WorldWideScience

Sample records for jwst detectors developed

  1. Commentary: JWST near-infrared detector degradation— finding the problem, fixing the problem, and moving forward

    Directory of Open Access Journals (Sweden)

    Bernard J. Rauscher

    2012-06-01

    Full Text Available The James Webb Space Telescope (JWST is the successor to the Hubble Space Telescope. JWST will be an infrared-optimized telescope, with an approximately 6.5 m diameter primary mirror, that is located at the Sun-Earth L2 Lagrange point. Three of JWST’s four science instruments use Teledyne HgCdTe HAWAII-2RG (H2RG near infrared detector arrays. During 2010, the JWST Project noticed that a few of its 5 μm cutoff H2RG detectors were degrading during room temperature storage, and NASA chartered a “Detector Degradation Failure Review Board” (DD-FRB to investigate. The DD-FRB determined that the root cause was a design flaw that allowed indium to interdiffuse with the gold contacts and migrate into the HgCdTe detector layer. Fortunately, Teledyne already had an improved design that eliminated this degradation mechanism. During early 2012, the improved H2RG design was qualified for flight and JWST began making additional H2RGs. In this article, we present the two public DD-FRB “Executive Summaries” that: (1 determined the root cause of the detector degradation and (2 defined tests to determine whether the existing detectors are qualified for flight. We supplement these with a brief introduction to H2RG detector arrays, some recent measurements showing that the performance of the improved design meets JWST requirements, and a discussion of how the JWST Project is using cryogenic storage to retard the degradation rate of the existing flight spare H2RGs.

  2. SCASim: A Flexible and Reusable Detector Simulator for the MIRI instrument of the JWST

    Science.gov (United States)

    Beard, S.; Morin, J.; Gastaud, R.; Azzollini, R.; Bouchet, P.; Chaintreuil, S.; Lahuis, F.; Littlejohns, O.; Nehme, C.; Pye, J.

    2012-09-01

    The JWST Mid Infrared Instrument (MIRI) operates in the 5-28μm wavelength range and can be configured for imaging, coronographic imaging, long-slit, low-resolution spectroscopy or medium resolution spectroscopy with an integral field unit. SCASim is one of a suite of simulators which operate together to simulate all the different modes of the instrument. These simulators are essential for the efficient operation of MIRI; allowing more accurate planning of MIRI observations on sky or during the pre-launch testing of the instrument. The data generated by the simulators are essential for testing the data pipeline software. The simulators not only need to reproduce the behaviour of the instrument faithfully, they also need to be adaptable so that information learned about the instrument during the pre-launch testing and in-orbit commissioning can be fed back into the simulation. SCASim simulates the behaviour of the MIRI detectors, taking into account cosmetic effects, quantum efficiency, shot noise, dark current, read noise, amplifier layout, cosmic ray hits, etc... The software has benefited from three major design choices. First, the development of a suite of MIRI simulators, rather than single simulator, has allowed MIRI simulators to be developed in parallel by different teams, with each simulator able to concentrate on one particular area. SCASim provides a facility common to all the other simulators and saves duplication of effort. Second, SCASim has a Python-based object-oriented design which makes it easier to adapt as new information about the instrument is learned during testing. Third, all simulator parameters are maintained in external files, rather than being hard coded in the software. These design choices have made SCASim highly reusable. In its present form it can be used to simulate any JWST detector, and it can be adapted for future instruments with similar, photon-counting detectors.

  3. Borehole Muon Detector Development

    Science.gov (United States)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  4. DEPFET-detectors: New developments

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)]. E-mail: gerhard.lutz@cern.ch; Andricek, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Eckardt, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Haelker, O. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Hermann, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Lechner, P. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Richter, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schaller, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schopper, F. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Soltau, H. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Strueder, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Treis, J. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Woelfl, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Zhang, C. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)

    2007-03-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available.

  5. DEPFET-detectors: New developments

    International Nuclear Information System (INIS)

    Lutz, G.; Andricek, L.; Eckardt, R.; Haelker, O.; Hermann, S.; Lechner, P.; Richter, R.; Schaller, G.; Schopper, F.; Soltau, H.; Strueder, L.; Treis, J.; Woelfl, S.; Zhang, C.

    2007-01-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available

  6. Developments on RICH detectors

    International Nuclear Information System (INIS)

    Besson, P.; Bourgeois, P.

    1996-01-01

    The RICH (ring imaging Cherenkov) detector which is dedicated to Cherenkov radiation detection is described. An improvement made by replacing photo sensible vapor with solid photocathode is studied. A RICH detector prototype with a CsI photocathode has been built in Saclay and used with Saturne. The first results are presented. (A.C.)

  7. Neutron detector development at Brookhaven

    International Nuclear Information System (INIS)

    Yu, B.; Harder, J.A.; Mead, J.A.; Radeka, V.; Schaknowski, N.A.; Smith, G.C.

    2003-01-01

    Two-dimensional thermal neutron detectors have been the subject of research and development at Brookhaven for over 20 years. Based primarily on multi-wire chambers filled with a gas mixture containing 3 He, these detectors have been used in wide-ranging studies of molecular biology and material science samples. At each phase of development, experimenters have sought improvements in key parameters such as position resolution, counting rate, efficiency, solid-angle coverage and stability. A suite of detectors has been developed with sensitive areas ranging from 5x5 to 50x50 cm 2 . These devices incorporate low-noise-position readout and the best position resolution for thermal neutron gas detectors. Recent developments include a 1.5 mx20 cm detector containing multiple segments with continuously sensitive readout, and detectors with unity gain for ultra-high rate capability and long-term stability

  8. STAR Vertex Detector Upgrade Development

    International Nuclear Information System (INIS)

    Greiner, Leo C.; Matis, Howard S.; Stezelberger, Thorsten; Vu, Chinh Q.; Wieman, Howard; Szelezniak, Michal; Sun, Xiangming

    2008-01-01

    We report on the development and prototyping efforts undertaken with the goal of producing a micro-vertex detector for the STAR experiment at the RHIC accelerator at BNL. We present the basic detector requirements and show a sensor development path, conceptual mechanical design candidates and readout architecture. Prototyping and beam test results with current generation MimoSTAR-2 sensors and a readout system featuring FPGA based on-the-fly hit finding and data sparsification are also presented

  9. Report on Advanced Detector Development

    Energy Technology Data Exchange (ETDEWEB)

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  10. New developments in PET detector technology

    International Nuclear Information System (INIS)

    Niu Lingxin; Zhao Shujun; Zhang Bin; Liu Haojia

    2010-01-01

    The researches on PET detector are always active and innovative area. The research direction of PET detector includes improving performances of scintillator-based detectors, investigating new detectors suitable for multi-modality imaging (e.g. PET/CT and PET/MRI), meeting requirements of TOF and DOI technologies and boosting the development of the technologies. In this paper, new developments in PET detector technology about scintillation crystal, photodetector and semiconductor detector is introduced. (authors)

  11. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  12. Emerging Technologies and Outreach with JWST

    Science.gov (United States)

    Green, Joel D.; Smith, Denise A.; Meinke, Bonnie K.; Lawton, Brandon L.; Kenney, Jessica; Jirdeh, Hussein

    2017-06-01

    The James Webb Space Telescope (JWST), NASA’s next great observatory launching in October 2018, required a dozen new technologies to develop. How will we maintain the prestige and cultural impact of Hubble as the torch passes to Webb? Emerging technologies such as augmented and virtual reality bring the viewer into the data and the concept in previously unimaginable immersive detail. Adoption of mobile devices has expanded access to information for wide swaths of the public. Software like Worldwide Telescope to hardware like the Occulus Rift are providing new avenues for learning. If we develop materials properly tailored to this medium, we can reach more diverse audiences than ever before. STScI is pioneering some tools related to JWST for showcasing at AAS, and in local events, which I highlight here.

  13. Development of nuclear track detectors

    International Nuclear Information System (INIS)

    Somogyi, Gyoergy

    1985-01-01

    The birth and development of two decades of a new nuclear detection method is briefly summarized by one of the first inventors. The main steps of the development and broadening application of nuclear solid state track detectors are described underlying the contribution and main results of the research group of ATOMKI, Hungary (i.e. the finding of the proper plastic materials for track detectors, the discovery of correlations between the track diameter and the particle energy, the increasing of energy resolution, explanation of the track developing process, elaboration of new electrochemical track analyzing methods and automatic track analyzers). Recently, this detecting technique has grown to the phase of the industrial mass production and broad application in radiogeochemistry, mining, radioecology, personal monitoring in nuclear power plants, etc. (D.Gy.)

  14. Leveraging Emerging Technologies in Outreach for JWST

    Science.gov (United States)

    Meinke, Bonnie K.; Green, Joel D.; Smith, Louis Chad; Smith, Denise A.; Lawton, Brandon L.; Gough, Michael

    2017-10-01

    The James Webb Space Telescope (JWST) is NASA’s next great observatory, launching in October 2018. How will we maintain the prestige and cultural impact of the Hubble Space Telescope as the torch passes to Webb? Emerging technologies such as augmented (AR) and virtual reality (VR) bring the viewer into the data and introduce the telescope in previously unimaginable immersive detail. Adoption of mobile devices, many of which easily support AR and VR, has expanded access to information for wide swaths of the public. From software like Worldwide Telescope to hardware like the HTC Vive, immersive environments are providing new avenues for learning. If we develop materials properly tailored to these media, we can reach more diverse audiences than ever before. STScI is piloting tools related to JWST to showcase at DPS, and in local events, which I highlight here.

  15. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  16. JWST Lifting System

    Science.gov (United States)

    Tolleson, William

    2012-01-01

    A document describes designing, building, testing, and certifying a customized crane (Lifting Device LD) with a strong back (cradle) to facilitate the installation of long wall panels and short door panels for the GHe phase of the James Webb Space Telescope (JWST). The LD controls are variable-frequency drive controls designed to be adjustable for very slow and very-short-distance movements throughout the installation. The LD has a lift beam with an electric actuator attached at the end. The actuator attaches to a rectangular strong back (cradle) for lifting the long wall panels and short door panels from a lower angle into the vertical position inside the chamber, and then rotating around the chamber for installation onto the existing ceiling and floor. The LD rotates 360 (in very small increments) in both clockwise and counterclockwise directions. Eight lifting pads are on the top ring with 2-in. (.5-cm) eye holes spaced evenly around the ring to allow for the device to be suspended by three crane hoists from the top of the chamber. The LD is operated by remote controls that allow for a single, slow mode for booming the load in and out, with slow and very slow modes for rotating the load.

  17. Detector development and test facility

    International Nuclear Information System (INIS)

    Reeder, D.D.

    1993-01-01

    Following the ideas presented in the proposal to the DoE, we have begun to acquire the equipment needed to design, develop construct and test the electronic and mechanical features of detectors used in High Energy Physics Experiments. A guiding principle for the effort is to achieve integrated electronic and mechanical designs which meet the demanding specifications of the modern hadron collider environment yet minimize costs. This requires state of the art simulation of signal processing as well as detailed calculations of heat transfer and finite element analysis of structural integrity

  18. Development of acoustic particle detector

    International Nuclear Information System (INIS)

    Matsuyama, Tadayoshi; Hinode, Fujio; Konno, Osamu

    1999-01-01

    To detect acoustic sign from electron, determination of acoustic radiation from high energy electron and detector were studied. When charge particles pass through medium, energy loss generates local expansion and contraction of medium and pressure compression wave. We need caustic element with 10 -5 Pa the minimum acoustic receive sensitivity and from 10 to 100 kHz frequency sensitivity characteristic. Elements were made by Low-Q materials, piezoelectric materials (PZT). Various sharp of elements were constructed and measured. 50 mm spherical element showed 38 m V/Pa, the best sensitivity. Our developed acoustic element could detect acoustic radiation generated by electron beam from accelerator. The wave sharp detected proved the same as bipolar wave, which was given theoretically. The pressure generated by beam was proportional to the energy loss E. 200 MeV electron beam existed about 95% particles on the incident axis. So that acoustic detector on the axis proved to detect sound wave generated on the beam axis. (S.Y.)

  19. Development of innovative silicon radiation detectors

    CERN Document Server

    Balbuena, JuanPablo

    Silicon radiation detectors fabricated at the IMB-CNM (CSIC) Clean Room facilities using the most innovative techniques in detector technology are presented in this thesis. TCAD simulation comprises an important part in this work as becomes an essential tool to achieve exhaustive performance information of modelled detectors prior their fabrication and subsequent electrical characterization. Radiation tolerance is also investigated in this work using TCAD simulations through the potential and electric field distributions, leakage current and capacitance characteristics and the response of the detectors to the pass of different particles for charge collection efficiencies. Silicon detectors investigated in this thesis were developed for specific projects but also for applications in experiments which can benefit from their improved characteristics, as described in Chapter 1. Double-sided double type columns 3D (3D-DDTC) detectors have been developed under the NEWATLASPIXEL project in the framework of the CERN ...

  20. Development of leak detector by radiation. 2

    International Nuclear Information System (INIS)

    Suzuki, Takashi; Okano, Yasuhiro; Chisaka, Haruo

    1997-01-01

    Leak detector by radiation has been developed by cooperative research between Water Authority and us. In his fiscal year, the most suitable arrangement of detector system was simulated by Monte Carlo method. The first, the experimental values were compared with the results of simulation. The second, calculation was carried out by changing the quality of reflective materials and distance between radiation source and detector. The simulation results were agreed with the experimental results. On the basis of the rate of presence of leak, the most suitable arrangement of detector system was obtained under the conditions that both radiation source and detector covered with graphite or iron of 5 cm thickness and separated each other 3 cm apart. However, by comparing FOM (figure of merit), the suitable arrangement was that radiation source and detector adjoined each other and covered by graphite or iron of 20 cm thickness. (S.Y.)

  1. The Building Blocks for JWST I and T (Integrations and Test) to Operations - From Simulator to Flight Units

    Science.gov (United States)

    Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace

    2012-01-01

    The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.

  2. Development of planar detectors with active edge

    International Nuclear Information System (INIS)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Vianello, E.; Zorzi, N.

    2011-01-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  3. Development of ALICE microstrip detectors at IRST

    International Nuclear Information System (INIS)

    Boscardin, M.; Bosisio, L.; Dalla Betta, G.-F.; Gregori, P.; Rachevskaia, I.; Zorzi, N.

    2001-01-01

    We report on the development of double-sided, AC-coupled, microstrip detectors oriented to the A Large Ion Collider Experiment (ALICE). The main design and processing issues are presented, together with some selected results from the electrical characterization of detectors and related test structures

  4. Development of planar detectors with active edge

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Giacomini, G.; Vianello, E.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2011-12-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  5. Recent developments in radiation detectors and instruments

    International Nuclear Information System (INIS)

    Das, Debashis

    2016-01-01

    Radiation detector is the key component in precise and accurate measurement of the nuclear radiations. The detectors deployed for radiation measurements in broadly classified sectors of Energy, Security, Discovery Science and Health and Environments are in general specific to their applications. The nuclear reactors as well as the fuel processing including waste management in energy sector require wide range/variety of detectors and the instruments for safe and precise generation of power. The security sector has gained importance in radiation monitoring in the present security perspective and there are many challenges in development of detector technology. The Discovery Science or the mega science projects viz CERN, Fermilab, GANIL, INO, MACE telescope, ITER etc have continuously generated new demand on detector related technologies that have been also found to be useful in other applications. Similarly, the health and environment monitoring have been also evolving with new technologies and techniques to address the requirement's arising in projects of new nuclear programs

  6. Development of sodium leak detectors for PFBR

    International Nuclear Information System (INIS)

    Sylvia, J.I.; Rao, P. Vijayamohana; Babu, B.; Madhusoodanan, K.; Rajan, K.K.

    2012-01-01

    Highlights: ► Sodium leak detection system developed for PFBR using diverse principle. ► Miniature, remotely locatable diverse leak detector developed for Main Vessel. ► Mutual inductance type leak detectors designed and adapted for different locations. ► Sodium Ionisation detectors used for area monitoring. ► Crosswire type leak detector designed, developed and tested. - Abstract: The 500 MWe Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam near Chennai in India. The wide and high operating temperature, highly chemically active nature of sodium and its reaction with air make the sodium instrumentation complex over the conventional instrumentation. Over the years, traditional instruments such as wire type leak detectors, spark plug type leak detectors were developed and used in different sodium systems. The redundant and diverse leak detection method calls for development of special instrumentation for sodium systems which include sodium ionization (leak) detector for detecting minute sodium leak in addition to those systems based on mutual inductance principle. For detection of sodium leak from reactor Main Vessel (MV), diverse methods are used such as miniature, remotely locatable, Mutual Inductance type Leak Detector(MILD) and specially modified spark plug type leak detector. The design of MILD is suitably modified for detecting leak in double wall pipes and Diverse Safety Rod drive Mechanism (DSRDM). Steam/water leak in steam generator produces hydrogen and leads to high pressure and temperature in the system. Rupture disc is used as a safety device which punctures itself due to sudden pressure rise. To detect the discharge of sodium and its reaction products at the downstream of the rupture disc due to bursting of the rupture disc, cross wire type leak detector has been designed, developed and tested. The selection of the leak detection system depends on the location where leak has to be detected. This paper

  7. Development of the ZEUS central tracking detector

    Science.gov (United States)

    Brooks, C. B.; Bullock, F. W.; Cashmore, R. J.; Devenish, R. C.; Foster, B.; Fraser, T. J.; Gibson, M. D.; Gilmore, R. S.; Gingrich, D.; Harnew, N.; Hart, J. C.; Heath, G. P.; Hiddleston, J.; Holmes, A. R.; Jamdagni, A. K.; Jones, T. W.; Llewellyn, T. J.; Long, K. R.; Lush, G. J.; Malos, J.; Martin, N. C.; McArthur, I.; McCubbin, N. A.; McQuillan, D.; Miller, D. B.; Mobayyen, M. M.; Morgado, C.; Nash, J.; Nixon, G.; Parham, A. G.; Payne, B. T.; Roberts, J. H. C.; Salmon, G.; Saxon, D. H.; Sephton, A. J.; Shaw, D.; Shaw, T. B.; Shield, P. D.; Shulman, J.; Silvester, I.; Smith, S.; Strachan, D. E.; Tapper, R. J.; Tkaczyk, S. M.; Toudup, L. W.; Wallis, E. W.; Wastie, R.; Wells, J.; White, D. J.; Wilson, F. F.; Yeo, K. L.; ZEUS-UK Collaboration

    1989-11-01

    The design concept and development of the ZEUS central tracking detector is described. This is a cylindrical drift chamber designed for track reconstruction, electron identification and event triggering in a high-crossing-rate, high-magnetic-field environment.

  8. Development of the ZEUS central tracking detector

    International Nuclear Information System (INIS)

    Brooks, C.B.; Cashmore, R.J.; Gingrich, D.; Harnew, N.; Heath, G.P.; Holmes, A.R.; Martin, N.C.; McArthur, I.; Nash, J.; Salmon, G.; Shield, P.D.; Silvester, I.; Smith, S.; Wastie, R.; Wells, J.; Jamdagni, A.K.; McQuillan, D.; Miller, D.B.; Mobayyen, M.M.; Shulman, J.; Toudup, L.W.

    1989-01-01

    The design concept and development of the ZEUS central tracking detector is described. This is a cylindrical drift chamber designed for track reconstruction, electron identification and event triggering in a high-crossing-rate, high-magnetic-field environment. (orig.)

  9. Detecting First Supernovae with JWST

    Science.gov (United States)

    Regos, Eniko; FLARE

    2018-01-01

    We have applied for a JWST ERS First Transients Survey, FLARE to answer empirically how the Universe made its first stars. To quest the epoch of reionization we target what happened to these first stars by observing the most luminous events, supernovae. These transients provide direct constraints on star formation rates and the initial mass function.These very rare events can be reached by JWST at 27 mag AB in 2 micron and 4.4 micron over a field of 0.1 square degree visited multiple times each year.The survey may detect massive Pop III SNe at redshifts up to 10, pinpointing the redshift of first stars, a key scientific goal of JWST.We explore all models of star formation history (derived from UV luminosity densities and IR data), DTD, top heavy IMF of early, low metallicity stars, and normalizations to data of SN Ia, II rates (SNLS, CLASH, CANDELS, SDSS, SVISS), as well as SLSN (ROTSE, SNLS) to estimate the expected SN rates as function of redshift.Population synthesis of double degenerate and single degenerate scenarios of SN Ia shows that the shape of the DTD is rather insensitive to the assumptions (common envelope prescription and metallicities, or retention efficiency of accreted H to white dwarf core and mass transfer rate).Indeed GOODS High z SN Ia rates imply substantial delay in their progenitor model, and Hubble Higher z SN search constrains delay time distribution models as well.SLSN (I, II /H/ and extreme rare pulsational pair instability) are magnetars (ULGRB) in high local star formation rate, faint, low metallicity galaxies.

  10. Development of high sensitivity radon detectors

    CERN Document Server

    Takeuchi, Y; Kajita, T; Tasaka, S; Hori, H; Nemoto, M; Okazawa, H

    1999-01-01

    High sensitivity detectors for radon in air and in water have been developed. We use electrostatic collection and a PIN photodiode for these detectors. Calibration systems have been also constructed to obtain collection factors. As a result of the calibration study, the absolute humidity dependence of the radon detector for air is clearly observed in the region less than about 1.6 g/m sup 3. The calibration factors of the radon detector for air are 2.2+-0.2 (counts/day)/(mBq/m sup 3) at 0.08 g/m sup 3 and 0.86+-0.06 (counts/day)/(mBq/m sup 3) at 11 g/m sup 3. The calibration factor of the radon detector for water is 3.6+-0.5 (counts/day)/(mBq/m sup 3). The background level of the radon detector for air is 2.4+-1.3 counts/day. As a result, one standard deviation excess of the signal above the background of the radon detector for air should be possible for 1.4 mBq/m sup 3 in a one-day measurement at 0.08 g/m sup 3.

  11. Development of floating strip micromegas detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bortfeldt, Jonathan

    2014-04-28

    Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10{sup 34} cm{sup -2}s{sup -1} around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm{sup 2} floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm{sup 2} floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm{sup 2} floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the

  12. Development of floating strip micromegas detectors

    International Nuclear Information System (INIS)

    Bortfeldt, Jonathan

    2014-01-01

    Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10 34 cm -2 s -1 around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm 2 floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm 2 floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm 2 floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the track inclination in a single

  13. Development of gallium arsenide gamma spectrometric detector

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kuru, I.

    1975-03-01

    GaAs semiconductor material has been considered to be a suitable material for gamma-ray spectrometer operating at room temperature since it has a wid-band gap, larger than that of silicon and germanium. The basic objective of this work is to develop a GaAs gamma-ray spectrometric detector which could be used for gamma spectrometric measurement of uranium and plutonium in nuclear fuel safeguards. Liquid phase epitaxial techniques using iron (Fe) as dopant have been developed in making high purity GaAs crystals suitable for gamma-ray spectrometer operating at room temperature. Concentration of Fe in the epitaxial crystal was controlled by initial growth temperature. The best quality epitaxial crystal was obtained under the following conditions: starting temperature is about 800degC, the proportion of Fe to Ga solvent is 1 to 300. Carrier concentration of epitaxial crystals grown distributed in the ranges of 10 12 cm -3 to 10 14 cm -3 at room temperature. The thickness of the crystals ranged from 38 μm to 120 μm. Au-GaAs surface barrier detector was made of epitaxial crystal. Some of the detector were encapsulated in a can with a 50 μm Be window by welding a can to the detector holder. The detector with high energy resolution and good charge collecting characteristics was selected by alpha spectrometry at room temperature. Energy resolution of the detector for gamma-rays up to about 200 keV was very good at room temperature operation. The best energy resolutions taken with a GaAs detector were 3 keV (fwhm) and 3.8 keV for 241 Am 59.6 keV and 57 Co 122 keV, respectively, at room temperature. In order to study the applicability of the detector for nuclear safeguards, the measurements of 235 U gamma-ray spectrum have been carried out at room temperature. It was clarified that the gamma-ray spectrum of enriched U sample could be measured in high resolution with GaAs detector at room temperature, and that the content of 235 U in enriched U sources could be determined by

  14. Trends and new developments in gaseous detectors

    International Nuclear Information System (INIS)

    Hoch, M.

    2004-01-01

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors

  15. Trends and new developments in gaseous detectors

    Science.gov (United States)

    Hoch, M.

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors.

  16. Trends and new developments in gaseous detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hoch, M. [CERN, Geneva 23 (Switzerland)]. E-mail: michael.hoch@cern.ch

    2004-12-11

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hardron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have proved their reliability in various experiments and are promising candidates for future projects. Performance and results will be discussed for these detectors. Furthermore, achievements in RPC-based detectors will be discussed. The standard Trigger RPC is a reliable low-cost semi-industrial manufactured device with good time resolution. Thin gap RPCs (Multigap-, and High Rate Timing RPC) show very fast signal response at high efficiency and significantly increased rate capability and will be applied in TOF detectors.

  17. Developments in solid state vertex detectors

    International Nuclear Information System (INIS)

    Damerell, C.J.S.

    1984-12-01

    Since the discovery of the J/psi in November 1974, there has been a strong interest in the physics of particles containing higher-flavour quarks (charm, bottom, top, ...). High precision vertex detectors can be used to identify the decay products of parent particles which have lifetimes of the order 10 -13 s. The paper surveys the progress which is being made in developing silicon detectors with the necessary tracking precision (< approx. 5 μm) to be used for this purpose in fixed target experiments and also in colliders such as SLC and LEP. (author)

  18. Advanced radiation detector development: Advanced semiconductor detector development: Development of a oom-temperature, gamma ray detector using gallium arsenide to develop an electrode detector

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1995-11-01

    The advanced detector development project at the University of Michigan has completed the first full year of its current funding. Our general goals are the development of radiation detectors and spectrometers that are capable of portable room temperature operation. Over the past 12 months, we have worked primarily in the development of semiconductor spectrometers with open-quotes single carrierclose quotes response that offer the promise of room temperature operation and good energy resolution in gamma ray spectroscopy. We have also begun a small scale effort at investigating the properties of a small non-spectroscopic detector system with directional characteristics that will allow identification of the approximate direction in which gamma rays are incident. These activities have made use of the extensive clean room facilities at the University of Michigan for semiconductor device fabrication, and also the radiation measurement capabilities provided in our laboratory in the Phoenix Building on the North Campus. In addition to our laboratory based activities, Professor Knoll has also been a participant in several Department of Energy review activities held in the Forrestal Building and at the Germantown site. The most recent of these has been service on a DOE review panel chaired by Dr. Hap Lamonds that is reviewing the detector development programs supported through the Office of Arms Control and International Security

  19. Diamond radiation detectors II. CVD diamond development for radiation detectors

    International Nuclear Information System (INIS)

    Kania, D.R.

    1997-01-01

    Interest in radiation detectors has supplied some of the impetus for improving the electronic properties of CVD diamond. In the present discussion, we will restrict our attention to polycrystalhne CVD material. We will focus on the evolution of these materials over the past decade and the correlation of detector performance with other properties of the material

  20. Development of superconducting tunnel junction radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, Masaki; Kishimoto, Maki; Ukibe, Masahiro; Nakamura, Tatsuya; Nakazawa, Masaharu [Japan Atomic Energy Research Inst., Tokyo (Japan); Kurakado, Masahiko; Ishibashi, Kenji; Maehata, Keisuke

    1998-07-01

    Study on development of high energy resolution X-ray detector using superconducting tunnel junction (STJ) for radiation detection was conducted for 5 years under cooperation of University of Tokyo group and Kyushu University group by Quantum measurement research group of Advanced fundamental research center of JAERI. As the energy resolution of STJ could be obtained better results than that of Si semiconductor detector told to be actually best at present, this study aimed to actualize an X-ray detector usable for the experimental field and to elucidate radiation detection mechanism due to STJ. The STJ element used for this study was the one developed by Kurakado group of Nippon Steel Corp. As a results, some technical problems were almost resolved, which made some trouble when using the STJ element to detection element of X-ray spectrometer. In order to make the X-ray detector better, it is essential to manufacture a STJ element and develop serial junction type STJ element on the base of optimization of the element structure and selection and single crystallization of new superconducting materials such as Ta and others, activating the research results. (G.K.)

  1. Development of aerogel Cherenkov detectors at Novosibirsk

    International Nuclear Information System (INIS)

    Barnyakov, A.Yu.; Barnyakov, M.Yu.; Baehr, J.; Bellunato, T.; Beloborodov, K.I.; Bobrovnikov, V.S.; Buzykaev, A.R.; Calvi, M.; Danilyuk, A.F.; Djordjadze, V.; Golubev, V.B.; Kononov, S.A.; Kravchenko, E.A.; Lipka, D.; Matteuzzi, C.; Musy, M.; Onuchin, A.P.; Perego, D.; Rodiakin, V.A.; Savinov, G.A.; Serednyakov, S.I.; Shamov, A.G.; Stephan, F.; Tayursky, V.A.; Vorobiov, A.I.

    2005-01-01

    The development of aerogel Cherenkov counters with the light collection using a wavelength shifter is described. 80 counters of this type are working in the KEDR detector. A project of similar counters for the SND detector based on 'heavy' aerogel with n=1.13 has been developed. Aerogel with a refractive index of 1.006-1.13 and dimensions of blocks up to 200x200x50mm 3 is produced by the Novosibirsk group for use in Cherenkov counters of different types. The Novosibirsk group is participating in the development of LHCb RICH as well as a beam diagnostics for a photo-injector test facility at DESY-Zeuthen. Recently we started development of RICH based on focusing aerogel (FARICH) for the endcap of the SuperBaBar. For the first time in the world the focusing aerogel with layers of different refractive indices has been produced

  2. Synergy with HST and JWST Data Management Systems

    Science.gov (United States)

    Greene, Gretchen; Space Telescope Data Management Team

    2014-01-01

    The data processing and archive systems for the JWST will contain a petabyte of science data and the best news is that users will have fast access to the latest calibrations through a variety of new services. With a synergistic approach currently underway with the STScI science operations between the Hubble Space Telescope and James Webb Space Telescope data management subsystems (DMS), operational verification is right around the corner. Next year the HST archive will provide scientists on-demand fully calibrated data products via the Mikulski Archive for Space Telescopes (MAST), which takes advantage of an upgraded DMS. This enhanced system, developed jointly with the JWST DMS is based on a new CONDOR distributed processing system capable of reprocessing data using a prioritization queue which runs in the background. A Calibration Reference Data System manages the latest optimal configuration for each scientific instrument pipeline. Science users will be able to search and discover the growing MAST archive calibrated datasets from these missions along with the other multiple mission holdings both local to MAST and available through the Virtual Observatory. JWST data systems will build upon the successes and lessons learned from the HST legacy and move us forward into the next generation of multi-wavelength archive research.

  3. Gas detectors: recent developments and future perspectives

    International Nuclear Information System (INIS)

    Sauli, F.

    1998-01-01

    Thirty years after the invention of the multi-wire proportional chamber, and 20 from the first Vienna Wire Chamber Conference, the interest and research efforts devoted to gas detectors are still conspicuous, as demonstrated by the number of papers submitted to this conference. Innovative and performing devices have been perfected over the years, used in experiments, and still developed today. Introduced 10 years ago, the micro-strip gas chamber appears to fulfill the needs of high-luminosity trackers; progress in this field will be reported, followed by a discussion on discharge problems encountered and possible solutions. Recent and potentially more powerfull devices such as the micro-gap, narrow-gap and micro-dot chambers will be described. A new generation of detectors exploiting avalanche multiplication in narrow gaps has emerged recently, namely micromegas, CAT (compteur a trous) and the Gas Electron Multiplier (GEM); whilst still in their infancy, they have promising performances with increased reliability in harsh operating conditions. I will describe also some 'tools of trade' used to model the counting action and to analyze the properties of the detectors, discuss limitations to their performances, and suggest ways to improvement. Several still controversial subjects of study (as for example, aging), and imaginative efforts of the experimenters ensure a continuing progress in the field of gas detectors, and new editions of this conference for years to come. (author)

  4. AIM cryocooler developments for HOT detectors

    Science.gov (United States)

    Rühlich, I.; Mai, M.; Withopf, A.; Rosenhagen, C.

    2014-06-01

    Significantly increased FPA temperatures for both Mid Wave and Long Wave IR detectors, i.e. HOT detectors, which have been developed in recent years are now leaving the development phase and are entering real application. HOT detectors allowing to push size weight and power (SWaP) of Integrated Detectors Cooler Assemblies (IDCA's) to a new level. Key component mainly driving achievable weight, volume and power consumption is the cryocooler. AIM cryocooler developments are focused on compact, lightweight linear cryocoolers driven by compact and high efficient digital cooler drive electronics (DCE) to also achieve highest MTTF targets. This technology is using moving magnet driving mechanisms and dual or single piston compressors. Whereas SX030 which was presented at SPIE in 2012 consuming less 3 WDC to operate a typical IDCA at 140K, next smaller cooler SX020 is designed to provide sufficient cooling power at detector temperature above 160K. The cooler weight of less than 200g and a total compressor length of 60mm makes it an ideal solution for all applications with limited weight and power budget, like in handheld applications. For operating a typical 640x512, 15μm MW IR detector the power consumption will be less than 1.5WDC. MTTF for the cooler will be in excess of 30,000h and thus achieving low maintenance cost also in 24/7 applications. The SX020 compressor is based on a single piston design with integrated passive balancer in a new design achieves very low exported vibration in the order of 100mN in the compressor axis. AIM is using a modular approach, allowing the chose between 5 different compressor types for one common Stirling expander. The 6mm expander with a total length of 74mm is now available in a new design that fits into standard dewar bores originally designed for rotary coolers. Also available is a 9mm coldfinger in both versions. In development is an ultra-short expander with around 35mm total length to achieve highest compactness. Technical

  5. Digital radiography: Present detectors and future developments

    International Nuclear Information System (INIS)

    Perez-Mendez, V.

    1990-08-01

    Present detectors for digital radiography are of two classes: real time detectors and storage (non real time) types. Present real time detectors consist of image intensifier tubes with an internal cesium iodide layer x-ray converter. Non real time detectors involve linear sweep arrays or storage detectors such as film. Future detectors discussed here can be of both types utilizing new technologies such as hydrogenated amorphous silicon photodiode arrays coupled to thin film transistor arrays. 17 refs., 10 figs

  6. New developments on silicon drift detectors

    International Nuclear Information System (INIS)

    Rashevsky, A.

    1996-01-01

    In the frame of the project to develop large-area linear drift detectors few prototypes have been designed and produced. the function of these prototypes is to allow the evaluation of the solutions chosen for the geometry of the on-board electrodes and the production process. On these prototypes it is studied the static characteristics and measured time of-flight and charge collection injecting charges with an IR laser source. It is report the results from one of the prototypes

  7. Contamination control requirements implementation for the James Webb Space Telescope (JWST), part 2: spacecraft, sunshield, observatory, and launch

    Science.gov (United States)

    Wooldridge, Eve M.; Schweiss, Andrea; Henderson-Nelson, Kelly; Woronowicz, Michael; Patel, Jignasha; Macias, Matthew; McGregor, R. Daniel; Farmer, Greg; Schmeitzky, Olivier; Jensen, Peter; Rumler, Peter; Romero, Beatriz; Breton, Jacques

    2014-09-01

    This paper will continue from Part 1 of JWST contamination control implementation. In addition to optics, instruments, and thermal vacuum testing, JWST also requires contamination control for a spacecraft that must be vented carefully in order to maintain solar array and thermal radiator thermal properties; a tennis court-sized sunshield made with 1-2 mil Kapton™ layers that must be manufactured and maintained clean; an observatory that must be integrated, stowed and transported to South America; and a rocket that typically launches commercial payloads without contamination sensitivity. An overview of plans developed to implement contamination control for the JWST spacecraft, sunshield, observatory and launch vehicle will be presented.

  8. Cerenkov ring imaging detector development at SLAC

    International Nuclear Information System (INIS)

    Williams, S.H.

    1984-06-01

    The imaging of Cerenkov light on to photosensitive detectors promises to be a powerful technique for identifying particles in colliding beam spectrometers. Toward this end two and three dimensional imaging photon detectors are being developed at SLAC. The present techniques involve photon conversion using easily ionized exotic chemicals like tetrakisdimethyl-amino-ethylene (TMAE) in a drift and amplifying gas mixture of methane and isobutane. Single photoelectrons from Cerenkov light are currently being drifted 20 cm and a new device under study will be used to study drifting up to 80 cm along a magnetic field. A short description of a large device currently being designed for the SLD spectrometer at the Stanford Linear Collider will be given

  9. Developing and evaluating new micropattern gas detectors

    International Nuclear Information System (INIS)

    Villa, Marco

    2014-02-01

    Micropattern gas detectors (MPGDs) were introduced in the late 1980s in order to overcome the limited rate capability of traditional proportional counters. Thanks to their microscopic electrode structures, MPGDs are faster and more precise than the previous gas detectors and soon gained popularity. Two of the most successful MPGDs are the gas electron multiplier (GEM) and the micro-mesh gaseous structure (Micromegas). In this thesis I present the features of GEMs and Micromegas, some of their current applications and the research and development that I have done on these technologies. My activity covered two main topics: the test and enhancement of single-mask GEMs for large-area applications and the study of spark-tolerant Micromegas for the upgrade of the ATLAS Small Wheels.

  10. Trends and new developments in gaseous detectors

    CERN Document Server

    AUTHOR|(CDS)2069485

    2004-01-01

    Almost one century ago the method of particle detection with gaseous detectors was invented. Since then they have been exploited successfully in many experiments using a wide variety of different applications. The development is still going on today. The underlying working principles are today well understood and with the help of modern simulation techniques, new configurations can be easily examined and optimized before a first experimental test. Traditional wire chamber ensembles demonstrate that they are still up to date and are well prepared to meet also the challenges of LHC. Applications will be discussed using TPCs in high multiplicity environments with standard Multi-Wire Proportional Chamber (MWPC) as readout as well as drift tubes in a muon spectrometer for a Large Hadron Collider (LHC) experiment. Triggered by the evolving printed circuit technology, a new generation of gaseous detectors with very high position resolution and rate capability has emerged. Two representatives (MICROMEGAS, GEM) have p...

  11. Development of Interconnect Technologies for Particle Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Mani [Univ. of California, Davis, CA (United States)

    2015-01-29

    This final report covers the three years of this grant, for the funding period 9/1/2010 - 8/31/2013. The project consisted of generic detector R&D work at UC Davis, with an emphasis on developing interconnect technologies for applications in HEP. Much of the work is done at our Facility for Interconnect Technologies (FIT) at UC Davis. FIT was established using ARRA funds, with further studies supported by this grant. Besides generic R&D work at UC Davis, FIT is engaged in providing bump bonding help to several DOE supported detector R&D efforts. Some of the developmental work was also supported by funding from other sources: continuing CMS project funds and the Linear Collider R&D funds. The latter program is now terminated. The three year program saw a good deal of progress on several fronts, which are reported here.

  12. Particle Detectors: Research and Development at CERN

    International Nuclear Information System (INIS)

    Fabjan, C. W.

    2008-01-01

    Over the past 15 years a worldwide Detector R and D Programme has made the LHC experiments possible. These experiments operate at a new level of event rate and detection capabilities. Based on these advances, Detector R and D is continuing at CERN in close collaboration with University and Research Institutes. Several main directions are being pursued for solid-state and gaseous tracking devices, advanced crystal and noble liquid calorimetry, particle identification methods, and advanced signal-processing techniques. This effort is directed towards experiments at even higher collision rates at the LHC, the requirements for the next generation of linear electron-positron colliders and for applications outside particle physics, such as medical diagnostics instrumentation. We shall illustrate this challenging, stimulating and creative programme with examples and show how these developments are taking place in close collaboration between CERN and institutions around the globe

  13. UV--Visible observations with HST in the JWST North Ecliptic Pole Time-Domain Field

    Science.gov (United States)

    Jansen, Rolf A.; Windhorst, Rogier; Grogin, Norman; Koekemoer, Anton; Royle, Patricia; Hathi, Nimish; Jones, Victoria; Cohen, Seth; Ashcraft, Teresa; Willmer, Christopher; Conselice, Christopher; White, Cameron; Frye, Brenda; HST-GO-15278 team; and the Webb Medium Deep Fields IDS GTO team.

    2018-01-01

    We report the first results from a UV–Visible HST imaging survey of the JWST North Ecliptic Pole (NEP) Time-Domain Field (TDF). Using CVZ and near-CVZ opportunities we observed the first two out of nine tiles with WFC3/UVIS in F275W and with ACS/WFC in F435W and F606W. Over the course of the next 13 months, this survey is designed to provide near-contiguous 3-filter coverage of the central r ≤ 5‧ of this new community field for time-domain science with JWST. The JWST NEP TDF is located within JWST's northern Continuous Viewing Zone, will span ~14‧ in diameter (~10‧ with NIRISS coverage), is devoid of sources bright enough to saturate the NIRCam detectors, has low Galactic foreground extinction, and will be roughly circular in shape (initially sampled during Cycle 1 at 4 distinct orientations with JWST/NIRCam — the JWST “windmill”). NIRISS slitless grism spectroscopy will be taken in parallel, overlapping an alternate NIRCam orientation. This is the only region in the sky where JWST can observe a clean extragalactic deep survey field of this size at arbitrary cadence or at arbitrary orientation. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei to brown dwarf atmospheres, as well as proper motions of extreme scattered Kuiper Belt and Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. Ancillary data across the electromagnetic spectrum will exist for this field when JWST science operations commence in the second half of 2019. This includes deep (mAB ~ 26 mag) wide-field (~23‧×25‧) Ugriz photometry of this field and its surroundings from LBT/LBC and Subaru/HSC, JHK from MMT/MMIRS, VLA 3 GHz and VLBA 4.5 GHz radio observations, and Chandra/ACIS X-ray images. Proposals for (sub)mm observations and spectroscopy to mAB ~ 24 mag are pending.

  14. Calibration results using highly aberrated images for aligning the JWST instruments to the telescope

    Science.gov (United States)

    Smith, Koby Z.; Acton, D. Scott; Gallagher, Ben B.; Knight, J. Scott; Dean, Bruce H.; Jurling, Alden S.; Zielinski, Thomas P.

    2016-07-01

    mostly of 3rd-order astigmatism and coma. This is because the elliptical tertiary mirror of the AOS is used off of its ideal foci locations without the compensating wavefront effects of the JWST primary and secondary mirrors. Therefore, the PSFs created are highly asymmetric with relatively complex structure and the centroid and encircled energy analyses traditionally used to locate images are not sufficient for ensuring the AOS to ISIM alignment. A novel approach combining phase retrieval and spatial metrology was developed to both locate the images with respect to the AOS and provide calibration information for eventual AOS to ISIM alignment verification. During final JWST OTE and ISIM (OTIS) testing, only a single thru-focus image will be collected by the instruments. Therefore, tools and processes were developed to perform single-image phase retrieval on these highly aberrated images such that any single image of the ASPA source can provide calibrated knowledge of the instruments' position relative to the AOS. This paper discusses the results of the methodology, hardware, and calibration performed to ensure that the AOS and ISIM are aligned within their respective tolerances at JWST OTIS testing.

  15. Research and development for future detectors

    CERN Document Server

    Collins, P R

    2003-01-01

    This review describes recent R&D for particle detectors, concentrating on results from the past year. There is particular emphasis on silicon devices, and on new technology ideas for a detector at a future Linear Collider. (59 refs)

  16. The UV attenuation in JWST target VV 191

    Science.gov (United States)

    Holwerda, Benne

    2017-08-01

    We aim to map the UV-near-IR attenuation curve along many sightlines within nearby disk galaxies to resolve a large fundamental uncertainty in galaxy evolution studies: the variance in the attenuation curve within an indivual galaxy disk on linear scales relatively blue elliptical beautifully backlights the outer disk of a foreground face-on spiral galaxy.Dither strategy:We opt for a 2-point dither in the case of the F336W observations (1 orbit) and a 3pt dither strategy for the F225W observations. The 9 orbits for the F225W observations are broken into three groupings of 3 orbits in the 3 dither pattern. This is to ensure correction of cosmics and detector artifacts. Our secondary aim is an HST/JWST image with good public outreach potential and our aim is to maximize image quality for this reason as well.

  17. System Definition of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip

    2008-01-01

    The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.

  18. Development of high efficiency neutron detectors

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Menlove, H.O.

    1993-01-01

    The authors have designed a novel neutron detector system using conventional 3 He detector tubes and composites of polyethylene and graphite. At this time the design consists entirely of MCNP simulations of different detector configurations and materials. These detectors are applicable to low-level passive and active neutron assay systems such as the passive add-a-source and the 252 Cf shuffler. Monte Carlo simulations of these neutron detector designs achieved efficiencies of over 35% for assay chambers that can accommodate 55-gal. drums. Only slight increases in the number of detector tubes and helium pressure are required. The detectors also have reduced die-away times. Potential applications are coincident and multiplicity neutron counting for waste disposal and safeguards. The authors will present the general design philosophy, underlying physics, calculation mechanics, and results

  19. Development of revitalisation technique for impaired lithium doped germanium detector

    International Nuclear Information System (INIS)

    Singh, N.S.B.; Rafi Ahmed, A.G.; Balasubramanian, G.R.

    1994-01-01

    Semiconductor detectors play very significant role in photon detection and are important tools in the field of gamma spectroscopy. Lithium doped germanium detectors belong to this category. The development of revitalisation technique for these impaired detectors are discussed in this report

  20. Development of neutron detectors for neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Myungkook; Kim, Jongyul; Kim, Jeong ho; Lee, Suhyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Changhwy [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of)

    2015-10-15

    Various kinds of detectors are used in accordance with the experimental purpose, such as zero dimensional detector, 1-D or 2-D position-sensitive detectors. Most of neutron detectors use He-3 gas because of its high neutron sensitivity. Since the He-3 supply shortage took place in early 2010, various He-3 alternative detectors have been developed even for the other neutron application. We have developed a new type alternative detector on the basis of He-3 detector technology. Although B- 10 has less neutron detection efficiency compared with He-3, it can be covered by the use of multiple B-10 layers. In this presentation, we would like to introduce the neutron detectors under development and developed detectors. Various types of detector were successfully developed and result of the technical test performance is promising. Even though the detection efficiency of the B-10 detector lower than He-3 one, the continuous research and development is needed for currently not available He-3.

  1. Signal development in irradiated silicon detectors

    CERN Document Server

    Kramberger, Gregor; Mikuz, Marko

    2001-01-01

    This work provides a detailed study of signal formation in silicon detectors, with the emphasis on detectors with high concentration of irradiation induced defects in the lattice. These defects give rise to deep energy levels in the band gap. As a consequence, the current induced by charge motion in silicon detectors is signifcantly altered. Within the framework of the study a new experimental method, Charge correction method, based on transient current technique (TCT) was proposed for determination of effective electron and hole trapping times in irradiated silicon detectors. Effective carrier trapping times were determined in numerous silicon pad detectors irradiated with neutrons, pions and protons. Studied detectors were fabricated on oxygenated and non-oxygenated silicon wafers with different bulk resistivities. Measured effective carrier trapping times were found to be inversely proportional to fuence and increase with temperature. No dependence on silicon resistivity and oxygen concentration was observ...

  2. Industrial development of neutron detectors, fission chambers, self powered detectors, ionization chambers

    International Nuclear Information System (INIS)

    Constans, H.; Coville, P.; Guerre, J.

    1975-01-01

    Reactor control requires the determination of neutron flux at all times. The needed characteristics lead to use of several types of detectors: boron lined counters, boron lined ionization chambers, fission ionization chambers and self powered detectors. The principle of the reaction involved the fabrication requirements, the different modes of utilization and the characteristics obtained are examined for each detector. The problem of electric connections in the active area has been solved by developing ''integrated cables'' [fr

  3. Detector development and experiments at COSY

    International Nuclear Information System (INIS)

    Morsch, H.P.

    1988-05-01

    These proceedings contain the manuscripts of the lectures presented at the named workshop. These concern a review about the COSY project, ideal detectors for hadron physics at COSY, possible experiments at COSY, magnetic spectrometers, a modification of BIG KARL, consideration on COSY experiments in the early stage, a detector for exclusive 2-meson production experiments, the excitation of baryons and physics with complex projectiles, a status report about the Indiana cooler ring, special scintillators, multiwire chambers, position-sensitive semiconductor detectors, detectors for neutral particles, a small large-acceptance photon detector, a status report of the two-arm photon spectrometer TAPS, studies on the parity violation in the pp scattering, the measurement of excitation functions for the study of dibaryon states, and results from the neutron workshop held in February 1988 at the KFA Juelich. (HSI)

  4. Characterizing Rosetta Stone Exoplanets with JWST Transit Spectroscopy

    Science.gov (United States)

    Lewis, Nikole K.; Clampin, Mark; Seager, Sara; Valenti, Jeff A.; Mountain, Matt; JWST Telescope Scientist GTO Team

    2017-06-01

    JWST will for the first time provide for spectroscopic (R > 100) observation of systems hosting transiting exoplanets over the critical wavelength range from 0.6 to 28.5 microns. Our team will take advantage of JWST's spectral coverage and resolution to characterize a small number of exoplanets in exquisite detail. We plan to focus our efforts on single representative members of the hot-Jupiter, warm-Neptune, and temperate-Earth populations in both transmission and emission over the full wavelength range of JWST. Our JWST observations will hopefully become 'Rosetta Stones' that will serve as benchmarks for further observations of planets within each representative population and a lasting legacy of the JWST mission. Here we will describe our observational plan and how we turned our science goals into an implemented Cycle 1 JWST program.

  5. High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST

    Science.gov (United States)

    Hinkley, Sasha; Skemer, Andrew; Biller, Beth; Baraffe, I.; Bonnefoy, M.; Bowler, B.; Carter, A.; Chen, C.; Choquet, E.; Currie, T.; Danielski, C.; Fortney, J.; Grady, C.; Greenbaum, A.; Hines, D.; Janson, M.; Kalas, P.; Kennedy, G.; Kraus, A.; Lagrange, A.; Liu, M.; Marley, M.; Marois, C.; Matthews, B.; Mawet, D.; Metchev, S.; Meyer, M.; Millar-Blanchaer, M.; Perrin, M.; Pueyo, L.; Quanz, S.; Rameau, J.; Rodigas, T.; Sallum, S.; Sargent, B.; Schlieder, J.; Schneider, G.; Stapelfeldt, K.; Tremblin, P.; Vigan, A.; Ygouf, M.

    2017-11-01

    JWST will transform our ability to characterize directly imaged planets and circumstellar debris disks, including the first spectroscopic characterization of directly imaged exoplanets at wavelengths beyond 5 microns, providing a powerful diagnostic of cloud particle properties, atmospheric structure, and composition. To lay the groundwork for these science goals, we propose a 39-hour ERS program to rapidly establish optimal strategies for JWST high contrast imaging. We will acquire: a) coronagraphic imaging of a newly discovered exoplanet companion, and a well-studied circumstellar debris disk with NIRCam & MIRI; b) spectroscopy of a wide separation planetary mass companion with NIRSPEC & MIRI; and c) deep aperture masking interferometry with NIRISS. Our primary goals are to: 1) generate representative datasets in modes to be commonly used by the exoplanet and disk imaging communities; 2) deliver science enabling products to empower a broad user base to develop successful future investigations; and 3) carry out breakthrough science by characterizing exoplanets for the first time over their full spectral range from 2-28 microns, and debris disk spectrophotometry out to 15 microns sampling the 3 micron water ice feature. Our team represents the majority of the community dedicated to exoplanet and disk imaging and has decades of experience with high contrast imaging algorithms and pipelines. We have developed a collaboration management plan and several organized working groups to ensure we can rapidly and effectively deliver high quality Science Enabling Products to the community.

  6. Status of the JWST Integrated Science Instrument Module

    Science.gov (United States)

    Greenhouse, Matthew A.; Dunn, Jamie; Kimble, Randy A.; Lambros, Scott; Lundquist, Ray; Rauscher, Bernard J.; Van Campen, Julie

    2015-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is the science instrument payload of the JWST. It is one of three system elements that comprise the JWST space vehicle. It consists of four science sensors, a fine guidance sensor, and nine other subsystems that support them. At 1.4 metric tons, it comprises approximately 20% of the JWST mass. The ISIM is currently at 100% integration and has completed 2 of 3 planned element-level space simulation tests. The ISIM is on schedule to be delivered for integration with the Optical Telescope Element during 2015. In this poster, we present an overview of the ISIM and its status.

  7. RD50 Collaboration overview: Development of new radiation hard detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, S., E-mail: susanne.kuehn@cern.ch

    2016-07-11

    Silicon sensors are widely used as tracking detectors in high energy physics experiments. This results in several specific requirements like radiation hardness and granularity. Therefore research for highly performing silicon detectors is required. The RD50 Collaboration is a CERN R&D collaboration dedicated to the development of radiation hard silicon devices for application in high luminosity collider experiments. Extensive research is ongoing in different fields since 2001. The collaboration investigates both defect and material characterization, detector characterization, the development of new structures and full detector systems. The report gives selected results of the collaboration and places an emphasis on the development of new structures, namely 3D devices, CMOS sensors in HV technology and low gain avalanche detectors. - Highlights: • The RD50 Collaboration is a CERN R&D collaboration dedicated to the development of radiation hard silicon devices for high luminosity collider experiments. • The collaboration investigates defect, material and detector characterization, the development of new structures and full detector systems. • Results of measured data of n-in-p type sensors allow recommendations for silicon tracking detectors at the HL-LHC. • The charge multiplication effect was investigated to allow its exploitation and resulted in new structures like LGAD sensors. • New sensor types like slim and active edge sensors, 3D detectors, and lately HVCMOS devices were developed in the active collaboration.

  8. JWST-MIRI spectrometer main optics design and main results

    Science.gov (United States)

    Navarro, Ramón; Schoenmaker, Ton; Kroes, Gabby; Oudenhuysen, Ad; Jager, Rieks; Venema, Lars

    2017-11-01

    MIRI ('Mid InfraRed Instrument') is the combined imager and integral field spectrometer for the 5-29 micron wavelength range under development for the James Webb Space Telescope JWST. The flight acceptance tests of the Spectrometer Main Optics flight models (SMO), part of the MIRI spectrometer, are completed in the summer of 2008 and the system is delivered to the MIRI-JWST consortium. The two SMO arms contain 14 mirrors and form the MIRI optical system together with 12 selectable gratings on grating wheels. The entire system operates at a temperature of 7 Kelvin and is designed on the basis of a 'no adjustments' philosophy. This means that the optical alignment precision depends strongly on the design, tolerance analysis and detailed knowledge of the manufacturing process. Because in principle no corrections are needed after assembly, continuous tracking of the alignment performance during the design and manufacturing phases is important. The flight hardware is inspected with respect to performance parameters like alignment and image quality. The stability of these parameters is investigated after exposure to various vibration levels and successive cryogenic cool downs. This paper describes the philosophy behind the acceptance tests, the chosen test strategy and reports the results of these tests. In addition the paper covers the design of the optical test setup, focusing on the simulation of the optical interfaces of the SMO. Also the relation to the SMO qualification and verification program is addressed.

  9. Benchmarking GJ436b for JWST

    Science.gov (United States)

    Parmentier, Vivien; Stevenson, Kevin; Crossfield, Ian; Morley, Caroline; Fortney, Jonathan; Showman, Adam; Lewis, Nikole; Line, Mike

    2017-10-01

    GJ436b is a slightly eccentric, Neptune size planet with an equilibrium temperature of approximately 770K, it is the only Neptune size planet with a thermal emission measurement. With the coming JWST GTO observations of it's emission spectrum, GJ436b will become a benchmark object of the population of Neptune-size planets that will be discovered by TESS and characterized by JWST in the coming years. The current set of 19 secondary eclipses observed by Spitzer points toward a metal-rich, well mixed, tidally heated atmosphere in disequilibrium chemistry. However, no self-consistent forward models are currently able to fit the dayside spectrum of the planet, whereas retrieval models lead to solutions that are inconsistent with the observed planet density. Clearly, some piece of the puzzle is missing to understand the atmospheric properties of this planet. Although the coming JWST observations will likely improve our understanding of this planet, it won't be able to break the degeneracies between metallicity, internal flux and energy redistribution. We propose to observe a full phase curve of GJ436b at 3.6 microns. We will obtain a measurement of the nightside flux of GJ436b at 3.6 microns. Combined with the already observed 8 microns phase curve, we will obtain the first low resolution spectrum of the nightside of a Neptune size exoplanet. By comparing the nightside flux at 3.6 and 8 microns, we will be able to place constraints on the tidal heating and the metallicity of GJ436b that will be complimentary to the the dayside spectrum that will be obtained with JWST. As seen with the example of hot Jupiters, for which much more data is available, measurements of the nightside spectrum is fundamental to understand the planet atmosphere as a whole and correctly interpret the dayside emission. As a consequence, the proposed observation is crucial for the interpretation of the coming JWST observations. As a secondary goal, our observation should be able to confirm the

  10. Handheld emissions detector (HED): overview and development

    Science.gov (United States)

    Valentino, George J.; Schimmel, David

    2009-05-01

    Nova Engineering, Cincinnati OH, a division of L-3 Communications (L-3 Nova), under the sponsorship of Program Manager Soldier Warrior (PM-SWAR), Fort Belvoir, VA, has developed a Soldier portable, light-weight, hand-held, geolocation sensor and processing system called the Handheld Emissions Detector (HED). The HED is a broadband custom receiver and processor that allows the user to easily sense, direction find, and locate a broad range of emitters in the user's surrounding area. Now in its second design iteration, the HED incorporates a set of COTS components that are complemented with L-3 Nova custom RF, power, digital, and mechanical components, plus custom embedded and application software. The HED user interfaces are designed to provide complex information in a readily-understandable form, thereby providing actionable results for operators. This paper provides, where possible, the top-level characteristics of the HED as well as the rationale behind its design philosophy along with its applications in both DOD and Commercial markets.

  11. Development of FARICH detector for particle identification system at accelerators

    Science.gov (United States)

    Finogeev, D. A.; Kurepin, A. B.; Razin, V. I.; Reshetin, A. I.; Usenko, E. A.; Barnyakov, A. Yu.; Barnyakov, M. Yu.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kasyanenko, P. V.; Kononov, S. A.; Kravchenko, E. A.; Kuyanov, I. A.; Onuchin, A. P.; Ovtin, I. V.; Podgornov, N. A.; Talyshev, A. A.; Danilyuk, A. F.

    2018-01-01

    Aerogel has been successfully used as a radiator in Cherenkov detectors. In 2004, a multilayer aerogel providing Cherenkov ring focusing was proposed and produced. FARICH (Focusing Aerogel Rich Imaging CHerenkov) detectors such as ARICH for Belle-II (KEK, Japan), Forward RICH for PANDA detector (FAIR, Germany), and FARICH for the Super Charm-Tau factory project (BINP, Novosibirsk) have been developed based on this aerogel. Prototypes of FARICH detector based on MRS APD and Philips DPC photosensors were developed and tested in the framework of this project. An angular resolution for Cherenkov rings of 3.6 mrad was achieved.

  12. A review of the developments of radioxenon detectors for nuclear explosion monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sivels, Ciara B.; McIntyre, Justin I.; Bowyer, Theodore W.; Kalinowski, Martin B.; Pozzi, Sara A.

    2017-09-27

    Developments in radioxenon monitoring since the implementation of the International Monitoring System are reviewed with emphasis on the most current technologies to improve detector sensitivity and resolution. The nuclear detectors reviewed include combinations of plastic and NaI(Tl) detectors, high purity germanium detectors, silicon detectors, and phoswich detectors. The minimum detectable activity and calibration methods for the various detectors are also discussed.

  13. Development of data acquisition system for CSNS 3He detector

    International Nuclear Information System (INIS)

    Zhao Dongxu; Zhang Hongyu

    2012-01-01

    This paper introduces the research and development of data acquisition system of CSNS 3 He detector prototype. This system provides high performance data acquisition capability of CSNS 3 He detector, as well as several performance tests of electronics prototype. This data acquisition system establishes foundation for the later data acquisition development. (authors)

  14. Development of Silicon Drift Detectors using Boron layer technology

    OpenAIRE

    Golshani, N.

    2015-01-01

    Radiation detectors are used in a large variety of fields such as medicine, security, defense, geophysics, industry and physics. They have been developed to detect the energy or position of radiation or charge particles. In Chapter 1 several X-ray detectors were introduced briefly. In gas filled X-ray detectors, incoming photons ionize inert gas and create electron and ions which can be collected at a thin wire anode inside of the chamber. The advantage of this type of detector is the possibi...

  15. Detector Development for the abBA Experiment.

    Science.gov (United States)

    Seo, P-N; Bowman, J D; Mitchell, G S; Penttila, S I; Wilburn, W S

    2005-01-01

    We have developed a new type of field-expansion spectrometer to measure the neutron beta decay correlations (a, b, B, and A). A precision measurement of these correlations places stringent requirements on charged particle detectors. The design employs large area segmented silicon detectors to detect both protons and electrons in coincidence. Other requirements include good energy resolution (electron-backscattering events, and nearly unity efficiency. We report results of testing commercially available surface-barrier silicon detectors for energy resolution and timing performance, and measurement of the dead-layer thickness of ion-implanted silicon detectors with a 3.2 MeV alpha source.

  16. Silicon Drift Detectors development for position sensing

    International Nuclear Information System (INIS)

    Castoldi, A.; Guazzoni, C.; Hartmann, R.; Strueder, L.

    2007-01-01

    Novel Silicon Drift Detectors (SDDs) with multi-linear architecture specifically intended for 2D position sensing and imaging applications are presented and their achievable spatial, energy and time resolution are discussed. The capability of providing a fast timing of the interaction with nanosecond time resolution is a new available feature that allows operating the drift detector in continuous readout mode for coincidence imaging applications either with an external trigger or in self-timing. The application of SDDs with multi-linear architecture to Compton electrons' tracking within a single silicon layer and the achieved experimental results will be discussed

  17. Development of Optical Fiber Detector for Measurement of Fast Neutron

    International Nuclear Information System (INIS)

    YAGI, Takahiro; KAWAGUCHI, Shinichi; MISAWA, Tsuyoshi; PYEON, Cheol Ho; UNESAKI, Hironobu; SHIROYA, Seiji; OKAJIMA, Shigeaki; TANI, Kazuhiro

    2008-01-01

    Measurement of fast neutron flux is important for investigation of characteristic of fast reactors. In order to insert a neutron detector in a narrow space such as a gap of between fuel plates and measure the fast neutrons in real time, a neutron detector with an optical fiber has been developed. This detector consists of an optical fiber whose tip is covered with mixture of neutron converter material and scintillator such as ZnS(Ag). The detector for fast neutrons uses ThO 2 as converter material because 232 Th makes fission reaction with fast neutrons. The place where 232 Th can be used is limited by regulations because 232 Th is nuclear fuel material. The purpose of this research is to develop a new optical fiber detector to measure fast neutrons without 232 Th and to investigate the characteristic of the detector. These detectors were used to measure a D-T neutron generator and fast neutron flux distribution at Fast Critical Assembly. The results showed that the fast neutron flux distribution of the new optical fiber detector with ZnS(Ag) was the same as it of the activation method, and the detector are effective for measurement of fast neutrons. (authors)

  18. Development of Silicon Drift Detectors using Boron layer technology

    NARCIS (Netherlands)

    Golshani, N.

