying; Kasdin, N. Jeremy; Groff, Tyler D.

    2016-07-01

    For direct imaging and spectral characterization of cold exoplanets in reflected light, the proposed Wide-Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) will carry two types of coronagraphs. The High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory has been testing both coronagraph types and demonstrated their abilities to achieve high contrast. Focal plane wavefront correction is used to estimate and mitigate aberrations. As the most time-consuming part of correction during a space mission, the acquisition of probed images for electric field estimation needs to be as short as possible. We present results from the HCIT of narrowband, low-signal wavefront estimation tests using a shaped pupil Lyot coronagraph (SPLC) designed for the WFIRST CGI. In the low-flux regime, the Kalman filter and iterated extended Kalman filter provide faster correction, better achievable contrast, and more accurate estimates than batch process estimation.

  17. Follow-up and characterization of the TESS exoplanets with SOPHIE, SPIRou, and JWST

    Science.gov (United States)

    Crouzet, N.; Bonfils, X.; Delfosse, X.; Boisse, I.; Hébrard, G.; Forveille, T.; Donati, J.-F.; Bouchy, F.; Moutou, C.; Doyon, R.; Artigau, E.; Albert, L.; Malo, L.; Lecavelier des Etangs, A.; Santerne, A.; Author2, J.-P.; Author3, C. E.

    2016-12-01

    The NASA TESS mission will deliver hundreds of transiting exoplanet candidates orbiting bright stars. The spectrometers SOPHIE at OHP and SPIRou at CFHT will be ideal to obtain radial velocities of these candidates, confirm their nature, and derive the planets' masses. These measurements will be crucial to deliver the best targets for atmospheric characterization with JWST. Here, we calculate the required observing time with SOPHIE, SPIRou, and JWST for each of the TESS targets in order to prepare follow-up observations. To infer their potential for JWST, we restrict the calculations to the case of transmission spectroscopy with NIRISS. The radial velocity follow-up of the giant planets (R_p > 4 R_E) could be achieved with SOPHIE, with a median observing time of 3.47 hours per target, and a total observing time of 305 hours that includes the 80% most favorable cases. Several small planets (R_p R_E) could also be confirmed, but most of them would require an unrealistic time investment. On the other hand, SPIRou is ideally suited to the follow-up of the small planets, with a median observing time of 2.65 hours per target, and a median observing time of 4.70 hours for the terrestrial planets in the habitable zone (R_p R_E, S programs with SOPHIE and SPIRou before the first planet candidates are delivered by TESS.

  18. Termite: Emulation Testbed for Encounter Networks

    Directory of Open Access Journals (Sweden)

    Rodrigo Bruno

    2015-08-01

    Full Text Available Cutting-edge mobile devices like smartphones and tablets are equipped with various infrastructureless wireless interfaces, such as WiFi Direct and Bluetooth. Such technologies allow for novel mobile applications that take advantage of casual encounters between co-located users. However, the need to mimic the behavior of real-world encounter networks makes testing and debugging of such applications hard tasks. We present Termite, an emulation testbed for encounter networks. Our system allows developers to run their applications on a virtual encounter network emulated by software. Developers can model arbitrary encounter networks and specify user interactions on the emulated virtual devices. To facilitate testing and debugging, developers can place breakpoints, inspect the runtime state of virtual nodes, and run experiments in a stepwise fashion. Termite defines its own Petri Net variant to model the dynamically changing topology and synthesize user interactions with virtual devices. The system is designed to efficiently multiplex an underlying emulation hosting infrastructure across multiple developers, and to support heterogeneous mobile platforms. Our current system implementation supports virtual Android devices communicating over WiFi Direct networks and runs on top of a local cloud infrastructure. We evaluated our system using emulator network traces, and found that Termite is expressive and performs well.

  19. Optical testbed for the LISA phasemeter

    Science.gov (United States)

    Schwarze, T. S.; Fernández Barranco, G.; Penkert, D.; Gerberding, O.; Heinzel, G.; Danzmann, K.

    2016-05-01

    The planned spaceborne gravitational wave detector LISA will allow the detection of gravitational waves at frequencies between 0.1 mHz and 1 Hz. A breadboard model for the metrology system aka the phasemeter was developed in the scope of an ESA technology development project by a collaboration between the Albert Einstein Institute, the Technical University of Denmark and the Danish industry partner Axcon Aps. It in particular provides the electronic readout of the main interferometer phases besides auxiliary functions. These include clock noise transfer, ADC pilot tone correction, inter-satellite ranging and data transfer. Besides in LISA, the phasemeter can also be applied in future satellite geodesy missions. Here we show the planning and advances in the implementation of an optical testbed for the full metrology chain. It is based on an ultra-stable hexagonal optical bench. This bench allows the generation of three unequal heterodyne beatnotes with a zero phase combination, thus providing the possibility to probe the phase readout for non-linearities in an optical three signal test. Additionally, the utilization of three independent phasemeters will allow the testing of the auxiliary functions. Once working, components can individually be replaced with flight-qualified hardware in this setup.

  20. First light of an external occulter testbed at flight Fresnel numbers

    Science.gov (United States)

    Kim, Yunjong; Sirbu, Dan; Hu, Mia; Kasdin, Jeremy; Vanderbei, Robert J.; Harness, Anthony; Shaklan, Stuart

    2017-01-01

    Many approaches have been suggested over the last couple of decades for imaging Earth-like planets. One of the main candidates for creating high-contrast for future Earth-like planets detection is an external occulter. The external occulter is a spacecraft flown along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. The occulter is typically tens of meters in diameter and the separation from the telescope is of the order of tens of thousands of kilometers. Optical testing of a full-scale external occulter on the ground is impossible because of the long separations. Therefore, laboratory verification of occulter designs is necessary to validate the optical models used to design and predict occulter performance. At Princeton, we have designed and built a testbed that allows verification of scaled occulter designs whose suppressed shadow is mathematically identical to that of space occulters. The goal of this experiment is to demonstrate a pupil plane suppression of better than 1e-9 with a corresponding image plane contrast of better than 1e-11. The occulter testbed uses a 77.2 m optical propagation distance to realize the flight Fresnel number of 14.5. The scaled mask is placed at 27.2 m from the artificial source and the camera is located 50.0 m from the scaled mask. We will use an etched silicon mask, manufactured by the Microdevices Lab(MDL) of the Jet Propulsion Laboratory(JPL), as the occulter. Based on conversations with MDL, we expect that 0.5 μm feature size is an achievable resolution in the mask manufacturing process and is therefore likely the indicator of the best possible performance. The occulter is illuminated by a diverging laser beam to reduce the aberrations from the optics before the occulter. Here, we present first light result of a sample design operating at a flight Fresnel number and the experimental setup of the testbed. We compare the experimental results with simulations

  1. Advanced turboprop testbed systems study. Volume 1: Testbed program objectives and priorities, drive system and aircraft design studies, evaluation and recommendations and wind tunnel test plans

    Science.gov (United States)

    Bradley, E. S.; Little, B. H.; Warnock, W.; Jenness, C. M.; Wilson, J. M.; Powell, C. W.; Shoaf, L.

    1982-01-01

    The establishment of propfan technology readiness was determined and candidate drive systems for propfan application were identified. Candidate testbed aircraft were investigated for testbed aircraft suitability and four aircraft selected as possible propfan testbed vehicles. An evaluation of the four candidates was performed and the Boeing KC-135A and the Gulfstream American Gulfstream II recommended as the most suitable aircraft for test application. Conceptual designs of the two recommended aircraft were performed and cost and schedule data for the entire testbed program were generated. The program total cost was estimated and a wind tunnel program cost and schedule is generated in support of the testbed program.

  2. Optimization Testbed Cometboards Extended into Stochastic Domain

    Science.gov (United States)

    Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.; Patnaik, Surya N.

    2010-01-01

    COMparative Evaluation Testbed of Optimization and Analysis Routines for the Design of Structures (CometBoards) is a multidisciplinary design optimization software. It was originally developed for deterministic calculation. It has now been extended into the stochastic domain for structural design problems. For deterministic problems, CometBoards is introduced through its subproblem solution strategy as well as the approximation concept in optimization. In the stochastic domain, a design is formulated as a function of the risk or reliability. Optimum solution including the weight of a structure, is also obtained as a function of reliability. Weight versus reliability traced out an inverted-S-shaped graph. The center of the graph corresponded to 50 percent probability of success, or one failure in two samples. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure that corresponded to unity for reliability. Weight can be reduced to a small value for the most failure-prone design with a compromised reliability approaching zero. The stochastic design optimization (SDO) capability for an industrial problem was obtained by combining three codes: MSC/Nastran code was the deterministic analysis tool, fast probabilistic integrator, or the FPI module of the NESSUS software, was the probabilistic calculator, and CometBoards became the optimizer. The SDO capability requires a finite element structural model, a material model, a load model, and a design model. The stochastic optimization concept is illustrated considering an academic example and a real-life airframe component made of metallic and composite materials.

  3. High-contrast imager for Complex Aperture Telescopes (HiCAT). 4. Status and wavefront control development

    Science.gov (United States)

    Leboulleux, Lucie; N'Diaye, Mamadou; Riggs, A. J. E.; Egron, Sylvain; Mazoyer, Johan; Pueyo, Laurent; Choquet, Elodie; Perrin, Marshall D.; Kasdin, Jeremy; Sauvage, Jean-François; Fusco, Thierry; Soummer, Rémi

    2016-07-01

    Segmented telescopes are a possible approach to enable large-aperture space telescopes for the direct imaging and spectroscopy of habitable worlds. However, the increased complexity of their aperture geometry, due to their central obstruction, support structures and segment gaps, makes high-contrast imaging very challenging. The High-contrast imager for Complex Aperture Telescopes (HiCAT) was designed to study and develop solutions for such telescope pupils using wavefront control and starlight suppression. The testbed design has the flexibility to enable studies with increasing complexity for telescope aperture geometries starting with off-axis telescopes, then on-axis telescopes with central obstruction and support structures (e.g. the Wide Field Infrared Survey Telescope [WFIRST]), up to on-axis segmented telescopes e.g. including various concepts for a Large UV, Optical, IR telescope (LUVOIR), such as the High Definition Space Telescope (HDST). We completed optical alignment in the summer of 2014 and a first deformable mirror was successfully integrated in the testbed, with a total wavefront error of 13nm RMS over a 18mm diameter circular pupil in open loop. HiCAT will also be provided with a segmented mirror conjugated with a shaped pupil representing the HDST configuration, to directly study wavefront control in the presence of segment gaps, central obstruction and spider. We recently applied a focal plane wavefront control method combined with a classical Lyot coronagraph on HiCAT, and we found limitations on contrast performance due to vibration effect. In this communication, we analyze this instability and study its impact on the performance of wavefront control algorithms. We present our Speckle Nulling code to control and correct for wavefront errors both in simulation mode and on testbed mode. This routine is first tested in simulation mode without instability to validate our code. We then add simulated vibrations to study the degradation of contrast

  4. A Testbed for Evaluating Lunar Habitat Autonomy Architectures

    Science.gov (United States)

    Lawler, Dennis G.

    2008-01-01

    A lunar outpost will involve a habitat with an integrated set of hardware and software that will maintain a safe environment for human activities. There is a desire for a paradigm shift whereby crew will be the primary mission operators, not ground controllers. There will also be significant periods when the outpost is uncrewed. This will require that significant automation software be resident in the habitat to maintain all system functions and respond to faults. JSC is developing a testbed to allow for early testing and evaluation of different autonomy architectures. This will allow evaluation of different software configurations in order to: 1) understand different operational concepts; 2) assess the impact of failures and perturbations on the system; and 3) mitigate software and hardware integration risks. The testbed will provide an environment in which habitat hardware simulations can interact with autonomous control software. Faults can be injected into the simulations and different mission scenarios can be scripted. The testbed allows for logging, replaying and re-initializing mission scenarios. An initial testbed configuration has been developed by combining an existing life support simulation and an existing simulation of the space station power distribution system. Results from this initial configuration will be presented along with suggested requirements and designs for the incremental development of a more sophisticated lunar habitat testbed.

  5. The Space Infrared Interferometric Telescope (SPIRIT)

    Science.gov (United States)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  6. High contrast imaging with the JWST-NIRSpec Integral Field Unit

    Science.gov (United States)

    Ygouf, Marie; Beichman, Charles A.; Hodapp, Klaus W.; Roellig, Thomas L.; NIRCam GTO

    2017-06-01

    With its integral field unit, the near-infrared spectrograph NIRSpec on JWST will allow to measure high-resolution spectra into the 3-5 μm range with an increased sensitivity over ground-based systems. This capability will considerably extend our knowledge of brown dwarfs and bright exoplanets at large separations from their host star. But because there is not any coronagraph on NIRSpec, the performance in term of contrast at close separation will be extremely limited. In this communication, we explore possibilities to further push this limitation by comparing different observing strategies and associated post-processing techniques.

  7. Jet-powered supernovae of $\\sim 10^5\\,M_{\\odot}$ population III stars are observable by $Euclid$, $WFIRST$, $WISH$, and $JWST$

    CERN Document Server

    Matsumoto, Tatsuya; Ioka, Kunihito; Nakamura, Takashi

    2015-01-01

    Supermassive black holes observed at high redshift $z\\gtrsim6$ could grow from direct collapse black holes (DCBHs) with mass $\\sim10^5\\,M_{\\odot}$, which result from the collapse of supermassive stars (SMSs). If a relativistic jet is launched from a DCBH, it can break out of the collapsing SMS and produce a gamma-ray burst (GRB). Although most of the GRB jets are off-axis from our line of sight, we show that the energy injected from the jet into a cocoon is huge $\\sim10^{55-56}\\,{\\rm{erg}}$, so that the cocoon fireball is observed as ultra-luminous supernovae of $\\sim10^{45-46}\\rm{\\,erg\\,s^{-1}}$ for $\\sim5000 [(1+z)/16] \\rm{\\,days}$. They are detectable by the future telescopes with near infrared bands, such as, $Euclid$, $WFIRST$, $WISH$, and $JWST$ up to $z\\sim20$ and $\\sim 100$ events per year, providing a direct evidence of the DCBH scenario.

  8. The James Webb Space Telescope: Observatory Status and the Path to Launch

    Science.gov (United States)

    McElwain, Michael; Bowers, Chuck; Clampin, Mark; Niedner, Mal

    2016-01-01

    JWST will carry out transformative science from the very early universe and across cosmic time. JWST OTE and ISIM have been combined to form OTIS, which will commence environmental testing. The full JWST team has made tremendous progress since the last AT+I meeting in 2014.JWST on track following 2011 replan and remains on schedule to launch in October 2018.

  9. Design and Prototyping of a Satellite Antenna Slew Testbed

    Science.gov (United States)

    2013-12-01

    69 1. Complete Testbed Scale Model and Inertia Properties ..................70 2. Multi-body Inertia Properties ...POSitioning 2 FDM fused deposition modeling FPGA field-programmable gate array GSP gooseneck support plate IPM interpolated position mode...Systems Academic Group procured a Fortus 400mc rapid prototyping machine in 2008. The machine employs fused deposition modeling ( FDM ) for additive

  10. Smart Antenna UKM Testbed for Digital Beamforming System

    Science.gov (United States)

    Islam, Mohammad Tariqul; Misran, Norbahiah; Yatim, Baharudin

    2009-12-01

    A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH) array antenna and software reconfigurable digital beamforming system (DBS). The antenna is developed based on using the novel LIEH microstrip patch element design arranged into [InlineEquation not available: see fulltext.] uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance [InlineEquation not available: see fulltext.] floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88-2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.

  11. Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations

    Science.gov (United States)

    Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.

    2001-01-01

    The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.

  12. Operation Duties on the F-15B Research Testbed

    Science.gov (United States)

    Truong, Samson S.

    2010-01-01

    This presentation entails what I have done this past summer for my Co-op tour in the Operations Engineering Branch. Activities included supporting the F-15B Research Testbed, supporting the incoming F-15D models, design work, and other operations engineering duties.

  13. ASE-BAN, a Wireless Body Area Network Testbed

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Karstoft, Henrik; Toftegaard, Thomas Skjødeberg

    2010-01-01

    /actuators attached to the body and a host server application. The gateway uses the BlackFin BF533 processor from Analog Devices, and uses Bluetooth for wireless communication. Two types of sensors are attached to the network: an electro-cardio-gram sensor and an oximeter sensor. The testbed has been successfully...

  14. Towards a Perpetual Sensor Network Testbed without Backchannel

    DEFF Research Database (Denmark)

    Johansen, Aslak; Bonnet, Philippe; Sørensen, Thomas

    2012-01-01

    The sensor network testbeds available today rely on a communication channel different from the mote radio - a backchannel - to facilitate mote reprogramming, health monitoring and performance analysis. Such backchannels are either supported as wired communication channels (USB or Ethernet), or via...

  15. Smart Antenna UKM Testbed for Digital Beamforming System

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH array antenna and software reconfigurable digital beamforming system (DBS. The antenna is developed based on using the novel LIEH microstrip patch element design arranged into 4×1 uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance TMS320C6711TM floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88–2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.

  16. END-TO-END INDIA-UK TRANSNATIONAL WIRELESS TESTBED

    Directory of Open Access Journals (Sweden)

    Rohit Budhiraja

    2011-06-01

    Full Text Available Wireless Communication is a fast growing technology area where tremendous amount of research is ongoing. It is also an area where the use of technology in the market has seen wide and far-reaching impact. The India-UK Advanced Technology Centre initiative is a collaborative research project between various institutes and companies across UK and India, which envisages, apart from several research outcomes, putting in place of a support infrastructure for facilitating R&D of Next Generation networks, Systems and Services. As part of this project, an end-to-end trans-national advanced wireless testbed is being developed which will facilitate and support research and implementation of new ideas, concepts and technologies. The testbed will provide a framework which can be used to rapidly prototype and evaluate emerging concepts and technologies, and enables researchers to investigate/demonstrate the feasibility of new ideas in a realistic test environment. The testbed complements analytical and simulation based studies undertaken as part of the initial study when new ideas are proposed. This paper gives the details of the testbed and shows how a 4G technology like LTE has been implemented as one of the realisations of the test bed.

  17. Studying Galaxy Formation and Reionization with the James Webb Space Telescope

    Science.gov (United States)

    Gardner, Jonathan P.

    2008-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z>6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will review the current status of the project.

  18. Cryo-Vacuum Testing of JWST’s Integrated Telescope & Scientific Instrument Suite

    Science.gov (United States)

    Kimble, Randy A.; Apollo, Peter H.; Feinberg, Lee; Glazer, Stuart D.; Hanley, Jeffrey M.; Keski-Kuha, Ritva A.; Kirk, Jeffrey R.; Knight, J. Scott; Lambros, Scott; Lander, Juli A.; McGuffey, Douglas B.; Mehalick, Kimberly I.; Ohl, Raymond George; Ousley, Wes; Reis, Carl A.; Reynolds, Paul J.; Begoña Vila, M.; Voyton, Mark; Waldman, Mark; Whitman, Tony

    2017-01-01

    A very exciting milestone in the development of the James Webb Space Telescope (JWST) is coming up this year: the eagerly-awaited cryo-vacuum test of the combination of the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM). This combination, known as the OTIS (= OTE + ISIM) is soon to complete its ambient integration and test program at NASA’s Goddard Space Flight Center. The cryo-vacuum test of this level of assembly will take place in historic Chamber A (a landmark from the Apollo era, refurbished and upgraded for JWST) at NASA’s Johnson Space Center. We report here on the optical, thermal, and operational goals of the upcoming cryo-vacuum test program. We also highlight the results of the precursor “Pathfinder” test program, which in three extensive tests over the past two years has thoroughly validated the test equipment and procedures that will be needed for testing of the flight payload. These Pathfinder tests have provided invaluable experience to prepare the team for successful execution of the flight test program.

  19. The SOFIA Telescope

    CERN Document Server

    Krabbe, A

    2000-01-01

    The SOFIA telescope as the heart of the observatory is a major technological challenge. I present an overview on the astro-nomical and scientific requirements for such a big airborne observatory and demonstrate the impact of these requirements on the layout of SOFIA, in particular on the telescope design as it is now. Selected components of the telescope will be de-scribed in their context and functionality. The current status of the telescope is presented.

  20. High-Flying Telescope

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    Scientists at the Space Telescope Science Institute,which operates the Hubble Space Telescope,have proposed a new telescope that would have twice the resolution of Hubble at about one-tenth the cost. It would hover seven miles above Earth,dangling below a football-field-size helium balloon

  1. Auto Adjusting Astronomical Telescope

    Directory of Open Access Journals (Sweden)

    Rohit R. Ghalsasi

    2014-04-01

    Full Text Available Astronomical telescope is powerful and basic tool for star or celestial observation. Here we proposed integrated system using Raspberry Pi for auto adjusting astronomical telescope. This integrated circuit helps to control stellar monitoring, stellar targeting, and tracking functions of telescope. Astro compass gives the direction of the celestial objects.

  2. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  3. The Cherenkov Telescope Array Large Size Telescope

    CERN Document Server

    Ambrosi, G; Baba, H; Bamba, A; Barceló, M; de Almeida, U Barres; Barrio, J A; Bigas, O Blanch; Boix, J; Brunetti, L; Carmona, E; Chabanne, E; Chikawa, M; Colin, P; Conteras, J L; Cortina, J; Dazzi, F; Deangelis, A; Deleglise, G; Delgado, C; Díaz, C; Dubois, F; Fiasson, A; Fink, D; Fouque, N; Freixas, L; Fruck, C; Gadola, A; García, R; Gascon, D; Geffroy, N; Giglietto, N; Giordano, F; Grañena, F; Gunji, S; Hagiwara, R; Hamer, N; Hanabata, Y; Hassan, T; Hatanaka, K; Haubold, T; Hayashida, M; Hermel, R; Herranz, D; Hirotani, K; Inoue, S; Inoue, Y; Ioka, K; Jablonski, C; Kagaya, M; Katagiri, H; Kishimoto, T; Kodani, K; Kohri, K; Konno, Y; Koyama, S; Kubo, H; Kushida, J; Lamanna, G; Flour, T Le; López-Moya, M; López, R; Lorenz, E; Majumdar, P; Manalaysay, A; Mariotti, M; Martínez, G; Martínez, M; Mazin, D; Miranda, J M; Mirzoyan, R; Monteiro, I; Moralejo, A; Murase, K; Nagataki, S; Nakajima, D; Nakamori, T; Nishijima, K; Noda, K; Nozato, A; Ohira, Y; Ohishi, M; Ohoka, H; Okumura, A; Orito, R; Panazol, J L; Paneque, D; Paoletti, R; Paredes, J M; Pauletta, G; Podkladkin, S; Prast, J; Rando, R; Reimann, O; Ribó, M; Rosier-Lees, S; Saito, K; Saito, T; Saito, Y; Sakaki, N; Sakonaka, R; Sanuy, A; Sasaki, H; Sawada, M; Scalzotto, V; Schultz, S; Schweizer, T; Shibata, T; Shu, S; Sieiro, J; Stamatescu, V; Steiner, S; Straumann, U; Sugawara, R; Tajima, H; Takami, H; Tanaka, S; Tanaka, M; Tejedor, L A; Terada, Y; Teshima, M; Totani, T; Ueno, H; Umehara, K; Vollhardt, A; Wagner, R; Wetteskind, H; Yamamoto, T; Yamazaki, R; Yoshida, A; Yoshida, T; Yoshikoshi, T

    2013-01-01

    The two arrays of the Very High Energy gamma-ray observatory Cherenkov Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA to achieve a low-energy threshold of 20 GeV, which is critical for important studies in astrophysics, astroparticle physics and cosmology. This work presents the key specifications and performance of the current LST design in the light of the CTA scientific objectives.