    2015-01-01

    Radiation detectors are used in a large variety of fields such as medicine, security, defense, geophysics, industry and physics. They have been developed to detect the energy or position of radiation or charge particles. In Chapter 1 several X-ray detectors were introduced briefly. In gas filled

  19. Development of scintillation and luminescent detectors at BARC

    International Nuclear Information System (INIS)

    Pradhan, A.S.

    1991-01-01

    Research and development work carried out at the Bhabha Atomic Research Centre, Bombay, in the field of radiation detectors for various applications, particularly in the area of scintillation and luminescent detectors is reviewed. The review is presented in the form of 7 articles. (author). figs

  20. Development of CVD diamond radiation detectors

    CERN Document Server

    Adam, W; Berdermann, E; Bogani, F; Borchi, E; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fisch, D; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E A; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Knöpfle, K T; Krammer, Manfred; Manfredi, P F; Meier, D; Mishina, M; Le Normand, F; Pan, L S; Pernegger, H; Pernicka, Manfred; Pirollo, S; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Turchetta, R; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zoeller, M M

    1998-01-01

    Diamond is a nearly ideal material for detecting ionizing radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow a diamond detector to be used in high ra diation, high temperature and in aggressive chemical media. We have constructed charged particle detectors using high quality CVD diamond. Characterization of the diamond samples and various detect ors are presented in terms of collection distance, $d=\\mu E \\tau$, the average distance electron-hole pairs move apart under the influence of an electric field, where $\\mu$ is the sum of carrier mo bilities, $E$ is the applied electric field, and $\\tau$ is the mobility weighted carrier lifetime. Over the last two years the collection distance increased from $\\sim$ 75 $\\mu$m to over 200 $\\mu$ m. With this high quality CVD diamond a series of micro-strip and pixel particle detectors have been constructed. These devices were tested to determine their position resolution and signal to n oise performance. Diamond detectors w...

  1. Detector Development for the European XFEL: Requirements and Status

    International Nuclear Information System (INIS)

    Koch, Andreas; Kuster, Markus; Sztuk-Dambietz, Jolanta; Turcato, Monica

    2013-01-01

    The variety of applications and especially the unique European XFEL time structure will require adequate instrumentation to be developed to exploit the full potential of the light source. Two-dimensional integrating X-ray detectors with ultra-fast read out up to 4.5 MHz for 1024 × 1024 pixel images are under development for a variety of imaging applications. The actual status of the European XFEL detector development projects is presented. Furthermore, an outlook will be given with respect to detector research and development, performance optimization, integration, and commissioning.

  2. CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Thomas P. [NASA Ames Research Center, Space Science and Astrobiology Division, M.S. 245-6, Moffett Field, CA 94035 (United States); Line, Michael R.; Montero, Cezar; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lustig-Yaeger, Jacob [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Luther, Kyle, E-mail: tom.greene@nasa.gov [Department of Physics, University of California, 366 LeConte Hall MC 7300, Berkeley, CA 94720 (United States)

    2016-01-20

    We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH{sub 4}, CO, CO{sub 2}, H{sub 2}O, NH{sub 3}) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high F{sub p} and high F{sub p}/F{sub *}. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.

  3. Sensor development for the CMS pixel detector

    CERN Document Server

    Bölla, G; Horisberger, R P; Kaufmann, R; Rohe, T; Roy, A

    2002-01-01

    The CMS experiment which is currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will contain a pixel detector which provides in its final configuration three space points per track close to the interaction point of the colliding beams. Because of the harsh radiation environment of the LHC, the technical realization of the pixel detector is extremely challenging. The readout chip as the most damageable part of the system is believed to survive a particle fluence of 6x10 sup 1 sup 4 n sub e sub q /cm sup 2 (All fluences are normalized to 1 MeV neutrons and therefore all components of the hybrid pixel detector have to perform well up to at least this fluence. As this requires a partially depleted operation of the silicon sensors after irradiation-induced type inversion of the substrate, an ''n in n'' concept has been chosen. In order to perform IV-tests on wafer level and to hold accidentally unconnected pixels close to ground potential, a resistive path between the pixe...

  4. Development of membrane cryostats for large liquid argon neutrino detectors

    CERN Document Server

    Montanari, D; Gendotti, A; Geynisman, M; Hentschel, S; Loew, T; Mladenov, D; Montanari, C; Murphy, S; Nessi, M; Norris, B; Noto, F; Rubbia, A; Sharma, R; Smargianaki, D; Stewart, J; Vignoli, C; Wilson, P; Wu, S

    2015-01-01

    A new collaboration is being formed to develop a multi-kiloton Long-Baseline neutrino experiment that will be located at the Surf Underground Research Facility (SURF) in Lead, SD. In the present design, the detector will be located inside cryostats filled with 68,400 ton of ultrapure liquid argon (less than 100 parts per trillion of oxygen equivalent contamination). To qualify the membrane technology for future very large-scale and underground implementations, a strong prototyping effort is ongoing: several smaller detectors of growing size with associated cryostats and cryogenic systems will be designed and built at Fermilab and CERN. They will take physics data and test different detector elements, filtration systems, design options and installation procedures. In addition, a 35 ton prototype is already operational at Fermilab and will take data with single-phase detector in early 2016. After the prototyping phase, the multi-kton detector will be constructed. After commissioning, it will detect and study ne...

  5. Development of the MCNPX model for the portable HPGe detector

    International Nuclear Information System (INIS)

    Koleska, Michal; Viererbl, Ladislav; Marek, Milan

    2014-01-01

    The portable HPGe coaxial detector Canberra Big MAC is used in LVR-15 research reactor for spectrometric measurement of spent nuclear fuel. The fuel is measured in the dedicated system located in the spent fuel pool situated near the reactor. For the purpose of the spectrometric system calibration, the detector was precisely modeled with the MCNPX code. This model was constructed with the data acquired from the technical specification provided by the manufacturer and from the data obtained by the radiography of the crystal. The detector model was verified on the experimental data measured with available standard radionuclide sources and on-site prepared 110m Ag source. - Highlights: • Inner structure of the HPGe detector is determined. • An MCNPX model of the detector is developed. • The model is verified using different sources for two measurement geometries

  6. Development of Micro-Pattern Gas Detectors Technologies

    CERN Multimedia

    Richer, J; Barsuk, S; Shah, M K; Catanesi, M G; Colaleo, A; Maggi, M; Loddo, F; Berardi, V; Bagliesi, M; Menon, G; Richter, R; Lahonde-hamdoun, C; Dris, M; Chechik, R; Ochi, A; Hartjes, F; Lopes, I M; Deshpande, A; Franz, A; Fiutowski, T A; Ferreira, A; Bastos de oliveira, C A; Miller, B W; Monrabal-capilla, F; Liubarsky, I; Plazas de pinzon, M C; Tsarfati, T; Voss, B J R; Carmona martinez, J M; Stocchi, A; Dinu, N; Semeniouk, I; Giebels, B; Marton, K; De leo, R; De lucia, E; Alviggi, M; Bellerive, A; Herten, L G; Zimmermann, S U; Giomataris, I; Peyaud, A; Schune, P; Delagnes, E; Delbart, A; Charles, G; Wang, W; Markou, A; Arazi, L; Cibinetto, G; Edo, Y; Neves, F F; Solovov, V; Stoll, S; Sampsonidis, D; Dabrowski, W; Mindur, B; Sauli, F; Calapez de albuquerque veloso, J F; Kahlaoui, N; Sharma, A; Zenker, K; Cebrian guajardo, S V; Luzon marco, G M; Guillaudin, O J H; Cornebise, P; Lounis, A; Bruel, P J; Laszlo, A; Mukerjee, K; Nappi, E; Nuzzo, S V; Bencivenni, G; Tessarotto, F; Levorato, S; Dixit, M S; Riallot, M; Jeanneau, F; Nizery, F G; Maltezos, S; Kyriakis, A; Lyashenko, A; Van der graaf, H; Ferreira marques, R; Alexa, C; Liyanage, N; Dehmelt, K; Hemmick, T K; Polychronakos, V; Cisbani, E; Garibaldi, F; Koperny, S Z; Das neves dias carramate, L F; Munoz-vidal, J; Gutierrez, R; Van stenis, M; Resnati, F; Lupberger, M; Desch, K K; Chefdeville, M; Vouters, G; Ranieri, A; Lami, S; Shekhtman, L; Dolgov, A; Bamberger, A; Landgraf, U; Kortner, O; Ferrero, A; Aune, S; Attie, D M; Bakas, G; Balossino, I; Tsigaridas, S; Surrow, B; Gnanvo, K A K; Feege, N M; Woody, C L; Bhattacharya, S; Capogni, M; Veenhof, R J; Tapan, I; Dangendorf, V; Monteiro bernades, C M; Castro serrato, H F; De oliveira, R; Ropelewski, L; Behnke, T; Boudry, V; Radicioni, E; Lai, A; Shemyakina, E; Giganon, A E; Titov, M; Papakrivopoulos, I; Komai, H; Van bakel, N A; Tchepel, V; Repond, J O; Li, Y; Kourkoumelis, C; Tzamarias, S; Majumdar, N; Kowalski, T; Da rocha azevedo, C D; Serra diaz cano, L; Alvarez puerta, V; Trabelsi, A; Riegler, W; Ketzer, B F; Rosemann, C G; Herrera munoz, D C; Drancourt, C; Mayet, F; Geerebaert, Y; De robertis, G; Felici, G; Scribano memoria, A; Cecchi, R; Dalla torre, S; Gregori, M; Buzulutskov, A; Schwegler, P; Sanchez nieto, F J; Colas, P M A; Gros, M; Neyret, D; Zito, M; Ferrer ribas, E; Breskin, A; Martoiu, V S; Purschke, M L; Loomba, D; Gasik, P J; Petridou, C; Kordas, K; Mukhopadhyay, S; Bucciantonio, M; Biagi, S F; Ji, X; Kanaki, K; Zavazieva, D; Capeans garrido, M D M; Schindler, H; Kaminski, J; Krautscheid, T; Lippmann, C; Arora, R; Dafni, T; Garcia irastorza, I; Puill, V; Wicek, F B; Burmistrov, L; Singh, K P; Kroha, H; Kunne, F; Alexopoulos, T; Daskalakis, G; Geralis, T; Bettoni, D; Heijhoff, K; Xiao, Z; Tzanakos, G; Leisos, A; Frullani, S; Sahin, O; Kalkan, Y; Giboni, K; Krieger, C; Breton, D R; Bhattacharyya, S; Abbrescia, M; Erriquez, O; Paticchio, V; Cardini, A; Aloisio, A; Turini, N; Bressan, A; Tikhonov, Y; Schumacher, M; Simon, F R; Nowak, S; Herlant, S; Chaus, A; Fanourakis, G; Bressler, S; Homma, Y; Timmermans, J; Fonte, P; Underwood, D G; Azmoun, B; Fassouliotis, D; Wiacek, P; Dos santos covita, D; Monteiro da silva, A L; Yahlali haddou, N; Marques ferreira dos santos, J; Domingues amaro, F

    The proposed R&D collaboration, RD51, aims at facilitating the development of advanced gas-avalanche detector technologies and associated electronic-readout systems, for applications in basic and applied research. Advances in particle physics have always been enabled by parallel advances in radiation-detector technology. Radiation detection and imaging with gas-avalanche detectors, capable of economically covering large detection volumes with a low material budget, have been playing an important role in many fields. Besides their widespread use in particle-physics and nuclear-physics experiments, gaseous detectors are employed in many other fields: astro-particle research and applications such as medical imaging, material science, and security inspection. While extensively employed at the LHC, RHIC, and other advanced HEP experiments, present gaseous detectors (wire-chambers, drift-tubes, resistive-plate chambers and others) have limitations which may prevent their use in future experiments. Present tec...

  7. Development of an advanced antineutrino detector for reactor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Classen, T., E-mail: classen2@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Bernstein, A.; Bowden, N.S. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Cabrera-Palmer, B. [Sandia Livermore National Laboratories, Livermore, CA 94550 (United States); Ho, A.; Jonkmans, G. [Atomic Energy of Canada, Limited, Chalk River Laboratories, Chalk River, ON (Canada); Kogler, L.; Reyna, D. [Sandia Livermore National Laboratories, Livermore, CA 94550 (United States); Sur, B. [Atomic Energy of Canada, Limited, Chalk River Laboratories, Chalk River, ON (Canada)

    2015-01-21

    Here we present the development of a compact antineutrino detector for the purpose of nuclear reactor monitoring, improving upon a previously successful design. This paper will describe the design improvements of the detector which increases the antineutrino detection efficiency threefold over the previous effort. There are two main design improvements over previous generations of detectors for nuclear reactor monitoring: dual-ended optical readout and single volume detection mass. The dual-ended optical readout eliminates the need for fiducialization and increases the uniformity of the detector's optical response. The containment of the detection mass in a single active volume provides more target mass per detector footprint, a key design criteria for operating within a nuclear power plant. This technology could allow for real-time monitoring of the evolution of a nuclear reactor core, independent of reactor operator declarations of fuel inventories, and may be of interest to the safeguards community.

  8. Development of a Detector Control System for the ATLAS Pixel detector in the HL-LHC

    International Nuclear Information System (INIS)

    Lehmann, N.; Kersten, S.; Zeitnitz, C.; Karagounis, M.

    2016-01-01

    The upgrade of the LHC to the HL-LHC requires a new ITk detector. The innermost part of this new tracker is a pixel detector. The University of Wuppertal is developing a new DCS to monitor and control this new pixel detector. The current concept envisions three parallel paths of the DCS. The first path, called security path, is hardwired and provides an interlock system to guarantee the safety of the detector and human beings. The second path is a control path. This path is used to supervise the entire detector. The control path has its own communication lines independent from the regular data readout for reliable operation. The third path is for diagnostics and provides information on demand. It is merged with the regular data readout and provides the highest granularity and most detailed information. To reduce the material budget, a serial power scheme is the baseline for the pixel modules. A new ASIC used in the control path is in development at Wuppertal for this serial power chain. A prototype exists already and a proof of principle was demonstrated. Development and research is ongoing to guarantee the correct operation of the new ASIC in the harsh environment of the HL-LHC. The concept for the new DCS will be presented in this paper. A focus will be made on the development of the DCS chip, used for monitoring and control of pixel modules in a serial power chain.

  9. Technology development for SOI monolithic pixel detectors

    International Nuclear Information System (INIS)

    Marczewski, J.; Domanski, K.; Grabiec, P.; Grodner, M.; Jaroszewicz, B.; Kociubinski, A.; Kucharski, K.; Tomaszewski, D.; Caccia, M.; Kucewicz, W.; Niemiec, H.

    2006-01-01

    A monolithic detector of ionizing radiation has been manufactured using silicon on insulator (SOI) wafers with a high-resistivity substrate. In our paper the integration of a standard 3 μm CMOS technology, originally designed for bulk devices, with fabrication of pixels in the bottom wafer of a SOI substrate is described. Both technological sequences have been merged minimizing thermal budget and providing suitable properties of all the technological layers. The achieved performance proves that fully depleted monolithic active pixel matrix might be a viable option for a wide spectrum of future applications

  10. Future developments in etched track detectors for neutron dosimetry

    International Nuclear Information System (INIS)

    Tommasino, L.

    1987-01-01

    Many laboratories engaged in the field of personal neutron dosimetry are interested in developing better etching processes and improving the CR-39 detecting materials. To know how much effort must still be devoted to the development of etch track dosimetry, it is necessary to understand the advantages. limitations and degree of exploitation of the currently available techniques. So much has been learned about the chemical and electrochemical etching processes that an optimised combination of etching processes could make possible the elimination of many of the existing shortcomings. Limitations of etched track detectors for neutron dosimetry arise mainly because the registration occurs only on the detector surface. These damage type detectors are based on radiation induced chain scission processes in polymers, which result in hole-type tracks in solids. The converse approach, yet to be discovered, would be the development of cure-track detectors, where radiation induced cross linking between organic polymer chains could result in solid tracks in liquids. (author)

  11. Development of smart wireless detector system for gamma ray detection

    International Nuclear Information System (INIS)

    Nolida Yussup; Nur Aira Abdul Rahman; Ismail Mustapha; Jaafar Abdullah; Mohd Ashhar Khalid; Hearie Hassan; Yoong, Chong Foh

    2012-01-01

    Data transmission in field works especially that is related to industry, gas and chemical is paramount importance to ensure data accuracy and delivery time. A development of wireless detector system for remote data acquisition to be applied in conducting fieldwork in industry is described in this paper. A wireless communication which is applied in the project development is a viable and cost-effective method of transmitting data from the detector to the laptop on the site to facilitate data storage and analysis automatically, which can be used in various applications such as column scanning. The project involves hardware design for the detector and electronics parts besides programming for control board and user interface. A prototype of a wireless gamma scintillation detector is developed with capabilities of transmitting data to computer via radio frequency (RF) and recording the data within the 433 MHz band at baud rate of 19200. (author)

  12. Development of smart wireless detector system for gamma ray detection

    International Nuclear Information System (INIS)

    Nolida Yussup; Nur Aira Abd. Rahman; Chong, Foh Yoong; Mohd Ashhar Khalid; Ismail Mustapha; Jaafar Abdullah; Hearie Hassan

    2010-01-01

    Data transmission in field works especially that is related to industry, gas and chemical is paramount importance to ensure data accuracy and delivery time. A development of wireless detector system for remote data acquisition to be applied in conducting fieldwork in industry is described in this paper. A wireless communication which is applied in the project development is a viable and cost-effective method of transmitting data from the detector to the laptop on the site to facilitate data storage and analysis automatically, which can be used in various applications such as column scanning. The project involves hardware design for the detector and electronics parts besides programming for control board and user interface. A prototype of a wireless gamma scintillation detector is developed with capabilities of transmitting data to computer via radio frequency (RF) and recording the data within the 433 MHz band at baud rate of 19200. (author)

  13. Indigenous development of diamond detectors for monitoring neutrons

    International Nuclear Information System (INIS)

    Singh, Arvind; Amit Kumar; Topkar, Anita; Pithawa, C.K.

    2013-01-01

    High purity synthetic chemically vapor deposited (CVD) diamond has several outstanding characteristics that make it as an important material for detector applications specifically for extreme environmental conditions like high temperature, high radiation, and highly corrosive environments. Diamond detectors are especially considered promising for monitoring fast neutrons produced by the D-T nuclear fusion reactions in next generation fusion facilities such as ITER. When fast neutrons interact with carbon, elastic, inelastic and (n,α) type reactions can occur. These reactions can be employed for the detection of fast neutrons using diamond. We have initiated the development of diamond detectors based on synthetic CVD substrates. In this paper, the first test of a polycrystalline CVD diamond detector with fast neutrons is reported. The test results demonstrate that this detector can be used for monitoring fast neutrons. The diamond detectors have been fabricated using 5 mm x 5 mm, 300 μm polycrystalline diamond substrates. Aluminum metallization has been used on both sides of the detector to provide electrical contacts. The performance of fabricated detectors was first evaluated using current and capacitance measurements. The leakage current was observed to be stable and about a few pAs for voltages up to 300V. The capacitance-voltage characteristics showed a constant capacitance which is as expected. To confirm the response of the detector to charged particles, the pulse height spectrum (PHS) was obtained using 238 Pu- 239 Pu dual α- source. The PHS showed a continuum without any peak due to polycrystalline nature of diamond film. The response of the detector to fast neutrons has been studied using the fast neutron facility at NXF, BARC. The PHS obtained for a neutron yield of 4 x 10 8 n/s is shown. The average counts per second (cps) measured for diamond detector for different neutron yields is shown. The plot shows linearity with coefficient of determination R

  14. Epitaxial silicon semiconductor detectors, past developments, future prospects

    International Nuclear Information System (INIS)

    Gruhn, C.R.

    1976-01-01

    A review of the main physical characteristics of epitaxial silicon as it relates to detector development is presented. As examples of applications results are presented on (1) epitaxial silicon avalanche diodes (ESAD); signal-to-noise, non-linear aspects of the avalanche gain mechanism, gain-bandwidth product, (2) ultrathin epitaxial silicon surface barrier (ESSB) detectors, response to heavy ions, (3) an all-epitaxial silicon diode (ESD), response to heavy ions, charge transport and charge defect. Future prospects of epitaxial silicon as it relates to new detector designs are summarized

  15. The Siegen automatic measuring system for track detectors: new developments

    International Nuclear Information System (INIS)

    Rusch, G.; Winkel, E.; Noll, A.; Heinrich, W.

    1991-01-01

    Starting twelve years ago we have developed completely automatic scanning and measuring systems for nuclear track detectors. The hardware and software of these systems have continuously been improved. They were used in different heavy ion and cosmic ray experiments. In this paper we describe methods for high resolution REL measurements in plastic nuclear track detectors and methods to scan and measure nuclear disintegration stars in AgCl detectors using an automatic measuring technique. The system uses a stepping motor driven microscope stage, a video camera and an image analysis computer based on a MC68020 microprocessor. (author)

  16. Innovative applications and developments of micro-pattern gaseous detectors

    CERN Document Server

    Francke, Tom

    2014-01-01

    Study of nature and the world around us has been a primary motivation for scientists and researchers for centuries. Advanced methods in the study of elementary particles have led to even greater discoveries in recent years. "Innovative Applications and Developments of Micro-Pattern Gaseous Detectors" focuses on the analysis and use of various gas detection systems, providing a detailed description of some of the most commonly used gas detectors and the science behind them. From early detectors to modern tools and techniques, this book will be of particular use to practitioners and researchers in chemical engineering and materials science, in addition to students and academicians concentrating in the field.

  17. The AGN-Star Formation Connection: Future Prospects with JWST

    Science.gov (United States)

    Kirkpatrick, Allison; Alberts, Stacey; Pope, Alexandra; Barro, Guillermo; Bonato, Matteo; Kocevski, Dale D.; Pérez-González, Pablo; Rieke, George H.; Rodríguez-Muñoz, Lucia; Sajina, Anna; Grogin, Norman A.; Mantha, Kameswara Bharadwaj; Pandya, Viraj; Pforr, Janine; Salvato, Mara; Santini, Paola

    2017-11-01

    The bulk of the stellar growth over cosmic time is dominated by IR-luminous galaxies at cosmic noon (z=1{--}2), many of which harbor a hidden active galactic nucleus (AGN). We use state-of-the-art infrared color diagnostics, combining Spitzer and Herschel observations, to separate dust-obscured AGNs from dusty star-forming galaxies (SFGs) in the CANDELS and COSMOS surveys. We calculate 24 μm counts of SFGs, AGN/star-forming “Composites,” and AGNs. AGNs and Composites dominate the counts above 0.8 mJy at 24 μm, and Composites form at least 25% of an IR sample even to faint detection limits. We develop methods to use the Mid-Infrared Instrument (MIRI) on JWST to identify dust-obscured AGNs and Composite galaxies from z˜ 1{--}2. With the sensitivity and spacing of MIRI filters, we will detect >4 times as many AGN hosts as with Spitzer/IRAC criteria. Any star formation rates based on the 7.7 μm PAH feature (likely to be applied to MIRI photometry) must be corrected for the contribution of the AGN, or the star formation rate will be overestimated by ˜35% for cases where the AGN provides half the IR luminosity and ˜50% when the AGN accounts for 90% of the luminosity. Finally, we demonstrate that our MIRI color technique can select AGNs with an Eddington ratio of {λ }{Edd}˜ 0.01 and will identify AGN hosts with a higher specific star formation rate than X-ray techniques alone. JWST/MIRI will enable critical steps forward in identifying and understanding dust-obscured AGNs and the link to their host galaxies.

  18. Reliable Transport over SpaceWire for James Webb Space Telescope (JWST) Focal Plane Electronics (FPE) Network

    Science.gov (United States)

    Rakow, Glenn; Schnurr, Richard; Dailey, Christopher; Shakoorzadeh, Kamdin

    2003-01-01

    NASA's James Webb Space Telescope (JWST) faces difficult technical and budgetary challenges to overcome before it is scheduled launch in 2010. The Integrated Science Instrument Module (ISIM), shares these challenges. The major challenge addressed in this paper is the data network used to collect, process, compresses and store Infrared data. A total of 114 Mbps of raw information must be collected from 19 sources and delivered to the two redundant data processing units across a twenty meter deployed thermally restricted interface. Further data must be transferred to the solid-state recorder and the spacecraft. The JWST detectors are kept at cryogenic temperatures to obtain the sensitivity necessary to measure faint energy sources. The Focal Plane Electronics (FPE) that sample the detector, generate packets from the samples, and transmit these packets to the processing electronics must dissipate little power in order to help keep the detectors at these cold temperatures. Separating the low powered front-end electronics from the higher-powered processing electronics, and using a simple high-speed protocol to transmit the detector data minimize the power dissipation near the detectors. Low Voltage Differential Signaling (LVDS) drivers were considered an obvious choice for physical layer because of their high speed and low power. The mechanical restriction on the number cables across the thermal interface force the Image packets to be concentrated upon two high-speed links. These links connect the many image packet sources, Focal Plane Electronics (FPE), located near the cryogenic detectors to the processing electronics on the spacecraft structure. From 12 to 10,000 seconds of raw data are processed to make up an image, various algorithms integrate the pixel data Loss of commands to configure the detectors as well as the loss of science data itself may cause inefficiency in the use of the telescope that are unacceptable given the high cost of the observatory. This

  19. Sensor Development for the CMS Pixel Detector

    CERN Document Server

    Rohe, T; Chiochia, V; Cremaldi, L M; Cucciarelli, S; Dorkhov, A; Konecki, M; Prokofiev, K; Regenfus, C; Sanders, D A; Son, S; Speer, T; Swartz, M

    2003-01-01

    This paper reports on a current R&D activity for the sensor part of the CMS pixel detector. Devices featuring several design and technology options have been irradiated up to a proton fluence of 1E15 (1MeV Neutron)/cm**2 at the CERN PS. Afterwards they have been bump bonded to unirradiated readout chips. The chip allows a non zero suppressed full analogue readout and therefore a good characterization of the sensors in terms of noise and charge collection properties. The samples have been tested using high energy pions in the H2 beam line of the CERN SPS in June and September 2003. The results of this test beam are presented and the differences between the sensor options are discussed.

  20. Development of low-silver radiographic detectors

    International Nuclear Information System (INIS)

    Troitskij, V.A.; Novikov, I.A.; Nikitin, V.F.; Krasnyj-Admoni, L.V.; Valevich, M.I.; Belyj, N.G.; Grom, V.S.

    1988-01-01

    The results of investigations on radiographic testing of welded joints of St20, 08Kh18N10T steels, the AMG-6 alloy, copper, titanium using radiographic detectors with the low silver content are presented. The roentgenographic and photographic paper, as well as the samples of experimental films with heavy elements in the photolayer are tested using intensifying screens of different types. Experimental films containing silver 2 times as less as standard X-ray films are shown to provide the similar sensitivity of testing under equal conditions, but the exposure time is two times higher. Prints on the radiophotographic paper in quality and exposure time approach to prints obtained on the RT-1 film containing silver 10 times less than that in the roentgenographic film. The exposure time of the radiographic paper is several times less than that of the ''unibrom'' contrast paper. The testing sensitivity decreases to some extent in this case

  1. Developments of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Andreazza, Attilio

    2004-01-01

    The ATLAS silicon pixel detector is the innermost tracking device of the ATLAS experiment at the Large Hardon Collider, consisting of more than 1700 modules for a total sensitive area of about 1.7m2 and over 80 million pixel cells. The concept is a hybrid of front-end chips bump bonded to the pixel sensor. The elementary pixel cell has 50μmx400μm size, providing pulse height information via the time over threshold technique. Prototype devices with oxygenated silicon sensor and rad-hard electronics built in the IBM 0.25μm process have been tested and maintain good resolution, efficiency and timing performances even after receiving the design radiation damage of 1015neq/cm2

  2. Infrastructure for Detector Research and Development towards the International Collider

    CERN Document Server

    Aguilar, J.; Fiutowski, T.; Idzik, M.; Kulis, Sz.; Przyborowski, D.; Swientek, K.; Bamberger, A.; Kohli, M.; Lupberger, M.; Renz, U.; Schumacher, M.; Zwerger, Andreas; Calderone, A.; Cussans, D.G.; Heath, H.F.; Mandry, S.; Page, R.F.; Velthuis, J.J.; Attie, D.; Calvet, D.; Colas, P.; Coppolani, X.; Degerli, Y.; Delagnes, E.; Gelin, M.; Giomataris, I.; Lutz, P.; Orsini, F.; Rialot, M.; Senee, F.; Wang, W.; Alozy, J.; Apostolakis, J.; Aspell, P.; Bergsma, F.; Campbell, M.; Formenti, F.; Santos, H.Franca; Garcia, E.Garcia; de Gaspari, M.; Giudice, P.A.; Grefe, Ch.; Grichine, V.; Hauschild, M.; Ivantchenko, V.; Kehrli, A.; Kloukinas, K.; Linssen, L.; Cudie, X.Llopart; Marchioro, A.; Musa, L.; Ribon, A.; Trampitsch, G.; Uzhinskiy, V.; Anduze, M.; Beyer, E.; Bonnemaison, A.; Boudry, V.; Brient, J.C.; Cauchois, A.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Jauffret, C.; Jeans, D.; Karar, A.; Mathieu, A.; de Freitas, P.Mora; Musat, G.; Rouge, A.; Ruan, M.; Vanel, J.C.; Videau, H.; Besson, A.; de Masi, G.Claus.R.; Doziere, G.; Dulinski, W.; Goffe, M.; Himmi, A.; Hu-Guo, Ch.; Morel, F.; Valin, I.; Winter, M.; Bonis, J.; Callier, S.; Cornebise, P.; Dulucq, F.; Giannelli, M.Faucci; Fleury, J.; Guilhem, G.; Martin-Chassard, G.; de la Taille, Ch.; Poschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Benyamna, M.; Bonnard, J.; Carloganu, C.; Fehr, F.; Gay, P.; Mannen, S.; Royer, L.; Charpy, A.; Da Silva, W.; David, J.; Dhellot, M.; Imbault, D.; Ghislain, P.; Kapusta, F.; Pham, T.Hung; Savoy-Navarro, A.; Sefri, R.; Dzahini, D.; Giraud, J.; Grondin, D.; Hostachy, J.Y.; Morin, L.; Bassignana, D.; Pellegrini, G.; Lozano, M.; Quirion, D.; Fernandez, M.; Jaramillo, R.; Munoz, F.J.; Vila, I.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Kvasnicka, P.; Aplin, S.; Bachynska, O.; Behnke, T.; Behr, J.; Dehmelt, K.; Engels, J.; Gadow, K.; Gaede, F.; Garutti, E.; Gottlicher, P.; Gregor, I.M.; Haas, T.; Henschel, H.; Koetz, U.; Lange, W.; Libov, V.; Lohmann, W.; Lutz, B.; Mnich, J.; Muhl, C.; Ohlerich, M.; Potylitsina-Kube, N.; Prahl, V.; Reinecke, M.; Roloff, P.; Rosemann, Ch.; Rubinski, Igor; Schade, P.; Schuwalov, S.; Sefkow, F.; Terwort, M.; Volkenborn, R.; Kalliopuska, J.; Mehtaelae, P.; Orava, R.; van Remortel, N.; Cvach, J.; Janata, M.; Kvasnicka, J.; Marcisovsky, M.; Polak, I.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Bergauer, T.; Dragicevic, M.; Friedl, M.; Haensel, S.; Irmler, C.; Kiesenhofer, W.; Krammer, M.; Valentan, M.; Piemontese, L.; Cotta-Ramusino, A.; Bulgheroni, A.; Jastrzab, M.; Caccia, M.; Re, V.; Ratti, L.; Traversi, G.; Dewulf, J.P.; Janssen, X.; De Lentdecker, G.; Yang, Y.; Bryngemark, L.; Christiansen, P.; Gross, P.; Jonsson, L.; Ljunggren, M.; Lundberg, B.; Mjornmark, U.; Oskarsson, A.; Richert, T.; Stenlund, E.; Osterman, L.; Rummel, S.; Richter, R.; Andricek, L.; Ninkovich, J.; Koffmane, Ch.; Moser, H.G.; Boisvert, V.; Green, B.; Green, M.G.; Misiejuk, A.; Wu, T.; Bilevych, Y.; Carballo, V.M.Blanco; Chefdeville, M.; de Nooij, L.; Fransen, M.; Hartjes, F.; van der Graaf, H.; Timmermans, J.; Abramowicz, H.; Ben-Hamu, Y.; Jikhleb, I.; Kananov, S.; Levy, A.; Levy, I.; Sadeh, I.; Schwartz, R.; Stern, A.; Goodrick, M.J.; Hommels, L.B.A.; Ward, R.Shaw.D.R.; Daniluk, W.; Kielar, E.; Kotula, J.; Moszczynski, A.; Oliwa, K.; Pawlik, B.; Wierba, W.; Zawiejski, L.; Bailey, D.S.; Kelly, M.; Eigen, G.; Brezina, Ch.; Desch, K.; Furletova, J.; Kaminski, J.; Killenberg, M.; Kockner, F.; Krautscheid, T.; Kruger, H.; Reuen, L.; Wienemann, P.; Zimmermann, R.; Zimmermann, S.; Bartsch, V.; Postranecky, M.; Warren, M.; Wing, M.; Corrin, E.; Haas, D.; Pohl, M.; Diener, R.; Fischer, P.; Peric, I.; Kaukher, A.; Schafer, O.; Schroder, H.; Wurth, R.; Zarnecki, A.F.

    2012-01-01

    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.

  3. Development of water radiocontamination monitor using a plastic scintillator detector

    International Nuclear Information System (INIS)

    Mesquita, C.H. de; Madi Filho, T.; Hamada, M.M.

    1990-01-01

    An alpha, beta and gamma radiation water monitor was developed using a plastic scintillator detector with a sensitivity level of 15 bplastic scintillator detector with a sensitivity level of 15 Bq.L -1 and a counting efficiency of 25% for 131 I. It was proposed to be used in the radiation monitoring program of the research reactor swimming-pool of Sao Paulo. A simplified design and some properties of this monitor are presented. (author) [pt

  4. Working towards coordination of detector development in Europe

    CERN Multimedia

    AIDA-2020 collaboration

    2015-01-01

    AIDA-2020, the largest EU-funded detector R&D project, kicked off at the beginning of June with a meeting at CERN (see here). The aim of the project is to advance detector technologies beyond current limits by sharing the high-quality infrastructure provided by 52 partners from 19 countries.   Knowledge exchange between the various groups who are involved in developing innovative technological solutions for the next generation of detectors is the emphasis of the AIDA-2020 EU-funded project, which started on 1 May and will run for four years. AIDA-2020 is the successor to AIDA, a four-year EU-funded programme that concluded at the end of January 2015, which successfully coordinated a joint European effort in detector R&D and significantly improved various key European research infrastructures, enabling advanced detector development for the high-energy physics community. Highlights of AIDA’s networking activities were the development of generic toolkits for detector description ...

  5. Detector development for ATLAS and supersymmetry physics studies

    International Nuclear Information System (INIS)

    Grewal, A.S.

    1999-01-01

    The Large Hadron Collider at CERN promises to offer an exciting opportunity to study particle physics at energies of up to 14 TeV. In order to exploit the potential of the LHC, the ATLAS collaboration intends to build a complex general-purpose detector. The detector must have the ability to study known physics to a higher accuracy as well as be capable of studying as yet unknown physical phenomenon. This thesis is concerned with the development of certain key components of the ATLAS inner detector as well as the ability of the detector to study certain aspects of Supersymmetry. The ATLAS Semi-Conductor Tracker is an enormously complex sub-detector with over six million channels. A scheme using pulse height modulation to transmit clock and control information to the detector is developed. Furthermore, in order to facilitate the readout of these channels as efficiently as possible with a bunch crossing frequency of 40 MHz three different readout architectures were investigated by the ATLAS collaboration - analogue, digital and binary. Work in this thesis contributed to the decision by ATLAS to adopt the binary readout architecture after it was successfully tested in test-beam and bench-top studies. The physics studies to be performed at ATLAS impose stringent requirements on the precision with which the various trackers of the detector must measure the position of track points created by charged particles as they traverse the detector. The tracking resolutions achievable with these detectors are dependent on, among other things, the precision with which positions of detector elements are known during data taking. An optical metrology system known as frequency scanning interferometry (FSI) is shown in this thesis to be capable of providing real time detector alignment information. Finally, B-quark tagging is expected to play a major role in studying a large fraction of interesting physics signatures at the LHC. This thesis studies the degradation to b

  6. Development of multiwire gas detectors for X-rays

    International Nuclear Information System (INIS)

    Sales, Eraldo de

    2015-01-01

    This work presents the prototype of a 2D position sensitive gas detector for application in X-ray scattering and diffraction experiments. Starting from a detector initially developed for other applications and will show the required changes on the original concept of this device. The strategy used to determine the necessary adaptations were based on searching in the literature for the overall characteristics of a multi-wire X-ray detector (choice of gas, pressure, window, etc.), the use of simulations, implementation of the changes and finally operational tests. Computational tools were used to calculate the mechanical strength and attenuation of the X-ray photons that helped to determine the most appropriate material for the construction of the entrance window. Detector simulations were built with Garfield software and were used to study the overall properties of the detector, and to determine the optimum parameters for the equipment operation. Typical parameters are the distance between the wires, wire diameter, high voltage to be used, among several other parameters. The results obtained showed that the multi-wire detector concept with the implemented adaptations allowed the detection of X-rays. However, depending on the application, it may be necessary improve the resolution of the equipment, in order to have a better description of the collected data. Several ideas are suggested for this improvement. It is also presented interesting results obtained with a microscopic pattern detector called triple GEM. This device belongs to the Gas Detectors Development group (GDD group) at CERN and was used in my training at this institution. The results showed the potential of the equipment for detection of X-rays. The results and simulations presented in this work, confirmed that the changes in the concept of the original detector permitted it use on X-ray detection applications. Also, it was possible to obtain several indications for further optimization, which may

  7. Development of a cylindrical tracking detector with multichannel scintillation fibers and pixelated photon detector readout

    Energy Technology Data Exchange (ETDEWEB)

    Akazawa, Y.; Miwa, K.; Honda, R.; Shiozaki, T.; Chiga, N.

    2015-07-01

    We are developing a cylindrical tracking detector for a Σp scattering experiment in J-PARC with scintillation fibers and the Pixelated Photon Detector (PPD) readout, which is called as cylindrical fiber tracker (CFT), in order to reconstruct trajectories of charged particles emitted inside CFT. CFT works not only as a tracking detector but also a particle identification detector from energy deposits. A prototype CFT consisting of two straight layers and one spiral layer was constructed. About 1100 scintillation fibers with a diameter of 0.75 mm (Kuraray SCSF-78 M) were used. Each fiber signal was read by Multi-Pixel Photon Counter (MPPC, HPK S10362-11-050P, 1×1 mm{sup 2}, 400 pixels) fiber by fiber. MPPCs were handled with Extended Analogue Silicon Photomultipliers Integrated ReadOut Chip (EASIROC) boards, which were developed for the readout of a large number of MPPCs. The energy resolution of one layer was 28% for a 70 MeV proton where the energy deposit in fibers was 0.7 MeV.

  8. Progress in the development of explosives materials detectors

    International Nuclear Information System (INIS)

    Williams, W.D.; Conrad, F.J.; Sandlin, L.L.; Burrows, T.A.

    1978-01-01

    Five hand-held explosives vapor detectors (Elscint Model EXD-2, ITI Model 70, Leigh-Marsland Model S-201, Pye Dynamics Model PD.2.A, and Xonics Model GC-710) were evaluated for sensitivity to a variety of explosives, identification of false alarm agents, and general performance and maintenance characteristics. The results of this evaluation, as presented, indicate that there is no single explosives detector which is best-suited for use at all nuclear facilities. Rather, there are several site-specific elements which must be considered when choosing an explosives detector. There are several new explosives detector technologies being developed which will out-perform existing commercial equipment. Some of these new detectors may be commercially available by the end of fiscal year 1980 and will be cost-effective to purchase and operate. The following areas of explosives detection research are discussed: nitrogen-phosphorous detectors, plasma chromatography, mass spectroscopy, small animal olfactory, vapor preconcentration, nuclear quadrupole resonance, far infrared radiation imaging, nuclear magnetic resonance, thermal neutron activation, and computerized tomography

  9. Development and Production of Array Barrier Detectors at SCD

    Science.gov (United States)

    Klipstein, P. C.; Avnon, E.; Benny, Y.; Berkowicz, E.; Cohen, Y.; Dobromislin, R.; Fraenkel, R.; Gershon, G.; Glozman, A.; Hojman, E.; Ilan, E.; Karni, Y.; Klin, O.; Kodriano, Y.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nevo, I.; Nitzani, M.; Pivnik, I.; Rappaport, N.; Rosenberg, O.; Shtrichman, I.; Shkedy, L.; Snapi, N.; Talmor, R.; Tessler, R.; Weiss, E.; Tuito, A.

    2017-09-01

    XB n or XB p barrier detectors exhibit diffusion-limited dark currents comparable with mercury cadmium telluride Rule-07 and high quantum efficiencies. In 2011, SemiConductor Devices (SCD) introduced "HOT Pelican D", a 640 × 512/15- μm pitch InAsSb/AlSbAs XB n mid-wave infrared (MWIR) detector with a 4.2- μm cut-off and an operating temperature of ˜150 K. Its low power (˜3 W), high pixel operability (>99.5%) and long mean time to failure make HOT Pelican D a highly reliable integrated detector-cooler product with a low size, weight and power. More recently, "HOT Hercules" was launched with a 1280 × 1024/15- μm format and similar advantages. A 3-megapixel, 10- μm pitch version ("HOT Blackbird") is currently completing development. For long-wave infrared applications, SCD's 640 × 512/15- μm pitch "Pelican-D LW" XB p type II superlattice (T2SL) detector has a ˜9.3- μm cut-off wavelength. The detector contains InAs/GaSb and InAs/AlSb T2SLs, and is fabricated into focal plane array (FPA) detectors using standard production processes including hybridization to a digital silicon read-out integrated circuit (ROIC), glue underfill and substrate thinning. The ROIC has been designed so that the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector family. The Pelican-D LW FPA has a quantum efficiency of ˜50%, and operates at 77 K with a pixel operability of >99% and noise equivalent temperature difference of 13 mK at 30 Hz and F/2.7.

  10. Development of a counting pixel detector for 'Digitales Roentgen'

    International Nuclear Information System (INIS)

    Lindner, M.

    2001-08-01

    The development of a single photon counting X-ray imaging detector for medical applications using hybrid pixel detectors is reported. The electronics development from the first prototype derived from detector development for particle physics experiments (ATLAS) to the imaging chip MPEC (multi picture element counters) for medical applications is described. This chip consists of 32 x 32 pixels of 200 μm x 200 μm size, each containing the complete read out electronics, i.e. an amplifier, two discriminators with adjustable thresholds and two 18-bit linear feedback shift-counters allowing energy windowing for contrast increase. Results on electronics performance are shown as well as measurements with several semiconductor materials (Si, GaAs, CdTe). Important aspects like detection efficiency, sensor homogeneity, linearity and spatial resolution are discussed. (orig.)

  11. Nurturing The STEM Pipeline: Graduate Student Leadership In NIRCam's Ongoing E/PO Mission For JWST

    Science.gov (United States)

    Schlingman, Wayne M.; Stock, N.; Teske, J.; Tyler, K.; Biller, B.; Donley, J.; Hedden, A.; Knierman, K.; Young, P.

    2011-01-01

    The Astronomy Camp for Girl Scout Leaders is an education and public outreach (E/PO) program offered by the science team of the Near-InfraRed Camera (NIRCam) for NASA's 6.5-meter James Webb Space Telescope (JWST). Since 2003, astronomy graduate students have helped design and lead biannual "Train the Trainer” workshops for adults from the Girl Scouts of the USA (GSUSA), engaging these trainers in the process of scientific inquiry and equipping them to host astronomy-related activities at the troop level. These workshops have helped revise the national GSUSA badge curriculum and directly benefitted thousands of young girls of all ages, not only in general science and math education but also in specific astronomical and technological concepts relating to JWST. To date, nine graduate students have become members of NIRCam's E/PO team. They have developed curriculum and activities used to teach concepts in stellar nucleosynthesis, lookback time, galaxy classification, etc. They have also contributed to the overall strategic approach and helped lead more general activities in basic astronomy (night sky, phases of the Moon, the scale of the Solar System and beyond, stars, galaxies, telescopes, etc.) as well as JWST-specific research areas in extrasolar planetary systems and cosmology, to pave the way for girls and women to understand the first images from JWST. The resulting experience has empowered these students to propose and to develop their own E/PO programs after graduation as postdocs and young faculty. They also continue as part of NIRCam's growing worldwide network of 160 trainers teaching young women essential STEM-related concepts using astronomy, the night sky environment, applied math, engineering, and critical thinking. NIRCam and its E/PO program are funded by NASA under contract NAS5-02105.

  12. Development of dual sensor hand-held detector

    Science.gov (United States)

    Sezgin, Mehmet

    2010-04-01

    In this paper hand-held dual sensor detector development requirements are considered dedicated to buried object detection. Design characteristics of such a system are categorized and listed. Hardware and software structures, ergonomics, user interface, environmental and EMC/EMI tests to be applied and performance test issues are studied. Main properties of the developed system (SEZER) are presented, which contains Metal Detector (MD) and Ground Penetrating Radar (GPR). The realized system has ergonomic structure and can detect both metallic and non-metallic buried objects. Moreover classification of target is possible if it was defined to the signal processing software in learning phase.

  13. An engineering design network for SSC detector development

    International Nuclear Information System (INIS)

    DiGiacomo, N.J.

    1990-01-01

    The detector systems that are being proposed to exploit the capabilities of the SSC are of a scale and scope that will make them among the most complex devices ever built. To successfully design and build these systems over the next decade, the authors must make use of integrated state of the art computer aided engineering and design (CAE/CAD) tools that have been developed and employed in industry. The challenge is to made these tools and associated engineering resources available to the spectrum of institutions - large and small universities, industries and national labs - involved in SSC detector development in such a way that each may contribute and participate in the most effective manner. The authors believe that powerful workstations running sophisticated modeling, analysis and simulation software, linked by high speed data networks and governed by modern configuration management methods offer the ideal means of arriving at the optimum detector configuration for physics at the SSC

  14. Solubility investigations in support of ultrasensitive noble gas detector development

    International Nuclear Information System (INIS)

    Gross, K.C.; Andersen, A.; Russ, W.R.; Stuenkel, D.; Valentine, J.D.

    1998-01-01

    Argonne National Laboratory (ANL) and the University of Cincinnati (UC) have been developing a new class of ultrasensitive noble gas detectors that are based upon the ANL discovery that corn oil has a high affinity for heavy noble gas absorption at room temperature but releases the noble gases with warming or by other low-energy-input means. Environmental applications for this new class of fluid-based detectors include ultrahigh sensitivity radioxenon detectors for comprehensive test ban treaty surveillance, improved fission gas detectors for enhanced environmental surveillance in the vicinity of US Department of Energy, US Department of Defense, and US Nuclear Regulatory Commission licensed facilities, and improved integrating Rn detectors for earthquake prediction. They present the results of theoretical and experimental investigations into the solubility phenomena of heavy noble gases (Rn, Xe, and Kr) in triglyceride oils. They intend for the findings presented herein to be used to guide future selection, development, and refinement of vegetable and other hydrocarbon oils to bring further enhancements to noble gas detection efficiencies

  15. Solubility investigations in support of ultrasensitive noble gas detector development

    International Nuclear Information System (INIS)

    Gross, K. C.

    1998-01-01

    Argonne National Laboratory (ANL) and the University of Cincinnati (UC) have been developing a new class of ultrasensitive noble gas detectors that are based upon the ANL discovery that corn oil has a high affinity for heavy noble gas absorption at room temperature, but releases the noble gases with warming or by other low-energy-input means. Environmental applications for this new class of fluid-based detectors include ultrahigh sensitivity radioxenon detectors for Comprehensive Test Ban Treaty Surveillance, improved fission gas detectors for enhanced environmental surveillance in the vicinity of DOE, DOD, and NRC-licensed facilities, and improved integrating Rn detectors for earthquake prediction. The purpose of the present paper is to present the results of theoretical and experimental investigations into the solubility phenomena of heavy noble gases (Rn, Xe, and Kr) in triglyceride oils. It is the authors' intention that the findings presented herein may be used to guide future selection, development, and refinement of vegetable and other hydrocarbon oils to bring further enhancements to noble gas detection efficiencies

  16. Development of a cadmium telluride pixel detector for astrophysical applications

    Science.gov (United States)

    Miyasaka, Hiromasa; Harrison, Fiona A.; Cook, Walter R.; Mao, Peter H.; Rana, Vikram R.; Ishikawa, Shin-Nosuke; Ushio, Masayoshi; Aono, Hiroyuki; Watanabe, Shin; Sato, Goro; Kokubun, Motohide; Takahashi, Tadayuki

    2009-08-01

    We are developing imaging Cadmium Telluride (CdTe) pixel detectors optimized for astrophysical hard X-ray applications. Our hybrid detector consist of a CdTe crystal 1mm thick and 2cm × 2cm in area with segmented anode contacts directly bonded to a custom low-noise application specific integrated circuit (ASIC). The CdTe sensor, fabricated by ACRORAD (Okinawa, Japan), has Schottky blocking contacts on a 605 micron pitch in a 32 × 32 array, providing low leakage current and enabling readout of the anode side. The detector is bonded using epoxy-gold stud interconnects to a custom low noise, low power ASIC circuit developed by Caltech's Space Radiation Laboratory. We have achieved very good energy resolution over a wide energy range (0.62keV FWHM @ 60keV, 10.8keV FWHM @ 662keV). We observe polarization effects at room temperature, but they are suppressed if we operate the detector at or below 0°C degree. These detectors have potential application for future missions such as the International X-ray Observatory (IXO).

  17. Development of Hybrid and Monolithic Silicon Micropattern Detectors

    CERN Multimedia

    Beker, H; Snoeys, W; Campbell, M; Lemeilleur, F; Ropotar, I

    2002-01-01

    %RD-19 \\\\ \\\\ In a collaborative effort between particle physics institutes and microelectronics industry we are undertaking the development of true 2-dimensional semiconductor particle detectors with on-chip signal processing and information extraction: the so-called micropattern detector. This detector is able to cope in a robust way with high multiplicity events at high rates, while allowing for a longer detector lifetime under irradiation and a thinner sensitive depletion region. Therefore, it will be ideally suited for the complicated events in the LHC p-p collider experiments. Following a $^{\\prime}$stepping stone$^{\\prime}$ approach several telescopes of pixel planes, totalling now 600 cm$^{2}$ with \\(>\\)~1~M elements have been used in the WA97, NA50 and NA57 lead ion experiments. This new technology has facilitated the tracking considerably (see Fig.1). Not only Si but also GaAs and possibly diamond matrices can be connected to the readout matrix. Tests with GaAs pixel detectors with the RD-19 readout ...

  18. Development of hybrid low-pressure MSGC neutron detectors

    International Nuclear Information System (INIS)

    Gebauer, B.; Alimov, S.S.; Klimov, A.Yu.; Levchanovski, F.V.; Litvinenko, E.I.; Nikiforov, A.S.; Prikhodko, V.I.; Richter, G.; Rogov, V.; Schulz, Ch.; Shashkin, V.I.; Wilhelm, M.; Wilpert, Th.

    2004-01-01

    For very high rate and resolution time-resolved experiments at next generation pulsed spallation neutron sources like ESS large-area hybrid low-pressure micro-strip gas chamber detectors are being developed. Due to their thin composite converter foil and exponential gas multiplication commencing at the converter surfaces the detectors are free of parallax, and according to detailed modeling the very high transverse and longitudinal localization accuracies in the conversion and gas multiplication processes allow position and time resolutions of ∼100 μm and 8 cps. This will open up novel applications based on time-of-flight (TOF) and single-event detection with very high dynamic range, replacing integrating CCD and image plate detectors, e.g. in radiography/tomography, TOF Laue diffraction, single crystal diffraction and focusing low-Q SANS. In this conference report new results concerning the technical realization of this detector system are reported in conjunction with a brief summary of the detector principle and with reference to earlier results

  19. Some recent developments in nuclear charged particle detectors

    International Nuclear Information System (INIS)

    Stelzer, H.

    1980-08-01

    The latest developments of large-area, position sensitive gas-filled ionization chambers are described. Multi-wire-proportional chambers as position-sensing and parallel-plate-avalanche counters as time-sensing detectors at low pressure (5 torr) have proven to be useful and reliable instruments in heavy ion physics. Gas (proportional) scintillation counters, used mainly for x-ray spectroscopy, have recently been applied as particle detectors. Finally, a brief description of a large plastic scintillator spectrometer, the Plastic Ball, is given and some of the first test and calibration data are shown

  20. Development of data acquisition and analysis software for multichannel detectors

    International Nuclear Information System (INIS)

    Chung, Y.

    1988-06-01

    This report describes the development of data acquisition and analysis software for Apple Macintosh computers, capable of controlling two multichannel detectors. With the help of outstanding graphics capabilities, easy-to-use user interface, and several other built-in convenience features, this application has enhanced the productivity and the efficiency of data analysis. 2 refs., 6 figs

  1. Development of the H1 backward silicon strip detector

    International Nuclear Information System (INIS)

    Eick, W.; Hansen, K.; Lange, W.; Prell, S.; Zimmermann, W.; Bullough, M.A.; Greenwood, N.M.; Lucas, A.D.; Newton, A.M.; Wilburn, C.D.; Horisberger, R.; Pitzl, D.; Haynes, W.J.; Noyes, G.

    1996-10-01

    The development and first results are described of a silicon strip detector telescope for the HERA experiment H1 designed to measure the polar angle of deep inelastic scattered electrons at small Bjorken x and low momentum transfers Q 2 . (orig.)

  2. Development of the H1 backward silicon strip detector

    International Nuclear Information System (INIS)

    Eick, W.; Hansen, K.; Lange, W.; Prell, S.; Zimmermann, W.; Bullough, M.A.; Greenwood, N.M.; Lucas, A.D.; Newton, A.M.; Wilburn, C.D.; Horisberger, R.; Pitzl, D.; Haynes, W.J.; Noyes, G.

    1997-01-01

    The development and first results are described of a silicon strip detector telescope for the HERA experiment H1 designed to measure the polar angle of deep inelastic scattered electrons at small Bjorken x and low momentum transfers Q 2 . (orig.)

  3. Development of Microstrip Silicon Detectors for Star and ALICE

    CERN Document Server

    Arnold, L; Coffin, J P; Guillaume, G; Guthneck, L; Higueret, S; Hundt, F; Kühn, C E; Lutz, Jean Robert; Pozdniakov, S; Rami, F; Tarchini, A; Boucham, A; Bouvier, S; Erazmus, B; Germain, M; Giliberto, S; Martin, L; Le Moal, C; Roy, C; Colledani, C; Dulinski, W; Turchetta, R

    1998-01-01

    The physics program of STAR and ALICE at ultra-relativistic heavy ion colliders, RHIC and LHC respectively, requires very good tracking capabilities. Some specific quark gluon plasma signatures, based on strange matter measurements implies quite a good secondary vertex reconstruction.For this purpose, the inner trackers of both experiments are composed of high-granularity silicon detectors. The current status of the development of double-sided silicon microstrip detectors is presented in this work.The global performance for tracking purpose adn particle identification are first reviewed. Then tests of the detectors and of the associated readout electronics are described. In-beam measurements of noise, spatial resolution, efficiency and charge matching capability, as well as radiation hardness, are examined.

  4. Development of a proton Computed Tomography Detector System

    Energy Technology Data Exchange (ETDEWEB)

    Naimuddin, Md. [Delhi U.; Coutrakon, G. [Northern Illinois U.; Blazey, G. [Northern Illinois U.; Boi, S. [Northern Illinois U.; Dyshkant, A. [Northern Illinois U.; Erdelyi, B. [Northern Illinois U.; Hedin, D. [Northern Illinois U.; Johnson, E. [Northern Illinois U.; Krider, J. [Northern Illinois U.; Rukalin, V. [Northern Illinois U.; Uzunyan, S. A. [Northern Illinois U.; Zutshi, V. [Northern Illinois U.; Fordt, R. [Fermilab; Sellberg, G. [Fermilab; Rauch, J. E. [Fermilab; Roman, M. [Fermilab; Rubinov, P. [Fermilab; Wilson, P. [Fermilab

    2016-02-04

    Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantegeous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector.

  5. Development of a wide-range tritium-concentration detector

    Energy Technology Data Exchange (ETDEWEB)

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L. [China Academy of Engineering Physics, Mianyang (China)

    2015-03-15

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10{sup 4} Bq/ml - 5*10{sup 8} Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10{sup -14} A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R{sup 2} = 0.998.

  6. Development of a wide-range tritium-concentration detector

    International Nuclear Information System (INIS)

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L.

    2015-01-01

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10 4 Bq/ml - 5*10 8 Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10 -14 A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R 2 = 0.998

  7. Development of a fire detector for underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Hemingway, M.A.; Walsh, P.T.; Hunneyball, S.R.; Williams, M.; Jobling, S.; Pell, B.; West, N.G. [Health and Safety Laboratory, Buxton (United Kingdom)

    2005-07-01

    Current fire detectors in use in UK coal mines, based on semiconductor sensors which detect gaseous products of combustion, are under-utilised, are not user-friendly, have performance limitations due to interferences and are obsolete. A joint research project was therefore instigated to develop an improved fire detector. This paper describes tests performed in an experimental mine roadway on various types of sensor. The sensors were exposed to smouldering conveyor belt, coal, wood, oil and grease, and diesel exhaust fume. A potential advanced detector is based on the combination of blue and infrared optical smoke sensors which distinguish fires and diesel exhaust from coal dust, nitric oxide or nitrogen dioxide sensors to distinguish smoulderi8ng fires form diesel exhaust, and carbon monoxide sensors for general body monitoring. 6 refs., 5 figs.

  8. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    Ahigh resolution(σ< 2 μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. EUDET was a coordinated detector R&D programme for the future International Linear Collider providing test beam infrastructure to detector R&D groups. The telescope consists of six sensor planes with a pixel pitch of either 18.4 μm or 10 μmand canbe operated insidea solenoidal magnetic fieldofupto1.2T.Ageneral purpose cooling, positioning, data acquisition (DAQ) and offine data analysis tools are available for the users. The excellent resolution, readout rate andDAQintegration capabilities made the telescopea primary beam tests tool also for several CERN based experiments. In this report the performance of the final telescope is presented. The plans for an even more flexible telescope with three differentpixel technologies(ATLASPixel, Mimosa,Timepix) withinthenew European detector infrastructure project AIDA are presented.

  9. Nonimaging detectors in drug development and approval.

    Science.gov (United States)

    Wagner, H N

    2001-07-01

    Regulatory applications for imaging biomarkers will expand in proportion to the validation of specific parameters as they apply to individual questions in the management of disease. This validation is likely to be applicable only to a particular class of drug or a single mechanism of action. Awareness among the world's regulatory authorities of the potential for these emerging technologies is high, but so is the cost to the sponsor (including the logistics of including images in a dossier), and therefore the pharmaceutical industry must evaluate carefully the potential benefit of each technology for its drug development programs, just as the authorities must consider carefully the extent to which the method is valid for the use to which the applicant has put it. For well-characterized tracer systems, it may be possible to design inexpensive cameras that make rapid assessments.

  10. Development of a Massive, Highly Multiplexible, Phonon-Mediated Particle Detector Using Kinetic Inductance Detectors

    Science.gov (United States)

    Chang, Y.-Y.; Cornell, B.; Aralis, T.; Bumble, B.; Golwala, S. R.

    2018-04-01

    We present a status update on the development of a phonon-mediated particle detector using kinetic inductance detector (KID). The design is intended for O(1) kg substrate, using O(102) KIDs on a single readout line, to image the athermal phonon distribution at energy resolution. The design specification is set by the need to improve position reconstruction fidelity while maintaining low energy threshold for future rare-event searches such as for low-mass dark matter. We report on the design, which shows negligible crosstalk and > 95% inductor current uniformity, using the coplanar waveguide feedline, ground shield, and a new class of KIDs with symmetric coplanar stripline (sCPS) inductor. The multiplexing is designed upon the frequency-geometry relation we develop for the sCPS KIDs. We introduce the fabrications of the Nb RF assessment prototypes and the high phonon collection efficiency Al-Nb devices. We achieve ≲ 0.07% frequency displacement on a 80-KID RF assessment prototype, and the result indicates that we may place more than 180 resonances in our 0.4 GHz readout band with minimal frequency misordering. The coupling quality factors are ˜ 105 as designed. Finally, we update our work in progress in fabricating the O(102) KID, bi-material, O(1) kg detectors, and the expected position and energy resolutions.

  11. Integrated Modeling for the James Webb Space Telescope (JWST) Project: Structural Analysis Activities

    Science.gov (United States)

    Johnston, John; Mosier, Mark; Howard, Joe; Hyde, Tupper; Parrish, Keith; Ha, Kong; Liu, Frank; McGinnis, Mark

    2004-01-01

    This paper presents viewgraphs about structural analysis activities and integrated modeling for the James Webb Space Telescope (JWST). The topics include: 1) JWST Overview; 2) Observatory Structural Models; 3) Integrated Performance Analysis; and 4) Future Work and Challenges.

  12. Testing of the KRI-developed Silicon PIN Radioxenon Detector

    International Nuclear Information System (INIS)

    Foxe, Michael P.; McIntyre, Justin I.

    2015-01-01

    Radioxenon detectors are used for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in a network of detectors throughout the world called the International Monitoring System (IMS). The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Provisional Technical Secretariat (PTS) has tasked Pacific Northwest National Laboratory (PNNL) with testing a V.G. Khlopin Radium Institute (KRI) and Lares Ltd-developed Silicon PIN detector for radioxenon detection. PNNL measured radioxenon with the silicon PIN detector and determined its potential compared to current plastic scintillator beta cells. While the PNNL tested Si detector experienced noise issues, a second detector was tested in Russia at Lares Ltd, which did not exhibit the noise issues. Without the noise issues, the Si detector produces much better energy resolution and isomer peak separation than a conventional plastic scintillator cell used in the SAUNA systems in the IMS. Under the assumption of 1 cm 3 of Xe in laboratory-like conditions, 24-hr count time (12-hr count time for the SAUNA), with the respective shielding the minimum detectable concentrations for the Si detector tested by Lares Ltd (and a conventional SAUNA system) were calculated to be: 131m Xe - 0.12 mBq/m 3 (0.12 mBq/m 3 ); 133 Xe - 0.18 mBq/m 3 (0.21 mBq/m 3 ); 133m Xe - 0.07 mBq/m 3 (0.15 mBq/m 3 ); 135 Xe - 0.45 mBq/m 3 (0.67 mBq/m 3 ). Detection limits, which are one of the important factors in choosing the best detection technique for radioxenon in field conditions, are significantly better than for SAUNA-like detection systems for 131m Xe and 133m Xe, but similar for 133 Xe and 135 Xe. Another important factor is the amount of ''memory effect'' or carry over signal from one radioxenon measurement to the subsequent sample. The memory effect is reduced by a factor of 10 in the Si PIN detector compared to the current plastic scintillator cells. There is potential for further reduction with the

  13. JWST Wavefront Sensing and Control: Operations Plans, Demonstrations, and Status

    Science.gov (United States)

    Perrin, Marshall; Acton, D. Scott; Lajoie, Charles-Philippe; Knight, J. Scott; Myers, Carey; Stark, Chris; JWST Wavefront Sensing & Control Team

    2018-01-01

    After JWST launches and unfolds in space, its telescope optics will be aligned through a complex series of wavefront sensing and control (WFSC) steps to achieve diffraction-limited performance. This iterative process will comprise about half of the observatory commissioning time (~ 3 out of 6 months). We summarize the JWST WFSC process, schedule, and expectations for achieved performance, and discuss our team’s activities to prepare for an effective & efficient telescope commissioning. During the recently-completed OTIS cryo test at NASA JSC, WFSC demonstrations showed the flight-like operation of the entire JWST active optics and WFSC system from end to end, including all hardware and software components. In parallel, the same test data were processed through the JWST Mission Operations Center at STScI to demonstrate the readiness of ground system components there (such as the flight operations system, data pipelines, archives, etc). Moreover, using the Astronomer’s Proposal Tool (APT), the entire telescope commissioning program has been implemented, reviewed, and is ready for execution. Between now and launch our teams will continue preparations for JWST commissioning, including further rehearsals and testing, to ensure a successful alignment of JWST’s telescope optics.

  14. Development of a Ferrite-Based Electromagnetic Wave Detector

    Directory of Open Access Journals (Sweden)

    Muhammad Hanish Zakariah

    2017-11-01

    Full Text Available Direct detection of hydrocarbon by an active source using electromagnetic (EM wave termed Sea Bed Logging (SBL has shown very promising results. However, currently available electromagnetic wave technology has a number of challenges including sensitivity and lapsed time. Our initial response to this issue is to develop a ferrite-based EM wave detector for Sea Bed Logging (SBL. Ferrite bar and copper rings in various diameters were used as detector 1 (D1. For Detector 2 (D2, toroid added with copper wires in different lengths at the centre of it were used. The first experiment is to determine the inductance and resistance for both detectors by using LCR meter. We obtained the highest inductance value of 0.02530 mH at the ferrite bar when it was paired with a 15 cm diameter copper ring and 0.00526 mH for D2 using a 100 cm copper wire placed at the centre of the toroid. The highest resistivity for D1 was measured at ferrite bar paired with a 15 cm diameter  copper ring and 1.099 Ω when using 20 cm length of copper wire. The second interest deals with voltage peak-to-peak (Vp-p value for both detectors by using oscilloscope. The highest voltage value at the ferrite bar of D1 was 25.30 mV. While at D2, the highest voltage measured was 27.70 mV when using a 100 cm copper wire. The third premise is the comparison of sensitivity and lapsed time for both detectors. It was found that D1 was 61% more sensitive than D2 but had higher lapsed time than D2.

  15. Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1989-01-01

    During the past year, considerable effort has been applied to the development of scintillating fiber detectors in several areas: new scintillation liquids and studies of their fluorescence properties; new fluorescent dyes based on non-intramolecular proton transfer; new dyes based on intramolecular proton transfer; incorporation of these new dyes in plastic (polystyrene) and liquid scintillation solutions; development of small cross section glass capillaries for the containment of liquid scintillators; studies of waveguide characteristics; studies of image intensifier phosphor screen characteristics; initial steps to form a collaboration to study and develop appropriate new properties of the Solid State Photomultiplier; construction of a new laboratory at Notre Dame to enhance our capabilities for further measurements and studies; and organization of and execution of a Workshop on Scintillating Fiber Detector Development for the SSC, held at Fermilab, November 14--16, 1988

  16. HST PanCET Program: A Cloudy Atmosphere for the Promising JWST Target WASP-101b

    Energy Technology Data Exchange (ETDEWEB)

    Wakeford, H. R.; Mandell, A. [Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stevenson, K. B.; Lewis, N. K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sing, D. K.; Evans, T. [Astrophysics Group, Physics Building, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); López-Morales, M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Marley, M. [NASA Ames Research Center, MS 245-5, Moffett Field, CA 94035 (United States); Kataria, T. [NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Ballester, G. E. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, 1541 E Univ. Boulevard, Tucson, AZ 85721 (United States); Barstow, J. [Physics and Astronomy, University College London, London (United Kingdom); Ben-Jaffel, L. [Institut d’Astrophysique de Paris, CNRS, UMR 7095 and Sorbonne Universités, UPMC Paris 6, 98 bis bd Arago, F-75014 Paris (France); Bourrier, V.; Ehrenreich, D. [Observatoire de l’Université de Genève, 51 chemin des Maillettes, CH-1290 Sauverny (Switzerland); Buchhave, L. A. [Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark); García Muñoz, A., E-mail: hannah.wakeford@nasa.gov [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, D-10623 Berlin (Germany); and others

    2017-01-20

    We present results from the first observations of the Hubble Space Telescope (HST) Panchromatic Comparative Exoplanet Treasury program for WASP-101b, a highly inflated hot Jupiter and one of the community targets proposed for the James Webb Space Telescope ( JWST ) Early Release Science (ERS) program. From a single HST Wide Field Camera 3 observation, we find that the near-infrared transmission spectrum of WASP-101b contains no significant H{sub 2}O absorption features and we rule out a clear atmosphere at 13 σ . Therefore, WASP-101b is not an optimum target for a JWST ERS program aimed at observing strong molecular transmission features. We compare WASP-101b to the well-studied and nearly identical hot Jupiter WASP-31b. These twin planets show similar temperature–pressure profiles and atmospheric features in the near-infrared. We suggest exoplanets in the same parameter space as WASP-101b and WASP-31b will also exhibit cloudy transmission spectral features. For future HST exoplanet studies, our analysis also suggests that a lower count limit needs to be exceeded per pixel on the detector in order to avoid unwanted instrumental systematics.

  17. Development of cryogenic installations for large liquid argon neutrino detectors

    CERN Document Server

    Adamowski, M; Geynisman, M; Hentschel, S; Montanari, D; Nessi, M; Norris, B

    2015-01-01

    A proposal for a very large liquid argon (68,000 kg) based neutrino detector is being studied. To validate the design principles and the detector technology, and to gain experience in the development of the cryostats and the cryogenic systems needed for such large experiments, several smaller scale installations will be developed and implemented, at Fermilab and CERN. The cryogenic systems for these installations will be developed, constructed, installed and commissioned by an international engineering team. These installations shall bring the required cooling power under specific conditions to the experiments for the initial cool-down and the long term operation, and shall also guarantee the correct distribution of the cooling power within the cryostats to ensure a homogeneous temperature distribution within the cryostat itself. The cryogenic systems shall also include gaseous and liquid phase argon purification devices to be used to reach and maintain the very stringent purity requirements needed for these...

  18. Updates on Software development for a RICH detector

    Science.gov (United States)

    Voloshin, Andrew; Benmokhtar, Fatiha; Lendacky, Andrew; Goodwill, Justin

    2017-01-01

    The CLAS12 detector at Thomas Jefferson National Accelerator Facility (TJNAF) is undergoing an upgrade. One of the improvements is the addition of a Ring Imaging Cherenkov (RICH) detector to improve particle identification in the 3-8 GeV/c momentum range. Approximately 400 multi anode photomultiplier tubes (MAPMTs) are going to be used to detect Cherenkov Radiation in the single photoelectron spectra (SPS). Software development for slow control as well as online monitoring is under development. I will be presenting my work on the development of a java based programs for a monitor and explain its interaction with a Mysql database where the MAPMTs information is stored as well as the techniques used to visualize Cherenkov rings.

  19. Optimal Strategies for Probing Terrestrial Exoplanet Atmospheres with JWST

    Science.gov (United States)

    Batalha, Natasha E.; Lewis, Nikole K.; Line, Michael

    2018-01-01

    It is imperative that the exoplanet community determines the feasibility and the resources needed to yield high fidelity atmospheric compositions from terrestrial exoplanets. In particular, LHS 1140b and the TRAPPIST-1 system, already slated for observations by JWST’s Guaranteed Time Observers, will be the first two terrestrial planets observed by JWST. I will discuss optimal observing strategies for observing these two systems, focusing on the NIRSpec Prism (1-5μm) and the combination of NIRISS SOSS (1-2.7μm) and NIRSpec G395H (3-5μm). I will also introduce currently unsupported JWST readmodes that have the potential to greatly increase the precision on our atmospheric spectra. Lastly, I will use information content theory to compute the expected confidence interval on the retrieved abundances of key molecular species and temperature profiles as a function of JWST observing cycles.

  20. Recent X-ray hybrid CMOS detector developments and measurements

    Science.gov (United States)

    Hull, Samuel V.; Falcone, Abraham D.; Burrows, David N.; Wages, Mitchell; Chattopadhyay, Tanmoy; McQuaide, Maria; Bray, Evan; Kern, Matthew

    2017-08-01

    The Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors (TIS), have progressed their efforts to improve soft X-ray Hybrid CMOS detector (HCD) technology on multiple fronts. Having newly acquired a Teledyne cryogenic SIDECARTM ASIC for use with HxRG devices, measurements were performed with an H2RG HCD and the cooled SIDECARTM. We report new energy resolution and read noise measurements, which show a significant improvement over room temperature SIDECARTM operation. Further, in order to meet the demands of future high-throughput and high spatial resolution X-ray observatories, detectors with fast readout and small pixel sizes are being developed. We report on characteristics of new X-ray HCDs with 12.5 micron pitch that include in-pixel CDS circuitry and crosstalk-eliminating CTIA amplifiers. In addition, PSU and TIS are developing a new large-scale array Speedster-EXD device. The original 64 × 64 pixel Speedster-EXD prototype used comparators in each pixel to enable event driven readout with order of magnitude higher effective readout rates, which will now be implemented in a 550 × 550 pixel device. Finally, the detector lab is involved in a sounding rocket mission that is slated to fly in 2018 with an off-plane reflection grating array and an H2RG X-ray HCD. We report on the planned detector configuration for this mission, which will increase the NASA technology readiness level of X-ray HCDs to TRL 9.

  1. Development of kinetic inductance detectors for CUORE and LUCIFER

    International Nuclear Information System (INIS)

    Pagnanini, L.

    2015-01-01

    The purpose of the CALDER project (Cryogenic wide-Area Light Detector with Excellent Resolution) is to develop new cryogenic light detectors to be used in CUORE and LUCIFER to improve the sensitivity in the search of neutrinoless double beta decay (0νββ) and dark matter. The sensitivity of CUORE can be increased by a factor of 3, thanks to the reduction of the α background, obtained by detecting the Cherenkov light (∼ 100 eV) emitted by βs events and not by the α-background. In LUCIFER the ability to discriminate β/γ events (∼ 100 eV of scintillation light) from nuclear recoils (no light) in the low-energy region opens the way to search for dark matter interactions. This detectors must have an active area of 25 cm 2 , a baseline energy resolution of ∼ 20 eV RMS and a working temperature of 10 mK. The technology chosen is based on the phonon-mediated kinetic inductance detectors (KIDs). This paper presents the results of the first prototypes tested.

  2. Development of Strained-Layer Superlattice (SLS) IR Detector Camera

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors which may be the next generation of band-gap engineered, large format infrared detector...

  3. Progress in the development of a tracking transition radiation detector

    International Nuclear Information System (INIS)

    Whitaker, J.S.; Beatty, J.; Shank, J.T.; Wilson, R.J.; Polychronakos, V.A.; Radeka, V.; Stephani, D.; Beker, H.; Bock, R.K.; Botlo, M.; Fabjan, C.W.; Pfennig, J.; Price, M.J.; Willis, W.J.; Akesson, T.; Chernyatin, V.; Dolgoshein, B.; Nevsky, P.; Potekhin, M.; Romanjuk, A.; Sosnovtsev, V.; Gavrilenko, I.; Maiburov, S.; Muravjev, S.; Shmeleva, A.

    1990-01-01

    The purpose of the TRD/Tracker is to provide charged particle tracking in the r-z plane and to provide particle identification capabilities that are independent of and complementary to calorimetric methods. The tracking goals include observation of the charged particle multiplicity and topology, reconstruction of the primary vertex or vertices, and assignment of charged particles to the correct vertex. Particle identification goals include the independent validation of electron candidates selected by calorimetric signatures, the rejection of false electron candidates that rise from accidental overlaps of low momentum charged particles with photon-induced electromagnetic showers in the calorimeter, and the identification of electrons arising from Dalitz decays or from photon conversions. The authors report on progress towards the development of an integrated transition radiation detector and charged particle tracker. Mechanical design and simulation of a detector has been pursued; a prototype device with 240 channels has been constructed and tested. Innovative construction techniques have been developed

  4. Developing a fast simulator for irradiated silicon detectors

    CERN Document Server

    Diez Gonzalez-Pardo, Alvaro

    2015-01-01

    Simulation software for irradiated silicon detectors has been developed on the basis of an already existing C++ simulation software called TRACS[1]. This software has been already proven useful in understanding non-irradiated silicon diodes and microstrips. In addition a wide variety of user-focus features has been implemented to improve on TRACS flexibility. Such features include an interface to allow any program to leverage TRACS functionalities, a configuration file and improved documentation.

  5. Spitzer/JWST Cross Calibration: IRAC Observations of Potential Calibrators for JWST

    Science.gov (United States)

    Carey, Sean J.; Gordon, Karl D.; Lowrance, Patrick; Ingalls, James G.; Glaccum, William J.; Grillmair, Carl J.; E Krick, Jessica; Laine, Seppo J.; Fazio, Giovanni G.; Hora, Joseph L.; Bohlin, Ralph

    2017-06-01

    We present observations at 3.6 and 4.5 microns using IRAC on the Spitzer Space Telescope of a set of main sequence A stars and white dwarfs that are potential calibrators across the JWST instrument suite. The stars range from brightnesses of 4.4 to 15 mag in K band. The calibration observations use a similar redundancy to the observing strategy for the IRAC primary calibrators (Reach et al. 2005) and the photometry is obtained using identical methods and instrumental photometric corrections as those applied to the IRAC primary calibrators (Carey et al. 2009). The resulting photometry is then compared to the predictions based on spectra from the CALSPEC Calibration Database (http://www.stsci.edu/hst/observatory/crds/calspec.html) and the IRAC bandpasses. These observations are part of an ongoing collaboration between IPAC and STScI investigating absolute calibration in the infrared.

  6. Development and prospects of the new gaseous detector 'Micromegas'

    International Nuclear Information System (INIS)

    Giomataris, Y.

    1998-01-01

    We report results obtained with the novel gaseous Micromegas detector (MICRO MEsh GAseous Structure), which is under development at Saclay. A simple theory to explain the advantage of the small amplification gap (50-100 μm) is developed. A set of large detectors was exposed during several months in high-intensity particle beams. Full efficiency and a large plateau has been obtained with a 3 mm conversion gap. With a conversion gap as small as 1 mm the efficiency reaches 96 %. A spatial resolution better then 60 μm has been observed with anode strips of 317 μm pitch. Simulations show that with a pitch of 100 μm and the appropriate gas an accuracy of 10 μm and a time resolution of 1 νs is within reach. This development leads to a new generation of cheap position sensitive detectors which would permit high precision tracking or vertexing close to the interaction region, in very high-rate environments. (author)

  7. Development of mirror coatings for gravitational-wave detectors

    Science.gov (United States)

    Steinlechner, J.

    2018-05-01

    Gravitational waves are detected by measuring length changes between mirrors in the arms of kilometre-long Michelson interferometers. Brownian thermal noise arising from thermal vibrations of the mirrors can limit the sensitivity to distance changes between the mirrors, and, therefore, the ability to measure gravitational-wave signals. Thermal noise arising from the highly reflective mirror coatings will limit the sensitivity both of current detectors (when they reach design performance) and of planned future detectors. Therefore, the development of coatings with low thermal noise, which at the same time meet strict optical requirements, is of great importance. This article gives an overview of the current status of coatings and of the different approaches for coating improvement. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  8. Proton Radiography: Cross Section Measurement and Detector Development

    International Nuclear Information System (INIS)

    Longo, Michael J.

    2007-01-01

    Proton radiography offers significant advantages over conventional X-ray radiography, including the capability of looking into thick, dense materials, better contrast for a wide range of materials, sensitivity to different materials of similar density, and better resolution because of the ability to focus beams. In order to achieve this capability it is crucial to understand the background due to neutrons and photons and to develop techniques to reduce it to tolerable levels. The physics goal of this project is to measure forward production of neutrons and photons produced by high-energy proton beams striking a variety of targets. This work is being carried out in conjunction with the Fermilab Experiment 907 (MIPP) collaboration including physicists from Lawrence Livermore Laboratory. Our group is responsible for the E907 forward neutron/photon calorimeters. These are the only detectors in the experiment that provide information on neutrons and photons. We are taking a leading role in obtaining and analyzing the for-ward production data and in developing an optimal detector for proton radiography. With the support of our Stewardship Science Academic Alliances grant, we were able to design, build, and commission the calorimeters on budget and ahead of schedule. E-907 officially started physics running at Fermilab in January 2005, and data taking continued through February 2006. Data were taken on a range of targets, from liquid hydrogen to uranium, at beam energies from 5 GeV/c to 120 GeV/c. The analysis of the data is challenging because data from many different detector systems must be understood and merged and over 31 million events were accumulated. Our recent efforts have been devoted to the calibration of the neutron and photon detectors, to track and shower reconstruction, identification of forward-going neutrons, and simulation of the calorimeters in a Monte Carlo. Reconstruction of the data with improved tracking is underway

  9. Planning JWST NIRSpec MSA spectroscopy using NIRCam pre-images

    Science.gov (United States)

    Beck, Tracy L.; Ubeda, Leonardo; Kassin, Susan A.; Gilbert, Karoline; Karakla, Diane M.; Reid, I. N.; Blair, William P.; Keyes, Charles D.; Soderblom, D. R.; Peña-Guerrero, Maria A.

    2016-07-01

    The Near-Infrared Spectrograph (NIRSpec) is the work-horse spectrograph at 1-5microns for the James Webb Space Telescope (JWST). A showcase observing mode of NIRSpec is the multi-object spectroscopy with the Micro-Shutter Arrays (MSAs), which consist of a quarter million tiny configurable shutters that are 0. ''20×0. ''46 in size. The NIRSpec MSA shutters can be opened in adjacent rows to create flexible and positionable spectroscopy slits on prime science targets of interest. Because of the very small shutter width, the NIRSpec MSA spectral data quality will benefit significantly from accurate astrometric knowledge of the positions of planned science sources. Images acquired with the Hubble Space Telescope (HST) have the optimal relative astrometric accuracy for planning NIRSpec observations of 5-10 milli-arcseconds (mas). However, some science fields of interest might have no HST images, galactic fields can have moderate proper motions at the 5mas level or greater, and extragalactic images with HST may have inadequate source information at NIRSpec wavelengths beyond 2 microns. Thus, optimal NIRSpec spectroscopy planning may require pre-imaging observations with the Near-Infrared Camera (NIRCam) on JWST to accurately establish source positions for alignment with the NIRSpec MSAs. We describe operational philosophies and programmatic considerations for acquiring JWST NIRCam pre-image observations for NIRSpec MSA spectroscopic planning within the same JWST observing Cycle.

  10. New developments in CVD diamond for detector applications

    Science.gov (United States)

    Adam, W.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K. K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Keil, M.; Knoepfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pernicka, M.; Perera, L.; Potenza, R.; Riester, J. L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    Chemical Vapor Deposition (CVD) diamond has been discussed extensively as an alternative sensor material for use very close to the interaction region of the LHC and other machines where extreme radiation conditions exist. During the last seven years the RD42 collaboration has developed diamond detectors and tested them with LHC electronics towards the end of creating a device usable by experiments. The most recent results of this work are presented. Recently, a new form of CVD diamond has been developed: single crystal CVD diamond which resolves many of the issues associated with poly-crystalline CVD material. The first tests of this material are also presented.

  11. New developments in CVD diamond for detector applications

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W. [HEPHY, Vienna (Austria); Berdermann, E. [GSI, Darmstadt (Germany); Bergonzo, P.; Brambilla, A. [LETI/DEIN/SPE/CEA Saclay (France); Boer, W. de [Universitaet Karlsruhe, Karlsruhe (Germany); Bogani, F. [LENS, Florence (Italy); Borchi, E.; Bruzzi, M. [University of Florence (Italy); Colledani, C.; Dulinski, W. [LEPSI, IN2P3/CNRS-ULP, Strasbourg (France); Conway, J.; Doroshenko, J. [Rutgers University, Piscataway (United States); D' Angelo, P.; Furetta, C. [INFN, Milano (Italy); Dabrowski, W. [UMM, Cracow (Poland); Delpierre, P.; Fallou, A. [CPPM, Marseille (France); Eijk, B. van [NIKHEF, Amsterdam (Netherlands); Fischer, P. [Universitaet Bonn, Bonn (Germany); Fizzotti, F. [University of Torino (Italy); Gan, K.K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Keil, M.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pernicka, M.; Perera, L.; Potenza, R.; Riester, J.L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2004-07-01

    Chemical Vapor Deposition (CVD) diamond has been discussed extensively as an alternative sensor material for use very close to the interaction region of the LHC and other machines where extreme radiation conditions exist. During the last seven years the RD42 collaboration has developed diamond detectors and tested them with LHC electronics towards the end of creating a device usable by experiments. The most recent results of this work are presented. Recently, a new form of CVD diamond has been developed: single crystal CVD diamond which resolves many of the issues associated with poly-crystalline CVD material. The first tests of this material are also presented. (orig.)

  12. New developments in CVD diamond for detector applications

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Brambilla, A.; Boer, W. de; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Dulinski, W.; Conway, J.; Doroshenko, J.; D'Angelo, P.; Furetta, C.; Dabrowski, W.; Delpierre, P.; Fallou, A.; Eijk, B. van; Fischer, P.; Fizzotti, F.; Gan, K.K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Keil, M.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pernicka, M.; Perera, L.; Potenza, R.; Riester, J.L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2004-01-01

    Chemical Vapor Deposition (CVD) diamond has been discussed extensively as an alternative sensor material for use very close to the interaction region of the LHC and other machines where extreme radiation conditions exist. During the last seven years the RD42 collaboration has developed diamond detectors and tested them with LHC electronics towards the end of creating a device usable by experiments. The most recent results of this work are presented. Recently, a new form of CVD diamond has been developed: single crystal CVD diamond which resolves many of the issues associated with poly-crystalline CVD material. The first tests of this material are also presented. (orig.)

  13. Development of a new first-aid biochemical detector

    Science.gov (United States)

    Hu, Jingfei; Liao, Haiyang; Su, Shilin; Ding, Hao; Liu, Suquan

    2016-10-01

    The traditional biochemical detector exhibits poor adaptability, inconvenient carrying and slow detection, which can't meet the needs of first-aid under field condition like natural or man-made disasters etc. Therefore a scheme of first-aid biochemical detector based on MOMES Micro Spectrometer, UV LED and Photodiode was proposed. An optical detection structure combined continuous spectrum sweep with fixed wavelength measurement was designed, which adopted mobile detection optical path consisting of Micro Spectrometer and Halogen Lamp to detect Chloride (Cl-), Creatinine (Cre), Glucose (Glu), Hemoglobin (Hb). The UV LED and Photodiode were designed to detect Potassium (K-), Carbon dioxide (CO2), Sodium (Na+). According to the field diagnosis and treatment requirements, we designed the embedded control hardware circuit and software system, the prototype of first-aid biochemical detector was developed and the clinical trials were conducted. Experimental results show that the sample's absorbance repeatability is less than 2%, the max coefficient of variation (CV) in the batch repeatability test of all 7 biochemical parameters in blood samples is 4.68%, less than the clinical requirements 10%, the correlation coefficient (R2) in the clinical contrast test with AU5800 is almost greater than 0.97. To sum up, the prototype meets the requirements of clinical application.

  14. Detector development for the High Luminosity Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00367854; Gößling, Claus

    To maximise the discovery potential of the Large Hadron Collider, it will be upgraded to the High Luminosity Large Hadron Collider in 2024. New detector challenges arise from the higher instantaneous luminosity and the higher particle flux. The new ATLAS Inner Tracker will replace the current tracking detector to be able to cope with these challenges. Many pixel detector technologies exist for particle tracking, but their suitability for the ATLAS Inner Tracker needs to be studied. Active high-voltage CMOS sensors, which are produced in industrialised processes, offer a fast readout and radiation tolerance. In this thesis the HV2FEI4v2 sensor, which is capacitively coupled to the ATLAS Pixel FE-I4 readout chip, is characterised for the usage in the outer layers of the ATLAS Inner Tracker. Key quantities of this prototype module are studied, such as the hit efficiency and the subpixel encoding. The early HV2FEI4v2 prototype shows promising results as a starting point for further module developments. Active CMO...

  15. Flat-response x-ray-diode-detector development

    International Nuclear Information System (INIS)

    Tirsell, G.

    1982-10-01

    In this report we discuss the design of an improved sub-nanosecond flat response x-ray diode detector needed for ICF diagnostics. This device consists of a high Z cathode and a complex filter tailored to flatten the response so that the total x-ray energy below 1.5 keV can be measured using a single detector. Three major problems have become evident as a result of our work with the original LLNL design including deviation from flatness due to a peak in the response below 200 eV, saturation at relatively low x-ray fluences, and long term gold cathode instability. We are investigating grazing incidence reflection to reduce the response below 200 eV, new high Z cathode materials for long term stability, and a new complex filter for improved flatness. Better saturation performance will require a modified XRD detector under development with reduced anode to cathode spacing and increased anode bias voltage

  16. Industrial workshop on LASL semiconductor radiation-detector research and development

    International Nuclear Information System (INIS)

    Endebrock, M.

    1978-11-01

    An Industrial Workshop on LASL Semiconductor Radiation Detector Research and Development was held at the Los Alamos Scientific Laboratory (LASL) in the spring of 1977. The purpose was to initiate communication between our detector research and development program and industry. LASL research programs were discussed with special emphasis on detector problems. Industrial needs and capabilities in detector research and development were also presented. Questions of technology transfer were addressed. The notes presented here are meant to be informal, as were the presentations

  17. AN IMAGE-PLANE ALGORITHM FOR JWST'S NON-REDUNDANT APERTURE MASK DATA

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Alexandra Z. [Johns Hopkins University Department of Physics and Astronomy 3400 North Charles, Baltimore, MD 21218 (United States); Pueyo, Laurent; Sivaramakrishnan, Anand [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Lacour, Sylvestre [LESIA, CNRS/UMR-8109, Observatoire de Paris, UPMC, Université Paris Diderot 5 place Jules Janssen, 92195 Meudon (France)

    2015-01-10

    The high angular resolution technique of non-redundant masking (NRM) or aperture masking interferometry (AMI) has yielded images of faint protoplanetary companions of nearby stars from the ground. AMI on James Webb Space Telescope (JWST)'s Near Infrared Imager and Slitless Spectrograph (NIRISS) has a lower thermal background than ground-based facilities and does not suffer from atmospheric instability. NIRISS AMI images are likely to have 90%-95% Strehl ratio between 2.77 and 4.8 μm. In this paper we quantify factors that limit the raw point source contrast of JWST NRM. We develop an analytic model of the NRM point spread function which includes different optical path delays (pistons) between mask holes and fit the model parameters with image plane data. It enables a straightforward way to exclude bad pixels, is suited to limited fields of view, and can incorporate effects such as intra-pixel sensitivity variations. We simulate various sources of noise to estimate their effect on the standard deviation of closure phase, σ{sub CP} (a proxy for binary point source contrast). If σ{sub CP} < 10{sup –4} radians—a contrast ratio of 10 mag—young accreting gas giant planets (e.g., in the nearby Taurus star-forming region) could be imaged with JWST NIRISS. We show the feasibility of using NIRISS' NRM with the sub-Nyquist sampled F277W, which would enable some exoplanet chemistry characterization. In the presence of small piston errors, the dominant sources of closure phase error (depending on pixel sampling, and filter bandwidth) are flat field errors and unmodeled variations in intra-pixel sensitivity. The in-flight stability of NIRISS will determine how well these errors can be calibrated by observing a point source. Our results help develop efficient observing strategies for space-based NRM.

  18. New detector developments for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Ziegler, S.I.; Pichler, B.; Lorenz, E.

    1998-01-01

    The strength of quantitative, functional imaging using positron emission tomography, specially in small animals, is limited due to the spatial resolution. Therefore, various tomograph designs employing new scintillators, light sensors, or coincidence electronic are investigated to improve resolution without losses in sensitivity. Luminous scintillators with short light decay time in combination with novel readout schemes using photomultipliers or semiconductor detectors are currently tested by several groups and are implemented in tomographs for small animals. This review summarises the state of development in high resolution positron emission tomography with a detailed description of a system incorporating avalanche photodiode arrays and small scintillation crystals. (orig.) [de

  19. The development of diamond tracking detectors for the LHC

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Boer, W. de; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K.K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Karl, C.; Kass, R.; Keil, M.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Perera, L.; Pernegger, H.; Pernicka, M.; Polesello, P.; Potenza, R.; Riester, J.L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2003-01-01

    Chemical vapor deposition diamond has been discussed extensively as an alternate sensor material for use very close to the interaction region of the LHC where extreme radiation conditions exist. During the last few years diamond devices have been manufactured and tested with LHC electronics with the goal of creating a detector usable by all LHC experiment. Extensive progress on diamond quality, on the development of diamond trackers and on radiation hardness studies has been made. Transforming the technology to the LHC specific requirements is now underway. In this paper we present the recent progress achieved

  20. The development of diamond tracking detectors for the LHC

    CERN Document Server

    Adam, W; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, M; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Doroshenko, J; Dulinski, W; van Eijk, B; Fallou, A; Fischer, P; Fizzotti, F; Furetta, C; Gan, K K; Ghodbane, N; Grigoriev, E; Hallewell, G D; Han, S; Hartjes, F; Hrubec, Josef; Husson, D; Kagan, H; Kaplon, J; Karl, C; Kass, R; Keil, M; Knöpfle, K T; Koeth, T W; Krammer, M; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Marshall, R D; Meier, D; Menichelli, D; Meuser, S; Mishina, M; Moroni, L; Noomen, J; Oh, A; Perera, L; Pernegger, H; Pernicka, M; Polesello, P; Potenza, R; Riester, J L; Roe, S; Rudge, A; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Sutera, C; Trischuk, W; Tromson, D; Tuvé, C; Vincenzo, B; Weilhammer, P; Wermes, N; Wetstein, M; Zeuner, W; Zöller, M

    2003-01-01

    Chemical vapor deposition diamond has been discussed extensively as an alternate sensor material for use very close to the interaction region of the LHC where extreme radiation conditions exist. During the last few years diamond devices have been manufactured and tested with LHC electronics with the goal of creating a detector usable by all LHC experiment. Extensive progress on diamond quality, on the development of diamond trackers and on radiation hardness studies has been made. Transforming the technology to the LHC specific requirements is now underway. In this paper we present the recent progress achieved.

  1. The development of diamond tracking detectors for the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Boer, W. de; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K.K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H. E-mail: harris.kagan@cern.ch; Kaplon, J.; Karl, C.; Kass, R.; Keil, M.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; Mac Lynne, L.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Perera, L.; Pernegger, H.; Pernicka, M.; Polesello, P.; Potenza, R.; Riester, J.L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M

    2003-11-21

    Chemical vapor deposition diamond has been discussed extensively as an alternate sensor material for use very close to the interaction region of the LHC where extreme radiation conditions exist. During the last few years diamond devices have been manufactured and tested with LHC electronics with the goal of creating a detector usable by all LHC experiment. Extensive progress on diamond quality, on the development of diamond trackers and on radiation hardness studies has been made. Transforming the technology to the LHC specific requirements is now underway. In this paper we present the recent progress achieved.

  2. The development of diamond tracking detectors for the LHC

    Science.gov (United States)

    Adam, W.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Doroshenko, J.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K. K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Karl, C.; Kass, R.; Keil, M.; Knöpfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Perera, L.; Pernegger, H.; Pernicka, M.; Polesello, P.; Potenza, R.; Riester, J. L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.; RD42 Collaboration

    2003-11-01

    Chemical vapor deposition diamond has been discussed extensively as an alternate sensor material for use very close to the interaction region of the LHC where extreme radiation conditions exist. During the last few years diamond devices have been manufactured and tested with LHC electronics with the goal of creating a detector usable by all LHC experiment. Extensive progress on diamond quality, on the development of diamond trackers and on radiation hardness studies has been made. Transforming the technology to the LHC specific requirements is now underway. In this paper we present the recent progress achieved.

  3. Superconducting Cable Development for Future High Energy Physics Detector Magnets

    Science.gov (United States)

    Horvath, I. L.

    1995-11-01

    Under the leadership of the Swiss Federal Institute of Technology (ETHZ) an international ad hoc collaboration for superconducting cables developed an aluminium stabilised superconducting cable for future detector magnets. With the financial support of the Swiss government, this R&D work was carried out for the European Organisation for Nuclear Research (CERN). In this report the manufacturing process is described and results of the quality control measurements are summarised. These tests showed that the industrial manufacturing of an aluminium stabilised superconducting cable is feasible.

  4. Development of a brand-new radon-thoron discriminative detector

    International Nuclear Information System (INIS)

    Tokonami, S.; Hulber, E.

    2004-01-01

    A brand-new radon-thoron discriminative detector has been developed for the purposes of large-scope surveys. The configuration and features of this facility in comparison to our previous detector are described

  5. Development of high temperature, radiation hard detectors based on diamond

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, Alex, E-mail: Alex.Metcalfe@brunel.ac.uk [Wolfson Centre for Materials Processing, Brunel University London, Uxbridge UB8 3PH (United Kingdom); Fern, George R. [Wolfson Centre for Materials Processing, Brunel University London, Uxbridge UB8 3PH (United Kingdom); Hobson, Peter R. [Centre for Sensors & Instrumentation, College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH (United Kingdom); Ireland, Terry; Salimian, Ali; Silver, Jack [Wolfson Centre for Materials Processing, Brunel University London, Uxbridge UB8 3PH (United Kingdom); Smith, David R. [Centre for Sensors & Instrumentation, College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH (United Kingdom); Lefeuvre, Gwenaelle [Micron Semiconductor Ltd., Lancing BN15 8 SJ (United Kingdom); Saenger, Richard [Schlumberger Limited, 91240 Clamart (France)

    2017-02-11

    Single crystal CVD diamond has many desirable properties compared to current, well developed, detector materials; exceptional radiation, chemical and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry), wide bandgap and an intrinsic pathway to fast neutron detection through the {sup 12}C(n,α){sup 9}Be reaction. However effective exploitation of these properties requires development of a suitable metallisation scheme to give stable contacts for high temperature applications. To best utilise available processing techniques to optimise sensor response through geometry and conversion media configurations, a reliable model is required. This must assess the performance in terms of spectral response and overall efficiency as a function of detector and converter geometry. The same is also required for proper interpretation of experimental data. Sensors have been fabricated with varying metallisation schemes indented to permit high temperature operation; Present test results indicate that viable fabrication schemes for high temperature contacts have been developed and present modelling results, supported by preliminary data from partners indicate simulations provide a useful representation of response. - Highlights: • Radiation sensors using diamond as the sensitive volume have been constructed. • Functionality of these sensors with minimal degradation has been confirmed at 100 °C. • Sensitisation to thermal neutrons by addition of conversion layers has been modelled. • Modelling suggests 4× efficiency improvements from 3d converter-substrate interfaces.

  6. Optical Coating Performance for Heat Reflectors of the JWST-ISIM Electronic Component

    Science.gov (United States)

    Rashford, Robert A.; Perrygo, Charles M.; Garrison, Matthew B.; White, Bryant K.; Threat, Felix T.; Quijada, Manuel A.; Jeans, James W.; Huber, Frank K.; Bousquet, Robert R.; Shaw, Dave

    2011-01-01

    A document discusses a thermal radiator design consisting of lightweight composite materials and low-emittance metal coatings for use on the James Webb Space Telescope (JWST) structure. The structure will have a Thermal Subsystem unit to provide passive cooling to the Integrated Science Instrument Module (ISIM) control electronics. The ISIM, in the JWST observatory, is the platform that provides the mounting surfaces for the instrument control electronics. Dissipating the control electronic generated-heat away from JWST is of paramount importance so that the spacecraft s own heat does not interfere with the infrared-light gathering of distant cosmic sources. The need to have lateral control in the emission direction of the IEC (ISIM Electronics Compartment) radiators led to the development of a directional baffle design that uses multiple curved mirrorlike surfaces. This concept started out from the so-called Winston non-imaging optical concentrators that use opposing parabolic reflector surfaces, where each parabola has its focus at the opposite edge of the exit aperture. For this reason they are often known as compound parabolic concentrators or CPCs. This radiator system with the circular section was chosen for the IEC reflectors because it offers two advantages over other designs. The first is that the area of the reflector strips for a given radiator area is less, which results in a lower mass baffle assembly. Secondly, the fraction of energy emitted by the radiator strips and subsequently reflected by the baffle is less. These fewer reflections reduced the amount of energy that is absorbed and eventually re-emitted, typically in a direction outside the design emission range angle. A baffle frame holds the mirrors in position above a radiator panel on the IEC. Together, these will direct the majority of the heat from the IEC above the sunshield away towards empty space.

  7. Development of a 13-in. Hybrid Avalanche Photo-Detector (HAPD) for a next generation water Cherenkov detector

    International Nuclear Information System (INIS)

    Nakayama, H.; Kusaka, A.; Kakuno, H.; Abe, T.; Iwasaki, M.; Aihara, H.; Shiozawa, M.; Tanaka, M.; Kyushima, H.; Suyama, M.; Kawai, Y.

    2006-01-01

    We have developed a 13-in. Hybrid Avalanche Photo-Detector (HAPD) for photosensors in next generation water Cherenkov type detectors. We study the performance of the HAPD and the results show good time resolution better than σ=1ns, good sensitivity for single photon detection, wide dynamic range, and good uniformity on the photocathode. The HAPD is also expected to be less expensive than large PMTs because of its simpler structure without dynodes

  8. Development of Mirror Coatings for Gravitational Wave Detectors

    Directory of Open Access Journals (Sweden)

    Stuart Reid

    2016-11-01

    Full Text Available The first detections of gravitational waves, GW150914 and GW151226, were associated with the coalescence of stellar mass black holes, heralding the opening of an entirely new way to observe the Universe. Many decades of development were invested to achieve the sensitivities required to observe gravitational waves, with peak strains associated with GW150914 at the level of 10−21. Gravitational wave detectors currently operate as modified Michelson interferometers, where thermal noise associated with the highly reflective mirror coatings sets a critical limit to the sensitivity of current and future instruments. This article presents an overview of the mirror coating development relevant to gravitational wave detection and the prospective for future developments in the field.

  9. Recent developments in X-ray imaging detectors

    CERN Document Server

    Moy, J P

    2000-01-01

    The replacement of the radiographic film in medical imaging has been the driving force in X-ray imaging developments. It requires a approx 40 cm wide detector to cover all examinations, an equivalent noise level of 1-5 X-ray quanta per pixel, and spatial resolution in the range 100-150 mu m. The need for entirely electronic imaging equipments has fostered the development of many X-ray detectors, most of them based on an array of amorphous silicon pixels, which is the only technology capable to achieve such large areas. Essentially, two concepts have been implemented: - intermediate conversion of X-rays to light by a scintillator, detected by an array of light sensitive pixels, comprising a photodiode and a switching device, either a TFT or a diode. - conversion into electron-hole pairs in a photoconductor, collected by an array of electrodes and switches. In both cases, charge amplifiers read the generated charges line by line. Scintillator and photoconductor-based systems are now close to production. They ac...

  10. Development of a fast multi-line x-ray CT detector for NDT

    International Nuclear Information System (INIS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Mühlbauer, J.; Schröpfer, S.; Firsching, M.; Uhlmann, N.; Neubauer, H.; Ernst, J.; Schweiger, T.; Oberst, M.; Meyer, A.

    2015-01-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm 2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of

  11. Development of a fabrication technology for double-sided AC-coupled silicon microstrip detectors

    International Nuclear Information System (INIS)

    Dalla Betta, G.-F.; Boscardin, M.; Bosisio, L.; Rachevskaia, I.; Zen, M.; Zorzi, N.

    2001-01-01

    We report on the development of a fabrication technology for double-sided, AC-coupled silicon microstrip detectors for tracking applications. Two batches of detectors with good electrical figures and a low defect rate were successfully manufactured at IRST Laboratory. The processing techniques and the experimental results obtained from these detector prototypes are presented and discussed

  12. Development and characterization of the lead iodide semiconductor detector

    International Nuclear Information System (INIS)

    Oliveira, Icimone Braga de

    2001-01-01

    A methodology for purification and growth of PbI 2 crystal as well as for its characterization as a room temperature radiation detector was developed in this work. Commercial salts were purified using the zone refining method and, for the purified material growth, the Bridgman method was used. To calculate the purification efficiency, studies of the decrease impurities concentrations were made in the salts and in three sections of the materials purified, using the neutron activation analysis technique. The results showed that the impurities segregate preferentially in the ingot final section. A significant decrease of the impurities concentration in function of the purification pass number was observed. The grown crystals presented good crystalline quality according to the results of the X-ray diffraction analysis. To evaluate the crystal as a semiconductor detector, measurements of dark leakage current, resistivity and the response of ( 241 Am) alpha particle and ( 241 Am, 57 Co, 133 Ba and 137 Cs) gamma rays were carried out. The radiation response is strongly dependent on the crystals purity. The crystals purified with 500 passes exhibited energy resolution of 10% for 241 Am alpha particle and the gamma rays resolution was compatible with the literature. The photosensibility of the PbI 2 crystal found in the wavelength from 400 to 600 nm range suggests an another application at this crystal as a photodetector to be coupled to scintillators. (author)

  13. Development of decay energy spectroscopy using low temperature detectors.

    Science.gov (United States)

    Jang, Y S; Kim, G B; Kim, K J; Kim, M S; Lee, H J; Lee, J S; Lee, K B; Lee, M K; Lee, S J; Ri, H C; Yoon, W S; Yuryev, Y N; Kim, Y H

    2012-09-01

    We have developed a high-resolution detection technique for measuring the energy and activity of alpha decay events using low-temperature detectors. A small amount of source material containing alpha-emitting radionuclides was enclosed in a 4π metal absorber. The energy of the alpha particles as well as that of the recoiled nuclides, low-energy electrons, and low-energy x-rays and γ-rays was converted into thermal energy of the gold absorber. A metallic magnetic calorimeter serving as a fast and sensitive thermometer was thermally attached to the metal absorber. In the present report, experimental demonstrations of Q spectroscopy were made with a new meander-type magnetic calorimeter. The thermal connection between the temperature sensor and the absorber was established with annealed gold wires. Each alpha decay event in the absorber resulted in a temperature increase of the absorber and the temperature sensor. Using the spectrum measured for a drop of (226)Ra solution in a 4π gold absorber, all of the alpha emitters in the sample were identified with a demonstration of good detector linearity. The resolution of the (226)Ra spectrum showed a 3.3 keV FWHM at its Q value together with an expected gamma escape peak at the energy shifted by its γ-ray energy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Recent results on the development of radiation-hard diamond detectors

    CERN Document Server

    Conway, J S; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Dabrowski, W; Da Graca, J; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Jamieson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Plano, R; Polesello, P; Prawer, S; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Russ, J; Schnetzer, S; Sciortino, S; Somalwar, S V; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Thomson, G B; Trawick, M; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    Charged particle detectors made from chemical vapor deposition (CVD) diamond have radiation hardness greatly exceeding that of silicon- based detectors. The CERN-based RD42 Collaboration has developed and tested CVD diamond microstrip and pixel detectors with an eye to their application in the intense radiation environment near the interaction region of hadron colliders. This paper presents recent results from tests of these detectors. (4 refs).

  15. Application of PSpice circuit simulator in development of resistive plate chamber detector

    International Nuclear Information System (INIS)

    Wang Yaping; Cai Xu

    2008-01-01

    An electrical model was presented for resistive plate chamber (RPC) detector. The readout signals of RPC detector were studied with PSpice simulation based on the model. The simulation results show a good agreement with real data and authoritative data. Physical performance of RPC detector can be predicted by the PSpice simulation, so this is an efficient means to optimize RPC detector's research and development. (authors)

  16. Development of multiwire gas detectors for X-rays; Desenvolvimento de detectores a gas multifilares para raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Eraldo de

    2015-06-01

    This work presents the prototype of a 2D position sensitive gas detector for application in X-ray scattering and diffraction experiments. Starting from a detector initially developed for other applications and will show the required changes on the original concept of this device. The strategy used to determine the necessary adaptations were based on searching in the literature for the overall characteristics of a multi-wire X-ray detector (choice of gas, pressure, window, etc.), the use of simulations, implementation of the changes and finally operational tests. Computational tools were used to calculate the mechanical strength and attenuation of the X-ray photons that helped to determine the most appropriate material for the construction of the entrance window. Detector simulations were built with Garfield software and were used to study the overall properties of the detector, and to determine the optimum parameters for the equipment operation. Typical parameters are the distance between the wires, wire diameter, high voltage to be used, among several other parameters. The results obtained showed that the multi-wire detector concept with the implemented adaptations allowed the detection of X-rays. However, depending on the application, it may be necessary improve the resolution of the equipment, in order to have a better description of the collected data. Several ideas are suggested for this improvement. It is also presented interesting results obtained with a microscopic pattern detector called triple GEM. This device belongs to the Gas Detectors Development group (GDD group) at CERN and was used in my training at this institution. The results showed the potential of the equipment for detection of X-rays. The results and simulations presented in this work, confirmed that the changes in the concept of the original detector permitted it use on X-ray detection applications. Also, it was possible to obtain several indications for further optimization, which may

  17. Advancing Absolute Calibration for JWST and Other Applications

    Science.gov (United States)

    Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin

    2017-10-01

    We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.

  18. TRL-6 for JWST Wavefront Sensing and Control

    Science.gov (United States)

    Feinberg, Lee; Dean, Bruce; Smith, Scott; Aronstein, David; Shiri, Ron; Lyon, Rick; Hayden, Bill; Bowers, Chuck; Acton, D. Scott; Shields, Duncan; hide

    2007-01-01

    NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed

  19. Development of the RAIDS extreme ultraviolet wedge and strip detector. [Remote Atmospheric and Ionospheric Detector System

    Science.gov (United States)

    Kayser, D. C.; Chater, W. T.; Christensen, A. B.; Howey, C. K.; Pranke, J. B.

    1988-01-01

    In the next few years the Remote Atmospheric and Ionospheric Detector System (RAIDS) package will be flown on a Tiros spacecraft. The EUV spectrometer experiment contains a position-sensitive detector based on wedge and strip anode technology. A detector design has been implemented in brazed alumina and kovar to provide a rugged bakeable housing and anode. A stack of three 80:1 microchannel plates is operated at 3500-4100 V. to achieve a gain of about 10 to the 7th. The top MCP is to be coated with MgF for increased quantum efficiency in the range of 50-115 nm. A summary of fabrication techniques and detector performance characteristics is presented.

  20. Simbol-X: Synergies with JWST, ALMA and Herschel

    Science.gov (United States)

    Maiolino, R.

    2009-05-01

    I discuss the synergies between Simbol-X and three among the major astronomical facilities that, in the next decade, will be operative in the infrared-millimeter spectral range, namely JWST, Herschel and ALMA. I first provide a brief overview of the main features and observing capabilities offered by these facilities. Then I will discuss a few research fields (mostly extragalactic) that will geatly benefit of the joint exploitation of Simbol-X and these IR-mm observatories.

  1. Recent Developments in GEM-Based Neutron Detectors

    International Nuclear Information System (INIS)

    Saenboonruang, K.

    2014-01-01

    The gas electron multiplier (GEM) detector is a relatively new gaseous detector that has been used for less than 20 years. Since the discovery in 1997 by F. Sauli, the GEM detector has shown excellent properties including high rate capability, excellent resolutions, low discharge probability, and excellent radiation hardness. These promising properties have led the GEM detector to gain popularity and attention amongst physicists and researchers. In particular, the GEM detector can also be modified to be used as a neutron detector by adding appropriate neutron converters. With properties stated above and the need to replace the expensive 3 He-based neutron detectors, the GEM-based neutron detector will be one of the most powerful and affordable neutron detectors. Applications of the GEM-based neutron detectors vary from researches in nuclear and particle physics, neutron imaging, and national security. Although several promising progresses and results have been shown and published in the past few years, further improvement is still needed in order to improve the low neutron detection efficiency (only a few percent) and to widen the possibilities for other uses.

  2. Development of monolithic pixel detector with SOI technology for the ILC vertex detector

    Science.gov (United States)

    Yamada, M.; Ono, S.; Tsuboyama, T.; Arai, Y.; Haba, J.; Ikegami, Y.; Kurachi, I.; Togawa, M.; Mori, T.; Aoyagi, W.; Endo, S.; Hara, K.; Honda, S.; Sekigawa, D.

    2018-01-01

    We have been developing a monolithic pixel sensor for the International Linear Collider (ILC) vertex detector with the 0.2 μm FD-SOI CMOS process by LAPIS Semiconductor Co., Ltd. We aim to achieve a 3 μm single-point resolution required for the ILC with a 20×20 μm2 pixel. Beam bunch crossing at the ILC occurs every 554 ns in 1-msec-long bunch trains with an interval of 200 ms. Each pixel must record the charge and time stamp of a hit to identify a collision bunch for event reconstruction. Necessary functions include the amplifier, comparator, shift register, analog memory and time stamp implementation in each pixel, and column ADC and Zero-suppression logic on the chip. We tested the first prototype sensor, SOFIST ver.1, with a 120 GeV proton beam at the Fermilab Test Beam Facility in January 2017. SOFIST ver.1 has a charge sensitive amplifier and two analog memories in each pixel, and an 8-bit Wilkinson-type ADC is implemented for each column on the chip. We measured the residual of the hit position to the reconstructed track. The standard deviation of the residual distribution fitted by a Gaussian is better than 3 μm.

  3. Astrophysics in the Next Decade: JWST and Concurrent Facilities

    CERN Document Server

    Thronson, Harley A; Tielens, Alexander; The James Webb Space Telescope and Concurrent Facilities

    2009-01-01

    NASA’s James Webb Space Telescope (JWST), planned for operation in about five years, will have the capability to investigate – and answer – some of the most challenging questions in astronomy. Although motivated and designed to study the very early Universe, the performance of the observatory’s instruments over a very wide wavelength range will allow the world’s scientific community unequaled ability to study cosmic phenomena as diverse as small bodies in the Solar System and the formation of galaxies. As part of preparation to use JWST, a conference was held in Tucson, Arizona in 2007 that brought together astronomers from around the world to discuss the mission, other major facilities that will operate in the coming decade, and major scientific goals for them. This book is a compilation of those presentations by some of the leading researchers from all branches of astronomy. This book also includes a "pre-history" of JWST, describing the lengthy process and some of the key individuals that initiat...

  4. The Transiting Exoplanet Community Early Release Science Program for JWST

    Science.gov (United States)

    Berta-Thompson, Zachory K.; Batalha, Natalie M.; Stevenson, Kevin B.; Bean, Jacob; Sing, David K.; Crossfield, Ian; Knutson, Heather; Line, Michael R.; Kreidberg, Laura; Desert, Jean-Michel; Wakeford, Hannah; Crouzet, Nicolas; Moses, Julianne I.; Benneke, Björn; Kempton, Eliza; Lopez-Morales, Mercedes; Parmentier, Vivien; Gibson, Neale; Schlawin, Everett; Fraine, Jonathan; Kendrew, Sarah; Transiting Exoplanet Community ERS Team

    2018-06-01

    The James Webb Space Telescope offers astronomers the opportunity to observe the composition, structure, and dynamics of transiting exoplanet atmospheres with unprecedented detail. However, such observations require very precise time-series spectroscopic monitoring of bright stars and present unique technical challenges. The Transiting Exoplanet Community Early Release Science Program for JWST aims to help the community understand and overcome these technical challenges as early in the mission as possible, and to enable exciting scientific discoveries through the creation of public exoplanet atmosphere datasets. With observations of three hot Jupiters spanning a range of host star brightnesses, this program will exercise time-series modes with all four JWST instruments and cover a full suite of transiting planet characterization geometries (transits, eclipses, and phase curves). We designed the observational strategy through an open and transparent community effort, with contributions from an international collaboration of over 100 experts in exoplanet observations, theory, and instrumentation. Community engagement with the project will be centered around open Data Challenge activities using both simulated and real ERS data, for exoplanet scientists to cross-validate and improve their analysis tools and theoretical models. Recognizing that the scientific utility of JWST will be determined not only by its hardware and software but also by the community of people who use it, we take an intentional approach toward crafting an inclusive collaboration and encourage new participants to join our efforts.

  5. New developments in double sided silicon strip detectors

    International Nuclear Information System (INIS)

    Becker, H.; Boulos, T.; Cattaneo, P.; Dietl, H.; Hauff, D.; Holl, P.; Lange, E.; Lutz, G.; Moser, H.G.; Schwarz, A.S.; Settles, R.; Struder, L.; Kemmer, J.; Buttler, W.

    1990-01-01

    A new type of double sided silicon strip detector has been built and tested using highly density VLSI readout electronics connected to both sides. Capacitive coupling of the strips to the readout electronics has been achieved by integrating the capacitors into the detector design, which was made possible by introducing a new detector biasing concept. Schemes to simplify the technology of the fabrication of the detectors are discussed. The static performance properties of the devices as well as implications of the use of VLSI electronics in their readout are described. Prototype detectors of the described design equipped with high density readout electronics have been installed in the ALEPH detector at LEP. Test results on the performance are given

  6. Development of new type of silicon detector with internal amplification

    International Nuclear Information System (INIS)

    Schuster, K.F.

    1988-11-01

    The first test version of a new type of silicon detector made of extremely pure material was designed and manufactured. Numerical simulation provided great assistance in selecting the process parameters. The principle of operation aimed at of a radiation deflector consisting of an MOS transistor with more than fully depleted base area was confirmed. The energy resolution of the detectors was determined at 300 0 K and 6 keV (Mn K α ) to be 250 eV half width and is therefore considerably better than the conventional uncooled detectors. The detector principle permits the realisation of a two-dimensional detector matrix which can be addressed, with non-destructive triggering. With a measured signal/noise ratio of the individual detectors of better than 400 for minimum ionised particles, new types of fast triggering processes can be achieved in high energy physics with good local resolution (≅ 50 μm). (orig.) [de

  7. Developing Detectors for Scintillation Light in Liquid Argon for DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Bruce [Fermilab

    2016-12-22

    The Deep Underground Neutrino experiment will conduct a broad program of physics research by studying a beam of neutrinos from Fermilab, atmospheric neutrinos, neutrinos from potential supernovae, and potential nucleon decay events. In pursuit of these studies, the experiment will deploy four 10kt fiducial mass liquid argon time projection chambers underground in Lead, South Dakota. Liquid argon time projection chambers allow high-resolution tracking and energy measurements. A precise timing signal is needed to provide the necessary time stamp to localize events in the drift direction. As liquid argon is a natural scintillator, a photon detection system will be deployed to provide such a signal, especially for non-beam events. In the baseline design for the single-phase time projection chamber, the detectors are contained within the anode plane assemblies. The design of two prototypes utilizing wavelength shifters and light guides are presented, and aspects of the research and development program are discussed.

  8. Development of pixel detectors for SSC vertex tracking

    International Nuclear Information System (INIS)

    Kramer, G.; Shapiro, S.L.; Arens, J.F.; Jernigan, J.G.; Skubic, P.

    1991-04-01

    A description of hybrid PIN diode arrays and a readout architecture for their use as a vertex detector in the SSC environment is presented. Test results obtained with arrays having 256 x 256 pixels, each 30 μm square, are also presented. The development of a custom readout for the SSC will be discussed, which supports a mechanism for time stamping hit pixels, storing their xy coordinates, and storing the analog information within the pixel. The peripheral logic located on the array, permits the selection of those pixels containing interesting data and their coordinates to be selectively read out. This same logic also resolves ambiguous pixel ghost locations and controls the pixel neighbor read out necessary to achieve high spatial resolution. The thermal design of the vertex tracker and the proposed signal processing architecture will also be discussed. 5 refs., 13 figs., 3 tabs

  9. The James Webb STEM Innovation Project: Bringing JWST to the Education Community

    Science.gov (United States)

    Eisenhamer, Bonnie; Harris, J.; Ryer, H.; Taylor, J.; Bishop, M.

    2012-01-01

    Building awareness of a NASA mission prior to launch and connecting that mission to the education community can be challenging. In order to address this challenge, the Space Telescope Science Institute's Office of Public Outreach has developed the James Webb STEM innovation Project (SIP) - an interdisciplinary project that focuses on the engineering aspects and potential scientific discoveries of JWST, while incorporating elements of project-based learning. Students in participating schools will use skills from multiple subject areas to research an aspect of the JWST's design or potential science and create models, illustrated essays, or technology-based projects to demonstrate their learning. Student projects will be showcased during special events at select venues in the project states - thus allowing parents and community members to also be benefactors of the project. Currently, the SIP is being piloted in New York, California, and Maryland. In addition, we will be implementing the SIP in partnership with NASA Explorer Schools in the states of New Mexico, Michigan, Texas, Tennessee, and Iowa.

  10. The Development of Micro-Pattern Gas Detectors

    CERN Document Server

    BALOUZA, Samah

    2014-01-01

    This work is aimed to study the electron transparency in 3-D woven mesh that is used in micromegas detector. The importance of calculating the transparency is because it is enter in the gain calibration of the detector. The simulation tool is COMSOL Multiphysics in which it is solved the differential equations by Finite Element Method.

  11. Development of a generic virus behavioural detector: a preview ...

    African Journals Online (AJOL)

    The Generic Virus Behavioral Detector (GVBD) is a system (program) that monitors various system activities; reading and writing block of disks and memory and the use of Interrupts. A technique for its realisation is presented. Key Words: Computer virus, interrupts, handlers, GVBD (Generic Virus Behavioral Detector).

  12. Overview of DRS uncooled VOx infrared detector development

    Science.gov (United States)

    Li, Chuan; Han, C. J.; Skidmore, George

    2011-06-01

    Significant progress has been made over the past decade on uncooled focal plane array technologies and production capabilities. The detector pixel dimensions have continually decreased with an increase in pixel performance making large format, high-density array products affordable. In turn, this has resulted in the proliferation of uncooled IR detectors in commercial and military markets. Presently, uncooled detectors are widely used in firefighting, surveillance, industrial process monitoring, machine vision, and medical applications. Within the military arena, uncooled detectors are ubiquitous in Army soldier systems such as weapon sights, driver's viewers, and helmet-mounted sights. Uncooled detectors are also employed in airborne and ground surveillance sensors including unmanned aerial vehicles and robot vehicles.

  13. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Puellen, Lukas

    2015-02-10

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  14. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Puellen, Lukas

    2015-01-01

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  15. Development of cryogenic tracking detectors for very high luminosity experiments

    CERN Document Server

    Härkönen, J; Anbinderis, T; Bates, R; de Boer, W; Borchi, E; Bruzzi, M; Buttar, C; Chen, W; Cindro, V; Czellar, S; Eremin, V; Furgeri, A; Gaubas, E; Heijne, E; Ilyashenko, I; Kalesinskas, V; Krause, M; Li, Z; Luukka, P; Mandic, I; Menichelli, D; Mikuz, M; Militaru, O; Mueller, S; Niinikoski, T O; O’Shea, V; Parkes, C; Piotrzkowski, K; Pirollo, S; Pusa, P; Räisänen, J; Rouby, X; Tuominen, E; Tuovinen, E; Vaitkus, J; Verbitskaya, E; Väyrynen, S; Zavrtanik, M

    2009-01-01

    Experimental results and simulations of Charge Collection Efficiency (CCE) of Current Injected Detectors (CIDs) are focused. CID is a concept where the current is limited by the space charge. The injected carriers will be trapped by the deep levels. This induces a stable electric field through the entire bulk regardless of the irradiation fluence the detector has been exposed. Our results show that the CCE of CIDs is about two times higher than of regular detectors when irradiated up to 1×1016 cm−2. The higher CCE is achieved already at −50 °C temperatures.

  16. Development of intelligent photomultipliers for the JUNO detector

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Florian; Meloni, Marta; Soiron, Michael; Stahl, Achim; Steinmann, Jochen; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen University, 52056 Aachen (Germany)

    2016-07-01

    The JUNO experiment will be a 20kt liquid scintillator neutrino detector near Kaiping, China, 50km from two nuclear power plants. Its main goal is the determination of the neutrino mass hierarchy from a precise measurement of the energy spectrum of neutrinos. Due to the detector size it is not possible to digitize the signal outside the detector cavern. Therefore FPGAs with a low-level reconstruction combined with a fast ADC mounted on the base will convert the PMTs into intelligent sensors. Advantages and disadvantages of this design are be discussed,and first measurements are shown.

  17. Developments in gas detectors for synchrotron x-ray radiation

    International Nuclear Information System (INIS)

    Fischer, J.; Radeka, V.; Smith, G.C.