  4. ATLAST-9.2m: a Large-Aperture Deployable Space Telescope

    Science.gov (United States)

    Oergerle, William; Feinberg, Lee D.; Purves, Lloyd R.; Hyde, T. Tupper; Thronson, Harley A.; Townsend, Jacqueline A.; Postman, Marc; Bolear, Matthew R.; Budinoff, Jason G.; Dean, Bruce H.; hide

    2010-01-01

    We present results of a study of a deployable version of the Advanced Technology Large-Aperture Space Telescope (ATLAST), designed to operate in a Sun-Earth L2 orbit. The primary mirror of the segmented 9.2-meter aperture has 36 hexagonal 1.315 m (flat to flat) glass mirrors. The architecture and folding of the telescope is similar to JWST, allowing it to fit into the 6.5 m fairing of a modest upgrade to the Delta-IV Heavy version of the Evolved Expendable Launch Vehicle (EELV). We discuss the overall observatory design, optical design, instruments, stray light, wavefront sensing and control, pointing and thermal control, and in-space servicing options.

  5. Shaped pupil design for future space telescopes

    Science.gov (United States)

    Riggs, A. J. Eldorado; Zimmerman, Neil; Carlotti, Alexis; Kasdin, N. Jeremy; Vanderbei, Robert

    2014-08-01

    Several years ago at Princeton we invented a technique to optimize shaped pupil (SP) coronagraphs for any telescope aperture. In the last year, our colleagues at the Jet Propulsion Laboratory (JPL) invented a method to produce these non-freestanding mask designs on a substrate. These two advances allowed us to design SPs for two possible space telescopes for the direct imaging of exoplanets and disks, WFIRST-AFTA and Exo-C. In December 2013, the SP was selected along with the hybrid Lyot coronagraph for placement in the AFTA coronagraph instrument. Here we describe our designs and analysis of the SPs being manufactured and tested in the High Contrast Imaging Testbed at JPL.We also explore hybrid SP coronagraph designs for AFTA that would improve performance with minimal or no changes to the optical layout. These possibilities include utilizing a Lyot stop after the focal plane mask or applying large, static deformations to the deformable mirrors (nominally for wavefront correction) already in the system.

  6. The Africa Millimetre Telescope

    Science.gov (United States)

    Backes, M.; Müller, C.; Conway, J. E.; Deane, R.; Evans, R.; Falcke, H.; Fraga-Encinas, R.; Goddi, C.; Klein Wolt, M.; Krichbaum, T. P.; MacLeod, G.; Ribeiro, V. A. R. M.; Roelofs, F.; Shen, Z. Q.; van Langevelde, H. J.

    It is believed that supermassive black holes are found in the centres of galaxies, including the Milky Way. Still, only indirect evidence has been gathered for the existence of these enigmatic objects that are predicted by the general theory of relativity. With the Event Horizon Telescope, a Very Long Baseline Interferometry network of millimetre-wave (radio) telescopes, it will be possible to directly image the 'shadow' of the event horizon of the black hole at the centre of the Milky Way, Sgr A*. Although the Event Horizon Telescope utilises an extensive network of telescopes, there is a huge gap in the coverage of the u-v-plane for these observations across Africa. We discuss the benefits of adding the Africa Millimetre Telescope to the Event Horizon Telescope and present Mt. Gamsberg in Namibia as the best site for this new and first mm-wave telescope in Africa.

  7. Characterizing K2 Exoplanets with NIR Transit Photometry from the 3.5m WIYN Telescope

    Science.gov (United States)

    Colon, Knicole D.; Barclay, Thomas; Thompson, Susan E.; Coughlin, Jeffrey; Barentsen, Geert; Quintana, Elisa V.

    2017-01-01

    The NASA K2 mission has discovered over 400 transiting exoplanets as of October 2016 and continues to produce new discoveries on a regular basis. Expected to launch in late 2017, the Transiting Exoplanet Survey Satellite (TESS) will continue the era of exoplanet discovery by performing an all-sky search for transiting exoplanets. Given the ever increasing number of known exoplanets, it is critical that we optimize follow-up observations now in order to characterize the many interesting systems discovered by these missions. For example, K2 is finding (and TESS will find even more) small, super-Earth-size planets around cool, nearby stars. I will present results from our program for near-infrared (NIR) transit photometry of K2 exoplanet candidates conducted using the 3.5m WIYN telescope at Kitt Peak National Observatory. NIR transit photometry with the high spatial resolution WHIRC imager installed on the WIYN telescope allows us to confirm the transit host, to verify that the transit is achromatic, and to constrain the planet radius by minimizing effects of stellar limb darkening. Furthermore, the high-precision and high-cadence photometry from WIYN+WHIRC allows us to track and constrain the transit ephemeris, which is crucial for future follow-up efforts with other facilities like the upcoming James Webb Space Telescope (JWST). Ultimately, this program will vet K2 exoplanet candidates and identify prime targets for detailed characterization with JWST. This program complements K2 follow-up being done with the Spitzer Space Telescope and demonstrates the capabilities of a ground-based facility that can be used to characterize small planets from K2 and TESS for years to come.This work was supported by the NASA-NSF Exoplanet Observational Research (NN-EXPLORE) program.

  8. Liverpool Telescope and Liverpool Telescope 2

    Science.gov (United States)

    Copperwheat, C. M.; Steele, I. A.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Jermak, H.; Marchant, J. M.; Mottram, C. J.; Piascik, A.; Smith, R. J.

    2016-12-01

    The Liverpool Telescope is a fully robotic optical/near-infrared telescope with a 2-metre clear aperture, located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope is owned and operated by Liverpool John Moores University, with financial support from the UK's Science and Technology Facilities Council. The telescope began routine science operations in 2004 and is a common-user facility with time available through a variety of committees via an open, peer reviewed process. Seven simultaneously mounted instruments support a broad science programme, with a focus on transient follow-up and other time domain topics well suited to the characteristics of robotic observing. Development has also begun on a successor facility, with the working title `Liverpool Telescope 2', to capitalise on the new era of time domain astronomy which will be brought about by the next generation of survey facilities such as LSST. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time. In this paper we provide an overview of the current status of both facilities.

  9. "WBC over DVB-H" Testbed Design, Development and Results

    Directory of Open Access Journals (Sweden)

    Ji Zhanlin

    2010-01-01

    Full Text Available The wireless billboard channels (WBCs are integral part of the ubiquitous consumer wireless world (UCWW—a wireless next generation network proposal. The WBCs are used by the service providers to broadcast advertisements of their (wireless services to the mobile terminals so that the mobile users may discover and associate with the "best" services following the user-driven ''always best connected and best served'' paradigm. A three-layer system architecture of WBCs established over the digital video broadcasting-handheld (DVB-H standard is presented. The design and development of a corresponding ''WBC over DVB-H'' experimental testbed are described. Various results obtained from the testbed are presented and explained.

  10. Satellite Testbed for Evaluating Cryogenic-Liquid Behavior in Microgravity

    Science.gov (United States)

    Putman, Philip Travis (Inventor)

    2017-01-01

    Provided is a testbed for conducting an experiment on a substance in a cryogenic liquid state in a microgravity environment. The testbed includes a frame with rectangular nominal dimensions, and a source section including a supply of the substance to be evaluated in the cryogenic liquid state. An experiment section includes an experiment vessel in fluid communication with the storage section to receive the substance from the storage section and condense the substance into the cryogenic liquid state. A sensor is adapted to sense a property of the substance in the cryogenic liquid state in the experiment vessel as part of the experiment. A bus section includes a controller configured to control delivery of the substance from the storage section to the experiment vessel, and receive property data indicative of the property sensed by the sensor for subsequent evaluation on Earth.

  11. Collaboration in a Wireless Grid Innovation Testbed by Virtual Consortium

    Science.gov (United States)

    Treglia, Joseph; Ramnarine-Rieks, Angela; McKnight, Lee

    This paper describes the formation of the Wireless Grid Innovation Testbed (WGiT) coordinated by a virtual consortium involving academic and non-academic entities. Syracuse University and Virginia Tech are primary university partners with several other academic, government, and corporate partners. Objectives include: 1) coordinating knowledge sharing, 2) defining key parameters for wireless grids network applications, 3) dynamically connecting wired and wireless devices, content and users, 4) linking to VT-CORNET, Virginia Tech Cognitive Radio Network Testbed, 5) forming ad hoc networks or grids of mobile and fixed devices without a dedicated server, 6) deepening understanding of wireless grid application, device, network, user and market behavior through academic, trade and popular publications including online media, 7) identifying policy that may enable evaluated innovations to enter US and international markets and 8) implementation and evaluation of the international virtual collaborative process.

  12. A MIMO-OFDM Testbed for Wireless Local Area Networks

    Directory of Open Access Journals (Sweden)

    Conrat Jean-Marc

    2006-01-01

    Full Text Available We describe the design steps and final implementation of a MIMO OFDM prototype platform developed to enhance the performance of wireless LAN standards such as HiperLAN/2 and 802.11, using multiple transmit and multiple receive antennas. We first describe the channel measurement campaign used to characterize the indoor operational propagation environment, and analyze the influence of the channel on code design through a ray-tracing channel simulator. We also comment on some antenna and RF issues which are of importance for the final realization of the testbed. Multiple coding, decoding, and channel estimation strategies are discussed and their respective performance-complexity trade-offs are evaluated over the realistic channel obtained from the propagation studies. Finally, we present the design methodology, including cross-validation of the Matlab, C++, and VHDL components, and the final demonstrator architecture. We highlight the increased measured performance of the MIMO testbed over the single-antenna system.

  13. A MIMO-OFDM Testbed for Wireless Local Area Networks

    Science.gov (United States)

    Fàbregas, Albert Guilléni; Guillaud, Maxime; Slock, Dirk TM; Caire, Giuseppe; Gosse, Karine; Rouquette, Stéphanie; Dias, Alexandre Ribeiro; Bernardin, Philippe; Miet, Xavier; Conrat, Jean-Marc; Toutain, Yann; Peden, Alain; Li, Zaiqing

    2006-12-01

    We describe the design steps and final implementation of a MIMO OFDM prototype platform developed to enhance the performance of wireless LAN standards such as HiperLAN/2 and 802.11, using multiple transmit and multiple receive antennas. We first describe the channel measurement campaign used to characterize the indoor operational propagation environment, and analyze the influence of the channel on code design through a ray-tracing channel simulator. We also comment on some antenna and RF issues which are of importance for the final realization of the testbed. Multiple coding, decoding, and channel estimation strategies are discussed and their respective performance-complexity trade-offs are evaluated over the realistic channel obtained from the propagation studies. Finally, we present the design methodology, including cross-validation of the Matlab, C++, and VHDL components, and the final demonstrator architecture. We highlight the increased measured performance of the MIMO testbed over the single-antenna system.

  14. Development of a Testbed for Wireless Underground Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mehmet C. Vuran

    2010-01-01

    Full Text Available Wireless Underground Sensor Networks (WUSNs constitute one of the promising application areas of the recently developed wireless sensor networking techniques. WUSN is a specialized kind of Wireless Sensor Network (WSN that mainly focuses on the use of sensors that communicate through soil. Recent models for the wireless underground communication channel are proposed but few field experiments were realized to verify the accuracy of the models. The realization of field WUSN experiments proved to be extremely complex and time-consuming in comparison with the traditional wireless environment. To the best of our knowledge, this is the first work that proposes guidelines for the development of an outdoor WUSN testbed with the goals of improving the accuracy and reducing of time for WUSN experiments. Although the work mainly aims WUSNs, many of the presented practices can also be applied to generic WSN testbeds.

  15. Development of an ELT XAO testbed using a Mach-Zehnder wavefront sensor: calibration of the deformable mirror

    CERN Document Server

    Delacroix, Christian; Loupias, Magali; Thiébaut, Eric; Adjali, Louisa; Leger, Jonathan; Tallon, Michel

    2015-01-01

    (abridged) Extreme adaptive optics (XAO) encounters severe difficulties to cope with the high speed (>1kHz), high accuracy and high order requirements for future extremely large telescopes. An innovative high order adaptive optics system using a self-referenced Mach-Zehnder wavefront sensor (MZWFS) allows counteracting these limitations. This sensor estimates very accurately the wavefront phase at small spatial scale by measuring intensity differences between two outputs, with a $\\lambda /4$ path length difference between its two legs, but is limited in dynamic range due to phase ambiguity. During the past few years, such an XAO system has been studied by our team in the framework of 8-meter class telescopes. In this work, we report on our latest results with the XAO testbed recently installed in our lab, and dedicated to high contrast imaging with 30m-class telescopes (such as the E-ELT or the TMT). After reminding the principle of a MZWFS and describing the optical layout of our experiment, we will show the...

  16. Results from a multi aperture Fizeau interferometer ground testbed: demonstrator for a future space-based interferometer

    Science.gov (United States)

    Baccichet, Nicola; Caillat, Amandine; Rakotonimbahy, Eddy; Dohlen, Kjetil; Savini, Giorgio; Marcos, Michel

    2016-08-01

    In the framework of the European FP7-FISICA (Far Infrared Space Interferometer Critical Assessment) program, we developed a miniaturized version of the hyper-telescope to demonstrate multi-aperture interferometry on ground. This setup would be ultimately integrated into a CubeSat platform, therefore providing the first real demonstrator of a multi aperture Fizeau interferometer in space. In this paper, we describe the optical design of the ground testbed and the data processing pipeline implemented to reconstruct the object image from interferometric data. As a scientific application, we measured the Sun diameter by fitting a limb-darkening model to our data. Finally, we present the design of a CubeSat platform carrying this miniature Fizeau interferometer, which could be used to monitor the Sun diameter over a long in-orbit period.

  17. Testbed for a LiFi system integrated in streetlights

    OpenAIRE

    Monzón Baeza, Victor; Sánchez Fernández, Matilde Pilar; García-Armada, Ana; Royo, A.

    2015-01-01

    The proceeding at: 2015 Conference on Networks and Communications (EuCNC) took place June 29 - July 2 in Paris, France. In this paper, a functional LiFi real-time testbed implemented on FPGAs is presented. The setup evaluates the performance of our design in a downlink scenario where the transmitter is embedded on the streetlights and a mobile phone’s camera is used as receiver, therefore achieving the goal of lighting and communicating simultaneously. To validate the des...

  18. Software Testbed for Developing and Evaluating Integrated Autonomous Systems

    Science.gov (United States)

    2015-03-01

    the Plant is a simulation of the ADAPT system, implemented using MatLab ® [6] and Simulink ® [7]. In the second configuration, Intelliface/ADAPT... Simulink simulation of the ADAPT testbed, developed by NASA. Faults are injected using the Matlab / Simulink user interface. The second...timelines, and time-series graphs. 9. The User can inject one or more faults into the Simulink simulation of ADAPT or physically on the ADAPT hardware

  19. Remotely Accessible Testbed for Software Defined Radio Development

    Science.gov (United States)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.

    2012-01-01

    Previous development testbeds have assumed that the developer was physically present in front of the hardware being used. No provision for remote operation of basic functions (power on/off or reset) was made, because the developer/operator was sitting in front of the hardware, and could just push the button manually. In this innovation, a completely remotely accessible testbed has been created, with all diagnostic equipment and tools set up for remote access, and using standardized interfaces so that failed equipment can be quickly replaced. In this testbed, over 95% of the operating hours were used for testing without the developer being physically present. The testbed includes a pair of personal computers, one running Linux and one running Windows. A variety of peripherals is connected via Ethernet and USB (universal serial bus) interfaces. A private internal Ethernet is used to connect to test instruments and other devices, so that the sole connection to the outside world is via the two PCs. An important design consideration was that all of the instruments and interfaces used stable, long-lived industry standards, such as Ethernet, USB, and GPIB (general purpose interface bus). There are no plug-in cards for the two PCs, so there are no problems with finding replacement computers with matching interfaces, device drivers, and installation. The only thing unique to the two PCs is the locally developed software, which is not specific to computer or operating system version. If a device (including one of the computers) were to fail or become unavailable (e.g., a test instrument needed to be recalibrated), replacing it is a straightforward process with a standard, off-the-shelf device.

  20. ATLAS and CMS applications on the WorldGrid testbed

    CERN Document Server

    Ciaschini, V; Fanzago, F; Verlato, M; Vaccarossa, L; Donno, F; Garbellotto, V

    2003-01-01

    WorldGrid is an intercontinental testbed spanning Europe and the US integrating architecturally different Grid implementations based on the Globus toolkit. It has been developed in the context of the DataTAG and iVDGL projects, and successfully demonstrated during the WorldGrid demos at IST2002 (Copenhagen) and SC2002 (Baltimore). Two HEP experiments, ATLAS and CMS, successful exploited the WorldGrid testbed for executing jobs simulating the response of their detectors to physics eve nts produced by real collisions expected at the LHC accelerator starting from 2007. This data intensive activity has been run since many years on local dedicated computing farms consisting of hundreds of nodes and Terabytes of disk and tape storage. Within the WorldGrid testbed, for the first time HEP simulation jobs were submitted and run indifferently on US and European resources, despite of their underlying different Grid implementations, and produced data which could be retrieved and further analysed on the submitting machine...

  1. Easy as Pi: A Network Coding Raspberry Pi Testbed

    Directory of Open Access Journals (Sweden)

    Chres W. Sørensen

    2016-10-01

    Full Text Available In the near future, upcoming communications and storage networks are expected to tolerate major difficulties produced by huge amounts of data being generated from the Internet of Things (IoT. For these types of networks, strategies and mechanisms based on network coding have appeared as an alternative to overcome these difficulties in a holistic manner, e.g., without sacrificing the benefit of a given network metric when improving another. There has been recurrent issues on: (i making large-scale deployments akin to the Internet of Things; (ii assessing and (iii replicating the obtained results in preliminary studies. Therefore, finding testbeds that can deal with large-scale deployments and not lose historic data in order to evaluate these mechanisms are greatly needed and desirable from a research perspective. However, this can be hard to manage, not only due to the inherent costs of the hardware, but also due to maintenance challenges. In this paper, we present the required key steps to design, setup and maintain an inexpensive testbed using Raspberry Pi devices for communications and storage networks with network coding capabilities. This testbed can be utilized for any applications requiring results replicability.

  2. Deciphering the Hot Giant Atmospheres Orbiting Nearby Extrasolar Systems with JWST

    Science.gov (United States)

    Afrin Badhan, Mahmuda; Batalha, Natasha; Deming, Drake; Domagal-Goldman, Shawn; HEBRARD, Eric; Kopparapu, Ravi Kumar; Irwin, Patrick Gerard Joseph

    2016-10-01

    Unique and exotic planets give us an opportunity to understand how planetary systems form and evolve over their lifetime, by placing our own planetary system in the context of the vastly different extrasolar systems that are being continually discovered by present space missions. With orbital separations that are less than one-tenth of the Mercury-Sun distance, these close-in planets provide us with valuable insights about the host stellar atmosphere and planetary atmospheres subjected to their enormous stellar insolation. Observed spectroscopic signatures reveal all spectrally active species in a planet, along with information about its thermal structure and dynamics, allowing us to characterize the planet's atmosphere. NASA's upcoming missions will give us the high-resolution spectra necessary to constrain the atmospheric properties with unprecedented accuracy. However, to interpret the observed signals from exoplanetary transit events with any certainty, we need reliable atmospheric retrieval tools that can model the expected observables adequately. In my work thus far, I have built a Markov Chain Monte Carlo (MCMC) convergence scheme, with an analytical radiative equilibrium formulation for the thermal structures, within the NEMESIS atmospheric modeling tool, to allow sufficient (and efficient) exploration of the parameter space. I also augmented the opacity tables to improve the speed and reliability of retrieval models. I then utilized this upgraded version to infer the pressure-temperature (P-T) structures and volume-mixing ratios (VMRs) of major gas species in hot Jupiter dayside atmospheres, from their emission spectra. I have employed a parameterized thermal structure to retrieve plausible P-T profiles, along with altitude-invariant VMRs. Here I show my retrieval results on published datasets of HD189733b, and compare them with both medium and high spectral resolution JWST/NIRSPEC simulations. In preparation for the upcoming JWST mission, my current work

  3. SCASim: A Flexible and Reusable Detector Simulator for the MIRI instrument of the JWST

    Science.gov (United States)

    Beard, S.; Morin, J.; Gastaud, R.; Azzollini, R.; Bouchet, P.; Chaintreuil, S.; Lahuis, F.; Littlejohns, O.; Nehme, C.; Pye, J.

    2012-09-01

    The JWST Mid Infrared Instrument (MIRI) operates in the 5-28μm wavelength range and can be configured for imaging, coronographic imaging, long-slit, low-resolution spectroscopy or medium resolution spectroscopy with an integral field unit. SCASim is one of a suite of simulators which operate together to simulate all the different modes of the instrument. These simulators are essential for the efficient operation of MIRI; allowing more accurate planning of MIRI observations on sky or during the pre-launch testing of the instrument. The data generated by the simulators are essential for testing the data pipeline software. The simulators not only need to reproduce the behaviour of the instrument faithfully, they also need to be adaptable so that information learned about the instrument during the pre-launch testing and in-orbit commissioning can be fed back into the simulation. SCASim simulates the behaviour of the MIRI detectors, taking into account cosmetic effects, quantum efficiency, shot noise, dark current, read noise, amplifier layout, cosmic ray hits, etc... The software has benefited from three major design choices. First, the development of a suite of MIRI simulators, rather than single simulator, has allowed MIRI simulators to be developed in parallel by different teams, with each simulator able to concentrate on one particular area. SCASim provides a facility common to all the other simulators and saves duplication of effort. Second, SCASim has a Python-based object-oriented design which makes it easier to adapt as new information about the instrument is learned during testing. Third, all simulator parameters are maintained in external files, rather than being hard coded in the software. These design choices have made SCASim highly reusable. In its present form it can be used to simulate any JWST detector, and it can be adapted for future instruments with similar, photon-counting detectors.

  4. The Solar Telescope GREGOR

    Science.gov (United States)

    Volkmer, R.

    2008-09-01

    During the last years the new 1.5m solar telescope GREGOR was assembled at Izania on Tenerife, Spain. The telescope is designed for high-precision measurements of the magnetic field in the solar photosphere and chromosphere with a resolution of 70km on the Sun. The telescope concept offers also high resolution stellar spectroscopy. The telescope is build by a consortium of the Kiepenheuer-Institut für Sonnenphysik, the Astrophysikalische Institut Potsdam, the Institut für Astrophysik Göttingen, Max-Plank-Institut für Sonnensystemforschung and additional international Partners. The telescope is a complete open structure with active cooled main mirror. High performance post-focus instruments in the visible and near IR wavelength acquire high resolution spectra with 2 dimensional spatial resolution and polarimetric information. The commissioning of the telescope will start in 2008 to allow first science observations at the end of 2009.