    1985-09-01

    New results on the physical limitations to position resolution in gas detectors for x-rays (approx. =3 to 20 keV) due to the range of photoelectrons and Auger electrons are discussed. These results were obtained with a small gap detector in which position readout was accomplished by using a very low noise centroid finding technique. A description is given of position sensitive detectors for medium rates (a few x 10 5 photons per second), using delay line readout, and for very high rates (approx. =10 8 photons per second), using fast signal shaping on the output of each anode wire

  18. The development of a silicon multiplicity detector system

    Energy Technology Data Exchange (ETDEWEB)

    Beuttenmuller, R.H.; Kraner, H.W.; Lissauer, D.; Makowiecki, D.; Polychronakos, V.; Radeka, V.; Sondericker, J.; Stephani, D. [Brookhaven National Laboratory, Upton, NY (United States); Barrette, J.; Hall, J.; Mark, S.K.; Pruneau, C.A. [McGill Univ., Montreal, Quebec (Canada); Wolfe, D. [Univ. of New Mexico, Albuquerque (United States); Borenstein, S.R. [York College-CUNY, Jamaica, NY (United States)

    1991-12-31

    The physics program and the design criteria for a Silicon Pad Detector at RHIC are reviewed. An end cap double sided readout detector configuration for RHIC is presented. Its performance as an on-line and off-line centrality tagging device is studied by means of simulations with Fritiof as the event generator. The results of an in-beam test of a prototype double-sided Si-detector are presented. Good signal-to-noise ratio are obtained with front junction and the resistive back side readout. Good separation between one and two minimum-ionizing particle signals is achieved.

  19. Technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

    Science.gov (United States)

    Wegrzecka, Iwona; Panas, Andrzej; Bar, Jan; Budzyński, Tadeusz; Grabiec, Piotr; Kozłowski, Roman; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecki, Maciej; Zaborowski, Michał

    2013-07-01

    The paper discusses the technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE). The developed technology enables the fabrication of both planar and epiplanar p+-ν-n+ detector structures with an active area of up to 50 cm2. The starting material for epiplanar structures are silicon wafers with a high-resistivity n-type epitaxial layer ( ν layer - ρ < 3 kΩcm) deposited on a highly doped n+-type substrate (ρ< 0,02Ωcm) developed and fabricated at the Institute of Electronic Materials Technology. Active layer thickness of the epiplanar detectors (νlayer) may range from 10 μm to 150 μm. Imported silicon with min. 5 kΩcm resistivity is used to fabricate planar detectors. Active layer thickness of the planar detectors (ν) layer) may range from 200 μm to 1 mm. This technology enables the fabrication of both discrete and multi-junction detectors (monolithic detector arrays), such as single-sided strip detectors (epiplanar and planar) and double-sided strip detectors (planar). Examples of process diagrams for fabrication of the epiplanar and planar detectors are presented in the paper, and selected technological processes are discussed.

  20. Development of CRID [Cerenkov Ring Imaging Detector] single electron wire detector

    International Nuclear Information System (INIS)

    Aston, D.; Bean, A.; Bienz, T.

    1989-02-01

    We describe the R and D effort to define the design parameters, method of construction and experimental results from the single electron wire detectors. These detectors will be used for particle identification using the Cerenkov Ring Imaging techniques in the SLD experiment at SLAC. We present measurements of pulse heights for several gases as a function of gas gain, charge division performance on a single electron signal using both 7 μm and 33 μm diameter carbon wires, photon feedback in TMAE laden gas, average pulse shape, and its comparison with the predicted shape and cross-talk. In addition, we present results of wire aging tests, and other tests associated with construction of this unusual type of wire chamber. 12 refs., 9 figs

  1. Multiplicity-Vertex Detector Electronics Development for Heavy-Ion Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Britton, C.L., Jr.; Bryan, W.L.; Emery, M.S. [and others

    1995-12-31

    This paper presents the electronics work performed to date for the Multiplicity-Vertex Detector (MVD) for the PHENIX collaboration at RHIC. The detector consists of approximately 34,000 channels of both silicon strips and silicon pads. The per-channel signal processing chain consists of a pre-amplifier gain stage, a current mode summed multiplicity discriminator, a 64 deep analog memory (simultaneous read/write), an analog correlator, and a 10-bit microsecs ADC. The system controller or Heap Manager, supplies all timing control, data buffering, and data formatting for a single 256-channel multi-chip module (MCM). Each chip set is partitioned into 32-channel sets. Prototype performance for the various blocks will be presented as well as the ionizing radiation damage performance of the 1.2 mu nwell CMOS process used for fabrication.

  2. Can JWST Follow Up on Gravitational-Wave Detections?

    Science.gov (United States)

    Kohler, Susanna

    2016-02-01

    Bitten by the gravitational-wave bug? While we await Thursdays press conference, heres some food for thought: if LIGO were able to detect gravitational waves from compact-object mergers, how could we follow up on the detections? A new study investigates whether the upcoming James Webb Space Telescope (JWST) will be able to observe electromagnetic signatures of some compact-object mergers.Hunting for MergersStudying compact-object mergers (mergers of black holes and neutron stars) can help us understand a wealth of subjects, like high-energy physics, how matter behaves at nuclear densities, how stars evolve, and how heavy elements in the universe were created.The Laser Interferometer Gravitational-Wave Observatory (LIGO) is searching for the signature ripples in spacetime identifying these mergers, but gravitational waves are squirrelly: LIGO will only be able to localize wave sources to tens of square degrees. If we want to find out more about any mergers LIGO discovers in gravitational waves, well need a follow-up search for electromagnetic counterparts with other observatories.The Kilonova KeyOne possible electromagnetic counterpart is kilonovae, explosions that can be produced during a merger of a binary neutron star or a neutron starblack hole system. If the neutron star is disrupted during the merger, some of the hot mass is flung outward and shines brightly by radioactive decay.Kilonovae are especially promising as electromagnetic counterparts to gravitational waves for three reasons:They emit isotropically, so the number of observable mergers isnt limited by relativistic beaming.They shine for a week, giving follow-up observatories time to search for them.The source location can beeasily recovered.The only problem? We dont currently have any sensitive survey instruments in the near-infrared band (where kilonova emission peaks) that can provide coverage over tens of square degrees. Luckily, we will soon have just the thing: JWST, launching in 2018!JWSTs

  3. ORION, a multipurpose detector for neutrons. Some new developments

    International Nuclear Information System (INIS)

    Perier, Y.; Lienard, E.; Lott, B.; Galin, J.; Morjean, M.; Peghaire, A.; Quednau, B.; El Masri, Y.; Keutgen, Th.; Tilquin, I.

    1996-01-01

    Different properties of the four-pi neutron detector ORION have been tested: its efficiency in both modes, fast and delayed, its time resolution and position sensitivity. For the later test, the impact of the neutron beam onto the detector was varied by sliding it, perpendicular to the beam direction. All the presented data are tentative with the analysis still in progress. (K.A.)

  4. Development of X-ray detector based on phototransistor

    International Nuclear Information System (INIS)

    Ramacos Fardela; Kusminarto

    2014-01-01

    X-ray interaction with matter can produce phenomenon of fluorescence that emits visible light. This phenomenon has been exploited to design an X-ray detector based on photo transistor by attaching a screen ZnS(Ag) on the surface of the photo transistor which is arranged in a Darlington circuit. Response of detector was done by collimating of X-rays beam from the X-ray generator tube Philips 2000 watts, 60 kV type PW 2215/20 NR 780 026 and measure the detector output voltage (V out ). Varying the current by 5, 10, 15, 20, 25, 30, 35 and 40 mA in the X-ray panel. The experimental results showed that the Darlington circuit can be applied to design the detector of X-ray based on phototransistor. The results show that there is a linear relationship between the change in the intensity of X-ray detectors with voltage output phototransistor when it was closed with fluorescence materials ZnS(Ag), the linearity coefficient was R 2 = 0.99. Sensitivity of detector was obtained to be 3.7 x 10 -2 mV per cpm. (author)

  5. Development of the calorimeter trigger for the ZEUS detector

    International Nuclear Information System (INIS)

    Smith, W.H.

    1988-01-01

    The purpose of this research was to begin development of the trigger for the calorimeter of the ZEUS detector at HERA, a new storage ring that will provide collisions between 820 GeV protons and 30 GeV electrons by 1990. The calorimeter will be made of depleted uranium plates and plastic scintillator read out by wavelength shifter bars into 12,000 photomultiplier tubes. These signals will be combined into 1000 towers with separate electromagnetic and hadronic sums. The calorimeter first level trigger will be pipelined with a decision provided 5 μsec after each beam crossing, occurring every 96 nsec. The trigger will need to determine the total energy, the total transverse energy, the missing energy, and the energy and number of jets and isolated electrons. The trigger rate needs to be held to 1 kHz against a rate of proton-beam gas interactions of 200 kHz. The summed pulseheights will be digitized by 8-bit flash ADC's. They will be linearized, stored and manipulated digitally. The various pipelined sums will be made using ECL and CMOS technology.This grant was used to investigate these technologies, model the trigger performance, and begin the design. This research will be continued by this principal investigator under another DOE grant at the University of Wisconsin

  6. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Perrey, Hanno

    2013-01-01

    A high resolution ($\\sigma 2 \\sim \\mu$) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six sensor planes using Mimosa26 MAPS with a pixel pitch of $18.4 \\mu$ and thinned down to $50 \\mu$. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the new European detector infrastructure project AIDA the test beam telescope will be further extended in terms of cooling infrastructure, readout speed and precision. In order to provide a system optimized for the different requirements by the user community, a combination of various pixel technologies is foreseen. In this report the design of this even more flexible telescope with three different pixel technologies (TimePix, Mimosa, ATLAS FE-I4) will be presented. First test beam results with the HitOR signal provided by the FE-I4 integrated into the trigger...

  7. Development of fluctuation monitor type sodium ionization detector

    International Nuclear Information System (INIS)

    Yamamoto, Hajime; Sato, Yoshihiko; Ibe, Eishi; Suzuoki, Akira

    1986-01-01

    In order to improve the sensitivity and the reliability of the sodium leak detection system used in the fast breeder reactors, a new type SID (sodium ionization detector) has been developed, in which the monitored signal is only the fluctuating component of the current between the filament and the ion collector. The fluctuating component was extracted by a band pass filter and its root mean square value was calculated as the SID signal. Fluctuation characteristics of the output current were studied by its frequency spectrum. The results revealed that the current spectrum was affected by the particle size distribution of the aerosol and was most clearly distinguished from that of the background current in the frequency region of 0.5 ∼ 10 Hz. Output characteristics of the fluctuation monitor type SID (FM-SID) were obtained as a function of sodium concentration in the gas. The FM-SID sensitivity was lowered by impurities in the gas, such as oxygen and water vapor. Finally, in comparisons with the conventional DC-SIDs, the background noise level of the FM-SID was much lower and S/N ratio was greatly improved. The detectable sodium concentration level was ten times lower than that of the DC-SID. (author)

  8. CONTINUING THE DEVELOPMENT OF A 100 FEMTOSECOND X-RAY DETECTOR

    International Nuclear Information System (INIS)

    Zenghu Chang

    2005-01-01

    The detector is an x-ray streak camera running in accumulation mode for time resolved x-ray studies at the existing third generation synchrotron facilities and will also be used for the development and applications of the fourth generation x-ray sources. We have made significant progress on both the detector development and its applications at Synchrotron facilities

  9. Development of GaAs Detectors for Physics at the LHC

    CERN Multimedia

    Chu, Zhonghua; Krais, R; Rente, C; Syben, O; Tenbusch, F; Toporowsky, M; Xiao, Wenjiang; Cavallini, A; Fiori, F; Edwards, M; Geppert, R; Goppert, R; Haberla, C; Hornung, M F; Irsigler, R; Rogalla, M; Beaumont, S; Raine, C; Skillicorn, I; Margelevicius, J; Meshkinis, S; Smetana, S; Jones, B; Santana, J; Sloan, T; Zdansky, K; Alexiev, D; Donnelly, I J; Canali, C; Chiossi, C; Nava, F; Pavan, P; Kubasta, J; Tomiak, Z; Tchmil, V; Tchountonov, A; Tsioupa, I; Dogru, M; Gray, R; Hou, Yuqian; Manolopoulos, S; Walsh, S; Aizenshtadt, G; Budnitsky, D L; Gossen, A; Khludkov, S; Koretskaya, O B; Okaevitch, L; Potapov, A; Stepanov, V E; Tolbanov, O; Tyagev, A; Matulionis, A; Pozela, J; Kavaliauskiene, G; Kazukauskas, V; Kiliulis, R; Rinkevicius, V; Slenys, S; Storasta, J V

    2002-01-01

    % RD-8 Development of GaAs Detectors for Physics at the LHC \\\\ \\\\The aims of the collaboration are to investigate the available material options, performance and limitations of simple pad, pixel and microstrip GaAs detectors for minimum ionising particles with radiation hardness and speed which are competitive with silicon detectors. This new technology was originally developed within our university laboratories but now benefits from increasing industrial interest and collaboration in detector fabrication. Initial steps have also been taken towards the fabrication of GaAs preamplifiers to match the detectors in radiation hardness. The programme of work aims to construct a demonstration detector module for an LHC forward tracker based on GaAs.

  10. Final Report for the UNIVERSITY-BASED DETECTOR RESEARCH AND DEVELOPMENT FOR THE INTERNATIONAL LINEAR COLLIDER

    Energy Technology Data Exchange (ETDEWEB)

    Brau, James E [Univ. of Oregon

    2013-04-22

    The U.S Linear Collider Detector R&D program, supported by the DOE and NSF umbrella grants to the University of Oregon, made significant advances on many critical aspects of the ILC detector program. Progress advanced on vertex detector sensor development, silicon and TPC tracking, calorimetry on candidate technologies, and muon detection, as well as on beamline measurements of luminosity, energy, and polarization.

  11. Development of fountain detectors for spectroscopy of secondary electron in SEM

    Energy Technology Data Exchange (ETDEWEB)

    Agemura, Toshihide [University of Tsukuba (Japan); Iwai, Hideo [National Institute for Materials Science, Tsukuba (Japan); Sekiguchi, Takashi [University of Tsukuba (Japan); National Institute for Materials Science, Tsukuba (Japan)

    2017-07-15

    To image the variation of surface potential in semiconductors, energy selective secondary electron detector, named fountain detector (FD), was developed. Two types of grids, planar and spherical, were designed and the superiority of latter was demonstrated. The p-n junction of 4H-SiC was observed using spherical FD and the image was much clear than that using conventional detector. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Development of a charged particle detector array in Pelletron-LINAC facility

    International Nuclear Information System (INIS)

    John, Bency; Inkar, A.L.; Saxena, A.; Vind, R.P.; Gupta, Y.K.; Biswas, D.C.; Nayak, B.K.; Thomas, R.G.; Danu, L.S.; Choudhury, R.K.; Kailas, S.; Topkar, A.; Venkatramanan, S.; Kumar, Manish; Sunilkumar, S.

    2010-01-01

    A charged particle detector array consisting of 50 Si-CsI detector telescopes for study of heavy-ion reactions is under construction in BARC-TIFR Pelletron-LINAC facility. Developmental work carried out for the detector modules, front-end and pulse shape discrimination electronics, scattering chamber and other mechanical parts are summarized. Some new ideas developed during the course of work are pointed out. (author)

  13. Development of triple GEM detector for a heavy ion physics experiment

    International Nuclear Information System (INIS)

    Bhardwaj, A.; Biswal, K.; Gupta, R.

    2015-01-01

    Building and testing of micro-pattern gas detector such as Gas Electron Multiplier (GEM) for several upcoming High-Energy Physics (HEP) experiment projects, is an advance area of research in the field of detector development. We have carried out the long-term stability test and the uniformity of the relative gain over a GEM detector. The method of long-term test and uniformity of the relative gain and the results are presented in this article

  14. Developments of directional detectors with NaI(Tl)/BGO scintillators

    International Nuclear Information System (INIS)

    Shirakawa, Y.

    2004-01-01

    This paper describes directional gamma ray detectors with different types of scintillators. The detectors, which positively increase directional sensitivity to incident gamma rays, have been developed to measure directions, energies and counts of gamma rays, and to search for radioactive materials such as orphan radioisotopes or contaminations. Experimental results have shown that proposed directional detectors have a potential for practical use in real fields and will contribute to radiation protection and safety

  15. Development of a neutron imager based on superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Shigeyuki, E-mail: miyajima@nict.go.jp [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan); Yamaguchi, Hiroyuki; Nakayama, Hirotaka; Shishido, Hiroaki [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan); Fujimaki, Akira [Department of Quantum Engineering, Nagoya University (Japan); Hidaka, Mutsuo [National Institute of Advanced Industrial Science and Technology (Japan); Harada, Masahide; Oikawa, Kenichi; Oku, Takayuki; Arai, Masatoshi [J-PARC Center, Japan Atomic Energy Agency (Japan); Ishida, Takekazu [Department of Physics and Engineering, Osaka Prefecture University (Japan); Institute for Nanofabrication Research, Osaka Prefecture University (Japan)

    2016-11-15

    Highlights: • A neutron detector based on superconducting meander line is demonstrated. • Fast response time of a few tens ns is obtained. • Spatial resolution is 1 μm and can be improved to sub-μm scale. • The proposed neutron detector can operate under the γ-ray fields. - Abstract: We succeeded in demonstrating a neutron detector based on a Nb superconducting meander line with a {sup 10}B conversion layer for a neutron imager based on superconductor devices. We use a current-biased kinetic inductance detector (CB-KID), which is composed of a meander line, for detection of a neutron with high spatial resolution and fast response time. The thickness of Nb meander lines is 40 nm and the line width is narrower than 3 mu m. The area of 8 mm × 8 mm is covered by CB-KIDs, which are assembled at the center of the Si chip of the size 22 mm × 22 mm. The Nb CB-KIDs with a {sup 10}B conversion layer output the voltage by irradiating pulsed neutrons. We have investigated γ/n discrimination of a Nb-based CB-KID with {sup 10}B conversion layer using a Cd plate, which indicates that a CB-KID can operate as a neutron detector under the strong γ-ray fields.

  16. Development of a neutron imager based on superconducting detectors

    International Nuclear Information System (INIS)

    Miyajima, Shigeyuki; Yamaguchi, Hiroyuki; Nakayama, Hirotaka; Shishido, Hiroaki; Fujimaki, Akira; Hidaka, Mutsuo; Harada, Masahide; Oikawa, Kenichi; Oku, Takayuki; Arai, Masatoshi; Ishida, Takekazu

    2016-01-01

    Highlights: • A neutron detector based on superconducting meander line is demonstrated. • Fast response time of a few tens ns is obtained. • Spatial resolution is 1 μm and can be improved to sub-μm scale. • The proposed neutron detector can operate under the γ-ray fields. - Abstract: We succeeded in demonstrating a neutron detector based on a Nb superconducting meander line with a "1"0B conversion layer for a neutron imager based on superconductor devices. We use a current-biased kinetic inductance detector (CB-KID), which is composed of a meander line, for detection of a neutron with high spatial resolution and fast response time. The thickness of Nb meander lines is 40 nm and the line width is narrower than 3 mu m. The area of 8 mm × 8 mm is covered by CB-KIDs, which are assembled at the center of the Si chip of the size 22 mm × 22 mm. The Nb CB-KIDs with a "1"0B conversion layer output the voltage by irradiating pulsed neutrons. We have investigated γ/n discrimination of a Nb-based CB-KID with "1"0B conversion layer using a Cd plate, which indicates that a CB-KID can operate as a neutron detector under the strong γ-ray fields.

  17. Development of long-life neutron detectors for the prototype heavy water reactor 'Fugen'

    International Nuclear Information System (INIS)

    Ohteru, Shigeru; Shirayama, Shimpey.

    1981-01-01

    The development of long-life neutron detectors as the flux monitors for the prototype heavy water reactor has been made. Three kinds of neutron monitors, namely start-up monitor (SUM), power up monitor (PUM) and local power monitor (LPM), are provided. The LPM consists of 4 ion chamber type neutron detectors and a guide tube of power calibration monitor (PCM). This is useful for reactor control and fuel soundness monitor. The improvement of the neutron detectors was made for the operation under high neutron flux and gamma-ray heating. For the long-life operation, U-234 was mixed into U-235 for the conversion in the detectors. The ratio of U-234 to U-235 is 3 to 1. The PCM is also an ion chamber type detector with U-235. The mixing ratio of U-234 to U-235 was determined by a test with the JMTR. The characteristic performance was also investigated by the JMTR. After the completion of Fugen, various tests on the long-life detectors were performed with Fugen. It was hard to test the output linearity of the detectors with a large scale reactor. Therefore, it was tested that the operation range of the detectors is within the linear region of detector output. The voltage-current characteristics and the correlation of output current and saturation current were measured. The variation of the neutron sensitivity of the detectors with the cumulative dose was also studied. (Kato, T.)

  18. Development of an X-ray detector using photodiodes

    International Nuclear Information System (INIS)

    Gonzalez G, J.; Azorin V, J. C.; Sosa A, M. A.; Ceron, P.

    2016-10-01

    Currently the radiation detectors for medical applications are very high value in the market and are difficult to access as training material. In the Sciences and Engineering Division of the Guanajuato University (Mexico) investigations are carried out related to ionizing radiations, especially with X-rays. To overcome the lack of materials has had to resort to borrowing equipment from other institutions, so its use and availability are intermittent. For these reasons is proposed to design and implement an X-ray detector for the use of the work group and the University. This work aims to build an X-ray semiconductor detector using inexpensive and affordable materials, is also proposed the use of a photodiode sensor and an Arduino analog-digital card and a LCD display showing the data. (Author)

  19. A program in detector development for the US synchrotron radiation community

    International Nuclear Information System (INIS)

    Thompson, A.; Mills, D.; Naday, S.; Gruner, S.; Siddons, P.; Arthur, J.; Wehlitz, R.; Padmore, H.

    2001-01-01

    There is a clear gulf between the capabilities of modern synchrotrons to deliver high photon fluxes, and the capabilities of detectors to measure the resulting photon, electron or ion signals. While a huge investment has been made in storage ring technology, there has not to date been a commensurate investment in detector systems. With appropriate detector technology, gains in data rates could be 3 to 4 orders of magnitude in some cases. The US community working in detector technology is under-funded and fragmented and works without the long term funding commitment required for development of the most advanced detector systems. It is becoming apparent that the US is falling behind its international competitors in provision of state-of-the-art detector technology for cutting edge synchrotron radiation based experiments

  20. Development of an external readout electronics for a hybrid photon detector

    CERN Document Server

    Uyttenhove, Simon; Tichon, Jacques; Garcia, Salvador

    The pixel hybrid photon detectors currently installed in the LHCb Cherenkov system encapsulate readout electronics in the vacuum tube envelope. The LHCb upgrade and the new trigger system will require their replacement with new photon detectors. The baseline photon detector candidate is the multi-anode photomultiplier. A hybrid photon detector with external readout electronics has been proposed as a backup option. This master thesis covers a R & D phase to investigate this latter concept. Extensive studies of the initial electronics system underlined the noise contributions from the Beetle chip used as front-end readout ASIC and from the ceramic carrier of the photon detector. New front-end electronic boards have been developed and made fully compatible with the existing LHCb-RICH infrastructure. With this compact readout system, Cherenkov photons have been successfully detected in a real particle beam environment. The proof-of-concept of a hybrid photon detector with external readout electronics was val...

  1. Recent advances in self-powered flux detector development for CANDU reactors

    International Nuclear Information System (INIS)

    Allan, C.J.; Drewell, N.H.; Hall, D.S.

    1983-01-01

    The characteristics of self-powered flux detectors used in CANDU reactors are reviewed. Detectors with emitters of vanadium, platinum, platinum-clad Inconel and Inconel are used. Data on dynamic response, relative neutron and gamma-ray sensitivities, and burnout, obtained both from experiments and from the Monte Carlo code ICARES, are presented. Since the response of a detector depends on the relative magnitudes of the various current-producing mechanisms, the operating principles of self-powered detectors are briefly reviewed. Current research programmes are discussed. These include modifying the design of the platinum-clad Inconel detector in order to match its dynamic response to that of the fuel power and developing a prompt-responding flux-mapping detector. (author)

  2. The development of gaseous detectors with solid photocathodes for low temperature applications

    CERN Document Server

    Periale, L.; Iacobaeus, C.; Francke, T.; Lund-Jensen, B.; Pavlopoulos, N.; Picchi, P.; Pietropaolo, F.

    2004-01-01

    There are several applications and fundamental research areas which require the detection of VUV light at cryogenic temperatures. For these applications we have developed and successfully tested special designs of gaseous detectors with solid photocathodes able to operate at low temperatures: sealed gaseous detectors with MgF2 windows and windowless detectors. We have experimentally demonstrated, that both primary and secondary (due to the avalanche multiplication inside liquids) scintillation lights could be recorded by photosensitive gaseous detectors. The results of this work may allow one to significantly improve the operation of some noble liquid gas TPCs.

  3. Development of electron temperature measuring system by silicon drift detector

    International Nuclear Information System (INIS)

    Song Xianying; Yang Jinwei; Liao Min

    2007-12-01

    Soft X-ray spectroscopy with two channels Silicon Drift Detector (SDD) are adopted for electron temperature measuring on HL-2A tokamak in 2005. The working principle, design and first operation of the SDD soft X-ray spectroscopy are introduced. The measuring results of electron temperature are also presented. The results show that the SDD is very good detector for electron temperature measuring on HL-2A tokamak. These will become a solid basic work to establish SDD array for electron temperature profiling. (authors)

  4. Bringing the Science of JWST to the Public

    Science.gov (United States)

    Green, Joel D.; Smith, Denise A.; Lawton, Brandon L.; Meinke, Bonnie K.; Jirdeh, Hussein

    2017-01-01

    The James Webb Space Telescope is the successor to the Hubble Space Telescope. STScI and the Office of Public Outreach are committed to bringing awareness of the technology, the excitement, and the future science potential of this great observatory to the public and to the scientific community, prior to its 2018 launch. The challenges in ensuring the high profile of JWST (understanding the infrared, the vast distance to the telescope's final position, and the unfamiliar science territory) requires us to lay the proper background, particularly in the area of spectroscopy. We currently engage the full range of the public and scientific communities using a variety of high impact, memorable initiatives, in combination with modern technologies to extend reach, linking the science goals of Webb to the ongoing discoveries being made by Hubble. Webbtelescope.org, the public hub for scientific information related to JWST, is now open. We have injected Webb-specific content into ongoing outreach programs: for example, partnering with high impact science communicators such as MinutePhysics to produce timely and concise content; partnering with musicians and artists to link science and art. Augmented reality apps showcase NASA’s telescopes in a format usable by anyone with a smartphone, and visuals from increasingly affordable 3D VR technologies.

  5. JWST Associations overview: automated generation of combined products

    Science.gov (United States)

    Alexov, Anastasia; Swade, Daryl; Bushouse, Howard; Diaz, Rosa; Eisenhamer, Jonathan; Hack, Warren; Kyprianou, Mark; Levay, Karen; Rahmani, Christopher; Swam, Mike; Valenti, Jeff

    2018-01-01

    We are presenting the design of the James Webb Space Telescope (JWST) Data Management System (DMS) automated processing of Associations. An Association captures the relationship between exposures and higher level data products, such as combined mosaics created from dithered and tiled observations. The astronomer’s intent is captured within the Proposal Planning System (PPS) and provided to DMS as candidate associations. These candidates are converted into Association Pools and Association Generator Tables that serve as input to automated processing which create the combined data products. Association Pools are generated to capture a list of exposures that could potentially form associations and provide relevant information about those exposures. The Association Generator using definitions on groupings creates one or more Association Tables from a single input Association Pool. Each Association Table defines a set of exposures to be combined and the ruleset of the combination to be performed; the calibration software creates Associated data products based on these input tables. The initial design produces automated Associations within a proposal. Additionally this JWST overall design is conducive to eventually produce Associations for observations from multiple proposals, similar to the Hubble Legacy Archive (HLA).

  6. Development of new hole-type avalanche detectors and the first results of their applications

    CERN Document Server

    Charpak, Georges; Breuil, P.; Di Mauro, A.; Martinengo, P.; Peskov, V.

    2008-01-01

    We have developed a new detector of photons and charged particles- a hole-type structure with electrodes made of a double layered resistive material: a thin low resistive layer coated with a layer having a much higher resistivity. One of the unique features of this detector is its capability to operate at high gas gains (up to 10E4) in air or in gas mixtures with air. They can also operate in a cascaded mode or be combined with other detectors, for example with GEM. This opens new avenues in their applications. Several prototypes of these devices based on new detectors and oriented on practical applications were developed and successfully tested: a detector of soft X-rays and alpha particles, a flame sensor, a detector of dangerous gases. All of these detectors could operate stably even in humid air and/or in dusty conditions. The main advantages of these detectors are their simplicity, low cost and high sensitivity. For example, due to the avalanche multiplication, the detectors of flames and dangerous gases...

  7. Development of a Metal Detector for Smartphones and Its Use in the Teaching Laboratory

    Science.gov (United States)

    Sobral, Geraldo A.

    2018-01-01

    In this article, we describe how to develop an inductive metal detector that can be integrated to any Android or iOS smartphone with a standard audio port at low cost. The results indicate the metal detector can be used in the physics teaching laboratory as a practical application of principles of electromagnetism. It allows one to differentiate…

  8. Development of a 3D CZT detector prototype for Laue Lens telescope

    DEFF Research Database (Denmark)

    Caroli, Ezio; Auricchio, Natalia; Del Sordo, Stefano

    2010-01-01

    We report on the development of a 3D position sensitive prototype suitable as focal plane detector for Laue lens telescope. The basic sensitive unit is a drift strip detector based on a CZT crystal, (~19×8 mm2 area, 2.4 mm thick), irradiated transversally to the electric field direction. The anode...

  9. Development of neutron-monitor detectors applicable for energies up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Kim, Eunjoo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakamura, Takashi [Tohoku Univ., Sendai, Miyagi (Japan)

    2003-03-01

    For the purpose of monitoring of neutron doses in high energy accelerator facilities, we have been developing neutron detectors which are applicable for neutron energies up to 100 MeV. The present paper reports characteristics of a phoswitch-type neutron detector which is composed of a liquid organic scintillator and {sup 6}Li+ZnS(Ag) sheets. (author)

  10. The study of methodologies of software development for the next generation of HEP detector software

    International Nuclear Information System (INIS)

    Ding Yuzheng; Wang Taijie; Dai Guiliang

    1997-01-01

    The author discusses the characteristics of the next generation of HEP (High Energy Physics) detector software, and describes the basic strategy for the usage of object oriented methodologies, languages and tools in the development of the next generation of HEP detector software

  11. Development of twin Ge detector for high energy photon measurement and its performance

    Energy Technology Data Exchange (ETDEWEB)

    Shigetome, Yoshiaki; Harada, Hideo [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-03-01

    Prototype twin HPGe detector composed of two large HPGe crystals was developed to obtain better detection efficiency ({epsilon}) and P/T ratio, which was required for high energy photon spectroscopy. In this work, the performances of the twin HPGe detector were evaluated by computer simulation employing EGS4 code. (author)

  12. Development of an inconel self powered neutron detector for in-core reactor monitoring

    Science.gov (United States)

    Alex, M.; Ghodgaonkar, M. D.

    2007-04-01

    The paper describes the development and testing of an Inconel600 (2 mm diameter×21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the 60Co irradiation facility in 14 MR/h gamma field showed values of -4.4×10 -18 A/R/h/cm (-9.3×10 -24 A/ γ/cm 2-s/cm), -5.2×10 -18 A/R/h/cm (-1.133×10 -23 A/ γ/cm 2-s/cm) and 34×10 -18 A/R/h/cm (7.14×10 -23 A/ γ/cm 2-s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6×10 -23 A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69×10 -22 and 2.64×10 -22 A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within ±5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress.

  13. Development of an inconel self powered neutron detector for in-core reactor monitoring

    International Nuclear Information System (INIS)

    Alex, M.; Ghodgaonkar, M.D.

    2007-01-01

    The paper describes the development and testing of an Inconel600 (2 mm diameterx21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the 60 Co irradiation facility in 14 MR/h gamma field showed values of -4.4x10 -18 A/R/h/cm (-9.3x10 -24 A/γ/cm 2 -s/cm), -5.2x10 -18 A/R/h/cm (-1.133x10 -23 A/γ/cm 2 -s/cm) and 34x10 -18 A/R/h/cm (7.14x10 -23 A/γ/cm 2 -s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6x10 -23 A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69x10 -22 and 2.64x10 -22 A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within ±5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress

  14. Development of an inconel self powered neutron detector for in-core reactor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alex, M. [Electronics Division, BARC, Mumbai (India)]. E-mail: maryalex@barc.gov.in; Ghodgaonkar, M.D. [Electronics Division, BARC, Mumbai (India)

    2007-04-21

    The paper describes the development and testing of an Inconel600 (2 mm diameterx21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the {sup 60}Co irradiation facility in 14 MR/h gamma field showed values of -4.4x10{sup -18} A/R/h/cm (-9.3x10{sup -24} A/{gamma}/cm{sup 2}-s/cm), -5.2x10{sup -18} A/R/h/cm (-1.133x10{sup -23} A/{gamma}/cm{sup 2}-s/cm) and 34x10{sup -18} A/R/h/cm (7.14x10{sup -23} A/{gamma}/cm{sup 2}-s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6x10{sup -23} A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69x10{sup -22} and 2.64x10{sup -22} A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within {+-}5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress.

  15. Development of large area silicon semiconductor detectors for use in the current mode

    CERN Document Server

    Ouyang Xia Opin; Li Zhen Fu; Zhang Guo Guang; Zhang Qi; Zhang Xia; Song Xian Cai; Jia Huan Yi; Lei Jian Hua; Sun Yuan Cheng

    2002-01-01

    Large area silicon semiconductor detectors for use in the current mode, with their dimensions of phi 40, phi 50 and phi 60 mm, their depletion thickness of 200-300 mu m, have been developed. Their performance measurements have been made, which indicate that the developed detectors can satisfactorily meet the needs in expectation. Compared with the detectors commercially available on the market, authors' large PIN detectors can serve both as reliable and efficient high-resolution devices for nuclear counting experiments, as well as monitors of high-intensity radiation fields in the current mode under a bias of 100-1000 V, while the detectors commercially available are only for the counting use

  16. Preliminary report on the development of a high resolution PET camera using semiconductor detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Yamazaki, Hiromichi; Matsuyama, Shigeo; Yamaguchi, Takashi; Yamamoto, Yusuke; Sato, Takemi; Aoki, Yasushi; Aoki, Kenichi

    2005-01-01

    We are developing a PET camera using small semiconductor detectors, whose resolution is equivalent to the physical limit of spatial resolution. First, a coincidence system of 16 Schottky CdTe detectors of 0.5 mm width obtained a resolution of <1 mm and it was confirmed that the Schottky CdTe detector is suitable for high resolution PET. Next, the performance of a pair of 32 channel CdTe arrays (1.2 mm width per channel) was investigated for the development of the prototype of high resolution PET. The time resolution between opposing detector pair was 13 ns (FWHM) when high voltage (700 V) was applied. The image of a 0.6 mm diameter point source was obtained in an experiment with opposing detector arrays using four channels, indicating that, a higher resolution can be achieved with the 32 channel CdTe array

  17. Life-finding detector development at NASA GSFC using a custom H4RG test bed

    Science.gov (United States)

    Mosby, Gregory; Rauscher, Bernard; Kutyrev, Alexander

    2018-01-01

    Chemical species associated with life, called biosignatures, should be visible in exoplanet atmospheres with larger space telescopes. These signals will be faint and require very low noise (~e-) detectors to robustly measure. At NASA Goddard we are developing a single detector H4RG test bed to characterize and identify potential technology developments needed for the next generation's large space telescopes. The vacuum and cryogenic test bed will include near infrared light sources from integrating spheres using a motorized shutter. The detector control and readout will be handled by a Leach controller. Detector cables have been manufactured and test planning has begun. Planned tests include testing minimum read noise capabilities, persistence mitigation strategies using long wavelength light, and measuring intrapixel variation which might affect science goals of future missions. In addition to providing a means to identify areas of improvement in detector technology, we hope to use this test bed to probe some fundamental physics of these infrared arrays.

  18. Research in high energy physics: Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1988-01-01

    The scintillating fiber detector development program at the University of Notre Dame is divided into several components. These include: Research on scintillating glass fiber materials; Research on scintillating plastic fiber materials; Research on scintillating liquids in fiber capillaries; Studies of improvements in image intensification and light amplification of appropriate test and development facilities at Notre Dame. The overall goal of the program is to develop efficient scintillating fiber detectors with long, optical attenuation length, and excellent radiation resistance properties for tracking and microvertex detectors and as component active sampling materials for scintillation calorimetry. We now discuss each of these programs in turn. 2 figs., 3 tabs

  19. Development and features of an X-ray detector with high spatial resolution

    International Nuclear Information System (INIS)

    Hartmann, H.

    1979-09-01

    A laboratory model of an X-ray detector with high spatial resolution was developed and constructed. It has no spectral resolution, but a local resolution of 20 μm which is about ten times as high as that of position-sensitive proportional counters and satisfies the requirements of the very best Wolter telescopes with regard to spatial resolution. The detector will be used for laboratory tests of the 80 cm Wolter telescope which is being developed for Spacelab flights. The theory of the wire grid detector and the physics of the photoelectric effect has been developed, and model calculations and numerical calculations have been carried out. (orig./WB) [de

  20. Development of an underwater high sensitivity Cherenkov detector: Sea Urchin

    International Nuclear Information System (INIS)

    Camerini, U.; McGibney, D.; Roberts, A.

    1982-01-01

    The need for a high gain, high sensitivity Cherenkov light sensor to be used in a deep underwater muon and neutrino detector (DUMAND) array has led to the design of the Sea Urchin detector. In this design a spherical photocathode PMTis optically coupled through a glass hemisphere to a large number of glass spines, each of which is filled with a wavelength-shifting (WLS) solution of a high quantum efficiency phosphor. The Cherenkov radiation is absorbed in the spine, isotropically re-radiated at a longer wavelength, and a fraction of the fluorescent light is internally reflected in the spine, and guided to the photomultiplier concentrically located in the glass hemisphere. Experiments measuring the optical characteristics of the spines and computer programs simulating light transformation and detection cross sections are described. Overall optical gains in the range 5-10 are achieved. The WLS solution is inexpensive, and may have other applications. (orig.)

  1. Development and performance of double sided silicon strip detectors

    International Nuclear Information System (INIS)

    Batignani, G.; Forti, F.; Moneta, L.; Triggiani, G.; Bosisio, L.; Focardi, E.; Giorgi, M.A.; Parrini, G.; Tonelli, G.

    1991-01-01

    Microstrip silicon detectors with orthogonal readout on opposite sides have been designed and fabricated. The active area of each device is 25 cm 2 and the strip pitch is 25 μm on the junction side and 50 μm on the opposite ohmic side. A space resolution of 15 μm on the junction side (100 μm readout pitch) and 24 μm on the ohmic side (200 μm readout pitch) has been measured. We also report on AC-coupling chips, designed and fabricated in order to allow AC connection of the strips to the amplifiers. These chips are 6.4x5.0 mm 2 and have 100 μm pitch. Both AC-couplers and detectors have been installed as part of the ALEPH minivertex. (orig.)

  2. The performance and development of the ATLAS Inner Detector Trigger

    International Nuclear Information System (INIS)

    Washbrook, A

    2014-01-01

    A description of the ATLAS Inner Detector (ID) software trigger algorithms and the performance of the ID trigger for LHC Run 1 are presented, as well as prospects for a redesign of the tracking algorithms in Run 2. The ID trigger HLT algorithms are essential for a large number of signatures within the ATLAS trigger. During the shutdown, modifications are being made to the LHC machine, to increase both the beam energy and luminosity. This in turn poses significant challenges for the trigger algorithms both in terms of execution time and physics performance. To meet these challenges the ATLAS HLT software is being restructured to run as a single stage rather than in the two distinct levels present during the Run 1 operation. This is allowing the tracking algorithms to be redesigned to make optimal use of the CPU resources available and to integrate new detector systems being added to ATLAS for post-shutdown running. Expected future improvements in the timing and efficiencies of the Inner Detector triggers are also discussed. In addition, potential improvements in the algorithm performance resulting from the additional spacepoint information from the new Insertable B-Layer are presented

  3. Development and first tests of GEM-like detectors with resistive electrodes

    CERN Document Server

    Peskov, Vladimir; Centro, Sandro; Di Mauro, A; Lund-Jensen, B; Martinengo, P; Nappi, E; Oliveira, R; Pietropaolo, F; Picchi, P; Periale, L; Rodionov, I; Ventura, Sandro

    2007-01-01

    We have developed and tested several prototypes of GEM-like detectors with electrodes coated with resistive layers or completely made of resistive materials. These detectors can operate stably at gains close to 105. The resistive layers limit the energy of discharges appearing at higher gains thus making the detectors very robust. We demonstrated that the cathodes of some of these detectors could be coated by CsI or SbCs layers to enhance the detection efficiency for the UV and visible photons. We also discovered that such detectors can operate stably in the cascade mode and high overall gains ($~10^{6}$) are reachable. Applications in several areas, for example in RICH or in noble liquid TPCs are therefore possible. The first results from the detection of UV photons at room and cryogenic temperatures will be given.

  4. More Than ALICE: Development of an augmented reality mobile application for the ALICE detector

    CERN Document Server

    Ouellette, Jeff

    2016-01-01

    More Than ALICE is a mobile application for iOS and Android built in the Unity Engine. This project concerns the development of the second edition of the application, which is meant to completely succeed the original version built in 2014. The purpose of the application is to describe the various components of the ALICE detector and to overlay live collisions to increase public awareness for the research goals of the ALICE collaboration. The application provides an augmented reality (AR) interface via the Vuforia SDK to track images of the ALICE detector or components of the paper model of ALICE that can be purchased at the ALICE secretariat office. For those without access to either images of the detector or the detector model, the app provides a virtual detector model (VR) that contains the same functionality as the augmented reality.

  5. More than ALICE: Development of an augmented reality mobile application for the ALICE detector

    CERN Document Server

    Stamatouli, Anastasia

    2017-01-01

    More Than ALICE is a mobile application for iOS and Android devices. This project concerns the development of the v2.1 of the application which is meant to enhance the capacity of tracking quickly and reliably parts of the detector and its paper model. It recognises different parts of it and displays labels explaining its structure. Additionally, visualisation of the collisions can also be shown on the top of the camera image. More Than ALICE aims to increase the public awareness of the research goals of the ALICE collaboration. The application provides an Augmented Reality (AR) interface to track the detector during underground visits or its paper model which can be purchased at the ALICE secretariat. For those without access to either the detector or the paper model, the app provides the virtual model of the detector where the users can explore and understand the different parts of the detector and see real-time collisions.

  6. Development of a criticality alarm system neutron detector: Final project report

    International Nuclear Information System (INIS)

    O'Dell, A.A.

    1989-05-01

    The primary objective of this project was to develop a prototype neutron detector for use in criticality alarm systems (CASs) at US Department of Energy (DOE) and contractor facilities wherever significant amounts of fissile material are processed or stored. Constraints placed on the design of the detector were that the overall size of the detector was to be as small as practical, the input voltage requirements were to be no more than 24 V, and that the gamma sensitivity would be as low as possible. Also, the detector should give dosimetric neutron response, and should have sufficient temporal capabilities to measure the entire range from fast (>1 ms) to slow (seconds to minutes) excursions, and sufficient dynamic range to measure from background to over 100 times background levels to insure proper activation of the Immediate Evacuation Alarm (IEA). Finally, the detector should insure rapid (<1 s) activation of the IEA in the event of a criticality excursion. 24 figs., 11 tabs

  7. Results and present status of the Japan-US collaboration on detector research and development

    International Nuclear Information System (INIS)

    Arai, Yasuo; Takahashi, Kasuke

    1985-02-01

    This is a summary report on the results of the Detector R and D work, which we have been carrying out these three years, under the Japan-U.S. collaboration on High Energy Physics. It is clear that there have been already many considerable progress and outputs in the activities, some of which are already applied to the actual detectors in various ways. It is foreseeable that more extensive development will be realized. It should also be better to emphasize that these detector R and D efforts will be very important for the further development of high energy physics in the near future. (author)

  8. Development of data logger for atmospheric pressure, temperature and relative humidity for gas-filled detector

    International Nuclear Information System (INIS)

    Sahu, S.; Sahu, P.K.; Bhuyan, M.R.; Biswas, S.; Mohanty, B.

    2014-01-01

    At IoP-NISER an initiative has been taken to build and test micro-pattern gas detector such as Gas Electron Multiplier (GEM) for several upcoming High-Energy Physics (HEP) experiment projects. Temperature (t), atmospheric pressure (p) and relative humidity (RH) monitor and recording is very important for gas filled detector development. A data logger to monitor and record the ambient parameters such as temperature, relative humidity and pressure has been developed. With this data logger continuous recording of t, p, RH and time stamp can be done with a programmable sampling interval. This data is necessary to correct the gain of a gas filled detector

  9. Extrasolar Planets Observed with JWST and the ELTs

    Science.gov (United States)

    Deming, L. Drake

    2010-01-01

    The advent of cryogenic space-borne infrared observatories such as the Spitzer Space Telescope has lead to a revolution in the study of planets and planetary systems orbiting sun-like stars. Already Spitzer has characterized the emergent infrared spectra of close-in giant exoplanets using transit and eclipse techniques. The James Webb Space Telescope (JWST) will be able to extend these studies to superEarth exoplanets orbiting in the habitable zones of M-dwarf stars in the near solar neighborhood. The forthcoming ground-based Extremely Large Telescopes (ELTs) will playa key role in these studies, being especially valuable for spectroscopy at higher spectral resolving powers where large photon fluxes are needed. The culmination of this work within the next two decades will be the detection and spectral characterization of the major molecular constituents in the atmosphere of a habitable superEarth orbiting a nearby lower main sequence star.

  10. Prospects for Detecting Thermal Emission from Terrestrial Exoplanets with JWST

    Science.gov (United States)

    Kreidberg, Laura

    2018-01-01

    A plethora of nearby, terrestrial exoplanets has been discovered recently by ground-based surveys. Excitingly, some of these are in the habitable zones of their host stars, and may be hospitable for life. However, all the planets orbit small, cool stars and have considerably different irradiation environments from the Earth, making them vulnerable to atmospheric escape, erosion and collapse. Atmosphere characterization is therefore critical to assessing the planets' habitability. I will discuss possible JWST thermal emission measurements to determine the atmospheric properties of nearby terrestrial planets. I will focus on prospects for detecting physically motivated atmospheres for planets orbiting LHS 1140, GJ 1132, and TRAPPIST-1. I will also discuss the potential for using phase curve observations to determine whether an atmosphere has survived on the non-transiting planet Proxima b.

  11. Maintenance and development of the NA61/SHINE Detector Control System (DCS)

    CERN Document Server

    Brylinski, Wojciech

    2017-01-01

    This document presents the summary of my CERN Summer Student project. The main goal of my stay was the development of some parts of Detector Control System responsible for gas parameters, atmospheric conditions and drift velocity measurements.

  12. DOE seeks applicants to develop next-generation nuclear detectors. (Sensors)

    CERN Multimedia

    2002-01-01

    "DOE's Division of High Energy Physics seeks grant applications for development of advanced detectors in the areas of high energy physics experiments, which includes accelerator-based and non-accelerator based experiments" (1/2 page).

  13. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    Science.gov (United States)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  14. Observing the Spectra of MEarth and TRAPPIST Planets with JWST

    Science.gov (United States)

    Morley, Caroline; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler D.; Fortney, Jonathan J.

    2017-10-01

    During the past two years, nine planets close to Earth in radius have been discovered around nearby M dwarfs cooler than 3300 K. These planets include the 7 planets in the TRAPPIST-1 system and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b (Dittmann et al. 2017; Berta-Thompson et al. 2015; Gillon et al. 2017). These planets are the smallest planets discovered to date that will be amenable to atmospheric characterization with JWST. They span equilibrium temperatures from ˜130 K to >500 K, and radii from 0.7 to 1.43 Earth radii. Some of these planets orbit as distances potentially amenable to surface liquid water, though the actual surface temperatures will depend strongly on the albedo of the planet and the thickness and composition of its atmosphere. The stars they orbit also vary in activity levels, from the quiet LHS 1140b host star to the more active TRAPPIST-1 host star. This set of planets will form the testbed for our first chance to study the diversity of atmospheres around Earth-sized planets. Here, we will present model spectra of these 9 planets, varying the composition and the surface pressure of the atmosphere. We base our elemental compositions on three outcomes of planetary atmosphere evolution in our own solar system: Earth, Titan, and Venus. We calculate the molecular compositions in chemical equilibrium. We present both thermal emission spectra and transmission spectra for each of these objects, and make predictions for the observability of these spectra with different instrument modes with JWST.

  15. Development of compact DOI-measurable PET detectors for simultaneous PET/MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yiping; Sun, Xishan [University of Texas MD Anderson Cancer Center (United States); Lou, Kai [Rice University (United States)

    2015-05-18

    It is critically needed yet challenging to develop compact PET detectors with high sensitivity and uniform, high imaging resolution for improving the performance of simultaneous PET/MR imaging, particularly for an integrated/inserted small-bore system. Using the latest “edge-less” SiPM arrays for DOI measurement using the design of dual-ended-scintillator readout, we developed several compact PET detectors suited for PET/MR imaging. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together along all sides to form a large detector panel. Detectors with 1.5x1.5 and 2.0x2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or capacitor-based signal multiplexing was used to transfer 3D interaction position-coded analog signals through flexible-print-circuit cables to dedicated ASIC frontend electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition positioned outside the MRI scanner for coincidence event selection. Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ~18% and 2.8 ns energy and timing resolutions, and around 2-3 mm DOI resolution. A large size detector panel can be scaled up with these modular detectors and different PET systems can be flexibly configured with the scalable readout electronics and data acquisition, providing an important design advantage for different system and application requirements. It is expected that standard shielding of detectors, electronics and signal transfer lines can be applied for simultaneous PET/MR imaging applications, with desired DOI measurement capability to enhance the PET performance and image quality.

  16. Development of compact DOI-measurable PET detectors for simultaneous PET/MR Imaging

    International Nuclear Information System (INIS)

    Shao, Yiping; Sun, Xishan; Lou, Kai

    2015-01-01

    It is critically needed yet challenging to develop compact PET detectors with high sensitivity and uniform, high imaging resolution for improving the performance of simultaneous PET/MR imaging, particularly for an integrated/inserted small-bore system. Using the latest “edge-less” SiPM arrays for DOI measurement using the design of dual-ended-scintillator readout, we developed several compact PET detectors suited for PET/MR imaging. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together along all sides to form a large detector panel. Detectors with 1.5x1.5 and 2.0x2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or capacitor-based signal multiplexing was used to transfer 3D interaction position-coded analog signals through flexible-print-circuit cables to dedicated ASIC frontend electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition positioned outside the MRI scanner for coincidence event selection. Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ~18% and 2.8 ns energy and timing resolutions, and around 2-3 mm DOI resolution. A large size detector panel can be scaled up with these modular detectors and different PET systems can be flexibly configured with the scalable readout electronics and data acquisition, providing an important design advantage for different system and application requirements. It is expected that standard shielding of detectors, electronics and signal transfer lines can be applied for simultaneous PET/MR imaging applications, with desired DOI measurement capability to enhance the PET performance and image quality.

  17. Development of semiconductor ΔE-E detector chip using standard bipolar IC technology

    International Nuclear Information System (INIS)

    Mishra, Vijay; Kataria, S.K.

    2005-01-01

    A proposal has been made for developing silicon based AE-E detector chip which can be used as particle identifiers in nuclear physics experiments and also in several applications in nuclear industry scenario. The proposed development work employs standard bipolar IC fabrication technology of Bharat Electronics Ltd. and the deliverable products that emerge out will be very cost effective. The present paper discusses the concept, feasibility studies and systematic plan for fabrication, characterization and packaging of the proposed detectors. (author)

  18. Radiation detectors for personnel monitoring - current developments and future trends

    International Nuclear Information System (INIS)

    Kannan, S.

    2003-01-01

    The radiation detectors for personnel monitoring range from the conventional passive dosimeters like the film badge and the TLD, to sophisticated active dosimeters for integrated gamma, beta and neutron dose measurement. With the availability of high accuracy active dosimeters, the process of personnel monitoring, acceptability among radiation workers, record keeping and dose control have become more simplified. However the high level of sophistication in the active dosimeter has its own inevitable price tag and the new breed of active dosimeters are prohibitively costly. The silver lining, in the otherwise dark cost scenario of these dosimeters is the potential for cost reduction at least in some of the dosimeters in the near future

  19. Development of resonant detectors for epithermal neutron spectroscopy at pulsed neutron sources

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Senesi, R.; Andreani, C.; Gorini, G.

    2004-01-01

    New perspectives for epithermal neutron spectroscopy are opened by the development of new detectors for inverse geometry time of flight spectrometers at pulsed neutron sources. One example is the Very Low Angle Detector (VLAD) bank planned to be delivered, within the next 4 years, within the eVERDI project, on the neutron spectrometer VESUVIO, at the ISIS pulsed neutron source (UK). VLAD will extend the (q,ω) kinematical region for neutron scattering to low wavefactor transfer (q -1 ) still keeping energy transfer >1 eV, thus allowing the investigations of new experimental studies in condensed matter systems. The technique being developed for detection of epithermal neutrons, within this low q and high-energy transfer region, is the Resonance Detection Technique. In this work, the state of the detector development will be presented with special focus on the results obtained with some prototype detectors, namely YAP scintillators and cadmium-zinc-telluride semiconductors

  20. Silicon Sensor and Detector Developments for the CMS Tracker Upgrade

    CERN Document Server

    D'Alessandro, Raffaello

    2011-01-01

    CMS started a campaign to identify the future silicon sensor technology baseline for a new Tracker for the high-luminosity phase of LHC, coupled to a new effective way of providing tracking information to the experiment trigger. To this end a large variety of 6'' wafers was acquired in different thicknesses and technologies at HPK and new detector module designs were investigated. Detector thicknesses ranging from 50$\\mu$m to 300$\\mu$m are under investigation on float zone, magnetic Czochralski and epitaxial material both in n-in-p and p-in-n versions. P-stop and p-spray are explored as isolation technology for the n-in-p type sensors as well as the feasibility of double metal routing on 6'' wafers. Each wafer contains different structures to answer different questions, e.g. influence of geometry, Lorentz angle, radiation tolerance, annealing behaviour, validation of read-out schemes. Dedicated process test-structures, as well as diodes, mini-sensors, long and very short strip sensors and real pixel sensors ...

  1. Observing outer planet satellites (except Titan) with JWST: Science justification and observational requirements

    Science.gov (United States)

    Kestay, Laszlo P.; Grundy, Will; Stansberry, John; Sivaramakrishnan, Anand; Thatte, Deepashri; Gudipati, Murthy; Tsang, Constantine; Greenbaum, Alexandra; McGruder, Chima

    2016-01-01

    The James Webb Space Telescope (JWST) will allow observations with a unique combination of spectral, spatial, and temporal resolution for the study of outer planet satellites within our Solar System. We highlight the infrared spectroscopy of icy moons and temporal changes on geologically active satellites as two particularly valuable avenues of scientific inquiry. While some care must be taken to avoid saturation issues, JWST has observation modes that should provide excellent infrared data for such studies.

  2. Developing works to detect fatigue cracks (small sodium leak detector and acoustic emission

    International Nuclear Information System (INIS)

    Kikuchi, M.; Sakakibara, Y.; Nagata, T.

    1980-01-01

    Continuous monitoring of fatigue cracks was performed (using both sodium leak detector and AE measuring system) through the creep-fatigue test of 304 stainless steel long elbow as part of the test series to establish the structural reliability of the Prototype FBR primary heat transport piping system. The sodium leak detector was a system composed mainly of SID (Sodium Ionization Detector) and DPD (Deferential Pressure Detector), that was developed by HITACHI Ltd. under a contract with PNC. The AE system was Synthetic AE Measuring and Analyzing system that was developed at FBR Safety Section to measure and analyze AE at various piping component tests. The test was continued until a sodium leakage was detected by the contact-type sodium leak detector attached to the test assembly, after about 4 weeks operation under cyclic loading at 600 deg. C. The following conclusions were obtained: (1) The sodium leak detector, both SID and DPD, indicated sodium leakage clearly, some hours before the contact-type detector did, even under an environment of air that contains ordinary humidity (Leaked sodium was estimated to be less than 15 grams after completion of the test); (2) The AE method indicated location and seriousness of the fatigue cracks, apparently before the crack penetration occurred. (author)

  3. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Suzaki, F.; Izumikawa, T.; Miyazawa, S.; Morimoto, K.; Suzuki, T.; Tokanai, F.; Furuki, H.; Ichihashi, N.; Ichikawa, C.; Kitagawa, A.; Kuboki, T.; Momota, S.; Nagae, D.; Nagashima, M.; Nakamura, Y.; Nishikiori, R.; Niwa, T.; Ohtsubo, T.; Ozawa, A.

    2013-01-01

    Highlights: • Position-sensitive detectors were developed for storage-ring decay spectroscopy. • Fiber scintillation and silicon strip detectors were tested with heavy ion beams. • A new fiber scintillation detector showed an excellent position resolution. • Position and energy detection by silicon strip detectors enable full identification. -- Abstract: As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments

  4. Detector trends

    International Nuclear Information System (INIS)

    Charpak, G.

    1986-01-01

    The author describes briefly the development of detectors for high energy physics experiments. Especially considered are semiconductor microstrip detectors, drift tubes, holographic bubble chambers, scintillating fiber optics, and calorimeters. (HSI).

  5. Detector Developments for the High Luminosity LHC Era (2/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

  6. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J., E-mail: j.krimmer@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Ley, J.-L. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Abellan, C.; Cachemiche, J.-P. [Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille (France); Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D. [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex (France); Freud, N. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Joly, B.; Lambert, D.; Lestand, L. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); Létang, J.M. [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard (France); Magne, M. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); and others

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm{sup 3}, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm{sup 3}, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  7. The development of two ASIC's for a fast silicon strip detector readout system

    International Nuclear Information System (INIS)

    Christain, D.; Haldeman, M.; Yarema, R.; Zimmerman, T.; Newcomer, F.M.; VanBerg, R.

    1989-01-01

    A high speed, low noise readout system for silicon strip detectors is being developed for Fermilab E771, which will begin taking data in 1989. E771 is a fixed target experiment designed to study the production of B hadrons by an 800 GeV/c proton beam. The experimental apparatus consists of an open geometry magnetic spectrometer featuring good muon and electron identification and a 16000 channel silicon microstrip vertex detector. This paper reviews the design and prototyping of two application specific integrated circuits (ASIC's) an amplifier and a discriminator, which are being produced for the silicon strip detector readout system

  8. Development of bonded semiconductor device for high counting rate high efficiency photon detectors

    International Nuclear Information System (INIS)

    Kanno, Ikuo

    2008-01-01

    We are trying to decrease dose exposure in medical diagnosis by way of measuring the energy of X-rays. For this purpose, radiation detectors for X-ray energy measurement with high counting rate should be developed. Direct bonding of Si wafers was carried out to make a radiation detector, which had separated X-ray absorber and detector. The resistivity of bonding interface was estimated with the results of four-probe measurements and model calculations. Direct bonding of high resistivity p and n-Si wafers was also performed. The resistance of the pn bonded diode was 0.7 MΩ. The resistance should be increased in the future. (author)

  9. Development of a simple detector response function generation program: The CEARDRFs code

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiaxin, E-mail: jwang3@ncsu.edu [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Wang Zhijian; Peeples, Johanna [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Yu Huawei [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); College of Geo-Resources and Information, China University of Petroleum, Qingdao, Shandong 266555 (China); Gardner, Robin P. [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2012-07-15

    A simple Monte Carlo program named CEARDRFs has been developed to generate very accurate detector response functions (DRFs) for scintillation detectors. It utilizes relatively rigorous gamma-ray transport with simple electron transport, and accounts for two phenomena that have rarely been treated: scintillator non-linearity and the variable flat continuum part of the DRF. It has been proven that these physics and treatments work well for 3 Multiplication-Sign 3 Double-Prime and 6 Multiplication-Sign 6 Double-Prime cylindrical NaI detector in CEAR's previous work. Now this approach has been expanded to cover more scintillation detectors with various common shapes and sizes. Benchmark experiments of 2 Multiplication-Sign 2 Double-Prime cylindrical BGO detector and 2 Multiplication-Sign 4 Multiplication-Sign 16 Double-Prime rectangular NaI detector have been carried out at CEAR with various radiactive sources. The simulation results of CEARDRFs have also been compared with MCNP5 calculations. The benchmark and comparison show that CEARDRFs can generate very accurate DRFs (more accurate than MCNP5) at a very fast speed (hundred times faster than MCNP5). The use of this program can significantly increase the accuracy of applications relying on detector spectroscopy like prompt gamma-ray neutron activation analysis, X-ray fluorescence analysis, oil well logging and homeland security. - Highlights: Black-Right-Pointing-Pointer CEARDRF has been developed to generate detector response functions (DRFs) for scintillation detectors a. Black-Right-Pointing-Pointer Generated DRFs are very accurate. Black-Right-Pointing-Pointer Simulation speed is hundreds of times faster than MCNP5. Black-Right-Pointing-Pointer It utilizes rigorous gamma-ray transport with simple electron transport. Black-Right-Pointing-Pointer It also accounts for scintillator non-linearity and the variable flat continuum part.

  10. Development of a simple detector response function generation program: The CEARDRFs code

    International Nuclear Information System (INIS)

    Wang Jiaxin; Wang Zhijian; Peeples, Johanna; Yu Huawei; Gardner, Robin P.

    2012-01-01

    A simple Monte Carlo program named CEARDRFs has been developed to generate very accurate detector response functions (DRFs) for scintillation detectors. It utilizes relatively rigorous gamma-ray transport with simple electron transport, and accounts for two phenomena that have rarely been treated: scintillator non-linearity and the variable flat continuum part of the DRF. It has been proven that these physics and treatments work well for 3×3″ and 6×6″ cylindrical NaI detector in CEAR's previous work. Now this approach has been expanded to cover more scintillation detectors with various common shapes and sizes. Benchmark experiments of 2×2″ cylindrical BGO detector and 2×4×16″ rectangular NaI detector have been carried out at CEAR with various radiactive sources. The simulation results of CEARDRFs have also been compared with MCNP5 calculations. The benchmark and comparison show that CEARDRFs can generate very accurate DRFs (more accurate than MCNP5) at a very fast speed (hundred times faster than MCNP5). The use of this program can significantly increase the accuracy of applications relying on detector spectroscopy like prompt gamma-ray neutron activation analysis, X-ray fluorescence analysis, oil well logging and homeland security. - Highlights: ► CEARDRF has been developed to generate detector response functions (DRFs) for scintillation detectors a. ► Generated DRFs are very accurate. ► Simulation speed is hundreds of times faster than MCNP5. ► It utilizes rigorous gamma-ray transport with simple electron transport. ► It also accounts for scintillator non-linearity and the variable flat continuum part.

  11. Development of Silicon Detectors for the High Luminosity LHC

    International Nuclear Information System (INIS)

    Eichhorn, Thomas Valentin

    2015-07-01

    The Large Hadron Collider (LHC) at CERN will be upgraded to a High Luminosity LHC in the year 2022, increasing the instantaneous luminosity by a factor of five. This will have major impacts on the experiments at the LHC, such as the Compact Muon Solenoid (CMS) experiment, and especially for their inner silicon tracking systems. Among other things, the silicon sensors used therein will be exposed to unprecedented levels of radiation damage, necessitating a replacement of the entire tracking detector. In order to maintain the excellent current performance, a new tracking detector has to be equipped with sensors of increased radiation hardness and higher granularity. The CMS experiment is undertaking an extensive R and D campaign in the search for the future silicon sensor technology baseline to be used in this upgrade. This thesis presents two methods suitable for use in this search: finite element TCAD simulations and test beam measurements. The simulations are focussed on the interstrip capacitance between sensor strips and are compared to measurements before and after the inclusion of radiation damage effects. A geometrical representation of the strip sensors used in the campaign has been found, establishing the predictive power of simulations. The test beam measurements make use of the high-precision pixel telescopes available at the DESY-II test beam facility. The performance of these telescopes has been assessed and their achievable pointing resolution has been found to be below 2 μm. Thin, epitaxial silicon is a candidate material for usage in radiation hard sensors for the future CMS tracking detector. Sample strip sensors of this material have been irradiated to fluences of up to 1.3 x 10 16 n eq /cm 2 with 800 MeV or 23 GeV protons. Test beam measurements with 5 GeV electrons have been performed to investigate the radiation hardness of epitaxial sensors using the pixel beam telescopes. The epitaxial device under test (DUT) has been integrated into the

  12. Development of Technique for Testing the Long-Term Stability of Silicon Microstrip Detectors

    International Nuclear Information System (INIS)

    Kosinov, A.V.; Maslov, N.I.; Naumov, S.V.; Ovchinnik, V.D.; Starodubtsev, A.F.; Vasiliev, G.P.; Yalovenko, V.I.; Bosisio, L.

    2006-01-01

    An automatic multi-channel set-up prototype for simultaneous testing of the Long-Term Stability (LTS) of more than ten detectors is described. The Inner Tracking System of the ALICE experiment will include about two thousand Double-sided Microstrip Detectors (DSMD). Efficient automatic measurement techniques are crucial for the LTS test, because the corresponding test procedure should be performed on each detector and requires long time, at least two days. By using special adapters for supporting and connecting the bare DSMDs, failing detectors can be screened out before module assembly, thus minimizing the cost. Automated probe stations developed for a special purpose or for microelectronics industry are used for measuring physical static DSMD characteristics and check good-to-bad elements ratio for DSMD. However, automated (or semi-automatic)test benches for studying LTS or testing DSMD long-term stability before developing a detecting module are absent

  13. Development and application of nuclear radiation detector made from high resistivity silicon and compound semiconductor

    International Nuclear Information System (INIS)

    Ding Honglin; Zhang Xiufeng; Zhang Wanchang; Li Jiang

    1995-11-01

    The development of high resistivity silicon detectors and compound semiconductor detectors as well as their application in nuclear medicine are described. It emphasizes on several key techniques in fabricating detectors in order to meet their application in nuclear medicine. As for a high resistivity silicon detector, its counting rate to 125 I 28.5 keV X-ray has to be improved. So employing a conic mesa structure can increase the thickness of samples, and can raise the electric field of collecting charges under the same bias voltage. As for a GaAs detector, its performance of collecting charges has to be improved. So the thicknesses of GaAs samples are decreased and proper thermal treatment to make Ni-Ge-Au ohmic contacts are employed. Applying a suitable reverse bias voltage can obtain a fully depleted detector, and can obtain a lower forward turn-on voltage and a thinner weak electric field region. After resolving these key techniques, the performance of GaAs detectors has been distinctly improved. The count rate to 125 I X-ray has increased by three or five times under the same testing condition and background circumstance (2 refs., 8 figs., 3 tabs.)

  14. Development of a sodium ionization detector for sodium-to-gas leaks

    International Nuclear Information System (INIS)

    Swaminathan, K.; Elumalai, G.

    1984-01-01

    A sensitive sodium-to-gas leak detector has been indigenously developed for use in liquid metal cooled fast breeder reactor. The detector relies on the relative ease with which sodium vapour or its aerosols including its oxides and hydroxides can be thermally ionized compared with other possible constituents such as nitrogen, oxygen, water vapour etc. in a carrier gas and is therefore called sodium ionization detector (SID). The ionization current is a measure of sodium concentration in the carrier gas sampled through the detector. Different sensor designs using platinum and rhodium as filament materials in varying sizes were constructed and their responses to different sodium aerosol concentrations in the carrier gas were investigated. Nitrogen was used as the carrier gas. Both the background current and speed of response were found to depend on the diameter of the filament. There was also a particular collector voltage which yielded maximum sensitivity of the detector. The sensor was therefore optimised considering influence of above factors and a detector has been built which demonstrates a sensitivity better than 0.3 nanogram of sodium per cubic centimetre of carrier gas for a signal to background ratio of 1:1. Its usefulness in detecting sodium fires in experimental area was also demonstrated. Currently efforts are under way to improve the life time of the filament used in the above detector. (author)

  15. Test and further development of a silicon picsel detector for detecting ionising radiation

    International Nuclear Information System (INIS)

    Lechner, P.

    1990-12-01

    The concept of a silicon detector with a MOSFET as an integrating amplification element (DEP-MOSFET) is introduced. The method of functioning of different version and a picture cell (picsel) detector, which makes energy and location resolution possible, is discussed. Quantitative relationships which describe the operation of the component as a detector, and quantitative relationships for the energy resolution of a DEP-MOSFET are derived theoretically. Measurements provide the proof of the detection function of different versions and the confirmation of the results of the theoretical model. The excellent noise properties of DEP-MOSFET detectors with closed structure are pointed out. The further development of the explained detector concept by integration of a JFET as the amplifying element (here introduced in the form of a computer simulation and quantitative relationships which describe the behaviour as a detector) promises progress with regard to energy resolution and radiation resistance, and offers the possibility of producing a picsel detector made from closed structures with little technological effort. (orig.) [de

  16. Development of TiBr semiconductor crystal for applications as radiation detector and photodetector

    International Nuclear Information System (INIS)

    Oliveira, Icimone Braga de

    2006-01-01

    In this work, Tlbr crystals were grown by the Bridgman method from zone melted materials. The influence of the purification efficiency and the crystalline surface quality on the crystal were studied, evaluating its performance as a radiation detector. Due to significant improvement in the purification and crystals growth, good results have been obtained for the developed detectors. The spectrometric performance of the Tlbr detector was evaluated by 241 Am (59 keV), 133 Ba (80 e 355 keV), 57 Co (122 keV), 22 Na (511 keV) and 137 Cs (662 keV) at room temperature. The best energy resolution results were obtained from purer detectors. Energy resolutions of 10 keV (16%), 12 keV (15%), 12 keV (10%), 28 keV (8%), 31 keV (6%) and 36 keV (5%) to 59, 80, 122, 355, 511 and 662 keV energies, respectively, were obtained. A study on the detection response at -20 deg C was also carried out, as well as the detector stability in function of the time. No significant difference was observed in the energy resolution between measurements at both temperatures. It was observed that the detector instability causes degradation of the spectroscopic characteristics during measurements at room temperature and the instability varies for each detector. This behavior was also verified by other authors. The viability to use the developed Tlbr crystal as a photodetector coupled to scintillators crystals was also studied in this work. Due to its quantum efficiency in the region from 350 to 500 nm, Tlbr shows to be a promising material to be used as a photodetector. As a possible application of this work, the development of a surgical probe has been initiated using the developed Tlbr crystal as the radiation detector of the probe. (author)

  17. Recent Technological Developments on LGAD and iLGAD Detectors for Tracking and Timing Applications

    OpenAIRE

    Pellegrini, G.; Baselga, M.; Carulla, M.; Fadeyev, V.; Fernández-Martínez, P.; Fernandez-Garcia, M.; Flores, D.; Galloway, Z.; Gallrapp, C.; Hidalgo, S.; Liang, Z.; Merlos, A.; Moll, M.; Quirion, D.; Sadrozinski, H.

    2015-01-01

    This paper reports the last technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n++-p+-p structure, where the doping profile of the p+ layer ...

  18. Development of criticality accident detector measuring neutrons and gamma-rays

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Ishii, Masato

    2005-01-01

    The authors developed a new criticality accident detector measuring neutrons and gamma-rays. The detector is a cylindrical plastic scintillator coupled to a current-mode operated photomultiplier, and is covered by an inner cadmium shell, acting as a neutron to gamma-ray converter, and a 5cm thick outer polyethylene moderator in order to respond to the same threshold triggering dose regardless of whether it was exposed to neutrons, gamma-rays or a mixture of the two radiations. (author)

  19. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  20. Development and characterization of the lead iodide semiconductor detector; Desenvolvimento e caracterizacao do detector semicondutor de iodeto de chumbo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Icimone Braga de

    2001-07-01

    A methodology for purification and growth of PbI{sub 2} crystal as well as for its characterization as a room temperature radiation detector was developed in this work. Commercial salts were purified using the zone refining method and, for the purified material growth, the Bridgman method was used. To calculate the purification efficiency, studies of the decrease impurities concentrations were made in the salts and in three sections of the materials purified, using the neutron activation analysis technique. The results showed that the impurities segregate preferentially in the ingot final section. A significant decrease of the impurities concentration in function of the purification pass number was observed. The grown crystals presented good crystalline quality according to the results of the X-ray diffraction analysis. To evaluate the crystal as a semiconductor detector, measurements of dark leakage current, resistivity and the response of ({sup 241}Am) alpha particle and ({sup 241}Am, {sup 57}Co, {sup 133}Ba and {sup 137}Cs) gamma rays were carried out. The radiation response is strongly dependent on the crystals purity. The crystals purified with 500 passes exhibited energy resolution of 10% for {sup 241} Am alpha particle and the gamma rays resolution was compatible with the literature. The photosensibility of the PbI{sub 2} crystal found in the wavelength from 400 to 600 nm range suggests an another application at this crystal as a photodetector to be coupled to scintillators. (author)

  1. Development of a detector-counter for teaching purposes in nuclear instrumentation

    International Nuclear Information System (INIS)

    Costa, Fabio E. da; Hamada, Margarida M.; Pereira, Maria Conceicao C. Pereira; Mesquita, Carlos H.

    2000-01-01

    A detector system constituted of a monochannel analyzer with digital counter, amplifier, charge sensitive preamplifier and CsI(Tl) scintillator detector coupled to photodiode PIN was developed to gamma radiation detection. The crystal was grown by Bridgman Method. The crystal luminescence spectra has good match with the photodiode efficiency spectrum. The combination CsI(Tl)- photodiode made at possible to obtain a compact and rugged detector, insensitive to magnetic fields and may be operated at low voltages. This detector system has a baseline for 1 MeV and 2 MeV selected by the use, with two discriminators (inferior and superior) for advancements 10 or 20 KeV division. The system showed good energy linearity in the range from 122 to 1440 KeV. (author)

  2. Development of CANDLES low background HPGe detector and half-life measurement of 180Tam

    Science.gov (United States)

    Chan, W. M.; Kishimoto, T.; Umehara, S.; Matsuoka, K.; Suzuki, K.; Yoshida, S.; Nakajima, K.; Iida, T.; Fushimi, K.; Nomachi, M.; Ogawa, I.; Tamagawa, Y.; Hazama, R.; Takemoto, Y.; Nakatani, N.; Takihira, Y.; Tozawa, M.; Kakubata, H.; Trang, V. T. T.; Ohata, T.; Tetsuno, K.; Maeda, T.; Khai, B. T.; Li, X. L.; Batpurev, T.

    2018-01-01

    A low background HPGe detector system was developed at CANDLES Experimental Hall for multipurpose use. Various low background techniques were employed, including hermatic shield design, radon gas suppression, and background reduction analysis. A new pulse shape discrimination (PSD) method was specially created for coaxial Ge detector. Using this PSD method, microphonics noise and background event at low energy region less than 200 keV can be rejected effectively. Monte Carlo simulation by GEANT4 was performed to acquire the detection efficiency and study the interaction of gamma-rays with detector system. For rare decay measurement, the detector was utilized to detect the nature's most stable isomer tantalum-180m (180Tam) decay. Two phases of tantalum physics run were completed with total livetime of 358.2 days, which Phase II has upgraded shield configuration. The world most stringent half-life limit of 180Tam has been successfully achieved.

  3. Development of a reader for track etch detectors based on a commercially available slide scanner

    CERN Document Server

    Steele, J D; Tanner, R J; Bartlett, D T

    1999-01-01

    NRPB has operated a routine neutron personal dosimetry service based on the electrochemical etch of PADC elements since 1986. Since its inception it has used an automated reader based on a video camera and real time analysis. A new and more powerful replacement system has been developed using a commercially available photographic slide scanner. This permits a complete image of the dosemeter to be grabbed in a single scan, generating a 2592x3888 pixel file which is saved for subsequent analysis. This gives an effective pixel size of 10x10 mu m with an image of the entire dosemeter in one field of view. Custom written software subsequently analyses the image to assess the number of etched pits on the dosemeter and read the detector identification number (code). Batch scanning of up to 40 detectors is also possible using an autofeed attachment. The system can be used for electrochemically etched tracks for neutron detectors and chemically etched tracks for radon detectors.

  4. Development of a scintillator detector set with counter and data acquisition for flow measurements

    CERN Document Server

    Costa, F E D

    2002-01-01

    A portable counter with data acquisition system for flow measurements was developed, using the pulse velocity technique. This consists in determining the tracer transit time mixed homogeneously to the liquid or gas pipelines. The counter comprises: (a) two CsI(Tl) crystals solid state detectors, associated with Si PIN photodiodes, with compatible sensitivity to the injected radiotracers activities; (b) amplification units; (c) analogue-to-digital interface, which processes and displays the detectors counting separately and in real time, but in a same temporal axis, via a computer screen and (d) 30-m coaxial cables for signals transmission from each detector to the processing unit. Experiments were carried out for the detector and associated electronic characterizations. The equipment showed to be suitable for flow measurements in an industrial plant, in the real situation.

  5. Development of Radiation Hard Radiation Detectors, Differences between Czochralski Silicon and Float Zone Silicon

    CERN Document Server

    Tuominen, Eija

    2012-01-01

    The purpose of this work was to develop radiation hard silicon detectors. Radiation detectors made ofsilicon are cost effective and have excellent position resolution. Therefore, they are widely used fortrack finding and particle analysis in large high-energy physics experiments. Silicon detectors willalso be used in the CMS (Compact Muon Solenoid) experiment that is being built at the LHC (LargeHadron Collider) accelerator at CERN (European Organisation for Nuclear Research). This work wasdone in the CMS programme of Helsinki Institute of Physics (HIP).Exposure of the silicon material to particle radiation causes irreversible defects that deteriorate theperformance of the silicon detectors. In HIP CMS Programme, our approach was to improve theradiation hardness of the silicon material with increased oxygen concentration in silicon material. Westudied two different methods: diffusion oxygenation of Float Zone silicon and use of high resistivityCzochralski silicon.We processed, characterised, tested in a parti...

  6. Development of noise-suppressed detector for single ion hit system

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Takuro; Hamano, Tsuyoshi; Suda, Tamotsu; Hirao, Toshio; Kamiya, Tomihiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A noise-suppressed detector for single ion detection has been developed, and combined with the heavy ion microbeam apparatus. This detector consists of a pair of micro channel plates (MCP`s) and a very thin carbon foil. The detection signal is formed by the coincidence of the signals from these MCP`s, so that this detector and the coincidence measurement unit can reduce miscounting in the circuit. The detection efficiency for 15 MeV heavy ions was evaluated to be comparable to that of a silicon surface-barrier detector (SSD) and the miscounting rate was 4 orders lower than the noise rate of a single MCP. The rise time of the detection signal was also estimated. (author)

  7. Development of a high-speed single-photon pixellated detector for visible wavelengths

    CERN Document Server

    Mac Raighne, Aaron; Mathot, Serge; McPhate, Jason; Vallerga, John; Jarron, Pierre; Brownlee, Colin; O’Shea, Val

    2009-01-01

    We present the development of a high-speed, single-photon counting, Hybrid Photo Detector (HPD). The HPD consists of a vacuum tube, containing the detector assembly, sealed with a transparent optical input window. Photons incident on the photocathode eject a photoelectron into a large electric field, which accelerates the incident electron onto a silicon detector. The silicon detector is bump bonded to a Medipix readout chip. This set-up allows for the detection and readout of low incident photon intensities at rates that are otherwise unattainable with current camera technology. Reported is the fabrication of the camera that brings together a range of sophisticated design and fabrication techniques and the expected theoretical imaging performance. Applications to cellular and molecular microscopy are also described in which single-photon-counting abilities at high frame rates are crucial

  8. Zeroing and testing units developed for Gerdien atmospheric ion detectors

    International Nuclear Information System (INIS)

    Kolarz, P.; Marinkovic, B.P.; Filipovic, D.M.

    2005-01-01

    Low current measurements in atmospheric ion detection using a Gerdien condenser are subjected to numerous sources of error. Zeroing and testing units described in this article, connected as modules to this type of detector, enable some of these errors to be found and eliminated. The zeroing unit provides digital compensation of the zero drift with a digital sample and hold circuit of 12-bit resolution. It overcomes difficulties related to zero drift and techniques used in the zero conductivity determination when the accelerating potential or airflow rate are zero. The testing unit is a current reference of nominally 10 -12 A intended for testing and correcting the system on current leakage and other measuring deviations due to changes in atmospheric parameters. This unit is an independent battery-powered module, which provides a charge of 10 -12 C per cycle (frequency of order 1 Hz) to the collecting electrode. The control of Gerdien devices is substantially simplified using the zeroing and testing units realized here. Both units are used during 'zero conductivity' regime only

  9. Development of a novel neutron detector for imaging and analysis

    International Nuclear Information System (INIS)

    Darambara, D.G.; Beach, A.C.; Spyrou, N.M.

    1993-01-01

    A hardware system employing dynamic Random Access Memory (dRAM) has been designed to make possible the detection of neutrons. One recognised difficulty with dynamic memory devices is the alpha-particle problem. That is alpha-particle 'contamination' present within the dRAM encapsulating material may interact sufficiently as to corrupt stored data. These corruptions, 'known as soft errors', may be induced in dRAMs by the interaction of charged particles with the chip itself as a basis for system function. A preliminary feasibility study has been carried out to use dynamic RAMs as alpha-particle detectors. The initial system tests provide information upon detection efficiency, soft error reading rate, energy dependence of the soft error rate and the soft error reading rate, energy dependence of the soft error rate and the soft error operating bias relationship. These findings highlight the usefulness of such a device in neutron dosimetry, imaging and analysis, by using a neutron converter with a high cross section for the (n, α) capture reaction. (author) 20 refs.; 8 figs

  10. Development of alpha spectroscopy method with solid state nuclear track detector using aluminium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dwaikat, N., E-mail: ndwaikat@kfupm.edu.sa [King Fahd University of Petroleum and Minerals, College of Sciences, Department of Physics, Dhahran 31261 (Saudi Arabia)

    2015-10-15

    This work presents the development of alpha spectroscopy method with Solid-state nuclear track detectors using aluminum thin films. The resolution of this method is high, and it is able to discriminate between alpha particles at different incident energy. It can measure the exact number of alpha particles at specific energy without needing a calibration of alpha track diameter versus alpha energy. This method was tested by using Cf-252 alpha standard source at energies 5.11 MeV, 3.86 MeV and 2.7 MeV, which produced by the variation of detector -standard source distance. On front side, two detectors were covered with two Aluminum thin films and the third detector was kept uncovered. The thickness of Aluminum thin films was selected carefully (using SRIM 2013) such that one of the films will block the lower two alpha particles (3.86 MeV and 2.7 MeV) and the alpha particles at higher energy (5.11 MeV) can penetrate the film and reach the detectors surface. The second thin film will block alpha particles at lower energy of 2.7 MeV and allow alpha particles at higher two energies (5.11 MeV and 3.86 MeV) to penetrate and produce tracks. For uncovered detector, alpha particles at three different energies can produce tracks on it. For quality assurance and accuracy, the detectors were mounted on thick enough copper substrates to block exposure from the backside. The tracks on the first detector are due to alpha particles at energy of 5.11 MeV. The difference between the tracks number on the first detector and the tracks number on the second detector is due to alpha particles at energy of 3.8 MeV. Finally, by subtracting the tracks number on the second detector from the tracks number on the third detector (uncovered), we can find the tracks number due to alpha particles at energy 2.7 MeV. After knowing the efficiency calibration factor, we can exactly calculate the activity of standard source. (Author)

  11. Development of alpha spectroscopy method with solid state nuclear track detector using aluminium thin films

    International Nuclear Information System (INIS)

    Dwaikat, N.

    2015-10-01

    This work presents the development of alpha spectroscopy method with Solid-state nuclear track detectors using aluminum thin films. The resolution of this method is high, and it is able to discriminate between alpha particles at different incident energy. It can measure the exact number of alpha particles at specific energy without needing a calibration of alpha track diameter versus alpha energy. This method was tested by using Cf-252 alpha standard source at energies 5.11 MeV, 3.86 MeV and 2.7 MeV, which produced by the variation of detector -standard source distance. On front side, two detectors were covered with two Aluminum thin films and the third detector was kept uncovered. The thickness of Aluminum thin films was selected carefully (using SRIM 2013) such that one of the films will block the lower two alpha particles (3.86 MeV and 2.7 MeV) and the alpha particles at higher energy (5.11 MeV) can penetrate the film and reach the detectors surface. The second thin film will block alpha particles at lower energy of 2.7 MeV and allow alpha particles at higher two energies (5.11 MeV and 3.86 MeV) to penetrate and produce tracks. For uncovered detector, alpha particles at three different energies can produce tracks on it. For quality assurance and accuracy, the detectors were mounted on thick enough copper substrates to block exposure from the backside. The tracks on the first detector are due to alpha particles at energy of 5.11 MeV. The difference between the tracks number on the first detector and the tracks number on the second detector is due to alpha particles at energy of 3.8 MeV. Finally, by subtracting the tracks number on the second detector from the tracks number on the third detector (uncovered), we can find the tracks number due to alpha particles at energy 2.7 MeV. After knowing the efficiency calibration factor, we can exactly calculate the activity of standard source. (Author)

  12. Development of a sealed source radiation detector system for gamma ray scanning of petroleum distillation columns

    International Nuclear Information System (INIS)

    Vasquez Salvador, Pablo Antonio

    2004-01-01

    Gamma Ray Scanning is an online technique to 'view' the hydraulic performance of an operating column, with no disruption to operating processes conditions (pressure and temperature), as a cost-effective solution. The principle of this methodology consists of a small suitably sealed gamma radiation source and a radiation detector experimentally positioned to the column, moving concurrently in small increments on opposite sides and the quantity of gamma transmitted. The source-detector system consists of: a sealed ''6 0 Co radioactive source in a panoramic lead radiator, a scintillator detector coupled to a ratemeter / analyzer and a mobile system. In this work, a gamma scanning sealed source-detector system for distillation columns, was developed, comparing two scintillator detectors: NaI(Tl) (commercial) and CsI(Tl) (IPEN). In order to project the system, a simulated model of a tray-type distillation column was used. The equipment developed was tested in an industrial column for water treatment (6.5 m diameter and 40 m height). The required activities of 6 ''0Co, laboratory (11.1 MBq) and industrial works (1.48 TBq) were calculated by simulation software. Both, the NaI(Tl) and the CsI(Tl) detectors showed good proprieties for gamma scanning applications, determining the position and presence or absence of trays. (author)

  13. Development of a new pressure dependent threshold superheated drop detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Rezaeian, Peiman [Radiation Applications Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Raisali, Gholamreza, E-mail: graisali@aeoi.org.ir [Radiation Applications Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Akhavan, Azam [Radiation Applications Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Ghods, Hossein [Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Hajizadeh, Bardia [Radiation Protection Division, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2015-03-11

    In this paper, a set of superheated drop detectors operated at different pressures is developed and fabricated by adding an appropriate amount of Freon-12 liquid on the free surface of the detector. The fabricated detectors have been used for determination of the threshold pressure for 2.89 MeV neutrons of a neutron generator in order to estimate the thermodynamic efficiency. Finally, knowing the thermodynamic efficiency of the detector and in a similar manner, the threshold pressure for {sup 241}Am–Be neutrons is determined and accordingly, the maximum neutron energy of the source spectrum is estimated. The maximum neutron energy of the {sup 241}Am–Be is estimated as 10.97±2.11 MeV. The agreement between this measured maximum energy and the reported value of the {sup 241}Am–Be neutron source shows that the method developed to apply pressure on the superheated drop detectors can be used to control the energy threshold of these detectors.

  14. Development of a new pressure dependent threshold superheated drop detector for neutrons

    International Nuclear Information System (INIS)

    Rezaeian, Peiman; Raisali, Gholamreza; Akhavan, Azam; Ghods, Hossein; Hajizadeh, Bardia

    2015-01-01

    In this paper, a set of superheated drop detectors operated at different pressures is developed and fabricated by adding an appropriate amount of Freon-12 liquid on the free surface of the detector. The fabricated detectors have been used for determination of the threshold pressure for 2.89 MeV neutrons of a neutron generator in order to estimate the thermodynamic efficiency. Finally, knowing the thermodynamic efficiency of the detector and in a similar manner, the threshold pressure for 241 Am–Be neutrons is determined and accordingly, the maximum neutron energy of the source spectrum is estimated. The maximum neutron energy of the 241 Am–Be is estimated as 10.97±2.11 MeV. The agreement between this measured maximum energy and the reported value of the 241 Am–Be neutron source shows that the method developed to apply pressure on the superheated drop detectors can be used to control the energy threshold of these detectors

  15. Development of a fragment detector system for the study of peripheral collisions at high beam energies

    International Nuclear Information System (INIS)

    Spies, H.

    1992-06-01

    In the framework of the experimental program at the accelerator facilities SIS/ESR of the Society for Heavy-Ion research in Darmstadt one of the essential research aims of the LAND collaboration is the study of high-lying collective states after electromagnetic excitation in heavy-ion collisions at nearly relativistic beam energies. By the exchange of virtual photons with high energy giant resonances are excited with high probabilities. The main decay channel of giant resonances in heavy nuclei is the emission of neutrons as well as below the particle threshold the emission of γ radiation. For the study of these states a detector system was developed, which makes the kinematically complete measurement of all reaction partners possible. For the determination of the neutron energy serves the Large Area Neutron Detector LAND, a time-of-flight spectrometer for high-energetic neutrons. For the measurement of the γ radiation emitted by the excited projectile the target is surrounded by an array of 48 BaF 2 crystals. A radiation detector system consisting of 6 single detectors and further 5 help detectors allows together with the magnetic spectrometer ALADIN the identification of the heavy projectile fragments by charge, momentum, and mass. Four position-sensitive plastic scintillators serve for the measurement of the trajectory of the projectile respectively the projectile fragments in front and behind the deviating magnet. Additionally with these detectors the velocity is measured. For the determination of the nuclear charge of the projectile fragments serve a multiple-ionization chamber and a Cherenkov detector. In this thesis the development and taking into operation of the LAND radiation detector system is described. (orig./HSI) [de

  16. The Siegen automatic measuring system for nuclear track detectors: new developments

    International Nuclear Information System (INIS)

    Noll, A.; Rusch, G.; Roecher, H.; Dreute, J.; Heinrich, W.

    1988-01-01

    Starting ten years ago we developed completely automatic scanning and measuring systems for nuclear track detectors. In this paper we describe some new developments. Our autofocus systems based on the contrast of the video picture and on a laser autofocus have been improved in speed and in reliability. Based on new algorithms, faster programs have been developed to scan for nuclear tracks in plastic detectors. Methods for separation of overlapping tracks have been improved. Interactive programs for track measurements have been developed which are very helpful for space bio-physics experiments. Finally new methods for track measurements in nuclear emulsions irradiated with a beam perpendicular to the detector surface are described in this paper. (author)

  17. Development of CdZnTe X-ray detectors at DSRI

    DEFF Research Database (Denmark)

    van Pamelen, M.A.J.; Budtz-Jørgensen, Carl; Kuvvetli, Irfan

    2000-01-01

    An overview of the development of CdZnTe X-ray detectors at the Danish Space Research Institute is presented. Initiated in the beginning of 1996, the main motivation at that time was to develop focal plane detectors for the novel type of hard X-ray telescopes, which are currently under study...... developed a technique, which, with the use of microstrip electrodes, is able to compensate for the signal loss caused by trapping of positive charge carriers. This technique leads to a dramatic improvement of the achievable energy resolution, even for crystals of poor quality. With the technique, hole...

  18. Development of an advanced fire detector for underground coalmines - final report

    Energy Technology Data Exchange (ETDEWEB)

    Hemingway, M.; Walsh, P.

    2005-07-01

    A joint HSE/UK Coal research project was instigated to develop an improved fire detector. This paper describes tests performed in an experimental mine roadway on various types of sensor. The sensors were exposed to smouldering conveyor belt, coal, wood, oil and grease, and diesel exhaust fume. It is not recommended that products of combustion (POC) semiconductor sensors, ionisation smoke detectors, single wavelength optical smoke sensors, thermal imaging camera systems and video smoke detection systems should be used in an advanced fire detection system for coalmines. It is recommended that an advanced mine fire detector system should be based on a combination of a high sensitivity optical smoke detector fitted with a cyclone to remove coal dust; and nitric oxide or nitrogen dioxide electrochemical sensors to distinguish smoke from diesel exhaust. If such a system proves to be too expensive then an alternative could be based upon a combination of blue/infrared optical smoke detector, which distinguish fires and diesel exhaust from coal dust, and a nitric oxide or nitrogen dioxide electrochemical sensor. Further work is required underground to assess a high sensitivity optical smoke detector at typical coal dust levels in likely installation areas. 14 refs., 24 figs., 3 tabs., 3 apps.

  19. Technology Development on P-type Silicon Strip Detectors for Proton Beam Dosimetry

    International Nuclear Information System (INIS)

    Aouadi, K.; Bouterfa, M.; Delamare, R.; Flandre, D.; Bertrand, D.; Henry, F.

    2013-06-01

    In this paper, we present a technology for the fabrication of n-in-p silicon strip detectors, which is based on the use of Al 2 O 3 oxide compared to p-spray insulation scheme. This technology has been developed using the best technological parameters deduced from simulations, particularly for the p-spray implantation parameters. Different wafers were processed towards the fabrication of the radiation detectors with p-spray insulation and Al 2 O 3 . The evaluation of the prototype detectors has been carried out by performing the electrical characterization of the devices through the measurement of current-voltage and capacitance-voltage characteristics, as well as the measurement of detection response under radiation. The results of electrical measurements indicate that detectors fabricated with Al 2 O 3 exhibit a dark current several times lower than p-spray detectors and show an excellent electrical insulation between strips with a higher inter-strip resistance. Response of Al 2 O 3 strip detector under radiation has been found better. The resulting improved output signal dynamic range finally makes the use of Al 2 O 3 more attractive. (authors)

  20. Predicting the High Redshift Galaxy Population for JWST

    Science.gov (United States)

    Flynn, Zoey; Benson, Andrew

    2017-01-01

    The James Webb Space Telescope will be launched in Oct 2018 with the goal of observing galaxies in the redshift range of z = 10 - 15. As redshift increases, the age of the Universe decreases, allowing us to study objects formed only a few hundred million years after the Big Bang. This will provide a valuable opportunity to test and improve current galaxy formation theory by comparing predictions for mass, luminosity, and number density to the observed data. We have made testable predictions with the semi-analytical galaxy formation model Galacticus. The code uses Markov Chain Monte Carlo methods to determine viable sets of model parameters that match current astronomical data. The resulting constrained model was then set to match the specifications of the JWST Ultra Deep Field Imaging Survey. Predictions utilizing up to 100 viable parameter sets were calculated, allowing us to assess the uncertainty in current theoretical expectations. We predict that the planned UDF will be able to observe a significant number of objects past redshift z > 9 but nothing at redshift z > 11. In order to detect these faint objects at redshifts z = 11-15 we need to increase exposure time by at least a factor of 1.66.

  1. Development of Ultra-Fast Silicon Detectors for 4D tracking

    Science.gov (United States)

    Staiano, A.; Arcidiacono, R.; Boscardin, M.; Dalla Betta, G. F.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Ficorella, F.; Mandurrino, M.; Obertino, M.; Pancheri, L.; Paternoster, G.; Sola, V.

    2017-12-01

    In this contribution we review the progress towards the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~10 larger than standard silicon detectors. The basic design of UFSD consists of a thin silicon sensor with moderate internal gain and pixelated electrodes coupled to full custom VLSI chip. An overview of test beam data on time resolution and the impact on this measurement of radiation doses at the level of those expected at HL-LHC is presented. First I-V and C-V measurements on a new FBK sensor production of UFSD, 50 μm thick, with B and Ga, activated at two diffusion temperatures, with and without C co-implantation (in Low and High concentrations), and with different effective doping concentrations in the Gain layer, are shown. Perspectives on current use of UFSD in HEP experiments (UFSD detectors have been installed in the CMS-TOTEM Precision Protons Spectrometer for the forward physics tracking, and are currently taking data) and proposed applications for a MIP timing layer in the HL-LHC upgrade are briefly discussed.

  2. Development of a modular directional and spectral neutron detection system using solid-state detectors

    Energy Technology Data Exchange (ETDEWEB)

    Weltz, A., E-mail: weltza3@gmail.com; Torres, B.; McElwain, L.; Dahal, R.; Huang, J.; Bhat, I.; Lu, J.; Danon, Y.

    2015-08-21

    A detection system using room-temperature, microstructured solid-state thermal neutron detectors with very low leakage current has been developed at Rensselaer Polytechnic Institute (RPI) with the ability to provide positional and spectral information about an unknown neutron source. The Directional and Spectral Neutron Detection System (DSNDS) utilizes a set of small-but-scalable, zero-bias solid-state thermal neutron detectors which have demonstrated high thermal neutron efficiency and adequate gamma insensitivity. The DSNDS can gather spectral information about an unknown neutron source with a relatively small number of detectors, simplifying the detector electronics and minimizing cost; however, the DSNDS is modular in design, providing the capability to increase the detection efficiency and angular resolution. The system used in this paper was comprised of a stack of five high-density polyethylene (HDPE) disks with a thickness of 5 cm and a diameter of 30 cm, the middle disk containing 16 detectors positioned as one internal (moderated) and one external (unmoderated) ring of solid-state neutron detectors. These two detector rings provide the ability to determine the directionality of a neutron source. The system gathers spectral information about a neutron source in two ways: by measuring the relative responses of the internal ring of detectors as well as measuring the ratio of the internal-to-external detector responses. Experiments were performed with variable neutron spectra: a {sup 252}Cf spontaneous fission neutron source which was HDPE moderated, HDPE reflected, lead (Pb) shielded, and bare in order to benchmark the system for spectral sensitivity. Simulations were performed in order to characterize the neutron spectra corresponding to each of the source configurations and showed agreement with experimental measurements. The DSNDS demonstrates the ability to determine the relative angle of the source and the hardness of the neutron spectrum. By using the

  3. Development of GAGG depth-of-interaction (DOI) block detectors based on pulse shape analysis

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Kobayashi, Takahiro; Yeol Yeom, Jung; Morishita, Yuki; Sato, Hiroki; Endo, Takanori; Usuki, Yoshiyuki; Kamada, Kei; Yoshikawa, Akira

    2014-01-01

    A depth-of-interaction (DOI) detector is required for developing a high resolution and high sensitivity PET system. Ce-doped Gd 3 Al 2 Ga 3 O 12 (GAGG fast: GAGG-F) is a promising scintillator for PET applications with high light output, no natural radioisotope and suitable light emission wavelength for semiconductor based photodetectors. However, no DOI detector based on pulse shape analysis with GAGG-F has been developed to date, due to the lack of appropriate scintillators of pairing. Recently a new variation of this scintillator with different Al/Ga ratios—Ce-doped Gd 3 Al 2.6 Ga 2.4 O 12 (GAGG slow: GAGG-S), which has slower decay time was developed. The combination of GAGG-F and GAGG-S may allow us to realize high resolution DOI detectors based on pulse shape analysis. We developed and tested two GAGG phoswich DOI block detectors comprised of pixelated GAGG-F and GAGG-S scintillation crystals. One phoswich block detector comprised of 2×2×5 mm pixel that were assembled into a 5×5 matrix. The DOI block was optically coupled to a silicon photomultiplier (Si-PM) array (Hamamatsu MPPC S11064-050P) with a 2-mm thick light guide. The other phoswich block detector comprised of 0.5×0.5×5 mm (GAGG-F) and 0.5×0.5×6 mm 3 (GAGG-S) pixels that were assembled into a 20×20 matrix. The DOI block was also optically coupled to the same Si-PM array with a 2-mm thick light guide. In the block detector of 2-mm crystal pixels (5×5 matrix), the 2-dimensional histogram revealed excellent separation with an average energy resolution of 14.1% for 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 8.7. In the block detector that used 0.5-mm crystal pixels (20×20 matrix), the 2-dimensional histogram also showed good separation with energy resolution of 27.5% for the 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 6.5. These results indicate that phoswich DOI

  4. Development of analog solid-state photo-detectors for Positron Emission Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bisogni, Maria Giuseppina, E-mail: giuseppina.bisogni@pi.infn.it; Morrocchi, Matteo

    2016-02-11

    Solid-state photo-detectors are one of the main innovations of past century in the field of sensors. First produced in the early forties with the invention of the p–n junction in silicon and the study of its optical properties, photo-detectors received a major boost in the sixties when the p-i-n (PIN) photodiode was developed and successfully used in several applications. The development of devices with internal gain, avalanche photodiodes (APD) first and then Geiger-mode avalanche photodiodes, named single photon avalanche diode (SPAD), leads to a substantial improvement in sensitivity and allowed single photon detection. Later on, thousands of SPADs have been assembled in arrays of few millimeters squared (named SiPM, silicon photo-multiplier) with single photon resolution. The high internal gain of SiPMs, together with other features peculiar of the silicon technology like compactness, speed and compatibility with magnetic fields, promoted SiPMs as the principal photo-detector competitor of photomultipliers in many applications from radiation detection to medical imaging. This paper provides a review of the properties of analog solid-state photo-detectors. Particular emphasis is given to latest advances on Positron Emission Tomography instrumentation boosted by the adoption of the silicon photo-detectors as an alternative to photomultiplier tubes (PMTs). Special attention is dedicated to the SiPMs, which are playing a key role in the development of innovative scanners.

  5. Development of analog solid-state photo-detectors for Positron Emission Tomography

    International Nuclear Information System (INIS)

    Bisogni, Maria Giuseppina; Morrocchi, Matteo

    2016-01-01

    Solid-state photo-detectors are one of the main innovations of past century in the field of sensors. First produced in the early forties with the invention of the p–n junction in silicon and the study of its optical properties, photo-detectors received a major boost in the sixties when the p-i-n (PIN) photodiode was developed and successfully used in several applications. The development of devices with internal gain, avalanche photodiodes (APD) first and then Geiger-mode avalanche photodiodes, named single photon avalanche diode (SPAD), leads to a substantial improvement in sensitivity and allowed single photon detection. Later on, thousands of SPADs have been assembled in arrays of few millimeters squared (named SiPM, silicon photo-multiplier) with single photon resolution. The high internal gain of SiPMs, together with other features peculiar of the silicon technology like compactness, speed and compatibility with magnetic fields, promoted SiPMs as the principal photo-detector competitor of photomultipliers in many applications from radiation detection to medical imaging. This paper provides a review of the properties of analog solid-state photo-detectors. Particular emphasis is given to latest advances on Positron Emission Tomography instrumentation boosted by the adoption of the silicon photo-detectors as an alternative to photomultiplier tubes (PMTs). Special attention is dedicated to the SiPMs, which are playing a key role in the development of innovative scanners.

  6. Development of radiation tolerant semiconductor detectors for the Super-LHC

    CERN Document Server

    Moll, M; Al-Ajili, A A; Alfieri, G; Allport, P P; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Barcz, A; Bates, R; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Bruzzi, M; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Charron, S; Chilingarov, A; Chren, D; Cindro, V; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, W; Betta, G F D; Dawson, I; de Boer, Wim; De Palma, M; Demina, R; Dervan, P; Dittongo, S; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; Fretwurst, E; García, C; García-Navarro, J E; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; Sevilla, S G; Gorelov, I; Goss, J; Bates, A G; Grégoire, G; Gregori, P; Grigoriev, E; Grillo, A A; Groza, A; Guskov, J; Haddad, L; Härkönen, J; Hauler, F; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, Roland Paul; Horn, M; Houdayer, A; Hourahine, B; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Johansen, K M H; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V; Kierstead, J A; Klaiber Lodewigs, J; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Koski, M; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Lazanu, S; Lazanu, I; Lebedev, A; Lebel, C; Leinonen, K; Leroy, C; Li Z; Lindström, G; Linhart, V; Litovchenko, A P; Litovchenko, P G; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, P; Macchiolo, A; Makarenko, L F; Mandic, I; Manfredotti, C; Manna, N; Garcia, S Mi; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Messineo, A; Metcalfe, J; Miglio, S; Mikuz, M; Miyamoto, J; Monakhov, E; Moscatelli, F; Naoumov, D; Nossarzhevska, E; Nysten, J; Olivero, P; OShea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A; Popule, J; Pospísil, S; Pozza, A; Radicci, V; Rafí, J M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Ruzin, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidel, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Sopko, V; Spencer, N; Stahl, J; Stolze, D; Stone, R; Storasta, J; Strokan, N; Sudzius, M; Surma, B; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Velthuis, J; Verbitskaya, E; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Yiuri, Y; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N

    2005-01-01

    The envisaged upgrade of the Large Hadron Collider (LHC) at CERN towards the Super-LHC (SLHC) with a 10 times increased luminosity of 10challenges for the tracking detectors of the SLHC experiments. Unprecedented high radiation levels and track densities and a reduced bunch crossing time in the order of 10ns as well as the need for cost effective detectors have called for an intensive R&D program. The CERN RD50 collaboration "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" is working on the development of semiconductor sensors matching the requirements of the SLHC. Sensors based on defect engineered silicon like Czochralski, epitaxial and oxygen enriched silicon have been developed. With 3D, Semi-3D and thin detectors new detector concepts have been evaluated and a study on the use of standard and oxygen enriched p-type silicon detectors revealed a promising approach for radiation tolerant cost effective devices. These and other most recent advancements of the RD50 ...

  7. Development of a lens-coupled CMOS detector for an X-ray inspection system

    International Nuclear Information System (INIS)

    Kim, Ho Kyung; Ahn, Jung Keun; Cho, Gyuseong

    2005-01-01

    A digital X-ray imaging detector based on a complementary metal-oxide-semiconductor (CMOS) image sensor has been developed for X-ray non-destructive inspection applications. This is a cost-effective solution because of the availability of cheap commercial standard CMOS image sensors. The detector configuration adopts an indirect X-ray detection method by using scintillation material and lens assembly. As a feasibility test of the developed lens-coupled CMOS detector as an X-ray inspection system, we have acquired X-ray projection images under a variety of imaging conditions. The results show that the projected image is reasonably acceptable in typical non-destructive testing (NDT). However, the developed detector may not be appropriate for laminography due to a low light-collection efficiency of lens assembly. In this paper, construction of the lens-coupled CMOS detector and its specifications are described, and the experimental results are presented. Using the analysis of quantum accounting diagram, inefficiency of the lens-coupling method is discussed

  8. Development of Optics and Detectors for Advanced CMB Polarization Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Measurements of the cosmic microwave background (CMB) have been essential to the development of modern cosmology. Future observations will provide cosmological...

  9. Development of pre-critical excore detector linear subchannel calibration method

    International Nuclear Information System (INIS)

    Choi, Yoo Sun; Goo, Bon Seung; Cha, Kyun Ho; Lee, Chang Seop; Kim, Yong Hee; Ahn, Chul Soo; Kim, Man Soo

    2001-01-01

    The improved pre-critical excore detector linear subchannel calibration method has been developed to improve the applicability of pre-critical calibration method. The existing calibration method does not always guarantee the accuracy of pre-critical calibration because the calibration results of the previous cycle are not reflected into the current cycle calibration. The developed method has a desirable feature that calibration error would not be propagated in the following cycles since the calibration data determined in previous cycle is incorporated in the current cycle calibration. The pre-critical excore detector linear calibration is tested for YGN unit 3 and UCN unit 3 to evaluate its characteristics and accuracy

  10. Testing and further development of a low-noise Si radiation detector

    International Nuclear Information System (INIS)

    Pho Duc, C.

    1995-02-01

    The functionality of a double DEP-MOSFET was proved, and the attempted improvement of energy resolution was achieved by controlling the signal electrons. The numerical simulation of the detector function provided important information for this. The experiment was caried out as an independent project with specially developed hardware and software. In particular, the absolute mesasurement of the output signal with subsequent data analysis was implemented, which is necessary for multiple selection. On the basis of the experimental findings, conclusions are drawn for the further development of this detector concept

  11. Community Targets for JWST's Early Release Science Program: Evaluation of Transiting Exoplanet WASP-63b.

    Science.gov (United States)

    Kilpatrick, Brian; Cubillos, Patricio; Bruno, Giovanni; Lewis, Nikole K.; Stevenson, Kevin B.; Wakeford, Hannah; Blecic, Jasmina; Burrows, Adam Seth; Deming, Drake; Heng, Kevin; Line, Michael R.; Madhusudhan, Nikku; Morley, Caroline; Waldmann, Ingo P.; Transiting Exoplanet Early Release Science Community

    2017-06-01

    We present observations of the Hubble Space Telescope (HST) ``A Preparatory Program to Identify the Single Best Transiting Exoplanet for JWST Early Release Science" for WASP-63b, one of the community targets proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS) program. A large collaboration of transiting exoplanet scientists identified a set of ``community targets" which meet a certain set of criteria for ecliptic latitude, period, host star brightness, well constrained orbital parameters, and strength of spectroscopic features. WASP-63b was one of the targets identified as a potential candidate for the ERS program. It is presented as an inflated planet with a large signal. It will be accessible to JWST approximately six months after the planned start of Cycle 1/ERS in April 2019 making it an ideal candidate should there be any delays in the JWST timetable. Here, we observe WASP-63b to evaluate its suitability as the best target to test the capabilities of JWST. Ideally, a clear atmosphere will be best suited for bench marking the instruments ability to detect spectroscopic features. We can use the strength of the water absorption feature at 1.4 μm as a way to determine the presence of obscuring clouds/hazes. The results of atmospheric retrieval are presented along with a discussion on the suitability of WASP-63b as the best target to be observed during the ERS Program.

  12. Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs

    Science.gov (United States)

    Weiss, Joel Todd

    Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a

  13. Beyond JWST: Science Drivers for the Next Great UVOIR Space Telescope

    Science.gov (United States)

    Tumlinson, Jason; Seager, Sara; Dalcanton, Julianne; Postman, Marc; Aigrain, Suzanne; battel, Steven; Brandt, W. Niel; Conroy, Charlie; Feinberg, Lee; Gezari, Suvi; Guyon, Olivier; Harris, Walter M.; Hirata, Chris; Mather, John C.; Redding, David; Schiminovich, David; Stahl, H. Philip

    2015-01-01

    We report on the AURA 'Beyond JWST' committee's considerations and conclusions regarding the science case for the development of a large UVOIR observatory, to be launched following JWST and WFIRST-AFTA. We find that a space-based UVOIR telescope of 10 meters or more in aperture will uniquely enable a wide range of transformational science investigations by itself and in tandem with ground-based OIR and radio facilities in its era. The chief goal of this facility is to assess the possibility of life beyond our Solar System by discovering Earth-like planets in the habitable zones of their host stars, via direct imaging, and by searching spectroscopically for biosignature gases in the atmospheres of the best exo-Earth candidates. The large aperture and mission architecture required to characterize the atmospheres of a significant number of potentially life-bearing planets will also transform studies of the galaxies and stars that led up to them. At 10 meters or larger, the telescope will spatially resolve scales of 100 AU everywhere in the Milky Way, 0.1 parsec everywhere in the Local Group, and 100 parsec everywhere in the observable Universe. This unprecedented spatial resolution over large fields, with stable optics and low backgrounds, will allow astronomers to follow, in high definition, the formation and evolution of the star forming regions inside galaxies over the past 10 Gyr, to robustly determine the complete star formation histories in every galaxy within the local volume (to 10 Mpc), and to track the motions of virtually any star in the Milky Way. High spectral resolution and multi-object spectroscopy in the UV will enable revolutionary new studies of gas flows in galaxies, bodies in the outer solar system, and the evolution of the most massive stars. We present these compelling science drivers and their associated observational requirements here; we summarize the technology requirements for high angular resolution, sensitivity, wavefront stability

  14. Development of a combination detector system for simultaneous measurement of Alpha and Beta/Gamma radioactivity

    International Nuclear Information System (INIS)

    Thakur, Vaishali M.; Ashokkumar, P.; Rekha, A.K.; Jain, Amit; Rath, D.P.; Chaudhury, Probal; Chaudhari, L.M.

    2018-01-01

    Analysis of various samples for α and β/γ radioactivity is carried out in radiological laboratories. Using independent α and β/γ counting systems such measurements are done separately for same sample. In order to address the requirement of simultaneous measurement of α and β/γ activity content of radioactive samples, a counting system using combination of two detectors has been developed. Activity deposited on a 2 mm deep 30 mm diameter aluminum planchette was counted under the detector combination consisting of a ZnS(Ag) and plastic scintillator for α and β/γ respectively. The design and fabrication of the combination detector, development of electronics associated with the system, its characterization and application are presented here

  15. Development of Advanced Gaseous Detectors for Muon Tracking and Triggering in Collider Experiments

    CERN Document Server

    Guan, Liang; Zhao, Zhengguo; Zhu, Junjie

    High luminosity and high energy collider experiments impose big challenges to conventional gaseous detectors used for muon tracking and triggering. Stringent requirements, in terms of time and spatial resolutions, rate capabilities etc. are expected. In the context of ATLAS muon upgrade project, we present extensive researches and developments of advanced gas detectors for precision muon tracking and triggering in high rate environments. Particularly, this dissertation focuses on the studies of Micro-mesh Gaseous structure (Micromegas), thin gap Resistive Plate Chamber (RPC) and small strip Thin Gap multi-wire Chambers (sTGC). In this dissertation, we first present a novel method, based on thermally bonding micro-meshes to anodes, to construct Micromegas detectors. Without employing the traditional photo-lithography process, it is a convenient alternative to build Micromegas. Both experimental and simulation studies of basic performance parameters of thermo-bonded Micromegas will be reported. Development...

  16. Development and characterization of micro-pattern gas detectors for intense beams of hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbroucke, Maxence

    2012-07-02

    This thesis work is dedicated to the design, development and characterization of Micro-Pattern Gas Detectors. The performances of a Time Projection Chamber (TPC) equipped with a triple Gas Electron Multiplier (GEM) amplification structure are reported. The intrinsic ion backflow suppression of GEM foils drastically reduces the space charge produced by wire readout in traditional TPC. The GEM solution allows the operation of a TPC at much higher event rate. The second part of this thesis describes the development of a 40 x 40 cm{sup 2} Micromegas detector with a highly segmented central area. A reduction of discharges compared to conventional Micromegas detectors is needed for stable operation in intense beams of hadrons. Spark reduction technologies have been successfully studied and results are presented.

  17. Development and characterization of micro-pattern gas detectors for intense beams of hadrons

    International Nuclear Information System (INIS)

    Vandenbroucke, Maxence

    2012-01-01

    This thesis work is dedicated to the design, development and characterization of Micro-Pattern Gas Detectors. The performances of a Time Projection Chamber (TPC) equipped with a triple Gas Electron Multiplier (GEM) amplification structure are reported. The intrinsic ion backflow suppression of GEM foils drastically reduces the space charge produced by wire readout in traditional TPC. The GEM solution allows the operation of a TPC at much higher event rate. The second part of this thesis describes the development of a 40 x 40 cm 2 Micromegas detector with a highly segmented central area. A reduction of discharges compared to conventional Micromegas detectors is needed for stable operation in intense beams of hadrons. Spark reduction technologies have been successfully studied and results are presented.

  18. Testing, installation and development of hardware and software components for the forward pixel detector of CMS

    CERN Document Server

    Florez Bustos, Carlos Andres

    2007-01-01

    The LHC (Large Hadron Collider) will be the particle accelerator with the highest collision energy ever. CMS (Compact Muon Solenoid) is one of the two largest experiments at the LHC. A main goal of CMS is to elucidate the electroweak symmetry breaking and determine if the Higgs mechanism is responsible for it. The pixel detector in CMS is the closest detector to the interaction point and is part of the tracker system. This thesis presents four different projects related to the forward pixel detector, performed as part of the testing and development of its hardware and software components. It presents the methods, implementation and results for the data acquisition and installation of the detector control system at the Meson Test Beam Facility of Fermilab for the beam test of the detector; the study of the C.A.E.N power supply and the multi service cable; the layout of the test stands for the assembly of the half-disk and half-service cylinder and the development of a software interface to the data acquisition...

  19. Developing Light Collection Enhancements and Wire Tensioning Methods for LArTPC Neutrino Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Spagliardi, Fabio [Univ. of Manchester (United Kingdom)

    2017-01-01

    Liquid argon Time Projection Chambers (LArTPCs) are becoming widely used as neutrino detectors because of their image-like event reconstruction which enables precision neutrino measurements. They primarily use ionisation charge to reconstruct neutrino events. It has been shown, however, that the scintillation light emitted by liquid argon could be exploited to improve their performance. As the neutrino measurements planned in the near future require large-scale experiments, their construction presents challenges in terms of both charge and light collection. In this dissertation we present solutions developed to improve the performance in both aspects of these detectors. We present a new wire tensioning measurement method that allows a remote measurement of the tension of the large number wires that constitute the TPC anode. We also discuss the development and installation of WLS-compound covered foils for the SBND neutrino detector at Fermilab, which is a technique proposed t o augment light collection in LArTPCs. This included preparing a SBND-like mesh cathode and testing it in the Run III of LArIAT, a test beam detector also located at Fermilab. Finally, we present a study aimed at understanding late scintillation light emitted by recombining positive argon ions using LArIAT data, which could affect large scale surface detectors.

  20. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Kouhei, E-mail: nakanishi.kouhei@c.mbox.nagoya-u.ac.jp; Yamamoto, Seiichi

    2016-11-21

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four scintillator blocks were optically coupled to Si-PM arrays with an angled light guide to form a detector unit. Since the light guide has angles of 5.625°, we can arrange 64 scintillator blocks in a nearly circular shape (a regular 64-sided polygon) using 16 detector units. We clearly resolved the pixels of the scintillator blocks in a 2-dimensional position histogram where the averages of the peak-to-valley ratios (P/Vs) were 3.7±0.3 and 5.7±0.8 in the transverse and axial directions, respectively. The average energy resolution was 14.2±2.1% full-width at half-maximum (FWHM). By including the temperature dependent gain control electronics, the photo-peak channel shifts were controlled within ±1.5% with the temperature from 23 °C to 28 °C. With these results, in addition to the potential high timing performance of Si-PM based detectors, our developed detector unit is promising for the development of a high-resolution PEM system.

  1. Review of detector development work at the University of Florida

    International Nuclear Information System (INIS)

    Walker, J.K.; Harmon, J.P.; Park, C.W.; Li, S.

    1990-01-01

    The dominant mechanism for optical polymer degradation due to radiation has been identified. As a result of this understanding new optical polymers have been synthesized which are extremely resistant to degradation due to radiation. Fast, good light output plastic scintillator, resistant to 20 MRad has been developed. Clad scintillating fibers and plates have been produced. A novel avalanche photo diode with ten times the gain, one-tenth the noise and at least ten times the radiation resistance has been designed, fabricated and tested. These developments open up new vistas at the Superconducting Super Collider (SSC)

  2. An Information-theoretic Approach to Optimize JWST Observations and Retrievals of Transiting Exoplanet Atmospheres

    Science.gov (United States)

    Howe, Alex R.; Burrows, Adam; Deming, Drake

    2017-01-01

    We provide an example of an analysis to explore the optimization of observations of transiting hot Jupiters with the James Webb Space Telescope (JWST) to characterize their atmospheres based on a simple three-parameter forward model. We construct expansive forward model sets for 11 hot Jupiters, 10 of which are relatively well characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs of combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.

  3. From the Big Bang to the Nobel Prize and the JWST

    Science.gov (United States)

    Mather, John C.

    2007-01-01

    I will describe the history of the universe, from the Big Bang to 2013, when the JWST is to be launched to look back towards our beginnings. I will discuss how the COBE results led to the Nobel Prize, how the COBE results have been confirmed and extended, and their implications for future observations. The James Webb Space Telescope will be used to examine every part of our history from the first stars and galaxies to the formation of individual stars and planets and the delivery of life-supporting materials to the Earth. I will describe the plans for the JWST and how observers may use it. With luck, the JWST may produce a Nobel Prize for some discovery we can only guess today.

  4. AN INFORMATION-THEORETIC APPROACH TO OPTIMIZE JWST OBSERVATIONS AND RETRIEVALS OF TRANSITING EXOPLANET ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Alex R.; Burrows, Adam [Department of Astronomy, University of Michigan, 1085 S. University, Ann Arbor, MI 48109 (United States); Deming, Drake, E-mail: arhowe@umich.edu, E-mail: burrows@astro.princeton.edu, E-mail: ddeming@astro.umd.edu [Department of Astronomy, University of Maryland College Park, MD 20742 (United States)

    2017-01-20

    We provide an example of an analysis to explore the optimization of observations of transiting hot Jupiters with the James Webb Space Telescope ( JWST ) to characterize their atmospheres based on a simple three-parameter forward model. We construct expansive forward model sets for 11 hot Jupiters, 10 of which are relatively well characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs of combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.

  5. Development of SiC Neutron Detector Assembly to Measure the Neutron Flux of the Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Se Hwan; Park, June Sic; Shin, Hee Sung; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yong Kyun [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    At present, the conventional detector to measure the neutron at harsh environment is a Self Powered Neutron Detector (SPND). Rhodium(Rh)-103 is in the SPND. When neutron is incident on the Rhodium, the neutron capture reaction occurs, and the Rh-103 is converted to Rh-104. The Rh-104 is decayed to Pd-104 by {beta}-decay, and electrons are generated as the decay products. Because of the half life of Rh-104, approximately 5 minutes are required for the SPND output to reach the equilibrium condition. Therefore the on-line monitoring of the nuclear reactor state is limited if the neutron flux in the reactor core is monitored with the SPND. Silicon carbide (SiC) has the possibility to be developed as neutron detector at harsh environment, because the SiC can be operative at high temperature and high neutron flux conditions. Previously, the basic operation properties of the SiC detector were studied. Also, the radiation response of the SiC detector was studied at high neutron and gamma dose rate. The measurement results for an ex-core neutron flux monitor or a neutron flux monitor of the spent fuel were published. The SiC detector was also developed as neutron detector to measure the fissile material with active interrogation method. However, the studies about the development of SiC detector are still limited. In the present work, the radiation damage effect of the SiC detector was studied. The detector structure was determined based on the study, and a neutron detector assembly was made with the SiC detectors. The neutron and gamma-ray response of the detector assembly is presented in this paper. The detector assembly was positioned in the HANARO research reactor core, the performance test was done. The preliminary results are also included in this paper

  6. Development of a programmable CCD detector for imaging, real time studies and other synchrotron radiation applications

    International Nuclear Information System (INIS)

    Brizard, C.

    1991-01-01

    A new CCD detector has been developed. The working of CCD and programmable detector is detailed in this thesis. The flexibility of the system allows the use of CCDs from different manufactures. The vacuum chamber of the detector is made of a beryllium window for experiments using X-radiation or of a quartz window coupled to a focusing optic system. Its temporal resolution is 2 microseconds with a X-radiation imaging. Images with a high spatial resolution have been obtained with the focusing system having a set of optical lenses and filters. The first X-ray diffraction experiments in the range of milliseconds and microseconds for the study of semiconductor heterostructures have been performed at X16 beam line at NSLS (National Synchrotron Light Source) with the detector illuminated by X-rays. For the first time, a X-ray beam, horizontally focused has been used to record a X-ray diffraction spectra on a 2-D detector. Finally, a X-ray diffraction method has been used to study the first steps of the crystallisation of Fe 8 0B 2 0 amorphous metallic alloy at X6 beam line at NSLS

  7. Design, development and performance study of six-gap glass MRPC detectors

    Energy Technology Data Exchange (ETDEWEB)

    Devi, M.M. [Tata Institute of Fundamental Research, Mumbai (India); Weizmann Institute of Science, Rehovot (Israel); Mondal, N.K.; Satyanarayana, B.; Shinde, R.R. [Tata Institute of Fundamental Research, Mumbai (India)

    2016-12-15

    The multigap resistive plate chambers (MRPCs) are gas ionization detectors with multiple gas sub-gaps made of resistive electrodes. The high voltage (HV) is applied on the outer surfaces of outermost resistive plates only, while the interior plates are left electrically floating. The presence of multiple narrow sub-gaps with high electric field results in faster signals on the outer electrodes, thus improving the detector's time resolution. Due to their excellent performance and relatively low cost, the MRPC detector has found potential application in time-of-flight (TOF) systems. Here we present the design, fabrication, optimization of the operating parameters such as the HV, the gas mixture composition, and, performance of six-gap glass MRPC detectors of area 27 cm x 27 cm, which are developed in order to find application as trigger detectors, in TOF measurement etc. The design has been optimized with unique spacers and blockers to ensure a proper gas flow through the narrow sub-gaps, which are 250 μm wide. The gas mixture consisting of R134A, Isobutane and SF{sub 6}, and the fraction of each constituting gases has been optimized after studying the MRPC performance for a set of different concentrations. The counting efficiency of the MRPC is about 95% at 17.9 kV. At the same operating voltage, the time resolution, after correcting for the walk effect, is found to be about 219 ps. (orig.)

  8. The Use of 3D Printing in the Development of Gaseous Radiation Detectors

    Science.gov (United States)

    Fargher, Sam; Steer, Chris; Thompson, Lee

    2018-01-01

    Fused Deposition Modelling has been used to produce a small, single wire, Iarocci-style drift tube to demonstrate the feasibility of using the Additive Manufacturing technique to produce cheap detectors, quickly. Recent technological developments have extended the scope of Additive Manufacturing, or 3D printing, to the possibility of fabricating Gaseous Radiation Detectors, such as Single Wire Proportional Counters and Time Projection Chambers. 3D printing could allow for the production of customisable, modular detectors; that can be easily created and replaced and the possibility of printing detectors on-site in remote locations and even for outreach within schools. The 3D printed drift tube was printed using Polylactic acid to produce a gas volume in the shape of an inverted triangular prism; base length of 28 mm, height 24.25 mm and tube length 145 mm. A stainless steel anode wire was placed in the centre of the tube, mid-print. P5 gas (95% Argon, 5% Methane) was used as the drift gas and a circuit was built to capacitively decouple signals from the high voltage. The signal rate and average pulse height of cosmic ray muons were measured over a range of bias voltages to characterise and prove correct operation of the printed detector.