  5. Precise Pointing and Stabilization Performance for the Balloon-borne Imaging Testbed (BIT): 2015 Test Flight

    CERN Document Server

    Romualdez, L J; Damaren, C J; Galloway, M N; Hartley, J W; Li, L; Massey, R J; Netterfield, C B

    2016-01-01

    Balloon-borne astronomy offers an attractive option for experiments that require precise pointing and attitude stabilization, due to a large reduction in the atmospheric interference observed by ground-based systems as well as the low-cost and short development time-scale compared to space-borne systems. The Balloon-borne Imaging Testbed (BIT) is an instrument designed to meet the technological requirements of high precision astronomical missions and is a precursor to the development of a facility class instrument with capabilities similar to the Hubble Space Telescope. The attitude determination and control systems (ADCS) for BIT, the design, implementation, and analysis of which are the focus of this paper, compensate for compound pendulation effects and other sub-orbital disturbances in the stratosphere to within 1-2$^{\\prime\\prime}$ (rms), while back-end optics provide further image stabilization down to 0.05$^{\\prime\\prime}$ (not discussed here). During the inaugural test flight from Timmins, Canada in S...

  6. The Pathfinder Testbed: Exploring Techniques for Achieving Precision Radial Velocities in the Near-Infrared

    CERN Document Server

    Ramsey, Larry; Redman, Stephen; Bender, Chad; Roy, Arpita; Zonak, Stephanie; Sigurdsson, Steinn; Wolszczan, Alex

    2010-01-01

    The Penn State Pathfinder is a prototype warm fiber-fed Echelle spectrograph with a Hawaii-1 NIR detector that has already demonstrated 7-10 m/s radial velocity precision on integrated sunlight. The Pathfinder testbed was initially setup for the Gemini PRVS design study to enable a systematic exploration of the challenges of achieving high radial velocity precision in the near-infrared, as well as to test possible solutions to these calibration challenges. The current version of the Pathfinder has an R3 echelle grating, and delivers a resolution of R~50,000 in the Y, J or H bands of the spectrum. We will discuss the on sky-performance of the Pathfinder during an engineering test run at the Hobby Eberly Telescope as well the results of velocity observations of M dwarfs. We will also discuss the unique calibration techniques we have explored, like Uranium-Neon hollow cathode lamps, notch filter, and modal noise mitigation to enable high precision radial velocity observation in the NIR. The Pathfinder is a proto...

  7. Demonstration of the Wide-Field Imaging Interferometer Testbed Using a Calibrated Hyperspectral Image Projector

    Science.gov (United States)

    Bolcar, Matthew R.; Leisawitz, David; Maher, Steve; Rinehart, Stephen

    2012-01-01

    The Wide-field Imaging Interferometer testbed (WIIT) at NASA's Goddard Space Flight Center uses a dual-Michelson interferometric technique. The WIIT combines stellar interferometry with Fourier-transform interferometry to produce high-resolution spatial-spectral data over a large field-of-view. This combined technique could be employed on future NASA missions such as the Space Infrared Interferometric Telescope (SPIRIT) and the Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS). While both SPIRIT and SPECS would operate at far-infrared wavelengths, the WIIT demonstrates the dual-interferometry technique at visible wavelengths. The WIIT will produce hyperspectral image data, so a true hyperspectral object is necessary. A calibrated hyperspectral image projector (CHIP) has been constructed to provide such an object. The CHIP uses Digital Light Processing (DLP) technology to produce customized, spectrally-diverse scenes. CHIP scenes will have approximately 1.6-micron spatial resolution and the capability of . producing arbitrary spectra in the band between 380 nm and 1.6 microns, with approximately 5-nm spectral resolution. Each pixel in the scene can take on a unique spectrum. Spectral calibration is achieved with an onboard fiber-coupled spectrometer. In this paper we describe the operation of the CHIP. Results from the WIIT observations of CHIP scenes will also be presented.

  8. The great Melbourne telescope

    CERN Document Server

    Gillespie, Richard

    2011-01-01

    Erected at Melbourne Observatory in 1869, the telescope was the second largest in the world, designed to explore the nature of the nebulae in the southern skies. Richard Gillespie, head of the History and Technology department at the Melbourne museum has written an entertaining account of the telescope's extraordinary history and tells the story through an amazing cast of characters whose lives intersected with the telescope.

  9. Pointing a solar telescope

    Science.gov (United States)

    Wallace, Patrick

    2016-07-01

    As far as pointing is concerned, a solar telescope is merely an ordinary astronomical telescope but with enhancements for observing solar and coronal features. The paper discusses the additional coordinate systems that need to be supported, shows how to generate the required solar ephemerides (both orbital and physical), and sets out a suitable application programming interface for the telescope control system to use when making solar observations.

  10. Testbed for Wireless Vehicle Communication: a Simulation Approach based on Three-Phase Traffic Theory

    OpenAIRE

    Kerner, B. S.; Klenov, S. L.; Brakemeier, A.

    2007-01-01

    A testbed for wireless vehicle communication based on a microscopic model in the framework of three-phase traffic theory is presented. In this testbed, vehicle motion in traffic flow and analyses of a vehicle communication channel access based on IEEE 802.11e mechanisms, radio propagation modeling, message reception characteristics as well as all other effects associated with ad-hoc networks are integrated into a three-phase traffic flow model. Based on simulations of this testbed, some stati...

  11. The First VERITAS Telescope

    CERN Document Server

    Holder, J; Badran, H M; Blaylock, G; Bradbury, S M; Buckley, J H; Byrum, K L; Carter-Lewis, D A; Celik, O; Chow, Y C K; Cogan, P; Cui, W; Daniel, M K; De la Calle-Perez, I; Dowdall, C; Dowkontt, P; Duke, C; Falcone, A D; Fegan, S J; Finley, J P; Fortin, P; Fortson, L F; Gibbs, K; Gillanders, G; Glidewell, O J; Grube, J; Gutíerrez, K J; Gyuk, G; Hall, J; Hanna, D; Hays, E; Horan, D; Hughes, S B; Humensky, T B; Imran, A; Jung, I; Kaaret, Philip; Kenny, G E; Kieda, D; Kildea, J; Knapp, J; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Linton, E; Little, E K; Maier, G; Manseri, H; Milovanovic, A; Moriarty, P; Mukherjee, R; Ogden, P A; Ong, R A; Perkins, J S; Pizlo, F; Pohl, M; Quinn, J; Ragan, K; Reynolds, P T; Roache, E T; Rose, H J; Schroedter, M; Sembroski, G H; Sleege, G A; Steele, D; Swordy, S P; Syson, A; Toner, J A; Valcarcel, L; Vasilev, V V; Wagner, R; Wakely, S P; Weekes, T C; White, R J; Williams, D A

    2006-01-01

    The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV $\\gamma$-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.

  12. Communications, Navigation, and Network Reconfigurable Test-bed Flight Hardware Compatibility Test S

    Science.gov (United States)

    2010-01-01

    Communications, Navigation, and Network Reconfigurable Test-bed Flight Hardware Compatibility Test Sets and Networks Integration Management Office Testing for the Tracking and Data Relay Satellite System

  13. Absolute Flux Calibration of the IRAC Instrument on the Spitzer Space Telescope using Hubble Space Telescope Flux Standards

    CERN Document Server

    Bohlin, R C; Rieke, G H; Ardila, D; Carey, S; Deustua, S; Engelbracht, C; Ferguson, H C; Flanagan, K; Kalirai, J; Meixner, M; Noriega-Crespo, A; Su, K Y L; Tremblay, P -E

    2011-01-01

    The absolute flux calibration of the James Webb Space Telescope will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf (WD) stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3, 1.9, 2.0, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al. (2005), i.e. in agreement within their estimated errors of ~2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the SEDs of our standard stars. The independent IRAC 8 micron band-4 fluxes of Rieke et al. (2008) are about 1.5 +/- 2% higher than those of Reach et al. and are also in agreement with our 8 micron result.

  14. LUTE telescope structural design

    Science.gov (United States)

    Ruthven, Gregory

    1993-01-01

    The major objective of the Lunar Ultraviolet Transit Experiment (LUTE) Telescope Structural Design Study was to investigate the feasibility of designing an ultralightweight 1-m aperture system within optical performance requirements and mass budget constraints. This study uses the results from our previous studies on LUTE as a basis for further developing the LUTE structural architecture. After summarizing our results in Section 2, Section 3 begins with the overall logic we used to determine which telescope 'structural form' should be adopted for further analysis and weight estimates. Specific telescope component analysis showing calculated fundamental frequencies and how they compare with our derived requirements are included. 'First-order' component stress analyses to ensure telescope optical and structural component (i.e. mirrors & main bulkhead) weights are realistic are presented. Layouts of both the primary and tertiary mirrors showing dimensions that are consistent with both our weight and frequency calculations also form part of Section 3. Section 4 presents our calculated values for the predicted thermally induced primary-to-secondary mirror despace motion due to the large temperature range over which LUTE must operate. Two different telescope design approaches (one which utilizes fused quartz metering rods and one which assumes the entire telescope is fabricated from beryllium) are considered in this analysis. We bound the secondary mirror focus mechanism range (in despace) based on these two telescope configurations. In Section 5 we show our overall design of the UVTA (Ultraviolet Telescope Assembly) via an 'exploded view' of the sub-system. The 'exploded view' is annotated to help aid in the understanding of each sub-assembly. We also include a two view layout of the UVTA from which telescope and telescope component dimensions can be measured. We conclude our study with a set of recommendations not only with respect to the LUTE structural architecture

  15. PROSPECTS FOR CHARACTERIZING HOST STARS OF THE PLANETARY SYSTEM DETECTIONS PREDICTED FOR THE KOREAN MICROLENSING TELESCOPE NETWORK

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Calen B., E-mail: henderson@astronomy.ohio-state.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2015-02-10

    I investigate the possibility of constraining the flux of the lens (i.e., host star) for the types of planetary systems the Korean Microlensing Telescope Network is predicted to find. I examine the potential to obtain lens flux measurements by (1) imaging the lens once it is spatially resolved from the source, (2) measuring the elongation of the point-spread function of the microlensing target (lens+source) when the lens and source are still unresolved, and (3) taking prompt follow-up photometry. In each case I simulate the observing programs for a representative example of current ground-based adaptive optics (AO) facilities (specifically NACO on the Very Large Telescope), future ground-based AO facilities (GMTIFS on the Giant Magellan Telescope, GMT), and future space telescopes (NIRCAM on the James Webb Space Telescope, JWST). Given the predicted distribution of relative lens-source proper motions, I find that the lens flux could be measured to a precision of σ{sub H{sub ℓ}}≤0.1 for ≳60% of planet detections ≥5 yr after each microlensing event for a simulated observing program using GMT, which images resolved lenses. NIRCAM on JWST would be able to carry out equivalently high-precision measurements for ∼28% of events Δt = 10 yr after each event by imaging resolved lenses. I also explore the effects various blend components would have on the mass derived from prompt follow-up photometry, including companions to the lens, companions to the source, and unassociated interloping stars. I find that undetected blend stars would cause catastrophic failures (i.e., >50% fractional uncertainty in the inferred lens mass) for ≲ (16 · f {sub bin})% of planet detections, where f {sub bin} is the binary fraction, with the majority of these failures occurring for host stars with mass ≲0.3 M {sub ☉}.

  16. Probing the dusty inhabitants of the Local Group Galaxies: JWST/MIRI colors of infrared stellar populations

    Science.gov (United States)

    Jones, Olivia; Meixner, Margaret

    2016-01-01

    The assembly of galaxies involves the life cycle of mass, metal enrichment and dust that JWST will probe. Detailed studies of nearby galaxies provides guidance for interpreting the more distant forming galaxies. JWST/MIRI will enable stellar population studies akin to work done with HST on the Local Group galaxies but over a new wavelength range. MIRI's imaging capability over nine photometric bands from 5 to 28 microns is particularly suited to survey stars with an infrared excess and to detangle the extinction or thermal emission from various species of dust. These dusty stellar populations include young stellar objects, evolved stars and supernovae that are bright in the infrared. Using the rich Spitzer-IRS spectroscopic dataset and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of over a thousand objects in the Magellanic Clouds, we calculate the expected flux -densities and colors in the MIRI broadband filters for these prominent infrared sources. We uses these fluxes to illustrate what JWST will see in stellar population studies for other Local Group galaxies. JWST/MIRI observations of infrared sources in Local Group Galaxies will constrain the life cycle of galaxies through their dust emission. For example, how much of the interstellar dust is supplied by dying stars? Do the number of young stellar objects agree with star formation diagnostic for the galaxy? We discuss the locations of the post- and pre-main-sequence populations in MIRI color-color and color-magnitude space and examine which filters are best for identifying populations of sources. We connect these results to existing galaxies with HST data for instance Andromeda and M33.

  17. Water-filled telescopes

    CERN Document Server

    Antonello, E

    2014-01-01

    In this short note we discuss the case of the thought experiments on water-filled telescopes and their realizations during 18th and 19th century. The story of those instruments shows that the scientific progress occurs in a curious way, since there was no stringent reason for the construction of a water-filled telescope.

  18. Athermal laser launch telescopes

    NARCIS (Netherlands)

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.

    2011-01-01

    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several

  19. Athermal laser launch telescopes

    NARCIS (Netherlands)

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.

    2011-01-01

    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several o

  20. Observing the Sun with Coronado telescopes telescopes

    CERN Document Server

    Pugh, Philip

    2007-01-01

    The Sun provides amateur astronomers with one of the few opportunities for daytime astronomy. In order to see the major features of our nearest star, special telescopes that have a very narrow visible bandwidth are essential. The bandwidth has to be as narrow as 1 A- 10-10 m (1 Angstrom) and centred on the absorption line of neutral hydrogen. This makes many major features of the Suna (TM)s chromosphere visible to the observer. Such narrow-band "Fabry-Perot etalon filters" are high technology, and until the introduction of the Coronado range of solar telescopes, were too expensive for amateur use. The entry-level Coronado telescope, the PST (Personal Solar Telescope) costs under 500. Solar prominences (vast columns of plasma, best seen at the edge of the solar disk), filaments, flares, sunspots, plage and active regions are all visible and can be imaged to produce spectacular solar photographs. Philip Pugh has assembled a team of contributors who show just how much solar work can be done with Coronado telesco...

  1. COLUMBUS as Engineering Testbed for Communications and Multimedia Equipment

    Science.gov (United States)

    Bank, C.; Anspach von Broecker, G. O.; Kolloge, H.-G.; Richters, M.; Rauer, D.; Urban, G.; Canovai, G.; Oesterle, E.

    2002-01-01

    The paper presents ongoing activities to prepare COLUMBUS for communications and multimedia technology experiments. For this purpose, Astrium SI, Bremen, has studied several options how to best combine the given system architecture with flexible and state-of-the-art interface avionics and software. These activities have been conducted in coordination with, and partially under contract of, DLR and ESA/ESTEC. Moreover, Astrium SI has realized three testbeds for multimedia software and hardware testing under own funding. The experimental core avionics unit - about a half double rack - establishes the core of a new multi-user experiment facility for this type of investigation onboard COLUMBUS, which shall be available to all users of COLUMBUS. It allows for the connection of 2nd generation payload, that is payload requiring broadband data transfer and near-real-time access by the Principal Investigator on ground, to test highly interactive and near-realtime payload operation. The facility is also foreseen to test new equipment to provide the astronauts onboard the ISS/COLUMBUS with bi- directional hi-fi voice and video connectivity to ground, private voice coms and e-mail, and a multimedia workstation for ops training and recreation. Connection to an appropriate Wide Area Network (WAN) on Earth is possible. The facility will include a broadband data transmission front-end terminal, which is mounted externally on the COLUMBUS module. This Equipment provides high flexibility due to the complete transparent transmit and receive chains, the steerable multi-frequency antenna system and its own thermal and power control and distribution. The Equipment is monitored and controlled via the COLUMBUS internal facility. It combines several new hardware items, which are newly developed for the next generation of broadband communication satellites and operates in Ka -Band with the experimental ESA data relay satellite ARTEMIS. The equipment is also TDRSS compatible; the open loop

  2. Automatic Integration Testbeds validation on Open Science Grid

    Science.gov (United States)

    Caballero, J.; Thapa, S.; Gardner, R.; Potekhin, M.

    2011-12-01

    A recurring challenge in deploying high quality production middleware is the extent to which realistic testing occurs before release of the software into the production environment. We describe here an automated system for validating releases of the Open Science Grid software stack that leverages the (pilot-based) PanDA job management system developed and used by the ATLAS experiment. The system was motivated by a desire to subject the OSG Integration Testbed to more realistic validation tests. In particular those which resemble to every extent possible actual job workflows used by the experiments thus utilizing job scheduling at the compute element (CE), use of the worker node execution environment, transfer of data to/from the local storage element (SE), etc. The context is that candidate releases of OSG compute and storage elements can be tested by injecting large numbers of synthetic jobs varying in complexity and coverage of services tested. The native capabilities of the PanDA system can thus be used to define jobs, monitor their execution, and archive the resulting run statistics including success and failure modes. A repository of generic workflows and job types to measure various metrics of interest has been created. A command-line toolset has been developed so that testbed managers can quickly submit "VO-like" jobs into the system when newly deployed services are ready for testing. A system for automatic submission has been crafted to send jobs to integration testbed sites, collecting the results in a central service and generating regular reports for performance and reliability.

  3. Software Testbed for Developing and Evaluating Integrated Autonomous Subsystems

    Science.gov (United States)

    Ong, James; Remolina, Emilio; Prompt, Axel; Robinson, Peter; Sweet, Adam; Nishikawa, David

    2015-01-01

    To implement fault tolerant autonomy in future space systems, it will be necessary to integrate planning, adaptive control, and state estimation subsystems. However, integrating these subsystems is difficult, time-consuming, and error-prone. This paper describes Intelliface/ADAPT, a software testbed that helps researchers develop and test alternative strategies for integrating planning, execution, and diagnosis subsystems more quickly and easily. The testbed's architecture, graphical data displays, and implementations of the integrated subsystems support easy plug and play of alternate components to support research and development in fault-tolerant control of autonomous vehicles and operations support systems. Intelliface/ADAPT controls NASA's Advanced Diagnostics and Prognostics Testbed (ADAPT), which comprises batteries, electrical loads (fans, pumps, and lights), relays, circuit breakers, invertors, and sensors. During plan execution, an experimentor can inject faults into the ADAPT testbed by tripping circuit breakers, changing fan speed settings, and closing valves to restrict fluid flow. The diagnostic subsystem, based on NASA's Hybrid Diagnosis Engine (HyDE), detects and isolates these faults to determine the new state of the plant, ADAPT. Intelliface/ADAPT then updates its model of the ADAPT system's resources and determines whether the current plan can be executed using the reduced resources. If not, the planning subsystem generates a new plan that reschedules tasks, reconfigures ADAPT, and reassigns the use of ADAPT resources as needed to work around the fault. The resource model, planning domain model, and planning goals are expressed using NASA's Action Notation Modeling Language (ANML). Parts of the ANML model are generated automatically, and other parts are constructed by hand using the Planning Model Integrated Development Environment, a visual Eclipse-based IDE that accelerates ANML model development. Because native ANML planners are currently

  4. EMERGE - ESnet/MREN Regional Science Grid Experimental NGI Testbed

    Energy Technology Data Exchange (ETDEWEB)

    Mambretti, Joe; DeFanti, Tom; Brown, Maxine

    2001-07-31

    This document is the final report on the EMERGE Science Grid testbed research project from the perspective of the International Center for Advanced Internet Research (iCAIR) at Northwestern University, which was a subcontractor to this UIC project. This report is a compilation of information gathered from a variety of materials related to this project produced by multiple EMERGE participants, especially those at Electronic Visualization Lab (EVL) at the University of Illinois at Chicago (UIC), Argonne National Lab and iCAIR. The EMERGE Science Grid project was managed by Tom DeFanti, PI from EVL at UIC.

  5. The Living With a Star Space Environment Testbed Experiments

    Science.gov (United States)

    Xapsos, Michael A.

    2014-01-01

    The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.

  6. SCaN Testbed Software Development and Lessons Learned

    Science.gov (United States)

    Kacpura, Thomas J.; Varga, Denise M.

    2012-01-01

    National Aeronautics and Space Administration (NASA) has developed an on-orbit, adaptable, Software Defined Radio (SDR)Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The SCAN Testbed Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, SDR platforms and the STRS Architecture.The SDRs are a new technology for NASA, and the support infrastructure they require is different from legacy, fixed function radios. SDRs offer the ability to reconfigure on-orbit communications by changing software for new waveforms and operating systems to enable new capabilities or fix any anomalies, which was not a previous option. They are not stand alone devices, but required a new approach to effectively control them and flow data. This requires extensive software to be developed to utilize the full potential of these reconfigurable platforms. The paper focuses on development, integration and testing as related to the avionics processor system, and the software required to command, control, monitor, and interact with the SDRs, as well as the other communication payload elements. An extensive effort was required to develop the flight software and meet the NASA requirements for software quality and safety. The flight avionics must be radiation tolerant, and these processors have limited capability in comparison to terrestrial counterparts. A big challenge was that there are three SDRs onboard, and interfacing with multiple SDRs simultaneously complicatesd the effort. The effort also includes ground software, which is a key element for both the command of the payload, and displaying data created by the payload. The verification of

  7. Exploring for Galaxies in the First Billion Years with Hubble and Spitzer - Pathfinding for JWST

    Science.gov (United States)

    Illingworth, Garth D.

    2017-01-01

    Hubble has revolutionized the field of distant galaxies through its deep imaging surveys, starting with the Hubble Deep Field (HDF) in 1995. That first deep survey revealed galaxies at redshift z~1-3 that provided insights into the development of the Hubble sequence. Each new HST instrument has explored new regimes, through the peak of star formation at z~2-3, just 2-3 billion years after the Big Bang, to our first datasets at a billion years at z~6, and then earlier to z~11. HST's survey capabilities were enhanced by 40X with ACS, and then similarly with the WFC3/IR, which opened up the first billion years to an unforeseen degree. I will discuss what we have learned from the remarkable HST and Spitzer imaging surveys (HUDF, GOODS, HUDF09/12 and CANDELS), as well as surveys of clusters like the Hubble Frontier Fields (HFF). Lensing clusters provide extraordinary opportunities for characterizing the faintest earliest galaxies, but also present extraordinary challenges. Together these surveys have resulted in the measurement of the volume density of galaxies in the first billion years down to astonishingly faint levels. The role of faint galaxies in reionizing the universe is still much-discussed, but there is no doubt that such galaxies contribute greatly to the UV ionizing flux, as shown by deep luminosity function studies. Together Hubble and Spitzer have also established the stellar-mass buildup over 97% of cosmic history. Yet some of the greatest surprises have come from the discovery of very luminous galaxies at z~8-11, around 400-650 million years after the Big Bang. Spectroscopic followup by Keck of some of these very rare, bright galaxies has confirmed redshifts from z~7 to z~9, and revealed, surprisingly, strong Lyα emission near the peak of reionization when the HI fraction in the IGM is high. The recent confirmation of a z=11.1 galaxy, just 400 million years after the Big Bang, by a combination of Hubble and Spitzer data, moved Hubble into JWST territory

  8. AGN and quasar science with aperture masking interferometry on the James Webb Space Telescope

    CERN Document Server

    Ford, K E Saavik; Sivaramakrishnan, Anand; Martel, André R; Koekemoer, Anton; Lafrenière, David; Parmentier, Sébastien

    2014-01-01

    Due to feedback from accretion onto supermassive black holes (SMBHs), Active Galactic Nuclei (AGNs) are believed to play a key role in LambdaCDM cosmology and galaxy formation. However, AGNs' extreme luminosities and the small angular size of their accretion flows create a challenging imaging problem. We show James Webb Space Telescope's Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) Aperture Masking Interferometry (AMI) mode will enable true imaging (i.e. without any requirement of prior assumptions on source geometry) at ~65 mas angular resolution at the centers of AGNs. This is advantageous for studying complex extended accretion flows around SMBHs, and in other areas of angular-resolution-limited astrophysics. By simulating data sequences incorporating expected sources of noise, we demonstrate that JWST-NIRISS AMI mode can map extended structure at a pixel-to-pixel contrast of ~10^{-2} around an L=7.5 point source, using short exposure times (minutes). Such images will test models of AGN fee...