  9. Modern trends in position-sensitive neutron detectors development for condensed matter research

    International Nuclear Information System (INIS)

    Belushkin, A.V.

    2007-01-01

    Detecting neutrons is a more complicated task compared to the detection of ionizing particles or ionizing radiation. This is why the variety of neutron detectors is much more limited. Meanwhile, different types of neutron experiments pose specific and often contradictory requirements for detector characteristics. For experiments on the high-intensity neutron sources, the high counting rate is one of the key issues. This is very important, for example, for small-angle neutron scattering and neutron reflectometry. For other experiments, characteristics like detection efficiency, high position resolution, high time resolution, neutron/gamma discrimination, large-area imaging, or compactness, are very important. Today, the cost of the detector also became one of the most important factors. There is no single type of detector which satisfies all the above criteria. Therefore, compromise is inevitable and some of the characteristics are trade off in favor of others. The present report gives an overview of detector systems presently operating at the leading neutron scattering facilities as well as some development work around the globe

  10. Development of a Compact Gamma-ray Detector for a Neural-Network Radiation Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Ha, J. H.; Lee, K. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, C. H. [Hanyang Univ., Seoul (Korea, Republic of)

    2012-03-15

    Radiation monitoring is very important to secure safety in nuclear-related facilities and against nuclear terrorism. For wide range of radiation monitoring, neutral network system of radiation detection is most efficient way. Thus, a compact radiation detector is useful to install in wide range to be concerned. A compact gamma-ray detector was fabricated by using a CsI(Tl) scintillator, which was matched with the formerly developed PIN photodiode, for a neural network radiation monitoring. At room temperature, the fabricated compact gamma-ray detector demonstrates an energy resolution of 13.3 % for 662 keV 6.9% for 1330 keV. The compactness, the low-voltage power consumption and the physical hardness are very useful features for a neural network radiation monitoring. In this study, characteristics of a fabricated compact gamma-ray detector were presented. An important aspect to consider in a neural-network radiation monitoring such as reaction probability of the fabricated compact detector for angle of incident gamma-ray was also addressed.

  11. 32-element beta detector developed at the Institute of Electron Technology (ITE)

    Science.gov (United States)

    Wegrzecki, Maciej; Yakushev, Alexander; Bar, Jan; Budzyński, Tadeusz; Grabiec, Piotr; Kłos, Helena; Panas, Andrzej; Słysz, Wojciech; Stolarski, Maciej; Szmigiel, Dariusz; Wegrzecka, Iwona; Zaborowski, Michał

    2014-08-01

    The paper presents the design, technology and parameters of a new .silicon detector for detection of electrons (below named as beta detector) developed at the Institute of Electron Technology (ITE). The detector will be used for research on transactinide elements at the GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (GSI). The detector consists of a monolithic 32-element array with an active area diameter of 90 mm and a thickness of 0.9 mm. The starting material is a high-resistivity ν silicon wafer (5 kΩcm resistivity). 32 planar p+-ν junctions are formed by boron diffusion on the top side of the wafer. On the bottom side, an n+ region, which forms a common cathode, is formed on the entire surface by phosphorus diffusion. The array is mounted on a special epoxy-glass laminate substrate, copper-clad on both sides. Two model detectors have been fabricated and studied. Very good electrical parameters have been achieved. For the first array, with supply voltage VR = 20 V, the minimum dark current was 8 nA, the maximum dark current 97.1 nA, and the average dark current 25.1 nA. For the second array, it was 11.5 nA, 378.8 nA and 40.0 nA respectively.

  12. Development of carbon fiber staves for the strip part of the PANDA micro vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Quagli, Tommaso; Brinkmann, Kai-Thomas [II. Physikalisches Institut, Justus-Liebig Universitaet Giessen (Germany); Fracassi, Vincenzo; Grunwald, Dirk; Rosenthal, Eberhard [ZEA-1, Forschungszentrum Juelich GmbH, Juelich (Germany); Collaboration: PANDA-Collaboration

    2015-07-01

    PANDA is a key experiment of the future FAIR facility, under construction in Darmstadt, Germany. It will study the collisions between an antiproton beam and a fixed proton or nuclear target. The Micro Vertex Detector (MVD) is the innermost detector of the apparatus and is composed of four concentric barrels and six forward disks, instrumented with silicon hybrid pixel detectors and double-sided silicon microstrip detectors; its main task is the identification of primary and secondary vertices. The central requirements include high spatial and time resolution, trigger-less readout with high rate capability, good radiation tolerance and low material budget. Because of the compact layout of the system, its integration poses significant challenges. The detectors in the strip barrels will be supported by a composite structure of carbon fiber and carbon foam; a water-based cooling system embedded in the mechanical supports will be used to remove the excess heat from the readout electronics. In this contribution the design of the barrel stave and the ongoing development of some hardware components related to its integration will be presented.

  13. Development of multi-channel gated integrator and PXI-DAQ system for nuclear detector arrays

    International Nuclear Information System (INIS)

    Kong Jie; Su Hong; Chen Zhiqiang; Dong Chengfu; Qian Yi; Gao Shanshan; Zhou Chaoyang; Lu Wan; Ye Ruiping; Ma Junbing

    2010-01-01

    A multi-channel gated integrator and PXI based data acquisition system have been developed for nuclear detector arrays with hundreds of detector units. The multi-channel gated integrator can be controlled by a programmable GI controller. The PXI-DAQ system consists of NI PXI-1033 chassis with several PXI-DAQ cards. The system software has a user-friendly GUI which is written in C language using LabWindows/CVI under Windows XP operating system. The performance of the PXI-DAQ system is very reliable and capable of handling event rate up to 40 kHz.

  14. Research and development of a helium-4 based solar neutrino detector

    International Nuclear Information System (INIS)

    Lanou, R.E.; Maris, H.J.; Seidel, G.M.

    1993-05-01

    Superfluid helium possesses unique properties that enable it to be used as the major component of a very sensitive calorimetric detector: it is extremely pure, and the energy deposited in it is carried out by elementary excitations of the liquid which can produce quantum evaporation of He atoms at a free surface. It has a major advantage of being able to achieve very low background levels. Experimental results presented on the development of helium-4 detector include sensitivity, heat capacity of wafer-calorimeters, coincidence measurements, spectrum of alpha particles in helium, and quantum evaporation: angular dependence and efficiency. 29 refs., 16 figs., 1 tab

  15. The development of drift-strip detectors based on CdZnTe

    DEFF Research Database (Denmark)

    Gostilo, V.; Budtz-Jørgensen, Carl; Kuvvetli, Irfan

    2002-01-01

    The design and technological development of a CdZnTe drift strip detector is described. The device is based on a monocrystal of dimensions 10 x 10 x 3 mm(3) and has a pitch of 200 mum and a strip width of 100 mum. The strip length is 9.5 mm. The distribution of the leakage currents of the strips...

  16. Design, development and calibration of a radioactive gas (85Kr) detector for continuous environmental monitoring

    International Nuclear Information System (INIS)

    Janardhanan, S.; Swaminathan, N.; John, Jacob; Kutty, K.N.; Wattamwar, S.B.; Gopalan, C.S.; Menezes, C.M.

    1982-01-01

    Design, development and calibration of a scintillation type detector for environmental monitoring of low levels of 85 Kr activity in off-line effluents or plant areas in presence of gamma background are reported. Calibration of the system was done using NBS 85 Kr standard. (author)

  17. Design, development and calibration of a radioactive gas (/sup 85/Kr) detector for continuous environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, S.; Swaminathan, N.; John, J.; Kutty, K.N.; Wattamwar, S.B. (Bhabha Atomic Research Centre, Bombay (India). Health Physics Div.); Gopalan, C.S.; Menezes, C.M. (Bhabha Atomic Research Centre, Bombay (India). Electronics Div.)

    Design, development and calibration of a scintillation type detector for environmental monitoring of low levels of /sup 85/Kr activity in off-line effluents or plant areas in presence of gamma background are reported. Calibration of the system was done using NBS /sup 85/Kr standard.

  18. Recent results from the development of silicon detectors with integrated electronics

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, G.-F. E-mail: dallabe@dit.unitn.it; Boscardin, M.; Batignani, G.; Bettarini, S.; Bisogni, M.G.; Bosisio, L.; Carpinelli, M.; Ciacchi, M.; Dittongo, S.; Forti, F.; Giorgi, M.; Gregori, P.; Manghisoni, M.; Novelli, M.; Piemonte, C.; Rachevskaia, I.; Rama, M.; Ratti, L.; Re, V.; Ronchin, S.; Sandrelli, F.; Simi, G.; Speziali, V.; Rosso, V.; Traversi, G.; Zorzi, N

    2004-02-01

    In the past few years we have developed a technological process allowing for the fabrication of radiation detectors with integrated electronics on high-resistivity silicon substrates. We report on some recent results relevant to the process optimisation and to device/circuit characterization.

  19. Recent results from the development of silicon detectors with integrated electronics

    International Nuclear Information System (INIS)

    Dalla Betta, G.-F.; Boscardin, M.; Batignani, G.; Bettarini, S.; Bisogni, M.G.; Bosisio, L.; Carpinelli, M.; Ciacchi, M.; Dittongo, S.; Forti, F.; Giorgi, M.; Gregori, P.; Manghisoni, M.; Novelli, M.; Piemonte, C.; Rachevskaia, I.; Rama, M.; Ratti, L.; Re, V.; Ronchin, S.; Sandrelli, F.; Simi, G.; Speziali, V.; Rosso, V.; Traversi, G.; Zorzi, N.

    2004-01-01

    In the past few years we have developed a technological process allowing for the fabrication of radiation detectors with integrated electronics on high-resistivity silicon substrates. We report on some recent results relevant to the process optimisation and to device/circuit characterization

  20. BPM Electronics based on Compensated Diode Detectors – Results from development Systems

    CERN Document Server

    Gasior, M; Steinhagen, RJ

    2012-01-01

    High resolution beam position monitor (BPM) electronics based on diode peak detectors is being developed for processing signals from button BPMs embedded into future LHC collimators. Its prototypes were measured in a laboratory as well as with beam signals from the collimator BPM installed on the SPS and with LHC BPMs. Results from these measurements are presented and discussed.

  1. Prospects for Habitable World Detections Using James Webb Space Telescope (JWST)

    Science.gov (United States)

    Deming, Drake

    2010-01-01

    Doppler and transit surveys are finding extrasolar planets of ever smaller mass and radius, and are now sampling the domain of superEarths. Recent results from the Doppler surveys suggest that discovery of a transiting superEarth in the habitable zone of a lower main sequence star may be possible. We evaluate the prospects for an all-sky transit survey targeted to the brightest stars I that would find the most favorable cases for photometric and spectroscopic characterization using the James Webb Space Telescope. We use the proposed Transiting Exoplanet Survey Satellite (TESS) as representative of an all-sky survey. We couple the simulated TESS yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. Our sensitivity model includes all currently known and anticipated sources of random and systematic error for these instruments. We focus on the TESS planets with radii between Earth and Neptune. Our simulations consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11- and 15- micron bands to measure carbon dioxide absorption in superEarths, as well as JWST!NIRSpec spectroscopy of water absorption from 1.7-3.0 microns, and carbon dioxide absorption at 4.3 microns. We find that JWST will be capable of characterizing dozens of TESS superEarths with temperatures above the habitable range, using both MIRI and NIRspec. We project that TESS will discover about eight nearby habitable transiting superEarths, all orbiting lower main sequence stars. The principal sources of uncertainty in the prospects for JWST characterization of habitable superEarths are superEarth frequency and the nature of superEarth atmospheres. Based on our estimates of these uncertainties, we project that JWST will be able to measure the temperature, and identify molecular absorptions (water, carbon dioxide) in one to four nearby habitable TESS superEarths orbiting lower main sequence stars.

  2. Recent technological developments on LGAD and iLGAD detectors for tracking and timing applications

    Science.gov (United States)

    Pellegrini, G.; Baselga, M.; Carulla, M.; Fadeyev, V.; Fernández-Martínez, P.; García, M. Fernández; Flores, D.; Galloway, Z.; Gallrapp, C.; Hidalgo, S.; Liang, Z.; Merlos, A.; Moll, M.; Quirion, D.; Sadrozinski, H.; Stricker, M.; Vila, I.

    2016-09-01

    This paper reports the latest technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n++-p+-p structure, where the doping profile of the p+ layer is optimized to achieve high field and high impact ionization at the junction. The LGAD structures are optimized for applications such as tracking or timing detectors for high energy physics experiments or medical applications where time resolution lower than 30 ps is required. Detailed TCAD device simulations together with the electrical and charge collection measurements are presented through this work.

  3. Development and characterisation of a visible light photon counting imaging detector system

    CERN Document Server

    Barnstedt, J

    2002-01-01

    We report on the development of a visible light photon counting imaging detector system. The detector concept is based on standard 25 mm diameter microchannel plate image intensifiers made by Proxitronic in Bensheim (Germany). Modifications applied to these image intensifiers are the use of three microchannel plates instead of two and a high resistance ceramics plate used instead of the standard phosphor output screen. A wedge and strip anode mounted directly behind the high resistance ceramics plate was used as a read out device. This wedge and strip anode picks up the image charge of electron clouds emerging from the microchannel plates. The charge pulses are fed into four charge amplifiers and subsequently into a digital position decoding electronics, achieving a position resolution of up to 1024x1024 pixels. Mounting the anode outside the detector tube is a new approach and has the great advantage of avoiding electrical feedthroughs from the anode so that the standard image intensifier fabrication process...

  4. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    International Nuclear Information System (INIS)

    Dalla Betta, Gian-Franco; Boscardin, Maurizio; Darbo, Giovanni; Gemme, Claudia; La Rosa, Alessandro; Pernegger, Heinz; Piemonte, Claudio; Povoli, Marco; Ronchin, Sabina; Zoboli, Andrea; Zorzi, Nicola

    2011-01-01

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are discussed here.

  5. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, Gian-Franco, E-mail: dallabe@disi.unitn.it [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Boscardin, Maurizio [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Darbo, Giovanni; Gemme, Claudia [INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); La Rosa, Alessandro; Pernegger, Heinz [CERN-PH, CH-1211 Geneve 23 (Switzerland); Piemonte, Claudio [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Povoli, Marco [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Ronchin, Sabina [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Zoboli, Andrea [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Zorzi, Nicola [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy)

    2011-04-21

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are discussed here.

  6. Development of prototype luminosity detector modules for future experiments on linear colliders

    CERN Document Server

    AUTHOR|(CDS)2081248; Idzik, Marek

    The main objective of this dissertation is to develop and validate the prototype module of the LumiCal luminosity detector. The dissertation presents the works executed from the first detector concept, through all subsequent R&D stages, ending with the test beam results obtained using the complete detector module. Firstly, the linear electron positron colliders and planned experiments are introduced, together with their role in our understanding of the basis of matter and sensing for the New Physics. The signal extraction from radiation sensors and further signal processing techniques are discussed in chapter 2. Besides the commonly accepted techniques of amplitude and time measurements, a novel readout implementation, utilizing digital signal processing and deconvolution principle, is proposed, and its properties are analyzed in details. The architecture, design, and measurements of the LumiCal readout chain components are presented in chapter 3. A dedicated test setups prepared for their parameterizatio...

  7. The Belle II DEPFET pixel vertex detector. Development of a full-scale module prototype

    International Nuclear Information System (INIS)

    Lemarenko, Mikhail

    2013-11-01

    The Belle II experiment, which will start after 2015 at the SuperKEKB accelerator in Japan, will focus on the precision measurement of the CP-violation mechanism and on the search for physics beyond the Standard Model. A new detection system with an excellent spatial resolution and capable of coping with considerably increased background is required. To address this challenge, a pixel detector based on DEPFET technology has been proposed. A new all silicon integrated circuit, called Data Handling Processor (DHP), is implemented in 65 nm CMOS technology. It is designed to steer the detector and preprocess the generated data. The scope of this thesis covers DHP tests and optimization as well the development of its test environment, which is the first Full-Scale Module Prototype of the DEPFET Pixel Vertex detector.

  8. Development of Trigger and Readout Electronics for the ATLAS New Small Wheel Detector Upgrade

    CERN Document Server

    Guan, Liang; The ATLAS collaboration

    2017-01-01

    The present small wheel muon detector at ATLAS will be replaced with a New Small Wheel (NSW) detector to handle the increase in data rates and harsh radiation environment expected at the LHC. Resistive Micromegas and small strip Thin Gap Chambers will be used to provide both trigger and tracking primitives. Muon segments found at NSW will be combined with the segments found at the Big Wheel to determine the muon transverse momentum at the first-level trigger. A new trigger and readout system is developed for the NSW detector. The new system has about 2.4 million trigger and readout channels and about 8,000 Front-End boards. The large number of input channels, short time available to prepare and transmit data, harsh radiation environment, and low power consumption all impose great challenges on the design. We will discuss the overall electronics design and studies with various ASICs and high-speed circuit board prototypes.

  9. Recent technological developments on LGAD and iLGAD detectors for tracking and timing applications

    International Nuclear Information System (INIS)

    Pellegrini, G.; Baselga, M.; Carulla, M.; Fadeyev, V.; Fernández-Martínez, P.; García, M. Fernández; Flores, D.; Galloway, Z.; Gallrapp, C.; Hidalgo, S.; Liang, Z.; Merlos, A.; Moll, M.; Quirion, D.; Sadrozinski, H.; Stricker, M.; Vila, I.

    2016-01-01

    This paper reports the latest technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n"+"+–p"+–p structure, where the doping profile of the p"+ layer is optimized to achieve high field and high impact ionization at the junction. The LGAD structures are optimized for applications such as tracking or timing detectors for high energy physics experiments or medical applications where time resolution lower than 30 ps is required. Detailed TCAD device simulations together with the electrical and charge collection measurements are presented through this work.

  10. Development of Trigger and Readout Electronics for the ATLAS New Small Wheel Detector Upgrade

    CERN Document Server

    Antrim, Daniel Joseph; The ATLAS collaboration

    2017-01-01

    The present small wheel muon detector at ATLAS will be replaced with a New Small Wheel (NSW) detector to handle the increase in data rates and harsh radiation environment expected at the LHC. Resistive Micromegas and small-strip Thin Gap Chambers will be used to provide both trigger and tracking primitives. Muon segments found at NSW will be combined with the segments found at the Big Wheel to determine the muon transverse momentum at the first-level trigger. A new trigger and readout system is developed for the NSW detector. The new system has about 2.4 million trigger and readout channels and about 8,000 frontend boards. The large number of input channels, short time available to prepare and transmit data, harsh radiation environment, and low power consumption all impose great challenges on the design. We will discuss the overall electronics design and studies with various ASIC and board prototypes.

  11. Developments, characterization and proton irradiation damage tests of AlN detectors for VUV solar observations

    Energy Technology Data Exchange (ETDEWEB)

    BenMoussa, A., E-mail: ali.benmoussa@stce.be [Solar Terrestrial Center of Excellence (STCE), Royal Observatory of Belgium, Circular Avenue 3, B-1180 Brussels (Belgium); Soltani, A.; Gerbedoen, J.-C [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), F-59652 Villeneuve d’Ascq (France); Saito, T. [Department of Environment and Energy, Tohoku Institute of Technology, 35-1, Yagiyama-Kasumi-cho, Taihaku-ku, Sendai, Miyagi 982-8577 (Japan); Averin, S. [Fryazino Branch of the Kotel’nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, 141190 Square Vvedenski 1, Fryazino, Moscow Region (Russian Federation); Gissot, S.; Giordanengo, B. [Solar Terrestrial Center of Excellence (STCE), Royal Observatory of Belgium, Circular Avenue 3, B-1180 Brussels (Belgium); Berger, G. [Catholic University of Louvain-la-Neuve, Chemin du Cyclotron 2, B-1348 Louvain la Neuve (Belgium); Kroth, U. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin (Germany); De Jaeger, J.-C. [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), F-59652 Villeneuve d’Ascq (France); Gottwald, A. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin (Germany)

    2013-10-01

    For next generation spaceborne solar ultraviolet radiometers, innovative metal–semiconductor–metal detectors based on wurtzite aluminum nitride are being developed and characterized. A set of measurement campaigns and proton irradiation damage tests was carried out to obtain their ultraviolet-to-visible characterization and degradation mechanisms. First results on large area prototypes up to 4.3 mm diameter are presented here. In the wavelength range of interest, this detector is reasonably sensitive and stable under brief irradiation with a negligible low dark current (3–6 pA/cm{sup 2}). No significant degradation of the detector performance was observed after exposure to protons of 14.4 MeV energy, showing a good radiation tolerance up to fluences of 1 × 10{sup 11} protons/cm{sup 2}.

  12. Recent technological developments on LGAD and iLGAD detectors for tracking and timing applications

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, G.; Baselga, M.; Carulla, M. [Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona (Spain); Fadeyev, V. [Santa Cruz Institute of Particle Physics SCIPP, Santa Cruz, CA (United States); Fernández-Martínez, P. [Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona (Spain); García, M. Fernández [Instituto de Física de Cantabria IFCA-CSIC-UC, Santander (Spain); Flores, D. [Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona (Spain); Galloway, Z. [Santa Cruz Institute of Particle Physics SCIPP, Santa Cruz, CA (United States); Gallrapp, C. [CERN, Geneva (Switzerland); Hidalgo, S. [Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona (Spain); Liang, Z. [Santa Cruz Institute of Particle Physics SCIPP, Santa Cruz, CA (United States); Merlos, A. [Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona (Spain); Moll, M. [CERN, Geneva (Switzerland); Quirion, D. [Centro Nacional de Microelectrónica, IMB-CNM-CSIC, Barcelona (Spain); Sadrozinski, H. [Santa Cruz Institute of Particle Physics SCIPP, Santa Cruz, CA (United States); Stricker, M. [CERN, Geneva (Switzerland); Vila, I. [Instituto de Física de Cantabria IFCA-CSIC-UC, Santander (Spain)

    2016-09-21

    This paper reports the latest technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n{sup ++}–p{sup +}–p structure, where the doping profile of the p{sup +} layer is optimized to achieve high field and high impact ionization at the junction. The LGAD structures are optimized for applications such as tracking or timing detectors for high energy physics experiments or medical applications where time resolution lower than 30 ps is required. Detailed TCAD device simulations together with the electrical and charge collection measurements are presented through this work.

  13. Development of phonon and photon detectors for rare events searches using scintillating crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, Felix; Enss, Christian; Fleischmann, Andreas; Gastaldo, Loredana; Hassel, Clemens; Hendricks, Sebastian; Kempf, Sebastian [Kirchhoff-Institut fuer Physik, Universit at Heidelberg (Germany); Kim, Yong-Hamb [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Loidl, Martin; Navick, Xavier-Francois; Rodrigues, Matias [Commissariat a l' energie atomique, Saclay (France)

    2016-07-01

    The use of scintillating crystals in cryogenic experiments searching for neutrinoless double beta decay and for direct interaction of dark matter particles allows for an efficient background reduction due to particle discrimination. We develop phonon and photon detectors based on metallic magnetic calorimeters (MMCs) to perform simultaneous measurements of heat and light generated by the interaction of a particle in a scintillating crystal. As designed we expect for the phonon sensor an energy resolution of ΔE{sub FWHM}<100 eV and a signal rise time τ<200 μs whereas for the photon detector we expect ΔE{sub FWHM}<5 eV and τ<50 μs. We discuss the design and the fabrication of these detectors and present recent results.

  14. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    International Nuclear Information System (INIS)

    Kagan, Harris; Gan, K.K.; Kass, Richard

    2009-01-01

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2013, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  15. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    CERN Document Server

    Betta, G -F Dalla; Darbo, G; Gemme, C; La Rosa, A; Pernegger, H; Piemonte, C; Povoli, M; Ronchin, S; Zoboli, A; Zorzi, N

    2011-01-01

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are here discussed.

  16. Development of Micromegas detectors for the CLAS12 experiment at Jefferson Laboratory

    International Nuclear Information System (INIS)

    Charles, Gabriel

    2013-01-01

    This thesis presents my work performed since 2010 to develop Micromegas detectors for the CLAS12 spectrometer that will be installed in the Hall B of Jefferson Laboratory (USA). The Micromegas are robust, fast and cheap gaseous detectors. Nevertheless, they must be adapted to the specific CLAS12 environment as there are many challenges to face: presence of a strong magnetic field, off-detector front end electronics, high hadrons rate, necessity to curve the detectors, few space available. My PhD started by beam tests at CERN that allowed to evaluate the spark rate in CLAS12 Micromegas at a few Hertz. An important part of this document is therefore devoted to the study of several innovative methods to minimize the dead time induced by sparks. Thus, I have performed intensive tests on the optimization of the micro-mesh high voltage filter, with on Micromegas equipped with a GEM foil or on resistive Micromegas. The latter giving excellent results, full scale prototypes, one of which built by a company, have been tested. The mechanics and the working point (gas, voltages, geometry...) of the detectors have then be validated by laboratory tests. However, to ensure a better signal over noise ratio, the micro-mesh has been optimized. The CEA Saclay being also responsible for the development of the electronics for CLAS12 Micromegas, I have compared its performance with another electronics, verify its time resolution and determine the signal over noise ratio when 2 m long cables are connecting the electronics to the detector. The progress realized in the context of CLAS12 have furthermore triggered other projects. So, I have carried out simulations based on pseudo-data to validate the feasibility of a meson spectroscopy experiment for which we have proposed a Micromegas based tracker. (author) [fr

  17. Development of the microstrip silicon detector for imaging of fast processes at a synchrotron radiation beam

    Energy Technology Data Exchange (ETDEWEB)

    Aulchenko, V. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk, Russian Federtion (Russian Federation); Pruuel, E. [Lavrentiev Institute of Hydrodynamics, 630090 Novosibirsk, Russian Federtion (Russian Federation); Novosibirsk State University, 630090 Novosibirsk, Russian Federtion (Russian Federation); Shekhtman, L. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk, Russian Federtion (Russian Federation); Ten, K. [Lavrentiev Institute of Hydrodynamics, 630090 Novosibirsk, Russian Federtion (Russian Federation); Tolochko, B. [Institute of Solid State chemistry and Mechanochemistry, 630090 Novosibirsk, Russian Federtion (Russian Federation); Novosibirsk State University, 630090 Novosibirsk, Russian Federtion (Russian Federation); Zhulanov, V. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk, Russian Federtion (Russian Federation)

    2017-02-11

    In situ imaging of explosions allows to study material properties under very high pressures and temperatures. Synchrotron radiation (SR) is a powerful tool for such studies because of its unique time structure. Flashes of X-rays from individual bunches in a storage ring are so short that an object under study does not move more than 1–10 μm during exposure. If a detector is able to store images synchronously with bunches of an SR source the time resolution of such method will be determined by the duration of SR flash from individual bunch. New beam line at the VEPP-4M storage ring will allow to get X-Ray flux from each bunch close to 10{sup 6} photons/channel where channel area is 0.05×0.5 mm{sup 2} and average beam energy is about 30 keV. Bunches in the machine can be grouped into trains with 20 ns time gap. In order to meet these requirements a new detector development was started based on Si microstrip technology. The detector with a new dedicated front-end chip will be able to record images with maximum signal equivalent to 10{sup 6} photons/channel, with signal to noise ratio of ∼10{sup 3}, spatial resolution of 50 μm and maximum frame rate of 50 MHz. The detector has to drive very high peak and average currents without affecting the front-end chip, therefore a specific design of Si sensor should be developed. The front-end chip has to provide signal measurements with the dynamic range of about 10{sup 4} or more and recording of the signal to an analogue memory with the rate of 50 MHz. The concept of such detector is discussed in the paper. The results of the simulations of the main detector parameters and the results of the first measurements with the prototype sensors are presented.

  18. Development of a new approach to simulate a particle track under electrochemical etching in polymeric detectors

    International Nuclear Information System (INIS)

    Mostofizadeh, Ali; Huang, Yudong; Kardan, M. Reza; Babakhani, Asad; Sun Xiudong

    2012-01-01

    A numerical approach based on image processing was developed to simulate a particle track in a typical polymeric detector, e.g., polycarbonate, under electrochemical etching. The physical parameters such as applied voltage, detector thickness, track length, the radii of curvature at the tip of track, and the incidence angle of the particle were considered, and then the boundary condition of the problem was defined. A numerical method was developed to solve Laplace equation, and then the distribution of the applied voltage was obtained through the polymer volume. Subsequently, the electric field strengths in the detector elements were computed. In each step of the computation, an image processing technique was applied to convert the computed values to grayscale images. The results showed that a numerical solution to Laplace equation is dedicatedly an attractive approach to provide us the accurate values of electric field strength through the polymeric detector volume as well as the track area. According to the results, for a particular condition of the detector thickness equal to 445 μm, track length of 21 μm, the radii of 2.5 μm at track tip, the incidence angle of 90°, and the applied voltage of 2080 V, after computing Laplace equation for an extremely high population of 4000 × 4000 elements of detector, the average field strength at the tip of track was computed equal to 0.31 MV cm −1 which is in the range of dielectric strength for polymers. The results by our computation confirm Smythe’s model for estimating the ECE-tracks.

  19. Development of phonon-mediated cryogenic particle detectors with electron and nuclear recoil discrimination

    Science.gov (United States)

    Nam, Sae Woo

    1999-10-01

    Observations have shown that galaxies, including our own, are surrounded by halos of ``dark matter''. One possibility is that this may be an undiscovered form of matter, weakly interacting massive particles (WIMPs). This thesis describes the development of silicon based cryogenic particle detectors designed to directly detect interactions with these WIMPs. These detectors are part of a new class of detectors which are able to reject background events by simultaneously measuring energy deposited into phonons versus electron hole pairs. By using the phonon sensors with the ionization sensors to compare the partitioning of energy between phonons and ionizations we can discriminate between electron recoil events (background radiation) and nuclear recoil events (dark matter events). These detectors with built-in background rejection are a major advance in background rejection over previous searches. Much of this thesis will describe work in scaling the detectors from / g prototype devices to a fully functional prototype 100g dark matter detector. In particular, many sensors were fabricated and tested to understand the behavior of our phonon sensors, Quasipartice trapping assisted Electrothermal feedback Transition edge sensors (QETs). The QET sensors utilize aluminum quasiparticle traps attached to tungsten superconducting transition edge sensors patterned on a silicon substrate. The tungsten lines are voltage biased and self-regulate in the transition region. Phonons from particle interactions within the silicon propogate to the surface where they are absorbed by the aluminum generating quasiparticles in the aluminum. The quasiparticles diffuse into the tungsten and couple energy into the tungsten electron system. Consequently, the tungsten increases in resistance and causes a current pulse which is measured with a high bandwidth SQUID system. With this advanced sensor technology, we were able to demonstrate detectors with xy position sensitivity with electron and

  20. Development of a neutron personal dose equivalent detector

    International Nuclear Information System (INIS)

    Tsujimura, N.; Yoshida, T.; Takada, C.; Momose, T.; Nunomiya, T.; Aoyama, K.

    2007-01-01

    A new neutron-measuring instrument that is intended to measure a neutron personal dose equivalent, H p (10) was developed. This instrument is composed of two parts: (1) a conventional moderator-based neutron dose equivalent meter and (2) a neutron shield made of borated polyethylene, which covers a backward hemisphere to adjust the angular dependence. The whole design was determined on the basis of MCNP calculations so as to have response characteristics that would generally match both the energy and angular dependencies of H p (10). This new instrument will be a great help in assessing the reference values of neutron H p (10) during field testing of personal neutron dosemeters in workplaces and also in interpreting their readings. (authors)

  1. Development of an automatic characterisation system for silicon detectors

    CERN Document Server

    Hacker, J; Krammer, M; Wedenig, R

    2002-01-01

    The CMS experiment will be equipped with the largest silicon tracker in the world. The tracker will consist of about 25,000 silicon sensors which will cover an area of more than 200 m sup 2. Four quality test centres will carry out various checks on a representative sample of sensors to assure a homogeneous quality throughout the 2((1)/(2)) years of production. One of these centres is based in Vienna. To cope with the large number of sensors a fast and fully automatic characterisation system has been realised. We developed the software in LabView and built a cost-efficient probe station in house by assembling individual components and commercial instruments. Both the global properties of a sensor and the characteristic quantities of the individual strips can be measured. The measured data are immediately analysed and sent to a central database. The mechanical and electrical set-up will be explained and results from CMS prototype sensors are presented.

  2. Development of an automatic characterisation system for silicon detectors

    International Nuclear Information System (INIS)

    Hacker, J.; Bergauer, T.; Krammer, M.; Wedenig, R.

    2002-01-01

    The CMS experiment will be equipped with the largest silicon tracker in the world. The tracker will consist of about 25,000 silicon sensors which will cover an area of more than 200 m 2 . Four quality test centres will carry out various checks on a representative sample of sensors to assure a homogeneous quality throughout the 2((1)/(2)) years of production. One of these centres is based in Vienna. To cope with the large number of sensors a fast and fully automatic characterisation system has been realised. We developed the software in LabView and built a cost-efficient probe station in house by assembling individual components and commercial instruments. Both the global properties of a sensor and the characteristic quantities of the individual strips can be measured. The measured data are immediately analysed and sent to a central database. The mechanical and electrical set-up will be explained and results from CMS prototype sensors are presented

  3. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    International Nuclear Information System (INIS)

    Liu, Jing

    2009-01-01

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of 76 Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse shape

  4. Development of segmented germanium detectors for neutrinoless double beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing

    2009-06-09

    The results from neutrino oscillation experiments indicate that at least two neutrinos have mass. However, the value of the masses and whether neutrinos and anti-neutrinos are identical, i.e., Majorana particles, remain unknown. Neutrinoless double beta decay experiments can help to improve our understanding in both cases and are the only method currently possible to tackle the second question. The GERmanium Detector Array (GERDA) experiment, which will search for the neutrinoless double beta decay of {sup 76}Ge, is currently under construction in Hall A of the INFN Gran Sasso National Laboratory (LNGS), Italy. In order to achieve an extremely low background level, segmented germanium detectors are considered to be operated directly in liquid argon which serves simultaneously as cooling and shielding medium. Several test cryostats were built at the Max-Planck-Institut fuer Physik in Muenchen to operate segmented germanium detectors both in vacuum and submerged in cryogenic liquid. The performance and the background discrimination power of segmented germanium detectors were studied in detail. It was proven for the first time that segmented germanium detectors can be operated stably over long periods submerged in a cryogenic liquid. It was confirmed that the segmentation scheme employed does well in the identification of photon induced background and demonstrated for the first time that also neutron interactions can be identified. The C++ Monte Carlo framework, MaGe (Majorana-GERDA), is a joint development of the Majorana and GERDA collaborations. It is based on GEANT4, but tailored especially to simulate the response of ultra-low background detectors to ionizing radiation. The predictions of the simulation were veri ed to be accurate for a wide range of conditions. Some shortcomings were found and corrected. Pulse shape analysis is complementary to segmentation in identifying background events. Its efficiency can only be correctly determined using reliable pulse

  5. Muon borehole detector development for use in four-dimensional tomographic density monitoring

    Science.gov (United States)

    Flygare, Joshua

    The increase of CO2 concentrations in the atmosphere and the correlated temperature rise has initiated research into methods of carbon sequestration. One promising possibility is to store CO2 in subsurface reservoirs of porous rock. After injection, the monitoring of the injected CO2 is of paramount importance because the CO2 plume, if escaped, poses health and environmental risks. Traditionally, seismic reflection methods are the chosen method of determining changes in the reservoir density due to CO2 injection, but this is expensive and not continuous. A potential and promising alternative is to use cosmic muon tomography to determine density changes in the reservoir over a period of time. The work I have completed was the development of a muon detector that will be capable of being deployed in boreholes and perform long-term tomography of the reservoir of interest. The detector has the required dimensions, an angular resolution of approximately 2 degrees, and is robust enough to survive the caustic nature of the fluids in boreholes, as well as temperature and pressure fluctuations. The detector design is based on polystyrene scintillating rods arrayed in alternating layers. The layers, as arranged, can provide four-dimensional (4D) tomographic data to detect small changes in density at depths up to approximately 2 kilometers. Geant4, a Monte Carlo simulation code, was used to develop and optimize the detector design. Additionally, I developed a method of determining the muon flux at depth, including CO2 saturation changes in subsurface reservoirs. Preliminary experiments were performed at Pacific Northwest National Laboratory. This thesis will show the simulations I performed to determine the angular resolution and background discrimination required of the detector, the experiments to determine light transport through the polystyrene scintillating rods and fibers, and the method developed to predict muon flux changes at depth expected after injection.

  6. The development and performance of the EXAM detector to search for extragalactic antimatter

    International Nuclear Information System (INIS)

    Coan, T.E.

    1989-01-01

    The design and development of a practical balloon borne instrument capable of detecting heavy (Z approximately equal to -26) antimatter in the cosmic rays are described. Emphasis is placed on describing the essential physics of the EXAM (extragalactic antimatter) instrument's individual detectors that make such a detection possible. In particular, it is shown that the responses from a plastic scintillator, a Cerenkov radiation detector, dielectric track detectors, and proportional drift tube arrays can be used to uniquely determine the speed, charge magnitude, and charge sign of a cosmic ray nucleus. This novel nonmagnetic detection scheme permits the construction of a relatively light weight (approximately 2,000 kg) detector with a large collecting power (approximately 10 sq m sr). The profound cosmological and elementary particle physics implications of the detection of just a single heavy antimatter nucleus are discussed in chapter one, along with arguments that imply that such a detected antinucleus must necessarily be extragalactic in origin. Chapters two through six describe the response of EXAM's individual detectors to the passage of heavily ionizing charged particles. Chapter seven is an overview of the mechanical construction of the entire instrument. Details of the measurement of the light collection efficiency of EXAM's Cerenkov detector and primary scintillator using sea-level muons and how this will be used to assist in the flight data analysis are contained in chapter eight. This chapter also includes a description of the instrument's electronic configuration and its data acquisition system. Finally, there are two appendices summarizing some important mechanical stress calculations that were required to actually build the instrument

  7. Development of Si-based detectors for intermediate energy heavy-ion physics at a storage-ring accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J.; Jaworowski, J.; Leandersson, M.; El Bouanani, M. [Lund Institute of Technology, Solvegatan Lund, (Sweden). Department of Nuclear Physics; Jakobsson, B. [Lund Univ. (Sweden). Dept. of Cosmic and Subatomic Physics; Romanski, J.; Westerberg, L.; Van Veldhuizen, E.J. [Uppsala Univ. (Sweden); The Chicsi Collaboration

    1996-12-31

    Ultrahigh vacuum (UHV) compatible Si detectors are being developed by the CELSIUS Heavy lon Collaboration (CHIC) for measuring the energy and identity of Intermediate Mass Fragments (IMF) with Z {approx} 3 - 12 and energies of 0.7 - I 0 A MeV. Here we give an overview of the development of Si {delta}E-E detector telescopes and investigations on IMF identification based on the pulse shape from Si-detectors where the particles impinge on the rear-face of the detector. 9 refs., 4 figs.

  8. Development of Si-based detectors for intermediate energy heavy-ion physics at a storage-ring accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H J; Jaworowski, J; Leandersson, M; El Bouanani, M [Lund Institute of Technology, Solvegatan Lund, (Sweden). Department of Nuclear Physics; Jakobsson, B [Lund Univ. (Sweden). Dept. of Cosmic and Subatomic Physics; Romanski, J; Westerberg, L; Van Veldhuizen, E J [Uppsala Univ. (Sweden); The Chicsi Collaboration

    1997-12-31

    Ultrahigh vacuum (UHV) compatible Si detectors are being developed by the CELSIUS Heavy lon Collaboration (CHIC) for measuring the energy and identity of Intermediate Mass Fragments (IMF) with Z {approx} 3 - 12 and energies of 0.7 - I 0 A MeV. Here we give an overview of the development of Si {delta}E-E detector telescopes and investigations on IMF identification based on the pulse shape from Si-detectors where the particles impinge on the rear-face of the detector. 9 refs., 4 figs.

  9. Development of innovative micro-pattern gaseous detectors with resistive electrodes and first results of their applications

    CERN Document Server

    Di Mauro, A; Martinengo, P; Nappi, E; Oliveira, R; Peskov, Vladimir; Periale, L; Picchi, P; Pietropaolo, F; Rodionov, I; Santiard, Jean-Claude

    2007-01-01

    The paper summarizes our latest progress in the development of newly introduced micro pattern gaseous detectors with resistive electrodes. These resistive electrodes protect the detector and the front-end electronics in case of occasional discharges and thus make the detectors very robust and reliable in operation. As an example, we describe in greater detail a new recently developed GEM-like detector, fully spark-protected with electrodes made of resistive kapton. We discovered that all resistive layers used in these studies (including kapton), that are coated with photosensitive layers, such as CsI, can be used as efficient photo cathodes for detectors operating in a pulse counting mode. We describe the first applications of such detectors combined with CsI or SbCs photo cathodes for the detection of UV photons at room and cryogenic temperatures.

  10. Development of Detector Systems for Internal and Fixed Target Heavy Ion Physics Experiments

    International Nuclear Information System (INIS)

    Golubev, Pavel

    2003-04-01

    This thesis deals with intermediate energy heavy ion reactions with the particular aim to study the nuclear matter equation of state which defines the relation between statistical parameters of a fermionic system. The development of equipment for two experiments, CA47 at The Svedberg Laboratory in Uppsala, Sweden and R16 at Kernfysisch Versneller Inst. (KVI), Groningen, The Netherlands, are described. CA47 contains the CHICSi detector, a modular, ultra-high vacuum (UHV) compatible, multi-detector system, covering a solid angle of 3pi sr around the collision point. Together with two auxiliary detector systems CHICSi is placed at the cluster-jet target chamber of the CELSIUS storage ring. This thesis gives a technical overview of the detector and the development carried out in order to achieve the desired detection performance. Some laboratory and in-beam tests are described and the analysis of the first experimental results is discussed. The nuclear intensity interferometry experiment (R16) was performed in a dedicated beam-line of the AGOR superconducting cyclotron. Small-angle two-particle correlations were measured for the E/A = 61 MeV 36 Ar + 27 Al, 112 Sn, 124 Sn reactions, together with singles spectra. The experimental energy distributions of neutrons and light charged particles for the 36 Ar + 27 Al reaction have been analyzed with a Maxwellian multi-source prescription. These results, together with correlation function data, are used to extract information on the size of the emitting sources and their time evolution

  11. High-Dose Neutron Detector Development Using 10B Coated Cells

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    During FY16 the boron-lined parallel-plate technology was optimized to fully benefit from its fast timing characteristics in order to enhance its high count rate capability. To facilitate high count rate capability, a novel fast amplifier with timing and operating properties matched to the detector characteristics was developed and implemented in the 8” boron plate detector that was purchased from PDT. Each of the 6 sealed-cells was connected to a fast amplifier with corresponding List mode readout from each amplifier. The FY16 work focused on improvements in the boron-10 coating materials and procedures at PDT to significantly improve the neutron detection efficiency. An improvement in the efficiency of a factor of 1.5 was achieved without increasing the metal backing area for the boron coating. This improvement has allowed us to operate the detector in gamma-ray backgrounds that are four orders of magnitude higher than was previously possible while maintaining a relatively high counting efficiency for neutrons. This improvement in the gamma-ray rejection is a key factor in the development of the high dose neutron detector.

  12. The development of a single-crystal fiber-array scintillator area detector

    International Nuclear Information System (INIS)

    Loong, Chun; Vitt, Richard; Sayir, Ali; Sayir, Haluk

    2001-01-01

    The scientific output of a neutron instrument is directly proportional to the effectiveness of its detector system-coverage of scattering area, pixel resolution, counting efficiency, signal-to-noise ratio, life time and cost. The current neutron scintillator detectors employ mainly 6 Li-doped glass and ZnS, both of which present well-know limitations such as low light output, high gamma sensitivity in the case of 6 Li-glass and optical opacity in the case of ZnS. We aim to develop a position-sensitive, flight-time differentiable, efficient and cost-effective neutron detector system based on single-crystal scintillator fiber-arrays. The laser-heated melt modulation fiber growth technology developed at NASA provides the means to grow high-purity single-crystal fibers or rods of variable diameters (200 μm to 5 mm) and essentially unlimited length. Arrays of such fibers can be tailored to meet the requirements of pixel size, geometric configuration, and coverage area for a detector system. We report a plan in the growth and characterization of scintillators based on lithium silicates and boron aluminates using Ce as activator. (author)

  13. Development and operational performance of a single calibration chamber for radon detectors

    International Nuclear Information System (INIS)

    Lopez-Coto, I.; Bolivar, J.P.; Mas, J.L.; Garcia-Tenorio, R.; Vargas, A.

    2007-01-01

    This work shows the design, setup and performance of a new single radon detector calibration chamber developed at the University of Huelva (Environmental Radioactivity Group). This system is based on a certified radon source and a traceable reference radon detector, which allows radon concentrations inside the chamber radon to be obtained in steady-state conditions within a range of 400-22 000 Bq m -3 with associated uncertainties in the range of 4%. In addition, the development of a new ad hoc calibration protocol (UHU-RC/01/06 'Rachel'), which is based on the modelling of radon concentration within the chamber, allows it to be used without the reference detector. To do that, a complete characterization and calibration of the different leakage constants and the flow meter reading have been performed. The accuracy and general performance of both working methods for the same chamber (i.e., with and without the reference detector) have been tested by means of their participation in an intercomparison exercise involving five active radon monitors

  14. Development of hybrid track detector using CR39 and photographic plate

    International Nuclear Information System (INIS)

    Kuge, K.; Endo, Y.; Hayashi, K.; Iwakiri, S.; Hasegawa, A.; Yasuda, N.; Kumagai, H.

    2005-01-01

    To improve the hybrid track detector using both CR39 and silver halide photography the gold deposition development technique was applied to this. Nuclear tracks composed of gold clusters were obtained. This method has several advantages; 1. no filament formation, 2. easy control of the cluster size owing to the independence of the size of silver halide grain, 3. easy treatment of the waste solution of developer. (author)

  15. Development and tests of MCP based timing and multiplicity detector for MIPs

    Science.gov (United States)

    Feofilov, G.; Kondratev, V.; Stolyarov, O.; Tulina, T.; Valiev, F.; Vinogradov, L.

    2017-01-01

    We present summary of technological developments and tests of the MCP based large area detector aimed at precise timing and charged particles multiplicity measurements. Results obtained in course of these developments of isochronous (simultaneity) precise signal readout, passive summation of 1 ns signals, fast (1 GHz) front-end electronics, miniature vacuum systems, etc. could be potentially interesting for a number of future applications in different fields.

  16. Development of a new photo-detector readout technique for PET and CT imaging

    CERN Document Server

    Powolny, François; Auffray, Etiennette; Dosanjh, Manjit; Jarron, Pierre; Kaplon, Jan; Lecoq, Paul; Meyer, T C; Trummer, Julia; Velitchko, Sandra

    2007-01-01

    In the framework of the European FP6's BioCare project, we develop a novel photo-detector readout technique to increase sensitivity and timing precision for molecular imaging in Positron Emission Tomography (PET) and Computer Tomography (CT). Within the Project's work packages, the CERN-BioCare group focuses on the development of a PET detection head suitable to process data from both PET and CT operation in one unit. The detector module consists of a LSO matrix coupled to an APD array. The signal is processed by a fast and low noise readout electronics recently developed for experiments at the Large Hadron Collider (LHC) at CERN. The functioning of the individual system components and the performance of the entire readout channel are presented.

  17. DEVELOPMENT OF WIRELESS TECHNIQUES IN DATA AND POWER TRANSMISSION APPLICATION FOR PARTICLE-PHYSICS DETECTORS

    CERN Document Server

    Brenner, R; Dehos, C; De Lurgio, P; Djurcic, Z; Drake, G; Gonzales Gimenez, JL; Gustafsson, L; Kim, DW; Locci, E; Pfeiffer, U; Röhrich, D; Rydberg, D; Schöning, A; Siligaris, A; Soltveit, HK; Ullaland, K; Vincent, P; Vasquez, PR; Wiedner, D; Yang, S

    2017-01-01

    In the WADAPT project described in this Letter of Intent, we propose to develop wireless techniques for data and power transmission in particle-physics detectors. Wireless techniques have developed extremely fast over the last decade and are now mature for being considered as a promising alternative to cables and optical links that would revolutionize the detector design. The WADAPT consortium has been formed to identify the specific needs of different projects that might benefit from wireless techniques with the objective of providing a common platform for research and development in order to optimize effectiveness and cost. The proposed R&D will aim at designing and testing wireless demonstrators for large instrumentation systems.

  18. Development of an X-ray detector using photodiodes; Desarrollo de un detector de rayos X usando fotodiodos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez G, J.; Azorin V, J. C.; Sosa A, M. A.; Ceron, P., E-mail: gonzalezgj2012@licifug.ugto.mx [Universidad de Guanajuato, Division de Ciencias e Ingenierias, Loma del Bosque No. 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico)

    2016-10-15

    Currently the radiation detectors for medical applications are very high value in the market and are difficult to access as training material. In the Sciences and Engineering Division of the Guanajuato University (Mexico) investigations are carried out related to ionizing radiations, especially with X-rays. To overcome the lack of materials has had to resort to borrowing equipment from other institutions, so its use and availability are intermittent. For these reasons is proposed to design and implement an X-ray detector for the use of the work group and the University. This work aims to build an X-ray semiconductor detector using inexpensive and affordable materials, is also proposed the use of a photodiode sensor and an Arduino analog-digital card and a LCD display showing the data. (Author)

  19. Research and development of a beta skin-dose monitor using silicon detectors

    International Nuclear Information System (INIS)

    Chung Manho.

    1991-01-01

    The purpose of the research is to develop improved ways to computer and measure the beta skin dose. Beta spectra for the various sources were calculated based on the Fermi beta decay theory. The calculated average energies of the spectra agreed with the literature values within 6%. Monte Carlo electron transport codes have been developed for use on microcomputers. The one-dimensional code ZEBRA has been converted to a microcomputer version called Eltran2 which runs on the Macintosh or any IBM compatible microcomputers. Eltran2 has then been modified into a two-dimensional program called Eltran3. Using Eltran2 and Eltran3, different source distributions and the hot particle dose have been studied. It has been found that the VARSKIN code overestimates the skin dose from hot particles by about 10 to 40% in comparison with Eltran3 calculations, because the VARSKIN code is based on the data tables for an unbounded medium. An ion-implanted silicon detector was selected because of its small size, high sensitivity, and low leakage current. To cover a wide range of dose rate, both the pulse and current mode operations of the silicon detector were used, with an overlap of one order of magnitude in the measurable dose rate ranges. By using a gradient shield of about 7 mg/cm 2 on the detector, dose gradient measurements have been performed. Five 60 Co hot particles received from GPU Nuclear Corporation have been measured by the silicon detector and the measurements agreed well with Eltran3 calculations. In the pulse mode, variation of the depletion depth of the silicon detector due to the changes of bias voltage was confirmed. Based on this research, a prototype beta skin dose monitor has been constructed. The device includes an 8-bit analogue-to-digital converter and a Z-80 microprocessor with a machine-coded program, to calculate the skin dose

  20. Development of Micromegas detectors for the CLAS12 experiment at Jefferson Laboratory

    CERN Document Server

    Charles, Gabriel

    This thesis presents my work performed since 2010 to develop Micromegas detectors for the CLAS12 spectrometer that will be installed in the Hall B of Jefferson Laboratory (USA). The Micromegas are robust, fast and cheap gaseous detectors. Nevertheless, they must be adapted to the specific CLAS12 environment as there are many challenges to face : presence of a strong magnetic field, off-detector frontend electronics, high hadrons rate, necessity to curve the detectors, few space available. My PhD started by beam tests at CERN that allowed to evaluate the spark rate in CLAS12 Micromegas at a few Hertz. An important part of this document is therefore devoted to the study of several innovative methods to minimize the dead time induced by sparks. Thus, I have performed intensive tests on the optimization of the micromesh high voltage filter, with on Micromegas equipped with a GEM foild or on resistive Micromegas. The latter giving excellent results, full scale prototypes, one of which built by a company, have been...

  1. Development of an MR-compatible DOI-PET detector module

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingyang [Department of Electrical Engineering, Tsinghua University, Beijing (China); Key Laboratory of Particle and Radiation Imaging, Ministry of Education (Tsinghua University), Beijing (China); Wang, Shi; Xu, Tianpeng; Gao, Yunpeng; Liu, Yaqiang; Ma, Tianyu [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle and Radiation Imaging, Ministry of Education (Tsinghua University), Beijing (China)

    2015-05-18

    Silicon Photomultiplier (SiPM) is a promising sensor for MR-compatible PET systems. In this paper, we developed a compact 2-layer DOI-PET detector. The top layer is a 15×15 LYSO array, and the crystal size is 2x2x7mm{sup 3}. The bottom layer is a 16×16 array with the same size crystals. There is half-crystal offset between two layers in both transverse directions. The detector is coupled to an 8×8 SiPM array (MicroFB-30035-SMT, Sensl). Sixty-four channels of SiPMs are read out by an ASIC chip with in-chip multiplexing resistor networks in the form of two position and one energy analog signals, and are then converted to wave-form digital signals with 80 MHz 12-bit ADC chips. The energy is calculated by averaging the 3 points around the peak of the pulse. Flood images with two 22Na point sources irradiated on the top and at the bottom of the detector module were acquired. The results show that the detector module achieves good crystal identification capability in both layers with an average energy resolution of 17.1% at 511 keV.

  2. Technology development of p-type microstrip detectors with radiation hard p-spray isolation

    International Nuclear Information System (INIS)

    Pellegrini, G.; Fleta, C.; Campabadal, F.; Diez, S.; Lozano, M.; Rafi, J.M.; Ullan, M.

    2006-01-01

    A technology for the fabrication of p-type microstrip silicon radiation detectors using p-spray implant isolation has been developed at CNM-IMB. The p-spray isolation has been optimized in order to withstand a gamma irradiation dose up to 50 Mrad (Si), which represents the ionization radiation dose expected in the middle region of the SCT-Atlas detector of the future Super-LHC during 10 years of operation. The best technological options for the p-spray implant were found by using a simulation software package and dedicated calibration runs. Using the optimized technology, detectors have been fabricated in the Clean Room facility of CNM-IMB, and characterized by reverse current and capacitance measurements before and after irradiation. The average full depletion voltage measured on the non-irradiated detectors was V FD =41±3 V, while the leakage current density for the microstrip devices at V FD +20 V was 400 nA/cm 2

  3. Development and operation of tracking detectors in silicon technology for the LHCb upgrade

    CERN Document Server

    Rodriguez Perez, Pablo; Adeva, Bernardo

    The LHCb experiment is one of the four main experiments at the Large Hadron Collider (LHC) at CERN. It uses the energy density provided by the LHC to attempt to probe asymmetries between particles and antiparticles that can not be explained by the Standard Model, and thus provide evidence that would allow us to build a new model of fundamental physics. This thesis covers the author's work in the Silicon Tracker $(\\textit{ST})$ and VErtex LOcator $(\\textit{VELO})$ detectors of the LHCb experiment. The thesis explains the installation and commissioning of the $ST$, as well as the development of the slow control for the detector. The $ST$ is a silicon micro-strip detector which provides precise momentum measurements of ionizing particles coming from the collisions. The $ST$consists of two sub-detectors: the Tracker Turicensis $ (TT)$, located upstream of the 4 Tm dipole magnet covering the full acceptance of the experiment, and the Inner Tracker $(IT)$, which covers the region of highest particle density closest...

  4. Development of the liquid level meters for the PandaX dark matter detector

    International Nuclear Information System (INIS)

    Hu Jie; Gong Haowei; Lin Qing; Ni Kaixuan; Wei Yuehuan; Xiao Mengjiao; Xiao Xiang; Zhao Li; Tan Andi

    2014-01-01

    The two-phase xenon detector is at the frontier of dark matter direct search. This kind of detector uses liquid xenon as the sensitive target and is operated in two-phase (liquid/gas) mode, where the liquid level needs to be monitored and controlled in sub-millimeter precision. In this paper, we present a detailed design and study of two kinds of level meters for the PandaX dark matter detector. The long level meter is used to monitor the overall liquid level while short level meters are used to monitor the inclination of the detector. These level meters are cylindrical capacitors that are custom-made from two concentric metal tubes. Their capacitance values are read out by a universal transducer interface chip and are recorded by the PandaX slow control system. We present the developments that lead to level meters with long-term stability and sub-millimeter precision. Fluctuations (standard deviations) of less than 0.02 mm for the short level meters and less than 0.2 mm for the long level meter were achieved during a few days of test operation. (authors)

  5. Development of an MR-compatible DOI-PET detector module

    International Nuclear Information System (INIS)

    Wei, Qingyang; Wang, Shi; Xu, Tianpeng; Gao, Yunpeng; Liu, Yaqiang; Ma, Tianyu

    2015-01-01

    Silicon Photomultiplier (SiPM) is a promising sensor for MR-compatible PET systems. In this paper, we developed a compact 2-layer DOI-PET detector. The top layer is a 15×15 LYSO array, and the crystal size is 2x2x7mm 3 . The bottom layer is a 16×16 array with the same size crystals. There is half-crystal offset between two layers in both transverse directions. The detector is coupled to an 8×8 SiPM array (MicroFB-30035-SMT, Sensl). Sixty-four channels of SiPMs are read out by an ASIC chip with in-chip multiplexing resistor networks in the form of two position and one energy analog signals, and are then converted to wave-form digital signals with 80 MHz 12-bit ADC chips. The energy is calculated by averaging the 3 points around the peak of the pulse. Flood images with two 22Na point sources irradiated on the top and at the bottom of the detector module were acquired. The results show that the detector module achieves good crystal identification capability in both layers with an average energy resolution of 17.1% at 511 keV.

  6. Development of a Gamma-Ray Detector for Z-Selective Radiographic Imaging

    International Nuclear Information System (INIS)

    Brandis, Michal

    2013-11-01

    Dual-Discrete Energy Gamma-Radiography (DDEGR) is a method for Special Nuclear Materials (SNM) detection. DDEGR utilizes 15.11 and 4.43 MeV gamma-rays produced in the 11B(d,n)12C reaction, in contrast to the conventional use of continuous Bremsstrahlung radiation. The clean and well separated gamma-rays result in high contrast sensitivity, enabling detection of small quantities of SNM. The most important aspects of a DDEGR system were discussed, simulated, measured and demonstrated. An experimental measurement of gamma-ray yields from the 11B(d,n)12C reaction showed that the yields from deuterons with 3{12 MeV energy are 2{201010 N/sr/mC 4.4 MeV gamma- rays and 2{5109 N/sr/mC 15.1 MeV gamma-rays. The measured neutron yields show that the neutron energies extend to 15-23 MeV for the same deuteron energy range. A simplied inspection system was simulated with GEANT4, showing that the ect of scattering on the signal measured in the detector is acceptable. Considering the reaction gamma yields, 1.8 mA deuteron current is required for separation of high-Z materials from medium- and low-Z materials and a 4.5 mA current is required for the additional capability of separating benign high-Z materials from SNM. The main part of the work was development of a detector suitable for a DDEGR system | Time Resolved Event Counting Optical Radiation (TRECOR) detector. TRECOR detector is a novel spectroscopic imaging detector for gamma-rays within the MeV energy range that uses an event counting image intensier with gamma-rays for the rst time. Neutrons that accompany the gamma radiation enable to implement, in parallel, Fast Neutron Resonance Radiography (FNRR), a method for explosives detection. A second generation detector, TRECOR-II, is capable of detecting gamma-rays and neutrons in parallel, separating them to create particle-specic images and energy-specic images for each particle, thus enabling simultaneous implementation of the two detection methods. A full DDEGR laboratory

  7. Lessons from Coronagraphic Imaging with HST that may apply to JWST

    Science.gov (United States)

    Grady, C. A.; Hines, Dean C.; Schneider, Glenn; McElwain, Michael W.

    2017-06-01

    One of the major capabilities offered by JWST is coronagraphic imaging from space, covering the near through mid-IR and optimized for study of planet formation and the evolution of planetary systems. Planning for JWST has resulted in expectations for instrument performance, observation strategies and data reduction approaches. HST with 20 years of coronagraphic imaging offers some experience which may be useful to those planning for JWST. 1) Real astronomical sources do not necessarily conform to expectations. Debris disks may be accompanied by more distant material, and some systems may be conspicuous in scattered light when offering only modest IR excesses. Proto-planetary disks are not constantly illuminated, and thus a single epoch observation of the source may not be sufficient to reveal everything about it. 2) The early expectation with NICMOS was that shallow, 2-roll observations would reveal a wealth of debris disks imaged in scattered light, and that only a limited set of PSF observations would be required. Instead, building up a library of spatially resolved disks in scattered light has proven to require alternate observing strategies, is still on-going, and has taken far longer than expected. 3) A wealth of coronagraphic options with an instrument may not be scientifically informative, unless there is a similar time investment in acquisition of calibration data in support of the science observations. 4) Finally, no one anticipated what can be gleaned from coronagraphic imaging. We should expect similar, unexpected, and ultimately revolutionary discoveries with JWST.

  8. Development and characterisation of MCT detectors for space astrophysics at CEA

    Science.gov (United States)

    Boulade, O.; Baier, N.; Castelein, P.; Cervera, C.; Chorier, P.; Destefanis, G.; Fièque, B.; Gravrand, O.; Guellec, F.; Moreau, V.; Mulet, P.; Pinsard, F.; Zanatta, J.-P.