  9. Two Easily Made Astronomical Telescopes.

    Science.gov (United States)

    Hill, M.; Jacobs, D. J.

    1991-01-01

    The directions and diagrams for making a reflecting telescope and a refracting telescope are presented. These telescopes can be made by students out of plumbing parts and easily obtainable, inexpensive, optical components. (KR)

  10. Development of a smart-antenna test-bed, demonstrating software defined digital beamforming

    NARCIS (Netherlands)

    Kluwer, T.; Slump, C.H.; Schiphorst, R.; Hoeksema, F.W.

    2001-01-01

    This paper describes a smart-antenna test-bed consisting of ‘common of the shelf’ (COTS) hardware and software defined radio components. The use of software radio components enables a flexible platform to implement and test mobile communication systems as a real-world system. The test-bed is configu

  11. 77 FR 18793 - Spectrum Sharing Innovation Test-Bed Pilot Program

    Science.gov (United States)

    2012-03-28

    ... Pilot Program, 73 FR 76,002 (Dec. 15, 2008). \\3\\ The final Phase I test plan and additional information... National Telecommunications and Information Administration Spectrum Sharing Innovation Test-Bed Pilot... conduct in Phase II/III of the Spectrum Sharing Innovation Test-Bed pilot program to assess...

  12. Development of a flexible test-bed for robotics, telemanipulation and servicing research

    Science.gov (United States)

    Davies, Barry F.

    1989-01-01

    The development of a flexible operation test-bed, based around a commercially available ASEA industrial robot is described. The test-bed was designed to investigate fundamental human factors issues concerned with the unique problems of robotic manipulation in the hostile environment of Space.

  13. Data dissemination in the wild: A testbed for high-mobility MANETs

    DEFF Research Database (Denmark)

    Vingelmann, Peter; Pedersen, Morten Videbæk; Heide, Janus

    2012-01-01

    This paper investigates the problem of efficient data dissemination in Mobile Ad hoc NETworks (MANETs) with high mobility. A testbed is presented; which provides a high degree of mobility in experiments. The testbed consists of 10 autonomous robots with mobile phones mounted on them. The mobile...

  14. The AMANDA neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Andres, E.C.; Askebjer, P.; Barwick, S.W.; Bay, R.C.; Bergstrom,L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson,M.; Chinowsky, W.; Chirkin, D.; Conrad,J.; Costa, C.G.S.; Cowen, D.; Dalberg, E.; DeYoung, T.; Edsjo, J.; Ekstrom, P.; Goobar, A.; Gray, L.; Hallgren, A.; Halzen, F.; Hardtke, R.; Hart, S.; He, Y.; de, los, Heros,C.P.; Hill, G.; Hulth, PO.; Hundertmark, S.; Jacobsen, J.; Jones, A.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.C.; Miocinovic, P.; Mock, P.C.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren,D.; Porrata, R.; Potter, D.; Price, P.B.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering, C.; Steffen, P.; Stokstad, R.; Streicher, O.; Taboada, I.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch,C.H.; Wischnewski, R.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.; AMANDACollaboration

    1999-04-01

    With an effective telescope area of order 10(4) m(2) for TeVneutrinos, a threshold near similar to 50 GeV and a pointing accuracy of2.5 degrees per muon track, the AMANDA detector represents the first of anew generation of high energy neutrino telescopes, reaching a scaleenvisaged over 25 years ago. We describe early results on the calibrationof natural deep ice as a particle detector as well as on AMANDA'sperformance as a neutrino telescope.

  15. The AMANDA neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Andres, E.C.; Askebjer, P.; Barwick, S.W.; Bay, R.C.; Bergstroem, L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Conrad, J.; Costa, C.G.S.; Cowen, D.; Dalberg, E.; DeYoung, T.; Edsjoe, J.; Ekstroem, P.; Goobar, A.; Gray, L.; Hallgren, A.; Halzen, F.; Hardtke, R.; Hart, S.; He, Y.; Heros, C.P. de los; Hill, G.; Hulth, P.O.; Hundertmark, S.; Jacobsen, J.; Jones, A.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.C.; Miocinovic, P.; Mock, P.C.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren, D.; Porrata, R.; Potter, D.; Price, P.B.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriquez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwartz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering, C.; Steffen, P.; Stokstad, R.; Streicher, O.; Taboada, I.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch, C.H.; Wischnewski, R.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S

    1999-05-01

    With an effective telescope area of order 10{sup 4} m{sup 2} for TeV neutrinos, a threshold near {approx}50 GeV and a pointing accuracy of 2.5 degrees per muon track, the AMANDA detector represents the first of a new generation of high energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We describe early results on the calibration of natural deep ice as a particle detector as well as on AMANDA's performance as a neutrino telescope.

  16. Modular assembled space telescope

    Science.gov (United States)

    Feinberg, Lee D.; Budinoff, Jason; MacEwen, Howard; Matthews, Gary; Postman, Marc

    2013-09-01

    We present a new approach to building a modular segmented space telescope that greatly leverages the heritage of the Hubble Space Telescope and the James Webb Space Telescope. The modular design in which mirror segments are assembled into identical panels allows for economies of scale and for efficient space assembly that make a 20-m aperture approach cost effective. This assembly approach can leverage NASA's future capabilities and has the power to excite the public's imagination. We discuss the science drivers, basic architecture, technology, and leveraged NASA infrastructure, concluding with a proposed plan for going forward.

  17. High performance testbed for four-beam infrared interferometric nulling and exoplanet detection.

    Science.gov (United States)

    Martin, Stefan; Booth, Andrew; Liewer, Kurt; Raouf, Nasrat; Loya, Frank; Tang, Hong

    2012-06-10

    Technology development for a space-based infrared nulling interferometer capable of earthlike exoplanet detection and characterization started in earnest in the last 10 years. At the Jet Propulsion Laboratory, the planet detection testbed was developed to demonstrate the principal components of the beam combiner train for a high performance four-beam nulling interferometer. Early in the development of the testbed, the importance of "instability noise" for nulling interferometer sensitivity was recognized, and the four-beam testbed would produce this noise, allowing investigation of methods for mitigating this noise source. The testbed contains the required features of a four-beam combiner for a space interferometer and performs at a level matching that needed for the space mission. This paper describes in detail the design, functions, and controls of the testbed.

  18. Performance Analysis of Multilayer MIPv6 Architecture through Experimental Testbed

    Directory of Open Access Journals (Sweden)

    Nitul Dutta

    2014-07-01

    Full Text Available Mobility management is a key issue to achieve uninterrupted Internet services in IP based network. In IPv6, the mobility management is realized by its mobile version namely the Mobile IPv6 (MIPv6. The MIPv6 is further extended to Hierarchical MIPv6 (HMIPv6 to reduce handoff latency suffered by mobile nodes and signaling load incurred due to movement if nodes within the micro mobility region defined by HMIPv6. The HMIPv6 is considered as first widely accepted layered architecture for mobility management for IPv6 network. Influenced by the benefits of HMIPv6, many researchers have suggested extension of MIPv6 into multiple layers. However, there is very little work on finding optimal levels of hierarchy in such layered architecture. The focus of this paper is to evaluate the performance of a multilayer (N-layered with N as 5 MIPv6 architecture through experimental testbed. We have observed handoff latency, signaling overhead and tunneling cost and figured out the optimal levels of hierarchy that provides the best acceptable results for all the observed parameters. Since, HMIPv6 outperforms MIPv6 in terms of handoff latency and signaling cost, so we compare our results with HMIPv6. Testbed observation depicts that three levels of hierarchy in MIPv6 architecture provides optimal performance with 27% reduction in handoff latency and 67% reduction in signaling overhead compared to single layer architecture like Hierarchical MIPv6 (HMIPv6 protocol.

  19. The Hyperion Project: Partnership for an Advaned Technology Cluster Testbed

    Energy Technology Data Exchange (ETDEWEB)

    Seager, M; Leininger, M

    2008-04-28

    The Hyperion project offers a unique opportunity to participate in a community-driven testing and development resource at a scale beyond what can be accomplished by one entity alone. Hyperion is a new strategic technology partnership intended to support the member-driven development and testing at scale. This partnership will allow commodity clusters to scale up to meet the growing demands of customers multi-core petascale simulation environments. Hyperion will tightly couple together the outstanding research and development capabilities of Lawrence Livermore National Laboratory with leading technology companies, including Cisco, Data Direct Networks, Dell, Intel, LSI, Mellanox, Qlogic, RedHat, SuperMicro and Sun. The end goal of this project is to revolutionize cluster computing in fundamental ways by providing the critical software and hardware components for a highly scalable simulation environment. This environment will include support for high performance networking, parallel file systems, operating system, and cluster management. This goal will be achieved by building a scalable technology cluster testbed that will be fully dedicated to the partners and provide: (1) A scalable development testing and benchmarking environment for critical enabling Linux cluster technologies; (2) An evaluation testbed for new hardware and software technologies; and (3) A vehicle for forming long term collaborations.

  20. Propfan test assessment testbed aircraft flutter model test report

    Science.gov (United States)

    Jenness, C. M. J.

    1987-01-01

    The PropFan Test Assessment (PTA) program includes flight tests of a propfan power plant mounted on the left wind of a modified Gulfstream II testbed aircraft. A static balance boom is mounted on the right wing tip for lateral balance. Flutter analyses indicate that these installations reduce the wing flutter stabilizing speed and that torsional stiffening and the installation of a flutter stabilizing tip boom are required on the left wing for adequate flutter safety margins. Wind tunnel tests of a 1/9th scale high speed flutter model of the testbed aircraft were conducted. The test program included the design, fabrication, and testing of the flutter model and the correlation of the flutter test data with analysis results. Excellent correlations with the test data were achieved in posttest flutter analysis using actual model properties. It was concluded that the flutter analysis method used was capable of accurate flutter predictions for both the (symmetric) twin propfan configuration and the (unsymmetric) single propfan configuration. The flutter analysis also revealed that the differences between the tested model configurations and the current aircraft design caused the (scaled) model flutter speed to be significantly higher than that of the aircraft, at least for the single propfan configuration without a flutter boom. Verification of the aircraft final design should, therefore, be based on flutter predictions made with the test validated analysis methods.

  1. Development of optical packet and circuit integrated ring network testbed.

    Science.gov (United States)

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated.

  2. Characterization of Vegetation using the UC Davis Remote Sensing Testbed

    Science.gov (United States)

    Falk, M.; Hart, Q. J.; Bowen, K. S.; Ustin, S. L.

    2006-12-01

    Remote sensing provides information about the dynamics of the terrestrial biosphere with continuous spatial and temporal coverage on many different scales. We present the design and construction of a suite of instrument modules and network infrastructure with size, weight and power constraints suitable for small scale vehicles, anticipating vigorous growth in unmanned aerial vehicles (UAV) and other mobile platforms. Our approach provides the rapid deployment and low cost acquisition of high aerial imagery for applications requiring high spatial resolution and revisits. The testbed supports a wide range of applications, encourages remote sensing solutions in new disciplines and demonstrates the complete range of engineering knowledge required for the successful deployment of remote sensing instruments. The initial testbed is deployed on a Sig Kadet Senior remote controlled plane. It includes an onboard computer with wireless radio, GPS, inertia measurement unit, 3-axis electronic compass and digital cameras. The onboard camera is either a RGB digital camera or a modified digital camera with red and NIR channels. Cameras were calibrated using selective light sources, an integrating spheres and a spectrometer, allowing for the computation of vegetation indices such as the NDVI. Field tests to date have investigated technical challenges in wireless communication bandwidth limits, automated image geolocation, and user interfaces; as well as image applications such as environmental landscape mapping focusing on Sudden Oak Death and invasive species detection, studies on the impact of bird colonies on tree canopies, and precision agriculture.

  3. Function-based integration strategy for an agile manufacturing testbed

    Science.gov (United States)

    Park, Hisup

    1997-01-01

    This paper describes an integration strategy for plug-and- play software based on functional descriptions of the software modules. The functional descriptions identify explicitly the role of each module with respect to the overall systems. They define the critical dependencies that affect the individual modules and thus affect the behavior of the system. The specified roles, dependencies and behavioral constraints are then incorporated in a group of shared objects that are distributed over a network. These objects may be interchanged with others without disrupting the system so long as the replacements meet the interface and functional requirements. In this paper, we propose a framework for modeling the behavior of plug-and-play software modules that will be used to (1) design and predict the outcome of the integration, (2) generate the interface and functional requirements of individual modules, and (3) form a dynamic foundation for applying interchangeable software modules. I describe this strategy in the context of the development of an agile manufacturing testbed. The testbed represents a collection of production cells for machining operations, supported by a network of software modules or agents for planning, fabrication, and inspection. A process definition layer holds the functional description of the software modules. A network of distributed objects interact with one another over the Internet and comprise the plug-compatible software nodes that execute these functions. This paper will explore the technical and operational ramifications of using the functional description framework to organize and coordinate the distributed object modules.

  4. Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    Science.gov (United States)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie

    2009-01-01

    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

  5. Off-road perception testbed vehicle design and evaluation

    Science.gov (United States)

    Spofford, John R.; Herron, Jennifer B.; Anhalt, David J.; Morgenthaler, Matthew K.; DeHerrera, Clinton

    2003-09-01

    Off-road robotics efforts such as DARPA"s PerceptOR program have motivated the development of testbed vehicles capable of sustained operation in a variety of terrain and environments. This paper describes the retrofitting of a minimally-modified ATV chassis into such a testbed which has been used by multiple programs for autonomous mobility development and sensor characterization. Modular mechanical interfaces for sensors and equipment enclosures enabled integration of multiple payload configurations. The electric power subsystem was capable of short-term operation on batteries with refueled generation for continuous operation. Processing subsystems were mounted in sealed, shock-dampened enclosures with heat exchangers for internal cooling to protect against external dust and moisture. The computational architecture was divided into a real-time vehicle control layer and an expandable high level processing and perception layer. The navigation subsystem integrated real time kinematic GPS with a three-axis IMU for accurate vehicle localization and sensor registration. The vehicle software system was based on the MarsScape architecture developed under DARPA"s MARS program. Vehicle mobility software capabilities included route planning, waypoint navigation, teleoperation, and obstacle detection and avoidance. The paper describes the vehicle design in detail and summarizes its performance during field testing.

  6. STRS Radio Service Software for NASA's SCaN Testbed

    Science.gov (United States)

    Mortensen, Dale J.; Bishop, Daniel Wayne; Chelmins, David T.

    2013-01-01

    NASA's Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASA's Space Telecommunications Radio System (STRS) architecture standard. Pre-launch testing with the testbed's software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS.

  7. A Battery Certification Testbed for Small Satellite Missions

    Science.gov (United States)

    Cameron, Zachary; Kulkarni, Chetan S.; Luna, Ali Guarneros; Goebel, Kai; Poll, Scott

    2015-01-01

    A battery pack consisting of standard cylindrical 18650 lithium-ion cells has been chosen for small satellite missions based on previous flight heritage and compliance with NASA battery safety requirements. However, for batteries that transit through the International Space Station (ISS), additional certification tests are required for individual cells as well as the battery packs. In this manuscript, we discuss the development of generalized testbeds for testing and certifying different types of batteries critical to small satellite missions. Test procedures developed and executed for this certification effort include: a detailed physical inspection before and after experiments; electrical cycling characterization at the cell and pack levels; battery-pack overcharge, over-discharge, external short testing; battery-pack vacuum leak and vibration testing. The overall goals of these certification procedures are to conform to requirements set forth by the agency and identify unique safety hazards. The testbeds, procedures, and experimental results are discussed for batteries chosen for small satellite missions to be launched from the ISS.

  8. Goddard Robotic Telescope (GRT)

    Data.gov (United States)

    National Aeronautics and Space Administration — Since it is not possible to predict when a Gamma-Ray Burst (GRB) occurs, the follow-up ground telescopes must be distributed as uniform as possible all over the...

  9. Parabolic Strip Telescope

    CERN Document Server

    Chadzitaskos, Goce

    2013-01-01

    We present a proposal of a new type of telescopes using a rotating parabolic strip as the primary mirror. It is the most principal modification of the design of telescopes from the times of Galileo and Newton. In order to demonstrate the basic idea, the image of an artificial constellation observed by this kind of telescope was reconstructed using the techniques described in this article. As a working model of this new telescope, we have used an assembly of the primary mirror---a strip of acrylic glass parabolic mirror 40 cm long and 10 cm wid shaped as a parabolic cylinder of focal length 1 m---and an artificial constellation, a set of 5 apertures in a distance of 5 m illuminated from behind. In order to reconstruct the image, we made a series of snaps, each after a rotation of the constellation by 15 degrees. Using Matlab we reconstructed the image of the artificial constellation.

  10. The Dark Matter Telescope

    CERN Document Server

    Tyson, J A; Angel, J R P; Wittman, David

    2001-01-01

    Weak gravitational lensing enables direct reconstruction of dark matter maps over cosmologically significant volumes. This research is currently telescope-limited. The Dark Matter Telescope (DMT) is a proposed 8.4 m telescope with a 3 degree field of view, with an etendue of 260 $(m. degree)^2$, ten times greater than any other current or planned telescope. With its large etendue and dedicated observational mode, the DMT fills a nearly unexplored region of parameter space and enables projects that would take decades on current facilities. The DMT will be able to reach 10-sigma limiting magnitudes of 27-28 magnitude in the wavelength range .3 - 1 um over a 7 square degree field in 3 nights of dark time. Here we review its unique weak lensing cosmology capabilities and the design that enables those capabilities.

  11. Large Binocular Telescope Project

    Science.gov (United States)

    Hill, John M.

    1997-03-01

    The large binocular telescope (LBT) project have evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 by 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson, Arizona. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train -- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in the fall of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximum flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1996 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson), EIE and ADS Italia

  12. The Mechanical Design of a Kinematic Mount for the Mid Infrared Instrument Focal Plane Module on the James Webb Space Telescope

    Science.gov (United States)

    Thelen, Michael P.; Moore, Donald M.

    2009-01-01

    The detector assembly for the Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST) is mechanically supported in the Focal Plane Module (FPM) Assembly with an efficient hexapod design. The kinematic mount design allows for precision adjustment of the detector boresight to assembly alignment fiducials and maintains optical alignment requirements during flight conditions of launch and cryogenic operations below 7 Kelvin. This kinematic mounting technique is able to be implemented in a variety of optical-mechanical designs and is capable of micron level adjustment control and stability over wide dynamic and temperature ranges.

  13. Thermal Considerations for Reducing the Cooldown and Warmup Duration of the James Webb Space Telescope OTIS Cryo-Vacuum Test

    Science.gov (United States)

    Yang, Kan; Glazer, Stuart; Ousley, Gilbert; Burt, William

    2017-01-01

    The James Webb Space Telescope (JWST), set to launch in 2018, is NASAs next-generation flagship telescope. The Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) contain all of the optical surfaces and instruments to capture and analyze the telescopes infrared targets. The integrated OTE and ISIM are denoted as OTIS, and will be tested as a single unit in a critical thermal-vacuum test in mid-2017 at NASA Johnson Space Centers Chamber A facility. The payload will be evaluated for workmanship and functionality in a 20K simulated flight environment during this thermal-vacuum test. However, the sheer thermal mass of the OTIS payload as well as the restrictive gradient, rate, and contamination-related constraints placed on test components precludes rapid cooldown or warmup to its steady-state cryo-balance condition. Hardware safety considerations precludes injection of helium gas for free molecular heat transfer. Initial thermal analysis predicted that transient radiative cooldown from ambient temperatures, while meeting all limits and constraints, would take 33.3 days; warmup similarly would take 28.4 days. This paper discusses methods used to reduce transition times from the original predictions through modulation of boundary temperatures and environmental conditions. By optimizing helium shroud transition rates and heater usage, as well as rigorously re-examining previously imposed constraints, savings of up to three days on cooldown and up to a week on warmup can be achieved. The efficiencies gained through these methods allow the JWST thermal test team to create faster cooldown and warmup profiles, thus reducing the overall test duration and cost, while keeping all of the required test operations.

  14. The Home Stretch Almost! Science with the Hubble and James Webb Space Telescope V

    Science.gov (United States)

    Ochs, Bill

    2017-01-01

    JWST has Made tremendous progress in the last few years. JWST Is fully immersed in integration and test, but testing JWST is a formable challenge. JWST's size, complexity, and cryogenic characteristics require a multifaceted test plan to verify mission readiness. Each of these tests are opportunities to uncover issues which must be corrected to be able to move forward. All observatory control, science planning, and science data processing operational systems are on schedule.?

  15. Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)

    Science.gov (United States)

    Baldauf, Brian; Conti, Alberto

    2016-01-01

    The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The High Definition Space Telescope (HDST) envisioned for this mission would have an aperture >10 m, which is a larger payload than what can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. Space-based telescopes with large apertures will require major changes to system architectures.The Optical Telescope Assembly (OTA) for HDST is a primary mission cost driver. Enabling and affordable solutions for this next generation of large aperture space-based telescope are needed.This paper reports on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST), which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will also facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, and a testbed for new instruments. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Other key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal

  16. A Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)

    Science.gov (United States)

    Conti, Alberto; Arenberg, Jonathan; Baldauf, Brian

    2017-01-01

    The “Search for Life” (direct imaging of earth-like planets) will require extremely stable telescopes with apertures in the 10 m to 20 m range. Such apertures are larger than what can be delivered to space using current or planned future launch vehicles. Building and assembling large telescopes in space is therefore likely to require not only multiple launches but importantly assembly in spce. As a result, space-based telescopes with large apertures will require major changes to our conventional telescope design and architecture.Here we report on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST) to demonstrates the on-orbit robotic and/or astronaut assembly of an optical telescope in space. MODEST is a proposed International Space Station (ISS demonstration that will make use of the standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets.MODEST will provides significant risk reduction for the next generation of space observatories, and demonstrates the technology needed to assemble a six-mirror phased telescope. Key modest features include the use of an active primary optical surface with wavefront feedback control to allow on-orbit optimization, and the precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer (CFRP) that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal conductivity, and low thermal expansion. Mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making them an excellent candidate for a low cost, high performance Optical Telescope Assembly paving the way for enabling affordable solutions for the next generation of large aperture space-based telescope.MODEST post-assembly value includes space, ground, and

  17. The Multiple-Mirror Telescope

    Science.gov (United States)

    Carleton, Nathaniel P.; Hoffmann, William F.