    2017-11-01

    The Laboratoire Electronique et Traitement de l'Information (LETI) of the Commissariat à l'Energie Atomique (CEA, Grenoble, France) has been involved in the development of infrared detectors based on HgCdTe (MCT) material for over 30 years, mainly for defence and security programs [1]. Once the building blocks are developed at LETI (MCT material process, diode technology, hybridization, …), the industrialization is performed at SOFRADIR (also in Grenoble, France) which also has its own R&D program [2]. In past years, LETI also developed infrared detectors for space astrophysics in the mid infrared range - the long wave detector of the ISOCAM camera onboard ISO - as well as in the far infrared range - the bolometer arrays of the Herschel/PACS photometer unit -, both instruments which were under the responsibility of the Astrophysics department of CEA (IRFU/SAp, Saclay, France). Nowadays, the infrared detectors used in space and ground based astronomical instruments all come from vendors in the US. For programmatic reasons - increase the number of available vendors, decrease the cost, mitigate possible export regulations, …- as well as political ones - spend european money in Europe -, the European Space Agency (ESA) defined two roadmaps (one in the NIR-SWIR range, one in the MWIR-LWIR range) that will eventually allow for the procurement of infrared detectors for space astrophysics within Europe. The French Space Agency (CNES) also started the same sort of roadmaps, as part of its contribution to the different space missions which involve delivery of instruments by French laboratories. It is important to note that some of the developments foreseen in these roadmaps also apply to Earth Observations. One of the main goal of the ESA and CNES roadmaps is to reduce the level of dark current in MCT devices at all wavelengths. The objective is to use the detectors at the highest temperature where the noise induced by the dark current stays compatible with the photon

  9. Design and properties of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

    Science.gov (United States)

    Wegrzecki, Maciej; Bar, Jan; Budzyński, Tadeusz; CieŻ, Michal; Grabiec, Piotr; Kozłowski, Roman; Kulawik, Jan; Panas, Andrzej; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecka, Iwona; Wielunski, Marek; Witek, Krzysztof; Yakushev, Alexander; Zaborowski, Michał

    2013-07-01

    The paper discusses the design of charged-particle detectors commissioned and developed at the Institute of Electron Technology (ITE) in collaboration with foreign partners, used in international research on transactinide elements and to build personal radiation protection devices in Germany. Properties of these detectors and the results obtained using the devices are also presented. The design of the following epiplanar detector structures is discussed: ♢ 64-element chromatographic arrays for the COMPACT (Cryo On-line Multidetector for Physics And Chemistry of Transactinides) detection system used at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt (GSI) for research on Hassium, Copernicium and Flerovium, as well as elements 119 and 120, ♢ 2-element flow detectors for the COLD (Cryo On-Line Detector) system used for research on Copernicium and Flerovium at the Joint Institute for Nuclear Research, Dubna, ♢ detectors for a radon exposimeter and sensors for a neutron dosimeter developed at the Institut für Strahlenschutz, Helmholtz Zentrum München. The design of planar detectors - single-sided and double-sided strip detectors for the Focal Plane Detector Box used at GSI for research on Flerovium and elements 119 and 120 is also discussed.

  10. Development of Strained-Layer Superlattice (SLS) IR Detector Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors which may be the next generation of band-gap engineered, large format infrared detector...

  11. Search for Physics beyond the Standard Model with the ATLAS detector and the development of radiation detectors

    CERN Document Server

    Silver, Yiftah

    We are investigating a radiation detector based on plasma display panel technology, the principal component of plasma television displays. This Plasma Panel Sensor (PPS) technology is a variant of micro-pattern gas radiation detectors. Based on the properties of existing plasma display panels, we expect eventually to be able to build a sealed array of plasma discharge gas cells to detect ionizing radiation with fast rise time of less than 10ns and high spatial resolution using a pixel pitch of less than 100 micrometer. In this thesis I shall describe our program of testing plasma display panels as detectors, including simulations, design and the first laboratory and beam studies that demonstrate the detection of cosmic ray muons, beta rays and medium energy protons. The ATLAS detector is used to search for high-mass resonances, in particular heavy neutral gauge bosons (Z') and excited states of Kaluza-Klein γ/Z bosons decaying to an electron-positron pair or a muon-antimuon pair. Results are presented based ...

  12. Development of Wireless Techniques in Data and Power Transmission - Application for Particle Physics Detectors

    CERN Document Server

    Locci, E.; Dehos, C.; De Lurgio, P.; Djurcic, Z.; Drake, G.; Gimenez, J. L. Gonzalez; Gustafsson, L.; Kim, D.W.; Roehrich, D.; Schoening, A.; Siligaris, A.; Soltveit, H.K.; Ullaland, K.; Vincent, P.; Wiednert, D.; Yang, S.; Brenner, R.

    2015-01-01

    Wireless techniques have developed extremely fast over the last decade and using them for data and power transmission in particle physics detectors is not science- fiction any more. During the last years several research groups have independently thought of making it a reality. Wireless techniques became a mature field for research and new developments might have impact on future particle physics experiments. The Instrumentation Frontier was set up as a part of the SnowMass 2013 Community Summer Study [1] to examine the instrumentation R&D for the particle physics research over the coming decades: {\\guillemotleft} To succeed we need to make technical and scientific innovation a priority in the field {\\guillemotright}. Wireless data transmission was identified as one of the innovations that could revolutionize the transmission of data out of the detector. Power delivery was another challenge mentioned in the same report. We propose a collaboration to identify the specific needs of different projects that m...

  13. Development of Ozone Detector for Ksr-Iii and Preliminary Test Results

    Directory of Open Access Journals (Sweden)

    Seung-Hyun Hwang

    2000-12-01

    Full Text Available KARI (Korea Aerospace Research Institute has measured the ozone density profiles over the Korean Peninsular since the launch of the Korean Sounding Rocket-I (KSR-I in 1993. The purpose of ozone measurements is to obtain the stratospheric and mesospheric vertical ozone density profiles over the Korean Peninsular with solar UV radiometers. With the visible channel of the radiometer, the attitude variation of the rocket was corrected and compensated. Developed system is based on ozone detector designs onboard the KSR-I and KSR-II. We discuss the development of ozone detector which will be onboard the KSR-III and its circuit and vibration test results for EM Model.

  14. Development and Studies of Novel Microfabricated Radiation Hard Scintillation Detectors With High Spatial Resolution

    CERN Document Server

    Mapelli, A; Haguenauer, M; Jiguet, S; Renaud, P; Vico Triviño, N

    2011-01-01

    A new type of scintillation detector is being developed with standard microfabrication techniques. It consists of a dense array of scintillating waveguides obtained by coupling microfluidic channels filled with a liquid scintillator to photodetectors. Easy manipulation of liquid scintillators inside microfluidic devices allow their flushing, renewal, and exchange making the active medium intrinsically radiation hard. Prototype detectors have been fabricated by photostructuration of a radiation hard epoxy resin (SU-8) deposited on silicon wafers and coupled to a multi-anode photomultiplier tube (MAPMT) to read-out the scintillation light. They have been characterized by exciting the liquid scintillator in the 200 micrometers thick microchannels with electrons from a 90Sr yielding approximately 1 photoelectron per impinging Minimum Ionizing Particle (MIP). These promising results demonstrate the concept of microfluidic scintillating detection and are very encouraging for future developments.

  15. Installation places of criticality accident detectors in the plutonium conversion development facility

    International Nuclear Information System (INIS)

    Sanada, Yukihisa; Tsujimura, Norio; Shimizu, Yoshio; Izaki, Kenji; Furuta, Sadaaki

    2008-01-01

    At the Plutonium Conversion Development Facility (PCDF) in the Nuclear Fuel Cycle Engineering Laboratories, the co-conversion technologies to purify the mixed plutonium and uranium nitrate solution discharged from a reprocessing plant have been developed. The probability of a criticality accident in PCDF is extremely low. However, the criticality accident alarm system (CAAS) has been in place since 1982 to reduce the radiation dose to workers in case of such a rare criticality accident. The CAAS contains criticality accident detector units (CADs), one unit consisting of three plastic scintillation detectors, and using the 2 out of 3 voting system for the purpose of high reliability. Currently, eight CADs are installed in PCDF evaluating the dose using a simple equation allowing for a safety margin. The purpose of this study is to show the determination procedures for the adequate relocation of the CADs which adequately ensures safety in PCDF. (author)

  16. Development and construction of a focal-plane detector for the Munich Q3D spectrograph

    International Nuclear Information System (INIS)

    Lindner, H.

    1989-01-01

    For the Munich Q3D magnet spectrograph a focal-plane detector was developed, constructed, and taken in operation. It is primary layed out for light ions like p, d, t 3 He, and 4 He, but can be also applied for heavy ions. The position resolution amounts to about 0.1 mm at counting rates of about 10 kHz. In the detector filled with counting gas on anode wires along the focal plane charge avalanches are formed, which influence in several neighbouring cathode stripes of the dimension (3x25) mm 2 signals. These signals are singularily read out and digitized, i.e. to each of the at the whole 114 cathode strips is assigned an own preamplifier, puls shaper, peak detector, and analog-to-digital converter (ADC). After the digitization in a hardware-like constructed calculator unit the center of mass of the charge distribution influenced by the charge avalanche is calculated, the position of the incident particle is obtained. The detector yields beyond the position signal yet also a signal ΔE form the anode wires, which gives the energy loss of the particle in the gas space, as well as a residual-energy signal E rest from a scintillator, in which the particles are stopped. By this the radiation background (γ's and n) can be separated very well from the required particles. With the focal-plane detector the 103 Rh(d, p) 104 Rh transfer reaction was measured at three different spectrograph angles. The measured level energies and angular momentum transfers are compared with (n, γ) data and discussed. (orig.) [de

  17. Multi-detector and systematic imaging system designed and developed within the New AGLAE project

    International Nuclear Information System (INIS)

    Pichon, L.; Pacheco, C.; Moignard, B.; Lemasson, Q.; Guillou, T.; Walter, Ph

    2013-01-01

    Full text: The New AGLAE project aims to establish a world-class facility for non invasive analysis of Cultural Heritage materials. One of the objectives of the New AGLAE project is to increase the x-ray measurement detection, enabling to reduce the beam intensity thus the interaction with sensitive artworks by a ten. Multidisciplinary, the New AGLAE project will provide an exceptional and multipurpose beam line with a performance in spatial resolution, beam stability and a capability of multi-particle detection much higher than for the previous facility. The New AGLAE will give fundamental elements for the understanding of the structure of materials, their composition, properties, and change over time. One of the objectives of this project is to design and set up a new data acquisition system. To reach that purpose, the surface and the number of PIXE detectors have been increased. Indeed, a 10 mm 2 and a 30 mm 3 Si(Li) detectors respectively dedicated to low and high energy measurements, were replaced by a cluster of five 50 mm 2 S.D.D. detectors. If this multi detector enables to decrease the intensity of the incident beam by one order of magnitude, involving less irradiation during the analysis, it can also provide large and/or fast maps. So as to digital the preamp pulses obtained from the detectors, a custom Digital X-ray Processor provides both digital data and control signals compatible to a multiparameter multichannel system. This multiparameter system saves each event from x-ray, gamma and particle detectors and simultaneously the X, Y positions of the beam on the sample as a list file. Furthermore, to draw several-cm-sized maps with a 20/40μm resolution, the scanning of the area originally combines a fast vertical magnetic deflection of the beam and a mechanical movement of the target. To process the data, several homemade software have been developed or updated so as to rebuild any matrix of spectra, to re-bin maps, to process a series of single spectra

  18. Silicon radiation detectors

    International Nuclear Information System (INIS)

    Lutz, G.

    1995-01-01

    An introduction to and an overview of function principles and properties of semiconductor radiation detectors is attempted. The paper is addressed to people interested in detector development but not already experts in the field of semiconductor detectors. (orig.)

  19. Fluorocarbon evaporative cooling developments for the ATLAS pixel and semiconductor tracking detectors

    CERN Document Server

    Anderssen, E; Berry, S; Bonneau, P; Bosteels, Michel; Bouvier, P; Cragg, D; English, R; Godlewski, J; Górski, B; Grohmann, S; Hallewell, G D; Hayler, T; Ilie, S; Jones, T; Kadlec, J; Lindsay, S; Miller, W; Niinikoski, T O; Olcese, M; Olszowska, J; Payne, B; Pilling, A; Perrin, E; Sandaker, H; Seytre, J F; Thadome, J; Vacek, V

    1999-01-01

    Heat transfer coefficients 2-5.103 Wm-2K-1 have been measured in a 3.6 mm I.D. heated tube dissipating 100 Watts - close to the full equivalent power (~110 W) of a barrel SCT detector "stave" - over a range of power dissipations and mass flows in the above fluids. Aspects of full-scale evaporative cooling circulator design for the ATLAS experiment are discussed, together with plans for future development.

  20. Development of a rapid multi-line detector for industrial computed tomography

    International Nuclear Information System (INIS)

    Nachtrab, Frank; Firsching, Markus; Hofmann, Thomas; Uhlmann, Norman; Neubauer, Harald; Nowak, Arne

    2015-01-01

    In this paper we present the development of a rapid multi-row detector is optimized for industrial computed tomography. With a high frame rate, high spatial resolution and the ability to use up to 450 kVp it is particularly suitable for applications such as fast acquisition of large objects, inline CT or time-resolved 4D CT. (Contains PowerPoint slides). [de

  1. Estimation of interface resistivity in bonded Si for the development of high performance radiation detectors

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Yamashita, Makoto; Nomiya, Seiichiro; Onabe, Hideaki

    2007-01-01

    For the development of high performance radiation detectors, direct bonding of Si wafers would be an useful method. Previously, p-n bonded Si were fabricated and they showed diode characteristics. The interface resistivity was, however, not investigated in detail. For the study of interface resistivity, n-type Si wafers with different resistivities were bonded. The resistivity of bonded Si wafers were measured and the interface resistivity was estimated by comparing with the results of model calculations. (author)

  2. Development and characterisation of new high-rate muon drift tube detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, Bernhard

    2012-07-25

    With the increase of the LHC luminosity above the design value and the higher background counting rates, detectors in the ATLAS muon spectrometer have to be replaced because the limits of the radiation tolerance will be exceeded. Therefore drift tube chambers with 15 mm tube diameter were developed. The required construction accuracy was verified and the limits of the resolution and efficiency were determined in a muon beam and under gamma irradiation and compared to model expectations.

  3. Recent advancements in the development of radiation hard semiconductor detectors for S-LHC

    CERN Document Server

    Fretwurst, E; Al-Ajili, A A; Alfieri, G; Allport, P P; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Barcz, A; Bates, R; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Bruzzi, M; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Charron, S; Chilingarov, A G; Chren, D; Cindro, V; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, L; Dalla Betta, G F; Dawson, I; de Boer, Wim; De Palma, M; Demina, R; Dervan, P; Dittongo, S; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; García, C; García-Navarro, J E; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; González-Sevilla, S; Gorelov,I; Goss, J; Gouldwell-Bates, A; Grégoire, G; Gregori, P; Grigoriev, E; Grillo, A A; Groza, A; Guskov, J; Haddad, L; Härkönen, J; Hauler, F; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Johansen, K M H; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Koski, M; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Lazanu, I; Lazanu, S; Lebedev, A; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Linhart, V; Litovchenko, P G; Litovchenko, A P; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Makarenko, L F; Mandic, I; Manfredotti, C; Manna, N; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Messineo, A; Metcalfe, J; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Naoumov, D; Nossarzhevska, E; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A; Populea, J; Pospísil, S; Pozza, A; Radicci, V; Rafí, J M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Ruzin, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidela, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Sopko, V; Spencer, N; Stahl, J; Stolze, D; Stone, R; Storasta, J; Strokan, N; Sudzius, M; Surma, B; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Velthuis, J; Verbitskaya, E; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Yiuri, Y; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N

    2005-01-01

    The proposed luminosity upgrade of the Large Hadron Collider (S-LHC) at CERN will demand the innermost layers of the vertex detectors to sustain fluences of about 1016 hadrons/cm2. Due to the high multiplicity of tracks, the required spatial resolution and the extremely harsh radiation field new detector concepts and semiconductor materials have to be explored for a possible solution of this challenge. The CERN RD50 collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” has started in 2002 an R&D program for the development of detector technologies that will fulfill the requirements of the S-LHC. Different strategies are followed by RD50 to improve the radiation tolerance. These include the development of defect engineered silicon like Czochralski, epitaxial and oxygen-enriched silicon and of other semiconductor materials like SiC and GaN as well as extensive studies of the microscopic defects responsible for the degradation of irradiated sensors. Furthe...

  4. Development of a serial powering scheme and a versatile characterization system for the ATLAS pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Filimonov, Viacheslav

    2017-08-15

    In order to increase the probability of new discoveries the LHC will be upgraded to the HL-LHC. The upgrade of the ATLAS detector is an essential part of this program. The entire ATLAS tracking system will be replaced by an all-silicon detector called Inner Tracker (ITk) which should be able to withstand the increased luminosity of 5 x 10{sup 34} cm{sup -2}s{sup -1}. The work presented in this thesis is focused on the ATLAS ITk pixel detector upgrade. Advanced silicon pixel detectors will be an essential part of the ITk pixel detector where they will be used for tracking and vertexing. Characterization of the pixel detectors is one of the required tasks for a successful ATLAS tracker upgrade. Therefore, the work presented in this thesis includes the development of a versatile and modular test system for advanced silicon pixel detectors for the HL-LHC. The performance of the system is verified. Single and quad FE-I4 modules functionalities are characterized with the developed system. The reduction of the material budget of the ATLAS ITk pixel detector is essential for a successful operation at high luminosity. Therefore, a low mass, efficient power distribution scheme to power detector modules (serial powering scheme) is investigated as well in the framework of this thesis. A serially powered pixel detector prototype is built with all the components that are needed for current distribution, data transmission, sensor biasing, bypassing and redundancy in order to prove the feasibility of implementing the serial powering scheme in the ITk. Detailed investigations of the electrical performance of the detector prototype equipped with FE-I4 quad modules are made with the help of the developed readout system.

  5. Development of a serial powering scheme and a versatile characterization system for the ATLAS pixel detector upgrade

    International Nuclear Information System (INIS)

    Filimonov, Viacheslav

    2017-08-01

    In order to increase the probability of new discoveries the LHC will be upgraded to the HL-LHC. The upgrade of the ATLAS detector is an essential part of this program. The entire ATLAS tracking system will be replaced by an all-silicon detector called Inner Tracker (ITk) which should be able to withstand the increased luminosity of 5 x 10 34 cm -2 s -1 . The work presented in this thesis is focused on the ATLAS ITk pixel detector upgrade. Advanced silicon pixel detectors will be an essential part of the ITk pixel detector where they will be used for tracking and vertexing. Characterization of the pixel detectors is one of the required tasks for a successful ATLAS tracker upgrade. Therefore, the work presented in this thesis includes the development of a versatile and modular test system for advanced silicon pixel detectors for the HL-LHC. The performance of the system is verified. Single and quad FE-I4 modules functionalities are characterized with the developed system. The reduction of the material budget of the ATLAS ITk pixel detector is essential for a successful operation at high luminosity. Therefore, a low mass, efficient power distribution scheme to power detector modules (serial powering scheme) is investigated as well in the framework of this thesis. A serially powered pixel detector prototype is built with all the components that are needed for current distribution, data transmission, sensor biasing, bypassing and redundancy in order to prove the feasibility of implementing the serial powering scheme in the ITk. Detailed investigations of the electrical performance of the detector prototype equipped with FE-I4 quad modules are made with the help of the developed readout system.

  6. Development of a portable triple silicon detector telescope for beta spectroscopy and skin dosimetry

    International Nuclear Information System (INIS)

    Helt-Hansen, J.

    2000-11-01

    It is now recognized that beta radiation can be a significant radiation problem for exposure of the skin. There is thus a need for a portable and rugged active beta dosemeter-spectrometer to carry out immediate measurements of doses and energies of beta particles even in the presence of photon radiation. The main objective of this report is to describe the development of such an instrument. A beta-spectrometer has been developed consisting of three silicon surface barrier detectors with the thickness: 50μm/150μm/7000μm covered by a 2 μm thick titanium window. The spectrometer is capable of measuring electron energies from 50 keV to 3.5 MeV. The spectrometer is characterized by a compact low weight design, achieved by digital signal processing beginning at an early stage in the signal chain. 255 channels are available for each of the three detectors. The spectrometer is controlled by a laptop computer, which also handles all subsequent data analysis. By use of coincidence/anti-coincidence considerations of the absorbed energy in the three detector elements, counts caused by electrons are separated from those originating from photons. The electron energy distribution is multiplied by a set of conversion coefficients to obtain the dose at 0.07 mm tissue. Monte Carlo calculations has been used to derive the conversion coefficients and to investigate the influence of noise and the design of detector assembly on the performance of the spectrometer. This report describes the development of the spectrometer and its mode of operation, followed by a description of the Monte Carlo calculations carried out to obtain the conversion coefficients. Finally is the capability of the telescope spectrometer to measure beta and photon spectra as well as beta dose rates in pure beta and mixed beta/photon radiation fields described. (au)

  7. Development of a portable triple silicon detector telescope for beta spectroscopy and skin dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Helt-Hansen, J

    2000-11-01

    It is now recognized that beta radiation can be a significant radiation problem for exposure of the skin. There is thus a need for a portable and rugged active beta dosemeter-spectrometer to carry out immediate measurements of doses and energies of beta particles even in the presence of photon radiation. The main objective of this report is to describe the development of such an instrument. A beta-spectrometer has been developed consisting of three silicon surface barrier detectors with the thickness: 50{mu}m/150{mu}m/7000{mu}m covered by a 2 {mu}m thick titanium window. The spectrometer is capable of measuring electron energies from 50 keV to 3.5 MeV. The spectrometer is characterized by a compact low weight design, achieved by digital signal processing beginning at an early stage in the signal chain. 255 channels are available for each of the three detectors. The spectrometer is controlled by a laptop computer, which also handles all subsequent data analysis. By use of coincidence/anti-coincidence considerations of the absorbed energy in the three detector elements, counts caused by electrons are separated from those originating from photons. The electron energy distribution is multiplied by a set of conversion coefficients to obtain the dose at 0.07 mm tissue. Monte Carlo calculations has been used to derive the conversion coefficients and to investigate the influence of noise and the design of detector assembly on the performance of the spectrometer. This report describes the development of the spectrometer and its mode of operation, followed by a description of the Monte Carlo calculations carried out to obtain the conversion coefficients. Finally is the capability of the telescope spectrometer to measure beta and photon spectra as well as beta dose rates in pure beta and mixed beta/photon radiation fields described. (au)

  8. Progress in the development of a S-RETGEM-based detector for an early forest fire warning system

    Science.gov (United States)

    Charpak, G.; Benaben, P.; Breuil, P.; Martinengo, P.; Nappi, E.; Peskov, V.

    2009-12-01

    We present a prototype of a Strip Resistive Thick GEM (S-RETGEM) photosensitive gaseous detector filled with Ne and ethylferrocene (EF) vapours at a total pressure of 1 atm for an early forest fire detection system. Measurements show that it is one hundred times more sensitive than the best commercial ultraviolet (UV) flame detectors; and therefore, it is able to reliably detect a flame of ~ 1.5 × 1.5 × 1.5 m3 at a distance of about 1 km. An additional and unique feature of this detector is its imaging capability, which in combination with other techniques, may significantly reduce false fire alarms rate when operating in an automatic mode. Preliminary results conducted with air-filled photosensitive gaseous detectors are also presented. The main advantages of this approach include both the simplicity of manufacturing and affordability of construction materials such as plastics and glues specifically reducing detector production cost. The sensitivity of these air-filled detectors at certain conditions may be as high as those filled with Ne and EF. Long-term tests of such sealed detectors indicate a significant progress in this direction. We believe that our detectors utilized in addition to other flame and smoke sensors will exceptionally increase the capability to detect forest fire at a very early stage of development. Our future efforts will be focused on attempts to commercialize such detectors utilizing our aforementioned findings.

  9. New Generation GridPix: Development and characterisation of pixelated gaseous detectors based on the Timepix3 chip

    CERN Document Server

    AUTHOR|(CDS)2082958; Hessey, Nigel

    Due to the increasing demands of high energy physics experiments there is a need for particle detectors which enable high precision measurements. In this regard, the GridPix detector is a novel detector concept which combines the benefits of a pixel chip with an integrated gas amplification structure. The resulting unit is a detector sensitive to single electrons with a great potential for particle tracking and energy loss measurements. This thesis is focusing on the development of a new generation of GridPix detectors based on the Timepix3 chip, which implements a high resolution Time to Digital Converter (TDC) in each pixel. After an introductory chapter describing the motivation behind GridPix, the manuscript presents the physics of gaseous detectors in chapter 2 along with the gaseous detectors used for particle tracking in chapter 3. Chapters 4 and 5 are focusing on the tracking performance of GridPix detectors. Chapter 4 presents results obtained with a GridPix detector based on a small scale prototy...

  10. PNC status report on leak detector development for LMFBR steam generators

    International Nuclear Information System (INIS)

    Kuroha, M.; Sato, M.

    1984-01-01

    Chemical and acoustic type leak detectors have been developed for detecting a small sodium-water reaction in an LMFBR steam generator. This paper presents a summary of the development. (1) Test results on PNC type in-sodium hydrogen meters including a description of the structure, the long-term reliability and the durability, and the improved meter with an orifice, (2) Development of in-cover gas hydrogen meters, (3) Hydrogen detection tests and analyses, (4) Operating experiences of electrochemical in-sodium oxygen meters, and (5) Basic studies on acoustic characteristics of the sodium-water reaction. (author)

  11. Development of a compact 25-channel preamplifier module for Si-pad detectors of the BARC-CPDA

    International Nuclear Information System (INIS)

    Inkar, A.; John, Bency; Vind, R.P.; Kinage, L.; Jangale, R.V.; Biswas, D.C.; Nayak, B.K.

    2011-01-01

    The BARC Charged Particle Detector Array modules use indigenously developed Si pad detectors as their first element. Total number of charge sensitive pre-amplifiers required for the Si-pad detectors is 250. One of the main ideas here is a layout of five pre-amplifiers connected with one Si-pad detector (called a bank of preamplifiers). In the present work, a 25-channel pre-amplifier module that can cater to 5 independent Si-pad detectors, or a five-bank module, has been developed. This module uses pre-amp hybrid chips A1422H from CAEN S.p.A. and is housed in a double width NIM standard box. The module has been tested for performance using proton and ''7Li beams from FOTIA facility, Trombay

  12. Development and characterisation of a radiation hard readout chip for the LHCb outer tracker detector

    International Nuclear Information System (INIS)

    Stange, U.

    2005-01-01

    The reconstruction of charged particle tracks in the Outer Tracker detector of the LHCb experiment requires to measure the drift times of the straw tubes. A Time to Digital Converter (TDC) chip has been developed for this task. The chip integrates into the LHCb data acquisition schema and fulfils the requirements of the detector. The OTIS chip is manufactured in a commercial 0.25 μm CMOS process. A 32-channel TDC core drives the drift time measurement (25 ns measurement range, 390 ps nominal resolution) without introducing dead times. The resulting drift times are buffered until a trigger decision arrives after the fixed latency of 4 μs. In case of a trigger accept signal, the digital control core processes and transmits the corresponding data to the following data acquisition stage. Drift time measurement and data processing are independent from the detector occupancy. The digital control core of the OTIS chip has been developed within this doctoral thesis. It has been integrated into the TDC chip together with other constituents of the chip. Several test chips and prototype versions of the TDC chip have been characterised. The present version of the chip OTIS1.2 fulfils all requirements and is ready for mass production. (Orig.)

  13. Recent progress in the development of a B-factory monolithic active pixel detector

    International Nuclear Information System (INIS)

    Stanic, S.; Aihara, H.; Barbero, M.; Bozek, A.; Browder, T.; Hazumi, M.; Kennedy, J.; Kent, N.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.; Varner, G.; Yang, Q.

    2006-01-01

    Due to the need for precise vertexing at future higher luminosity B-factories with the expectedly increasing track densities and radiation exposures, upgrade of present silicon strip detectors with thin, radiation resistant pixel detectors is highly desired. Considerable progress in the technological development of thin CMOS based Monolithic Active Pixel Sensors (MAPS) in the last years makes them a realistic upgrade option and the feasibility studies of their application in Belle are actively pursued. The most serious concerns are their radiation hardness and their read-out speed. To address them, several prototypes denoted as Continuous Acquisition Pixel (CAP) sensors have been developed and tested. The latest of the CAP sensor prototypes is CAP3, designed in the TSMC 0.25μm process with a 5-deep sample pair pipeline in each pixel. A setup with several CAP3 sensors will be used to assess the performance of a full scale pixel read-out system running at realistic read-out speed. The results and plans for the next stages of R and D towards a full Pixel Vertex Detector (PVD) are presented

  14. Development and application of a luminol-based nitrogen dioxide detector

    International Nuclear Information System (INIS)

    Wendel, G.J.

    1985-01-01

    An instrument for the continuous measurement of nitrogen dioxide (NO 2 ) at all atmospheric concentration ranges and conditions was developed. The detector is based on the chemiluminescent reaction between 5-amino-2,3-dihydro-1,4-phthalazinedione (luminol) and NO 2 in alkaline aqueous solution. Development included the optimization of the cell design and the solution composition. Sodium sulfite (Na 2 SO 3 ) and methanol (CH 3 OH) were added to the solution to improve sensitivity and specificity. The detector was favorably compared to two different instruments measuring NO 2 by NO + O 3 chemiluminescent and by a tunable diode laser absorption spectrometry system. The detector has demonstrated a detection limit of 30 parts-per-trillion by volume (ppt) and a frequency response of 0.3 Hz. The instrument was operated for two one-month periods on Bermuda. The purpose was to study air masses from the East Coast of the United States after transport over the ocean. Average daily values were 400 ppt with values as low as 100 ppt measured. Other field experiments involved monitoring of NO 2 in ambient air in the range of 1 to 60 parts-per-billion by volume

  15. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    Science.gov (United States)

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  16. Recent developments and applications of fast position-sensitive gas detectors

    International Nuclear Information System (INIS)

    Sauli, Fabio

    1999-01-01

    The introduction, 30 years ago, of the multiwire proportional chamber initiated a very active and fruitful period of development of fast gas detectors. Performing position-sensitive devices have been perfected, for the needs of elementary particle physics and for applications in medical diagnostics, biology, material analysis. The high rate performance of wire counters, limited by positive ions accumulation, was largely improved with the introduction of the micro-strip gas chamber, capable of achieving position accuracies of few tens of microns at radiation fluxes exceeding 1 MHz/mm 2 . The micro-strip chamber properties have been extensively studied in view of large scale use in high luminosity experiments; some interesting applications in other fields will be described here. Originally conceived as a gain booster to solve reliability problems met with micro-strips, the gas electron multiplier was invented about a year and a half ago. Progress made with high gain models is leading to a new concept in gas detectors, powerful yet cheap and reliable. Possible developments and applications will be discussed: large area position-sensitive photo detectors and X-ray imagers, including devices with non-planar geometry suited to spectrometers and crystal diffraction studies

  17. Development of Ta-based Superconducting Tunnel Junction X-ray Detectors for Fluorescence XAS

    International Nuclear Information System (INIS)

    Friedrich, S.; Drury, O.; Hall, J.; Cantor, R.

    2009-01-01

    We are developing superconducting tunnel junction (STJ) soft X-ray detectors for chemical analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS). Our 36-pixel Nb-based STJ spectrometer covers a solid angle (Omega)/4π ∼ 10 -3 , offers an energy resolution of ∼10-20 eV FWHM for energies up to ∼1 keV, and can be operated at total count rates of ∼10 6 counts/s. For increased quantum efficiency and cleaner response function, we have now started the development of Ta-based STJ detector arrays. Initial devices modeled after our Nb-based STJs have an energy resolution below 10 eV FWHM for X-ray energies below 1 keV, and pulse rise time discrimination can be used to improve their response function for energies up to several keV. We discuss the performance of the Ta-STJs and outline steps towards the next-generation of large STJ detector arrays with higher sensitivity.

  18. Development of the mercury iodide semiconductor crystal for application as a radiation detector

    International Nuclear Information System (INIS)

    Martins, Joao Francisco Trencher

    2011-01-01

    In this work, the establishment of a technique for HgI growth and preparation of crystals, for use as room temperature radiation semiconductor detectors is described. Three methods of crystal growth were studied while developing this work: physical vapor transport (PVT); saturated solution of HgI 2 , using two different solvents; (a) dimethyl sulfoxide (DMSO) and (b) acetone, and the Bridgman method. In order to evaluate the obtained crystals by the three methods, systematic measurements were carried out for determining the stoichiometry, structure, orientation, surface morphology and impurity of the crystal. The influence of these physical chemical properties on the crystals development was studied, evaluating their performance as radiation detectors. The X-ray diffractograms indicated that the crystals were, preferentially, oriented in the (001) e (101) directions with tetragonal structure for all crystals. Nevertheless, morphology with a smaller deformation level was observed for the crystal obtained by the PVT technique, comparing to other methods. Uniformity on the surface layer of the PVT crystal was detected, while clear incrustations of elements distinct from the crystal could be viewed on the DMSO crystal surface. The best results as to radiation response were found for the crystal grown by physical vapor transport. Significant improvement in the HgI z2 radiation detector performance was achieved for purer crystals, growing the crystal twice by PVT technique. (author)

  19. Time development and flux dependence of neutron-irradiation induced defects in silicon pad detectors

    CERN Document Server

    Zontar, D; Kramberger, G; Mikuz, M

    1999-01-01

    1x1 cm sup 2 silicon pad p sup + -n-n sup + detectors were irradiated with fast neutrons from the TRIGA research reactor in Ljubljana to fluences from 5x10 sup 1 sup 3 to 10 sup 1 sup 4 n/cm sup 2. The observed time development of annealing of the full-depletion voltage (FDV) could be fitted by a constant and two exponentials. The characteristic time of the fast component is 4 h, independent of temperature in the interval 0-15 deg. C. A comparison of MESA and planar pad detectors shows a 20-30% lower FDV for the MESA. A search for a flux dependence of the radiation damage was performed in the range from 2x10 sup 8 to 5x10 sup 1 sup 5 n/cm sup 2 s and no systematic differences were observed.

  20. Development of nuclear counting system for plateau high voltage scintillation detector test facilities

    International Nuclear Information System (INIS)

    Sarizah Mohamed Nor; Siti Hawa Md Zain; Muhd Izham Ahmad; Izuhan Ismail

    2010-01-01

    Nuclear counter system is a system monitoring and analysis of radioactivity used in scientific and technical research and development in the Malaysian Nuclear Agency. It consists of three basic parts, namely sensors, signal conditioning and monitoring. Nuclear counter system set up for use in the testing of nuclear detectors using radioactive sources such as 60 Co and 137 Cs and other radioactive sources. It can determine the types of scintillation detectors and the equivalent function properly, always operate in the range plateau high voltage and meet the specifications. Hence, it should be implemented on all systems in the Nuclear Nuclear counter Malaysia and documented as Standard Working Procedure (SWP) is a reference to the technicians, trainees IPTA / IPTS and related workers. (author)

  1. Development of RISA (radiation induced surface activation) detectors for onsite sensing and microdosimetry

    International Nuclear Information System (INIS)

    Date, H.; Shimozuma, M.; Tomozawa, H.; Takamasa, T.; Okamoto, K.

    2003-01-01

    We investigate a new technique for radiation detection using radiation induced surface activation (RISA) phenomenon which is found in oxide materials (with high resistivity) causing current conduction through the irradiation of gamma or beta rays. The RISA current has been observed typically in Rutile-type TiO 2 . We have performed a Monte Carlo simulation of gamma ray photons in TiO 2 and backing layers to make clear carrier generation processes leading to the conduction and to develop new type detectors for onsite sensing and microdosimetry. Results show that the dominant process to generate electron-hole pairs in thin TiO 2 layer is collisional interaction of electrons generated in backing layer, which suggest the RISA detector can be used for estimating the absorbed dose in bio-materials. (author)

  2. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Kohrs, Robert

    2008-09-15

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  3. FE-I4 Firmware Development and Integration with FELIX for the Pixel Detector

    CERN Document Server

    Yadav, Amitabh; Sharma, Abhishek; CERN. Geneva. EP Department

    2017-01-01

    CERN has planned a series of upgrades for the LHC. The last in this current series of planned upgrades is designated the HL-LHC. At the same time, the ATLAS Experiment will be extensively changed to meet the challenges of this upgrade (termed as the “Phase-II” upgrade). The Inner Detector will be completely rebuilt for the phase-II. The TRT, SCT and Pixel will be replaced by the all-silicon tracker, termed as the Inner Tracker (ITk). The read-out of this future ITk detector is an engineering challenge for the routing of services and quality of the data. This document describes the FPGA firmware development that integrates the GBT, Elink and Rx-Tx Cores for communication between the FE-I4 modules and the FELIX read-out system.

  4. Development of measuring system with self-powered neutron detectors for the LR-0 reactor

    International Nuclear Information System (INIS)

    Erben, O.; Horinek, K.; Szasz, Z.

    1989-01-01

    A measuring channel with self-powered detectors was developed for measuring neutron fluxs density in the reactor core. The measuring channel consists of a measuring probe with standard self-powered detectors of Soviet make, a signal pathway, a current/voltage converter and a measuring and recording unit. Neutron flux density in the LR-0 reactor core reaches a maximum of 10 13 m -2 s -1 . Experiments using the channel were carried out both in steady-state operation and after emergency shutdown of the reactor, this from power levels of 2,096 W and 1,830 W. The results of the experiments are tabulated and briefly analyzed. (Z.M.). 4 figs., 3 tabs., 5 refs

  5. CZT Detector Development for New Generation Hard-X Astronomical Instruments

    Science.gov (United States)

    Uslenghi, Michela; Conti, Giancarlo; D'Angelo, Sergio; Fiorini, Mauro; Quadrini, Egidio M.; Natalucci, Lorenzo; Ubertini, Pietro

    2006-04-01

    In the context of the definition of a future European gamma-ray mission, following the now on-orbit INTEGRAL observatory, we are carrying out a feasibility study on a Gamma Ray Wide Field Camera (5-500 KeV) for transient event detection. Recent achievements in high energy astronomy have validated the CZT detectors performances in terms of good spatial resolution, detection efficiency, energy resolution and low noise at room temperature. We started a development program aimed to explore the possibilities to improve and optimize the performance of this kind of detectors, acting at the level of both the readout system and crystal quality. Preliminary results of characterization of pixelated crystals provided by IMARAD (now Orbotech) are presented, along with their analysis and interpretation based on an analytical model of signal formation.

  6. Development and characterization of a DEPFET pixel prototype system for the ILC vertex detector

    International Nuclear Information System (INIS)

    Kohrs, Robert

    2008-09-01

    For the future TeV-scale linear collider ILC (International Linear Collider) a vertex detector of unprecedented performance is needed to fully exploit its physics potential. By incorporating a field effect transistor into a fully depleted sensor substrate the DEPFET (Depleted Field Effect Transistor) sensor combines radiation detection and in-pixel amplification. For the operation at a linear collider the excellent noise performance of DEPFET pixels allows building very thin detectors with a high spatial resolution and a low power consumption. With this thesis a prototype system consisting of a 64 x 128 pixels sensor, dedicated steering and readout ASICs and a data acquisition board has been developed and successfully operated in the laboratory and under realistic conditions in beam test environments at DESY and CERN. A DEPFET matrix has been successfully read out using the on-chip zero-suppression of the readout chip CURO 2. The results of the system characterization and beam test results are presented. (orig.)

  7. Development of a bioaerosol single particle detector (BIO IN) for the fast ice nucleus chamber FINCH

    Science.gov (United States)

    Bundke, U.; Reimann, B.; Nillius, B.; Jaenicke, R.; Bingemer, H.

    2009-10-01

    In this work we present the setup and first tests of our new BIO IN detector. This detector is designed to classify atmospheric ice nuclei (IN) for their biological content. Biological material is identified via its auto-fluorescence (intrinsic fluorescence) after irradiation with UV radiation. Ice nuclei are key substances for precipitation development via the Bergeron-Findeisen process. The level of scientific knowledge regarding origin and climatology (temporal and spatial distribution) of IN is very low. Some biological material is known to be active as IN even at relatively high temperatures of up to -2°C (e.g. pseudomonas syringae bacteria). These biological IN could have a strong influence on the formation of clouds and precipitation. We have designed the new BIO IN sensor to analyze the abundance of IN of biological origin. The instrument will be flown on one of the first missions of the new German research aircraft ''HALO'' (High Altitude and LOng Range).

  8. Development of Detector Systems for Internal and Fixed Target Heavy Ion Physics Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, Pavel

    2003-04-01

    This thesis deals with intermediate energy heavy ion reactions with the particular aim to study the nuclear matter equation of state which defines the relation between statistical parameters of a fermionic system. The development of equipment for two experiments, CA47 at The Svedberg Laboratory in Uppsala, Sweden and R16 at Kernfysisch Versneller Inst. (KVI), Groningen, The Netherlands, are described. CA47 contains the CHICSi detector, a modular, ultra-high vacuum (UHV) compatible, multi-detector system, covering a solid angle of 3pi sr around the collision point. Together with two auxiliary detector systems CHICSi is placed at the cluster-jet target chamber of the CELSIUS storage ring. This thesis gives a technical overview of the detector and the development carried out in order to achieve the desired detection performance. Some laboratory and in-beam tests are described and the analysis of the first experimental results is discussed. The nuclear intensity interferometry experiment (R16) was performed in a dedicated beam-line of the AGOR superconducting cyclotron. Small-angle two-particle correlations were measured for the E/A = 61 MeV {sup 36}Ar + {sup 27}Al, {sup 112}Sn, {sup 124}Sn reactions, together with singles spectra. The experimental energy distributions of neutrons and light charged particles for the {sup 36}Ar + {sup 27}Al reaction have been analyzed with a Maxwellian multi-source prescription. These results, together with correlation function data, are used to extract information on the size of the emitting sources and their time evolution.

  9. Development of a timing detector for the TOTEM experiment at the LHC

    Science.gov (United States)

    Minafra, Nicola

    2017-09-01

    The upgrade program of the TOTEM experiment will include the installation of timing detectors inside vertical Roman Pots to allow the reconstruction of the longitudinal vertex position in the presence of event pile-up in high- β^{\\ast} dedicated runs. The small available space inside the Roman Pot, optimized for high-intensity LHC runs, and the required time precision led to the study of a solution using single crystal CVD diamonds. The sensors are read out using fast low-noise front-end electronics developed by the TOTEM Collaboration, achieving a signal-to-noise ratio larger than 20 for MIPs. A prototype was designed, manufactured and tested during a test beam campaign, proving a time precision below 100ps and an efficiency above 99%. The geometry of the detector has been designed to guarantee uniform occupancy in the expected running conditions keeping, at the same time, the number of channels below 12. The read-out electronics was developed during an extensive campaign of beam tests dedicated first to the characterization of existing solution and then to the optimization of the electronics designed within the Collaboration. The detectors were designed to be read out using the SAMPIC chip, a fast sampler designed specifically for picosecond timing measurements with high-rate capabilities; later, a modified version was realized using the HPTDC to achieve the higher trigger rates required for the CT-PPS experiment. The first set of prototypes was successfully installed and tested in the LHC in November 2015; moreover the detectors modified for CT-PPS are successfully part of the global CMS data taking since October 2016.

  10. FINAL SCIENTIFIC REPORT - PROTON RADIOGRAPHY: CROSS SECTION MEASUREMENTS AND DETECTOR DEVELOPMENT

    International Nuclear Information System (INIS)

    Longo, Michael J.; Gustafson, H. Richard.; Rajaram, Durga; Nigmanov, Turgun

    2007-01-01

    Proton radiography offers significant advantages over conventional X-ray radiography, including the capability of looking into thick, dense materials, better contrast for a wide range of materials, sensitivity to different materials of similar density, and better resolution because of the ability to focus beams. In order to achieve this capability it is crucial to understand the background due to neutrons and photons and to develop techniques to reduce it to tolerable levels. The physics goal of this project is to measure forward production of neutrons and photons produced by high-energy proton beams striking a variety of targets. This work is being carried out in conjunction with the Fermilab Experiment 907 (MIPP) collaboration including physicists from Lawrence Livermore Laboratory. Our group is responsible for the E907 forward neutron/photon calorimeters. These are the only detectors in the experiment that provide information on neutrons and photons. We are taking a leading role in obtaining and analyzing the for-ward production data and in developing an optimal detector for proton radiography. With the support of our Stewardship Science Academic Alliances grant, we were able to design, build, and commission the calorimeters on budget and ahead of schedule. E-907 officially started physics running at Fermilab in January 2005, and data taking continued through February 2006. Data were taken on a range of targets, from liquid hydrogen to uranium, at beam energies from 5 GeV/c to 120 GeV/c. The analysis of the data is challenging because data from many different detector systems must be understood and merged and over 31 million events were accumulated. Our recent efforts have been devoted to the calibration of the neutron and photon detectors, to track and shower reconstruction, identification of forward-going neutrons, and simulation of the calorimeters in a Monte Carlo. Reconstruction of the data with improved tracking is underway

  11. Information Content Analysis for Selection of Optimal JWST  Observing Modes for Transiting Exoplanet Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Batalha, Natasha E. [Department of Astronomy and Astrophysics, Pennsylvania State University, State College, PA 16802 (United States); Line, M. R., E-mail: neb149@psu.edu [School of Earth and Space Exploration, Arizona State University, Phoenix, AZ 85282 (United States)

    2017-04-01

    The James Webb Space Telescope ( JWST ) is nearing its launch date of 2018, and is expected to revolutionize our knowledge of exoplanet atmospheres. In order to specifically identify which observing modes will be most useful for characterizing a diverse range of exoplanetary atmospheres, we use an information content (IC) based approach commonly used in the studies of solar system atmospheres. We develop a system based upon these IC methods to trace the instrumental and atmospheric model phase space in order to identify which observing modes are best suited for particular classes of planets, focusing on transmission spectra. Specifically, the atmospheric parameter space we cover is T  = 600–1800 K, C/O = 0.55–1, [M/H] = 1–100 × Solar for an R  = 1.39 R{sub J}, M  = 0.59 M{sub J} planet orbiting a WASP-62-like star. We also explore the influence of a simplified opaque gray cloud on the IC. We find that obtaining broader wavelength coverage over multiple modes is preferred over higher precision in a single mode given the same amount of observing time. Regardless of the planet temperature and composition, the best modes for constraining terminator temperatures, C/O ratios, and metallicity are NIRISS SOSS+NIRSpec G395. If the target’s host star is dim enough such that the NIRSpec prism is applicable, then it can be used instead of NIRISS SOSS+NIRSpec G395. Lastly, observations that use more than two modes should be carefully analyzed because sometimes the addition of a third mode results in no gain of information. In these cases, higher precision in the original two modes is favorable.

  12. Studies and development of a readout ASIC for pixelated CdTe detectors for space applications

    International Nuclear Information System (INIS)

    Michalowska, A.

    2013-01-01

    The work presented in this thesis is part of a project where a new instrument is developed: a camera for hard X-rays imaging spectroscopy. It is dedicated to fundamental research for observations in astrophysics, at wavelengths which can only be observed using space-borne instruments. In this domain the spectroscopic accuracy as well as the imaging details are of high importance. This work has been realized at CEA/IRFU (Institut de Recherche sur les lois Fondamentales de l'Univers), which has a long-standing and successful experience in instruments for high energy physics and space physics instrumentation. The objective of this thesis is the design of the readout electronics for a pixelated CdTe detector, suitable for a stacked assembly. The principal parameters of this integrated circuit are a very low noise for reaching a good accuracy in X-ray energy measurement, very low power consumption, a critical parameter in space-borne applications, and a small dead area for the full system combining the detector and the readout electronics. In this work I have studied the limits of these three parameters in order to optimize the circuit. In terms of the spectral resolution, two categories of noise had to be distinguished to determine the final performance. The first is the Fano noise limit, related to detector interaction statistics, which cannot be eliminated. The second is the electronic noise, also unavoidable; however it can be minimized through optimization of the detection chain. Within the detector, establishing a small pixel pitch of 300 μm reduces the input capacitance and the dark current. This limits the effects of the electronic noise. Also in order to limit the input capacitance the future camera is designed as a stacked assembly of the detector with the readout ASIC. This allows to reach extremely good input parameters seen by the readout electronics: a capacitance in range of 0.3 pF-1 pF and a dark current below 5 pA. In the frame of this thesis I have

  13. Advances in Physical and Biological Radiation Detectors. Proceedings of a Symposium on New Developments in Physical and Biological Radiation Detectors

    International Nuclear Information System (INIS)

    1971-01-01

    Radiation dosimetry is a fundamental part of all radiation protection work. The measurements are made with a variety of instruments, and health physicists, after professional interpretation of the data, can assess the levels of exposure which might be encountered in a given area or the individual doses received by workers, visitors and others at places where the possibility of radiation exposure exists. The types of radiation concerned here are photon radiations, ranging from soft X-rays to gamma rays, and particulate radiations such as β-rays, α-particles, protons, neutrons and fission fragments. The type of technique used depends not only on the type of radiation but also on such factors as whether the radiation is from a source internal or external to the body. Radiation dosimetry is not only used at nuclear facilities; it has diverse applications, for example in determining doses when radiation sources are employed for medical diagnostics and therapy, in safeguarding workers in any industry where isotopes are used, and in assessing the effect of both naturally occurring and man-made radiations on the general public and the environment. The advances of modern technology have increased the variety of sources; an example can be given from colour television, where the high potential necessary in certain colour cathode-ray tubes generates a non-negligible amount of X-rays. The Symposium on New Developments in Physical and Biological Radiation Detectors was one of a continuing series of meetings in which the International Atomic Energy Agency furthers the exchange of information on all aspects of personnel and area dosimetry. The Symposium was devoted in particular to a study of the dose meters themselves - their radiation-sensitive elements (both physical and biological),their instrumentation, and calibration and standardization. Several speakers suggested that the situation in the standardization and calibration of measuring equipment and sources was

  14. Development of CMOS Pixel Sensors fully adapted to the ILD Vertex Detector Requirements

    CERN Document Server

    Winter, Marc; Besson, Auguste; Claus, Gilles; Dorokhov, Andrei; Goffe, Mathieu; Hu-Guo, Christine; Morel, Frederic; Valin, Isabelle; Voutsinas, Georgios; Zhang, Liang

    2012-01-01

    CMOS Pixel Sensors are making steady progress towards the specifications of the ILD vertex detector. Recent developments are summarised, which show that these devices are close to comply with all major requirements, in particular the read-out speed needed to cope with the beam related background. This achievement is grounded on the double- sided ladder concept, which allows combining signals generated by a single particle in two different sensors, one devoted to spatial resolution and the other to time stamp, both assembled on the same mechanical support. The status of the development is overviewed as well as the plans to finalise it using an advanced CMOS process.

  15. Development of high-resolution detector module with depth of interaction identification for positron emission tomography

    International Nuclear Information System (INIS)

    Niknejad, Tahereh; Pizzichemi, Marco; Stringhini, Gianluca; Auffray, Etiennette; Bugalho, Ricardo; Da Silva, Jose Carlos; Di Francesco, Agostino; Ferramacho, Luis; Lecoq, Paul; Leong, Carlos; Paganoni, Marco; Rolo, Manuel; Silva, Rui; Silveira, Miguel; Tavernier, Stefaan; Varela, Joao; Zorraquino, Carlos

    2017-01-01

    We have developed a Time-of-flight high resolution and commercially viable detector module for the application in small PET scanners. A new approach to depth of interaction (DOI) encoding with low complexity for a pixelated crystal array using a single side readout and 4-to-1 coupling between scintillators and photodetectors was investigated. In this method the DOI information is estimated using the light sharing technique. The detector module is a 1.53×1.53×15 mm"3 matrix of 8×8 LYSO scintillator with lateral surfaces optically depolished separated by reflective foils. The crystal array is optically coupled to 4×4 silicon photomultipliers (SiPM) array and readout by a high performance front-end ASIC with TDC capability (50 ps time binning). The results show an excellent crystal identification for all the scintillators in the matrix, a timing resolution of 530 ps, an average DOI resolution of 5.17 mm FWHM and an average energy resolution of 18.29% FWHM. - Highlights: • A new method for DOI encoding for PET detectors based on light sharing is proposed. • A prototype module with LYSO scintillator matrix coupled to SiPMs array is produced. • The module has one side readout and 4-to-1 coupling between scintillators and SiPMs. • A compact TOF front-end ASIC is used. • Excellent performances are shown by the prototype module.

  16. Development of a multi-detector and a systematic imaging system on the AGLAE external beam

    International Nuclear Information System (INIS)

    Pichon, L.; Moignard, B.; Lemasson, Q.; Pacheco, C.; Walter, P.

    2014-01-01

    The New AGLAE external beamline provides analytical data for the understanding of the structure of archaeological and artistic objects, their composition, properties, and changes over time. One of the objectives of this project is to design and set up a new non-invasive acquisition system increasing the quality of the X-ray spectra and reducing the beam current on sensitive materials from work of art. To that end, the surface and the number of PIXE detectors have been increased to implement a cluster of SDD detectors. This can also provide the possibility to accomplish large and/or fast maps on artifacts with a scanning of the beam on the sample. During the mapping, a multi-parameter system saves each event from X-ray, gamma and particle detectors, simultaneously with the X and Y positions of the beam on the sample. To process the data, different softwares have been developed or updated. A first example on a decorated medieval shard highlights the perspectives of the technique

  17. Development of a beam ion velocity detector for the heavy ion beam probe

    Energy Technology Data Exchange (ETDEWEB)

    Fimognari, P. J., E-mail: PJFimognari@XanthoTechnologies.com; Crowley, T. P.; Demers, D. R. [Xantho Technologies, LLC, Madison, Wisconsin 53705 (United States)

    2016-11-15

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected by the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.

  18. Development of a beam ion velocity detector for the heavy ion beam probe

    International Nuclear Information System (INIS)

    Fimognari, P. J.; Crowley, T. P.; Demers, D. R.

    2016-01-01

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected by the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.

  19. Development of a hotspot detector with an acrylic filter and dose rate survey meters

    International Nuclear Information System (INIS)

    Shirakawa, Yoshiyuki; Yamano, Toshiya; Kobayashi, Yusuke; Hara, Masaki

    2013-01-01

    Fukushima and adjacent regions still have a large number of high dose rate areas called hotspots. It is necessary to know these hotspots for efficient decontamination of radioactive substances such as 137 Cs and for relief of residents coming home. To find the hotspots rapidly, we have to specify the direction of the area where the dose rate is at least 1μSv/h higher than those of surroundings. We have developed a detector that consists of an acrylic filter and three NaI(Tl) scintillation survey meters, and the detector can be expected to indicate the direction of the hotspot in the short time. A basic performance of the detector was examined by using acrylic filters of 10, 15, 20 and 25cm diameter and a tiny sealed 137 Cs source of 3 MBq as the alternative of a hotspot. It demonstrated the possibility of identifying the direction of γ-rays emitted from the source in 90 seconds. (author)

  20. The development of a gas-filled time-of-flight detector

    International Nuclear Information System (INIS)

    Guan Yongjing; He Ming; Ruan Xiangdong; Wang Huijuan; Wu Shaoyong; Dong Kejun; Lin Min; Yuan Jian; Jiang Shan

    2007-01-01

    A gas-filled time-of-flight (GF-TOF) detector system for isobaric identification has been developed at the AMS facility of the China Institute of Atomic Energy (CIAE). The newly built GF-TOF detector was tested by using a 36 Cl standard sample ( 36 Cl/Cl = 2.88 x 10 -11 ) with the 36 Cl ion energies of 64, 49 and 33 MeV. Time resolutions of 350 ps, 580 ps and 920 ps were obtained for 64, 49 and 33 MeV 36 S, respectively, without gas. 36 Cl and 36 S particles were successfully separated in the TOF spectra from the GF-TOF detector at the three different incident energies. The dependence of time resolution and separation power of GF-TOF method on the incidence energy and the residual energy is discussed. The comparison of separation power for isobars between the GF-TOF method and the ΔE-E method is described. A combination of GF-TOF method and ΔE-E method may further improve the separation power for isobars. The results show that the sensitivity for 36 Cl AMS measurements is 10 -14 at the energy of 33 MeV. Some results obtained with the GF-TOF method are given

  1. Development of thin pixel detectors on epitaxial silicon for HEP experiments

    International Nuclear Information System (INIS)

    Boscardin, Maurizio; Calvo, Daniela; Giacomini, Gabriele; Wheadon, Richard; Ronchin, Sabina; Zorzi, Nicola

    2013-01-01

    The foreseen luminosity of the new experiments in High Energy Physics will require that the innermost layer of vertex detectors will be able to sustain fluencies up to 10 16 n eq /cm 2 . Moreover, in many experiments there is a demand for the minimization of the material budget of the detectors. Therefore, thin pixel devices fabricated on n-type silicon are a natural choice to fulfill these requirements due to their rad-hard performances and low active volume. We present an R and D activity aimed at developing a new thin hybrid pixel device in the framework of PANDA experiments. The detector of this new device is a p-on-n pixel sensor realized starting from epitaxial silicon wafers and back thinned up to 50–100 μm after process completion. We present the main technological steps and some electrical characterization on the fabricated devices before and after back thinning and after bump bonding to the front-end electronics

  2. Development of thin pixel detectors on epitaxial silicon for HEP experiments

    Energy Technology Data Exchange (ETDEWEB)

    Boscardin, Maurizio, E-mail: boscardi@fbk.eu [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy); Calvo, Daniela [INFN and Dipartimento di Fisica, Università di Torino, Via Pietro Giuria, I-10125 Torino (Italy); Giacomini, Gabriele [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy); Wheadon, Richard [INFN and Dipartimento di Fisica, Università di Torino, Via Pietro Giuria, I-10125 Torino (Italy); Ronchin, Sabina; Zorzi, Nicola [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy)

    2013-08-01

    The foreseen luminosity of the new experiments in High Energy Physics will require that the innermost layer of vertex detectors will be able to sustain fluencies up to 10{sup 16} n{sub eq}/cm{sup 2}. Moreover, in many experiments there is a demand for the minimization of the material budget of the detectors. Therefore, thin pixel devices fabricated on n-type silicon are a natural choice to fulfill these requirements due to their rad-hard performances and low active volume. We present an R and D activity aimed at developing a new thin hybrid pixel device in the framework of PANDA experiments. The detector of this new device is a p-on-n pixel sensor realized starting from epitaxial silicon wafers and back thinned up to 50–100 μm after process completion. We present the main technological steps and some electrical characterization on the fabricated devices before and after back thinning and after bump bonding to the front-end electronics.

  3. Recent Developments on the Silicon Drift Detector readout scheme for the ALICE Inner Tracking System

    CERN Document Server

    Mazza, G; Bonazzola, G C; Bonvicini, V; Cavagnino, D; Cerello, P G; De Remigis, P; Falchieri, D; Gabrielli, A; Gandolfi, E; Giubellino, P; Hernández, R; Masetti, M; Montaño-Zetina, L M; Nouais, D; Rashevsky, A; Rivetti, A; Tosello, F

    1999-01-01

    Proposal of abstract for LEB99, Snowmass, Colorado, 20-24 September 1999Recent developments of the Silicon Drift Detector (SDD) readout system for the ALICE Experiment are presented. The foreseen readout system is based on 2 main units. The first unit consists of a low noise preamplifier, an analog memory which continuously samples the amplifier output, an A/D converter and a digital memory. When the trigger signal validates the analog data, the ADCs convert the samples into a digital form and store them into the digital memory. The second unit performs the zero suppression/data compression operations. In this paper the status of the design is presented, together with the test results of the A/D converter, the multi-event buffer and the compression unit prototype.Summary:In the Inner Tracker System (ITS) of the ALICE experiment the third and the fourth layer of the detectors are SDDs. These detectors provide the measurement of both the energy deposition and the bi-dimensional position of the track. In terms o...

  4. Development of high-resolution detector module with depth of interaction identification for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Niknejad, Tahereh, E-mail: tniknejad@lip.pt [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); Pizzichemi, Marco [University of Milano-Bicocca (Italy); Stringhini, Gianluca [University of Milano-Bicocca (Italy); CERN, Geneve (Switzerland); Auffray, Etiennette [CERN, Geneve (Switzerland); Bugalho, Ricardo; Da Silva, Jose Carlos; Di Francesco, Agostino [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); Ferramacho, Luis [PETsys Electronics, Oeiras (Portugal); Lecoq, Paul [CERN, Geneve (Switzerland); Leong, Carlos [PETsys Electronics, Oeiras (Portugal); Paganoni, Marco [University of Milano-Bicocca (Italy); Rolo, Manuel [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); INFN, Turin (Italy); Silva, Rui [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); Silveira, Miguel [PETsys Electronics, Oeiras (Portugal); Tavernier, Stefaan [PETsys Electronics, Oeiras (Portugal); Vrije Universiteit Brussel (Belgium); Varela, Joao [Laboratory of Instrumentation and Experimental Particles Physics, Lisbon (Portugal); CERN, Geneve (Switzerland); Zorraquino, Carlos [Biomedical Image Technologies Lab, Universidad Politécnica de Madrid (Spain); CIBER-BBN, Universidad Politécnica de Madrid (Spain)

    2017-02-11

    We have developed a Time-of-flight high resolution and commercially viable detector module for the application in small PET scanners. A new approach to depth of interaction (DOI) encoding with low complexity for a pixelated crystal array using a single side readout and 4-to-1 coupling between scintillators and photodetectors was investigated. In this method the DOI information is estimated using the light sharing technique. The detector module is a 1.53×1.53×15 mm{sup 3} matrix of 8×8 LYSO scintillator with lateral surfaces optically depolished separated by reflective foils. The crystal array is optically coupled to 4×4 silicon photomultipliers (SiPM) array and readout by a high performance front-end ASIC with TDC capability (50 ps time binning). The results show an excellent crystal identification for all the scintillators in the matrix, a timing resolution of 530 ps, an average DOI resolution of 5.17 mm FWHM and an average energy resolution of 18.29% FWHM. - Highlights: • A new method for DOI encoding for PET detectors based on light sharing is proposed. • A prototype module with LYSO scintillator matrix coupled to SiPMs array is produced. • The module has one side readout and 4-to-1 coupling between scintillators and SiPMs. • A compact TOF front-end ASIC is used. • Excellent performances are shown by the prototype module.

  5. Development of SM-2 emulsion detector and its application to automatic control of deemulsifying agent addition

    International Nuclear Information System (INIS)

    Wu Hongpei.

    1985-01-01

    Emulsion phenomena had ever occurred in trifattyamine solvent extraction in some uranium mills owing to the presence of the colloidal polysilicic acid in feed solutions with the concentration even as high as >= 0.46 g/l (based on SiO 2 ). Polyether has been used as the deemulsifying agent to remove colloidal polysilicic acid in feed solution in question. In order to reduce the amount of polyether consumption, SM-2 emulsion detector was thus developed and used for automatic control of polyether addition into feed solution. The working principle and basic constitutional structure of SM-2 detector are described. When polyether solution is added into feed solution, certain turbidity occurs owing to the flocculated particles of polysilicic acid. It was found that a linear relationship existed between turbidity and photoelectric pressure difference in millivolts which can be detected by the SM-2 detector. Therefore, it is feasible that the minimum concentration of polysilicic acid, over which emulsion may occurs, can be found through experiments. To take advantage of this linear relationship, we can automatically control the addition of polyether solution in an appropriate amount without occurrence of emulsion phenomenon during solvent extraction. The scheme of automatic control of addition of polyether solution is presented too

  6. DEVELOPMENT OF A HIGH RATE HIGH RESOLUTION DETECTOR FOR EXAFS EXPERIMENTS.

    Energy Technology Data Exchange (ETDEWEB)

    DE GERONIMO,G.; O CONNOR,P.; BEUTTENMULLER,R.H.; LI,Z.; KUCZEWSKI,A.J.; SIDDONS,D.P.