    1978-01-01

    Describes the basic design and principle of operating an optical-infrared telescope, the MMT. This third largest telescope in the world represents a new stage in telescope design; it uses a cluster of six reflecting telescopes, and relies on an automatic sensing and control system. (GA)

  18. The Mid-Infrared Instrument for the James Webb Space Telescope, II: Design and Build

    Science.gov (United States)

    Wright, G. S.; Wright, David; Goodson, G. B.; Rieke, G. H.; Aitink-Kroes, Gabby; Amiaux, J.; Aricha-Yanguas, Ana; Azzollini, Ruymán; Banks, Kimberly; Barrado-Navascues, D.; Belenguer-Davila, T.; Bloemmart, J. A. D. L.; Bouchet, Patrice; Brandl, B. R.; Colina, L.; Detre, Örs; Diaz-Catala, Eva; Eccleston, Paul; Friedman, Scott D.; García-Marín, Macarena; Güdel, Manuel; Glasse, Alistair; Glauser, Adrian M.; Greene, T. P.; Groezinger, Uli; Grundy, Tim; Hastings, Peter; Henning, Th.; Hofferbert, Ralph; Hunter, Faye; Jessen, N. C.; Justtanont, K.; Karnik, Avinash R.; Khorrami, Mori A.; Krause, Oliver; Labiano, Alvaro; Lagage, P.-O.; Langer, Ulrich; Lemke, Dietrich; Lim, Tanya; Lorenzo-Alvarez, Jose; Mazy, Emmanuel; McGowan, Norman; Meixner, M. E.; Morris, Nigel; Morrison, Jane E.; Müller, Friedrich; rgaard-Nielson, H.-U. Nø; Olofsson, Göran; O’Sullivan, Brian; Pel, J.-W.; Penanen, Konstantin; Petach, M. B.; Pye, J. P.; Ray, T. P.; Renotte, Etienne; Renouf, Ian; Ressler, M. E.; Samara-Ratna, Piyal; Scheithauer, Silvia; Schneider, Analyn; Shaughnessy, Bryan; Stevenson, Tim; Sukhatme, Kalyani; Swinyard, Bruce; Sykes, Jon; Thatcher, John; Tikkanen, Tuomo; van Dishoeck, E. F.; Waelkens, C.; Walker, Helen; Wells, Martyn; Zhender, Alex

    2015-07-01

    The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28.5 microns. MIRI has, within a single 'package', four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R ~ 100) spectroscopy, and medium-resolving power (R ~ 1500 to 3500) integral field spectroscopy. An associated cooler system maintains MIRI at its operating temperature of < 6.7 K. This paper describes the driving principles behind the design of MIRI, the primary design parameters, and their realization in terms of the 'as-built' instrument. It also describes the test program that led to delivery of the tested and calibrated Flight Model to NASA in 2012, and the confirmation after delivery of the key interface requirements.

  19. The Mid-Infrared Instrument for the James Webb Space Telescope I: Introduction

    CERN Document Server

    Rieke, G H; Boeker, T; Bouwman, J; Colina, L; Glasse, Alistair; Gordon, K D; Greene, T P; Guedel, Manual; Henning, Th; Justtanont, K; Lagage, P -O; Meixner, M E; Norgaard-Nielsen, H -U; Ray, T P; Ressler, M E; van Dishoeck, E G; Waelkens, C

    2015-01-01

    MIRI (the Mid-Infrared Instrument for the James Webb Space Telescope (JWST)) operates from 5 to 28.5 microns and combines over this range: 1.) unprecedented sensitivity levels; 2.) sub-arcsec angular resolution; 3.) freedom from atmospheric interference; 4.) the inherent stability of observing in space; and 5.) a suite of versatile capabilities including imaging, low and medium resolution spectroscopy (with an integral field unit), and coronagraphy. We illustrate the potential uses of this unique combination of capabilities with various science examples: 1.) imaging exoplanets; 2.) transit and eclipse spectroscopy of exoplanets; 3.) probing the first stages of star and planet formation, including identifying bioactive molecules; 4.) determining star formation rates and mass growth as galaxies are assembled; and 5.) characterizing the youngest massive galaxies. This paper is the introduction to a series of ten covering all aspects of the instrument.

  20. Space Station technology testbed: 2010 deep space transport

    Science.gov (United States)

    Holt, Alan C.

    1993-12-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  1. The Algae Testbed Public-Private Partnership (ATP 3 ) framework; establishment of a national network of testbed sites to support sustainable algae production

    Energy Technology Data Exchange (ETDEWEB)

    McGowen, John; Knoshaug, Eric P.; Laurens, Lieve M. L.; Dempster, Thomas A.; Pienkos, Philip T.; Wolfrum, Ed; Harmon, Valerie L.

    2017-07-01

    Well-controlled experiments that directly compare seasonal algal productivities across geographically distinct locations have not been reported before. To fill this gap, six cultivation testbed facilities were chosen across the United States to evaluate different climatic zones with respect to algal biomass productivity potential. The geographical locations and climates were as follows: Southwest, desert; Western, coastal; Southeast, inland; Southeast, coastal; Pacific, tropical; and Midwest, greenhouse. The testbed facilities were equipped with identical systems for inoculum production and open pond operation and methods were standardized across all testbeds to ensure accurate measurement of physical and biological variables. The ability of the testbed sites to culture and analyze the same algal species, Nannochloropsis oceanica KA32, using identical pond operational and data collection procedures was evaluated during the same seasonal timeframe. This manuscript describes the results of a first-of-its-kind coordinated testbed validation field study while providing critical details on how geographical variations in temperature, light, and weather variables influenced algal productivity, nitrate consumption, and biomass composition. We found distinct differences in growth characteristics due to the geographic location and the resulting climatic and seasonal conditions across the sites, with the highest productivities observed at the desert Southwest and tropical Pacific regions, followed by the Western coastal region. The lowest productivities were observed at the Southeast inland and Midwest greenhouse locations. These differences in productivities among the sites correlated with the differences in pond water temperature and available solar radiation. In addition two sites, the tropical Pacific and Southeast inland experienced unusual events, spontaneous flocculation, and unusually cold and wet (rainfall) conditions respectively, that negatively affected outdoor

  2. Simulation to Flight Test for a UAV Controls Testbed

    Science.gov (United States)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  3. Experimental Testbed for the Study of Hydrodynamic Issues in Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Robey, H F; Kane, J O; Remington, B A; Drake, R P; Hurricane, O A; Louis, H; Wallace, R J; Knauer, J; Keiter, P; Arnett, D

    2000-10-09

    More than a decade after the explosion of SN 1987A, unresolved discrepancies still remain in attempts to numerically simulate the mixing processes initiated by the passage of a very strong shock through the layered structure of the progenitor star. Numerically computed velocities of the radioactive {sup 56}Ni and {sup 56}CO, produced by shock-induced explosive burning within the silicon layer for example, are still more than 50% too low as compared with the measured velocities. In order to resolve such discrepancies between observation and simulation, an experimental testbed has been designed on the Omega Laser for the study of hydrodynamic issues of importance to supernovae (SNe). In this paper, we present results from a series of scaled laboratory experiments designed to isolate and explore several issues in the hydrodynamics of SN explosions. The results of the experiments are compared with numerical simulations and are generally found to be in reasonable agreement.

  4. X-ray Pulsar Navigation Algorithms and Testbed for SEXTANT

    Science.gov (United States)

    Winternitz, Luke M. B.; Hasouneh, Monther A.; Mitchell, Jason W.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; Grendreau, Keith C.

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technologydemonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.

  5. SABA: A Testbed for a Real-Time MIMO System

    Directory of Open Access Journals (Sweden)

    Brühl Lars

    2006-01-01

    Full Text Available The growing demand for high data rates for wireless communication systems leads to the development of new technologies to increase the channel capacity thus increasing the data rate. MIMO (multiple-input multiple-output systems are best qualified for these applications. In this paper, we present a MIMO test environment for high data rate transmissions in frequency-selective environments. An overview of the testbed is given, including the analyzed algorithms, the digital signal processing with a new highly parallel processor to perform the algorithms in real time, as well as the analog front-ends. A brief overview of the influence of polarization on the channel capacity is given as well.

  6. CMS Test of the European DataGrid Testbed

    CERN Document Server

    Biasotto, Massimo; Capiluppi, Paolo; Charlot, Claude; Colling, David; MacEvoy, Barry C; Tallini, Hugh; Corvo, Marco; Fanzago, Federica; Verlato, Marco; Fanfani, Alessandra; Fantinel, Sergio; Gaillac, Anne-Marie; Grandi, Claudio; Augustin, I; Lefébure, Véronique; Stockinger, Heinz; Maroney, Owen; Nebrensky, H; Semeniouk, Igor; Blaising, J J; Burke, Samuel; Chierici, A; Cavalli, A; Ciaschini, V; Field, L; Groep, D; Hernández, F; Italiano, A; Kunszt, Peter Z; Lajili, N; Laure, Erwin; Leonardi, Emanuele; Loomis, C; Prelz, F; Reale, M; Schulz, M; Sciabà, Andrea; Sgaravatto, Massimo; Templon, J A; Tortone, G

    2003-01-01

    Starting in the middle of November 2002, the CMS experiment undertook an evaluation of the European, DataGrid Project (EDG) middleware using its event simulation programs. A joint CMS-EDG task force performed a iestress testle by submitting a large number of jobs to many distributed sites. The EDG testbed was complemented with additional CMS-dedicated resources. A total of ~ 10000 jobs consisting of two different computational types were submitted from four different locations in Europe over a period of about one month. Nine sites were active, providing integrated resources of more than 500 CPUs and about 5 TB of disk space (with the additional use of two Mass Storage Systems). Detailed descriptions of the adopted procedures, the problems encountered and the corresponding solutions are reported. Results and evaluations of the test, both from the CMS and the EDG perspectives, are described (Version 2).

  7. A Fully Reconfigurable Polarimetric Phased Array Antenna Testbed

    Directory of Open Access Journals (Sweden)

    Sudantha Perera

    2014-01-01

    Full Text Available The configurable phased array demonstrator (CPAD is a low-cost, reconfigurable, small-scale testbed for the dual-polarized array antenna and radar prototype. It is based on the concept that individual transmit and receive (TR modules and radiating elements can be configured in different ways to study the impact of various array manifolds on radiation pattern performance. For example, CPAD is configured as (a a 4 × 4 planar array, (b a planar array with mirror configuration, and (c a circular array to support the multifunctional phased array radar (MPAR system risk reduction studies. System descriptions are given in detail, and measurements are made and results are analyzed.

  8. ASE-BAN, a Wireless Body Area Network Testbed

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Karstoft, Henrik; Toftegaard, Thomas Skjødeberg

    2010-01-01

    Miniature Body Area Networks used in health care support greater mobility to patients and reduces actual hospitalization. This paper presents the preliminary implementation of a wireless body area network gateway. It is designed to implement the gateway functionality between sensors/actuators att......Miniature Body Area Networks used in health care support greater mobility to patients and reduces actual hospitalization. This paper presents the preliminary implementation of a wireless body area network gateway. It is designed to implement the gateway functionality between sensors....../actuators attached to the body and a host server application. The gateway uses the BlackFin BF533 processor from Analog Devices, and uses Bluetooth for wireless communication. Two types of sensors are attached to the network: an electro-cardio-gram sensor and an oximeter sensor. The testbed has been successfully...... tested for electrocardio- gram data collection, and using wireless communication in a battery powered configuration....

  9. The Benchmark Extensible Tractable Testbed Engineering Resource (BETTER)

    Energy Technology Data Exchange (ETDEWEB)

    Siranosian, Antranik Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schembri, Philip Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Nathan Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-02

    The Benchmark Extensible Tractable Testbed Engineering Resource (BETTER) is proposed as a family of modular test bodies that are intended to support engineering capability development by helping to identify weaknesses and needs. Weapon systems, subassemblies, and components are often complex and difficult to test and analyze, resulting in low confidence and high uncertainties in experimental and simulated results. The complexities make it difficult to distinguish between inherent uncertainties and errors due to insufficient capabilities. BETTER test bodies will first use simplified geometries and materials such that testing, data collection, modeling and simulation can be accomplished with high confidence and low uncertainty. Modifications and combinations of simple and well-characterized BETTER test bodies can then be used to increase complexity in order to reproduce relevant mechanics and identify weaknesses. BETTER can provide both immediate and long-term improvements in testing and simulation capabilities. This document presents the motivation, concept, benefits and examples for BETTER.

  10. Robotic and Survey Telescopes

    Science.gov (United States)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  11. The South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  12. The Travelling Telescope

    Science.gov (United States)

    Murabona Oduori, Susan

    2015-08-01

    The telescope has been around for more than 400 years, and through good use of it scientists have made many astonishing discoveries and begun to understand our place in the universe. Most people, however, have never looked through one. Yet it is a great tool for cool science and observation especially in a continent and country with beautifully dark skies. The Travelling Telescope project aims to invite people outside under the stars to learn about those curious lights in the sky.The Travelling Telescope aims to promote science learning to a wide range of Kenyan schools in various locations exchanging knowledge about the sky through direct observations of celestial bodies using state of the art telescopes. In addition to direct observing we also teach science using various hands-on activities and astronomy software, ideal for explaining concepts which are hard to understand, and for a better grasp of the sights visible through the telescope. We are dedicated to promoting science using astronomy especially in schools, targeting children from as young as 3 years to the youth, teachers, their parents and members of the public. Our presentation focuses on the OAD funded project in rural coastal Kenya.

  13. The South Pole Telescope

    CERN Document Server

    Ruhl, J E; Carlstrom, J E; Cho, H M; Crawford, T; Dobbs, M; Greer, C H; Halverson, W; Holzapfel, W L; Lanting, T M; Lee, A T; Leong, J; Leitch, E M; Lu, W; Lueker, M; Mehl, J; Meyer, S S; Mohr, J J; Padin, S; Plagge, T; Pryke, C L; Schwan, D; Sharp, M K; Runyan, M C; Spieler, H; Staniszewski, Z; Stark, A A

    2004-01-01

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency...

  14. The Impact of JWST Broadband Filter Choice on Photometric Redshift Estimation

    Science.gov (United States)

    Bisigello, L.; Caputi, K. I.; Colina, L.; Le Fèvre, O.; Nørgaard-Nielsen, H. U.; Pérez-González, P. G.; Pye, J.; van der Werf, P.; Ilbert, O.; Grogin, N.; Koekemoer, A.

    2016-12-01

    The determination of galaxy redshifts in the James Webb Space Telescope’s (JWST) blank-field surveys will mostly rely on photometric estimates, based on the data provided by JWST’s Near-Infrared Camera (NIRCam) at 0.6-5.0 μm and Mid Infrared Instrument (MIRI) at λ \\gt 5.0 μ {{m}}. In this work we analyze the impact of choosing different combinations of NIRCam and MIRI broadband filters (F070W to F770W), as well as having ancillary data at λ \\lt 0.6 μ {{m}}, on the derived photometric redshifts (z phot) of a total of 5921 real and simulated galaxies, with known input redshifts z = 0-10. We found that observations at λ \\lt 0.6 μ {{m}} are necessary to control the contamination of high-z samples by low-z interlopers. Adding MIRI (F560W and F770W) photometry to the NIRCam data mitigates the absence of ancillary observations at λ \\lt 0.6 μ {{m}} and improves the redshift estimation. At z = 7-10, accurate z phot can be obtained with the NIRCam broadbands alone when {{S}}/{{N}}≥slant 10, but the z phot quality significantly degrades at {{S}}/{{N}}≤slant 5. Adding MIRI photometry with 1 mag brighter depth than the NIRCam depth allows for a redshift recovery of 83%-99%, depending on spectral energy distribution type, and its effect is particularly noteworthy for galaxies with nebular emission. The vast majority of NIRCam galaxies with [F150W] = 29 AB mag at z = 7-10 will be detected with MIRI at [F560W, F770W] \\lt 28 mag if these sources are at least mildly evolved or have spectra with emission lines boosting the mid-infrared fluxes.

  15. A multispectral testbed for cardiovascular sensing using imaging photoplethysmography

    Science.gov (United States)

    Blackford, Ethan B.; Estepp, Justin R.

    2017-02-01

    Imaging photoplethysmography uses image sensors to measure changes in light absorption resulting from skin microvascular blood volume pulsations throughout the cardiac cycle. Imaging photoplethysmography has been demonstrated as an effective, non-contact means of assessing pulse rate, pulse rate variability, and respiration rate. Other potential uses include measuring spatial blood perfusion, oxygenation, and flow dynamics. Herein we demonstrate the development of a multispectral testbed for imaging photoplethysmography consisting of 12 monochromatic, 120fps imagers with 50nm, bandpass filters distributed from 400-750nm and contained in a 3D-printed, 4x3 grid housing mounted on a tripod positioned orthogonal to the subject. A co-located dual-CCD RGB/near-infrared imager records conventional RGB and NIR images expanding the spectral window recorded. After image registration, a multispectral image cube of the 13, partially overlapping bands is created. A spectrometer records high (spectral) resolution data from the participant's right cheek using a collimating lens attached to the measurement fiber. In addition, a spatial array of 5 RGB imagers placed at 0°, +/-20° and +/-40° positions with respect to the subject is employed for motion and spatial robustness. All imagers are synchronized by a hardware trigger source synchronized with a reference, physiological measurement device recording the subject's electrocardiography, bilateral fingertip and/or ear lobe photoplethysmography, bilateral galvanic skin response, and respiration signals. The development of the testbed and pilot data is presented. A full-scale evaluation of the spectral components of the imaging photoplethysmographic signal, optimization of iPPG SNR, and spatial perfusion and blood flow dynamics is currently underway.

  16. Demo III: Department of Defense testbed for unmanned ground mobility

    Science.gov (United States)

    Shoemaker, Chuck M.; Bornstein, Jonathan A.; Myers, Scott D.; Brendle, Bruce E., Jr.

    1999-07-01

    Robotics has been identified by numerous recent Department of Defense (DOD) studies as a key enabling technology for future military operational concepts. The Demo III Program is a multiyear effort encompassing technology development and demonstration on testbed platforms, together with modeling simulation and experimentation directed toward optimization of operational concepts to employ this technology. Primary program focus is the advancement of capabilities for autonomous mobility through unstructured environments, concentrating on both perception and intelligent control technology. The scout mission will provide the military operational context for demonstration of this technology, although a significant emphasis is being placed upon both hardware and software modularity to permit rapid extension to other military missions. The Experimental Unmanned Vehicle (XUV) is a small (approximately 1150 kg, V-22 transportable) technology testbed vehicle designed for experimentation with multiple military operational concepts. Currently under development, the XUV is scheduled for roll-out in Summer 1999, with an initial troop experimentation to be conducted in September 1999. Though small, and relatively lightweight, modeling has shown the chassis capable of automotive mobility comparable to the current Army lightweight high-mobility, multipurpose, wheeled vehicle (HMMWV). The XUV design couples multisensor perception with intelligent control to permit autonomous cross-country navigation at speeds of up to 32 kph during daylight and 16 kph during hours of darkness. A small, lightweight, highly capable user interface will permit intuitive control of the XUV by troops from current-generation tactical vehicles. When it concludes in 2002, Demo III will provide the military with both the technology and the initial experience required to develop and field the first generation of semi-autonomous tactical ground vehicles for combat, combat support, and logistics applications.

  17. Study on distributed energy options in Skaftkaerr testbed. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pesola, A.; Hagstroem, M.; Vanhanen, J. (Gaia Consulting Oy, Helsinki (Finland))

    2011-07-01

    In the distributed energy production model electricity or heat is produced near the end-user in relatively small units - using very often local renewable energy sources. These are e.g. solar thermal or photovoltaic applications, wind power, fuel cells or other small-scale CHP technologies using e.g. bio-based fuels. Locally produced intermittent renewable electricity can be optimized by storing produced electricity and using it when electricity price is high. Electricity storage is an important part of smart grid development from the perspective of supply-demand flexibility. Heat can be stored as well using e.g. water tank placed either under or above the ground. Distributed energy production technologies are already utilized in domestic residential areas and the trend is emerging. Designing and planning needs to be emphasized in order to build and maintain technically and economically sustainable energy system. The objective of this study is to present the possibilities of distributed energy production and storage technologies. The study highlights available technologies and services of distributed energy production and helps to build up a testbed solution that could lead to demonstration-scale application in near future. This testbed is a part of developing process of Skaftkaerr area where energy efficiency and environmental issues are emphasized. In this report, feasible production and storage technologies are presented in Chapter 2. Chapter 3 introduces economical characteristics of studied technologies. Chapter 4 points out suitable technologies for Skaftkaerr area and presents profitability analysis of these technologies via two cases. Domestic actors in technology value chains are also presented in Chapter 4. Chapter 5 summarizes the study and its findings

  18. LSST telescope modeling overview

    Science.gov (United States)

    Sebag, J.; Andrew, J.; Angeli, G.; Araujo, C.; Barr, J.; Callahan, S.; Cho, M.; Claver, C.; Daruich, F.; Gressler, W.; Hileman, E.; Liang, M.; Muller, G.; Neill, D.; Schoening, W.; Warner, M.; Wiecha, O.; Xin, B.; Orden Martinez, Alfredo; Perezagua Aguado, Manuel; García Marchena, Luis; Ruiz de Argandoña, Ismael

    2016-08-01

    During this early stage of construction of the Large Synoptic Survey Telescope (LSST), modeling has become a crucial system engineering process to ensure that the final detailed design of all the sub-systems that compose the telescope meet requirements and interfaces. Modeling includes multiple tools and types of analyses that are performed to address specific technical issues. Three-dimensional (3D) Computeraided Design (CAD) modeling has become central for controlling interfaces between subsystems and identifying potential interferences. The LSST Telescope dynamic requirements are challenging because of the nature of the LSST survey which requires a high cadence of rapid slews and short settling times. The combination of finite element methods (FEM), coupled with control system dynamic analysis, provides a method to validate these specifications. An overview of these modeling activities is reported in this paper including specific cases that illustrate its impact.

  19. Telescopes and Techniques

    CERN Document Server

    Kitchin, C R

    2013-01-01

    Telescopes and Techniques has proved itself in its first two editions, having become probably one of the most widely used astronomy texts, both for amateur astronomers and astronomy and astrophysics undergraduates. Both earlier editions of the book were widely used for introductory practical astronomy courses in many universities. In this Third Edition the author guides the reader through the mathematics, physics and practical techniques needed to use today's telescopes (from the smaller models to the larger instruments installed in many colleges) and how to find objects in the sky. Most of the physics and engineering involved is described fully and requires little prior knowledge or experience. Both visual and electronic imaging techniques are covered, together with an introduction to how data (measurements) should be processed and analyzed. A simple introduction to radio telescopes is also included. Brief coverage of the more advanced topics of photometry and spectroscopy are included, but mainly to enable ...

  20. Integrated Modeling of Telescopes

    CERN Document Server

    Andersen, Torben

    2011-01-01

    With increasingly complex and costly opto-mechanical systems, there is a growing need for reliable computer modeling and simulation. The field of integrated modeling, combining optics, mechanics, control engineering, and other disciplines, is the subject of this book. Although the book primarily focuses on ground-based optical telescopes, the techniques introduced are applicable also to other wavelengths and to other opto-mechanical applications on the ground or in space. Basic tools of integrated modeling are introduced together with concepts of ground-based telescopes. Modeling of optical systems, structures, wavefront control systems with emphasis on segmented mirror control, and active and adaptive optics are described together with a variety of noise sources; many examples are included in this book. Integrated Modeling of Telescopes is a text for physicists and engineers working in the field of opto-mechanical design and wavefront control, but it will also be valuable as a textbook for PhD students.

  1. The Discovery Channel Telescope

    Science.gov (United States)

    Millis, R. L.; Dunham, E. W.; Sebring, T. A.; Smith, B. W.; de Kock, M.; Wiecha, O.

    2004-11-01

    The Discovery Channel Telescope (DCT) is a 4.2-m telescope to be built at a new site near Happy Jack, Arizona. The DCT features a large prime focus mosaic CCD camera with a 2-degree-diameter field of view especially designed for surveys of KBOs, Centaurs, NEAs and other moving or time-variable targets. The telescope can be switched quickly to a Ritchey-Chretien configuration for optical/IR spectroscopy or near-IR imaging. This flexibility allows timely follow-up physical studies of high priority objects discovered in survey mode. The ULE (ultra-low-expansion) meniscus primary and secondary mirror blanks for the telescope are currently in fabrication by Corning Glass. Goodrich Aerospace, Vertex RSI, M3 Engineering and Technology Corp., and e2v Technologies have recently completed in-depth conceptual design studies of the optics, mount, enclosure, and mosaic focal plane, respectively. The results of these studies were subjected to a formal design review in July, 2004. Site testing at the 7760-ft altitude Happy Jack site began in 2001. Differential image motion observations from 117 nights since January 1, 2003 gave median seeing of 0.84 arcsec FWHM, and the average of the first quartile was 0.62 arcsec. The National Environmental Policy Act (NEPA) process for securing long-term access to this site on the Coconino National Forest is nearing completion and ground breaking is expected in the spring of 2005. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately undertaken with the DCT. An additional partner can be accommodated in the project. Interested parties should contact the lead author.

  2. Pointing the SOFIA Telescope

    CERN Document Server

    Gross, Michael A K; Moore, Elizabeth M

    2010-01-01

    SOFIA is an airborne, gyroscopically stabilized 2.5m infrared telescope, mounted to a spherical bearing. Unlike its predecessors, SOFIA will work in absolute coordinates, despite its continually changing position and attitude. In order to manage this, SOFIA must relate equatorial and telescope coordinates using a combination of avionics data and star identification, manage field rotation and track sky images. We describe the algorithms and systems required to acquire and maintain the equatorial reference frame, relate it to tracking imagers and the science instrument, set up the oscillating secondary mirror, and aggregate pointings into relocatable nods and dithers.

  3. Reflecting telescope optics

    CERN Document Server

    Wilson, Raymond N

    2004-01-01

    R.N. Wilson's two-volume treatise on reflecting telescope optics has become a classic in its own right. It is intended to give a complete treatment of the subject, addressing professionals in research and industry as well as students of astronomy and amateur astronomers. This first volume, Basic Design Theory and its Historical Development, is devoted to the theory of reflecting telescope optics and systematically recounts the historical progress. The author's approach is morphological, with strong emphasis on the historical development. The book is richly illustrated including spot-diagrams a

  4. New Vacuum Solar Telescope

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With its pure aperture up to 985mm, the New Vacuum Solar Telescope of China (NVST) has become the world's biggest vacuum solar telescope. The main science task of NVST is the high-resolution observation of photosphere and chromosphere including their fine structure of magnetic field on the sun. The NVST was equipped with many new technologies and powerful instruments, such as an adaptive optical system, a polarization analyzer, two vertical spectrographs, a high-resolution image system and a very narrow Ha filter (0.125A).

  5. Next Generation Bibliometrics and the Evolution of the ESO Telescope Bibliography

    Science.gov (United States)

    Erdmann, C.; Grothkopf, U.

    2010-10-01

    Bibliometric studies typically focus on citation and publication analysis. Due to recent advances in web technology along with greater access to web content, bibliometric research can include statistics and measures that were once difficult to obtain. The European Southern Observatory's Telescope Bibliography (ESO telbib), a content management system for refereed articles containing ESO data, provides an excellent test-bed for exploring next generation bibliometrics. Through web services provided by the NASA Astrophysics Data System (ADS) Abstract Service among others, previously unavailable information can be imported into telbib where it can be analyzed in further detail. Though some telbib features are still in their infancy, some interesting trends can already be derived.

  6. Robo-AO: The First Autonomous Laser Guide Star Adaptive Optics System for Small Telescopes

    Science.gov (United States)

    Riddle, Reed L.; Baranec, C.; Ramaprakash, A. N.; Law, N.; Tendulkar, S.; Kulkarni, S.; Bui, K.; Burse, M.; Chordia, P.; Das, H.; Dekany, R.; Kasliwal, M.; Ofek, E.; Zolkower, J.

    2011-01-01

    Robo-AO will be the first fully autonomous laser guide star adaptive optics and science system. Specifically designed to take advantage of small (1 to 3 meter) telescopes, Robo-AO will deliver high angular resolution science in the visible and near infrared for up to hundreds of targets per night. This will enable the exploration of science programs not practical for larger aperture adaptive optics systems. This presentation discusses the current status of the Robo-AO project, including the laboratory testbed, laser guide star facility and plans for a demonstration of the fully autonomous system next year.

  7. Response of a 2-story test-bed structure for the seismic evaluation of nonstructural systems

    Science.gov (United States)

    Soroushian, Siavash; Maragakis, E. "Manos"; Zaghi, Arash E.; Rahmanishamsi, Esmaeel; Itani, Ahmad M.; Pekcan, Gokhan

    2016-03-01

    A full-scale, two-story, two-by-one bay, steel braced-frame was subjected to a number of unidirectional ground motions using three shake tables at the UNR-NEES site. The test-bed frame was designed to study the seismic performance of nonstructural systems including steel-framed gypsum partition walls, suspended ceilings and fire sprinkler systems. The frame can be configured to perform as an elastic or inelastic system to generate large floor accelerations or large inter story drift, respectively. In this study, the dynamic performance of the linear and nonlinear test-beds was comprehensively studied. The seismic performance of nonstructural systems installed in the linear and nonlinear test-beds were assessed during extreme excitations. In addition, the dynamic interactions of the test-bed and installed nonstructural systems are investigated.

  8. Optical Network Testbed-Key Enabler in Developing Current and Future Network Solutions

    Science.gov (United States)

    Vukovic, Alex; Wu, Jing; Savoie, Michel; Hua, Heng; Campbell, Scott; Zhang, Hanxi

    2005-10-01

    The all-optical network (AON) demonstrator is a trial system-level testbed for the validation and verification of key network building blocks, scalable architectures, as well as control and management solutions for next-generation wavelength division multiplexing (WDM) networks. Developed at the Communications Research Centre (CRC) in Ottawa, ON, Canada, the AON testbed has already validated certain system-level concepts at the physical and upper layers. The paper describes the crucial role of the AON testbed in research, development, and "proof of concept" for both emerging optical technologies at the physical layer (performance characterization) and customer-managed networks at the upper layer (network management). Moreover, it is expected that the AON testbed will continue to be a valuable playground for future developments of emerging technologies, solutions, and applications.

  9. Decision Support Tool and Simulation Testbed for Airborne Spacing and Merging in Super Dense Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation in this effort is the development of a decision support tool and simulation testbed for Airborne Spacing and Merging (ASM). We focus on concepts...

  10. Integrated Testbed for Environmental Analysis of NextGen Concepts using ACES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of an analysis testbed to integrate simulation tools, such as ACES, with aviation environmental effects models, such as the Aviation...

  11. A Simulation Testbed for Dynamic Air Corridors within the Next Generation Air Transportation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation in this effort is the development of a simulation testbed for identifying dynamic air corridors that can increase aircraft throughput in and...

  12. A Testbed For Validating the LHC Controls System Core Before Deployment

    CERN Document Server

    Nguyen Xuan, J

    2011-01-01

    Since the start-up of the LHC, it is crucial to carefully test core controls components before deploying them operationally. The Testbed of the CERN accelerator controls group was developed for this purpose. It contains different hardware (PPC, i386) running various operating systems (Linux and LynxOS) and core software components running on front-ends, communication middleware and client libraries. The Testbed first executes integration tests to verify that the components delivered by individual teams interoperate, and then system tests, which verify high-level, end-user functionality. It also verifies that different versions of components are compatible, which is vital, because not all parts of the operational LHC control system can be upgraded simultaneously. In addition, the Testbed can be used for performance and stress tests. Internally, the Testbed is driven by Atlassian Bamboo, a Continuous Integration server, which builds and deploys automatically new software versions into the Test...

  13. Independent Technology Assessment within the Federation of Earth Science Information Partners (ESIP) Testbed

    Science.gov (United States)

    Burgess, A. B.; Robinson, E.; Graybeal, J.

    2015-12-01

    The Federation of Earth Science Information Partners (ESIP) is a community of science, data and information technology practitioners. ESIP's mission is to support the networking and data dissemination needs of our members and the global community. We do this by linking the functional sectors of education, observation, research and application with the ultimate use of Earth science. Amongst the services provided to ESIP members is the Testbed; a collaborative forum for the development of technology standards, services, protocols and best practices. ESIP has partnered with the NASA Advanced Information Systems Technology (AIST) program to integrate independent assessment of Testing Readiness Level (TRL) into the ESIP Testbed. In this presentation we will 1) demonstrate TRL assessment in the ESIP Testbed using three AIST projects, 2) discuss challenges and insights into creating an independent validation/verification framework and 3) outline the versatility of the ESIP Testbed as applied to other technology projects.

  14. Integrated Testbed for Environmental Analysis of NextGen Concepts using ACES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation in this effort is the development of an industrial-grade analysis testbed to integrate simulation tools, such as ACES, with aviation environmental...

  15. Wide-Field InfraRed Survey Telescope (WFIRST) Final Report

    CERN Document Server

    Green, J; Baltay, C; Bean, R; Bennett, D; Brown, R; Conselice, C; Donahue, M; Fan, X; Gaudi, B S; Hirata, C; Kalirai, J; Lauer, T; Nichol, B; Padmanabhan, N; Perlmutter, S; Rauscher, B; Rhodes, J; Roellig, T; Stern, D; Sumi, T; Tanner, A; Wang, Y; Weinberg, D; Wright, E; Gehrels, N; Sambruna, R; Traub, W; Anderson, J; Cook, K; Garnavich, P; Hillenbrand, L; Ivezic, Z; Kerins, E; Lunine, J; McDonald, P; Penny, M; Phillips, M; Rieke, G; Riess, A; van der Marel, R; Barry, R K; Cheng, E; Content, D; Cutri, R; Goullioud, R; Grady, K; Helou, G; Jackson, C; Kruk, J; Melton, M; Peddie, C; Rioux, N; Seiffert, M

    2012-01-01

    In December 2010, NASA created a Science Definition Team (SDT) for WFIRST, the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010 Decadal Survey as the highest priority for a large space mission. The SDT was chartered to work with the WFIRST Project Office at GSFC and the Program Office at JPL to produce a Design Reference Mission (DRM) for WFIRST. Part of the original charge was to produce an interim design reference mission by mid-2011. That document was delivered to NASA and widely circulated within the astronomical community. In late 2011 the Astrophysics Division augmented its original charge, asking for two design reference missions. The first of these, DRM1, was to be a finalized version of the interim DRM, reducing overall mission costs where possible. The second of these, DRM2, was to identify and eliminate capabilities that overlapped with those of NASA's James Webb Space Telescope (henceforth JWST), ESA's Euclid mission, and the NSF's ground-based Large Synoptic Survey Telescope (...

  16. Why are freeform telescopes less alignment sensitive than a traditional unobscured TMA?

    Science.gov (United States)

    Thompson, Kevin P.; Schiesser, Eric; Rolland, Jannick P.

    2015-10-01

    As freeform optical systems emerge as interesting and innovative solutions for imaging in 3D packages there is an assumption they are going to be more sensitive particularly at assembly. While it is true that the clocking of the component becomes a relatively weak new tolerance, for the most effective new class of freeform systems the alignment sensitivity is actually lower in most cases than for a comparable traditional unobscured three mirror anastigmatic (TMA) telescope. Traditional unobscured TMA telescopes, whose designs emerged in the mid-70s and which begin to appear as hardware in the literature in the early 90s, are based on using increasingly offset apertures with otherwise coaxial rotationally symmetric mirrors. The mirrors (typically 3 to correct spherical, coma, and astigmatism) have evolved to contain more high order terms as the designs are pushed to more compact and wider field packages - the NIRCAM camera for the JWST is an excellent example of this [1]. As the higher order terms are added, the mirrors become increasingly sensitive to decenters and tilts. An emerging class of freeform telescopes that provide wider field of view and/or faster f/numbers than the traditional TMA are based on a strategy where the surface shape remains a low order Zernike-type surface even in compact, unobscured packages. This optical design strategy results in an optical form that is not only higher performance but simultaneously less sensitive to alignment.

  17. THE LARGE MILLIMETER TELESCOPE

    Directory of Open Access Journals (Sweden)

    D. H. Hughes

    2009-01-01

    Full Text Available This paper, presented on behalf of the Large Millimeter Telescope (LMT project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between M xico and the USA, led by the Instituto Nacional de Astrof sica, ptica y Electr nica (INAOE and the University of Massachusetts at Amherst, to construct, commission and operate a 50 m diameter millimeterwave radio telescope. Construction activities are nearly complete at the LMT site, at an altitude of 4600 m on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32 m diameter of the surface now complete and ready to be used to obtain rst-light at millimeter wavelengths in 2008. Installation of the remainder of the re ector will continue during the next year and be completed in 2009 for nal commissioning of the antenna. The full LMT antenna, out ted with its initial complement of scienti c instruments, will be a world-leading scienti c research facility for millimeter-wave astronomy.

  18. A Simple "Tubeless" Telescope

    Science.gov (United States)

    Straulino, S.; Bonechi, L.

    2010-01-01

    Two lenses make it possible to create a simple telescope with quite large magnification. The set-up is very simple and can be reproduced in schools, provided the laboratory has a range of lenses with different focal lengths. In this article, the authors adopt the Keplerian configuration, which is composed of two converging lenses. This instrument,…

  19. Exploring Galileo's Telescope

    Science.gov (United States)

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  20. High-contrast imager for Complex Aperture Telescopes (HiCAT): APLC/shaped-pupil hybrid coronagraph designs

    Science.gov (United States)

    N'Diaye, Mamadou; Choquet, Elodie; Carlotti, Alexis; Pueyo, Laurent; Egron, Sylvain; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D.; Wallace, J. Kent; Long, Chris; Lajoie, Rachel; Lajoie, Charles-Philippe; Eldorado Riggs, A. J.; Zimmerman, Neil T.; Groff, Tyler Dean; Kasdin, N. Jeremy; Vanderbei, Robert J.; Mawet, Dimitri; Macintosh, Bruce; Shaklan, Stuart; Soummer, Remi

    2015-01-01

    HiCAT is a high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. Primary mirror segmentation, central obstruction and spiders in the pupil of an on-axis telescope introduces additional diffraction features in the point spread function, which make high-contrast imaging very challenging. The testbed alignment was completed in the summer of 2014, exceeding specifications with a total wavefront error of 12nm rms with a 18mm pupil. Two deformable mirrors are to be installed for wavefront control in the fall of 2014. In this communication, we report on the first testbed results using a classical Lyot coronagraph. We have developed novel coronagraph designs combining an Apodized Pupil Lyot Coronagraph (APLC) with shaped-pupil type optimizations. We present the results of these new APLC-type solutions with two-dimensional shaped-pupil apodizers for the HiCAT geometry. These solutions render the system quasi-insensitive to jitter and low-order aberrations, while improving the performance in terms of inner working angle, bandpass and contrast over a classical APLC.

  1. Large-scale structural analysis: The structural analyst, the CSM Testbed and the NAS System

    Science.gov (United States)

    Knight, Norman F., Jr.; Mccleary, Susan L.; Macy, Steven C.; Aminpour, Mohammad A.

    1989-01-01

    The Computational Structural Mechanics (CSM) activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM testbed methods development environment is presented and some numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  2. A high-resolution, four-band SAR testbed with real-time image formation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B.; Sander, G.; Thompson, M.; Burns, B.; Fellerhoff, R.; Dubbert, D.

    1996-03-01

    This paper describes the Twin-Otter SAR Testbed developed at Sandia National Laboratories. This SAR is a flexible, adaptable testbed capable of operation on four frequency bands: Ka, Ku, X, and VHF/UHF bands. The SAR features real-time image formation at fine resolution in spotlight and stripmap modes. High-quality images are formed in real time using the overlapped subaperture (OSA) image-formation and phase gradient autofocus (PGA) algorithms.

  3. The spectral calibration of JWST/NIRSpec: results from the recent cryo-vacuum campaign (ISIM-CV3)

    Science.gov (United States)

    Giardino, Giovanna; Luetzgendorf, Nora; Ferruit, Pierre; Dorner, Bernhard; Alves de Oliveira, Catarina; Birkmann, Stephan M.; Boeker, Torsten; Rawle, Tim; Sirianni, Marco

    2016-07-01

    The NIRSpec instrument of JWST can be operated in multi-object (MOS), long-slit, and integral field mode with spectral resolutions from 100 to 2700. Its MOS mode uses about a quarter of a million individually addressable mini-slits for object selection, covering a field of view of 9 square-arcminute. We have developed a procedure to optimize a parametric model of the instrument that provides the basis for the extraction of wavelength calibrated spectra from NIRSpec data, from any of the apertures and for all the modes. Here, we summarize the steps undertaken to optimize the instrument model parameters using the data acquired during the latest cryo-vacuum campaign of the JWST Integrated Science Instrument Module, recently carried out at NASA Goddard Space Flight Center. The calibrated parametric model is able to reproduce the spatial and spectral position of the input spectra with an intrinsic accuracy (1-sigma, RMS) ~ 1/10 of a pixel in spatial and spectral direction for all the modes. The overall wavelength calibration accuracy (RMS) of the model as measured on the extracted spectra is better than 1/20 of a resolution element for all of the grating-based spectral modes and at the level of 1/14 of a resolution element for the prism. These results are well within the allocations for the model in the overall spatial and spectral calibration budget of NIRSpec.

  4. A new HST/Herschel deep field at the North Ecliptic Pole: preparing the way for JWST, SPICA and Euclid

    CERN Document Server

    Serjeant, Stephen; Burgarella, Denis; Clements, Dave; De Zotti, Gianfranco; Goto, Tomo; Hatsukade, Bunyo; Hopwood, Rosalind; Hwang, Narae; Inami, Hanae; Jeong, Woong-Seob; Kim, Seong Jin; Krumpe, Mirko; Lee, Myung Gyoon; Malkan, Matt; Matsuhara, Hideo; Miyaji, Takamitsu; Oyabu, Shinki; Pearson, Chris; Takeuchi, Tsutomu; Vaccari, Mattia; Valtchanov, Ivan; van der Werf, Paul; Wada, Takehiko; White, Glenn

    2012-01-01

    We propose a co-ordinated multi-observatory survey at the North Ecliptic Pole. This field is the natural extragalactic deep field location for most space observatories (e.g. containing the deepest Planck, WISE and eROSITA data), is in the continuous viewing zones for e.g. Herschel, HST, JWST, and is a natural high-visibility field for the L2 halo orbit of SPICA with deep and wide-field legacy surveys already planned. The field is also a likely deep survey location for the forthcoming Euclid mission. It is already a multi-wavelength legacy field in its own right (e.g. AKARI, LOFAR, SCUBA-2): the outstanding and unparalleled continuous mid-IR photometric coverage in this field and nowhere else enables a wide range of galaxy evolution diagnostics unachievable in any other survey field, by spanning the wavelengths of redshifted PAH and silicate features and the peak energy output of AGN hot dust. We argue from the science needs of Euclid and JWST, and from the comparative multiwavelength depths, that the logical ...

  5. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds

    Science.gov (United States)

    Frank, Jared A.; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  6. NRAO Green Bank Telescope (GBT)

    Data.gov (United States)

    Federal Laboratory Consortium — The largest fully steerable telescope in the world - the Robert C. Byrd Green Bank Telescope, began observations in Green Bank, West Virginia in 2000and is a wonder...

  7. Optical Space Telescope Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Space Telescope Assembly (OSTA) task is to demonstrate the technology readiness of assembling large space telescopes on orbit in 2015. This task is an...

  8. Modular Orbital Demonstration of an Evolvable Space Telescope

    Science.gov (United States)

    Baldauf, Brian

    2016-06-01

    The key driver for a telescope's sensitivityis directly related to the size of t he mirror area that collects light from the objects being observed.The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The HDST envisioned for this mission would have an aperture >10 m, which is a larger payload than can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. The Optical Telescope Assembly for HDST is a primary mission cost driver. Enabling affordable solutions for this next generation of large aperture space-based telescope are needed.This reports on the concept for the MODEST, which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, a testbed for new instruments, and a tool for student's exploration of space. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Ceramic Matrix Composite that have excellent mechanical and thermal properties, e.g. high stiffness, high thermal conductivity, and low thermal expansion. It has been demonstrated

  9. A development roadmap for critical technologies needed for TALC: a deployable 20m annular space telescope

    Science.gov (United States)

    Sauvage, Marc; Amiaux, Jérome; Austin, James; Bello, Mara; Bianucci, Giovanni; Chesné, Simon; Citterio, Oberto; Collette, Christophe; Correia, Sébastien; Durand, Gilles A.; Molinari, Sergio; Pareschi, Giovanni; Penfornis, Yann; Sironi, Giorgia; Valsecchi, Giuseppe; Verpoort, Sven; Wittrock, Ulrich

    2016-07-01

    Astronomy is driven by the quest for higher sensitivity and improved angular resolution in order to detect fainter or smaller objects. The far-infrared to submillimeter domain is a unique probe of the cold and obscured Universe, harboring for instance the precious signatures of key elements such as water. Space observations are mandatory given the blocking effect of our atmosphere. However the methods we have relied on so far to develop increasingly larger telescopes are now reaching a hard limit, with the JWST illustrating this in more than one way (e.g. it will be launched by one of the most powerful rocket, it requires the largest existing facility on Earth to be qualified). With the Thinned Aperture Light Collector (TALC) project, a concept of a deployable 20 m annular telescope, we propose to break out of this deadlock by developing novel technologies for space telescopes, which are disruptive in three aspects: • An innovative deployable mirror whose topology, based on stacking rather than folding, leads to an optimum ratio of collecting area over volume, and creates a telescope with an eight times larger collecting area and three times higher angular resolution compared to JWST from the same pre-deployed volume; • An ultra-light weight segmented primary mirror, based on electrodeposited Nickel, Composite and Honeycomb stacks, built with a replica process to control costs and mitigate the industrial risks; • An active optics control layer based on piezo-electric layers incorporated into the mirror rear shell allowing control of the shape by internal stress rather than by reaction on a structure. We present in this paper the roadmap we have built to bring these three disruptive technologies to technology readiness level 3. We will achieve this goal through design and realization of representative elements: segments of mirrors for optical quality verification, active optics implemented on representative mirror stacks to characterize the shape correction

  10. Configurable slit-mask unit of the Multi-Object Spectrometer for Infra-Red Exploration for the Keck telescope: integration and tests

    Science.gov (United States)

    Spanoudakis, Peter; Giriens, Laurent; Henein, Simon; Lisowski, Leszek; O'Hare, Aidan; Onillon, Emmanuel; Schwab, Philippe; Theurillat, Patrick

    2008-07-01

    A Configurable Slit Unit (CSU) has been developed for the Multi-Object Spectrometer for Infra-Red Exploration (MOSFIRE) instrument to be installed on the Keck 1 Telescope on Mauna Kea, Hawaii. MOSFIRE will provide NIR multi-object spectroscopy over a field of view of 6.1' x 6.1'. The reconfigurable mask allows the formation of 46 optical slits in a 267 x 267 mm2 field of view. The mechanism is an evolution of a former prototype designed by CSEM and qualified for the European Space Agency (ESA) as a candidate for the slit mask on NIRSpec for the James Webb Space Telescope (JWST). The CSU is designed to simultaneously displace masking bars across the field-of-view (FOV) to mask unwanted light. A set of 46 bar pairs are used to form the MOSFIRE focal plane mask. The sides of the bars are convoluted so that light is prevented from passing between adjacent bars. The slit length is fixed (5.1 mm) but the width is variable down to 200 μm with a slit positioning accuracy of +/- 18 μm. A two-bar prototype mechanism was designed, manufactured and cryogenically tested to validate the modifications from the JWST prototype. The working principle of the mechanism is based on an improved "inch-worm" stepping motion of 92 masking bars forming the optical mask. Original voice coil actuators are used to drive the various clutches. The design makes significant use of flexure structures.

  11. Progress in Space Solar Telescope

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper we will summarize the progress in the development of the Chinese Space Solar Telescope (SST) during the past few years. The main scientific objective of SST is to observe the fundamental structure of solar magnetic field with its 1-m optical telescope. The success of 1-m Swedish Solar Telescope and Hinode underscores the importance of this 1-m space telescope. In addition, some key technical problems have been solved.

  12. Uzaybimer Radio Telescope Control System

    Science.gov (United States)

    Balbay, R.; Öz, G. K.; Arslan, Ö.; Özeren, F. F.; Küçük, İ.

    2016-12-01

    A 13 meters former NATO radar is being converted into a radio telescope. The radio telescope is controlled by a system which has been developed at UZAYBİMER. The Telescope Control System(TCS) has been designed using modern industrial systems. TCS has been developed in LabView platform in which works Windows embedded OS. The position feedback used on radio telescopes is an industrial EtherCAT standard. ASCOM library is used for astronomical calculations.

  13. A Concept for Seeing-Limited Near-IR Spectroscopy on the Giant Magellan Telescope

    Science.gov (United States)

    Simcoe, Robert A.; Furesz, Gabor; Egan, Mark; Malonis, Andrew; Hellickson, Tim

    2016-09-01

    We present a simple seeing-limited IR spectrometer design for the Giant Magellan Telescope, with continuous R = 6000 coverage from 0.87-2.50 microns for a 0:7" slit. The instrument's design is based on an asymmetric white pupil echelle layout, with dichroics splitting the optical train into yJ, H, and K channels after the pupil transfer mirror. A separate low-dispersion mode offers single-object R ~ 850 spectra which also cover the full NIR bandpass in each exposure. Catalog gratings and H2RG detectors are used to minimize cost, and only two cryogenic rotary mechanisms are employed, reducing mechanical complexity. The instrument dewar occupies an envelope of 1:8×1:5×1:2 meters, satisfying mass and volume requirements for GMT with comfortable margin. We estimate the system throughput at ~35% including losses from the atmosphere, telescope, and instrument (i.e. all coatings, gratings, and sensors). This optical efficiency is comparable to the FIRE spectrograph on Magellan, and we have specified and designed fast cameras so the GMT instrument will have an almost identical pixel scale as FIRE. On the 6.5 meter Magellan telescopes, FIRE is read-noise limited in the y and J bands, similar to other existing near-IR spectrometers and also to JWST/NIRSPEC. GMT's twelve-fold increase in collecting area will therefore offer gains in signal-to-noise per exposure that exceed those of moderate resolution optical instruments, which are already sky-noise limited on today's telescopes. Such an instrument would allow GMT to pursue key early science programs on the Epoch of Reionization, galaxy formation, transient astronomy, and obscured star formation environments prior to commissioning of its adaptive optics system. This design study demonstrates the feasibility of developing relatively affordable spectrometers at the ELT scale, in response to the pressures of joint funding for these telescopes and their associated instrument suites.

  14. Comparing NEO Search Telescopes

    CERN Document Server

    Myhrvold, Nathan

    2015-01-01

    Multiple terrestrial and space-based telescopes have been proposed for detecting and tracking near-Earth objects (NEOs). Detailed simulations of the search performance of these systems have used complex computer codes that are not widely available, which hinders accurate cross- comparison of the proposals and obscures whether they have consistent assumptions. Moreover, some proposed instruments would survey infrared (IR) bands, whereas others would operate in the visible band, and differences among asteroid thermal and visible light models used in the simulations further complicate like-to-like comparisons. I use simple physical principles to estimate basic performance metrics for the ground-based Large Synoptic Survey Telescope and three space-based instruments - Sentinel, NEOCam, and a Cubesat constellation. The performance is measured against two different NEO distributions, the Bottke et al. distribution of general NEOs, and the Veres et al. distribution of earth impacting NEO. The results of the comparis...

  15. The ANTARES Neutrino Telescope

    CERN Document Server

    Perrina, Chiara

    2015-01-01

    At about 40 km off the coast of Toulon (France), anchored at 2475 m deep in the Mediterranean Sea, there is ANTARES: the first undersea neutrino telescope and the only one currently operating. The detector consists of 885 photomultiplier tubes arranged into 12 strings of 450-metres high, with the aim to detect the Cherenkov light induced by the charged superluminal interaction products of neutrinos. Its main scientific target is the search for high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the cosmic neutrino diffuse flux, focusing in particular on events coming from below the horizon (up-going events) in order to significantly reduce the atmospheric muons background. Thanks to the development of a strategy for the identification of neutrinos coming from above the horizon (down-going events) the field of view of the telescope will be extended.

  16. Telescopic limiting magnitudes

    Science.gov (United States)

    Schaefer, Bradley E.

    1990-01-01

    The prediction of the magnitude of the faintest star visible through a telescope by a visual observer is a difficult problem in physiology. Many prediction formulas have been advanced over the years, but most do not even consider the magnification used. Here, the prediction algorithm problem is attacked with two complimentary approaches: (1) First, a theoretical algorithm was developed based on physiological data for the sensitivity of the eye. This algorithm also accounts for the transmission of the atmosphere and the telescope, the brightness of the sky, the color of the star, the age of the observer, the aperture, and the magnification. (2) Second, 314 observed values for the limiting magnitude were collected as a test of the formula. It is found that the formula does accurately predict the average observed limiting magnitudes under all conditions.

  17. Everyday Radio Telescope

    CERN Document Server

    Mandal, Pranshu; Kumar, Pratik; Yelikar, Anjali; Soni, Kanchan; T, Vineeth Krishna

    2016-01-01

    We have developed an affordable, portable college level radio telescope for amateur radio astronomy which can be used to provide hands-on experience with the fundamentals of a radio telescope and an insight into the realm of radio astronomy. With our set-up one can measure brightness temperature and flux of the Sun at 11.2 GHz and calculate the beam width of the antenna. The set-up uses commercially available satellite television receiving system and parabolic dish antenna. We report the detection of point sources like Saturn and extended sources like the galactic arm of the Milky way. We have also developed python pipeline, which are available for free download, for data acquisition and visualization.

  18. Origins Space Telescope

    Science.gov (United States)

    Cooray, Asantha R.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. I will summarize the OST STDT, mission design and instruments, key science drivers, and the study plan over the next two years.

  19. Experimental nowcasting and short-range forecasting of severe storms at the ESSL Testbed

    Science.gov (United States)

    Groenemeijer, Pieter; Holzer, Alois M.; Pistotnik, Georg; Riemann-Campe, Kathrin

    2013-04-01

    From 4 June to 6 July 2012, the first ESSL Testbed has taken place at the Research and Training Centre of the European Severe Storms Laboratory in Wiener Neustadt, Austria. During this time, researchers and forecasters worked closely together putting new forecast supporting products to the test. The Testbed's main activity is to prepare experimental forecasts for severe weather, of which short-range forecasts and nowcasts for the following 2 hours form an important part. These nowcasts are made using new tools based on NWP, radar and satellite, as well as surface and upper-air observations. Subsequently, a verification of the forecasts is performed using the European Severe Weather Database, followed by an evaluation of forecasting tools and techniques. Inspired by the annual Spring Program at NOAA's Hazardous Weather Testbed (HWT), the ESSL Testbed has a stronger focus on forecaster training than the HWT. Given the various backgrounds of the participants, an important Testbed goal is to acquaint its participants with severe weather forecasting methods and techniques that work universally. Among the tools that were evaluated at the 2012 Testbed were visualizations of high-resolution ensemble NWP (DWD's COSMO-DE-EPS), satellite-based cloud top cooling and overshooting top detection algorithms, lightning detection, and satellite and radar-based cell-tracking algorithms (DLR's Cb-TRAM and RadTRAM, and DWD's NowcastMix). In daily "Expert Lectures", that were broadcast online to remote participants, researchers provided background information on their products and internationally renowned experts in forecasting presented their viewpoints on storm forecasting and its scientific roots. Organized by ESSL in close cooperation with the Austrian Central Institute for Meteorology and Geodynamics (ZAMG), the Testbed was supported - among others - by the German Weather Service (DWD), EUMETSAT, WMO, ECMWF, VAISALA, and the GOES-R programme, providing products for evaluation and

  20. Low frame rate video target localization and tracking testbed

    Science.gov (United States)

    Pang, Yu; Shen, Dan; Chen, Genshe; Liang, Pengpeng; Pham, Khanh; Blasch, Erik; Wang, Zhonghai; Ling, Haibin

    2013-05-01

    Traditional tracking frameworks are challenged by low video frame rate scenarios, because the appearances and locations of the target may change considerably in consecutive frames. Our paper presents a saliency-based temporal association dependency (STAD) framework to deal with such a low frame rate scenario and demonstrate good results in our robot testbed. We first use median filter to create a background of the scene, then apply background subtraction to every new frame to decide the rough position of the target. With the help of the markers on the robots, we use a gradient voting algorithm to detect the high responses of the directions of the robots. Finally, a template matching with branch pruning is used to obtain the finer estimation of the pose of the robots. To make the tracking-by-detection framework stable, we further introduce the temporal constraints using a previously detected result as well as an association technique. Our experiments show that our method can achieve a very stable tracking result and outperforms some state-of-the-art trackers such as Meanshift, Online-AdaBoosting, Mulitple-Instance-Learning, Tracking-Learning-Detection etc. Also. we demonstrate that our algorithm provides near real-time solutions given the low frame rate requirement.

  1. TORCH Computational Reference Kernels - A Testbed for Computer Science Research

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Alex; Williams, Samuel Webb; Madduri, Kamesh; Ibrahim, Khaled; Bailey, David H.; Demmel, James W.; Strohmaier, Erich

    2010-12-02

    For decades, computer scientists have sought guidance on how to evolve architectures, languages, and programming models in order to improve application performance, efficiency, and productivity. Unfortunately, without overarching advice about future directions in these areas, individual guidance is inferred from the existing software/hardware ecosystem, and each discipline often conducts their research independently assuming all other technologies remain fixed. In today's rapidly evolving world of on-chip parallelism, isolated and iterative improvements to performance may miss superior solutions in the same way gradient descent optimization techniques may get stuck in local minima. To combat this, we present TORCH: A Testbed for Optimization ResearCH. These computational reference kernels define the core problems of interest in scientific computing without mandating a specific language, algorithm, programming model, or implementation. To compliment the kernel (problem) definitions, we provide a set of algorithmically-expressed verification tests that can be used to verify a hardware/software co-designed solution produces an acceptable answer. Finally, to provide some illumination as to how researchers have implemented solutions to these problems in the past, we provide a set of reference implementations in C and MATLAB.

  2. Digital Preservation Theory and Application: Transcontinental Persistent Archives Testbed Activity

    Directory of Open Access Journals (Sweden)

    Paul Watry

    2007-12-01

    Full Text Available The National Archives and Records Administration (NARA and EU SHAMAN projects are working with multiple research institutions on tools and technologies that will supply a comprehensive, systematic, and dynamic means for preserving virtually any type of electronic record, free from dependence on any specific hardware or software. This paper describes the joint development work between the University of Liverpool and the San Diego Supercomputer Center (SDSC at the University of California, San Diego on the NARA and SHAMAN prototypes. The aim is to provide technologies in support of the required generic data management infrastructure. We describe a Theory of Preservation that quantifies how communication can be accomplished when future technologies are different from those available at present. This includes not only different hardware and software, but also different standards for encoding information. We describe the concept of a “digital ontology” to characterize preservation processes; this is an advance on the current OAIS Reference Model of providing representation information about records. To realize a comprehensive Theory of Preservation, we describe the ongoing integration of distributed shared collection management technologies, digital library browsing, and presentation technologies for the NARA and SHAMAN Persistent Archive Testbeds.

  3. A satellite orbital testbed for SATCOM using mobile robots

    Science.gov (United States)

    Shen, Dan; Lu, Wenjie; Wang, Zhonghai; Jia, Bin; Wang, Gang; Wang, Tao; Chen, Genshe; Blasch, Erik; Pham, Khanh

    2016-05-01

    This paper develops and evaluates a satellite orbital testbed (SOT) for satellite communications (SATCOM). SOT can emulate the 3D satellite orbit using the omni-wheeled robots and a robotic arm. The 3D motion of satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The former actions are emulated by omni-wheeled robots while the up-down motions are performed by a stepped-motor-controlled-ball along a rod (robotic arm), which is attached to the robot. The emulated satellite positions will go to the measure model, whose results will be used to perform multiple space object tracking. Then the tracking results will go to the maneuver detection and collision alert. The satellite maneuver commands will be translated to robots commands and robotic arm commands. In SATCOM, the effects of jamming depend on the range and angles of the positions of satellite transponder relative to the jamming satellite. We extend the SOT to include USRP transceivers. In the extended SOT, the relative ranges and angles are implemented using omni-wheeled robots and robotic arms.

  4. Priority scheme planning for the robust SSM/PMAD testbed

    Science.gov (United States)

    Elges, Michael R.; Ashworth, Barry R.

    Whenever mixing priorities of manually controlled resources with those of autonomously controlled resources, the space station module power management and distribution (SSM/PMAD) environment requires cooperating expert system interaction between the planning function and the priority manager. The elements and interactions of the SSM/PMAD planning and priority management functions are presented. Their adherence to cooperating for common achievement are described. In the SSM/PMAD testbed these actions are guided by having a system planning function, KANT, which has insight to the executing system and its automated database. First, the user must be given access to all information which may have an effect on the desired outcome. Second, the fault manager element, FRAMES, must be informed as to the change so that correct diagnoses and operations take place if and when faults occur. Third, some element must engage as mediator for selection of resources and actions to be added or removed at the user's request. This is performed by the priority manager, LPLMS. Lastly, the scheduling mechanism, MAESTRO, must provide future schedules adhering to the user modified resource base.

  5. Adaptive Signal Processing Testbed signal excision software: User's manual

    Science.gov (United States)

    Parliament, Hugh A.

    1992-05-01

    The Adaptive Signal Processing Testbed (ASPT) signal excision software is a set of programs that provide real-time processing functions for the excision of interfering tones from a live spread-spectrum signal as well as off-line functions for the analysis of the effectiveness of the excision technique. The processing functions provided by the ASPT signal excision software are real-time adaptive filtering of live data, storage to disk, and file sorting and conversion. The main off-line analysis function is bit error determination. The purpose of the software is to measure the effectiveness of an adaptive filtering algorithm to suppress interfering or jamming signals in a spread spectrum signal environment. A user manual for the software is provided, containing information on the different software components available to perform signal excision experiments: the real-time excision software, excision host program, file processing utilities, and despreading and bit error rate determination software. In addition, information is presented describing the excision algorithm implemented, the real-time processing framework, the steps required to add algorithms to the system, the processing functions used in despreading, and description of command sequences for post-run analysis of the data.

  6. Adaptive Signal Processing Testbed application software: User's manual

    Science.gov (United States)

    Parliament, Hugh A.

    1992-05-01

    The Adaptive Signal Processing Testbed (ASPT) application software is a set of programs that provide general data acquisition and minimal processing functions on live digital data. The data are obtained from a digital input interface whose data source is the DAR4000 digital quadrature receiver that receives a phase shift keying signal at 21.4 MHz intermediate frequency. The data acquisition software is used to acquire raw unprocessed data from the DAR4000 and store it on disk in the Sun workstation based ASPT. File processing utilities are available to convert the stored files for analysis. The data evaluation software is used for the following functions: acquisition of data from the DAR4000, conversion to IEEE format, and storage to disk; acquisition of data from the DAR4000, power spectrum estimation, and on-line plotting on the graphics screen; and processing of disk file data, power spectrum estimation, and display and/or storage to disk in the new format. A user's guide is provided that describes the acquisition and evaluation programs along with how to acquire, evaluate, and use the data.

  7. An integrated dexterous robotic testbed for space applications

    Science.gov (United States)

    Li, Larry C.; Nguyen, Hai; Sauer, Edward

    1992-01-01

    An integrated dexterous robotic system was developed as a testbed to evaluate various robotics technologies for advanced space applications. The system configuration consisted of a Utah/MIT Dexterous Hand, a PUMA 562 arm, a stereo vision system, and a multiprocessing computer control system. In addition to these major subsystems, a proximity sensing system was integrated with the Utah/MIT Hand to provide capability for non-contact sensing of a nearby object. A high-speed fiber-optic link was used to transmit digitized proximity sensor signals back to the multiprocessing control system. The hardware system was designed to satisfy the requirements for both teleoperated and autonomous operations. The software system was designed to exploit parallel processing capability, pursue functional modularity, incorporate artificial intelligence for robot control, allow high-level symbolic robot commands, maximize reusable code, minimize compilation requirements, and provide an interactive application development and debugging environment for the end users. An overview is presented of the system hardware and software configurations, and implementation is discussed of subsystem functions.

  8. Articulated navigation testbed (ANT): an example of adaptable intrinsic mobility

    Science.gov (United States)

    Brosinsky, Chris A.; Hanna, Doug M.; Penzes, Steven G.

    2000-07-01

    An important but oft overlooked aspect of any robotic system is the synergistic benefit of designing the chassis to have high intrinsic mobility which complements rather than limits, its system capabilities. This novel concept continues to be investigated by the Defence Research Establishment Suffield (DRES) with the Articulated Navigation Testbed (ANT) Unmanned Ground Vehicle (UGV). The ANT demonstrates high mobility through the combination of articulated steering and a hybrid locomotion scheme which utilizes individually powered wheels on the edge of rigid legs; legs which are capable of approximately 450 degrees of rotation. The configuration can be minimally configured as a 4x4 and modularly expanded to 6x6, 8x8, and so on. This enhanced mobility configuration permits pose control and novel maneuvers such as stepping, bridging, crawling, etc. Resultant mobility improvements, particularly in unstructured and off-road environments, will reduce the resolution with which the UGV sensor systems must perceive its surroundings and decreases the computational requirements of the UGV's perception systems1 for successful semi-autonomous or autonomous terrain negotiation. This paper reviews critical vehicle developments leading up to the ANT concept, describes the basis for its configuration and speculates on the impact of the intrinsic mobility concept for UGV effectiveness.

  9. The Cherenkov Telescope Array

    Science.gov (United States)

    Connaughton, Valerie

    2014-03-01

    The Cherenkov Telescope Array (CTA) is a large collaborative effort dedicated to the design and operation of the next-generation ground-based very high-energy gamma-ray observatory. CTA will improve by about one order of magnitude the sensitivity with respect to the current major arrays (VERITAS, H.E.S.S., and MAGIC) in the core energy range of 100 GeV to 10 TeV, and will extend the viability of the imaging atmospheric Cherenkov technique (IACT) down to tens of GeV and above 100 TeV. In order to achieve such improved performance at both a northern and southern CTA site, four 23m diameter Large Size Telescopes (LST) optimized for low energy gamma rays will be deployed close to the centre of the array. A larger number of Medium Size Telescopes (MST) will be optimized for the core IACT energy range. The southern site will include 25 12m single-mirror MSTs and a US contribution of up to 24 novel dual-mirror design Schwarzschild-Couder (SC) type MSTs with a primary mirror of 9.5m diameter, and will also include an array of Small Size Telescopes (SST) to observe the highest-energy gamma rays from galactic sources. The SSTs can be smaller and more widely separated because more energetic gamma rays produce a larger Cherenkov light pool with many photons. The SSTs achieve a large collection area by covering a wide (10 sq km) footprint on the ground. The CTA project is finishing its preparatory phase, and the pre-production phase will start this year. I will review the status and the expected performance of CTA as well as the main scientific goals for the observatory.

  10. [Galileo and his telescope].

    Science.gov (United States)

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  11. Fast Fourier transform telescope

    Science.gov (United States)

    Tegmark, Max; Zaldarriaga, Matias

    2009-04-01

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore’s law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog⁡2N rather than N2) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  12. Hubble Space Telescope satellite

    Science.gov (United States)

    Mitchell, R. E.

    1985-01-01

    The Hubble Space Telescope, named for the American astronomer Edwin Powell Hubble, will be the largest and most powerful astronomical instrument ever orbited. Placed above the obscuring effects of the earth's atmosphere in a 600-km orbit, this remotely-controlled, free-flying satellite observatory will expand the terrestrial-equivalent resolution of the universe by a factor of seven, or a volumetric factor of 350. This telescope has a 2.4-m primary mirror and can accommodate five scientific instruments (cameras, spectrographs and photometers). The optics are suitable for a spectral range from 1100 angstrom to 1 mm wavelength. With a projected service life of fifteen years, the spacecraft can be serviced on-orbit for replacement of degraded systems, to insert advanced scientific instruments, and to reboost the telescope from decayed altitudes. The anticipated image quality will be a result of extremely precise lambda/20 optics, stringent cleanliness, and very stable pointing: jitter will be held to less than 0.01 arcsecond for indefinite observation periods, consistent with instrument apertures as small as 0.1 arcsecond.

  13. Ray-tracing for coordinate knowledge in the JWST Integrated Science Instrument Module

    CERN Document Server

    Sabatke, Derek; Rohrbach, Scott; Kubalak, David

    2014-01-01

    Optical alignment and testing of the Integrated Science Instrument Module of the James Webb Space Telescope is underway. We describe the Optical Telescope Element Simulator used to feed the science instruments with point images of precisely known location and chief ray pointing, at appropriate wavelengths and flux levels, in vacuum and at operating temperature. The simulator's capabilities include a number of devices for in situ monitoring of source flux, wavefront error, pupil illumination, image position and chief ray angle. Taken together, these functions become a fascinating example of how the first order properties and constructs of an optical design (coordinate systems, image surface and pupil location) acquire measurable meaning in a real system. We illustrate these functions with experimental data, and describe the ray tracing system used to provide both pointing control during operation and analysis support subsequently. Prescription management takes the form of optimization and fitting. Our core too...

  14. Misalignment Induced Aberrations of JWST: Isolating Low Order Primary Figure Residuals from Misalignment

    Science.gov (United States)

    2010-06-07

    7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Iris AO, Inc. 2680 Bancroft Way Berkeley, CA 04704 8...aberration theory. 15. SUBJECT TERMS Nodal Aberration Theory, James Webb Space Telescope, Misalignment, Segmented , Mirror, Adaptive Optics, Coma...NOT field quadratic K. P. Thompson, “Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry,” J

  15. The Very Large Telescope Interferometer - Challenges for the Future

    Science.gov (United States)

    Garcia, P. J. V.; Glindemann, A.; Henning, Th.; Malbet, F.

    2003-11-01

    The last quarter of the 20th century witnessed the rebirth and maturing of optical interferometry and associated technologies. Major successes spanning from direct detection of stellar pulsations to imaging in the optical were achieved with test-bed systems, some of which have now evolved to facilities open to the astronomical community. The intense activity and rapid growth of this field are a clear sign that interferometry will be a major observational tool in this century both from ground and space. The VLTI is the largest ground-based interferometric facility combining four 8.2-m telescopes with up to eight 1.8-m telescopes. This facility is the first opened on a shared risk basis in 2002, a milestone for the astronomical community. The combination of enhanced sensitivity and common user support bring into grasp a vastly unexplored astrophysical territory. This book presents state of the art optical interferometry in astrophysics. We emphasise new VLTI users by including tutorials in optical interferometry theory and practice, and related instrumentation, as well as reviews in stellar formation and evolution, and extragalactic science. Link: http://www.wkap.nl/prod/b/1-4020-1518-6

  16. The refurbished 1.3-m Robotically Controlled Telescope at Kitt Peak

    Science.gov (United States)

    Gelderman, R.; Guinan, E.; Howell, S.; Mattox, J. R.; McGruder, C. H.; Walter, D. K.; Davis, D. R.; Everett, M.

    2003-05-01

    In 1999, the National Optical Astronomy Observatories (NOAO) announced the opportunity to "assume responsibility for operation of the Kitt Peak 1.3-m telescope." A group of astronomers/educators from institutions across the USA successfully proposed to refurbish and automate the observatory and operate it as the Robotically Controlled Telescope (RCT). The RCT Consortium has been established between Francis Marion University, the Planetary Science Institute, South Carolina State University, Villanova University, and Western Kentucky University to oversee the refurbishment and automation, and operate the telescope to successfully achieve its research and education goals. The RCT was commissioned in 1964 as the Remotely Controlled Telescope and utilized that epoch's computing and communication technology to provide unattended operation from NOAO headquarters in Tucson, about 90 km distant. The original incarnation of the RCT allowed astronomers to gain experience in the remote operation of observatories in order to both develop techniques for operating space-based telescopes and to increase the productivity of ground-based telescopes (Maran 1967 Science 158, 867). While these tests worked as well as could be expected given the technology of the time, the telescope and observatory were refitted in 1969 for classical, attended operations. The second life of the 1.3-m was as a heavily subscribed KPNO visitor facility, first with photoelectric photometers and later as an important testbed for the newest infrared instrumentation. In 1996 the telescope was removed from the list of available KPNO facilities and stood idle until the RCT Consortium hired EOS Technologies, Inc. to refurbish and automate the observatory. In winter 2003 most of the observatory systems have been refurbished and the commissioning has begun. Refurbishment of the RCT has been made possible by NASA grant NAG58762.

  17. SOAR Telescope Progress Report

    Science.gov (United States)

    Sebring, T.; Cecil, G.; Krabbendam, V.

    1999-12-01

    The 4.3m SOAR telescope is fully funded and under construction. A partnership between the country of Brazil, NOAO, Michigan State University, and the University of North Carolina at Chapel Hill, SOAR is being designed for high-quality imaging and imaging spectroscopy in the optical and near-IR over a field of view up to 12' diameter. US astronomers outside MSU and UNC will access 30% of the observing time through the standard NOAO TAC process. The telescope is being designed to support remote and synoptic observations. First light is scheduled for July 2002 at Cerro Pachon in Chile, a site with median seeing of 2/3" at 500 nm. The telescope will be operated by CTIO. Corning Inc. has fused the mirror blanks from boules of ULE glass. RSI in Richardson, Texas and Raytheon Optical Systems Inc. in Danbury, Conn. are designing and will fabricate the mount and active optics systems, respectively. The mount supports an instrument payload in excess of 5000 kg, at 2 Nasmyth locations and 3 bent Cass. ports. The mount and facility building have space for a laser to generate an artificial AO guide star. LabVIEW running under the Linux OS on compactPCI hardware has been adopted to control all telescope, detector, and instrument systems. The primary mirror is 10 cm thick and will be mounted on 120 electro-mechanical actuators to maintain its ideal optical figure at all elevations. The position of the light-weighted secondary mirror is adjusted to maintain collimation through use of a Shack-Hartmann wavefront sensor. The tertiary mirror feeds instruments and also jitters at up to 50 Hz to compensate for telescope shake and atmosphere wavefront tilt. The dome is a steel framework, with fiberglass panels. Air in the observing volume will be exchanged with that outside every few minutes by using large fans under computer control. All systems will be assembled and checked at the manufacturer's facility, then shipped to Chile. A short integration period is planned, and limited science

  18. High-precision cryogenic wheel mechanisms of the JWST/MIRI instrument: performance of the flight models

    Science.gov (United States)

    Krause, O.; Müller, F.; Birkmann, S.; Böhm, A.; Ebert, M.; Grözinger, U.; Henning, Th.; Hofferbert, R.; Huber, A.; Lemke, D.; Rohloff, R.-R.; Scheithauer, S.; Gross, T.; Fischer, T.; Luichtel, G.; Merkle, H.; Übele, M.; Wieland, H.-U.; Amiaux, J.; Jager, R.; Glauser, A.; Parr-Burman, P.; Sykes, J.

    2010-07-01

    The Mid Infrared Instrument (MIRI) aboard JWST is equipped with one filter wheel and two dichroic-grating wheel mechanisms to reconfigure the instrument between observing modes such as broad/narrow-band imaging, coronagraphy and low/medium resolution spectroscopy. Key requirements for the three mechanisms with up to 18 optical elements on the wheel include: (1) reliable operation at T = 7 K, (2) high positional accuracy of 4 arcsec, (3) low power dissipation, (4) high vibration capability, (5) functionality at 7 K ball bearing, a central torque motor for actuation, a ratchet system with monolithic CuBe flexural pivots for precise and powerless positioning and a magnetoresistive position sensor has been implemented. We report here the final performance and lessons-learnt from the successful acceptance test program of the MIRI wheel mechanism flight models. The mechanisms have been meanwhile integrated into the flight model of the MIRI instrument, ready for launch in 2014 by an Ariane 5 rocket.

  19. Unique Spectroscopy and Imaging of Mars with the James Webb Space Telescope

    Science.gov (United States)

    Villanueva, Geronimo L.; Altieri, Francesca; Clancy, R. Todd; Encrenaz, Therese; Fouchet, Thierry; Hartogh, Paul; Lellouch, Emmanuel; Lopez-Valverde, Miguel A.; Mumma, Michael J.; Novak, Robert E.; hide

    2016-01-01

    In this paper, we summarize the main capabilities of the James Webb Space Telescope (JWST) for performing observations of Mars. The distinctive vantage point of JWST at the Sun-Earth Lagrange point (L2) will allow sampling the full observable disk, permitting the study of short-term phenomena, diurnal processes (across the east-west axis), and latitudinal processes between the hemispheres (including seasonal effects) with excellent spatial resolutions (0.''07 at 2 micron). Spectroscopic observations will be achievable in the 0.7-5 micron spectral region with NIRSpec at a maximum resolving power of 2700 and with 8000 in the 1-1.25 micron range. Imaging will be attainable with the Near-Infrared Camera at 4.3 micrometers and with two narrow filters near 2 micron, while the nightside will be accessible with several filters in 0.5 to 2 micron. Such a powerful suite of instruments will be a major asset for the exploration and characterization of Mars. Some science cases include the mapping of the water D/H ratio, investigations of the Martian mesosphere via the characterization of the non-local thermodynamic equilibrium CO2 emission at 4.3 micron, studies of chemical transport via observations of the O2 nightglow at 1.27 micron, high-cadence mapping of the variability dust and water-ice clouds, and sensitive searches for trace species and hydrated features on the Martian surface. In-flight characterization of the instruments may allow for additional science opportunities.

  20. The Planck Telescope reflectors

    Science.gov (United States)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  1. The mid-infrared instrument for the James Webb Space Telescope: performance and operation of the Low-Resolution Spectrometer

    Science.gov (United States)

    Kendrew, Sarah; Scheithauer, Silvia; Bouchet, Patrice; Amiaux, Jerome; Azzollini, Ruymán.; Bouwman, Jeroen; Chen, Christine; Dubreuil, Didier; Fischer, Sebastian; Fox, Ori D.; Glasse, Alistair; Gordon, Karl; Greene, Tom; Hines, Dean C.; Lagage, Pierre-Olivier; Lahuis, Fred; Ronayette, Samuel; Wright, David; Wright, Gillian S.

    2016-07-01

    We describe here the performance and operational concept for the Low Resolution Spectrometer (LRS) of the mid-infrared instrument (MIRI) for the James Webb Space Telescope. The LRS will provide R˜100 slit and slitless spectroscopy from 5 to 12 micron, and its design is optimised for observations of compact sources, such as exoplanet host stars. We provide here an overview of the design of the LRS, and its performance as measured during extensive test campaigns, examining in particular the delivered image quality, dispersion, and resolving power, as well as spectrophotometric performance. The instrument also includes a slitless spectroscopy mode, which is optimally suited for transit spectroscopy of exoplanet atmospheres. We provide an overview of the operational procedures and the differences ahead of the JWST launch in 2018.

  2. Large Volume, Optical and Opto-Mechanical Metrology Techniques for ISIM on JWST

    Science.gov (United States)

    Hadjimichael, Theo

    2015-01-01

    The final, flight build of the Integrated Science Instrument Module (ISIM) element of the James Webb Space Telescope is the culmination of years of work across many disciplines and partners. This paper covers the large volume, ambient, optical and opto-mechanical metrology techniques used to verify the mechanical integration of the flight instruments in ISIM, including optical pupil alignment. We present an overview of ISIM's integration and test program, which is in progress, with an emphasis on alignment and optical performance verification. This work is performed at NASA Goddard Space Flight Center, in close collaboration with the European Space Agency, the Canadian Space Agency, and the Mid-Infrared Instrument European Consortium.

  3. The Cherenkov Telescope Array

    CERN Document Server

    Bigongiari, Ciro

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next generation ground based observatory for very high energy (VHE) gamma-ray astronomy. Gamma-rays provide a powerful insight into the non-thermal universe and hopefully a unique probe for new physics. Imaging Cherenkov telescopes have already discovered more than 170 VHE gamma-ray emitters providing plentiful of valuable data and clearly demonstrating the power of this technique. In spite of the impressive results there are indications that the known sources represent only the tip of the iceberg. A major step in sensitivity is needed to increase the number of detected sources, observe short time-scale variability and improve morphological studies of extended sources. An extended energy coverage is advisable to observe far-away extragalactic objects and improve spectral analysis. CTA aims to increase the sensitivity by an order of magnitude compared to current facilities, to extend the accessible gamma-ray energies from a few tens of GeV to a hundred o...

  4. Large Size Telescope Report

    CERN Document Server

    Mazin, D; Teshima, M

    2016-01-01

    The Cherenkov Telescope Array (CTA) observatory will be deployed over two sites in the two hemispheres. Both sites will be equipped with four Large Size Telescopes (LSTs), which are crucial to achieve the science goals of CTA in the 20-200 GeV energy range. Each LST is equipped with a primary tessellated mirror dish of 23 m diameter, supported by a structure made mainly of carbon fibre reinforced plastic tubes and aluminum joints. This solution guarantees light weight (around 100 tons), essential for fast repositioning to any position in the sky in <20 seconds. The camera is composed of 1855 photomultiplier tubes and embeds the control, readout and trigger electronics. The detailed design is now complete and production of the first LST, which will serve as a prototype for the remaining seven, is ongoing. The installation of the first LST at the Roque de los Muchachos Observatory on the Canary island of La Palma (Spain) started in July 2016. In this paper we will outline the technical solutions adopted to f...

  5. Magellan Telescopes operations 2008

    Science.gov (United States)

    Osip, David J.; Phillips, Mark M.; Palunas, Povilas; Perez, Frank; Leroy, M.

    2008-07-01

    The twin 6.5m Magellan Telescopes have been in routine operations at the Las Campanas Observatory in the Chilean Andes since 2001 and 2002 respectively. The telescopes are owned and operated by Carnegie for the benefit of the Magellan consortium members (Carnegie Institution of Washington, Harvard University, the University of Arizona, Massachusetts Institute of Technology, and the University of Michigan). This paper provides an up to date review of the scientific, technical, and administrative structure of the 'Magellan Model' for observatory operations. With a modest operations budget and a reasonably small staff, the observatory is operated in the "classical" mode, wherein the visiting observer is a key member of the operations team. Under this model, all instrumentation is supplied entirely by the consortium members and the various instrument teams continue to play a critical support role beyond initial deployment and commissioning activities. Here, we present a critical analysis of the Magellan operations model and suggest lessons learned and changes implemented as we continue to evolve an organizational structure that can efficiently deliver a high scientific return for the investment of the partners.

  6. Large size telescope report

    Science.gov (United States)

    Mazin, D.; Cortina, J.; Teshima, M.

    2017-01-01

    The Cherenkov Telescope Array (CTA) observatory will be deployed over two sites in the two hemispheres. Both sites will be equipped with four Large Size Telescopes (LSTs), which are crucial to achieve the science goals of CTA in the 20-200 GeV energy range. Each LST is equipped with a primary tessellated mirror dish of 23 m diameter, supported by a structure made mainly of carbon fibre reinforced plastic tubes and aluminum joints. This solution guarantees light weight (around 100 tons), essential for fast repositioning to any position in the sky in <20 seconds. The camera is composed of 1855 photomultiplier tubes and embeds the control, readout and trigger electronics. The detailed design is now complete and production of the first LST, which will serve as a prototype for the remaining seven, is ongoing. The installation of the first LST at the Roque de los Muchachos Observatory on the Canary island of La Palma (Spain) started in July 2016. In this paper we will outline the technical solutions adopted to fulfill the design requirements, present results of element prototyping and describe the installation and operation plans.

  7. Deep space telescopes

    CERN Document Server

    CERN. Geneva

    2006-01-01

    The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo’s telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics throughout the complete electromagnetic spectrum. Such information is there for the taking, from millimiter wavelengths to gamma rays. Forty years astronomy from space, covering now most of the e.m. spectrum, have thus given us a better understanding of our physical Universe then t...

  8. Upgrade of the MAGIC telescopes

    CERN Document Server

    Mazin, Daniel; Garczarczyk, Markus; Giavitto, Gianluca; Sitarek, Julian

    2014-01-01

    The MAGIC telescopes are two Imaging Atmospheric Cherenkov Telescopes (IACTs) located on the Canary island of La Palma. With 17m diameter mirror dishes and ultra-fast electronics, they provide an energy threshold as low as 50 GeV for observations at low zenith angles. The first MAGIC telescope was taken in operation in 2004 whereas the second one joined in 2009. In 2011 we started a major upgrade program to improve and to unify the stereoscopic system of the two similar but at that time different telescopes. Here we report on the upgrade of the readout electronics and digital trigger of the two telescopes, the upgrade of the camera of the MAGIC I telescope as well as the commissioning of the system after this major upgrade.

  9. Grid Integration of Robotic Telescopes

    CERN Document Server

    Breitling, F; Enke, H

    2008-01-01

    Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.

  10. Near Earth Object Survey Telescope

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Near Earth Object Survey Telescope (NEOST), located at the Xuyi station of the Purple Mountain Observatory, is a telescope with the most powerful detection capacity, the highest efficiency and the best performance in the fields of near Earth object survey and optical imaging in China. NEOST is an 171.8 Schmidt type telescope with a 1.20 meter primary mirror and a 1.04 meter corrector,

  11. Model-based beam control for illumination of remote objects, part II: laboratory testbed

    Science.gov (United States)

    Basu, Santasri; Voelz, David; Chandler, Susan M.; Lukesh, Gordon W.; Sjogren, Jon

    2004-10-01

    When a laser beam propagates through the atmosphere, it is subject to corrupting influences including mechanical vibrations, turbulence and tracker limitations. As a result, pointing errors can occur, causing loss of energy or signal at the target. Nukove Scientific Consulting has developed algorithms to estimate these pointing errors from the statistics of the return photons from the target. To prove the feasibility of this approach for real-time estimation, an analysis tool called RHINO was developed by Nukove. Associated with this effort, New Mexico State University developed a laboratory testbed, the ultimate objective being to test the estimation algorithms under controlled conditions and to stream data into RHINO to prove the feasibility of real-time operation. The present paper outlines the description of this testbed and the results obtained through RHINO when the testbed was used to test the estimation approach.

  12. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    Science.gov (United States)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  13. Multivesicular Assemblies as Real-World Testbeds for Embryogenic Evolutionary Systems

    Science.gov (United States)

    Hadorn, Maik; Eggenberger Hotz, Peter

    Embryogenic evolution emulates in silico cell-like entities to get more powerful methods for complex evolutionary tasks. As simulations have to abstract from the biological model, implicit information hidden in its physics is lost. Here, we propose to use cell-like entities as a real-world in vitro testbed. In analogy to evolutionary robotics, where solutions evolved in simulations may be tested in real-world on macroscale, the proposed vesicular testbed would do the same for the embryogenic evolutionary tasks on mesoscale. As a first step towards a vesicular testbed emulating growth, cell division, and cell differentiation, we present a modified vesicle production method, providing custom-tailored chemical cargo, and present a novel self-assembly procedure to provide vesicle aggregates of programmable composition.

  14. Flight Testing of Guidance, Navigation and Control Systems on the Mighty Eagle Robotic Lander Testbed

    Science.gov (United States)

    Hannan, Mike; Rickman, Doug; Chavers, Greg; Adam, Jason; Becker, Chris; Eliser, Joshua; Gunter, Dan; Kennedy, Logan; O'Leary, Patrick

    2015-01-01

    During 2011 a series of progressively more challenging flight tests of the Mighty Eagle autonomous terrestrial lander testbed were conducted primarily to validate the GNC system for a proposed lunar lander. With the successful completion of this GNC validation objective the opportunity existed to utilize the Mighty Eagle as a flying testbed for a variety of technologies. In 2012 an Autonomous Rendezvous and Capture (AR&C) algorithm was implemented in flight software and demonstrated in a series of flight tests. In 2012 a hazard avoidance system was developed and flight tested on the Mighty Eagle. Additionally, GNC algorithms from Moon Express and a MEMs IMU were tested in 2012. All of the testing described herein was above and beyond the original charter for the Mighty Eagle. In addition to being an excellent testbed for a wide variety of systems the Mighty Eagle also provided a great learning opportunity for many engineers and technicians to work a flight program.

  15. Comparison of two matrix data structures for advanced CSM testbed applications

    Science.gov (United States)

    Regelbrugge, M. E.; Brogan, F. A.; Nour-Omid, B.; Rankin, C. C.; Wright, M. A.

    1989-01-01

    The first section describes data storage schemes presently used by the Computational Structural Mechanics (CSM) testbed sparse matrix facilities and similar skyline (profile) matrix facilities. The second section contains a discussion of certain features required for the implementation of particular advanced CSM algorithms, and how these features might be incorporated into the data storage schemes described previously. The third section presents recommendations, based on the discussions of the prior sections, for directing future CSM testbed development to provide necessary matrix facilities for advanced algorithm implementation and use. The objective is to lend insight into the matrix structures discussed and to help explain the process of evaluating alternative matrix data structures and utilities for subsequent use in the CSM testbed.

  16. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    Science.gov (United States)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  17. Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System

    Energy Technology Data Exchange (ETDEWEB)

    Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

    2005-06-01

    The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

  18. Implementation of a Wireless Time Distribution Testbed Protected with Quantum Key Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bonior, Jason D [ORNL; Evans, Philip G [ORNL; Sheets, Gregory S [ORNL; Jones, John P [ORNL; Flynn, Toby H [ORNL; O' Neil, Lori Ross [Pacific Northwest National Laboratory (PNNL); Hutton, William [Pacific Northwest National Laboratory (PNNL); Pratt, Richard [Pacific Northwest National Laboratory (PNNL); Carroll, Thomas E. [Pacific Northwest National Laboratory (PNNL)

    2017-01-01

    Secure time transfer is critical for many timesensitive applications. the Global Positioning System (GPS) which is often used for this purpose has been shown to be susceptible to spoofing attacks. Quantum Key Distribution offers a way to securely generate encryption keys at two locations. Through careful use of this information it is possible to create a system that is more resistant to spoofing attacks. In this paper we describe our work to create a testbed which utilizes QKD and traditional RF links. This testbed will be used for the development of more secure and spoofing resistant time distribution protocols.

  19. Deploying SIP-based Mobile Exam Application onto Next Generation Network testbed

    CERN Document Server

    Barnawi, Ahmed; Emran, Muhammad; Khan, Asif Irshad; 10.1109/SIECPC.2011.5876936

    2012-01-01

    Over the past few years, mobile operators are faced with enormous challenges. Of such challenges, evolved user demands on personalized applications. Telecommunications industry as well as research community have paid enormous attention to Next Generation Networks (NGN) to address this challenge. NGN is perceived as a sophisticated platform where both application developers and mobile operators cooperate to develop user applications with enhanced quality of experience. The objective of this paper is twofold: first we present an introduction to state-of-the-art NGN testbed to be developed at KAU, and second we provide initial analysis for deploying a mobile application on top of the testbed.

  20. Towards Autonomous Operations of the Robonaut 2 Humanoid Robotic Testbed

    Science.gov (United States)

    Badger, Julia; Nguyen, Vienny; Mehling, Joshua; Hambuchen, Kimberly; Diftler, Myron; Luna, Ryan; Baker, William; Joyce, Charles

    2016-01-01

    The Robonaut project has been conducting research in robotics technology on board the International Space Station (ISS) since 2012. Recently, the original upper body humanoid robot was upgraded by the addition of two climbing manipulators ("legs"), more capable processors, and new sensors, as shown in Figure 1. While Robonaut 2 (R2) has been working through checkout exercises on orbit following the upgrade, technology development on the ground has continued to advance. Through the Active Reduced Gravity Offload System (ARGOS), the Robonaut team has been able to develop technologies that will enable full operation of the robotic testbed on orbit using similar robots located at the Johnson Space Center. Once these technologies have been vetted in this way, they will be implemented and tested on the R2 unit on board the ISS. The goal of this work is to create a fully-featured robotics research platform on board the ISS to increase the technology readiness level of technologies that will aid in future exploration missions. Technology development has thus far followed two main paths, autonomous climbing and efficient tool manipulation. Central to both technologies has been the incorporation of a human robotic interaction paradigm that involves the visualization of sensory and pre-planned command data with models of the robot and its environment. Figure 2 shows screenshots of these interactive tools, built in rviz, that are used to develop and implement these technologies on R2. Robonaut 2 is designed to move along the handrails and seat track around the US lab inside the ISS. This is difficult for many reasons, namely the environment is cluttered and constrained, the robot has many degrees of freedom (DOF) it can utilize for climbing, and remote commanding for precision tasks such as grasping handrails is time-consuming and difficult. Because of this, it is important to develop the technologies needed to allow the robot to reach operator-specified positions as