    2002-11-10

    A new detector for EXAFS experiments is being developed. It is based on a multi-element Si sensor and dedicated readout ASICs. The sensor is composed of 384 pixels, each having 1 mm{sup 2} area, arranged in four quadrants of 12 x 8 elements, and wire-bonded to 32-channel front-end ASICs. Each channel implements low noise preamplification with self-adaptive continuous reset, high order shaper, band-gap referenced baseline stabilizer, one threshold comparator and two DAC adjustable window comparators, each followed by a 24-bit counter. Fabricated in 0.35{micro}m CMOS dissipates about 8mW per channel. First measurements show at room temperature a resolution of 14 rms electrons without the detector and of 40 rms electrons (340eV) with the detector connected and biased. Cooling at -35C a FWHM of 205eV (167eV from electronics) was measured at the Mn-K{alpha} line. A resolution of about 300eV was measured for rates approaching 100kcps/cm{sup 2} per channel, corresponding to an overall rate in excess of 10MHz/cm{sup 2}. A channel-to-channel threshold dispersion after DACs adjustment of 2.5 rms electrons was also measured.

  7. Development of novel semiconductor detectors for the detection of ionizing radiation

    International Nuclear Information System (INIS)

    Strueder, L.

    1989-08-01

    The present thesis treats the development of novel energy- and position-resolving semiconductor detectors: Fully depletable pn CCD's. In experiments of high-energy physics they are suited as highly resolving position-sensitive detectors for minimally ionizing particles. In nuclear and atomic physics they can be applied as position-resolving energy spectrometers. Increasing interest detectors of this type find also at synchrotron-radiation sources with photon energies from 20 eV to 50 keV. As focal instruments of X-ray telescopes they are in astrophysical measurements in an energy range from 100 eV to 15 keV of use. The required accuracy in the energy measurement amounts to 100 eV (FWHM) at an X-ray energy of 1 keV, at a simultaneous precision of the position determination of 50 μm. The measurement results which are here presented on the first fully depletable CCD's show that the components posses the potential to fulfill these requirements. (orig.) [de

  8. Development of the dyed-track method for Kodak CN-85 detector. No. E/3

    International Nuclear Information System (INIS)

    Somogyi, G.; Toth-Szilagyi, M.; Varga, Zs.; Monnin, M.; Lferde, M.

    1983-01-01

    The dyed-track method has been successfully developed for cellulose derivatives. The track parameters (width, coloration deepness, contrast, registration sensitivity), however, proved to be very dependent on the detector material and on the track processing conditions. In the authors' previous works optimum conditions were presented mostly for cellulose acetate sheets. In the present work the influence of track processing parameters on the dyed-track formation was studied in Kodak cellulose nitrate detector called CN-85. It is found that in this material optimum dyed-tracks can be produced with using no swelling but with a thermal annealing at 100 deg C for 1 hour after particles irradiation. For sensitization a treatment with 15% HCL at 22 deg C for 20 hours and for dyeing 0.3 wt% Rhodamine-B at 100 deg C for 1 hour proved to be best. For understanding the track dyeing phenomenon the coloration behaviour of electron-irradiated CN-85 detectors was studied. (author)

  9. Development of the dyed-track method for Kodak CN-85 detector

    International Nuclear Information System (INIS)

    Somogyi, G.; Toth-Szilagyi, M.; Varga, Z.; Monnin, M.; Lferde, M.

    1984-01-01

    The dyed-track method has been successfully developed for cellulose derivatives. The track parameters (width, colouration deepness, contrast, registration sensitivity), however, proved to be very dependent on the detector material and on the track processing conditions. In our previous works optimum conditions were presented mostly for cellulose acetate sheets. In the present work we have studied the influence of track processing parameters on the dyed-track formation in Kodak cellulose nitrate detector called CN-85. It is found that in this material optimum dyed-tracks can be produced with using no swelling but with a thermal annealing at 100 deg C for 1 hour after particle irradiation. For sensitization a treatment with 15% HCl at 22 deg C for 20 hours and for dyeing 0.3 wt% Rhodamine-B at 100 deg C for 1 hour proved to be the best. For better understanding the track dyeing phenomenon we have studied the colouration behaviour of electron-irradiated CN-85 detectors. (author)

  10. Development of the dyed-track method for Kodak CN-85 detector

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Toth-Szilagyi, M.; Varga, Z. (Magyar Tudomanyos Akademia, Debrecen. Atommag Kutato Intezete); Monnin, M.; Lferde, M. (Clermont-Ferrand-2 Univ., 63 - Aubiere (France). Lab. de Physique Corpusculaire)

    1984-01-01

    The dyed-track method has been successfully developed for cellulose derivatives. The track parameters (width, colouration deepness, contrast, registration sensitivity), however, proved to be very dependent on the detector material and on the track processing conditions. In our previous works optimum conditions were presented mostly for cellulose acetate sheets. In the present work we have studied the influence of track processing parameters on the dyed-track formation in Kodak cellulose nitrate detector called CN-85. It is found that in this material optimum dyed-tracks can be produced with using no swelling but with a thermal annealing at 100 deg C for 1 hour after particle irradiation. For sensitization a treatment with 15% HCl at 22 deg C for 20 hours and for dyeing 0.3 wt% Rhodamine-B at 100 deg C for 1 hour proved to be the best. For better understanding the track dyeing phenomenon we have studied the colouration behaviour of electron-irradiated CN-85 detectors.

  11. Development of a multi-detector and a systematic imaging system on the AGLAE external beam

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, L., E-mail: laurent.pichon@culture.gouv.fr [Centre de recherche et de restauration des musées de France, C2RMF, Palais du Louvre – Porte des Lions, 14 Quai François Mitterrand, 75001 Paris (France); Fédération de recherche NewAGLAE, FR3506 CNRS/Ministère de la Culture/UPMC, Palais du Louvre, 75001 Paris (France); Moignard, B.; Lemasson, Q.; Pacheco, C. [Centre de recherche et de restauration des musées de France, C2RMF, Palais du Louvre – Porte des Lions, 14 Quai François Mitterrand, 75001 Paris (France); Fédération de recherche NewAGLAE, FR3506 CNRS/Ministère de la Culture/UPMC, Palais du Louvre, 75001 Paris (France); Walter, P. [Fédération de recherche NewAGLAE, FR3506 CNRS/Ministère de la Culture/UPMC, Palais du Louvre, 75001 Paris (France); UPMC Univ Paris 06, CNRS-UMR 8220, Laboratoire d’archéologie moléculaire et structurale, LAMS, F-75005 Paris (France)

    2014-01-01

    The New AGLAE external beamline provides analytical data for the understanding of the structure of archaeological and artistic objects, their composition, properties, and changes over time. One of the objectives of this project is to design and set up a new non-invasive acquisition system increasing the quality of the X-ray spectra and reducing the beam current on sensitive materials from work of art. To that end, the surface and the number of PIXE detectors have been increased to implement a cluster of SDD detectors. This can also provide the possibility to accomplish large and/or fast maps on artifacts with a scanning of the beam on the sample. During the mapping, a multi-parameter system saves each event from X-ray, gamma and particle detectors, simultaneously with the X and Y positions of the beam on the sample. To process the data, different softwares have been developed or updated. A first example on a decorated medieval shard highlights the perspectives of the technique.

  12. Development and performance evaluation of an experimental fine pitch detector multislice CT scanner.

    Science.gov (United States)

    Imai, Yasuhiro; Nukui, Masatake; Ishihara, Yotaro; Fujishige, Takashi; Ogata, Kentaro; Moritake, Masahiro; Kurochi, Haruo; Ogata, Tsuyoshi; Yahata, Mitsuru; Tang, Xiangyang

    2009-04-01

    The authors have developed an experimental fine pitch detector multislice CT scanner with an ultrasmall focal spot x-ray tube and a high-density matrix detector through current CT technology. The latitudinal size of the x-ray tube focal spot was 0.4 mm. The detector dimension was 1824 channels (azimuthal direction) x 32 rows (longitudinal direction) at row width of 0.3125 mm, in which a thinner reflected separator surrounds each detector cell coupled with a large active area photodiode. They were mounted on a commercial 64-slice CT scanner gantry while the scan field of view (50 cm) and gantry rotation speed (0.35 s) can be maintained. The experimental CT scanner demonstrated the spatial resolution of 0.21-0.22 mm (23.8-22.7 lp/cm) with the acrylic slit phantom and in-plane 50%-MTF 9.0 lp/cm and 10%-MTF 22.0 lp/cm. In the longitudinal direction, it demonstrated the spatial resolution of 0.24 mm with the high-resolution insert of the CATPHAN phantom and 0.34 mm as the full width at half maximum of the slice sensitivity profile. In low-contrast detectability, 3 mm at 0.3% was visualized at the CTDI(vol) of 47.2 mGy. Two types of 2.75 mm diameter vessel phantoms with in-stent stenosis at 25%, 50%, and 75% stair steps were scanned, and the reconstructed images can clearly resolve the stenosis at each case. The experimental CT scanner provides high-resolution imaging while maintaining low-contrast detectability, demonstrating the potentiality for clinical applications demanding high spatial resolution, such as imaging of inner ear, lung, and bone, or low-contrast detectability, such as imaging of coronary artery.

  13. Development of a circular shape Si-PM-based detector ring for breast-dedicated PET system

    Science.gov (United States)

    Nakanishi, Kouhei; Yamamoto, Seiichi; Watabe, Hiroshi; Abe, Shinji; Fujita, Naotoshi; Kato, Katsuhiko

    2018-02-01

    In clinical situations, various breast-dedicated positron emission tomography (PET) systems have been used. However, clinical breast-dedicated PET systems have polygonal detector ring. Polygonal detector ring sometimes causes image artifact, so complicated reconstruction algorithm is needed to reduce artifact. Consequently, we developed a circular detector ring for breast-dedicated PET to obtain images without artifact using a simple reconstruction algorithm. We used Lu1.9Gd0.1SiO5 (LGSO) scintillator block which was made of 1.5 x 1.9 x 15 mm pixels that were arranged in an 8 x 24 matrix. As photodetectors, we used silicon photomultiplier (Si-PM) arrays whose channel size was 3 x 3 mm. A detector unit was composed of four scintillator blocks, 16 Si-PM arrays and a light guide. The developed detector unit had angled configuration since the light guide was bending. A detector unit had three gaps with an angle of 5.625° between scintillator blocks. With these configurations, we could arrange 64 scintillator blocks in nearly circular shape (regular 64-sided polygon) using 16 detector units. The use of the smaller number of detector units could reduce the size of the front-end electronics circuits. The inner diameter of the developed detector ring was 260 mm. This size was similar to those of brain PET systems, so our breast-dedicated PET detector ring can measure not only breast but also brain. Measured radial, tangential and axial spatial resolution of the detector ring reconstructed by the filtered back-projection (FBP) algorithm were 2.1 mm FWHM, 2.0 mm FWHM and 1.7 mm FWHM at center of field of view (FOV), respectively. The sensitivity was 2.0% at center of the axial FOV. With the developed detector ring, we could obtain high resolution image of the breast phantom and the brain phantom. We conclude that our developed Si-PM-based detector ring is promising for a high resolution breast-dedicated PET system that can also be used for brain PET system.

  14. Development of a large area thermal neutron detector based on a scintillator

    International Nuclear Information System (INIS)

    Engels, Ralf

    2012-01-01

    In the present work, the development and construction of a detector prototype based on wavelength shifting fiber in combination with a scintillator has been investigated and optimized. This development aims at an alternative for large area neutron detectors based on "3He detectors, which was the main construction in the past. After the study of the components and assemblies, such as: the scintillator, the wavelength-shifting-fibers and available photomultiplier tubes, the construction of the first prototype module begun. The neutron converter was selected as a "6LiF/ZnS scintillator, which produces a big light yield per absorbed neutron. The prototype itself is square and has an edge length of 30 cm in combination with two orthogonal layers of crossed wavelength-shifting-fibers. The top fiber layer, which is closer to the "6LiF/ZnS top scintillator produces the x-coordinates and the lower layer produces the y-coordinates for each event. In the prototype, MSJ-fibers from the company Kuraray were used with 1 mm diameter and spacing in the top layer of 1.5 mm and 1 mm in the lower layer. Due to the orthogonal arrangement of the wires in the two layers, one may identify where the neutron was absorbed in the scintillator and produced the light yield. In order to reduce the light loss of the absorbed photons inside the fibers, a bending radius of greater than 20 mm was used and achieved by warming up the fibers to 80 C during the bending process. The increased temperature reduces the crack formation in the fibers which increases the light loss. At this time it is expected that a photomultiplier from Hamamatsu with 256 individual pixels for readout will be used. This H9500 flat panel photomultiplier has the advantage of readout of all fibers of the prototype in one photomultiplier housing. In combination with integrated readout electronics one can minimize the homogeneity/gain differences of the photocathode pixels, the different light loss in each fiber, and the gain

  15. Development of Educational Simulation on Spectrum of HPGe Detector and Implementation of Education Program

    International Nuclear Information System (INIS)

    Seo, K. W.; Joo, Y. C.; Ji, Y. J.; Lee, M. O.; Lee, S. Y.; Jun, Y. K.

    2005-12-01

    In this development, characteristics of Aptec, Genie2000(Canberra Co, USA), GammaVision(Ortec Co, USA) which are usually used in Korea radioactive measure laboratory, such as peak search, peak fitting, central area position and area calculation, spectrum correction and method for radioactive calculation are included. And radioactive source geometry, absorption of sample itself, methods for correcting coincidence summing effect is developed and the result effected on spectrum analysis teaching material. Developed simulation HPGe detector spectrum are spectrum for correction, spectrum for correcting radio source-detection duration geometry, sample spectrum which need self absorption correction of radio source, peak search spectrum for optimizing peak search offset setting and background spectrum. These spectrum are made similar to real spectrum by processing peak and background which were measured from mix standard volume radio source. Spectrum analysis teaching material is developed more focus on practical thing than theoretical thing, simulation spectrum must be used in spectrum analysis practise. Optimal method for spectrum analysis condition, spectrum correction, Geometry correction and background spectrum analysis are included in teaching material and also ANSI N42 recommended 'Spectrum analysis program test' procedure is included too. Aptec, Genie2000, Gamma Vision software manuals are included in appendix. In order to check the text of developed simulation on spectrum of HPGe detector, in 2004 and 2005, these was implemented in the other regular course as a course for superviser of the handling with RI. And the text and practical procedure were reviewed through the course and were revised

  16. X-ray Hybrid CMOS Detectors : Recent progress in development and characterization

    Science.gov (United States)

    Chattopadhyay, Tanmoy; Falcone, Abraham; Burrows, David N.

    2017-08-01

    PennState high energy astronomy laboratory has been working on the development and characterization of Hybrid CMOS Detectors (HCDs) for last few years in collaboration with Teledyne Imaging Sensors (TIS). HCDs are preferred over X-ray CCDs due to their higher and flexible read out rate, radiation hardness and low power which make them more suitable for next generation large area X-ray telescopic missions. An H2RG detector with 36 micron pixel pitch and 18 micron ROIC, has been selected for a sounding rocket flight in 2018. The H2RG detector provides ~2.5 % energy resolution at 5.9 keV and ~7 e- read noise when coupled to a cryo-SIDECAR. We could also detect a clear Oxygen line (~0.5 keV) from the detector implying a lower energy threshold of ~0.3 keV. Further improvement in the energy resolution and read noise is currently under progress. We have been working on the characterization of small pixel HCDs (12.5 micron pixel; smallest pixel HCDs developed so far) which is important for the development of next generation high resolution X-ray spectroscopic instrument based on HCDs. Event recognition in HCDs is another exciting prospect which have been successfully shown to work with a 64 X 64 pixel prototype SPEEDSTAR-EXD which use comparators at each pixel to read out only those pixels having detectable signal, thereby providing an order of magnitude improvement in the read out rate. Currently, we are working on the development of a large area SPEEDSTAR-EXD array for the development of a full fledged instrument. HCDs due to their fast read out, can also be explored as a large FOV instrument to study GRB afterglows and variability and spectroscopic study of other astrophysical transients. In this context, we are characterizing a Lobster-HCD system at multiple energies and multiple off-axis angles for future rocket or CubeSate experiments. In this presentation, I will briefly present these new developments and experiments with HCDs and the analysis techniques.

  17. Development and performance of a hand-held CZT detector for in-situ measurements at the emergency response

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Young Yong; Chung, Kun Ho; Kim, Chang Jong; Lee, Wan No; Choi, Geun Sik; Kang, Mun Ja [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yoon, Jin [SI Detection Co. Ltd, Daejeon (Korea, Republic of)

    2016-06-15

    A hand-held detector for an emergency response was developed for nuclide identification and to estimate the information of the ambient dose rate in the scene of an accident as well as the radioactivity of the contaminants. To achieve this, the most suitable sensor was first selected as a cadmium zinc telluride (CZT) semiconductor and the signal processing unit from a sensor and the signal discrimination and storage unit were successfully manufactured on a printed circuit board. The performance of the developed signal processing unit was then evaluated to have an energy resolution of about 14 keV at 662 keV. The system control unit was also designed to operate the CZT detector, monitor the detector, battery, and interface status, and check and transmit the measured results of the ambient dose rate and radioactivity. In addition, a collimator, which can control the inner radius, and the airborne dust sampler, which consists of an air filter and charcoal filter, were developed and mounted to the developed CZT detector for the quick and efficient response of a nuclear accident. The hand-held CZT detector was developed to make the in-situ gamma-ray spectrometry and its performance was checked to have a good energy resolution. In addition, the collimator and the airborne dust sampler were developed and mounted to the developed CZT detector for a quick and efficient response to a nuclear accident.

  18. TFTR alpha extraction and measurement: Development and testing of advanced alpha detectors: Final report

    International Nuclear Information System (INIS)

    Wehring, B.W.

    1988-01-01

    Advanced alpha-particle detectors made of heavy elements were investigated as alternatives to silicon surface-barrier detectors for the ''foil-neutralization technique'' of alpha-particle diagnostics in fusion reactors with high neutron backgrounds. From an extensive literature review, it was decided that HgI 2 would make a more suitable detector for alpha-particle diagnostics than other heavy element detectors such as CdTe. Thus, HgI 2 detectors were designed and fabricated. Experimental tests were performed to determine detector characteristics and detector responses to alpha particles. Radiation noise measurements were also performed using the North Carolina State University PULSTAR nuclear reactor for both the HgI 2 detectors and commercial Si(Au) surface barrier detectors. 15 refs., 1 fig

  19. Recent developments in detectors/phantoms for dosimetry, X-ray quality assurance and imaging

    International Nuclear Information System (INIS)

    Sankaran, A.

    2009-01-01

    During the past years, many new developments have taken place in detectors/phantoms for high energy photon and electron dosimetry (for radiotherapy), protection monitoring, X-ray quality assurance and X-ray imaging (for radiodiagnosis). A variety of detectors and systems, quality assurance (QA) gadgets and special phantoms have been developed for diverse applications. This paper discusses the important developments with some of which the author was actively associated in the past. For dosimetry and QA of 60 Co and high energy X-ray units, state-of-the-art radiation field analyzers, matrix ion chambers, MOSFET devices and Gafchromic films are described. OSL detectors find wide use in radiotherapy dosimetry and provide a good alternative for personnel monitoring. New systems introduced for QA/dosimetry of X-ray units and CT scanners include: multi-function instruments for simultaneous measurement of kVp, dose, time, X-ray waveform and HVT on diagnostic X-ray units; pencil chamber with head and body phantoms for CTDI check on CT scanners. Examples of phantoms used for dosimetry and imaging are given. Advancements in the field of diagnostic X-ray imaging (with applications in portal imaging/dosimetry of megavoltage X-ray units) have led to emergence of: film-replacement systems employing CCD-scintillator arrays, computed radiography (CR) using storage phosphor plate; digital radiography (DR), using a pixel-matrix of amorphous selenium, or amorphous silicon diode coupled to scintillator. All these provide (a) in radiotherapy, accurate dose delivery to tumour, saving the surrounding tissues and (b) in radiodiagnosis, superior image quality with low patient exposure. Lastly, iPODs and flash drives are utilized for storage of gigabyte-size images encountered in medical and allied fields. Although oriented towards medical applications, some of these have been of great utility in other fields, such as industrial radiography as well as a host of other research areas. (author)

  20. The Impact of JWST Broadband Filter Choice on Photometric Redshift Estimation

    DEFF Research Database (Denmark)

    Bisigello, L.; Caputi, K. I.; Colina, L.

    2016-01-01

    The determination of galaxy redshifts in the James Webb Space Telescope's (JWST) blank-field surveys will mostly rely on photometric estimates, based on the data provided by JWST's Near-Infrared Camera (NIRCam) at 0.6–5.0 μm and Mid Infrared Instrument (MIRI) at λ 5.0 μm. In this work we analyze...... the impact of choosing different combinations of NIRCam and MIRI broadband filters (F070W to F770W), as well as having ancillary data at λ 0.6 μm, on the derived photometric redshifts (z phot) of a total of 5921 real and simulated galaxies, with known input redshifts z = 0–10....

  1. Recent development of the Multi-Grid detector for large area neutron scattering instruments

    International Nuclear Information System (INIS)

    Guerard, Bruno

    2015-01-01

    Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, 3 He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using 3 He PSDs mounted side by side to cover tens of m 2 . As a result of the so-called ' 3 He shortage crisis , the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternative techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B 4 C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with standard equipment. Prototypes of

  2. Recent development of the Multi-Grid detector for large area neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Guerard, Bruno [ILL-ESS-LiU collaboration, CRISP project, Institut Laue Langevin - ILL, Grenoble (France)

    2015-07-01

    Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, {sup 3}He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using {sup 3}He PSDs mounted side by side to cover tens of m{sup 2}. As a result of the so-called '{sup 3}He shortage crisis{sup ,} the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternative techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B{sub 4}C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with standard

  3. Development of a alpha spectrometer system with the surface barrier detector

    International Nuclear Information System (INIS)

    Alencar, Marcus Alexandre Vallini de

    1994-04-01

    The aim of this work is the development of an α spectrometer of low cost and home made technology. The spectrometer is mounted in a double NIM module and includes a surface barrier detector and dedicate electronic system. Six barrier surface detectors were made, three of which with η type silicon wafer 3350 Ω.cm, 270mm 2 and three other with ρ type silicon wafer 5850 Ω.cm and 220mm 2 . The rectifier and the ohmic contacts were prepared at high vacuum (10 -2 to 10 -3 Pa) evaporation with 40μg/cm 2 of Au and Al respectively for the η type detectors, and with Al and Au respectively for the ρ type detectors. The electronic system is composed by a low noise charge sensitive preamplifier with the operational amplifier LF-356 mounted with 1OOMΩ feedback resistor and a 0.5 pF capacitor. The linear amplifier is also based in the LF-356 and the LM-310 operational amplifier. The bipolar output is formatted through a (CR) 2- (RC) 4 shaping network and the unipolar output is obtained through a CR-(RC) 4 shaping system which is sufficient to realize a almost true Gaussian shaping pulse with a time constant of 3.0μs. This format was chosen because we can expect a low counting rate and the gaussian pulse can improve the signal/noise ratio. The first CR differentiation has also a active pole-zero cancellation network.The resolution of detectors for 241 Am α particles at room temperature (24 degree) vary 21 to 44 keV FWHM. The electronic noise of the noise of the system is 7.5 keV FWHM at OpF input capacitance. The overall resolution of the spectrometer was found to be 62 keV FWHM at room temperature. The simplicity of the electronic system, the low cost of the construction and the overall resolution show that this alpha spectrometer can be readily used in measurements where high resolution is not a premium. (author)

  4. Advanced radiation detector development mercuric iodide, silicon with internal gain, hybrid scintillator/semiconductor detectors. Comprehensive summary report, 1976-1985

    International Nuclear Information System (INIS)

    Huth, G.C.; Dabrowski, A.J.

    1985-01-01

    Accomplishments are reported in the development of a compound semi-insulator mercuric iodide (HgI 2 ) for nuclear radiation detection and spectroscopy, early lung cancer detection and localization in the uranium miner/worker population, computer digital image processing and image reconstruction research, and a concept for multiple, filtered x-ray computed tomography scanning to reveal chemical compositional information. Another area of interest is the study of new advances in the area of silicon detectors with internal gain (''avalanche'')

  5. Development of design of a radioisotope switchable neutron source and new portable detector of smuggling

    International Nuclear Information System (INIS)

    Meskhi, L.; Kurdadze, L.

    2010-01-01

    Development of simple and cheap radioisotope switchable neutron source for application in the portable device of detecting of smuggling is presented. Detailed calculations (Monte-Carlo modeling) for the purpose of optimization of a design of the source and the detector module are carried out. The sufficient an yield of neutrons, about 2 o 105 n/s provides the source with the sizes of approx 25 x 25 x 60 mm 3. Results of simulation of scanning smuggling areas (polyethylene 10 x 10 x 5 cm 3) behind the thick steel wall (1.2 cm) gave the relation of signal/ background 7-8

  6. Further development of a track detector as the spectrometer of linear energy transfer

    International Nuclear Information System (INIS)

    Spurny, F.; Bednar, J.; Vlcek, B.; Botollier-Depois, J.F.

    1998-01-01

    Track revealing in a track etch detector is a phenomenon related to the linear energy transfer (LET) of the particle registered. The measurements of track parameters permit to determine the LET corresponding to each revealed track, i.e. LET spectrum. We have recently developed a spectrometer of LET based on the chemically etched polyallyldiglycolcarbonate (PADC). In this contribution the results obtained with such spectrometer in some neutron fields are presented, analyzed and discussed. Several radionuclide neutron sources have been used, LET spectrometer has been also exposed in high energy neutron reference fields at CERN and JINR Dubna, and on board aircraft. (author)

  7. Development of a Rubric to Assess Academic Writing Incorporating Plagiarism Detectors

    Directory of Open Access Journals (Sweden)

    Salim Razı

    2015-06-01

    Full Text Available Similarity reports of plagiarism detectors should be approached with caution as they may not be sufficient to support allegations of plagiarism. This study developed a 50-item rubric to simplify and standardize evaluation of academic papers. In the spring semester of 2011-2012 academic year, 161 freshmen’s papers at the English Language Teaching Department of Çanakkale Onsekiz Mart University, Turkey, were assessed using the rubric. Validity and reliability were established. The results indicated citation as a particularly problematic aspect, and indicated that fairer assessment could be achieved by using the rubric along with plagiarism detectors’ similarity results.

  8. Development of ultra-light pixelated ladders for an ILC vertex detector

    CERN Document Server

    Chon-Sen, N.; Claus, G.; De Masi, R.; Deveaux, M.; Dulinski, W.; Goffe, M.; Goldstein, J.; Gregor, I.-M.; Hu-Guo, Ch.; Imhoff, M.; Muntz, C.; Nomerotski, A.; Santos, C.; Schrader, C.; Specht, M.; Stroth, J.; Winter, M.

    2010-01-01

    The development of ultra-light pixelated ladders is motivated by the requirements of the ILD vertex detector at ILC. This paper summarizes three projects related to system integration. The PLUME project tackles the issue of assembling double-sided ladders. The SERWIETE project deals with a more innovative concept and consists in making single-sided unsupported ladders embedded in an extra thin plastic enveloppe. AIDA, the last project, aims at building a framework reproducing the experimental running conditions where sets of ladders could be tested.

  9. Transit Recovery of Kepler-167e: Providing JWST with an Unprecedented Jupiter-analog Exoplanet Target

    Science.gov (United States)

    Dalba, Paul; Muirhead, Philip; Tamburo, Patrick

    2018-05-01

    The Kepler Mission has uncovered a handful of long-period transiting exoplanets that orbit in the cold outer reaches of their systems, despite their low transit probabilities. Recent work suggests that cold gas giant exoplanet atmospheres are amenable to transmission spectroscopy (the analysis of the transit depth versus wavelength) enabling novel tests of planetary formation and evolution theories. Of particular scientific interest is Kepler-167e, a low-eccentricity Jupiter-analog exoplanet with a 1,071-day orbital period residing well beyond the snow-line. Transmission spectroscopy of Kepler-167e from JWST can reveal the composition of this planet's atmosphere, constrain its heavy-element abundance, and identify atmospheric photochemical processes. JWST characterization also enables unprecedented direct comparison with Jupiter and Saturn, which show a striking diversity in physical properties that is best investigated through comparative exoplanetology. Since Kepler only observed two transits of Kepler-167e, it is not known if this exoplanet exhibits transit timing variations (TTVs). About half of Kepler's long-period exoplanets have TTVs of up to 40 hours. Such a large uncertainty jeopardizes attempts to characterize the atmosphere of this unique Jovian exoplanet with JWST. To mitigate this risk, the upcoming third transit of Kepler-167e must be observed to test for TTVs. We propose a simple 10-hour, single-channel observation to capture ingress or egress of the next transit of Kepler-167e in December 2018. In the absence of TTVs, our observation will reduce the ephemeris uncertainty from an unknown value to approximately 3 minutes, thereby removing the risk in future transit observations with JWST. The excellent photometric precision of Spitzer is sufficient to identify the transit of Kepler-167e. Given the timing and nature of this program, Spitzer is the only observatory--on the ground or in space--that can make this pivotal observation.

  10. Observing the Atmospheres of Known Temperate Earth-sized Planets with JWST

    Science.gov (United States)

    Morley, Caroline V.; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler; Fortney, Jonathan J.

    2017-12-01

    Nine transiting Earth-sized planets have recently been discovered around nearby late-M dwarfs, including the TRAPPIST-1 planets and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b. These planets are the smallest known planets that may have atmospheres amenable to detection with the James Webb Space Telescope (JWST). We present model thermal emission and transmission spectra for each planet, varying composition and surface pressure of the atmosphere. We base elemental compositions on those of Earth, Titan, and Venus and calculate the molecular compositions assuming chemical equilibrium, which can strongly depend on temperature. Both thermal emission and transmission spectra are sensitive to the atmospheric composition; thermal emission spectra are sensitive to surface pressure and temperature. We predict the observability of each planet’s atmosphere with JWST. GJ 1132b and TRAPPIST-1b are excellent targets for emission spectroscopy with JWST/MIRI, requiring fewer than 10 eclipse observations. Emission photometry for TRAPPIST-1c requires 5-15 eclipses; LHS 1140b and TRAPPIST-1d, TRAPPIST-1e, and TRAPPIST-1f, which could possibly have surface liquid water, may be accessible with photometry. Seven of the nine planets are strong candidates for transmission spectroscopy measurements with JWST, although the number of transits required depends strongly on the planets’ actual masses. Using the measured masses, fewer than 20 transits are required for a 5σ detection of spectral features for GJ 1132b and six of the TRAPPIST-1 planets. Dedicated campaigns to measure the atmospheres of these nine planets will allow us, for the first time, to probe formation and evolution processes of terrestrial planetary atmospheres beyond our solar system.

  11. Strategies for Constraining the Atmospheres of Temperate Terrestrial Planets with JWST

    Science.gov (United States)

    Batalha, Natasha E.; Lewis, Nikole K.; Line, Michael R.; Valenti, Jeff; Stevenson, Kevin

    2018-04-01

    The Transiting Exoplanet Survey Satellite (TESS) is expected to discover dozens of temperate terrestrial planets orbiting M-dwarfs with atmospheres that could be followed up with the James Webb Space Telescope (JWST). Currently, the TRAPPIST-1 system serves as a benchmark for determining the feasibility and resources required to yield atmospheric constraints. We assess these questions and leverage an information content analysis to determine observing strategies for yielding high-precision spectroscopy in transmission and emission. Our goal is to guide observing strategies of temperate terrestrial planets in preparation for the early JWST cycles. First, we explore JWST’s current capabilities and expected spectral precision for targets near the saturation limits of specific modes. In doing so, we highlight the enhanced capabilities of high-efficiency readout patterns that are being considered for implementation in Cycle 2. We propose a partial saturation strategy to increase the achievable precision of JWST's NIRSpec Prism. We show that JWST has the potential to detect the dominant absorbing gas in the atmospheres of temperate terrestrial planets by the 10th transit using transmission spectroscopy techniques in the near-infrared (NIR). We also show that stacking ⪆10 transmission spectroscopy observations is unlikely to yield significant improvements in determining atmospheric composition. For emission spectroscopy, we show that the MIRI Low Resolution Spectroscopy (LRS) is unlikely to provide robust constraints on the atmospheric composition of temperate terrestrial planets. Higher-precision emission spectroscopy at wavelengths longward of those accessible to MIRI LRS, as proposed in the Origins Space Telescope concept, could help improve the constraints on molecular abundances of temperate terrestrial planets orbiting M-dwarfs.

  12. Critical Science Instrument Alignment of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Rohrbach, Scott O.; Kubalak, David A.; Gracey, Renee M.; Sabatke, Derek S.; Howard, Joseph M.; Telfer, Randal C.; Zielinski, Thomas P.

    2016-01-01

    This paper describes the critical instrument alignment terms associated with the six-degree of freedom alignment of each the Science Instrument (SI) in the James Webb Space Telescope (JWST), including focus, pupil shear, pupil clocking, and boresight. We present the test methods used during cryogenic-vacuum tests to directly measure the performance of each parameter, the requirements levied on each, and the impact of any violations of these requirements at the instrument and Observatory level.

  13. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  14. An overview of current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes

    CERN Document Server

    Gys, Thierry

    1999-01-01

    Current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes have stimulated increased interest from a variety of fields such as astronomy, biomedical imaging and high- energy physics. These devices are sensitive to single photons over a photon energy spectrum defined by the transmission of the optical entrance window and the photo-cathode type. Their spatial resolution ranges from a few millimeters for pad hybrid photon detectors and multi-anode photo-multiplier tubes down to a few tens of microns for pixel hybrid photon detectors and electron-bombarded charge-coupled devices. Basic technological and design aspects are assessed in this paper. (21 refs).

  15. Unveiling the First Black Holes With JWST:Multi-wavelength Spectral Predictions

    Science.gov (United States)

    Natarajan, Priyamvada; Pacucci, Fabio; Ferrara, Andrea; Agarwal, Bhaskar; Ricarte, Angelo; Zackrisson, Erik; Cappelluti, Nico

    2017-04-01

    Growing supermassive black holes (˜ {10}9 {M}⊙ ) that power luminous z> 6 quasars from light seeds—the remnants of the first stars—within a Gyr of the Big Bang poses a timing challenge. The formation of massive black hole seeds via direct collapse with initial masses ˜ {10}4{--}{10}5 {M}⊙ alleviates this problem. Viable direct-collapse black hole formation sites, the satellite halos of star-forming galaxies, merge and acquire stars to produce a new, transient class of high-redshift objects, obese black hole galaxies (OBGs). The accretion luminosity outshines that of the stars in OBGs. We predict the multi-wavelength energy output of OBGs and growing Pop III remnants at z = 9 for standard and slim disk accretion, as well as high and low metallicities of the associated stellar population. We derive robust selection criteria for OBGs—a pre-selection to eliminate blue sources, followed by color-color cuts ([{F}090W-{F}220W]> 0;-0.3sift out OBGs from other bright, high- and low-redshift contaminants in the infrared. OBGs with predicted {M}{AB}< 25 are unambiguously detectable by the Mid-Infrared Instrument (MIRI), on the upcoming James Webb Space Telescope (JWST). For parameters explored here, growing Pop III remnants with predicted {M}{AB}< 30 will likely be undetectable by JWST. We demonstrate that JWST has the power to discriminate between initial seeding mechanisms.

  16. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Olivia C.; Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Justtanont, Kay [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Glasse, Alistair [UK Astronomy Technology Centre, Royal Observatory, Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)

    2017-05-20

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.

  17. Multi-detector and systematic imaging system designed and developed within the New AGLAE project

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, L.; Pacheco, C.; Moignard, B.; Lemasson, Q. [C2RMF - Palais du Louvre 14 quai F Mitterrand 75001, Paris (France); FR3605 - MCC/CNRS/UPMC (France); Guillou, T.; Walter, Ph [FR3605 - CC/CNRS/UPMC (France); LAMS - UMR 8220 - CNRS/UPMC - Seine, Paris (France)

    2013-07-01

    Full text: The New AGLAE project aims to establish a world-class facility for non invasive analysis of Cultural Heritage materials. One of the objectives of the New AGLAE project is to increase the x-ray measurement detection, enabling to reduce the beam intensity thus the interaction with sensitive artworks by a ten. Multidisciplinary, the New AGLAE project will provide an exceptional and multipurpose beam line with a performance in spatial resolution, beam stability and a capability of multi-particle detection much higher than for the previous facility. The New AGLAE will give fundamental elements for the understanding of the structure of materials, their composition, properties, and change over time. One of the objectives of this project is to design and set up a new data acquisition system. To reach that purpose, the surface and the number of PIXE detectors have been increased. Indeed, a 10 mm{sup 2} and a 30 mm{sup 3} Si(Li) detectors respectively dedicated to low and high energy measurements, were replaced by a cluster of five 50 mm{sup 2} S.D.D. detectors. If this multi detector enables to decrease the intensity of the incident beam by one order of magnitude, involving less irradiation during the analysis, it can also provide large and/or fast maps. So as to digital the preamp pulses obtained from the detectors, a custom Digital X-ray Processor provides both digital data and control signals compatible to a multiparameter multichannel system. This multiparameter system saves each event from x-ray, gamma and particle detectors and simultaneously the X, Y positions of the beam on the sample as a list file. Furthermore, to draw several-cm-sized maps with a 20/40μm resolution, the scanning of the area originally combines a fast vertical magnetic deflection of the beam and a mechanical movement of the target. To process the data, several homemade software have been developed or updated so as to rebuild any matrix of spectra, to re-bin maps, to process a series of

  18. InAs/GaSb type-II superlattice infrared detectors: three decades of development

    Science.gov (United States)

    Rogalski, A.; Kopytko, M.; Martyniuk, P.

    2017-02-01

    Recently, there has been considerable progress towards III-V antimonide-based low dimensional solids development and device design innovations. From a physics point of view, the type-II InAs/GaSb superlattice is an extremely attractive proposition. Their development results from two primary motivations: the perceived challenges of reproducibly fabricating high-operability HgCdTe FPAs at reasonable cost and theoretical predictions of lower Auger recombination for type-II superlattice (T2SL) detectors compared to HgCdTe. Lower Auger recombination should be translated into a fundamental advantage for T2SL over HgCdTe in terms of lower dark current and/or higher operating temperature, provided other parameters such as Shockley-Read-Hall lifetime are equal. Based on these promising results it is obvious now that the InAs/GaSb superlattice technology is competing with HgCdTe third generation detector technology with the potential advantage of standard III-V technology to be more competitive in costs and as a consequence series production pricing. Comments to the statement whether the superlattice IR photodetectors can outperform the "bulk" narrow gap HgCdTe detectors is one of the most important questions for the future of IR photodetectors presented by Rogalski at the April 2006 SPIE meeting in Orlando, Florida, are more credible today and are presented in this paper. It concerns the trade-offs between two most competing IR material technologies: InAs/GaSb type-II superlattices and HgCdTe ternary alloy system.

  19. Development of a transition radiation detector and reconstruction of photon conversions in the CBM experiment

    International Nuclear Information System (INIS)

    Klein-Boesing, Melanie

    2009-01-01

    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. In addition, the usage of the TRD in the measurement of direct photons is investigated. CBM will be a fixed-target heavy-ion experiment, which investigates collisions in the beam energy range of 5-35 AGeV and aims to investigate the regime of high baryon densities where the phase transition is expected to be of first order. It will be a multipurpose experiment with the ability to measure leptons, hadrons, and photons. Therein, a TRD will provide the electron identification and - together with a Silicon Tracking System (STS) - the tracking of charged particles. In conjunction with a ring imaging Cherenkov (RICH) detector and a time-of-flight (TOF) measurement, the TRD is to provide a sufficient electron identification for the measurements of charmonium and low-mass vector mesons. For the TRD, the required pion suppression is a factor of about 100 at 90% electron efficiency, and the position resolution has to be of the order of 300 to 500 um. Moreover, the material budget in terms of radiation length has to be kept at a minimum in order to minimize multiple scattering and conversions which would limit the precise measurement in following TRD stations and other detectors. The largest and up to now unrivaled challenge for the TRD design is that both (PID and tracking) have to be fulfilled in the context of very high particle rates (event rates of up to 10MHz are envisaged) and at the same time large charged-particle multiplicities of up to 600 per event in the CBM detector acceptance. Small prototypes of the TRD based on multiwire proportional chambers (MWPC) with pad readout were developed and tested. The tracking performance and the electron-pion separation were determined for particle rates of up to 200 kHz/cm 2 . The TRD layout and the detector responses

  20. Development of a transition radiation detector and reconstruction of photon conversions in the CBM experiment

    Energy Technology Data Exchange (ETDEWEB)

    Klein-Boesing, Melanie

    2009-07-01

    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. In addition, the usage of the TRD in the measurement of direct photons is investigated. CBM will be a fixed-target heavy-ion experiment, which investigates collisions in the beam energy range of 5-35 AGeV and aims to investigate the regime of high baryon densities where the phase transition is expected to be of first order. It will be a multipurpose experiment with the ability to measure leptons, hadrons, and photons. Therein, a TRD will provide the electron identification and - together with a Silicon Tracking System (STS) - the tracking of charged particles. In conjunction with a ring imaging Cherenkov (RICH) detector and a time-of-flight (TOF) measurement, the TRD is to provide a sufficient electron identification for the measurements of charmonium and low-mass vector mesons. For the TRD, the required pion suppression is a factor of about 100 at 90% electron efficiency, and the position resolution has to be of the order of 300 to 500 um. Moreover, the material budget in terms of radiation length has to be kept at a minimum in order to minimize multiple scattering and conversions which would limit the precise measurement in following TRD stations and other detectors. The largest and up to now unrivaled challenge for the TRD design is that both (PID and tracking) have to be fulfilled in the context of very high particle rates (event rates of up to 10MHz are envisaged) and at the same time large charged-particle multiplicities of up to 600 per event in the CBM detector acceptance. Small prototypes of the TRD based on multiwire proportional chambers (MWPC) with pad readout were developed and tested. The tracking performance and the electron-pion separation were determined for particle rates of up to 200 kHz/cm{sup 2}. The TRD layout and the detector

  1. Development of cryogenic Si detectors by CERN RD39 Collaboration for ultra radiation hardness in SLHC environment

    CERN Document Server

    Li, Z; Anbinderis, P; Anbinderis, T; D’Ambrosio, N; de Boer, Wim; Borchi, E; Borer, K; Bruzzi, M; Buontempo, S; Chen, W; Cindro, V; Dierlamm, A; Eremin, V; Gaubas, E; Gorbatenko, V; Grigoriev, E; Hauler, F; Heijne, Erik H M; Heising, S; Hempel, O; Herzog, R; Härkönen, J; Ilyashenko, I; Janos, S; Jungermann, L; Kalesinskas, V; Kapturauskas, J; Laiho, R; Luukka, P; Mandic, I; De Masi, R; Menichelli, D; Mikuz, M; Militaru, O; Niinikosky, T O; O’Shea, V; Pagano, S; Paul, S; Piotrzkowski, K; Pretzl, K; Rato-Mendes, P; Rouby, X; Ruggiero, G; Smith, K; Sonderegger, P; Sousa, P; Tuominen, E; Tuovinen, E; Verbitskaya, E; Vaitkus, J; Wobst, E; Zavrtanik, M

    2007-01-01

    There are two key approaches in our CERN RD 39 Collaboration efforts to obtain ultra-radiation-hard Si detectors: (1) use of the charge/current injection to manipulate the detector internal electric field in such a way that it can be depleted at a modest bias voltage at cryogenic temperature range (150 K), and (2) freezing out of the trapping centers that affects the CCE at cryogenic temperatures lower than that of the liquid nitrogen (LN2) temperature. In our first approach, we have developed the advanced radiation hard detectors using charge or current injection, the current injected diodes (CID). In a CID, the electric field is controlled by injected current, which is limited by the space charge, yielding a nearly uniform electric field in the detector, independent of the radiation fluence. In our second approach, we have developed models of radiation-induced trapping levels and the physics of their freezing out at cryogenic temperatures.

  2. Development of a custom on-line ultrasonic vapour analyzer and flow meter for the ATLAS inner detector, with application to Cherenkov and gaseous charged particle detectors

    Science.gov (United States)

    Alhroob, M.; Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Bozza, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; DiGirolamo, B.; Doubek, M.; Favre, G.; Godlewski, J.; Hallewell, G.; Hasib, A.; Katunin, S.; Langevin, N.; Lombard, D.; Mathieu, M.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Strauss, M.; Vacek, V.; Zwalinski, L.

    2015-03-01

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom microcontroller-based electronics, currently used in the ATLAS Detector Control System, with numerous potential applications. Three instruments monitor C3F8 and CO2 coolant leak rates into the nitrogen envelopes of the ATLAS silicon microstrip and Pixel detectors. Two further instruments will aid operation of the new thermosiphon coolant recirculator: one of these will monitor air leaks into the low pressure condenser while the other will measure return vapour flow along with C3F8/C2F6 blend composition, should blend operation be necessary to protect the ATLAS silicon tracker under increasing LHC luminosity. We describe these instruments and their electronics.

  3. X-ray detectors in axial computed tomography development; Sensori di radiazioni X negli sviluppi della tomografia assiale computerizzata

    Energy Technology Data Exchange (ETDEWEB)

    Gislon, R.; Imperiali, F. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Innovazione

    1996-12-01

    The increase of potentially of axial computed tomography as a non destructive investigation method in industrial field is particularly tied to the development of the X-rays detectors. The transition from the first gas ionization detectors to the last semiconductor detectors has indeed dramatically increased the performances of tomographic systems. In this report, after a quick analysis of fundamental principles of tomography, the most significant parameters for a detector to be used in a tomographic system are reviewed. The examination of the principal kinds of detectors that have been up to now used, with their working schemes, allows to delineate their characteristics and so to compare them with the ideal detector sketched above. The necessity of using high definition arrays brings to put into evidence the inadequacy of both gas and liquid ionization detectors and also of those types of light conversion devices which utilize for signal amplification a photomultiplier tube. Systems based on charge coupled devices or on a light conversion obtained with semiconductor photodiode arrays are definitely to be preferred. The progress of the last years in microelectronic technologies has brought great improvements in this field.

  4. Germanium detectors for nuclear spectroscopy: Current research and development activity at LNL

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, D. R., E-mail: daniel.r.napoli@lnl.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Maggioni, G., E-mail: maggioni@lnl.infn.it; Carturan, S.; Gelain, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Department of Physics and Astronomy “G. Galilei”, University of Padova, Via Marzolo 8, 35121 Padova (Italy); Eberth, J. [Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln (Germany); Grimaldi, M. G.; Tatí, S. [Department of Physics and Astronomy, University of Catania (Italy); Riccetto, S. [University of Camerino and INFN of Perugia (Italy); Mea, G. Della [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); University of Trento (Italy)

    2016-07-07

    High-purity Germanium (HPGe) detectors have reached an unprecedented level of sophistication and are still the best solution for high-resolution gamma spectroscopy. In the present work, we will show the results of the characterization of new surface treatments for the production of these detectors, studied in the framework of our multidisciplinary research program in HPGe detector technologies.

  5. DEVELOPMENT OF NEXT-GENERATION DETECTORS AND INSTRUMENTATION FOR PHOTOELECTRON SPECTROSCOPY, DIFFRACTION AND HOLOGRAPHY

    International Nuclear Information System (INIS)

    Charles S. Fadley, Principal Investigator

    2005-01-01

    We have developed a new multichannel detector for use in photoelectron spectroscopy (as well as other types of high-count-rate spectroscopy) that will operate at rates of up to 1 GHz. Such detectors are crucial to the full utilization of the high-brightness radiation generated by third-generation synchrotron radiation sources. In addition, new software and hardware has been developed to permit rapidly and accurately scanning photoelectron spectra that will be accumulated in as little as a 200 micros. A versatile next-generation sample goniometer permitting equally rapid scanning of specimen angles or photon energies for angle-resolved photoemission studies, photoelectron diffraction, and photoelectron holography measurements, and cooling to below 10K has also been designed and constructed. These capabilities have been incorporated into a unique photoelectron spectrometer/diffractometer at the Advanced Light Source of the Lawrence Berkeley National Laboratory; this experimental system includes ultrahigh energy resolution, in situ rotation, variable polarization, and optional spin detection. This overall system is now being used in studies of a variety of problems including magnetic metals and oxides; metal/metal, metal/metal oxide, and metal-oxide/metal-oxide multilayers; and systems exhibiting giant and colossal magnetoresistance

  6. The system of digital-image optical microscope in semiconductor particle detector development

    International Nuclear Information System (INIS)

    Han Lixiang; Li Zhankui; Jin Genming; Wang Zhusheng; Xiao Guoqing

    2009-01-01

    Optical microscopic detection is very important in the process of semiconductor particle detector development. A system of digital-image optical microscope has been constructed with rather low price, which performance is comparable with the moderate-level imports. The system mounts powerful dry objective, and a 2μm resolution could be achieved. Observations with bright and dark field, polarized light,and interference light can be carried out on it. The system have large area on-line monitor,and the photographic device can be controlled by PC. It can be used in the control of defects and contaminations, pattern test, identification of crystal backing, inspection of the smoothness and the flatness of the crystal surface. It can also be used in some precise procedures, such as test, assembly, packaging and repairing. The quality of the bond could be examined by observing the appearance of the bond point and the microscopic structure of the solder. The surface fluctuation can be precisely measured under the microscope with the technology of multi-beam interference. In the article, the application of this system for semiconductor particle detector development has been illustrated, and the construction information has been described in detail. (authors)

  7. Performance and development for the Inner Detector Trigger algorithms at ATLAS

    CERN Document Server

    Penc, O; The ATLAS collaboration

    2014-01-01

    The performance of the ATLAS Inner Detector (ID) Trigger algorithms being developed for running on the ATLAS High Level Trigger (HLT) processor farm during Run 2 of the LHC are presented. During the 2013-14 LHC long shutdown modifications are being carried out to the LHC accelerator to increase both the beam energy and luminosity. These modifications will pose significant challenges for the ID Trigger algorithms, both in terms execution time and physics performance. To meet these challenges, the ATLAS HLT software is being restructured to run as a more flexible single stage HLT, instead of two separate stages (Level2 and Event Filter) as in Run 1. This will reduce the overall data volume that needs to be requested by the HLT system, since data will no longer need to be requested for each of the two separate processing stages. Development of the ID Trigger algorithms for Run 2, currently expected to be ready for detector commissioning near the end of 2014, is progressing well and the current efforts towards op...

  8. Investigation of the physics potential and detector development for the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Ohlerich, Martin

    2010-02-15

    In this thesis, we investigate two rather separate topics - the precision measurement of the Higgs boson mass and of its coupling to the neutral gauge boson Z and the research and development of sensors for BEAMCAL, which is a sub-detector system of the ILC detector. We employ the Higgs-strahlung process for this purpose. A virtual Z boson is created in the e{sup +}e{sup -} collisions, which emits a Higgs-boson while becoming on-shell. Using the so-called recoil technique, we determine the Higgs boson mass by reconstructing the Z boson momentum and using the center-of-mass energy of the colliding leptons. Monte-Carlo studies including a full detector simulation and a full event reconstruction were performed to simulate the impact of a realistic detector model on the precision of the Higgs boson mass and production cross-section measurement. Also, an analytical estimate of the influence of a given detector performance on the Higgs boson mass measurement uncertainty is given. We included a complete sample of background events predicted by the Standard Model, which may have a detector response similar to the signal events. A probabilistic method is used for the signal-background separation. Several other probabilistic methods were used to investigate and improve the measurement of the Higgs-strahlung cross-section and the Higgs boson mass from the recoil mass spectrum obtained after the signal-background separation. For a Higgs boson mass of 120 GeV, a center-of-mass energy of {radical}(s)=250 GeV and an integrated luminosity of L=50 fb{sup -1}, a relative uncertainty of 10 % is obtained for the cross-section measurement, and a precision of 118 MeV for the Higgs boson mass. For a Higgs boson mass of 180 GeV and {radical}(s)=350 GeV, a statistics corresponding to L=50 fb{sup -1} is not sufficient to achieve the necessary significance of the recoil mass peak above the background. The BEAMCAL is a calorimeter in the very forward region, about 3 m away from the nominal

  9. Investigation of the physics potential and detector development for the ILC

    International Nuclear Information System (INIS)

    Ohlerich, Martin

    2010-02-01

    In this thesis, we investigate two rather separate topics - the precision measurement of the Higgs boson mass and of its coupling to the neutral gauge boson Z and the research and development of sensors for BEAMCAL, which is a sub-detector system of the ILC detector. We employ the Higgs-strahlung process for this purpose. A virtual Z boson is created in the e + e - collisions, which emits a Higgs-boson while becoming on-shell. Using the so-called recoil technique, we determine the Higgs boson mass by reconstructing the Z boson momentum and using the center-of-mass energy of the colliding leptons. Monte-Carlo studies including a full detector simulation and a full event reconstruction were performed to simulate the impact of a realistic detector model on the precision of the Higgs boson mass and production cross-section measurement. Also, an analytical estimate of the influence of a given detector performance on the Higgs boson mass measurement uncertainty is given. We included a complete sample of background events predicted by the Standard Model, which may have a detector response similar to the signal events. A probabilistic method is used for the signal-background separation. Several other probabilistic methods were used to investigate and improve the measurement of the Higgs-strahlung cross-section and the Higgs boson mass from the recoil mass spectrum obtained after the signal-background separation. For a Higgs boson mass of 120 GeV, a center-of-mass energy of √(s)=250 GeV and an integrated luminosity of L=50 fb -1 , a relative uncertainty of 10 % is obtained for the cross-section measurement, and a precision of 118 MeV for the Higgs boson mass. For a Higgs boson mass of 180 GeV and √(s)=350 GeV, a statistics corresponding to L=50 fb -1 is not sufficient to achieve the necessary significance of the recoil mass peak above the background. The BEAMCAL is a calorimeter in the very forward region, about 3 m away from the nominal interaction point and

  10. Solid state detector design

    International Nuclear Information System (INIS)

    Gunarwan Prayitno; Ahmad Rifai

    2010-01-01

    Much has been charged particle detector radiation detector made by the industry, especially those engaged in the development of detection equipment and components. The development and further research will be made solid state detector with silicon material. To be able to detect charged particles (radiation), required the processing of silicon material into the detector material. The method used to make silicon detector material is a lithium evaporations. Having formed an intrinsic region contactor installation process, and with testing. (author)

  11. Modernization of NASA's Johnson Space Center Chamber: A Payload Transport Rail System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sam; Homan, Jonathan; Speed, John

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the "Great Observatories", scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describe the challenges of developing, integrating and modifying new payload rails capable of transporting payloads within the thermal vacuum chamber up to 65,000 pounds. Ambient and Cryogenic Operations required to configure for testing will be explained. Lastly review historical payload configurations stretching from the Apollo program era to current James Webb Space Telescope testing.

  12. Development of large area si detectors based on planar technology for charged particles

    International Nuclear Information System (INIS)

    Zhang Wanchang; Sun Liang; Huang Xiaojian; Liu Yang; Chen Guozhu

    2009-01-01

    This paper describes the processing method of large area Si detectors fabricated by planar technology for charged particles. In order to decrease the detectors leakage current, the surface passivation technique was used. The paper gives the measurement results of the leakage current of 300μm thick, 20mm diameter detectors and 500μm thick, 40mm diameter detectors respectively. The spectra of the detectors for 241 Am 5.486MeV α particles are also provided at room temperature. (authors)

  13. Development and implementation of a new trigger and data acquisition system for the HADES detector

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Jan

    2012-11-16

    One of the crucial points of instrumentation in modern nuclear and particle physics is the setup of data acquisition systems (DAQ). In collisions of heavy ions, particles of special interest for research are often produced at very low rates resulting in the need for high event rates and a fast data acquisition. Additionally, the identification and precise tracking of particles requires fast and highly granular detectors. Both requirements result in very high data rates that have to be transported within the detector read-out system: Typical experiments produce data at rates of 200 to 1,000 MByte/s. The structure of the trigger and read-out systems of such experiments is quite similar: A central instance generates a signal that triggers read-out of all sub-systems. The signals from each detector system are then processed and digitized by front-end electronics before they are transported to a computing farm where data is analyzed and prepared for long-term storage. Some systems introduce additional steps (high level triggers) in this process to select only special types of events to reduce the amount of data to be processed later. The main focus of this work is put on the development of a new data acquisition system for the High Acceptance Di-Electron Spectrometer HADES located at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. Fully operational since 2002, its front-end electronics and data transport system were subject to a major upgrade program. The goal was an increase of the event rate capabilities by a factor of more than 20 to reach event rates of 20 kHz in heavy ion collisions and more than 50 kHz in light collision systems. The new electronics are based on FPGA-equipped platforms distributed throughout the detector. Data is transported over optical fibers to reduce the amount of electromagnetic noise induced in the sensitive front-end electronics. Besides the high data rates of up to 500 MByte/s at the design event rate of 20 kHz, the

  14. Development of accurate radioactivity assessment system for radiation survey with various detectors

    International Nuclear Information System (INIS)

    Kurihara, Osamu; Kim, Eunjoo; Ueda, Junichi; Yamada, Yuji; Akashi, Makoto; Kido, Hiroko; Oguri, Tomomi; Nemoto, Shintaro; Nemoto, Makoto

    2011-01-01

    In response to requests from the sites of radiation emergency medicine, we developed a prototype of a computer system for assessing radioactive contaminants remaining in a wound or on the skin surface. This system implements numerical calibration of detectors measuring the contamination using a Monte Carlo simulation-based radiation transport code (MCNPX), coupled to a numerical phantom modeling the contaminants and the surrounding tissue. With the help of functional graphical user interfaces (GUIs) provided by the system, a user can perform desired simulations without complicated procedures to prepare input files for MCNPX. Benchmark calculations of MCNPX were conducted to verify the simulations and adjust detection-related parameter values not sufficiently provided by suppliers. The developed system should aid in making better assessments of the radiological contamination. (author)

  15. The development of a gamma ray detector based on micro-pixel avalanche photodiode

    International Nuclear Information System (INIS)

    Madatov, R.; Akberov, R.; Ahmadov, F.; Ahmadov, Q.; Sadiqov, A.; Suleymanov, S.; Nazarov, M.; Heydarov, N.; Valiev, R.; Nuriev, I.

    2015-01-01

    Prompt development of the nuclear industry provides the ample opportunities of application the products of this industry in the different spheres of human activity. Alongside their positive characteristics, application of nuclear technologies has negative aspects also. These are mostly ionizing radiation and pollution products of activities of the nuclear industry which are hazardous to health and human life activities. To identify and to control the polluted areas the special devices (dosimeters) are used, which are measuring the radiation in pulses per unit of time.Contemporary tendencies of development of gamma ray detection technologies require creation the devices superior the current samples by its characteristics. One of the main directions in this area is increasing the durability to changing conditions without deteriorating the main parameters of the detector.

  16. Development of an in situ calibration technique for combustible gas detectors

    Science.gov (United States)

    Shumar, J. W.; Wynveen, R. A.; Lance, N., Jr.; Lantz, J. B.

    1977-01-01

    This paper describes the development of an in situ calibration procedure for combustible gas detectors (CGD). The CGD will be a necessary device for future space vehicles as many subsystems in the Environmental Control/Life Support System utilize or produce hydrogen (H2) gas. Existing calibration techniques are time-consuming and require support equipment such as an environmental chamber and calibration gas supply. The in situ calibration procedure involves utilization of a water vapor electrolysis cell for the automatic in situ generation of a H2/air calibration mixture within the flame arrestor of the CGD. The development effort concluded with the successful demonstration of in situ span calibrations of a CGD.

  17. Use of diffusion bonded SS-Al composite material in the development of neutron detectors

    International Nuclear Information System (INIS)

    Alex, Mary; Prasad, K.R.; Pappachan, A.L.; Grover, A.K.; Krishnan, J.; Derose, D.J.; Bhanumurthy, K.; Kale, G.B.

    2005-01-01

    The present paper describes the development of a SS-Al composite plate in-house at BARC by diffusion bonding technique. Details of the several tests carried out on the composite material and the use of the plate in the development of a boron lined neutron chamber for Dhruva reactor control instrumentation has been described. The bonded sample has withstood tensile strength test, leak test and thermal cycling test and the leak rate was observed to be less than 3 x 10 -10 stdcc/sec. The chamber with the composite material has been installed in Dhruva Basket C location and connected to the log rate safety channel. It has been working successfully for the past two years. The use of SS-Al composite material has improved the reliability and long-term performance of the detector. (author)

  18. Development of the fast and efficient gamma detector using Cherenkov light for TOF-PET

    Science.gov (United States)

    Canot, C.; Alokhina, M.; Abbon, P.; Bard, J. P.; Tauzin, G.; Yvon, D.; Sharyy, V.

    2017-12-01

    In this paper we present two configurations of innovative gamma detectors using Cherenkov light for time-of-flight—Positron Emission Tomography (PET). The first uses heavy crystals as a Cherenkov radiator to develop a demonstrator for a whole body PET scanner with high detection efficiency. We demonstrated a 30% detection efficiency and a 180 ps (FWHM) time resolution, mainly limited by the time transit spread of the photomultiplier. The second configuration uses an innovative liquid, the TriMethyl Bismuth, to develop a high precision brain-scanning PET device with time-of-flight capability. According to Geant4 simulation, we expect to reach a precision of 150 ps (FWHM) and an efficiency of about 25%.

  19. Detector development and background estimation for the observation of Coherent Neutrino Nucleus Scattering (CNNS)

    Energy Technology Data Exchange (ETDEWEB)

    Guetlein, Achim; Ciemniak, Christian; Feilitzsch, Franz von; Lanfranchi, Jean-Come; Oberauer, Lothar; Potzel, Walter; Roth, Sabine; Schoenert, Stefan; Sivers, Moritz von; Strauss, Raimund; Wawoczny, Stefan; Willers, Michael; Zoeller, Andreas [Technische Universitaet Muenchen, Physik-Department, E15 (Germany)

    2012-07-01

    The Coherent Neutrino Nucleus Scattering (CNNS) is a neutral current process of the weak interaction and is thus flavor independent. A low-energetic neutrino scatters off a target nucleus. For low transferred momenta the wavelength of the transferred Z{sup 0} boson is comparable to the diameter of the target nucleus. Thus, the neutrino interacts with all nucleons coherently and the cross section for the CNNS is enhanced. To observe CNNS for the first time we are developing cryogenic detectors with a target mass of about 10 g each and an energy threshold of less than 0.5 keV. The current status of this development is presented as well as the estimated background for an experiment in the vicinity of a nuclear power reactor as a strong neutrino source.

  20. Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    CERN Document Server

    Kim, Do Yoon; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-01-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGA...