WorldWideScience

Sample records for jute kenaf sisal

  1. Confining concrete with sisal and jute FRP as alternatives for CFRP and GFRP

    Directory of Open Access Journals (Sweden)

    Tara Sen

    2015-12-01

    Full Text Available This research paper presents an experimental investigation on the confinement strength and confinement modulus of concrete cylinders confined using different types of natural fibre composites and a comparative performance analysis with different artificial fibre based composite materials. The paper also highlights the need to switch over from the utilization of artificial fibres, which are non-renewable and fossil fuel products, to environmental beneficial materials like green fibres. The utilization of plant products like sisal and jute fibres and their composites in various structural engineering applications addresses the issues of sustainability and renewability with constructional materials. The paper describes a suitable mechanical treatment method like high temperature conditioning, which aids us in further improving the properties of these woven natural materials like sisal and jute for composite fabrication and utilization. Heat treated natural fibres of woven sisal and jute were utilized for confining concrete cylinders similar to CFRP and GFRP confinement and their confinement characteristics were obtained and compared. All the cylinders were subjected to monotonic axial compressive loads, so as to evaluate the effect of confinement on the axial load carrying capacity and all their failure modes were discussed thoroughly. The results indicated superior performance by sisal FRP as well as jute FRP confined cylinders as compared to controlled or unconfined cylinders, also sisal FRP wrapped cylinders displayed ultimate axial load of comparable magnitude to CFRP confinement. Natural FRP confinement displayed superior confinement modulus and confinement strength, also the ultimate axial load of concrete cylinders confined with natural FRPs underwent 66% enhancement by sisal FRP and 48% enhancement by jute FRP, in comparison with controlled or unconfined cylinders. Enhancement in axial load carrying capacity was 83% with CFRP confinement

  2. Effect of Coconut, Sisal and Jute Fibers on the Properties of Starch/Gluten/Glycerol Matrix

    Science.gov (United States)

    Coconut, sisal and jute fibers were added as reinforcement materials in a biodegradable polymer matrix comprised of starch/gluten/glycerol. The content of fibers used in the composites varied from 5% to 30% by weight of the total polymers (starch and gluten). Materials were processed in a Haake torq...

  3. Investigation on mechanical properties of woven alovera/sisal/kenaf fibres and their hybrid composites

    Indian Academy of Sciences (India)

    K PALANI KUMAR; A SHADRACH JEYA SEKARAN; K PITCHANDI

    2017-02-01

    The go-green concept results in multipoint focus towards materials made from nature; easily decomposable and recyclable polymeric materials and their composites along with natural fibres ignited the manufacturing sectors to go for higher altitudes in engineering industries. This is due to the health hazard and environmental problems faced in manufacturing and disposal of synthetic fibres. This study was undertaken to analyse the suitability of new natural fibre as an alternative reinforcement for composite materials. In this paper, tensile, flexural and impact test is made for the woven alovera and kenaf (AK), sisal and kenaf (SK), alovera, sisal and kenaf fibre hybrid epoxy composites (ASK). The composite laminates are made through a hand-layup process. The surface analysis is studied through scanning electron microscopy. From the investigation the SK hybrid composite shows good tensile property, AK hybrid composite shows better flexural property and the best impact strength is observed for ASK hybrid composite. The natural fibres slowly replace the synthetic fibres from its environmental impact, marching towards a revolution in engineering materials.

  4. Kenaf/recycled Jute Natural Fibers Unsaturated Polyester Composites: Water Absorption/dimensional Stability and Mechanical Properties

    Science.gov (United States)

    Osman, Ekhlas A.; Vakhguelt, Anatoli; Sbarski, Igor; Mutasher, Saad A.

    2012-03-01

    Effects of water absorption on the flexural properties of kenaf-unsaturated polyester composites and kenaf/recycled jute-unsaturated polyester composites were investigated. In the hybrid composites, the total fiber content was fixed to 20 wt%. In this 20 wt%, the addition of jute fiber varied from 0 to 75%, with increment of 25%. The result demonstrates the water absorption and the thickness swelling increased with increase in immersion time. Effects of water absorption on flexural properties of kenaf fiber composites can be reduced significantly with incorporation of recycled jute in composites formulation. The process of absorption of water was found to approach Fickian diffusion behavior for both kenaf composites and hybrid composites.

  5. Fabrication of borassus fruit lignocellulose fiber/PP composites and comparison with jute, sisal and coir fibers.

    Science.gov (United States)

    Sudhakara, P; Jagadeesh, Dani; Wang, YiQi; Prasad, C Venkata; Devi, A P Kamala; Balakrishnan, G; Kim, B S; Song, J I

    2013-10-15

    Novel composites based on borassus fruit fine fiber (BFF) and polypropylene (PP) were fabricated with variable fiber composition (5, 10, 15 and 20 wt%) by injection molding. Maleated PP (MAPP) was also used as compatibilizer at 5 wt% for effective fiber-matrix adhesion. FTIR analysis confirms the evidence of a chemical bonding between the fiber and polymeric matrix through esterification in presence of MAPP. The tensile and flexural properties were found to increase with 15 and 10 wt% fiber loadings respectively, and decreased thereafter. Coir, jute and sisal fiber composites were also fabricated with 15 wt% fiber loading under the same conditions as used for BFF/PP composites. It was found that the mechanical properties of BFF (15 wt%)/PP composites were equivalent to jute/PP, sisal/PP and superior to coir/PP composites. Jute/PP and sisal/PP composites showed higher water absorption than BFF/PP and coir/PP composites. These results have demonstrated that the BFF/PP composites can also be an alternative material for composites applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Biotechnological application of enzymes for making paper pulp from green jute/kenaf

    NARCIS (Netherlands)

    Snijder, M.H.B.; Lips, S.J.J.; Maas, R.H.W.; Kamp, op den R.G.M.; Valk, van der H.C.P.M.; Jong, de E.

    2004-01-01

    The objectives of the tasks of Agrotechnology & Food Innovation (formerly ATO) in the project are: to determine at laboratory level the best conditions for producing high-yield pulps from whole jute for utilisation in wood containing papers; to test the potential of using recommended enzyme reci

  7. Kenaf: its prospect in Indonesia

    Directory of Open Access Journals (Sweden)

    Estri Laras Arumingtyas

    2015-09-01

    Full Text Available Kenaf is a plant fibre with high potential as source of material industry. Originally, kenaf usage in Indonesia is still limited only for jute sacks material, which is then displaced by plastic sacks production. While at international scale, kenaf has been started to be developed as pulp material, polypropylene composite, fibreglass replacement, and particle board for automotive industry materials. Indonesia is a tropical country this condition which suitable for kenaf cultivation. However, research reports about kenaf potential usages are still few and limited in domestic level only. Whereas, Indonesian kenaf plant information is needed by international community to understand comprehensively about the potential of tropical plants. This article aims to provide an overview about kenaf cultivation potential and usages in Indonesia as well as the possibility of future development. Key words: kenaf, fibre, prospect, potential.

  8. Proceedings: Sisal `93

    Energy Technology Data Exchange (ETDEWEB)

    Feo, J.T. [ed.

    1993-10-01

    This report contain papers on: Programmability and performance issues; The case of an iterative partial differential equation solver; Implementing the kernal of the Australian Region Weather Prediction Model in Sisal; Even and quarter-even prime length symmetric FFTs and their Sisal Implementations; Top-down thread generation for Sisal; Overlapping communications and computations on NUMA architechtures; Compiling technique based on dataflow analysis for funtional programming language Valid; Copy elimination for true multidimensional arrays in Sisal 2.0; Increasing parallelism for an optimization that reduces copying in IF2 graphs; Caching in on Sisal; Cache performance of Sisal Vs. FORTRAN; FFT algorithms on a shared-memory multiprocessor; A parallel implementation of nonnumeric search problems in Sisal; Computer vision algorithms in Sisal; Compilation of Sisal for a high-performance data driven vector processor; Sisal on distributed memory machines; A virtual shared addressing system for distributed memory Sisal; Developing a high-performance FFT algorithm in Sisal for a vector supercomputer; Implementation issues for IF2 on a static data-flow architechture; and Systematic control of parallelism in array-based data-flow computation. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  9. Rear Bumper Laminated In Jute Fiber With Polyester Resin.

    Directory of Open Access Journals (Sweden)

    Braga, R. A

    2014-09-01

    Full Text Available Today, a growing interest exists in the use of natural of fibers (sisal, coconut, banana, and jute, as reinforcement in composites. The aim of the present study is shows the use of jute fiber agglutinated with polyester resin in the automobile industry in the production of a rear bumper of hatch vehicle. A simplified mathematical model was used for evaluation of the flaw on trunk center cover submitted to dynamic loads. The traverse section of the referred bumper is simplified by a channel formation. This study shows that a rear bumper made using jute fiber agglutinated with polyester resin will be possible. The molded part obtained good visual characteristics, good geometric construction and surface without bubbles and imperfections in the fiber and resin composite. The mathematical model to failure criterion showed that the rear bumper in jute fiber will not resist to an impact equivalent at 4.0 km/h.

  10. Kenaf Fiber Composite in Automotive Industry: An Overview

    Directory of Open Access Journals (Sweden)

    F. Hassan

    2017-02-01

    Full Text Available Recently, natural fibers become an attractive to automotive industry as an alternative reinforcement for glass fiber reinforced thermoplastics. Additionally, natural fiber components in the automotive industry can provide numerous advantages compared to synthetic conventional such as reduction of weight and cost,  recyclability, renewability and in addition to eco-efficiency. Thus, the use of natural fibers in automotive industry has shown increasingly stringent environmental criteria. Furthermore, amongst grouped bast fibers such as flax, hemp, jute, ramie and kenaf; kenaf fiber seen as potential natural fiber with robust mechanical properties. Kenaf fiber had been explored to enhance desired mechanical properties as an automotive structural components. As usual, natural fibres have some issues and disadvantages when used as reinforcements for polymeric composites. Therefore, some modification performed on fibers such as chemical treatment was carried out. In addition, the use of a coupling agent and a plasticizer can also increase fiber-matrix adhesive bonding.

  11. Mechanical properties and surface chemistry of kenaf fiber for composite reinforcement – an insight into the retting process

    Science.gov (United States)

    Harnessing natural fibers to produce polymer composites requires processing of fibers from harvest to the dried state, which can then be dispersed in the polymer resin. Bast fibers are found in the bark layer of fibrous plants such as kenaf (Hibiscus cannabinus), jute (Corchorus olitorius), and flax...

  12. Bioenergy from sisal residues

    Energy Technology Data Exchange (ETDEWEB)

    Jungersen, G. [Dansk Teknologisk Inst. (Denmark); Kivaisi, A.; Rubindamayugi, M. [Univ. of Dar es Salaam (Tanzania, United Republic of)

    1998-05-01

    The main objectives of this report are: To analyse the bioenergy potential of the Tanzanian agro-industries, with special emphasis on the Sisal industry, the largest producer of agro-industrial residues in Tanzania; and to upgrade the human capacity and research potential of the Applied Microbiology Unit at the University of Dar es Salaam, in order to ensure a scientific and technological support for future operation and implementation of biogas facilities and anaerobic water treatment systems. The experimental work on sisal residues contains the following issues: Optimal reactor set-up and performance; Pre-treatment methods for treatment of fibre fraction in order to increase the methane yield; Evaluation of the requirement for nutrient addition; Evaluation of the potential for bioethanol production from sisal bulbs. The processing of sisal leaves into dry fibres (decortication) has traditionally been done by the wet processing method, which consumes considerable quantities of water and produces large quantities of waste water. The Tanzania Sisal Authority (TSA) is now developing a dry decortication method, which consumes less water and produces a waste product with 12-15% TS, which is feasible for treatment in CSTR systems (Continously Stirred Tank Reactors). (EG)

  13. Opportunities and threats to natural fibers in technical applications

    CSIR Research Space (South Africa)

    Anandjiwala, RD

    2013-06-01

    Full Text Available Natural fibers, such as flax, hemp, kenaf, coir, sisal and jute, are gaining increasing importance in automotive, aerospace, packaging, fiber-reinforced composites and other technical and industrial applications. This is due to the fact that natural...

  14. THE USE OF SISAL FIBRE AS REINFORCEMENT IN CEMENT BASED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Romildo Dias Tolêdo Filho

    1999-08-01

    Full Text Available ABSTRACT The inclusion of fibre reinforcement in concrete, mortar and cement paste can enhance many of the engineering properties of the basic materials, such as fracture toughness, flexural strength and resistance to fatigue, impact, thermal shock and spalling. In recent years, a great deal of interest has been created worldwide on the potential applications of natural fibre reinforced, cement based composites. Investigations have been carried out in many countries on various mechanical properties, physical performance and durability of cement based matrices reinforced with naturally occurring fibres including sisal, coconut, jute, bamboo and wood fibres. These fibres have always been considered promising as reinforcement of cement based matrices because of their availability, low cost and low consumption of energy. In this review, the general properties of the composites are described in relation to fibre content, length, strength and stiffness. A chronological development of sisal fibre reinforced, cement based matrices is reported and experimental data are provided to illustrate the performance of sisal fibre reinforced cement composites. A brief description on the use of these composite materials as building products has been included. The influence of sisal fibres on the development of plastic shrinkage in the pre-hardened state, on tensile, compressive and bending strength in the hardened state of mortar mixes is discussed. Creep and drying shrinkage of the composites and the durability of natural fibres in cement based matrices are of particular interest and are also highlighted. The results show that the composites reinforced with sisal fibres are reliable materials to be used in practice for the production of structural elements to be used in rural and civil construction. This material could be a substitute asbestos-cement composite, which is a serious hazard to human and animal health and is prohibited in industrialized countries. The

  15. Proceedings of the second SISAL users` conference

    Energy Technology Data Exchange (ETDEWEB)

    Feo, J T; Frerking, C; Miller, P J [eds.

    1992-12-01

    This report contains papers on the following topics: A sisal code for computing the fourier transform on S{sub N}; five ways to fill your knapsack; simulating material dislocation motion in sisal; candis as an interface for sisal; parallelisation and performance of the burg algorithm on a shared-memory multiprocessor; use of genetic algorithm in sisal to solve the file design problem; implementing FFT`s in sisal; programming and evaluating the performance of signal processing applications in the sisal programming environment; sisal and Von Neumann-based languages: translation and intercommunication; an IF2 code generator for ADAM architecture; program partitioning for NUMA multiprocessor computer systems; mapping functional parallelism on distributed memory machines; implicit array copying: prevention is better than cure ; mathematical syntax for sisal; an approach for optimizing recursive functions; implementing arrays in sisal 2.0; Fol: an object oriented extension to the sisal language; twine: a portable, extensible sisal execution kernel; and investigating the memory performance of the optimizing sisal compiler.

  16. Kenaf and bioremediation in Azerbaijan

    Science.gov (United States)

    Scientists, businesses, and the Azerbaijan government are bringing together two ancient natural resources, petroleum and kenaf (Hibiscus cannabinus L.), to create a balance between economic growth and environmental reclamation. Oil and kenaf have been used for over 2000 years. Although oil continu...

  17. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    Science.gov (United States)

    Dittenber, David B.

    theory, finite element method, and Castigliano's method in unidirectional tension and compression, but are less accurate for the more bond-dependent flexural and shear properties. With the acknowledged NFRP matrix bonding issues, the over-prediction of these theoretical models indicates that the flexural stiffness of the kenaf composite may be increased by up to 40% if a better bond between the fiber and matrix can be obtained. The sustainability of NFRPs was examined from two perspectives: environmental and socioeconomic. While the kenaf fibers themselves possess excellent sustainability characteristics, costing less while possessing a lesser environmental impact than the glass fibers, the vinyl ester resin used in the composites is environmentally hazardous and inflated the cost and embodied energy of the composite SIPs. Consistent throughout all the designs was a correlation between the respective costs of the raw materials and the respective environmental impacts. The socioeconomic study looked at the sustainability of natural fiber reinforced composite materials as housing materials in developing countries. A literature study on the country of Bangladesh, where the fibers in this study were grown, showed that the jute and kenaf market would benefit from the introduction of a value-added product like natural fiber composites. The high rate of homeless and inadequately housed in Bangladesh, as well as in the US and throughout the rest of the world, could be somewhat alleviated if a new, affordable, and durable material were introduced. While this study found that natural fiber composites possess sufficient mechanical properties to be adopted as primary structural members, the two major remaining hurdles needing to be overcome before natural fiber composites can be adopted as housing materials are the cost and sustainability of the resin system and the moisture resistance/durability of the fibers. (Abstract shortened by UMI.)

  18. Aqueous extraction of pectin from sisal waste.

    Science.gov (United States)

    Santos, Jener David G; Espeleta, Alexandre F; Branco, Alexsandro; de Assis, Sandra A

    2013-02-15

    In this work, sisal waste was used as a source of pectin. Sisal is known worldwide as a source of hard fibres, and Brazil is the largest producer of sisal, producing more than 246,000 tonnes. However, the process of removing the fibres of the sisal leaf generates 95% waste. This study investigated the effect of the liquid/solid ratio (%), time (min), and temperature (°C) on the yield of the pectin obtained from sisal waste by attractive environmentally friendly process. A statistical Box-Behnken design was applied to determine the important effects and interactions of these independent variables on the yield of pectin, the dependent variable. Significant models were obtained. The yield of the extracted pectin ranged from 4.61 to 19.2%. The conditions that produced the highest yield (19.2%) were a temperature of 85 °C, extraction time of 60 min and a liquid/solid ratio of 2%.

  19. Byssinosis among jute mill workers.

    Science.gov (United States)

    Chattopadhyay, Bhaskar P; Saiyed, Habibullah N; Mukherjee, Ashit K

    2003-07-01

    Although byssinosis in jute mill workers remains controversial, studies in a few jute mills in West-Bengal, India, revealed typical byssinotic syndrome associated with acute changes in FEV1 on the first working day after rest. The present study on 148 jute mill workers is reported to confirm the occurrence of byssinosis in jute mill workers. Work related respiratory symptoms; acute and chronic pulmonary function changes among exposed workers were studied on the basis of standard questionnaire and spirometric method along with dust level, particle mass size distributions and gram-negative bacterial endotoxins. The pulmonary function test (PFT) changes were defined as per the recommendation of World Health Organization and of Bouhys et al. Total dust in jute mill air were monitored by high volume sampling, technique (Staplex, USA), Andersen cascade impactor was used for particle size distribution and personal exposure level was determined by personal sampler (Casella, London). Endotoxin in airborne jute dust was analysed by Lymulus Amebocyte Lysate (LAL) "Gel Clot" technique. Batching is the dustiest process in the mill. Size distribution showed that about 70-80% dust in diameter of jute mill workers are also suffering from byssinosis as observed in cotton, flask and hemp workers.

  20. JUTE IN TECHNICAL TEXTILES

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Againstthe backdrop of growing global concern for environment,jute being a naturalfibre can certainly be considered as a potential candidatefor manv ofthe eco-friendlv productsthat will replace maioritv oftodav's popular products posing severethreatsto our environment.An area which offers new possibilitiesfor iute (and iute hasthe potential for meetingthe challenge)isthegrowinq marketfor natural fibresforindustrial applications providedjute products are ableto meet stringent quality specifications andthereisimprovement in quality/production of lighter and betteriutefabrics.Atthe sametimethereis a needto create newer market with hinnovative products,adaptation of new technologies for use of iute in technicaltextiies,composite mate rials and other industrial applications.

  1. Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp.

    Science.gov (United States)

    Ibarra, David; Köpcke, Viviana; Larsson, Per Tomas; Jääskeläinen, Anna-Stiina; Ek, Monica

    2010-10-01

    A sequence of treatments consisting of an initial xylanase treatment followed by cold alkaline extraction and a final endoglucanase treatment was investigated as a process for upgrading non-wood paper-grade pulps to dissolving-grade pulps for viscose production. Five commercial dried bleached non-wood soda/AQ paper pulps, from flax, hemp, sisal, abaca, and jute, were studied for this purpose. Commercial dried bleached eucalyptus dissolving pulp was used as reference sample. Sisal pulp showed the highest improvement in Fock's reactivity, reaching levels nearly as high or even higher than that of eucalyptus dissolving pulp (65%), and a low hemicellulose content (3-4%) when was subjected to this sequence of treatments. The viscosity, however, decreased considerably. A uniform and narrow molecular weight distribution was observed by size exclusion chromatography. (13)C nuclear magnetic resonance spectroscopy and Raman microspectroscopy revealed that the cellulose structure consisted of cellulose I.

  2. Jute:Change From Bags to Fashion

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Many people may be unfamiliar with jute,but everyone knows jute bag and hemp rope.For a long time,jute fiber only could be made into rough packing materials;it is difficult to be used widely for its characteristics.

  3. Effect of Sisal Fiber Surface Treatment on Properties of Sisal Fiber Reinforced Polylactide Composites

    Directory of Open Access Journals (Sweden)

    Zhaoqian Li

    2011-01-01

    Full Text Available Mechanical properties of composites are strongly influenced by the quality of the fiber/matrix interface. The objective of this study was to evaluate the mechanical properties of polylactide (PLA composites as a function of modification of sisal fiber with two different macromolecular coupling agents. Sisal fiber reinforced polylactide composites were prepared by injection molding, and the properties of composites were studied by static/dynamic mechanical analysis (DMA. The results from mechanical testing revealed that surface-treated sisal fiber reinforced composite offered superior mechanical properties compared to untreated fiber reinforced polylactide composite, which indicated that better adhesion between sisal fiber and PLA matrix was achieved. Scanning electron microscopy (SEM investigations also showed that surface modifications improved the adhesion of the sisal fiber/polylactide matrix.

  4. Kenaf Fibre Crop for Bioeconomic Industrial Development

    NARCIS (Netherlands)

    Lips, S.J.J.; Dam, van J.E.G.

    2013-01-01

    Kenaf (Hibiscus cannabinus L.) is a high yielding fibre crop that can be utilised as raw material in many industrial applications ranging from traditional fabrics,
    yarns and ropes to new applications in building materials, composites and lightweight car parts. Kenaf competes in some applications

  5. Kenaf new insights from the biokenaf project

    CERN Document Server

    Monti, Andrea

    2013-01-01

    Kenaf is an annual  crop that can provide fibres for several industrial applications as well as raw material for energy exploitation. This book provides a global picture of state of the art research and developments with Kenaf from Asia, USA and Australia.

  6. Kenaf Fibre Crop for Bioeconomic Industrial Development

    NARCIS (Netherlands)

    Lips, S.J.J.; Dam, van J.E.G.

    2013-01-01

    Kenaf (Hibiscus cannabinus L.) is a high yielding fibre crop that can be utilised as raw material in many industrial applications ranging from traditional fabrics,
    yarns and ropes to new applications in building materials, composites and lightweight car parts. Kenaf competes in some applications

  7. Properties of kenaf/polypropylene composites

    Science.gov (United States)

    Roger M. Rowell; Anand. Sanadi; Rod. Jacobson; Daniel F. Caulfield

    1999-01-01

    Combining kenaf fiber with other resources provides a strategy for producing advanced composite materials that take advantage of the properties of both types of resources. It allows the scientist to design materials based on end-use requirements within a framework of cost, availability, recyclability, energy use, and environmental considerations. Kenaf fiber is a...

  8. Rigid polyurethane and kenaf core composite foams

    Science.gov (United States)

    Rigid polyurethane foams are valuable in many construction applications. Kenaf is a bast fiber plant where the surface stem skin provides bast fibers whose strength-to-weight ratio competes with glass fiber. The higher volume product of the kenaf core is an under-investigated area in composite appli...

  9. Charcoal from jute sticks: an agricultural waste

    Energy Technology Data Exchange (ETDEWEB)

    Banergee, S.K.

    1980-07-01

    Charcoal is conventionally obtained by the carbonization of hardwoods. However, recent experiments carried out at the Jute Technological Research Laboratory (Indian Council of Agricultural Research), Calcutta, India, have indicated that a good quality smokeless charcoal in chip form could be obtained by low temperature carbonization of jute sticks. Jute stick is the core portion of the jute plant left after the extraction of the jute fiber. Whereas the fiber portion has great commerical value, the stick portion is considered to be an agricultural waste. The actual amount of jute sticks, which is annually renewable product, is about 2-3 million tonnes a year. Due to its abundance, ready availability and cheapness, it is anticipated that jute sticks will be a more economical source for making charcoal for fuel and chemical carbon than the hardwood resources. The latter take many years to grow to maturity and need extensive reforestation plans.

  10. Sapogeninas esteroídicas em sisal

    OpenAIRE

    Marco Antonio Teixeira Zullo; Anisio Azzini; Antonio Luiz de Barros Salgado; Dirceu Ciaramello

    1989-01-01

    Foram determinados os teores de sapogeninas esteroídicas hecogenina e tigogenina em folhas secas de sisal (Agave sisalana) e dos híbridos de A. amaniensis x A. Angustifolia, obtidos no Instituto Agronômico. Esses híbridos mostraram maiores teores de sapogeninas, 220-480mg/100g, do que o sisal, 140 ± 28mg/100g, assim como maiores teores de tigogenina (148-217mg/100g). Apenas o híbrido 003B apresentou teor de hecogenina (99 ± 16mg/100g) significativamente maior que o encontrado no...

  11. Dissolving pulp from jute stick.

    Science.gov (United States)

    Matin, Mhafuza; Rahaman, M Mostafizur; Nayeem, Jannatun; Sarkar, Mamon; Jahan, M Sarwar

    2015-01-22

    Jute stick is woody portion of jute plant, which remain as leftover after extracting bast fibre. Presently, it is being used for fencing in the rural area. In this investigation, biorefinery concept was initiated in producing dissolving pulp from jute stick by pre-hydrolysis kraft process. At 170°C for 1h of pre-hydrolysis, 70% of hemicelluloses was dissolved with negligible loss of α-cellulose. At this condition, 75% of dissolved sugars in the pre-hydrolysis liquor were in the oligomeric form. The pre-hydrolysed jute stick was subsequently pulped by kraft process with the variation of active alkali. The pulp yield was 36.2% with kappa number 18.5 at the conditions of 16% active alkali for 2h of cooking at 170°C. Final pulp was produced with 92% α-cellulose and 89% brightness after D0EpD1EpD1 bleaching. The produced dissolving pulp can be used in rayon production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Mechanism of Kenaf Retting Using Aerobes

    Institute of Scientific and Technical Information of China (English)

    卢士森; 陈季华; 黄秀宝

    2001-01-01

    The experimental results showed that the duration of microbial retting processing of kenaf fibers by using aerobic microbe was four times shorter than that by using anaerobic microbe. The residual gum percentage,breaking strength, breaking elongation and linear density of aerobic retted kenaf bundle fibers did not show significantly difference with that of anaerobic retted kenaf bundle fibers by ANOVA-Tukey's studentized test at a = 5% except for the softness. The bioenergetic principle and the calculation of the amount of ATP produced during the decomposition processing of kenaf gums were used to explain why the retting duration in the case of using aerobic microbes was much shorter than that of using anaerobic microbes.

  13. Flexural behavior of Sisal/Castor oil-Based Polyurethane and Sisal/Phenolic Composites

    Directory of Open Access Journals (Sweden)

    Andressa Cecília Milanese

    2012-04-01

    Full Text Available Natural fibers used as reinforcement of polymeric composites are interesting research subjects in polymer technology. Nowadays, these materials are being considered as a way to reinforce timber structures improvement. Fibers with larger structural applications are glass and carbon fibers, however, the use of natural fibers is an economic alternative and present many advantages such as biodegradability and having its origin from a renewable source. Castor oil, a triglyceride vegetable with hydroxyl groups, was reacted with 4,4' methylene diphenyl diisocyanate (MDI to produce the polyurethane matrix. The composites were prepared by compress molding at room temperature using woven sisal fiber as a reinforcement, with and without thermal treatment (at 60 ºC for 72 hours to the fabrics before the composites molding process. The present paper presents the preparation and a flexural caracterization of sisal/polyurethane and sisal/phenolic composites by using the three-point bending. The sisal fibers moisture content influence on the flexural behaviour was also analyzed. Experimental results showed a higher stiffness for the sisal/phenolic composite (11.2 MPa followed by the sisal/polyurethane (3.7 MPa, respectively.

  14. Sapogeninas esteroídicas em sisal Steroidal sapogenins in sisal

    Directory of Open Access Journals (Sweden)

    Marco Antonio Teixeira Zullo

    1989-01-01

    Full Text Available Foram determinados os teores de sapogeninas esteroídicas hecogenina e tigogenina em folhas secas de sisal (Agave sisalana e dos híbridos de A. amaniensis x A. Angustifolia, obtidos no Instituto Agronômico. Esses híbridos mostraram maiores teores de sapogeninas, 220-480mg/100g, do que o sisal, 140 ± 28mg/100g, assim como maiores teores de tigogenina (148-217mg/100g. Apenas o híbrido 003B apresentou teor de hecogenina (99 ± 16mg/100g significativamente maior que o encontrado no sisal comum (26 ± 3mg/100g.The hecogenin and tigogenin contents were determined in dried leaves of sisal (Agave sisalana and of the hybrids of A. amaniensis x A. angustifolía, obtained in the Experimental Station of the Instituto Agronômico, Campinas, State of São Paulo, Brazil. The hybrids showed higher sapogenin contents (220-480mg/100g than sisal (140 ± 28mg/100g, as well as higher tigogenin content (148-217mg/100g. The hybrid 003B was the only one that showed significantly higher hecogenin content (99 ± 16mg/100g than sisal (26 ± 3mg/100g.

  15. Reinforced Sisal Fiber with Ferric Nitrate Composites

    Directory of Open Access Journals (Sweden)

    Asif Jehan

    2015-06-01

    Full Text Available Ferric oxide synthesized through annealing route. The present research work deals with ferrite composite prepared using chemical reactions. Ferric nitrates and ammonium chloride doped with sisal fiber has been prepared. The structural behavior of aluminum oxide was studied in XRD, SEM, TEM, FTIR & dielectric measurement. This behavior showed ferrite nature of the sample.

  16. Mechanical Properties of Natural Jute Fabric/Jute Mat Fiber Reinforced Polymer Matrix Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Elsayed A. Elbadry

    2012-01-01

    Full Text Available Recycled needle punched jute fiber mats as a first natural fiber reinforcement system and these jute mats used as a core needle punched with recycled jute fabric cloths as skin layers as a second natural fiber reinforcement system were used for unsaturated polyester matrix composites via modifying the hand lay-up technique with resin preimpregnation into the jute fiber in vacuum. The effect of skin jute fabric on the tensile and bending properties of jute mat composites was investigated for different fiber weight contents. Moreover, the notch sensitivity of these composites was also compared by using the characteristic distance do calculated by Finite Element Method (FEM. The results showed that the tensile and flexural properties of jute mat composites increased by increasing the fiber weight content and by adding the jute fabric as skin layers. On the other hand, by adding the skins, the characteristic distance decreased and, therefore, the notch sensitivity of the composites increased. The fracture behavior investigated by SEM showed that extensive fiber pull-out mechanism was revealed at the tension side of jute mat composites under the bending load and by adding the jute cloth, the failure mode of jute mat was changed to fiber bridge mechanism.

  17. Flexural creep behaviour of jute polypropylene composites

    Science.gov (United States)

    Chandekar, Harichandra; Chaudhari, Vikas

    2016-09-01

    Present study is about the flexural creep behaviour of jute fabric reinforced polypropylene (Jute-PP) composites. The PP sheet and alkali treated jute fabric is stacked alternately and hot pressed in compression molding machine to get Jute-PP composite laminate. The flexural creep study is carried out on dynamic mechanical analyzer. The creep behaviour of the composite is modeled using four-parameter Burgers model. Short-term accelerated creep testing is conducted which is later used to predict long term creep behaviour. The feasibility of the construction of a master curve using the time-temperature superposition (TTS) principle to predict long term creep behavior of unreinforced PP and Jute-PP composite is investigated.

  18. (Enzyme use in the Jute Industry)

    Energy Technology Data Exchange (ETDEWEB)

    Niyogi, S.K.

    1991-03-15

    This report covers my official visit to the Indian Jute Industries' Research Association (IJIRA), Calcutta, India. The visit lasted a little over two weeks, including two trips to three jute mills outside Calcutta and a one-day visit to the library of the Indian Institute of Chemical Biology, Calcutta. The report describes the applications of enzymes (derived from a moldy wheat bran extract) in upgrading the jute fiber and in enhancing the quality of tamarind kernel powder used for sizing of jute. The various methodological developments in these processes are discussed in detail along with suggestions for possible improvements. The report also describes the visits to the jute mills where enzyme applications are being made. Interactions with the IJIRA research staff are described in detail. My contributions to the Project are described along with specific recommendations for future research.

  19. HARD RUBBER COMPOSITES BERPENGUAT SERAT KENAF UNTUK PANEL

    Directory of Open Access Journals (Sweden)

    Agus Hariyanto

    2016-08-01

    Full Text Available Tujuan penelitian ini adalah menyelidiki pengaruh variasi sulfur 25 dan 30 phr (per hundred rubber komposit berpenguat serat kenaf dan peningkatan kekuatan tarik, bermatrix hard natural rubber (Ebonite.               Bahan utama penelitian adalah compount natural rubber/ebonite, serta kenaf acak. Komposit dibuat dengan metode cetak tekan panas (Hot Press Mold. Komposit tersusun terdiri dari serat kenaf dengan ebonite. Fraksi berat serat kenaf 8%. Spesimen dan prosedur pengujian tarik mengacu pada standar ASTM D 638-02.               Hasil penelitian ini menunjukkan pengaruh variasi sulfur 25 dan 30 phr terhadap kekuatan tarik pada komposit berpenguat serat kenaf meningkat. Kekuatan tarik komposit berpenguat serat kenaf sebesar 12 dan 29 Mpa. Kekuatan tarik memiliki harga yang paling optimum pada komposit berpenguat serat kenaf dengan variasi sulfur 30 phr.

  20. Screening life cycle assessment study of a sisal fibre reinforced micro-concrete structural insulated panel

    CSIR Research Space (South Africa)

    Ampofo-Anti, N

    2013-12-01

    Full Text Available requirements of fibre processing are two weak points in the cradle-to-gate life cycle of sisal. Further research should focus on sisal farming on non-arable; development of sisal cultivars which will maximise the sisal fibre yield per hectare; and conversion...

  1. "Steiner trees" between cell walls of sisal

    Institute of Scientific and Technical Information of China (English)

    LI GuanShi; YIN YaJun; LI Yan; ZHONG Zheng

    2009-01-01

    Through careful analysis on the cross-section of sisal fibers,it is found that the middle lamellae between the cell walls have clear geometric characteristics:between the cell walls of three neighboring cells,the middle lamellae form a three-way junction with 120°symmetry. If the neighboring three-way junctions are connected,a network of Steiner tree with angular symmetry and topological invariability is formed. If more and more Steiner trees are connected,a network of Steiner rings is generated. In another word,idealized cell walls and the middle lamellae are dominated by the Steiner geometry. This geometry not only depicts the geometric symmetry,the topological invariability and minimal property of the middle lamellae,but also controls the mechanics of sisal fibers.

  2. Analysis of Production and Sales Situation of Sisal Fiber and Its Products in China

    Institute of Scientific and Technical Information of China (English)

    Siqiang; ZHONG; Shuchang; HUANG; Duiwu; HUANG; Dongqing; LIAO; Xuemei; LIU

    2013-01-01

    Based on results of previous studies,through investigations,the status quo,main advantages and disadvantages of using small hand-power scutchers and large-scale automatic sisal production lines to process sisal fiber were summarized and analyzed; the traditional uses and latest products of sisal fiber were studied,especially the comprehensive utilization of byproducts produced during sisal fiber processing as well as the broad prospects of new sisal products.

  3. Identification and characterization of jute LTR retrotransposons:

    Science.gov (United States)

    Ahmed, Salim; Shafiuddin, MD; Azam, Muhammad Shafiul; Islam, Md. Shahidul; Ghosh, Ajit

    2011-01-01

    Long Terminal Repeat (LTR) retrotransposons constitute a significant part of eukaryotic genomes and play an important role in genome evolution especially in plants. Jute is an important fiber crop with a large genome of 1,250 Mbps. This genome is still mostly unexplored. In this study we aimed at identifying and characterizing the LTR retrotransposons of jute with a view to understanding the jute genome better. In this study, the Reverse Transcriptase domain of Ty1-copia and Ty3-gypsy LTR retrotransposons of jute were amplified by degenerate primers and their expressions were examined by reverse transcription PCR. Copy numbers of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy elements were determined by dot blot analysis. Sequence analysis revealed higher heterogeneity among Ty1-copia retrotransposons than Ty3-gypsy and clustered each of them in three groups. Copy number of RT genes in Ty1-copia was found to be higher than that of Ty3-gypsy elements from dot blot hybridization. Cumulatively Ty1-copia and Ty3-gypsy may constitute around 19% of the jute genome where two groups of Ty1-copia were found to be transcriptionally active. Since the LTR retrotransposons constitute a large portion of jute genome, these findings imply the importance of these elements in the evolution of jute genome. PMID:22016842

  4. THE INVESTIGATION OF FRACTURE PROPERTIES OF SISAL TEXTILE REINFORCED POLYMERS

    Institute of Scientific and Technical Information of China (English)

    LiYan

    2004-01-01

    Sisal fibre is a kind of natural fibre which possesses high specific strength and modulus, low price, recycalability, easy availability in some countries. Using sisal fibre as reinforcement to make sisal fibre reinforced polymer composites has aroused great interest of materials scientists and engineers all over the world. Many researches have been done in recent years which include the study of mechanical properties of the composites, finding an efficient way to improve the interfacial bonding properties between sisal fibre and polymeric matrices and fibre surface treatment on the mechanical performance of the composites. Though many researches on sisal fibre reinforced composites have been done so far, none deals with the fracture properties of this novel composite which is crucial for the actual application of this material. In this research, Charpy impact test and compact tension test were employed to study the fracture toughness of sisal fibre reinforced vinyl ester and epoxy composites. The effect of fibre surface treatment on the fracture properties of these composites by permanganate and silane was evaluated. The initiation and propagation of the crack were observed with optical microscopy (OM). The fracture morphologies revealed by OM explains the fracture phenomenon of sisal fibre reinforced composites.

  5. Effect of Jute Proportion on the Color Strength Value of Jute/Cotton Union Fabric

    Directory of Open Access Journals (Sweden)

    R. Prathiba Devi, R. Rathinamoorthy, Dr. J. Jeyakodi Moses

    2013-08-01

    Full Text Available The dye ability of the Jute/Cotton union fabric with cotton yarn in the warp and Jute: Cotton yarns in the weft direction were studied with different percentage of Jute/Cotton blend in weft direction. The K/S and colour tristimulus values of (reactive dye the different formulations (Jute/cotton: 30:70, 40:60, 50:50 and 70:30 after and before the softening finish were studied. The experiment focuses on the effect of jute content on the colour strength and fastness properties of finished fabric. The result reveals that, the colour strength value (K/S was higher in the case of fabric proportion with more jute (70:30 jute/cotton. The finishingprocess has significant influence on the colour strength value (p<0.05. The fastness properties including light, washing, rubbing and perspiration of dyed fabrics were also satisfactory. To analyse the effect of jute proportion on colour strength and the effect of finishing on colour value, ANOVA was performed.

  6. Jute geotextiles and their applications in civil engineering

    CERN Document Server

    Sanyal, Tapobrata

    2017-01-01

    This book presents a first-of-its-kind exposition on the emerging technology of jute fibre geotextiles. The book covers the characteristics of jute fibre and jute yarns, types and functions of jute geotextiles, and the mechanism of control of surficial soil with jute geotextiles. The content also includes applications such as the mechanisms of functioning of jute geotextiles in strengthening road sub-grade and controlling river bank erosion, stabilization of earthen embankments, management of settlement of railway tracks, and consolidation of soft soil by use of pre-fabricated vertical jute drains (PVJD). Geotextile standards, properties and test methods, variants of jute geotextiles, economical and environmental advantages in different applications are covered along with a few case studies. A chapter on soil basics is included to enable clearer understanding of soil mechanisms. The book can be used as a reference work or as primary or supporting text for graduate and professional coursework. It will also pro...

  7. Profiling application potential for alkali treated sisal fiber ...

    African Journals Online (AJOL)

    ATHARVA

    In this study, the cellulosic fiber sisal has been modified with alkali solution to impart ... The volume fraction also, has profound influence on fiber-matrix interface .... bonding due to incompatibility or poor surface wetting of hydrophilic fiber.

  8. Sooty Mould Disease Caused by Leptoxyphium kurandae on Kenaf.

    Science.gov (United States)

    Choi, In-Young; Kang, Chan-Ho; Lee, Geon-Hwi; Park, Ji-Hyun; Shin, Hyeon-Dong

    2015-09-01

    In September 2013, we discovered sooty mould growing on kenaf with the extrafloral nectaries in Iksan, Korea and identified the causative fungus as Leptoxyphium kurandae based on morphological characteristics and phylogenetic analyses. This is the first report of sooty mould caused by L. kurandae on kenaf in Korea and globally.

  9. Properties of kenaf from various cultivars, growth and pulping conditions

    Science.gov (United States)

    James S. Han; Ernest S. Miyashita; Sara J. Spielvogel

    1999-01-01

    The physical properties of kenaf offer potential as an alternative raw material for the manufacture of paper. Investigations to date have not determined whether core and fiber should be pulped together or separately. Kenaf bast and core fibers of different cultivars were pulped under various kraft pulping conditions and physical properties: density, Canadian Standard...

  10. Rigid polyurethane foam – kenaf core composites for structural applications

    Science.gov (United States)

    Kenaf (Hibiscus cannabinus L.) is a fast growing summer annual crop with numerous commercial applications (fibers, biofuels, bioremediation, paper pulp, building materials, cover crops, and livestock forages). The stalks of the kenaf plants contain two distinct fiber types, bast and core fibers. The...

  11. Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites

    Energy Technology Data Exchange (ETDEWEB)

    Sever, K. [Department of Mechanical Engineering, Dokuz Eylul University, 35100, Izmir (Turkey); Erden, S. [Department of Mechanical Engineering, Ege University, 35100, Izmir (Turkey); Guelec, H.A. [Department of Food Engineering, Yuzuncu Yil University, 65250, Van (Turkey); Seki, Y., E-mail: yoldas.seki@deu.edu.tr [Department of Chemistry, Dokuz Eylul University, 35160, Buca, Izmir (Turkey); Sarikanat, M. [Department of Mechanical Engineering, Ege University, 35100, Izmir (Turkey)

    2011-09-15

    Highlights: {yields} To improve mechanical properties of jute/HDPE composites, jute fabric was subjected to oxygen plasma treatment. {yields} LF and RF plasma systems at different plasma powers were used for treatment. {yields} In LF system, interlaminar shear strength, tensile and flexure strengths showed a tendency to increase at plasma powers of 30 and 60 W. - Abstract: The surfaces of jute fabrics have been oxygen plasma treated using low frequency (LF) and radio frequency (RF) plasma systems at different plasma powers (30, 60, and 90 W) for 15 min to improve the mechanical properties of jute fiber/HDPE (high density polyethylene) composites. The effect of oxygen plasma treatment on the functional groups of jute fibers was examined by X-ray photoelectron spectroscopy (XPS) analysis. Effects of oxygen plasma treatments on the mechanical properties of jute fiber/HDPE composites were investigated by means of tensile, flexure, and short-beam shear tests. Surface morphology of the fractured surfaces of composites was observed by using scanning electron microscopy (SEM). When RF plasma system was used, the interlaminar shear strength (ILSS) values of the composites increased with increasing plasma power. Similarly, in LF plasma system, ILSS values showed a tendency to increase at plasma powers of 30 and 60 W. However, increasing of plasma power to 90 W decreased the ILSS value of jute/HDPE composite. Also, tensile and flexure strengths of the composites showed similar trends.

  12. Some aspects of acetylation of untreated and mercerized sisal cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Ciacco, Gabriela T.; Morgado, Daniella Lury; Frollini, Elisabete [Universidade de Sao Paulo, Sao Carlos (USP), SP (Brazil). Inst. de Quimica; Possidonio, Shirley; El Seoud, Omar A. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica

    2010-07-01

    We report here on some aspects of the acetylation in LiCl/N,N-dimethylacetamide, DMAc, of untreated and mercerized sisal cellulose, hereafter designated as sisal and M-sisal, respectively. Fiber mercerisation by NaOH solution has resulted in the following changes: 29.9% decrease in the index of crystallinity; 16.2% decrease in the degree of polymerization and 9.3% increase in a-cellulose content. A light scattering study of solutions of sisal, M-sisal, microcrystalline and cotton celluloses in LiCl/DMAc has shown that they are present as aggregates, with (an apparent) average aggregation numbers of 5.2, 3.2, 9.8, and 35.3, respectively. The presence of these aggregates affects the accessibility of cellulose during its functionalization. A study of the evolution of the degree of substitution, DS, of cellulose acetate as a function of reaction time showed an increase up to 5 h, followed by a decrease at 7 h. Possible reasons for this decrease are discussed. As expected, M-sisal gave a higher DS that its untreated counterpart. (author)

  13. Thermomechanical properties of the silanized-kenaf/polystyrene composites

    Directory of Open Access Journals (Sweden)

    2009-10-01

    Full Text Available In order to improve the poor interfacial adhesion of the kenaf fiber and polystyrene (PS in their composite material, the surface of the kenaf fiber was modified using a synthesized polymeric coupling agent to promote adhesion with PS matrix. The dynamic thermo-mechanical properties of the composite composed of modified kenaf fiber and PS were also investigated. The polymeric coupling agent treatment of the kenaf fiber increased the fiber-matrix interaction through a condensation reaction between alkoxysilane and hydroxyl groups of kenaf cellulose. DMA (Dynamic Mechanical Thermal Analysis results showed that the modified fiber composites have higher E′ and lower tanδ than those with untreated fiber indicating that a greater interfacial interaction between the matrix resin and the fiber. It was also found that the storage modulus increases in proportion with the Si/C ratio on the fiber surface.

  14. Recycling of jute wastes using pulpzyme enzyme: Recikliranje odpadkov jute z uporabo encima pulpzima:

    OpenAIRE

    Dadashian, Fatemeh; Mohajershojaei, Khashayar

    2014-01-01

    In this paper, enzymatic treatment of jute wastes using pulpzyme was studied. The jute wastes from the machine-made carpet-production factories were used as a model. The effects of several parameters such as enzyme concentration, pH and time on the recycling process were evaluated. The optimum enzyme concentration, reaction time and pH for the recycling of jute wastes were 1.5 %, 2 h and 8, respectively. The results showed that the enzymatic process using pulpzyme was an effective method to h...

  15. Life cycle assessment of sisal fibre – Exploring how local practices can influence environmental performance

    NARCIS (Netherlands)

    Broeren, Martijn L M; Dellaert, Stijn N C; Cok, Benjamin; Patel, Martin K.; Worrell, Ernst; Shen, Li

    2017-01-01

    Sisal fibre can potentially replace glass fibre in natural fibre composites. This study focuses on the environmental performance of sisal fibre production by quantifying the greenhouse gas (GHG) emissions and energy use of producing sisal fibre in Tanzania and Brazil using life cycle assessment

  16. Enzymatic hydrophobization of jute fabrics and its effect on the mechanical and interfacial properties of jute/PP composites

    Directory of Open Access Journals (Sweden)

    A. Dong

    2016-05-01

    Full Text Available In this work, a hydrophobic surface of lignocellulosic jute fabric was achieved via the laccase-mediated grafting of octadecylamine (OA on lignin moieties of jute aiming to improve the interfacial compatibility with the hydrophobic polypropylene (PP resins in the fiber-reinforced composites. Firstly, the surface and total elemental compositions of the modified jute fabrics were investigated by X-ray photoelectron spectroscopy (XPS and elemental analysis, respectively. The increases in the surface C/O ratio and total nitrogen content of jute fabrics after the laccase/OA treatment indicated that OA molecules were successfully grafted onto the jute surface mediated by laccase. The grafting percentage of OA on jute fabrics was 0.96%. The surface hydrophobicity of jute fabrics with static contact angle of 112.5°, advancing angle of 116.4° and receding angle of 42.7° supported the presence of nonpolar alkyl chains on the jute surface after the laccase-mediated OA-grafting. The tensile strength, tensile modulus as well as the elongation at break of the hydrophobized jute/PP composites were increased. The fracture surface of the composites became neat and the jute fibers on the section surface were surrounded by PP resins closely, which suggested better interfacial adhesion between the jute reinforcement and the PP resin.

  17. Late Jute seed production in cropland agroforestry system

    Directory of Open Access Journals (Sweden)

    Kazi Noor-E-Alam Jewel

    2015-12-01

    Full Text Available Farmers were not self-sufficient in jute seed production and cultivation to avoid use exotic jute seed from different resources. Though the conventional method of jute seed production was not enough to meet the demand of farmers because of shrinkage of jute seed production land. So, late jute seed production technique was applied in agroforestry systems at both established and newly developed orchards. The study was conducted in the selected three sites of Rangpur, Dinajpur and Faridpur. Both White (Corchorus capsularis L.cv. CVL-1 and Tossa (two popular cultivars, eg., Corchorus olitorius L. cv. O-9897, and cv. O-72 varieties were used for to evaluate the late jute seed production in cropland agroforestry in 2011- 2013. It was observed that 600 kg ha-1 to 725 kg ha-1 of jute seed was produced in different types of orchard plantation. Seeds from Litchi orchard showed the higher fiber yield (1051.11, 2511.11 and 3555.56 kg ha-1 at Rangpur, Dinajpur and Faridpur, respectively than the mango orchard. Nutrient contents of soil in three sits were improved significantly due to the cultivation of late jute seed production. Moreover, late jute seed production in early stages of orchard plantation was more profitable and late jute can be produced economically for five to seven years depending on the plantations type and age.

  18. Parallel functional programming in Sisal: Fictions, facts, and future

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, J.R.

    1993-07-01

    This paper provides a status report on the progress of research and development on the functional language Sisal. This project focuses on providing a highly effective method of writing large scientific applications that can efficiently execute on a spectrum of different multiprocessors. The paper includes sections on the language definition, compilation strategies, and programming techniques intended for readers with little or no background with Sisal. The section on performance presents our most recent results on execution speed for shared-memory multiprocessors, our findings using Sisal to develop codes, and our experiences migrating the same source code to different machines. For large programs, the execution performance of Sisal (with minimal supporting advice from the programmer) usually exceeds that of the best available automatic, vector/parallel Fortran compilers. Our evidence also indicates that Sisal programs tend to be shorter in length, faster to write, and dearer to understand than equivalent algorithms in Fortran. The paper concludes with a substantial discussion of common criticisms of the language and our plans for addressing them. Most notably, efficient implementations for distributed memory machines are lacking; an issue we plan to remedy.

  19. STORMWATER FILTRATION USING MULCH AND JUTE

    Science.gov (United States)

    This study evaluated the feasibility of using readily available, low-cost natural filter naterials for stormwater (SW) treatment. Generic (hardwood) mulch and processed jute fiber were evaluated for the removal of metallic and organic pollutants from urban SW runoff samples colle...

  20. On the Mechanical Properties and Uncertainties of Jute Yarns

    Directory of Open Access Journals (Sweden)

    AMM Sharif Ullah

    2017-04-01

    Full Text Available Products made from natural materials are eco-friendly. Therefore, it is important to supply product developers with reliable information regarding the properties of natural materials. In this study, we consider a widely used natural material called jute, which grows in Bangladesh, India, and China. We described the results of tensile tests on jute yarns, as well as the energy absorption patterns leading to yarn failure. We have also used statistical analyses and possibility distributions to quantify the uncertainty associated with the following properties of jute yarn: tensile strength, modulus of elasticity, and strain to failure. The uncertainty and energy absorption patterns of jute yarns were compared with those of jute fibers. We concluded that in order to ensure the reliability and durability of a product made from jute, it is good practice to examine the material properties of yarns rather than those of fibers.

  1. Implementation and performance of the pseudoknot problem in sisal

    Energy Technology Data Exchange (ETDEWEB)

    Feo, J. [Lawrence Livermore National Lab., CA (United States); Ivory, M. [Univ. of California, Berkeley, CA (United States). Dept. of Computer Science

    1994-12-01

    The Pseudoknot Problem is an application from molecular biology that computes all possible three-dimensional structures of one section of a nucleic acid molecule. The problem spans two important application domains: it includes a deterministic, backtracking search algorithm and floating-point intensive computations. Recently, the application has been used to compare and to contrast functional languages. In this paper, we describe a sequential and parallel implementation of the problem in Sisal. We present a method for writing recursive, floating-point intensive applications in Sisal that preserves performance and parallelism. We discuss compiler optimizations, runtime execution, and performance on several multiprocessor systems.

  2. Sisal 3.2: functional language for scientific parallel programming

    Science.gov (United States)

    Kasyanov, Victor

    2013-05-01

    Sisal 3.2 is a new input language of system of functional programming (SFP) which is under development at the Institute of Informatics Systems in Novosibirsk as an interactive visual environment for supporting of scientific parallel programming. This paper contains an overview of Sisal 3.2 and a description of its new features compared with previous versions of the SFP input language such as the multidimensional array support, new abstractions like parametric types and generalised procedures, more flexible user-defined reductions, improved interoperability with other programming languages and specification of several optimising source text annotations.

  3. STUDY ON WET STRENGTH PERFORMANCE OF KENAF MULCH

    Institute of Scientific and Technical Information of China (English)

    Jinghui Zhou; Xinge Wu; Hongwei Zhu

    2004-01-01

    Optimum applied technical conditions of wet strength agent for kenaf mulch were studied in this article. Breaking length, wet-dry strength ratio, tear index and burst index of kenaf mulch were measured and optimum wet strength agent was selected. The aim is to make mulch have properties of heat preservation, humidity preservation, growth prompting, biodegradation and maximum wet strength and to improve impact resistance of mulch to rainwater so as to assure growth of plant and replace plastic film.

  4. STUDY ON WET STRENGTH PERFORMANCE OF KENAF MULCH

    Institute of Scientific and Technical Information of China (English)

    JinghuiZhou; XingeWu; HongweiZhu

    2004-01-01

    Optimum applied technical conditions of wetstrength agent for kenaf mulch were studied in thisarticle. Breaking length, wet-dry strength ratio, tearindex and burst index of kenaf mulch were measuredand optimum wet strength agent was selected. Theaim is to make mulch have properties of heatpreservation, humidity preservation, growthprompting, biodegradation and maximum wetstrength and to improve impact resistance of mulchto rainwater so as to assure growth of plant andreplace plastic film.

  5. Enhanced biodegradation resistance of biomodified jute fibers.

    Science.gov (United States)

    Manna, Suvendu; Saha, Prosenjit; Roy, Debasis; Sen, Ramkrishna; Adhikari, Basudam; Das, Sancharini

    2013-04-02

    A bio-catalyzed process has been developed for treating jute fibers to enhance their tensile strength and resistance against biodegradation. Lipolytic bacteria were used in the process to transesterify jute fibers by replacing hydrophilic hydroxyl groups within cellulose chains with hydrophobic fatty acyl chains. Transesterification of some of the hydroxyl groups within the fiber was confirmed with FTIR, UV-vis spectroscopy, (13)C solid state NMR, gas chromatography and analytical determination of ester content. Biomodified fibers exhibited remarkably smaller affinity to water and moisture and retained 62% of their initial tensile strengths after being exposed to a composting environment over 21 days. The corresponding figure for untreated fibers was only 30%. Efficacy of the process reported herein in terms of tensile strength and biodegradation resistance enhancement of fibers achieved after treatment appears to be comparable with similar chemical processes and better than the enzyme-catalyzed alternatives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Development of fabric using chemically-treated sisal fibres

    CSIR Research Space (South Africa)

    Zwane, PE

    2006-06-01

    Full Text Available The aim of this study was to explore the spinnability of sisal fibres treated with sodium hydroxide (NaOH), and the potential utility of spun yarns in producing a woven fabric for different end uses. Exploratory and experimental approaches were...

  7. Biogas systems for sisal and other agro-industrial residues

    Energy Technology Data Exchange (ETDEWEB)

    Jungersen, G. [Danish Technological Inst., Section for Biotechnology, Taastrup (Denmark)

    1997-12-31

    Most of the East-African agro-industries are generating very large quantities of organic residues from production and processing of different crops. In the East-African Region the most important of these crops are: Sisal, Sugar, Coffee, Cashew nuts and Pineapple. In other 3. world countries, Palm oil and Cassava (Tapioca starch) processing are main producers of organic waste products. Moreover, large quantities of organic residues are generated from other food processing activities like breweries, consumption of bananas etc. The following pages give examples of setups and system designs of anaerobic treatment systems for some of the residues mentioned above. When considering anaerobic treatment of sisal residues, which constitutes the main agro-industrial biomass resource in Tanzania, two major issues should be considered: Optimal reactor set-up and performance; And optionally, potential methods for pre-treatment of fibre fraction in order to increase the methane yield. The sisal liquid residues are degraded very fast and efficiently in UASB systems. At COD loading rates less than 11 kg COD/m{sup 3} x day, the reduction in organic matter is more than 90% and methane yields obtained are between 373 and 377 ml CH{sub 4}/g COD reduced. The treatment of sisal solid residues in CSTR systems has been examined both at mesophilic (37 deg. C) and thermophilic temperatures (55 deg. C.). (EG)

  8. Effect of Kenaf Parts on the Performance of Single-Layer and Three-Layer Particleboard Made from Kenaf and Rubberwood

    Directory of Open Access Journals (Sweden)

    Juliana Abdul Halip

    2014-01-01

    Full Text Available This study investigated the effect of kenaf parts (kenaf whole stem, kenaf core, and kenaf bast on the mechanical and physical properties of single-layer and three-layer particleboards made from kenaf (Hibiscus cannabinus L. and rubberwood (Hevea brasiliensis. The findings showed that the use of kenaf whole stem, which consists of both core and bast, had a positive effect on the modulus of rupture (MOR, modulus of elasticity (MOE, internal bond (IB, permeability, thickness swelling (TS, and water absorption (WA values of single-layer and three-layer panels. Single-layer admixture panels made from a combination of 70% rubberwood and 30% kenaf had greater strength and stability than single-layer homogeneous panels. The presence of rubberwood particles on surface layers significantly improved the elastic properties of three-layer panels. Panels with kenaf whole stem in the middle layer had better performance than panels with kenaf core. The MOE values of 35RW-30KWS-35RW panels were 56% and 79%, which were higher than those comprising single layers of 100% KWS and 100% KC, respectively. This study suggests that kenaf whole stem is the preferred material to be used in particleboard manufacture incorporated with rubberwood as an admixture for three-layer panels.

  9. Biofuel from jute stick by pyrolysis technology

    Science.gov (United States)

    Ferdous, J.; Parveen, M.; Islam, M. R.; Haniu, H.; Takai, K.

    2017-06-01

    In this study the conversion of jute stick into biofuels and chemicals by externally heated fixed-bed pyrolysis reactor have been taken into consideration. The solid jute stick was characterized through proximate and ultimate analysis, gross calorific values and thermo-gravimetric analysis to investigate their suitability as feedstock for this consideration. The solid biomass particles were fed into the reactor by gravity feed type reactor feeder. The products were oil, char and gases. The liquid and char products were collected separately while the gas was flared into the atmosphere. The process conditions were varied by fixed-bed temperature; feed stock particle size, N2 gas flow rate and running time. All parameters were found to influence the product yields significantly. The maximum liquid yields were 50 wt% of solid jute stick at reactor temperature 425°C for N2 gas flow rate 6 l/min, feed particle size 1180-1700 µm and running time 30 min. Liquid products obtained at these conditions were characterized by physical properties, chemical analysis and GC-MS techniques. The results show that it is possible to obtained liquid products that are comparable to petroleum fuels and valuable chemical feedstock from the selected biomass if the pyrolysis conditions are chosen accordingly.

  10. Fabrication of sisal fibers/epoxy composites with liquid crystals polymer grafted on sisal fibers

    Science.gov (United States)

    Luo, Q. Y.; Lu, S. R.; Song, L. F.; Li, Y. Q.

    2016-07-01

    In this word, microcrystalline cellulose fibers (MCFs), extracted from sisal fibers, were treated with function end-group hyperbranched liquid crystals (HLP). This work brought some insights into the successful surface modification in epoxy composite with HLP. The HLP-MCFs/epoxy composites are studied systematically. The HLP - MCFs/epoxy composites were studied by Fourier transform infrared spectroscopy (FT-IR), polarizing microscope (POM), X-ray photoelectron spectroscopy (XPS) and mechanical properties analysis. The results reveal that the reinforcement of EP composites was carried out by adding HLP-MCFs. In particular, with 1.0 wt% filler loading, the flexural strength, tensile strength, impact strength and flexural modulus of the HLP-MCFs/EP composites were increased by 60%, 69%, 130%, and 192%, respectively. It anticipates that our current work exploits more efficient methods to overcome the few nature fiber/polymer (NPC) adhesion in the interface region and provides implications for the engineering applications of the development of NPC.

  11. Impregnation of thermoplastic resin in jute fiber mat

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Impregnation rate of thermoplastic resin (polypropylene) in jute fiber mat and influence of relative factors on impregnation were studied,aiming to develop the continuous melt impregnation technique and to investigate the effect of impregnation rate and temperature on processing conditions and mechanical properties of natural fiber mat-reinforced thermoplastics.Influence of pressure on porosity of fiber mat and effect of melt viscosity on impregnation rate were also investigated.The modified capillary rheometer was used as apparatus and experimental data were analyzed based on the one-dimension Darcy's law.Results showed that at a given pressure,the impregnation rate is inversely proportional to melt viscosity and jute fiber mat has higher porosity than glass fiber mat.The architecture,compressibility,permeability and fiber diameter of jute fiber mat were compared with those of glass fiber mat and their effects on impregnation were discussed further.It could be seen that the average diameter of jute fiber is much bigger;the porosity of jute fiber mat is significantly higher and inner bundle impregnation does not exist in jute fiber mat.Therefore,it is not difficult to understand why the impregnation rate in jute fiber mat is 3.5 times higher and permeability is 14 times greater.Kozeny constants of jute and glass fiber mats calculated based on the capillary model are 2950 and 442,respectively.

  12. Flame Retardant and Antimicrobial Jute Textile Using Sodium Metasilicate Nonahydrate

    Directory of Open Access Journals (Sweden)

    Basak S.

    2014-06-01

    Full Text Available Flame retardant and antimicrobial functionalities were imparted in jute textile using sodium metasilicate nonahydrate (SMSN, commonly known as “water glass”. Sodium metasilicate nonahydrate (SMSN was applied in jute fabric in different concentration by padding method followed by drying. Flame retardancy of the fabric was evaluated by Limiting Oxygen Index (LOI and burning behaviour under vertical flammability tester including the char length. Burning rate was found to decrease by almost 10 times after an application of 2% SMSN compared to the control sample. Thermogravimetry (TG and differential scanning calorimetry (DSC analysis of both the control and treated jute fabrics were utilized to understand the mechanism of developed flame retardance in jute fabric. It was observed that the SMSN treated samples showed excellent antimicrobial property against both gram positive and gram negative bacteria. Antimicrobial properties of both the control and treated jute fabrics were also measured quantitatively.

  13. Mechanical and thermal properties of water glass coated sisal fibre-reinforced polypropylene composite

    CSIR Research Space (South Africa)

    Phiri, G

    2012-10-01

    Full Text Available ?C). Figure 1 shows the processing steps followed to produce composite samples. Up to 15% fibre loading could be achieved and the sisal fibres were coated with water glass to improve fire resistance. In order to improve the adhesion between sisal... preparation process: (A) WG coated fibre, (B) High speed granulator, (C) Composite granules, (D) Single screw extruder, (E) Injection moulder and (F) Composite samples (dumbbells) Mechanical and thermal properties of water glass coated sisal fi bre...

  14. Thermal performance of sisal fiber-cement roofing tiles for rural constructions

    National Research Council Canada - National Science Library

    Tonoli, Gustavo Henrique Denzin; Santos, Sérgio Francisco dos; Rabi, José Antonio; Santos, Wilson Nunes dos; Savastano Junior, Holmer

    2011-01-01

    .... Nonasbestos fiber-cement roofing components reinforced with cellulose pulp from sisal (Agave sisalana) were produced by slurry and dewatering techniques, with an optional addition of polypropylene fibers...

  15. Durability of Cement Composites Reinforced with Sisal Fiber

    Science.gov (United States)

    Wei, Jianqiang

    This dissertation focuses mainly on investigating the aging mechanisms and degradation kinetics of sisal fiber, as well as the approaches to mitigate its degradation in the matrix of cement composites. In contrast to previous works reported in the literature, a novel approach is proposed in this study to directly determine the fiber's degradation rate by separately studying the composition changes, mechanical and physical properties of the embedded sisal fibers. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior. The degradation mechanisms of natural fiber consist of mineralization of cell walls, alkali hydrolysis of lignin and hemicellulose, as well as the cellulose decomposition which includes stripping of cellulose microfibrils and alkaline hydrolysis of amorphous regions in cellulose chains. Two mineralization mechanisms, CH-mineralization and self-mineralization, are proposed. The degradation kinetics of sisal fiber in the cement matrix are also analyzed and a model to predict the degradation rate of cellulose for natural fiber embedded in cement is outlined. The results indicate that the time needed to completely degrade the cellulose in the matrix with cement replacement by 30wt.% metakaolin is 13 times longer than that in pure cement. A novel and scientific method is presented to determine accelerated aging conditions, and to evaluating sisal fiber's degradation rate and durability of natural fiber-reinforced cement composites. Among the static aggressive environments, the most effective approach for accelerating the degradation of natural fiber in cement composites is to soak the samples or change the humidity at 70 °C and higher temperature. However, the dynamic wetting and drying cycling treatment has a more accelerating effect on the alkali hydrolysis of fiber's amorphous components evidenced by the highest crystallinity indices, minimum content of holocellulose, and lowest tensile strength. Based on the

  16. The Influence of Chemical Surface Modification of Kenaf Fiber using Hydrogen Peroxide on the Mechanical Properties of Biodegradable Kenaf Fiber/Poly(Lactic Acid) Composites

    OpenAIRE

    Nur Inani Abdul Razak; Nor Azowa Ibrahim; Norhazlin Zainuddin; Marwah Rayung; Wan Zuhainis Saad

    2014-01-01

    Bleaching treatment of kenaf fiber was performed in alkaline medium containing hydrogen peroxide solution maintained at pH 11 and 80 °C for 60 min. The bleached kenaf fiber was analyzed using Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD) analysis. The bleached kenaf fiber was then compounded with poly-(lactic acid) (PLA) via a melt blending method. The mechanical (tensile, flexural and impact) performance of the product was tested. The fiber treatment improved the mechanical p...

  17. The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly(lactic acid) composites.

    Science.gov (United States)

    Razak, Nur Inani Abdul; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Rayung, Marwah; Saad, Wan Zuhainis

    2014-03-07

    Bleaching treatment of kenaf fiber was performed in alkaline medium containing hydrogen peroxide solution maintained at pH 11 and 80 °C for 60 min. The bleached kenaf fiber was analyzed using Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD) analysis. The bleached kenaf fiber was then compounded with poly-(lactic acid) (PLA) via a melt blending method. The mechanical (tensile, flexural and impact) performance of the product was tested. The fiber treatment improved the mechanical properties of PLA/bleached kenaf fiber composites. Scanning electron micrograph (SEM) morphological analysis showed improvement of the interfacial adhesion between the fiber surface and polymer matrix.

  18. The Influence of Chemical Surface Modification of Kenaf Fiber using Hydrogen Peroxide on the Mechanical Properties of Biodegradable Kenaf Fiber/Poly(Lactic Acid Composites

    Directory of Open Access Journals (Sweden)

    Nur Inani Abdul Razak

    2014-03-01

    Full Text Available Bleaching treatment of kenaf fiber was performed in alkaline medium containing hydrogen peroxide solution maintained at pH 11 and 80 °C for 60 min. The bleached kenaf fiber was analyzed using Fourier Transform Infrared (FTIR and X-ray Diffraction (XRD analysis. The bleached kenaf fiber was then compounded with poly-(lactic acid (PLA via a melt blending method. The mechanical (tensile, flexural and impact performance of the product was tested. The fiber treatment improved the mechanical properties of PLA/bleached kenaf fiber composites. Scanning electron micrograph (SEM morphological analysis showed improvement of the interfacial adhesion between the fiber surface and polymer matrix.

  19. Indian Jute in Australian Collections: Forgetting and Recollecting Transnational Networks

    Directory of Open Access Journals (Sweden)

    Andrew Hassam

    2011-12-01

    Full Text Available Indian jute sacking played an essential role in Australian life for over 150 years, yet its contribution to Australian development and its Indian origins have been barely recognised in Australian public collections. What has Australian history gained by this erasing of jute from public memory? Wool, sugar and hop sacks are displayed in public collections as evidence of an Australian national story, but their national dimension depends on the cultural invisibility of jute and jute’s connections to the stories of other communities in other places. Developing an awareness of the contribution of Indian jute to the development of Australia requires an awareness not simply that jute comes from India but that the construction of national identity by collecting institutions relies on forgetting those transnational connections evident in their own collections. Where jute sacks have been preserved, it is because they are invested with memories of a collective way of life, yet in attempting to speak on behalf of the nation, the public museum denies more multidimensional models of cultural identity that are less linear and less place-based. If Indian jute is to be acknowledged as part of ‘the Australian story’, the concept of an Australian story must change and exhibitions need to explore, rather than ignore, transnational networks.

  20. Ultrasound-assisted extraction of pectin from sisal waste.

    Science.gov (United States)

    Maran, J Prakash; Priya, B

    2015-01-22

    In this study, an efficient ultrasound-assisted extraction (UAE) of pectin from sisal waste was investigated and optimized. Response surface methodology (RSM) based on a three-level four-factor Box-Behnken response surface design (BBD) was employed to optimize the extraction conditions (ultrasonic power, extraction temperature, extraction time and solid-liquid ratio). Analysis of variance showed that the contribution of a quadratic model was significant for the pectin extraction yield. The experimental yield (29.32%) was obtained under the optimal condition (ultrasonic power of 61 W, temperature of 50°C, time of 26 min and SL ratio of 1:28 g/ml) was well agreement with predicted values. Therefore, ultrasound-assisted extraction could be used as an alternative method to extract pectin from sisal waste with the advantages of lower extraction temperatures, shorter extraction time and reduced energy consumption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Implementation and performance of a domain decomposition algorithm in Sisal

    Energy Technology Data Exchange (ETDEWEB)

    DeBoni, T.; Feo, J. [Lawrence Livermore National Lab., CA (United States); Rodrigue, G. [California Univ., Livermore, CA (United States); Muller, J. [State Univ. of New York, Stony Brook, NY (United States)

    1993-09-23

    Sisal is a general-purpose functional language that hides the complexity of parallel processing, expedites parallel program development, and guarantees determinacy. Parallelism and management of concurrent tasks are realized automatically by the compiler and runtime system. Spatial domain decomposition is a widely-used method that focuses computational resources on the most active, or important, areas of a domain. Many complex programming issues are introduced in paralleling this method including: dynamic spatial refinement, dynamic grid partitioning and fusion, task distribution, data distribution, and load balancing. In this paper, we describe a spatial domain decomposition algorithm programmed in Sisal. We explain the compilation process, and present the execution performance of the resultant code on two different multiprocessor systems: a multiprocessor vector supercomputer, and cache-coherent scalar multiprocessor.

  2. REINFORCING POTENTIAL OF JUTE PULP WITH TREMA ORIENTALIS (NALITA) PULP

    OpenAIRE

    Sabina Rawshan; M. Sarwar Jahan

    2009-01-01

    Two morphologically different pulps, a long-fiber jute pulp from a soda-AQ process and a short-fiber Trema orientalis pulp from a kraft process, were evaluated and compared for their reinforcing potential. T. orientalis pulp needed less beating energy than jute pulp at the same drainage resistance. Addition of jute fiber pulp to the T. orientalis pulp increased tear strength. Sheet density of pulp blends was increased with the increase of beating degree of both pulps and the proportion of T. ...

  3. Mechanical behavior of chemically treated Jute/Polymer composites

    Directory of Open Access Journals (Sweden)

    Murali B

    2014-03-01

    Full Text Available Fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural past studies show that only artificial fibers such as glass, carbon etc., have been used in fiber reinforced plastics. Although glass and other synthetic fiber reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of jute , a natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. In the present work, jute composites are developed and their mechanical properties are evaluated. Mechanical properties of jute/polymer and compared with glass fiber/epoxy. These results indicate that jute can be used as a potential reinforcing material for making low load bearing thermoplastic composites.

  4. Characterization on the Properties of Jute Fiber at Different Portions

    Directory of Open Access Journals (Sweden)

    Sweety Shahinur

    2015-01-01

    Full Text Available Natural fibers are environment-friendly, biodegradable, nonabrasive, and less costly and exhibit high initial modulus and high moisture absorption. However, they have nonuniformity in their mechanical, physical, chemical, and thermal properties at different portions. For this reason, long jute fiber was cut into three different portions and subsequently characterized using single fiber tensile test, differential scanning calorimetric, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy according to top, middle, and cutting portions. The crystallinity and moisture content were measured by XRD data and moisture absorption test of the different portions of the raw jute fiber, respectively. The middle portion had better mechanical, thermal, chemical, and crystalline properties compared to the other two portions of the jute fiber. The diameter gradually became thinner from cutting to top portions. Thus the middle portion of jute fiber would be the better choice while being used as reinforcement in composites.

  5. Defluoridation potential of jute fibers grafted with fatty acyl chain

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Suvendu; Saha, Prosenjit [Materials Science Centre, IIT Kharagpur, WB 721302 (India); Roy, Debasis, E-mail: debasis@civil.iitkgp.ernet.in [Department of Civil Engineering, IIT Kharagpur, WB 721302 (India); Sen, Ramkrishna [Department of Biotechnology, IIT Kharagpur, WB 721302 (India); Adhikari, Basudam [Materials Science Centre, IIT Kharagpur, WB 721302 (India)

    2015-11-30

    Graphical abstract: - Highlights: • Acyl chain grafted jute has been shown to accumulate fluoride ions. • Covalent and hydrogen bonding and protonation were the contributing factors. • The process is relatively inexpensive and maintenance-free. • Acyl chain grafted jute showed higher fluoride ions accumulation than alternatives. - Abstract: Waterborne fluoride is usually removed from water by coagulation, adsorption, ion exchange, electro dialysis or reverse osmosis. These processes are often effective over narrow pH ranges, release ions considered hazardous to human health or produce large volumes of toxic sludge that are difficult to handle and dispose. Although plant matters have been shown to remove waterborne fluoride, they suffer from poor removal efficiency. Following from the insight that interaction between microbial carbohydrate biopolymers and anionic surfaces is often facilitated by lipids, an attempt has been made to enhance fluoride adsorption efficiency of jute by grafting the lignocellulosic fiber with fatty acyl chains found in vegetable oils. Fluoride removal efficiency of grafted jute was found to be comparable or higher than those of alternative defluoridation processes. Infrared and X-ray photoelectron spectroscopic evidence indicated that hydrogen bonding, protonation and C−F bonding were responsible for fluoride accumulation on grafted jute. Adsorption based on grafted jute fibers appears to be an economical, sustainable and eco-friendly alternative technique for removing waterborne fluoride.

  6. KADAR HORMON AUKSIN PADA TANAMAN KENAF (Hibiscus cannabinus L.) BERCABANG DAN TIDAK BERCABANG

    OpenAIRE

    Yunin Hidayati

    2009-01-01

    Kenaf is one of fiber producing plants. According to the existence of branches, kenaf is classified into two group, consisting of: kenaf with branch and with no branch.Morphology observation, consist of the height of plant, the number of node, the number of branch and the length of branch was observed. The morphology observation showed that there were differences morphological characters, including of the height of plant, the number of node, the length of branch, and the number of node more b...

  7. Status and constraints of jute cultivation in Bangladesh: An experience from selected upazilas under chandpur district

    Directory of Open Access Journals (Sweden)

    Mohammad Muzahidul Islam

    2015-08-01

    Full Text Available This study aimed at exploring the obstacles of jute cultivation under Chandpur Districts in Bangladesh by the principle component analysis (PCA. The required data were collected through structured interview schedule from 803 jute farmers sampled conveniently. Though jute diversified industry has been seen as potential since the last decade in Bangladesh, raw jute production is not satisfactory due to several obstacles. The study has identified three categories of constraints that hinder sustainable jute production. These are lack of capital and inputs, knowledge and natural resources, and market information. Basically farmers cultivate jute for earning profit but they are not conscious about forward market. Lack of jute diversification knowledge is the unique findings of this study. The findings may help policy makers and stakeholders for taking effective decision in addressing the barriers to jute cultivation in Bangladesh.

  8. Effect of Weight Fractions of Jute Fiber on Tensile Strength and Deflection Temperature of Jute Fiber/Polypropylene Composites

    Science.gov (United States)

    Nabila, S.; Juwono, A. L.; Roseno, S.

    2017-05-01

    Jute is one of eco-friendly natural fiber with relatively low cost and high volume production. This study aimed to determine the effect of weight fractions of jute fiber as a reinforcement in polypropylene (PP) to obtain an optimum properties of PP/jute fiber composites. Jute fiber was pre-treated through alkalization. The PP was initially produced by extrusion process, followed by fabricated the composites by compiling the PP matrix and jute fibers into lamina using a hot-press method. The results of tensile test and heat deflection temperature test showed that the addition of 40wt% jute fiber to the PP increased the tensile strength about 19.7 % up to (38.2±4.9)MPa, the Young modulus about 79.8 % up to (3.20±0.26)GPa, and the heat deflection temperature about 143% up to (143.3±1.14)°C compared to pristine PP. Based on Scanning Electron Microscopy observation on the fracture surfaces, it was shown that the mode of failure on the composites failure surfaces was “fiber pull-out”, which due to the poor interface bond between the fiber and the matrix.

  9. Mechanical and morphological properties of kenaf powder filled natural rubber latex foam

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Ahmad Fikri Abdul, E-mail: a.fikri-89@yahoo.com; Ariff, Zulkifli Mohamad [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Ismail, Hanafi [Cluster for Polymer Composites (CPC), Science and Engineering Research Centre, Engineering Campus, Universiti Sains Malaysia,14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2015-07-22

    This research is carried out by incorporate kenaf powder with natural rubber latex (NRL) compound and is foamed to make natural rubber latex foam (NRLF) by using a well known technique called Dunlop method. Different loading of kenaf powder was added to NRL compound and was foamed to make NRLF. The tensile properties, and morphology of kenaf filled NRLF was studied. Increase in kenaf loading reduced the tensile strength and elongation at break and of a compound. Modulus at 100% elongation of the compound increased with increased in filler loading. The morphological and micro structural characterization has been performed by using scanning electron microscopy (SEM)

  10. Bionanowhiskers from jute: preparation and characterization.

    Science.gov (United States)

    Kasyapi, Nibedita; Chaudhary, Vidhi; Bhowmick, Anil K

    2013-02-15

    Bionanowhiskers were extracted from jute by acid hydrolysis. At first cellulose microfibrils were formed by alkali treatment. Addition of an acid to the microfibrils triggered the formation of cellulose nanowhiskers. These were characterized by using different techniques viz. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetry (TGA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). In the FTIR study, absence of peak at 1738 cm(-1) indicated removal of hemicellulose. The rod like morphology of the nanowhiskers (length - 550±100 nm, width - 77±30 nm) was observed after 1h of acid hydrolysis, whereas further increase in time resulted in triangular shape morphology. Acid hydrolysis increased crystallinity, but decreased the temperature corresponding to major degradation (T(max)) and onset of degradation (T(i)). These bionanowhiskers might be useful as reinforcing element in nanocomposites. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Efficacy of Thermally Conditioned Sisal FRP Composite on the Shear Characteristics of Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Tara Sen

    2013-01-01

    Full Text Available The development of commercially viable composites based on natural resources for a wide range of applications is on the rise. Efforts include new methods of production and the utilization of natural reinforcements to make biodegradable composites with lignocellulosic fibers, for various engineering applications. In this work, thermal conditioning of woven sisal fibre was carried out, followed by the development of woven sisal fibre reinforced polymer composite system, and its tensile and flexural behaviour was characterized. It was observed that thermal conditioning improved the tensile strength and the flexural strength of the woven sisal fibre composites, which were observed to bear superior values than those in the untreated ones. Then, the efficacy of woven sisal fibre reinforced polymer composite for shear strengthening of reinforced concrete beams was evaluated using two types of techniques: full and strip wrapping techniques. Detailed analysis of the load deflection behaviour and fracture study of reinforced concrete beams strengthened with woven sisal under shearing load were carried out, and it was concluded that woven sisal FRP strengthened beams, underwent very ductile nature of failure, without any delamination or debonding of sisal FRP, and also increased the shear strength and the first crack load of the reinforced concrete beams.

  12. Caracterização tecnológica de híbridos de sisal Technological characterization of sisal hybrids

    Directory of Open Access Journals (Sweden)

    Anisio Azzini

    1989-01-01

    Full Text Available No presente estudo procedeu-se à caracterização tecnológica de alguns híbridos de sisal em comparação com a espécie comum (Agave sisalana Perr., colhidos no Centro Experimental de Campinas em 1987. A densidade básica (0,172 a 0,249g/cm³ e o teor de matéria seca (16,91 a 24,82% cresceram da base para a extremidade das folhas de sisal, contrastando com os teores de fibra têxtil (37,71 a 23,43% e celulósica (21,75 a 14,56%, que decresceram a partir da base das folhas. As fibras celulósicas na base das folhas foram mais curtas; com maior lúmen e menor parede celular. O comprimento das fibras celulósicas do sisal comum (2,63mm foi maior que os híbridos (1,39 a 2,09mm: estes não apresentaram superioridade tecnológica em relação ao sisal comum.Some sisal hybrids were studied in comparison to the common sisal (Agave sisalana Perr. regarding some technological characteristics. The basic density (0.172 to 0.249 g/cm³ and the dry matter (16.91 to 24.82% increased from the base to top region of sisal leaf. On the other hand, the content of textile fibers decreased from the base to the top of the leaves (37.71 to 23.43. The same trend was observed for cellulosic fibers (21.75 to 14.56%. The cellulosic fibers in the leaf base were shorter, with more lumen and less cell wall. The length of cellulosic fiber on common sisal (2.63mm was longer than for hybrids (1.39 to 2.09mm. The sisal hybrids didn't show technological superiority over the common sisal.

  13. Physical and mechanical properties of jute fiber and jute fiber reinforced paper bag with tamarind seed gum as a binder - An eco-friendly material

    Science.gov (United States)

    Arunavathi, S.; Eithiraj, R. D.; Veluraja, K.

    2017-05-01

    Jute fibers are an environmental friendly natural fiber which can be used as good alternatives in the reinforcement of composite materials. The physical and mechanical properties of jute fiber are studied. The humidification cum heat treatment is carried out for the jute fiber. The tensile strength measurement was made for the untreated and humidification cum heat treated bundle jute fiber. The tensile strength of untreated and treated bundle jute fibers are 71.7 ± 9.5 MPa and 104.9 ± 8.8MPa respectively. A 45% increase in tensile strength is noticed. The structural organisation in the untreated and treated jute fiber is studied by X-ray fibre diffraction. The tensile strength measurement is carried out for the composite of Paper-Tamarind seed gum and Paper-Tamarind seed gum - Jute fiber and their measured tensile strength are 4.3 ± 0.5 MPa and 6.1 ± 1.2 MPa respectively. The enhancement in tensile strength for Paper-Tamarind seed gum - Jute fiber composite is observed. The environmental friendly biocomposite bags prepared are: Paper-Tamarind seed gum - Jute fiber and Paper-Tamarind seed gum, which can withstand load of 9.0 kg and 6.0 kg respectively. An increase of 50% in the load bearing capacity is achieved by reinforcing jute fibre.

  14. Antioxidant activity of phenolic extracts from kenaf (Hibiscus cannabinus seedcake.

    Directory of Open Access Journals (Sweden)

    Ismail, N.

    2012-06-01

    Full Text Available The antioxidant activities of kenaf seedcake methanolic extract (CME and fractions obtained from it using ethyl acetate (EAF, hexane (HF and water (WF were investigated. Total phenolic contents were 64.5, 36.1, 31.3 and 14.6 mg gallic acid equivalent/g dry weight in EAF, CME, WF, and HF, respectively. Kenaf seedcake extract/fractions showed inhibitory activity of β-carotene bleaching and corn oil oxidation. Also, the extract/fractions were scavenged for the 1,1-diphenyl-2-picrylhydrazyl radical. The EAF extract showed the highest DPPH radical scavenging activity followed by the CME, WF and HF extracts. Therefore, the rich phenolic fractions of kenaf seedcake may represent a potential source of natural antioxidants. The predominant phenolic compounds identified by HPLC-DAD in CME and HF extracts were gallic, (+-catechin, chlorogenic, hydroxybenzoic, syringic, and vanillin.Se ha investigado la actividad antioxidante de extractos metanólicos procedentes de tortas de semillas de kenaf (CME y de las fracciones obtenidas usando acetato de etilo (EAF, hexano (HF y agua (WF. Los contenidos fenólicos totales fueron 64,5, 36,1, 31,3 y 14,6 mg de equivalente de ácido gálico/g de peso seco, en EAF, CME, WF, y HF, respectivamente. Los extractos/fracciones de semillas de kenaf mostraron actividad inhibitoria de blanqueo del β-caroteno y oxidación del aceite de maíz. Además, los extractos/fracciones fueron captadores de radicales del 1,1-difenil-2-picrilhidrazil. El extracto EAF mostró la mayor actividad captadora de radicales de DPPH seguido por los extractos de CME, WF y HF. Por lo tanto, las fracciones ricas en fenoles de las tortas de semilla de kenaf pueden representar una fuente potencial de antioxidantes naturales. Los compuestos fenólicos predominantes identificados mediante HPLC-DAD en extractos de CME y HF fueron gálico, (+-catequina, ácido clorogénico, hidroxibenzoico, siríngico, y vainillina.

  15. Comparative study on the mechanical properties of banana and sisal woven rovings polyester composites

    Directory of Open Access Journals (Sweden)

    A. Faizur Rahman

    2014-03-01

    Full Text Available Natural fiber polymer composites are widely used in many applications. Banana and sisal woven rovings reinforced polyester composites were manufactured by hand lay-up technique. The woven rovings were modified chemically by alkali treatment to enhance the mechanical properties. Tensile strength, flexural strength and impact strength were evaluated for 5%, 10%, 15% and 20% volume fractions of both woven rovings. The results of banana and sisal woven rovings composites were compared and it indicated that sisal woven rovings with higher volume fractions reveals better mechanical strength.

  16. The application of poly(amidoamine dendrimers for modification of jute yarns: Preparation and dyeing properties

    Directory of Open Access Journals (Sweden)

    Ali Akbar Zolriasatein

    2015-03-01

    Full Text Available In this study, poly(amidoamine (PAMAM G-2 dendrimer was used for jute yarn. Fourier transform infrared spectroscopy (FT-IR revealed that all carbonyl groups of jute fibers reacted with amino groups of polyamidoamine dendrimers. SEM observation indicated the good dispersion PAMAM dendrimers. Jute yarns pretreated with PAMAM dendrimer displayed markedly enhanced color strength with reactive dyes, even when dyeing had been carried out in the absence of electrolyte or alkali. Dendrimer-treated jute yarn showed much better light-fastness than untreated jute yarn.

  17. Tensile strength of woven yarn kenaf fiber reinforced polyester composites

    Directory of Open Access Journals (Sweden)

    A.E. Ismail

    2015-12-01

    Full Text Available This paper presents the tensile strength of woven kenaf fiber reinforced polyester composites. The as-received yarn kenaf fiber is weaved and then aligned into specific fiber orientations before it is hardened with polyester resin. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses. Two important parameters are studied such as fiber orientations and number of layers. According to the results, it is shown that fiber orientations greatly affected the ultimate tensile strength but it is not for modulus of elasticity for both types of layers. It is estimated that the reductions of both ultimate tensile strength and Young’s modulus are in the range of 27.7-30.9% and 2.4-3.7% respectively, if the inclined fibers are used with respect to the principal axis.

  18. Development of Glass/Jute Fibers Reinforced Polyester Composite

    Directory of Open Access Journals (Sweden)

    Amit Bindal

    2013-01-01

    Full Text Available Composites play significant role as engineering material and their use has been increasing day by day due to their specific properties such as high strength to weight ratios, high modulus to weight ratio, corrosion resistance, and wear resistance. In present work, an attempt is made to hybridize the material using synthetic (glass as well as natural fibres (chemically treated jute, such that to reduce the overall use of synthetic reinforcement, to reduce the overall cost, and to enhance the mechanical properties. All composite specimens with different weight percentages of fibres were manufactured using hand lay-up process and testing was done by using ASTM standards. Experimental results revealed that hybridization of composite with natural and synthetic fibres shows enhanced tensile strength, flexural strength, and impact strength. The content of natural reinforcement was found to be in the range of 25–33.3% for best results. The effect of treated jute on flexural properties was more than that on tensile properties, which was due to greater stiffness of jute fibers. Chemical treatment of jute fibers lowers the water absorption and results were comparable to glass fiber reinforced polyester composites. The addition of jute also reduced the overall cost by 22.18%.

  19. Thai jute seed oil: a potential polyunsaturated fatty acid source

    Directory of Open Access Journals (Sweden)

    Maitree Suttajit

    2006-03-01

    Full Text Available This study examined lipid and fatty acid compositions of different varieties of jute (Po-kra-jao, Corchorus olitorius L. seed grown in Thailand. Four different jute seeds (Nonn-Soong, Keaw-Yai, Cuba and Khonkaen harvested from northeastern Thailand were ground, their lipid was extracted with chloroform: methanol (2:1, v/v, and lipid composition was determined by Iatroscan (TLC/FID. Fatty acid composition was analyzed using GLC with standard methods. Triacylglycerol was a predominant lipid in jute seed oil, ranging from 70% to 74%, and other two minor components were phytosterol (12% to 28% and diacylglycerol (0% to 9%. The ratio of saturates: monounsaturates: polyunsaturates, was approximately 2: 3: 4. Most predominant polyunsaturated fatty acid (PUFA was linoleic acid (18:2n-6, accounting for 40-67% of total fatty acid. Nonn-Soong had the highest amount of PUFA (67.7%, followed by Khonkaen (44.53%, Keaw-Yai (41.14%, and Cuba (40.19%. Another PUFA found was α-linolenic acid (18:3n-3, accounting for about 1% of total fatty acid. The results indicated that jute seed oil was a potential edible PUFA source. The oils obtained from different kinds of jute seeds had significantly different lipid and fatty acid compositions.

  20. Reinforced by Kenaf and Caroà Fibers

    Directory of Open Access Journals (Sweden)

    P. Persico

    2011-01-01

    Full Text Available Two kinds of environmental friendly composites were prepared based on sustainable matrices, respectively, defatted cross-linked soy flour and thermoplastic polyhydroxybutyrate cohydroxyvalerate, reinforced by natural fibers from Caroà and Kenaf plants. The obtained composites were compared in terms of moisture tolerance, thermal and mechanical properties, and thermoregulation ability. It was found that this ecofriendly systems have suitable properties for indoor applications in housing and transportation.

  1. Kenaf and bioremediation in Azerbaijan: Planting locations, plant populations, and varieties

    Science.gov (United States)

    Scientists, businesses, and the Azerbaijan government are bringing together two ancient natural resources, petroleum and kenaf (Hibiscus cannabinus L.), to create a balance between economic growth and environmental reclamation. Oil and kenaf have been used for over 3000 years. Although oil continu...

  2. Water absorption characteristics of kenaf core to use as animal bedding material

    NARCIS (Netherlands)

    Lips, S.J.J.; Iniguez de Heredia, G.M.; Kamp, op den R.G.M.; Dam, van J.E.G.

    2009-01-01

    Kenaf is grown these days as a minor fibre crop in some Asian countries, but also in the US and recently in Southern European countries such as Italy. The yield of extracted bast fibres is below 1/3 of that of the kenaf stem weight. In the US and Europe a profitable outlet for the remaining woody co

  3. Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    Science.gov (United States)

    Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.

    2016-11-01

    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.

  4. Tensile properties of glass/natural jute fibre-reinforced polymer bars for concrete reinforcement

    Science.gov (United States)

    Han, J. W.; Lee, S. K.; Kim, K. W.; Park, C. G.

    2015-12-01

    The tensile performance of glass/natural jute fibre-reinforced polymer (FRP) bar, intended for concrete reinforcement was evaluated as a function of volume fraction of natural jute fibre. Natural jute fibre, mixed at a ratio of 7:3 with vinyl ester, was surface-treated with a silane coupling agent and used to replaced glass fibre in the composite in volume fractions of 0%, 30%, 50%, 70%, and 100%. The tensile load-displacement curve showed nearly linear elastic behaviour up to 50% natural jute fibre, but was partially nonlinear at a proportion of 70%. However, the glass/natural jute FRP bars prepared using 100% natural jute fibre showed linear elastic behaviour. Tensile strength decreased as the natural jute fibre volume fraction increased because the tensile strength of natural jute fibre is much lower than that of glass fibre (about 1:8.65). The degree of reduction was not proportional to the natural jute fibre volume fraction due to the low density of natural jute fibre (1/2 that of glass fibre). Thus, as the mix proportion of natural jute fibre increased, the amount (wt%) and number of fibres used also increased.

  5. Viscoelastic properties of kenaf reinforced unsaturated polyester composites

    Science.gov (United States)

    Osman, Ekhlas A.; Mutasher, Saad A.

    2014-03-01

    In order to quantify the effect of temperature on the mechanical and dynamic properties of kenaf fiber unsaturated polyester composites, formulations containing 10 wt.% to 40 wt.% kenaf fiber were produced and tested at two representative temperatures of 30°C and 50°C. Dynamic mechanical analysis was performed, to obtain the strain and creep compliance for kenaf composites at various styrene concentrations. It is possible to obtain creep curves at different temperature levels which can be shifted along the time axis to generate a single curve known as a master curve. This technique is known as the time-temperature superposition principle. Shift factors conformed to a William-Landel-Ferry (WLF) equation. However, more long term creep data was needed in order to further validate the applicability of time-temperature superposition principle (TTSP) to this material. The primary creep strain model was fitted to 60 min creep data. The resulting equation was then extrapolated to 5.5 days; the creep strain model of power-law was successfully used to predict the long-term creep behavior of natural fiber/thermoset composites.

  6. Effect of the Ecological Methods on the Surface Modification of the Kenaf Fibers

    Directory of Open Access Journals (Sweden)

    Süleyman İlker MISTIK

    2016-09-01

    Full Text Available Kenaf is a biodegradable and environmental friendly bast fibre. The most rapidly expanding application field for kenaf fibre is composites as reinforcing material. In this study four different chemical treatments were applied to kenaf fibre by using conventional, ultrasonic and microwave methods. Weight loss, tensile strength, elongation properties, morphological characteristics (SEM and FTIR analysis of the treated kenaf fibre were carried out. Valuable results were obtained from formic acid and acetic acid treatments of kenaf fibre by ultrasonic and microwave methods. The reasons for the ultrasonic and microwave processes to be successful are the strength achieved by sonication and microwave.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.8694

  7. Jute fibre reinforced plastic: evaluation of application based properties

    Directory of Open Access Journals (Sweden)

    J. B. Sajin

    2015-01-01

    Full Text Available A fibre extracted from jute is a budding component identified for its potential application in composites. It is imperative to evaluate the parametric and property based features to determine its suitability. In this research study, considering the possible application of the fibre composites, the aptness of these fibres are examined with respect to their physical, mechanical [by layered manufacturing technique(LM] and thermal properties. This study focuses on evaluating the properties and behaviour of raw Jute fibres and NaOH surface treated fibres. Subsequently, the fibres are subjected to thermo-gravimetry tests. The outcome of the thermal analysis clearly indicates that the temperature peak shifts to a higher region in the treated fibre compared to raw fibre. The overall observation strongly emphasize that the physical properties and the thermal behaviour of jute fibre are enhanced after surface treatments which makes it more feasible for its application in composite structures.

  8. GC-MS Characterisation of Sapogenins from Sisal Waste and a Method to Isolate Pure Hecogenin

    Directory of Open Access Journals (Sweden)

    Jener David G. Santos

    2014-01-01

    Full Text Available Five steroidal sapogenins (tigogenin, neotigogenina, hecogenin, gloriogenin, and dehydrohecogenin were characterised by gas chromatography coupled with mass spectrometry (GC-MS from a hydrolysed extract of sisal waste. In addition, pure hecogenin, an important raw material for the pharmaceutical industry, was obtained from this waste by selective liquid-liquid extraction of saponins with only hecogenin as aglycone, followed by acid hydrolysis. The yield of pure hecogenin was 460 mg.Kg-1 of sisal waste.

  9. Efeito da omissão de macronutrientes em sisal Macronutrients deficiency on sisal (Agave sisalana perr.

    Directory of Open Access Journals (Sweden)

    Antonio Luiz de Barbos Salgado

    1982-01-01

    Full Text Available Plantas de sisal (Agave sisalana Perr. foram cultivadas em casa de vegetação, em vasos contendo areia lavada e irrigados com solução nutritiva completa e com soluções nutritivas com a omissão de cada macronutriente. As plantas mostraram, na ausência de cada nutriente, os sintomas típicos de sua carência, relacionados com baixos teores do respectivo elemento nas folhas, e redução no seu crescimento e desenvolvimento.Sisal plants were cultivated in washed sand during twenty-one months. The plants were irrigated with complete nutrient solution and solutions with absence of each macronutrient (N, P, K, Ca, Mg e S. The plants, in the absence of each macronutrient, showed typical symptoms which were related to the low level of the respective element in the leaf. The growing of the leaves was reduced by the absence of the macronutrients.

  10. Cellulose nanofibrils aerogels generated from jute fibers.

    Science.gov (United States)

    Lin, Jinyou; Yu, Liangbo; Tian, Feng; Zhao, Nie; Li, Xiuhong; Bian, Fenggang; Wang, Jie

    2014-08-30

    In this work, we report the cellulose nanofibrils extracted from the pristine jute fibers via the pretreatments followed by the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and mechanical disintegration. The effects of pretreatments by using the NaOH solution and dimethyl sulfoxide solvent on the fiber morphology and macro/micro-structures were investigated by polarizing microscope and synchrotron radiation wide/small-angle X-ray scattering (WAXS/SAXS). The cellulose nanofibrils exhibit a diameter ranging from 5 nm to 20 nm and a length of several micrometers, which have been assembled into cellulose aerogels by the lyophilization of as-prepared nanofibrils dispersions with various concentrations. The results indicated that the hierarchical structures of as-prepared cellulose aerogels were dependent on the dispersion concentrations. The WAXS results show that the typical cellulose aerogels are coexistence of cellulose I and cellulose II, which has a great promise for many potential applications, such as pharmaceutical, liquid filtration, catalysts, bio-nanocomposites, and tissue engineering scaffolds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Use of Pleurotus sajor-caju in upgrading green jute plants and jute sticks as ruminant feed

    Directory of Open Access Journals (Sweden)

    Zinat Mahal

    2013-01-01

    Full Text Available In this study, superfluous jute plants and jute stick were converted into upgraded animal feed by solid state fermentation (SSF using a cellulolytic fungus, Pleurotus sajor-caju. Prior to fermentation, substrates were subjected to several pretreatments such as soaking with water overnight and alkali or lime pretreatment. SSF was carried out with 20 g of substrate in 100 ml conical flask and was incubated at 30C for 8 weeks. In all treatments, the highest amount of reducing sugar, soluble protein as well as the cellulolytic activities of three enzymes viz. cellobiase, carboxymethyl cellulase and avicelase were obtained at 6th week of fermentation. Compared to raw, unsoaked substrates, soaking treatment alone could produce 10% more soluble protein in both substrates whereas reducing sugar increment was 5% and 6% in jute sticks and jute plants, respectively. From all treatments, combination of soaking and lime treatment in green jute plants yielded higher value than jute sticks in terms of reducing sugar, soluble protein and enzymatic activity. The radiation doses at 20, 30 and 40 kGy appeared to have no effect on sugar and protein accretion. During eight weeks of fermentation, relatively higher cellobiase activity was found compared to that of carboxymethyl cellulase and avicelase. The present investigation indicates that fungal conversion with pretreatment can turn these lignocellulosic agro-wastes to a nutritionally enriched animal feed by increasing the crude protein and reducing sugar content. However, further research is necessary to develop strategies for industrial scale production to overcome the crisis of nutritionally improved animal feed.

  12. Adsorption of hexavalent chromium onto sisal pulp/polypyrrole composites

    Science.gov (United States)

    Tan, Y. Y.; Wei, C.; Gong, Y. Y.; Du, L. L.

    2017-02-01

    Sisal pulp/polypyrrole composites(SP/PPy) utilized for the removal of hexavalent chromium [Cr(VI)] from wastewater, were prepared via in-situ chemical oxidation polymerization approach. The structure and morphology of the SP/PPy were analyzed by polarizing optical microscopy (POM), field-emission scanning electron microscopy (SEM)), Energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), the results indicated SP could be efficient dispersion of PPy. The hexavalent chromium adsorption results indicate adsorption capacity of the SP/PPy were dependent on the initial pH, with an optimum pH of 2.0. The sorption kinetic data fitted well to the pseudo-second order model and isotherm data fitted well to the Langmuir isotherm model. The maximum adsorption capacity determined from the Langmuir isotherm is 336.70 mg/g at 25° C.

  13. Pyrolysis characteristic of kenaf studied with separated tissues, alkali pulp, and alkali li

    Directory of Open Access Journals (Sweden)

    Yasuo Kojima

    2015-12-01

    Full Text Available To estimate the potential of kenaf as a new biomass source, analytical pyrolysis was performed using various kenaf tissues, i.e., alkali lignin and alkali pulp. The distribution of the pyrolysis products from the whole kenaf was similar to that obtained from hardwood, with syringol, 4-vinylsyringol, guaiacol, and 4-vinylguaiacol as the major products. The phenols content in the pyrolysate from the kenaf core was higher than that from the kenaf cuticle, reflecting the higher lignin content of the kenaf core. The ratios of the syringyl and guaiacyl compounds in the pyrolysates from the core and cuticle samples were 2.79 and 6.83, respectively. Levoglucosan was the major pyrolysis product obtained from the kenaf alkali pulp, although glycol aldehyde and acetol were also produced in high yields, as previously observed for other cellulosic materials. Moreover, the pathways for the formation of the major pyrolysis products from alkali lignin and alkali pulp were also described, and new pyrolysis pathways for carbohydrates have been proposed herein. The end groups of carbohydrates bearing hemiacetal groups were subjected to ring opening and then they underwent further reactions, including further thermal degradation or ring reclosing. Variation of the ring-closing position resulted in the production of different compounds, such as furans, furanones, and cyclopentenones.

  14. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Yu Hua Wong; Wai Yan Tan; Chin Ping Tan; Kamariah Long; Kar Lin Nyam

    2014-01-01

    Objective: To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines.Methods:kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope.Results:The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected.Conclusions:KSE and KSO could be potential sources of natural anti-cancer agents. Further The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the investigations on using kenaf seeds for anti-proliferative properties are warranted.

  15. Relationship of jute dust to interstitial fibrosis in rat lung.

    Science.gov (United States)

    Chen, Jie; Wang, Xiaobin; Lou, Jiezhi; Liu, Zhenlin

    2003-03-01

    The relationship between jute dust and lung interstitial fibrosis was studied by instilling groups of rats, via trachea, with jute dust and comparing the results with those for positive (quartz) and negative (saline) controls. The rats were sacrificed at regular intervals and their lungs and hilar lymph nodes were analyzed for collagen content and morphologic changes. The earliest changes consisted of alveolar edema, increased numbers of intraalveolar macrophages, and marked thickening of the interalveolar septa, with mixed cellular infiltrates. Moderate thickening of the alveolar walls and the zones around the peribronchioles was seen in the test groups at 6 mo. After 12 mo, some fibrosis of the alveoli walls and peribronchiole zones occurred. Interstitial cellular nodules were observed occasionally, composed mainly of dust particles, fibroblasts, reticular fibers, and collagen fibers. The collagen content in the lungs of the jute dust groups was significantly higher than for the saline control group for all test periods. The authors conclude that jute dust may induce lung interstitial fibrosis.

  16. Defluoridation potential of jute fibers grafted with fatty acyl chain

    Science.gov (United States)

    Manna, Suvendu; Saha, Prosenjit; Roy, Debasis; Sen, Ramkrishna; Adhikari, Basudam

    2015-11-01

    Waterborne fluoride is usually removed from water by coagulation, adsorption, ion exchange, electro dialysis or reverse osmosis. These processes are often effective over narrow pH ranges, release ions considered hazardous to human health or produce large volumes of toxic sludge that are difficult to handle and dispose. Although plant matters have been shown to remove waterborne fluoride, they suffer from poor removal efficiency. Following from the insight that interaction between microbial carbohydrate biopolymers and anionic surfaces is often facilitated by lipids, an attempt has been made to enhance fluoride adsorption efficiency of jute by grafting the lignocellulosic fiber with fatty acyl chains found in vegetable oils. Fluoride removal efficiency of grafted jute was found to be comparable or higher than those of alternative defluoridation processes. Infrared and X-ray photoelectron spectroscopic evidence indicated that hydrogen bonding, protonation and C-F bonding were responsible for fluoride accumulation on grafted jute. Adsorption based on grafted jute fibers appears to be an economical, sustainable and eco-friendly alternative technique for removing waterborne fluoride.

  17. Development of Knitted Warm Garments from Speciality Jute Yarns

    Science.gov (United States)

    Roy, Alok Nath

    2013-09-01

    Jute-polyester blended core and textured polyester multifilament cover spun-wrapped yarn was produced using existing jute spinning machines. The spun-wrapped yarn so produced show a reduction in hairiness up to 86.1 %, improvement in specific work of rupture up to 9.8 % and specific flexural rigidity up to 23.6 % over ordinary jute-polyester blended yarn. The knitted swatch produced out of these spun-wrapped yarn using seven gauge and nine gauge needle in both single jersey and double jersey knitting machines showed very good dimensional stability even after three washing. The two-ply and three-ply yarn produced from single spun-wrapped yarn can be easily used in knitting machines and also in hand-knitting for the production of sweaters. The thermal insulation value of the sweaters produced with jute-polyester blended spun-wrapped yarn is comparable with thermal insulation value of sweaters made from 100 % acrylic and 100 % wool. However, the hand-knitted sweaters showed higher thermal insulation value than the machine-knitted sweaters due to less packing of yarn in hand knitted structure as compared to machine knitting.

  18. Study of a railway embankment reinforced with jute tassels

    Indian Academy of Sciences (India)

    Aniruddha Sengupta; Suvadeep Dalal

    2015-02-01

    This paper presents the results of laboratory model tests and corresponding numerical analyses carried out on a model slope representing an actual railway embankment which failed on several occasions after overnight heavy rainfall. In the absence of any field data, the displacement behaviour and failure pattern of the model embankment slope are observed in the laboratory under fully saturated condition and under a static load at the crest simulating the actual rail loads. A study is also performed by reinforcing the slope with thin jute tassels of 1 mm diameter. The numerical simulation of the model tests is performed by a commercial program called FLAC. The responses of the model slope with and without jute tassels are observed in fully saturated condition. Significant improvement in deformation of the slope is observed both in the case of numerical analyses and laboratory experiments when jute tassels are utilized as a slope protection measure. The study indicates that the stability of the railway embankment can be improved significantly at low cost by reinforcing it with jute tassels.

  19. Improving degradation resistance of sisal fiber in concrete through fiber surface treatment

    Science.gov (United States)

    Wei, Jianqiang; Meyer, Christian

    2014-01-01

    As part of an ongoing effort to improve the sustainability of reinforced concrete, recycled concrete aggregate is being considered together with natural fibers such as sisal fiber as replacement of synthetic reinforcement. Since natural fibers are known to undergo potential deterioration in the alkaline cement matrix especially in outdoor erosive environment, they need to be treated to improve their durability. This paper describes two such methods (thermal and Na2CO3 treatment) and evaluates their effects on the degradation resistance of sisal fiber and durability of sisal fiber-reinforced concrete with recycled concrete aggregate. Concrete specimens were subjected to cycles of wetting and drying to accelerate aging. The microstructure, tensile strength and Young's modulus of sisal fiber as well as the weight loss of the composite were evaluated. Of primary interest were the effects on compressive and splitting tensile strength of sisal fiber-reinforced concrete. Thermal treatment and Na2CO3 surface treatment were shown to improve the durability of the composite as measured by splitting tensile strength by 36.5% and 46.2% and the compressive strength by 31.1% and 45.4%, respectively. The mechanisms of these two treatment methods were also analyzed. The thermal treatment achieved improvement of cellulose's crystallization, which ensured the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali solution formed in the cement hydration process, was formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface to improve their corrosion resistance and durability and reduced the detrimental effects of Na+ ions on concrete.

  20. Sistema radicular do fórmio, sisal e bambu imperial Root systems of new zealand flax, sisal, and imperial bamboo

    Directory of Open Access Journals (Sweden)

    Júlio César Medina

    1963-01-01

    Full Text Available Os autores apresentam e discutem os resultados de estudos preliminares sôbre o sistema radicular do fórmio (Phormium tenax Forster, sisal (Agave sisalana Perrine e bambu .imperial (Bambusa vulgaris Schrad. var. vittata A. ,& C, Riv.. Concluem, que o sistema radicular do fórmio é relativamente raso, o do sisal bastante superficial é o do bambu imperial se limitada às primeiras carnadas do solo.Results of preliminary studies on root-systems of New Zealand flax (Phormium tenax Forster, sisal (Agave sisalana Perrine, and imperial bamboo (Bambusa vulgaris Schrad. var. vittata A. & C. Riv. plants by the method of soil block, are apresented and discussed by the authors. According to local soil conditions, it is concluded that the root-system of New Zealand flax is relatively superficial, with the main concentration of roots in the 12 in. soil top layer. In sisal, the root-systems of the three plants investigated were found to occur in the soil surface layer, with more of 90% of the roots in the top 6 in. Finally, in the imperial bamboo clump atudied, the main concentration of roots was found in the layer 6-12 in. deep.

  1. Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)

    Science.gov (United States)

    Sosiati, H.; Nahyudin, A.; Fauzi, I.; Wijayanti, D. A.; Triyana, K.

    2016-04-01

    Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PP composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.

  2. A STUDY OF RESIDUAL STRENGTH OF SISAL TEXTILE REINFORCED VINYL ESTER

    Institute of Scientific and Technical Information of China (English)

    Li Yan

    2005-01-01

    In this study, the residual strength of sisal textile reinforced vinyl ester resin is studied using specimens with a central hole. Two kinds of chemicals, silane and permanganate, are used to treat sisal fibre surfaces. The effects of fibre surface treatments on the residual strength of sisal fibre reinforced composites with different central hole sizes are analysed. Optical microscopy (OM) surveys provide sound evidence for the relationship between residual strength properties and fracture morphologies of sisal textile reinforced vinyl ester.Several theoretical models used to predict the residual strength of laminated composites are briefly reviewed. Point stress criterion (PSC) and average stress criterion (ASC) models are used to analyze the mechanical properties of sisal textile reinforced polymers with a central hole in this research. Material constant, characteristic length (do or lc), is obtained and used to analyze the mechanical behavior of the composites. The residual strength of the composites predicted by PSC and ASC models is in good agreement with the experimental results..

  3. Mechanical properties of sisal fibre reinforced urea-formaldehyde resin composites

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available Alkali-treated sisal fibres were used as novel reinforcement to obtain composites with self-synthesized ureaformaldehyde resin as matrix phase. The composites were prepared by means of compression molding, and then the effects of sisal loading on mechanical properties such as impact strength, flexural strength, and wear resistance were investigated. In addition, water uptake was studied and structural features were revealed by the scanning electron microscopy (SEM. The composite with 30 wt% sisal fibres gives excellent flexural strength, water absorption, and especially the wear resistance showing that it has the most superior bonding and adhesion of all the composites. In particular, the highest value 9.42 kJ/m2 of charpy impact strength is observed in the composite with 50 wt% sisal fibre. SEM micrographs of impact fractured and worn surfaces clearly demonstrate the interfacial adhesion between fibre and matrix. This work shows the potential of sisal fibre (SF to improve the composite wear resistance and to be used in fibreboard.

  4. Genetic diversity and DNA fingerprinting in jute (Corchorus spp. based on SSR markers

    Directory of Open Access Journals (Sweden)

    Liwu Zhang

    2015-10-01

    Full Text Available Genetic diversity analysis and DNA finger printing are very useful in breeding programs, seed conservation and management. Jute (Corchorus spp. is the second most important natural fiber crop after cotton. DNA fingerprinting studies in jute using SSR markers are limited. In this study, 58 jute accessions, including two control varieties (Huangma 179 and Kuanyechangguo from the official variety registry in China were evaluated with 28 pairs of SSR primers. A total of 184 polymorphic loci were identified. Each primer detected 3 to 15 polymorphic loci, with an average of 6.6. The 58 jute accessions were DNA-fingerprinted with 67 SSR markers from the 28 primer pairs. These markers differentiated the 58 jute accessions from one another, with CoSSR305-120 and CoSSR174-195 differentiating Huangma 179 and Kuanyechangguo, respectively. NTSYS-pc2.10 software was used to analyze the genetic diversity in the 58 jute accessions. Their genetic similarity coefficients ranged from 0.520 to 0.910 with an average of 0.749, indicating relatively great genetic diversity among them. The 58 jute accessions were divided into four groups with the coefficient 0.710 used as a value for classification, consistent with their species and pedigrees. All these results may be useful both for protection of intellectual property rights of jute accessions and for jute improvement.

  5. Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites.

    Science.gov (United States)

    Das, Sekhar

    2017-09-15

    Hybrid composites were prepared with jute fabric and un-shredded newspaper in polyester resin matrix. The experiment was designed 1:2 weights ratio jute and unshredded newspaper to have 42 (w/w)% fibre content hybrid composites and two different sequences jute/paper/jute and paper/jute/paper of waste newspaper and jute fabric arrangement. Reinforcing material is characterized by chemically, X-ray diffraction methods, Fourier transform infrared spectroscopy and tensile testing. The tensile, flexural and interlaminar shear strength and fracture surface morphology of composites were evaluated and compared. It was found that tensile and flexural properties of the hybrid composite are higher than that of pure paper-based composite but less than pure woven jute composite. The hybridization effect of woven jute fabric and layering pattern effect on mechanical properties of newspaper/woven jute fabric hybrid composites were studied. The test results of composites were analyzed by one-way ANOVA (α=0.05), it showed significant differences among the groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A comparative study of respiratory function in female non-smoking cotton and jute workers

    Science.gov (United States)

    Valić, F.; Žuškin, Eugenija

    1971-01-01

    Valić, F., and Žuškin, E. (1971).Brit. J. industr. Med.,28, 364-368. A comparative study of respiratory function in female non-smoking cotton and jute workers. To compare the effect of cotton and jute dust, respiratory symptoms were studied and respiratory function measured in 60 cotton and 91 jute non-smoking female workers of similar age distribution, similar length of exposure to dust, and exposed to similar respirable airborne dust concentrations. Cotton workers had a significantly higher prevalence of byssinosis, of persistent cough, and of dyspnoea (P jute workers. Among cotton workers 28·3% were found to have characteristic symptoms of byssinosis, whereas none was found among jute workers. Exposure to cotton but also to jute dust caused significant reductions of FEV1·0, FVC, and PEF (P jute and cotton dust effects has shown that about 30% of cotton workers had functional grades F1 and F2, while only 13% of jute workers were found in the same grades (F1). It is concluded that cotton dust may be considered more active than jute though the latter cannot be considered inactive. PMID:5124836

  7. A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste

    Science.gov (United States)

    Jo, Byung-Wan; Chakraborty, Sumit

    2015-01-01

    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite.

  8. Genetic diversity and DNA fingerprinting in jute(Corchorus spp.) based on SSR markers

    Institute of Scientific and Technical Information of China (English)

    Liwu; Zhang; Rongrong; Cai; Minhang; Yuan; Aifen; Tao; Jiantang; Xu; Lihui; Lin; Pingping; Fang; Jianmin; Qi

    2015-01-01

    Genetic diversity analysis and DNA finger printing are very useful in breeding programs,seed conservation and management. Jute(Corchorus spp.) is the second most important natural fiber crop after cotton. DNA fingerprinting studies in jute using SSR markers are limited. In this study, 58 jute accessions, including two control varieties(Huangma 179 and Kuanyechangguo) from the official variety registry in China were evaluated with 28 pairs of SSR primers. A total of 184 polymorphic loci were identified. Each primer detected 3 to 15 polymorphic loci, with an average of 6.6. The 58 jute accessions were DNA-fingerprinted with 67 SSR markers from the 28 primer pairs. These markers differentiated the 58 jute accessions from one another, with Co SSR305-120 and Co SSR174-195 differentiating Huangma 179 and Kuanyechangguo, respectively. NTSYS-pc2.10 software was used to analyze the genetic diversity in the 58 jute accessions. Their genetic similarity coefficients ranged from 0.520 to 0.910 with an average of 0.749, indicating relatively great genetic diversity among them. The 58 jute accessions were divided into four groups with the coefficient 0.710 used as a value for classification, consistent with their species and pedigrees. All these results may be useful both for protection of intellectual property rights of jute accessions and for jute improvement.

  9. Kenaf (Hibiscus cannabinus) and sunn hemp (Crotalaria juncea): Monoculture and polyculture production

    Science.gov (United States)

    Kenaf (Hibiscus cannabinus L.) and sunn hemp (Crotalaria juncea L.) are fast growing summer annual crops with numerous commercial applications (fibers, biofuels, bioremediation, paper pulp, building materials, cover crops, and livestock forages). Field research was conducted in southeast Oklahoma (...

  10. Thermo-Physical Properties of Kenaf-Filled Acrylonitrile Butadiene Styrene Composites

    Directory of Open Access Journals (Sweden)

    Nikmatin Siti

    2017-01-01

    Full Text Available Studies on advantageous of natural fillers incorporated into polymer composites on thermo-physical and mechanical properties are still intensively investigated. Several evidences suggest that the natural fillers with small contents combined with polymer increase their composite properties. We thus investigate thermo-physical properties of kenaf-filled acrylonitrile butadiene styrene (ABS composites. ABS with 5% kenaf microparticle size (ABS/K5, ABS with 5% kenaf short fiber (ABS/KSF5, and recycled ABS with 5% kenaf microparticle size (RABS/K5 were manufactured. Granular composites were manufactured by the twin screw extruder. Composite properties in terms of X-ray diffractions, surface morphologies, and thermal behaviors were investigated. The present work found that ABS/KSF5 has the highest degree of crystallinity compared to others. No significant difference was found in terms of thermal properties of the composites.

  11. Evaluation of Methane from Sisal Leaf Residue and Palash Leaf Litter

    Science.gov (United States)

    Arisutha, S.; Baredar, P.; Deshpande, D. M.; Suresh, S.

    2014-12-01

    The aim of this study is to evaluate methane production from sisal leaf residue and palash leaf litter mixed with different bulky materials such as vegetable market waste, hostel kitchen waste and digested biogas slurry in a laboratory scale anaerobic reactor. The mixture was prepared with 1:1 proportion. Maximum methane content of 320 ml/day was observed in the case of sisal leaf residue mixed with vegetable market waste as the feed. Methane content was minimum (47 ml/day), when palash leaf litter was used as feed. This was due to the increased content of lignin and polyphenol in the feedstock which were of complex structure and did not get degraded directly by microorganisms. Sisal leaf residue mixtures also showed highest content of volatile fatty acids (VFAs) as compared to palash leaf litter mixtures. It was observed that VFA concentration in the digester first increased, reached maximum (when pH was minimum) and then decreased.

  12. Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources.

    Science.gov (United States)

    Luthfi, Abdullah Amru Indera; Manaf, Shareena Fairuz Abdul; Illias, Rosli Md; Harun, Shuhaida; Mohammad, Abdul Wahab; Jahim, Jamaliah Md

    2017-04-01

    Due to the world's dwindling energy supplies, greater thrust has been placed on the utilization of renewable resources for global succinate production. Exploration of such biotechnological route could be seen as an act of counterbalance to the continued fossil fuel dominance. Malaysia being a tropical country stands out among many other nations for its plenty of resources in the form of lignocellulosic biomass. To date, oil palm frond (OPF) contributes to the largest fraction of agricultural residues in Malaysia, while kenaf, a newly introduced fiber crop with relatively high growth rate, holds great potential for developing sustainable succinate production, apart from OPF. Utilization of non-food, inexhaustible, and low-cost derived biomass in the form of OPF and kenaf for bio-based succinate production remains largely untapped. Owing to the richness of carbohydrates in OPF and kenaf, bio-succinate commercialization using these sources appears as an attractive proposition for future sustainable developments. The aim of this paper was to review some research efforts in developing a biorefinery system based on OPF and kenaf as processing inputs. It presents the importance of the current progress in bio-succinate commercialization, in addition to describing the potential use of different succinate production hosts and various pretreatments-saccharifications under development for OPF and kenaf. Evaluations on the feasibility of OPF and kenaf as fermentation substrates are also discussed.

  13. Enhanced enzymatic hydrolysis of kenaf core using irradiation and dilute acid

    Science.gov (United States)

    Lee, Byoung-Min; Jeun, Joon-Pyo; Kang, Phil-Hyun

    2017-01-01

    This study was performed to determine the effect of electron beam dose and enzymatic hydrolysis time for production of sugar such as glucose and xylose. After kenaf core was exposed to an irradiation dose that ranged from 0 to 500 kGy, the irradiated kenaf core was treated with a 3% (v/v) sulfuric acid solution using an autoclave for 5 h at 120 °C. The pretreated kenaf core was subsequently subjected to enzymatic hydrolysis at 50 °C in a shaking water bath at 150 rpm for 12, 24, 48, and 72 h. The determined enzyme activity rates were 70 FPU (Celluclast 1.5 L) and 40 CBU (Novozyme-188). The crystallinity index decreased from 50.6% in a non-pretreated kenaf core to 27.7% in kenaf core that was subjected to the two-stage pretreatment at dose of 500 kGy. The sugar yield of the two-stage pretreated kenaf core increased with an increase in irradiation dose. The sugar yield after 72 h of enzymatic hydrolysis was 73.6% at its highest with an irradiation dose of 500 kGy. The enhancement of enzymatic hydrolysis by two-stage pretreatment was more effective than non- and single pretreatment (36.9%, 40.6% and 44.0% in non-pretreatment, electron beam and dilute acid, respectively).

  14. RNA-seq for comparative transcript profiling of kenaf under salinity stress.

    Science.gov (United States)

    Li, Hui; Li, Defang; Chen, Anguo; Tang, Huijuan; Li, Jianjun; Huang, Siqi

    2017-03-01

    Kenaf (Hibiscus cannabinus L.) is an economically important global natural fiber crop. As a consequence of the increased demand for food crops and the reduction of available arable land, kenaf cultivation has increasingly shifted to saline and alkaline land. To investigate the molecular mechanism of salinity tolerance in kenaf, we performed Illumina high-throughput RNA sequencing on shoot tips of kenaf and identified 71,318 unigenes, which were annotated using four different protein databases. In total, 2,384 differentially expressed genes (DEGs) were identified between the salt-stressed and the control plants, 1,702 of these transcripts were up-regulated and 683 transcripts were down-regulated. Thirty-seven transcripts belonging to 15 transcription-factor families that respond to salt stress were identified. Gene ontology function enrichment analysis revealed that the genes encoding antioxidant enzymes were up-regulated. The amino acid metabolism and carbohydrate metabolism pathways were highly enriched among these DEGs under salt stress conditions. In order to confirm the RNA-seq data, we randomly selected 20 unigenes for analysis using a quntitative real-time polymerase chain reaction. Our study not only provided the large-scale assessment of transcriptome resources of kenaf but also guidelines for understanding the mechanism underlying salt stress responses in kenaf.

  15. Understanding the Reinforcing Mechanisms in Kenaf Fiber/PLA and Kenaf Fiber/PP Composites: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Seong Ok Han

    2012-01-01

    Full Text Available This study focused on exploring the feasibility of green composites made from biodegradable and renewable materials as potential alternatives to petroleum polymer composites and understanding the reinforcing mechanisms in composites containing kenaf fibers (KF. KF-reinforced poly(lactide acid (PLA composites were made using melt compounding and injection molding, and their properties were compared to that of KF-reinforced polypropylene (PP composites. The flexural properties and thermomechanical behavior were determined as a function of the fiber content, the crystallization of PLA and PP was studied using X-ray diffraction and differential scanning calorimetry, and the composites’ morphology was investigated using scanning electron microscopy. It was concluded that PLA exhibits higher modulus and Tg compared to those of neat PP. The modulus of the composites at 40 wt% fibers is 6.64 GPa and 2.96 GPa for PLA and PP, respectively. In general, addition of kenaf results in larger property enhancement in PP due to better wetting of the fibers by the low melt viscosity PP and the crystallization behavior of PP that is significantly altered by the fibers. The novelty of this work is that it provides one-to-one comparison of PLA and PP composites, and it explores the feasibility of fabricating green composites with enhanced properties using a simple scalable process.

  16. Hydrophobic modification of jute fiber used for composite reinforcement via laccase-mediated grafting

    Science.gov (United States)

    Dong, Aixue; Yu, Yuanyuan; Yuan, Jiugang; Wang, Qiang; Fan, Xuerong

    2014-05-01

    Jute fiber is a lignocellulosic material which could be utilized for reinforcement of composites. To improve the compatibility of hydrophilic jute fiber with hydrophobic resin, surface hydrophobization of the fiber is often needed. In this study, the feasibility of laccase-mediated grafting dodecyl gallate (DG) on the jute fiber was investigated. First, the grafting products were characterized by FT-IR, XPS, SEM and AFM. And then the grafting percentage (Gp) and the DG content of the modified jute were determined in terms of weighting and saponification, respectively. The parameters of the enzymatic grafting process were optimized to the target application. Lastly, the hydrophobicity of the jute fabrics was estimated by means of contact angle and wetting time. The mechanical properties and the fracture section of the jute fabric/polypropylene (PP) composites were studied. The results revealed covalently coupling of DG to the jute substrates mediated by laccase. The enzymatic process reached the maximum grafting rate of 4.16% when the jute fabric was incubated in the 80/20 (v/v, %) pH 3 0.2 M acetate buffer/ethanol medium with 1.0 U/mL laccase and 5 mM DG at 50 °C for 4 h. The jute fabric modified with laccase and DG showed increased contact angle of 111.49° and wetting time of at least 30 min, indicating that the surface hydrophobicity of the jute fabric was increased after the enzymatic graft modification with hydrophobic DG. The breaking strength of the modified jute fiber/PP composite was also increased and the fracture section became neat and regular due to the laccase-assisted grafting with DG.

  17. Improvement of Life Expectancy of Jute Based Needlepunched Geotextiles Through Bitumen Treatment

    Science.gov (United States)

    Ghosh, S. K.; Ray Gupta, K.; Bhattacharyya, R.; Sahu, R. B.; Mandol, S.

    2014-12-01

    Geotextiles have witnessed unrivalled growth worldwide in recent years in the field of different civil engineering constructions. The world of Geotextiles includes mainly non-biodegradable synthetic materials which are not environmentally compatible. With the increasing human awareness on environmental pollution aspects, biodegradable Jute Geotextile is increasingly gaining ground over its synthetic non-biodegradable counterpart. Though Jute is advantageous for its complete biodegradability in one hand but on the other hand it is disadvantageous for its poor microbial resistance and quicker biodegradation particularly under moist soil conditions, when applied as Geotextiles under soil. Therefore, it is a great challenge to the present researchers to make jute more microbial resistant (rot resistant) keeping its biodegradability intact during its performance period. Thorough investigation and study regarding the improvement of the durability of natural Jute Geotextile reveals the fact that though several attempts including chemical treatments have been made to enhance the life expectancy of jute fabrics yet these methods were neither found to be suitable nor techno-economically viable. Therefore, in order to accomplish the objective and based on the researchers' report of satisfactory thermal compatibility between hot bitumen and jute nonwoven fabrics, in the present study Bitumen emulsion with essential additives has been applied following a special technique, apart from the conventional method, on the Grey Jute Nonwoven Fabrics in different add on percentages to make a comparative assessment of the performance of both Grey Jute Fabrics and Bituminized Jute Nonwoven Fabrics by Soil Burial Test as per the BIS standard test method. The test results revealed that the durability and performance of the Bituminized Nonwoven Jute Fabrics are much better than that of Grey Jute Nonwoven Fabrics.

  18. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers.

    Science.gov (United States)

    Cao, Xinwang; Ding, Bin; Yu, Jianyong; Al-Deyab, Salem S

    2012-10-01

    Cellulose nanowhiskers is a kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Here, for the first time, a novel controllable fabrication of cellulose nanowhiskers from jute fibers with a high yield (over 80%) via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization is reported. The versatile jute cellulose nanowhiskers with ultrathin diameters (3-10 nm) and high crystallinity (69.72%), contains C6 carboxylate groups converted from C6 primary hydroxyls, which would be particularly useful for applications in the nanocomposites as reinforcing phase, as well as in tissue engineering, pharmaceutical and optical industries as additives.

  19. Phenol Removal from Aqueous System by Jute Stick

    Directory of Open Access Journals (Sweden)

    Ahmed Ismail Mustafa

    2008-12-01

    Full Text Available The adsorption technique using jute sticks has been applied for the removal of phenol from aqueous solutions. The extent of removal was dependent on concentration of phenol, contact time, pH, and quantity of adsorbent. With an initial concentration of 40 ppm phenol in 100 mL and pH 10.0, the removal was found to be about 68% with 3.0 g jute stick. The time to reach equilibrium was found to be 5 hr. The applicability of Freundlich isotherm to the adsorption of phenol system was tested at 25 0C to 40 0C at pH 10.0. The spent adsorbent was regenerated by acid treatment.

  20. Vermiremediation of toxic jute mill waste employing Metaphire posthuma.

    Science.gov (United States)

    Das, Subhasish; Deka, Priyanka; Goswami, Linee; Sahariah, Banashree; Hussain, Nazneen; Bhattacharya, Satya Sundar

    2016-08-01

    India has a giant jute-producing basket which produces considerable quantity of toxic jute mill waste (JMW). Conversely, report on usability potential of JMW is rather scanty. The present study illustrates the efficiency of vermicomposting in bioconversion of JMW for agricultural use. Various combinations of JMW, cow dung, and vegetable waste were fed to Metaphire posthuma in vermireactors. Rapid increment of earthworm count, body weight, and cocoon production was evidenced. Total organic carbon and pH reduction was noteworthy, but N, P, and K availability, formation of stable humic acid C, fulvic acid C, and microbial biomass C substantially increased due to vermicomposting. FTIR spectroscopy confirmed a higher stability of vermicomposted JMW over the composted product. A significant decline in heavy metal concentration (Cr, Pb, Fe, and Zn) in the vermicomposted JMW further establishes the potential of vermicomposting with M. posthuma in successful conversion of the toxic JMW into valuable product.

  1. Biodegradable composites based on L-polylactide and jute fibres

    DEFF Research Database (Denmark)

    Plackett, David; Løgstrup Andersen, T.; Batsberg Pedersen, W.

    2003-01-01

    Biodegradable polymers can potentially be combined with plant fibres to produce biodegradable composite materials. In our research, a commercial L-polylactide was converted to film and then used in combination with jute fibre mats to generate composites by a film stacking technique. Composite...... tensile properties were determined and tensile specimen fracture surfaces were examined using environmental scanning electron microscopy. Degradation of the polylactide during the process was investigated using size exclusion chromatography. The tensile properties of composites produced at temperatures...... in the 180-220 degreesC range were significantly higher than those of polylactide alone. Composite samples failed in a brittle fashion under tensile load and showed little sign of fibre pull-out. Examination of composite fracture surfaces using electron microscopy showed voids occurring between the jute...

  2. Striving for Diversity, Accessibility and Quality: Evaluating SiSAL Journal

    Directory of Open Access Journals (Sweden)

    Jo Mynard

    2014-06-01

    Full Text Available After establishing a journal, it is important to evaluate its progress to ensure that the principles that underpin its existence continue to be a priority. In this article, the author reports on measures that were used to evaluate Studies in Self-Access Learning (SiSAL Journal. The research was designed to investigate the three principles that the journal values: diversity, accessibility and quality. The results identified some successful factors such as accessibility and favourable perceptions of SiSAL Journal’s quality. However, the results also identified areas that could be improved to further increase diversity and to encourage submissions from more authors based in different locations.

  3. Pathways associated with lignin biosynthesis in lignomaniac jute fibres.

    Science.gov (United States)

    Chakraborty, Avrajit; Sarkar, Debabrata; Satya, Pratik; Karmakar, Pran Gobinda; Singh, Nagendra Kumar

    2015-08-01

    We generated the bast transcriptomes of a deficient lignified phloem fibre mutant and its wild-type jute (Corchorus capsularis) using Illumina paired-end sequencing. A total of 34,163 wild-type and 29,463 mutant unigenes, with average lengths of 1442 and 1136 bp, respectively, were assembled de novo, ~77-79 % of which were functionally annotated. These annotated unigenes were assigned to COG (~37-40 %) and GO (~22-28 %) classifications and mapped to 189 KEGG pathways (~19-21 %). We discovered 38 and 43 isoforms of 16 and 10 genes of the upstream shikimate-aromatic amino acid and downstream monolignol biosynthetic pathways, respectively, rendered their sequence similarities, confirmed the identities of 22 of these candidate gene families by phylogenetic analyses and reconstructed the pathway leading to lignin biosynthesis in jute fibres. We also identified major genes and bast-related transcription factors involved in secondary cell wall (SCW) formation. The quantitative RT-PCRs revealed that phenylalanine ammonia-lyase 1 (CcPAL1) was co-down-regulated with several genes of the upstream shikimate pathway in mutant bast tissues at an early growth stage, although its expression relapsed to the normal level at the later growth stage. However, cinnamyl alcohol dehydrogenase 7 (CcCAD7) was strongly down-regulated in mutant bast tissues irrespective of growth stages. CcCAD7 disruption at an early growth stage was accompanied by co-up-regulation of SCW-specific genes cellulose synthase A7 (CcCesA7) and fasciclin-like arabinogalactan 6 (CcFLA6), which was predicted to be involved in coordinating the S-layers' deposition in the xylan-type jute fibres. Our results identified CAD as a promising target for developing low-lignin jute fibres using genomics-assisted molecular approaches.

  4. Alternating current electrical properties of Argon plasma treated jute

    Directory of Open Access Journals (Sweden)

    Md. Masroor Anwer

    2012-09-01

    Full Text Available Low temperature plasma (LTP treatment, a kind of environment friendly surface modification technique, was applied to biodegradable and environment friendly jute fibre with the use of nonpolymerizing gas, namely argon, at various discharge power levels and exposure times with a definite flow rate. Scanning electron microscopy (SEM microphotographs reveal that the roughness of the fibre surfaces increases with the increase of discharge power and exposure time. This is caused due to the bombardment of high energetic ions on the fibre surface and the fibres become sputtered. The capacitance and the electrical conductance of raw and LTP treated jute fibre were measured as a function of frequency at room temperature. The dielectric constant, conductivity, dielectric loss-tangent and the surface morphology of raw and LTP treated jute as a function of frequency were studied at room temperature. It was observed that for all the samples the dielectric constant almost constant at lower frequencies and then decreases gradually in the high frequency region. In addition, dielectric constant increases with the increase of plasma treatment time as well as discharge power. It is also observed for all the samples that the conductivity increases as the frequency increases with a lower slope in the low frequency region and with a higher slope in the higher frequency region. In addition, the conductivity decreases with the increase of plasma exposure time as well as discharge power. The conductivity increases with frequency due to the hopping mechanism of electrons. The dependence of the dielectric loss-tangent with frequency at different treatment times and discharge powers for all the jute samples show small relaxation peaks in the very low frequency region. The dielectric loss-tangent decreases with the increase of both plasma treatment time and discharge power. In addition, the relaxation peaks are shifted to the higher frequency region as the plasma treatment

  5. Bacterial population structure of the jute-retting environment.

    Science.gov (United States)

    Munshi, Tulika K; Chattoo, Bharat B

    2008-08-01

    Jute is one of the most versatile bast fibers obtained through the process of retting, which is a result of decomposition of stalks by the indigenous microflora. However, bacterial communities associated with the retting of jute are not well characterized. To investigate the presence of microorganisms during the process of jute retting, full-cycle rRNA approach was followed, and two 16S rRNA gene libraries, from jute-retting locations of Krishnanagar and Barrackpore, were constructed. Phylotypes affiliating to seven bacterial divisions were identified in both libraries. The bulk of clones came from Proteobacteria ( approximately 37, 41%) and a comparatively smaller proportion of clones from the divisions-Firmicutes ( approximately 11, 12%), Cytophaga-Flexibacter-Bacteroidetes group (CFB; approximately 9, 7%), Verrucomicrobia ( approximately 6, 5%), Acidobacteria ( approximately 4, 5%), Chlorobiales ( approximately 5, 5%), and Actinobacteria ( approximately 4, 2%) were identified. Percent coverage value and diversity estimations of phylotype richness, Shannon-Weiner index, and evenness confirmed the diverse nature of both the libraries. Evaluation of the retting waters by whole cell rRNA-targeted flourescent in situ hybridization, as detected by domain- and group-specific probes, we observed a considerable dominance of the beta-Proteobacteria (25.9%) along with the CFB group (24.4%). In addition, 32 bacterial species were isolated on culture media from the two retting environments and identified by 16S rDNA analysis, confirming the presence of phyla, Proteobacteria ( approximately 47%), Firmicutes ( approximately 22%), CFB group ( approximately 19%), and Actinobacteria ( approximately 13%) in the retting niche. Thus, our study presents the first quantification of the dominant and diverse bacterial phylotypes in the retting ponds, which will further help in improving the retting efficiency, and hence the fiber quality.

  6. Performance of polymer gears reinforced with sisal woven rovings

    Directory of Open Access Journals (Sweden)

    A. Faizur Rahman

    2014-12-01

    Full Text Available Polymer gears find a common place in many industries and applications. In general, carbon fibre and glass fibres are used as reinforcement in polymer gears. This current research focuses on developing and testing the temperature and wear performance of Polyester spur gears reinforced with Sisal Woven Rovings (SWRP . Volume fractions (Vf such as 5% (SWRP/A, 10% (SWRP/B, 15% (SWRP/C and 20% (SWRP/D of gear specimens were prepared and tested for temperature and wear effects. Gears were tested up to 1.4 x 106 cycles. Gear tooth damages are recorded through optical photographs. The result reveals that the temperature and wear performance of SWRP/A and SWRP/B gears were low compared to SWRP/D gears.A small amount of wear damages were observed in SWRP/C gears. No damages were occurred in SWRP/D gears upto 1.4 x 106 cycles and also it was observed that the temperature and wear rate were found to be 15 % and 36 % lesser in SWRP/D gears when compared to SWRP/A gears.

  7. Mechanical Performance of Montmorillonite Dispersed Jute Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Hasan Muhammad Hasibul

    2015-01-01

    Full Text Available Surface treated jute accomplished by chemical treatments which enhanced the adhesion between polyester resin and modified surface within the composite. Baking time for 6 hours also reduced the moisture content and diminishes the hydrophilic properties of the corchorus olitorius jute fiber. Montmorillonite shell type nanoclay was dispersed 1%, 3% and 5% within the jute fiber polyester matrix to enhance the mechanical performance. Effect of temperature and high humidity were evaluated for this nanoclay filled composite through hydrothermal test for 15 days in the environmental chamber. Environmental degradation was not remarkable due to the exposure of the temperature 80°C and 95% RH for this time period. Ductile properties like yield strength (YS, % of elongation were calculated for two different stoke rate to understand the strain rate effect. 1% addition of nanoclay within the composite shows the better performance in terms of yield, flexural and impact strength while 5% dispersed of nanoclay does not have any beneficial effect within the composite due to the density and non-homogeneous mixture of the clay. Fracture morphology by SEM/ FESEM revealed voids, broken fibers and nano particles within the matrix.

  8. Analysis of Composite Material Blended With Thermoplastics and Jute Fibre

    Directory of Open Access Journals (Sweden)

    Venugopal S

    2015-03-01

    Full Text Available Recently natural fibres have been receiving considerable attention as substitutes for synthetic fibre reinforcements due to their low cost, low density, acceptable specific strength, good thermal insulation properties, reduced tool wear, reduced thermal and respiratory irritation and renewable resources. The aim of this work is to develop chemically treated and chemically untreated fibre reinforced composite material with optimum properties so that it can replace the existing synthetic fibre reinforced composite material for a suitable application. In this work, polyester resin has been reinforced with jute fabric, so as to develop jute fibre reinforced plastic (JFRP with a weight ratio of 10:1:1 Hand lay-up technique was used to manufacture the composites where Methyl Ethyl Ketone Peroxide and cobalt Naphthalene were used as coupling agent and accelerator respectively. The thickness of the composite specimen was obtained by laying up layer of fibre and matrix. The untreated composites have been used and mechanical properties are compared with natural fibre and jute fibre composite by using the Ansys method.

  9. Hydrophobic surface functionalization of lignocellulosic jute fabrics by enzymatic grafting of octadecylamine.

    Science.gov (United States)

    Dong, Aixue; Fan, Xuerong; Wang, Qiang; Yu, Yuanyuan; Cavaco-Paulo, Artur

    2015-08-01

    Enzymatic grafting of synthetic molecules onto lignins provides a mild and eco-friendly alternative for the functionalization of lignocellulosic materials. In this study, laccase-mediated grafting of octadecylamine (OA) onto lignin-rich jute fabrics was investigated for enhancing the surface hydrophobicity. First, the lignins in jute fabrics were isolated and analyzed in the macromolecular level by MALDI-TOF MS, (1)H NMR, (13)C NMR, and HSQC-NMR. Then, the surface of jute fabrics was characterized by FT-IR, XPS, and SEM. Subsequently, the nitrogen content of jute fabrics was determined by the micro-Kjeldahl method, and the grafting percentage (Gp) and grafting efficiency (GE) of the enzymatic reaction were calculated. Finally, the surface hydrophobicity of the jute fabrics was estimated by contact angle and wetting time measurements. The results indicate that the OA monomers were successfully grafted onto the lignin moieties on the jute fiber surface by laccase with Gp and GE values of 0.712% and 10.571%, respectively. Moreover, the modified jute fabrics via OA-grafting showed an increased wetting time of 18.5 min and a contact angle of 116.72°, indicating that the surface hydrophobicity of the jute fabrics increased after the enzymatic grafting modification with hydrophobic OA molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Jute fiber reinforced polypropylene produced by continuous extrusion compounding. Part 1. Processing and ageing properties

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Snijder, M.H.B.

    2008-01-01

    This article addresses the processing and ageing properties of jute fiber reinforced polypropylene (PP) composites. The composite has been manufactured by a continuous extrusion process and results in free flowing composite granules, comprising up to 50 weight percent (wt %) jute fiber in PP. These

  11. Mechanical behavior of polyester-based woven jute/glass hybrid composites

    Science.gov (United States)

    Ahsan, Q.; Tanju, S.

    2012-06-01

    In polymer composite fabrication system, hybridization of jute fibers with synthetic fibers is one of the techniques adopted to overcome some of the limitations (poor mechanical properties and moisture resistance) that have been identified for jute fiber reinforced composites. In the present study, the effect of hybridization on mechanical properties of jute and glass mat reinforced polyester composites has been evaluated experimentally. The composites were made of glass mat, jute mat and varying layers of jute and glass mat in the polyester matrix by applying hand lay-up technique at room temperature (250C). The values of mechanical properties obtained from tensile, flexural and interlaminar shear strength (ILSS) tests show significant improvement with the increase of glass fiber content in hybrid composites. But the positive contribution from glass mat in increasing of ILSS of composite is limited to some extent and the optimum ILSS is achieved when glass-jute incorporated in composite as 50-50 weight basis. SEM images were used to study the modes of fracture, fiber-matrix adhesion, and jute-glass layer adhesion. The fracture surfaces resulted from different tests clearly show that cracks propagate throughout the polyester matrix by tearing the jute mat and delaminating the glass mat.

  12. Enzymatic Hydrophobic Modification of Jute Fibers via Grafting to Reinforce Composites.

    Science.gov (United States)

    Liu, Ruirui; Dong, Aixue; Fan, Xuerong; Yu, Yuanyuan; Yuan, Jiugang; Wang, Ping; Wang, Qiang; Cavaco-Paulo, Artur

    2016-04-01

    Horseradish peroxidase (HRP)/H2O2 system catalyzes the free-radical polymerization of aromatic compounds such as lignins and gallate esters. In this work, dodecyl gallate (DG) was grafted onto the surfaces of lignin-rich jute fabrics by HRP-mediated oxidative polymerization with an aim to enhance the hydrophobicity of the fibers. The DG-grafted jute fibers and reaction products of their model compounds were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results clearly indicated the grafting of DG to the jute fiber by HRP. Furthermore, the hydrophobicity of jute fabrics was determined by measuring the wetting time and static contact angle. Compared to the control sample, the wetting time and static contact angle of the grated fabrics changed from ~1 s to 1 h and from ~0° to 123.68°, respectively. This clearly proved that the hydrophobicity of jute fabrics improved considerably. Conditions of the HRP-catalyzed DG-grafting reactions were optimized in terms of the DG content of modified jute fabrics. Moreover, the results of breaking strength and elongation of DG-grafted jute/polypropylene (PP) composites demonstrated improved reinforcement of the composite due to enzymatic hydrophobic modification of jute fibers.

  13. Jute fiber reinforced polypropylene produced by continuous extrusion compounding. Part 1. Processing and ageing properties

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Snijder, M.H.B.

    2008-01-01

    This article addresses the processing and ageing properties of jute fiber reinforced polypropylene (PP) composites. The composite has been manufactured by a continuous extrusion process and results in free flowing composite granules, comprising up to 50 weight percent (wt %) jute fiber in PP. These

  14. Colletotrichum species associated with jute (Corchorus capsularis L.) anthracnose in southeastern China.

    Science.gov (United States)

    Niu, Xiaoping; Gao, Hong; Qi, Jianmin; Chen, Miancai; Tao, Aifen; Xu, Jiantang; Dai, Zhigang; Su, Jianguang

    2016-04-28

    Anthracnose, caused by the Colletotrichum species of fungi, is one of the most serious diseases affecting jute in China. The disease causes chlorotic regions with black brown sunken necrotic pits on the surfaces of stems. In late stages of disease, plants undergo defoliation, dieback and blight, which make anthracnose a major threat to jute fiber production and quality in China. In this study, 7 strains of Colletotrichum fungi were isolated from diseased jute stems from Zhejiang, Fujian, Guangxi, and Henan plantations in China. Multi-locus sequence (ACT, TUB2, CAL, GS, GAPDH and ITS) analysis coupled with morphological assessment revealed that C. fructicola, C. siamense and C. corchorum-capsularis sp. nov. were associated with jute anthracnose in southeastern China. C. fructicola and C. siamense were previously not associated with jute anthracnose. C. corchorum-capsularis is a new species formally described here. Pathogenicity tests confirmed that all species can infect jute, causing anthracnose, however the virulence of the 3 species differed. This report is the first associating these three species with jute disease worldwide and is the first description of the pathogens responsible for jute anthracnose in China.

  15. Effect of jute yarn on the mechanical behavior of concrete composites.

    Science.gov (United States)

    Zakaria, Mohammad; Ahmed, Mashud; Hoque, Md Mozammel; Hannan, Abdul

    2015-01-01

    The objective of the study is to investigate the effect of introducing jute yarn on the mechanical properties of concrete. Jute fibre is produced abundantly in Bangladesh and hence, very cheap. The investigation on the enhancement of mechanical properties of concrete with jute yarn as reinforcement, if enhanced, will not only explore a way to improve the properties of concrete, it will also explore the use of jute and restrict the utilization of polymer which is environmentally detrimental. To accomplish the objective, an experimental investigation of the compressive, flexural and tensile strengths of Jute Yarn Reinforced Concrete composites (JYRCC) has been conducted. Cylinders, prisms and cubes of standard dimensions have been made to introducing jute yarn varying the mix ratio of the ingredients in concrete, water cement ratio, length and volume of yarn to know the effect of parameters as mentioned. Compressive, flexural and tensile strength tests had been conducted on the prepared samples by appropriate testing apparatus following Standards of tests. Mechanical properties of JYRCC were observed to be enhanced for a particular range of lengths of cut (10, 15, 20 and 25 mm) and volume content of jute yarn (0.1, 0.25, 0.5 and 0.75 %). The maximum increment of compressive, flexural and tensile strengths observed in the investigation are 33, 23 and 38 %, respectively with respect to concrete without jute yarn.

  16. Herbicidas no transplante de mudas de sisal (Agave sisalana perr. Weed control and herbicide selectivity to sisal (Agave sisalana perr.

    Directory of Open Access Journals (Sweden)

    Antonio Luiz de Barros Salgado

    1980-01-01

    Full Text Available Com o objetivo de verificar a eficiência de hebraicas no controle de plantas daninhas e sua seletividade à cultura do sisal, foi instalado, em setembro de 1976, um experimento de campo em solo argiloso, com os seguintes tratamentos (i.a./hectare trifluralin a 0,84 e 0,96kg em pré-plantio com incorporação; alachlor a 2,40 e 3,26kg; metribuzin a 0,70 e 0,84kg; bromacil a 1,60 e 2,40kg; terbacil a 1,60 e 2,40kg; diuron a 2,40 e 3,20kg; simazine a 3,20 e 4,00kg; fluometuron a 1,20 e 1,60kg, todos em pré-emergência; uma testemunha carpida e outra sem capina. Foram feitas avaliações de controle do mato aos 67 e 114 dias e da condição da cultura aos 600 dias após a aplicação. Aos 114 dias, o controle de gramíneas foi acima de 90% pelo trifluralin, bromacil e terbacil, em torno de 80% pelo simazine, e inferior a 75% pelos demais; para dícotiledôneas, o controle foi de 90 a 100% pelo bromacil e terbacil, e de 80 a 85%o pelo simazine. Nenhum dos tratamentos afetou a cultura durante o período considerado, que foi de 600 dias. Aos 550 dias, fez-se avaliação da área coberta por reinfestação do mato, tendo o terbacil controlado ainda 75 e 95% do total, respectivamente, para as doses menor e maior; o trifluralin, 60 e 70% e, os demais, abaixo de 45%. Na avaliação final da cultura, aos 600 dias, foram considerados: população de plantas, número de plantas com perfilhos e condição da cultura. Os tratamentos que realizaram melhor controle do mato apresentaram também os melhores índices de desenvolvimento da cultura, atestando sua seletividade.The weed control with herbicides and its selectivity to sisal were studied on a clay soil field trial. The treatments (in a.i./ha were: 0.84 and 0.96kg of pre-plant incorporated trifluralin; 2.40 and 3.26kg of alachlor; 0.70 and 0.84kg of metribuzin; 1.60 and 2.40kg of bromacil; 1.60 and 2.40kg of terbacil; 2.40 and 3.20k- of diuron; 3.20 and 4.00kg of simazine; 1.20 and 1.60kg of fluometuron

  17. Bio-degumming technology of jute bast by Pectobacterium sp. DCE-01.

    Science.gov (United States)

    Duan, Shengwen; Feng, Xiangyuan; Cheng, Lifeng; Peng, Yuande; Zheng, Ke; Liu, Zhengchu

    2016-12-01

    Among industrial fiber crops, jute is ranked second to cotton in terms of yield and planting area worldwide. The traditional water retting and chemical semi-degumming methods restrict the development of the jute industry. Jute fiber can be extracted from jute bast through mechanical rolling (preprocessing), culture of bacteria, soaking fermentation (liquor ratio = 10, inoculum size = 1 %, temperature = 35 °C, and time = 15 h), inactivation, washing, and drying. Pectobacterium sp. DCE-01 secretes key degumming enzymes: pectinase, mannase, and xylanase, which match well the main non-cellulosic components of jute bast. Compared with the traditional water retting degumming, the bio-degumming cycle is shortened from more than 10 days to 15 h. The proposed bio-degumming achieved higher efficiency and lower pollution than water retting and chemical semi-degumming.

  18. Wave velocity characteristic for Kenaf natural fibre under impact damage

    Science.gov (United States)

    Zaleha, M.; Mahzan, S.; Fitri, Muhamad; Kamarudin, K. A.; Eliza, Y.; Tobi, A. L. Mohd

    2017-01-01

    This paper aims to determining the wave velocity characteristics for kenaf fibre reinforced composite (KFC) and it includes both experimental and simulation results. Lead zirconate titanate (PZT) sensor were proposed to be positioned to corresponding locations on the panel. In order to demonstrate the wave velocity, an impacts was introduced onto the panel. It is based on a classical sensor triangulation methodology, combines with experimental strain wave velocity analysis. Then the simulation was designed to replicate panel used in the experimental impacts test. This simulation was carried out using ABAQUS. It was shown that the wave velocity propagates faster in the finite element simulation. Although the experimental strain wave velocity and finite element simulation results do not match exactly, the shape of both waves is similar.

  19. Influence of glass and sisal fibers on the cure kinetics of unsaturated polyester resin

    Directory of Open Access Journals (Sweden)

    Vinicius Pistor

    2012-08-01

    Full Text Available The effect of grinded glass and sisal fibers (25 vol% on the cure kinetics of composites of unsaturated polyester resin (UPR was investigated by differential scanning calorimetry (DSC and scanning electron microscopy (SEM. The DSC analysis was carried out at four different heating rates (5, 10, 20 and 40 °C/min, and the cure enthalpy and activation energy (Ea were determined according to the Flynn-Wall-Ozawa (FWO method. The results showed that increasing heating rates promoted reduced reaction times. The sisal fiber-containing composites exhibit higher activation energy values for the cure process in comparison with the neat polyester resin and the glass fiber composites. This can be due to the presence of polar groups in the sisal components, which physically interact with the polyester resin and retard the cure reaction. Hence, as sisal fiber retarded the cure reaction of the UPR resin, it is suggested that the use of natural fibers in polymer matrix composites can affect the cure kinetics of the polyester resin.

  20. Assessment of the Mechanical Properties of Sisal Fiber-Reinforced Silty Clay Using Triaxial Shear Tests

    Directory of Open Access Journals (Sweden)

    Yankai Wu

    2014-01-01

    Full Text Available Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil’s strength and improves the soil’s mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  1. Mechanical, Thermal Degradation, and Flammability Studies on Surface Modified Sisal Fiber Reinforced Recycled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Arun Kumar Gupta

    2012-01-01

    Full Text Available The effect of surface treated sisal fiber on the mechanical, thermal, flammability, and morphological properties of sisal fiber (SF reinforced recycled polypropylene (RPP composites was investigated. The surface of sisal fiber was modified with different chemical reagent such as silane, glycidyl methacrylate (GMA, and O-hydroxybenzene diazonium chloride (OBDC to improve the compatibility with the matrix polymer. The experimental results revealed an improvement in the tensile strength to 11%, 20%, and 31.36% and impact strength to 78.72%, 77%, and 81% for silane, GMA, and OBDC treated sisal fiber reinforced recycled Polypropylene (RPP/SF composites, respectively, as compared to RPP. The thermogravimetric analysis (TGA, differential scanning calorimeter (DSC, and heat deflection temperature (HDT results revealed improved thermal stability as compared with RPP. The flammability behaviour of silane, GMA, and OBDC treated SF/RPP composites was studied by the horizontal burning rate by UL-94. The morphological analysis through scanning electron micrograph (SEM supports improves surface interaction between fiber surface and polymer matrix.

  2. Properties of SBS and sisal fiber composites: ecological material for shoe manufacturing

    Directory of Open Access Journals (Sweden)

    José Carlos Krause de Verney

    2008-12-01

    Full Text Available The worldwide trend toward using cheap, atoxic and durable materials from renewable resources contributes to sustainable development. Thus, the investigation of the potential use of vegetal fibers as reinforcing agent in polymeric composites has gained new significance. Sisal fiber has emerged as a reinforcing material for polymers used in automobile, footwear and civil industries. In this work, properties such as hardness, tensile strength and tear strength of polymer composites composed by block copolymer styrene-butadiene-styrene (SBS and 5, 10 and 20% by weight of sisal fiber were evaluated. The influence of conventional polymer processing techniques such as single-screw and double-screw extrusion, as well as the addition of coupling agent on the composite mechanical performance was investigated. Also, the morphology and thermal stability of the composites were analyzed. The addition of 2 wt. (% maleic anhydride as coupling agent between sisal fiber and SBS has improved the composite mechanical performance and the processing in a double-screw extruder has favored the sisal fiber distribution in the SBS matrix.

  3. CHLORINE DIOXIDE TREATMENT OF SISAL FIBRE: SURFACE LIGNIN AND ITS INFLUENCES ON FIBRE SURFACE CHARACTERISTICS AND INTERFACIAL BEHAVIOUR OF SISAL FIBRE/PHENOLIC RESIN COMPOSITES

    Directory of Open Access Journals (Sweden)

    Linxin Zhong

    2010-11-01

    Full Text Available This paper describes an investigation of the influences of chlorine dioxide treatment on fibre surface lignin. The fibre surface characteristics and the interfacial behaviour of the sisal fibre/phenolic resin composites were also studied by SEM, AFM, and XPS. The results show that the surface of the untreated fibre contains a large amount of lignin with granular structure and non-granular structure. The surface lignin concentration is up to 51% for the untreated fibre, and then it decreases to 24% and 20% for fibres treated with 1.5 % and 2.0% chlorine dioxide, respectively. The removal of lignin from the fibre surface can enhance the interfacial strength of the composites, giving rise to increases by 36% and 28% in tensile strength and internal bonding strength. These results indicate that the surface properties of single sisal fibres can be tailored to improve the fibre/resin interface. Chlorine dioxide treatment has potential for surface modification of sisal fibre in engineering the interfacial behaviour of composites.

  4. Molecular cloning, characterization and expression of the caffeic acid O-methyltransferase (COMT) ortholog from kenaf (Hibiscus cannabinus)

    Science.gov (United States)

    We cloned the full-length of the gene putatively encoding caffeic acid O-methyltransferase (COMT) from kenaf (Hibiscus cannabinus L.) using degenerate primers and the RACE (rapid amplification of cDNA ends) method. Kenaf is an herbaceous and rapidly growing dicotyledonous plant with great potential ...

  5. Disposable Natural Scrubber from Sisal and Bamboo Fibers

    Directory of Open Access Journals (Sweden)

    T. Rasigha

    2015-11-01

    Full Text Available Medical Textiles describes a textile structure that has been designed and produced for use in any of a variety of medical applications. The medical textiles include a vast range of applications, viz, adhesive tapes, bandages, beddings, blankets, castings, diapers, dressings, eye pads, gauzes, protective clothing’s, sutures, surgical covers, surgical clothing’s, swabs, supports, sanitary products, hospital gowns, etc. Consumers have become more aware about the repercussions of leading an unhygienic lifestyle, which has lead to the increase in the number of hygiene conscious people. This has lead to the smart take off of the medical textiles which enables the common man in prevention and treatment of diseases and maintain health and hygiene. A range of natural fibers and biodegradable polymers is being utilized for developing new products in medical textiles. Medical textiles adding a more serious dimension to the textile domain, they are required to undergo stringent testing and hygienic criteria. This has led to innovative use of a variety of natural unconventional fibers and a lot of developments are taking place in this area. One of such unconventional fibers finding good application in the medical textile is Sisal (Agave sisalana. Agave sisalana, consisting a rosette of sword-shaped leaves has been used to extract fibers. Fibers have been extracted by decortication process. The extracted fibers have been cleaned with Sapindus Mukorossi, an herbal cleaning agent which is also hypo allergenic. The cleaned fibers have been softened using various methods, one with alkali treatment and another with citric acid. The various stages of fibers namely raw, cleaned, alkali treated and citric acid treated fibers have been tested for their absorbency and anti-microbial activity. Agave sisalana fiber has been found to have better antimicrobial properties which make it suitable for medical textile application.

  6. Mechanical performance of hybrid polyester composites reinforced Cloisite 30B and kenaf fibre

    Science.gov (United States)

    Bonnia, N. N.; Surip, S. N.; Ratim, S.; Mahat, M. M.

    2012-06-01

    Hybridization of rubber toughened polyester-kenaf nanocomposite was prepared by adding various percentage of kenaf fiber with 4% Cloisite 30B in unsaturated polyester resin. Composite were prepared by adding filler to modified polyester resin subsequently cross-linked using methyl ethyl ketone peroxide and the accelerator cobalt octanoate 1%. Three per hundred rubbers (phr) of liquid natural rubber (LNR) were added in producing this composite. This composite expected to be applied in the interior of passenger cars and truck cabins. This is a quality local product from a combination of good properties polyester and high performance natural fiber, kenaf that is suitable for many applications such as in automotive sector and construction sector. The mechanical and thermal properties of composite were characterized using Durometer Shore-D hardness test, Izod impact test, Scanning electron microscopy, thermogravimetry (TGA) and differential scanning calorimetry (DSC). Result shows that addition of LNR give good properties on impact, flexural and hardness compare to without LNR composite. DSC curve shows that all composition of composites is fully cured and good in thermal properties. Addition of higher percentage of kenaf will lead the composite to elastic behavior and decrease the toughened properties of the composite. Hybrid system composite showed the flexural properties within the flexural properties of kenaf - polyester and Cloisite 30B.

  7. Effect of Montmorillonite Modification on Ultra Violet Radiation Cured Nanocomposite Filled with Glycidyl Methacrylate Modified Kenaf

    Science.gov (United States)

    Rozyanty, A. R.; Rozman, H. D.; Zhafer, S. F.; Musa, L.; Zuliahani, A.

    2016-06-01

    In this study nanocomposite cured by ultra violet radiation, were produced using modified montmorillonite (MMT) as reinforcing agent, chemically modified kenaf bast fiber as filler and unsaturated polyester as the matrix. Kenaf bast fiber was chemically modified with glycidyl methacrylate (GMA) whilst MMT were modified with cetyl trimethyl ammonium bromide (CTAB) and glycidyl methacrylate (GMA). Fixed 12 percent of GMA modified kenaf bast fiber with different percentage (i.e., 1, 3 and 5) of unmodified and modified MMT loading was used to produce the composite. The performed of GMA reaction with hydroxyl group of cellulose in kenaf bast fiber was evaluated using Fourier Transform infrared (FTIR) spectroscopy. GMA-MMT filled composite showed higher mechanical properties than MMT and CTAB-MMT filled composite. However, the increase of MMT, CTAB-MMT and GMA- MMT loading resulted in the reduction of mechanical properties. Scanning electron microscopy (SEM) analysis showed the evidence of compatibility enhancement between MMT and kenaf bast fiber with unsaturated polyester matrix.

  8. Sisal natural fiber reinforcement influenced with experimental and numerical investigation onto vibration and mechanical properties of composite plate

    Directory of Open Access Journals (Sweden)

    ZamanAbudAlmalikAbud Ali

    2016-01-01

    Full Text Available This study interested in preparation of composite material specimen by using natural fibers sisal and polyester resin. The specimens were pretreated in different of volume fraction of sisal and resins which are were (05-35 % sisal, respectively. Specimen model fabricated had plate shape, where, can be applying vibration test and tensile test. Specimens were tested by using tensile properties test. Results reveal that the best specimen had mechanical properties was (A which are (35-65 % sisal-resin, where, specimen appeared best modulus elasticity in longitudinal fibers E1 (5.925 Gpa so lower value modulus elasticity in transverse fibers E2 (4.860 Gpa for same specimen. (A specimen gives stronger material compared with at each of specimens, which indicates high toughness and strength of materials because reinforcement of sisal fibers use of a higher percentage of fiber 35%. Specimen were tested vibration test as types of fixations of specimen, result reveal the natural frequency high at clamped supported four edges (CCCC, (202.73Hz compared at each of another specimens, because (CCCC specimen had high volume fraction of plant fiber sisal and less volume fraction of polyester resin (35-65 % sisal-polyester. Natural frequency was obtained by using numerical analyzing at running ANSYS program (VER.14. the results finding, there are similarity between behavior of composite material samples from where, natural frequency and volume fraction , results reveal that numerical analyzing of plate composite materials was little better from experimental work but both of tests in simulation and experimental test appear same of final results which (CCCC specimen was better at of each specimens to apply strength of materials and whenever increasing volume fraction of sisal obtained high strength of material.

  9. Effect of the Volume Fraction of Jute Fiber on the Interlaminar Shear Stress and Tensile Behavior Characteristics of Hybrid Glass/Jute Fiber Reinforced Polymer Composite Bar for Concrete Structures

    Directory of Open Access Journals (Sweden)

    Chan-Gi Park

    2016-01-01

    Full Text Available Hybrid glass/jute fiber reinforced polymer (HGJFRP composite bars were manufactured for concrete structures, and their interlaminar shear stress and tensile performance were evaluated. HGJFRP composite bars were manufactured using a combination of pultrusion and braiding processes. Jute fiber was surface-treated with a silane coupling agent. The mixing ratio of the fiber to the vinyl ester used in the HGJFRP composite bars was 7 : 3. Jute fiber was used to replace glass fiber in proportions of 0, 30, 50, 70, and 100%. The interlaminar shear stress decreased as the proportion of jute fiber increased. Fractures appeared due to delamination between the surface-treated component and the main part of the HGJFRP composite bar. Tensile load-strain curves with 50% jute fiber exhibited linear behavior. With a jute fiber volume fraction of 70%, some plastic deformation occurred. A jute fiber mixing ratio of 100% resulted in a display of linear elastic brittle behavior from the fiber; however, when the surface of the fiber was coated with poly(vinyl acetate, following failure, the jute fiber exhibited partial load resistance. The tensile strength decreased as the jute fiber content increased; however, the tensile strength did not vary linearly with jute fiber content.

  10. Performance of Chemically Treated Jute Geotextile in Unpaved Roads at Different in situ Conditions

    Science.gov (United States)

    Midha, Vinay Kumar; Joshi, Shubham; Suresh Kumar, S.

    2017-02-01

    Biodegradable jute geotextiles are an effective reinforcing material for unpaved roads, but its serviceability is limited because of faster microbial degradation. Different methods are in use to improve the serviceability of jute geotextiles. In this paper, influence of chemical treatment (transesterification and bitumen coating), road design and rainfall intensity on the time dependent serviceability of jute geotextiles has been studied. Chemically treated jute geotextiles, were laid in unpaved road designs with and without sand layer, for 30, 60 and 90 days' duration, and subjected to simulated rainfall intensities of 50 and 100 mm/h. With increase in time of usage, tensile strength and puncture resistance decrease due to microbial attack, and pore size decreases due to clogging of soil in jute geotextiles. Chemical treatment was observed to have greater influence on the serviceability, followed by the presence of sand layer in road design and the rainfall intensity. Further, overall performance of bitumen coated jute geotextiles was observed to be better than transesterified jute geotextile, due to its hydrophobic nature.

  11. Identification and characterization of jute LTR retrotransposons:: Their abundance, heterogeneity and transcriptional activity.

    Science.gov (United States)

    Ahmed, Salim; Shafiuddin, Md; Azam, Muhammad Shafiul; Islam, Md Shahidul; Ghosh, Ajit; Khan, Haseena

    2011-05-01

    Long Terminal Repeat (LTR) retrotransposons constitute a significant part of eukaryotic genomes and play an important role in genome evolution especially in plants. Jute is an important fiber crop with a large genome of 1,250 Mbps. This genome is still mostly unexplored. In this study we aimed at identifying and characterizing the LTR retrotransposons of jute with a view to understanding the jute genome better. In this study, the Reverse Transcriptase domain of Ty1-copia and Ty3-gypsy LTR retrotransposons of jute were amplified by degenerate primers and their expressions were examined by reverse transcription PCR. Copy numbers of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy elements were determined by dot blot analysis. Sequence analysis revealed higher heterogeneity among Ty1-copia retrotransposons than Ty3-gypsy and clustered each of them in three groups. Copy number of RT genes in Ty1-copia was found to be higher than that of Ty3-gypsy elements from dot blot hybridization. Cumulatively Ty1-copia and Ty3-gypsy may constitute around 19% of the jute genome where two groups of Ty1-copia were found to be transcriptionally active. Since the LTR retrotransposons constitute a large portion of jute genome, these findings imply the importance of these elements in the evolution of jute genome.

  12. Performance of Chemically Treated Jute Geotextile in Unpaved Roads at Different in situ Conditions

    Science.gov (United States)

    Midha, Vinay Kumar; Joshi, Shubham; Suresh Kumar, S.

    2017-06-01

    Biodegradable jute geotextiles are an effective reinforcing material for unpaved roads, but its serviceability is limited because of faster microbial degradation. Different methods are in use to improve the serviceability of jute geotextiles. In this paper, influence of chemical treatment (transesterification and bitumen coating), road design and rainfall intensity on the time dependent serviceability of jute geotextiles has been studied. Chemically treated jute geotextiles, were laid in unpaved road designs with and without sand layer, for 30, 60 and 90 days' duration, and subjected to simulated rainfall intensities of 50 and 100 mm/h. With increase in time of usage, tensile strength and puncture resistance decrease due to microbial attack, and pore size decreases due to clogging of soil in jute geotextiles. Chemical treatment was observed to have greater influence on the serviceability, followed by the presence of sand layer in road design and the rainfall intensity. Further, overall performance of bitumen coated jute geotextiles was observed to be better than transesterified jute geotextile, due to its hydrophobic nature.

  13. Effect of accelerated environmental aging on tensile properties of oil palm/jute hybrid composites

    Science.gov (United States)

    Jawaid, M.; Saba, N.; Alothman, O.; Paridah, M. T.

    2016-11-01

    Recently natural fibre based hybrid composites are receiving growing consideration due to environmental and biodegradability properties. In order to look behaviour of hybrid composites in outdoor applications, its environmental degradation properties such as UV accelerated weathering properties need to analyze. In this study oil palm empty fruit bunch (EFB) and jute fibres reinforced hybrid composites, pure EFB, pure jute and epoxy composites were fabricated through hand lay-up techniques. Hybrid composites with different layering pattern (EFB/jute/EFB and Jute/EFB/jute) while maintaining 40 wt. % total fibre loading were fabricates to compared with EFB and jute composites. Effect of UV accelerated environmental aging on tensile properties of epoxy, pure EFB, pure jute, and hybrid composites were assessed and evaluate under UV exposure. Tensile samples of all composites were subjected to accelerated weathering for 100h, at temperature (75°C), relative humidity (35%), Light (125 W/m2), and water spray off. Obtained results indicated that there is reduction in tensile strength, modulus and elongation at break values of hybrid and pure composites due to degradation of lignin and fibre-matrix interfacial bonding.

  14. Post-harvest Handling, Storage and Processing of Sisal (Agave sisalana Fibres in the Hhohho District of Swaziland

    Directory of Open Access Journals (Sweden)

    V.S. Vilane

    2014-03-01

    Full Text Available The aim of this study was to establish the current practices and problems encountered in product development using sisal fibres with the view to explore the use of enzymes in releasing and softening the fibres. Associations making products of sisal fibres were identified in the Hhohho region of Swaziland and Participatory Rural Appraisal (PRA tools and questionnaires were utilised in obtaining results for this study. Findings revealed that plant fibre production in the country was mainly done by unemployed rural women who used sisal plant leaves and employed crude decortication methods. The majority of the women (67% were married, 48% were still highly productive as they were in between the ages of 16 and 35 years. About 31% of them were illiterate, with only 34% gone as far as primary education. The majority of the women (55% were living on less than US $40.00/month which was too low considering the poverty datum line. A wide range of products were made and marketed abroad via an intermediate dealer. The study revealed that the women’s efforts of making a living through handicraft were affected by the rough texture of sisal fibres, thus a need for research in modifying the texture of the fibres. The sisal project was found to be ecologically unsustainable because handcrafters relied on wild sisal and they lacked appropriate technology to increase productivity.

  15. Structural characterization of the lignin from jute (Corchorus capsularis) fibers.

    Science.gov (United States)

    del Río, José C; Rencoret, Jorge; Marques, Gisela; Li, Jiebing; Gellerstedt, Göran; Jiménez-Barbero, Jesús; Martínez, Angel T; Gutiérrez, Ana

    2009-11-11

    The structural characteristics of the lignin from jute (Corchorus capsularis ) fibers, which are used for high-quality paper pulp production, were studied. The lignin content (13.3% Klason lignin) was high compared to other nonwoody bast fibers used for pulp production. The lignin structure was characterized by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), 2D-NMR, and thioacidolysis. Upon Py-GC/MS, jute fibers released predominantly products from syringylpropanoid units with the S/G ratio being 2.1 and a H/G/S composition of 2:33:65. 2D-NMR of the milled wood lignin (MWL) isolated from jute fibers showed a predominance of beta-O-4' aryl ether linkages (72% of total side chains), followed by beta-beta' resinol-type linkages (16% of total side chains) and lower amounts of beta-5' phenylcoumaran (4%) and beta-1' spirodienone-type (4%) linkages and cinnamyl end groups (4%). The high predominance of the S-lignin units, together with the high proportion of beta-O-4' aryl ether linkages, which are easily cleaved during alkaline cooking, are advantageous for pulping. On the other hand, a small percentage (ca. 4%) of the lignin side chain was found to be acetylated at the gamma-carbon, predominantly over syringyl units. The analysis of desulphurated thioacidolysis dimers provided additional information on the relative abundances of the various carbon-carbon and diaryl ether bonds and the type of units (syringyl or guaiacyl) involved in each of the above linkage types. Interestingly, the major part of the beta-beta' dimers included two syringyl units, indicating that most of the beta-beta' substructures identified in the HSQC spectra were of the syringaresinol type (pinoresinol being absent), as already observed in the lignin of other angiosperms.

  16. Research on Pectase Secreted by Aspergillus Niger Degumming Kenaf Bast Fiber

    Institute of Scientific and Technical Information of China (English)

    ZHENG Lai-jiu; DU Bing; HUANG Xiu-bao

    2007-01-01

    In this paper, the aerobic metabolism mechanism of Aspergillus Niger (AS 3.3 50), which is the most suitable bacteria for degumming kenaf fiber, is expounded, and macromolecular structure of pectin is also analyzed.The fracture position of the macromolecular chain of kenaf pectin and its outgrowth structure, affected by Endo-PG and Exo-PG are secreted by AS 3. 350 and explored in molecule scale. The optimal value of degumming parameters are fixed: temperature 34 - 36℃, time 48 - 50 h, pH 6.5 - 7.5. Compared with kenaf fibers obtained by natural method, the ones degummed by bio-enzymatic method possess of smoother surface, better, separation, less impairment and higher: strength with. residual pectin percentage of 14.5 %.

  17. Notched Strength of Woven Fabric Kenaf Composite Plates with Different Stacking Sequences and Hole Sizes

    Directory of Open Access Journals (Sweden)

    Hans Romayne Anders

    2016-01-01

    Full Text Available Advantages of using kenaf fibres over synthetic fibres in composites manufacturing are relatively cheap, less abrasive and hazardous during handling, and renewable materials. Current work investigates parametric effects on notched strength of woven fabric kenaf polymer composites plates with variation of lay-up types, notch sizes and plate thickness. Testing coupons are prepared using hand lay-up technique and circular notch were drilled prior to mechanical testing. Stress concentration at the notch edge promotes micro-damage event as tensile loading was applied leading to crack initiation and propagations across the plate width. It is suggested that woven fabric kenaf polymer composites are potentially used in low and medium load bearing applications.

  18. Volumetric composition and shear strength evaluation of pultruded hybrid kenaf/glass fiber composites

    DEFF Research Database (Denmark)

    Hashemi, Fariborz; Tahir, Paridah Md; Madsen, Bo

    2015-01-01

    In the present study, six different combinations of pultruded hybrid kenaf/glass composites were fabricated. The number of kenaf and glass rovings was specifically selected to ensure constant local fiber volume fractions in the composites. The volumetric composition of the composites was determined...... by using a gravimetrically based method. Optical microscopy was used to determine the location of voids. The short-beam test method was used to determine the interlaminar shear strength of the composites, and the failure mode was observed. It was found that the void volume fraction of the composites...... was increased as a function of the kenaf fiber volume fraction. A linear relationship with high correlation (R2=0.95) was established between the two volume fractions. Three types of voids were observed in the core region of the composites (lumen voids, interface voids and impregnation voids). The failure...

  19. Fungi Growing on Jute Fabrics Deteriorating under Weather Exposure and in Storage

    Science.gov (United States)

    Chakravarty, T.; Bose, R. G.; Basu, S. N.

    1962-01-01

    Special media suitable for the isolation of fungi growing on jute were developed. Species that would better resist sunlight, such as organisms with dark hyphae and spores or closed fruit bodies, predominated on weather-exposed fabrics. Several strongly cellulolytic organisms not previously implicated in fiber decomposition were isolated from this source. On the other hand, the fungi obtained from jute materials damaged in storage were mostly of the familiar types. Most of the newly isolated fungi are generally missed on ordinary media, but they probably play an important role in the natural decomposition of jute materials. PMID:14019887

  20. Preventive effect on spalling of UFC using jute fiber at high temperature

    Directory of Open Access Journals (Sweden)

    Ozawa M.

    2013-09-01

    Full Text Available In this study, we examined the relationship between spalling behaviour and spalling ratio of UFC with three kinds of short fibers (jute, polypropylene, water-soluble polyvinyl alcohol at high temperature. The heating temperatures were 400 °C and 600 °C. Although the specimen with jute fiber dosage of 0.19% by volume was occurred explosive spalling, the damage of specimen was slightly small. It appears that the addition of jute fiber to UFC is effective for preventing spalling.

  1. Effect of alkali treated jute fibres on composite properties

    Indian Academy of Sciences (India)

    Dipa Ray; B K Sarkar; A K Rana; N R Bose

    2001-04-01

    Jute fibres were subjected to a 5% alkali (NaOH) solution treatment for 0, 2, 4, 6 and 8 h at 30°C. An improvement in the crystallinity in the jute fibres increased its modulus by 12%, 68% and 79% after 4, 6 and 8 h of treatment respectively. The tenacity of the fibres improved by 46% after 6 and 8 h treatment and the % breaking strain was reduced by 23% after 8 h treatment. For the 35% composites with 4 h treated fibres, the flexural strength improved from 199.1 MPa to 238.9 MPa by 20%, modulus improved from 11.89 GPa to 14.69 GPa by 23% and laminar shear strength increased from 0.238 MPa to 0.2834 MPa by 19%. On plotting the different values of slopes obtained from the rates of improvement of the flexural strength and modulus, against the NaOH treatment time, two different failure modes were apparent before and after 4 h of treatment. In the first region between 0 and 4 h, fibre pull out was predominant whereas in the second region between 6 and 8 h, transverse fracture occurred with a minimum fibre pull out. This observation was well supported by the SEM investigations of the fracture surfaces.

  2. Propriedades de compósitos híbridos de borracha nitrílica, fibras de sisal e carbonato de cálcio Properties of nitrile rubber, sisal fiber and calcium carbonate hybrid composites

    Directory of Open Access Journals (Sweden)

    Marco A. Iozzi

    2004-06-01

    Full Text Available Neste trabalho, estudou-se a influência do teor de carbonato de cálcio nas propriedades mecânicas e térmicas da borracha nitrílica, e do comprimento das fibras de sisal nas propriedades mecânicas dos compósitos de borracha nitrílica/fibras de sisal, e borracha nitrílica/carbonato de cálcio/fibras de sisal. Os materiais foram caracterizados através de ensaios mecânicos de resistência à tração, microscopia eletrônica de varredura (MEV, e termogravimetria (TG. O melhor desempenho mecânico dos compósitos com as fibras curtas aleatoriamente distribuídas foi obtido para o comprimento das fibras de 6 mm, e teor de carbonato de 67 pcr. A análise térmica mostrou que os compósitos são estáveis até cerca de 300 °C. Os resultados mostraram que os materiais obtidos possuem uma boa relação custo/benefício tornando promissora sua utilização.In this work, nitrile rubber with sisal fibers composites and nitrile rubber with calcium carbonate and sisal fibers composites were developed. The influence from the calcium carbonate amount and size of sisal fibers on the composite properties was studied. The composites, with short fibers randomly distributed, were characterized by mechanical analysis, scanning electron microscopy (SEM, and thermogravimetric analysis (TGA. The optimal size of sisal fibers to reinforce the nitrile matrix was 6 mm. The ideal volume of calcium carbonate was 67 phr. TGA analysis demonstrated that the composites are stable up to 300 °C. The materials developed have a good cost/benefits relation, being therefore promising their utilization.

  3. Morphological, thermal and optical studies of jute-reinforced PbSrCaCuO-polypropylene composite

    Science.gov (United States)

    Jacob, Reenu; Isac, Jayakumari

    2016-11-01

    New research with modern technologies has always grabbed substantial attention. Conservation of raw materials like natural fibers has helped composite world to explore eco-friendly components. The aim of this paper is to study the potential of jute fiber-reinforced ceramic polymers. Alkali-treated jute fiber has been incorporated in a polypropylene ceramic matrix at different volume fractions. The morphological, thermal and optical studies of jute-reinforced ceramic Pb2Sr2CaCu2O9 (PbSrCaCuO) are studied. Morphological results evidently demonstrate that when the polypropylene ceramic matrix is reinforced with jute fiber, interfacial interaction between the varying proportions of the jute fiber and ceramic composite takes place. TGA and DSC results confirm the enhancement in the thermal stability of ceramic composites reinforced with jute fiber. The UV analysis of the composite gives a good quality measure on the optical properties of the new composite prepared.

  4. Morphological, Histobiochemical and Molecular Characterisation of Low Lignin Phloem Fibre (llpf) Mutant of Dark Jute (Corchorus olitorius L.).

    Science.gov (United States)

    Choudhary, S B; Chowdhury, I; Singh, R K; Pandey, S P; Sharma, H K; Anil Kumar, A; Karmakar, P G; Kumari, N; Souframanien, J; Jambhulkar, S J

    2017-05-11

    Lignin is a versatile plant metabolite challenging high-end industrial applications of several plant products including jute. Application of developmental mutant in regulation of lignification in jute may open up door for much awaited jute based diversified products. In the present study, a novel dark jute (Corchorus olitorius L.) mutant with low lignin (7.23%) in phloem fibre being compared to wild-type JRO 204 (13.7%) was identified and characterised. Unique morphological features including undulated stem, petiole and leaf vein distinguished the mutant in gamma ray irradiated mutant population. Histological and biochemical analysis revealed reduced lignification of phloem fibre cells of the plant. RT-PCR analysis demonstrated temporal transcriptional regulation of CCoAMT1 gene in the mutant. The mutant was found an extremely useful model to study phloem fibre developmental biology in the crop besides acting as a donor genetic stock for low lignin containing jute fibre in dark jute improvement programme.

  5. Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available A new treating method using sodium hydroxide (NaOH and Maleic anhydride-grafted polypropylene (MPP emulsion was introduced to treat jute fiber mat in order to enhance the performance of jute/polypropylene (PP composite prepared by film stacking method. The surface modifications of jute fiber mat have been found to be very effective in improving the fiber-matrix adhesion. It was shown that treatments changed not only the surface topography but also the distribution of diameter and strength for the jute fibers, which was analyzed by using a two-parameter Weibull distribution model. Consequently, the interfacial shear strength, flexural and tensile strength of the composites all increased, but the impact strength decreased slightly. These results have demonstrated a new approach to use natural materials to enhance the mechanical performances of composites.

  6. Evaluation on mechanical properties of woven aloevera and sisal fibre hybrid reinforced epoxy composites

    Indian Academy of Sciences (India)

    A Shadrach Jeya Sekaran; K Palani Kumar; K Pitchandi

    2015-09-01

    Natural fibres as reinforcement in polymer composite for making low-cost materials are growing day by day. Researcher’s main attention is to apply appropriate technology to utilize these natural fibres as effectively and economically as possible to produce good quality fibre-reinforced polymer composites for various engineering applications. In this research, the experiments of tensile, flexural and impact tests were carried out for woven aloevera and sisal fibre hybrid-reinforced epoxy composites. The hand layup method of fabrication was employed in preparing the composites. The surface morphology of the composites was examined through scanning electron microscope. Due to the low-density and high-specific properties of sisal fibre composites, it offer cost savings when compared with synthetic fibres. Hence it has very good implications in the automotive and transportation industry.

  7. Genetic Structure and Relationship Analysis of an Association Population in Jute (Corchorus spp. Evaluated by SSR Markers.

    Directory of Open Access Journals (Sweden)

    Liwu Zhang

    Full Text Available Population structure and relationship analysis is of great importance in the germplasm utilization and association mapping. Jute, comprised of white jute (C. capsularis L and dark jute (C. olitorius L, is second to cotton in its commercial significance in the world. Here, we assessed the genetic structure and relationship in a panel of 159 jute accessions from 11 countries and regions using 63 SSRs. The structure analysis divided the 159 jute accessions from white and dark jute into Co and Cc group, further into Co1, Co2, Cc1 and Cc2 subgroups. Out of Cc1 subgroup, 81 accessions were from China and the remaining 10 accessions were from India (2, Japan (5, Thailand, Vietnam (2 and Pakistan (1. Out of Cc2 subgroup, 35 accessions were from China, and the remaining 3 accessions were from India, Pakistan and Thailand respectively. It can be inferred that the genetic background of these jute accessions was not always correlative with their geographical regions. Similar results were found in Co1 and Co2 subgroups. Analysis of molecular variance revealed 81% molecular variation between groups but it was low (19% within subgroups, which further confirmed the genetic differentiation between the two groups. The genetic relationship analysis showed that the most diverse genotypes were Maliyeshengchangguo and Changguozhongyueyin in dark jute, BZ-2-2, Aidianyehuangma, Yangjuchiyuanguo, Zijinhuangma and Jute 179 in white jute, which could be used as the potential parents in breeding programs for jute improvement. These results would be very useful for association studies and breeding in jute.

  8. Genetic Structure and Relationship Analysis of an Association Population in Jute (Corchorus spp.) Evaluated by SSR Markers.

    Science.gov (United States)

    Zhang, Liwu; Yuan, Minhang; Tao, Aifen; Xu, Jiantang; Lin, Lihui; Fang, Pingping; Qi, Jianmin

    2015-01-01

    Population structure and relationship analysis is of great importance in the germplasm utilization and association mapping. Jute, comprised of white jute (C. capsularis L) and dark jute (C. olitorius L), is second to cotton in its commercial significance in the world. Here, we assessed the genetic structure and relationship in a panel of 159 jute accessions from 11 countries and regions using 63 SSRs. The structure analysis divided the 159 jute accessions from white and dark jute into Co and Cc group, further into Co1, Co2, Cc1 and Cc2 subgroups. Out of Cc1 subgroup, 81 accessions were from China and the remaining 10 accessions were from India (2), Japan (5), Thailand, Vietnam (2) and Pakistan (1). Out of Cc2 subgroup, 35 accessions were from China, and the remaining 3 accessions were from India, Pakistan and Thailand respectively. It can be inferred that the genetic background of these jute accessions was not always correlative with their geographical regions. Similar results were found in Co1 and Co2 subgroups. Analysis of molecular variance revealed 81% molecular variation between groups but it was low (19%) within subgroups, which further confirmed the genetic differentiation between the two groups. The genetic relationship analysis showed that the most diverse genotypes were Maliyeshengchangguo and Changguozhongyueyin in dark jute, BZ-2-2, Aidianyehuangma, Yangjuchiyuanguo, Zijinhuangma and Jute 179 in white jute, which could be used as the potential parents in breeding programs for jute improvement. These results would be very useful for association studies and breeding in jute.

  9. Behaviour of hybrid jute-glass/epoxy composite tubes subjected to lateral loading

    Science.gov (United States)

    Khalid, A. A.

    2015-12-01

    Experimental work on hybrid and non-hybrid composite tubes subjected to lateral loading has been carried out using jute, glass and hybrid jute-glass/epoxy materials. Tubes of 200 mm length with 110 mm inner diameter were fabricated by hand lay-up method to investigate the effect of material used and the number of layers on lateral-load-displacement relations and on the failure mode. Crush force efficiency and the specific energy absorption of the composite tubes were calculated. Results show that the six layers glass/epoxy tubes supported load higher 10.6% than that of hybrid jute-glass/ epoxy made of two layers of jute/epoxy four layers of glass/epoxy. It has been found that the specific energy absorption of the glass/epoxy tubes is found higher respectively 11.6% and 46% than hybrid jute-glass/epoxy and jute/epoxy tubes. The increase in the number of layers from two to six increases the maximum lateral load from 0.53KN to 1.22 KN for jute/epoxy and from 1.35 KN to 3.87 KN for the glass/epoxy tubes. The stacking sequence of the hybrid tubes influenced on the maximum lateral load and the absorbed energy. The maximum load obtained for the six layers jute-glass/epoxy tubes of different staking sequence varies between 1.88 KN to 3.46 KN. Failure mechanisms of the laterally loaded composite tubes were also observed and discussed.

  10. Continuous jute fibre reinforced laminated paper composite and reinforcement-fibre free paper laminate

    Indian Academy of Sciences (India)

    B B Verma

    2009-12-01

    Plastic bags create a serious environmental problem. The proposed jute fibre reinforced laminated paper composite and reinforcement-fibre free paper laminate may help to combat the war against this pollutant to certain extent. The paper laminate, without reinforcement fibre, exhibited a few fold superiority in tensile properties than single paper strip. The studies further show that an appreciable improvement in tensile properties can be achieved by introducing continuous jute fibre in paper laminates.

  11. Deposition and Characterization of Sisal Fiber Composite Prepare By Iron Oxide Synthesis.

    Directory of Open Access Journals (Sweden)

    Asif Jehan

    2015-02-01

    Full Text Available Iron oxide synthesized through sintering route. The present research work deals with ferrite composite prepared using chemical reactions. Ferric nitrates and ammonium chloride doped with sisal fiber has been prepared. The comparative studies of ferric oxide were examined through few characterizations. The structural behavior of iron oxide was studied in XRD, FT/IR, TEM and SEM. This behavior showed ferrite nature of the sample.

  12. Chemically extracted nanocellulose from sisal fibres by a simple and industrially relevant process

    DEFF Research Database (Denmark)

    Trifol Guzman, Jon; Sillard, Cecile; Plackett, D.

    2017-01-01

    A novel type of acetylated cellulose nanofibre (CNF) was extracted successfully from sisal fibres using chemical methods. Initially, a strong alkali treatment was used to swell the fibres, followed by a bleaching step to remove the residual lignin and finally an acetylation step to reduce...... in the prepared CNF dispersion. Finally, CNF films with alkali extracts were also prepared, resulting in flatter films with an increased mass yield and improved mechanical strength....

  13. Viscoelastic and thermal properties of woven sisal fabric reinforced natural rubber biocomposites

    CSIR Research Space (South Africa)

    John, MJ

    2009-01-01

    Full Text Available P.O. Kottayam, Kerala, India. -686 560 3 Central Power Research Institute, Polymer Laboratory, Bangalore, India-560 080. Abstract Textile- rubber biocomposites were prepared by reinforcing natural rubber with woven sisal fabric...-matrix interface. *Corresponding author E-mail: mjohn@csir.oc.za,mayajacobkunnel@yahoo.com Page 1 of 27 John Wiley & Sons, Inc. Journal of Applied Polymer Science For Peer Revie w 2 1. INTRODUCTION Developments in composite technology have...

  14. Sisal, caso paradigmático de estudio: Prácticas de vida y basura

    Directory of Open Access Journals (Sweden)

    Ulsía Urrea Mariño

    2016-06-01

    Full Text Available Estudio del puerto de Sisal, Yucatán, México, sobre las prácticas de vida cotidiana ligadas a la basura, residuos y desechos en tres espacios de análisis (casa, vecindario y lugares de trabajo y su relación con la economía subterránea, construcción de vivienda y pesca.

  15. Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Jawaid, M. [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abdul Khalil, H.P.S., E-mail: akhalilhps@gmail.com [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abu Bakar, A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2010-11-15

    Research highlights: {yields} Hybrid composites constituents of natural fibres show good mechanical performances. {yields} Hybridization with 20% jute fibre gives rise to sufficient modulus to composites. {yields} Outer or core material affect mechanical performance of hybrid composites. {yields} Impact strength of pure EFB composite is higher than hybrid composites. - Abstract: Oil palm empty fruit bunches (EFB)/jute fibre reinforced epoxy hybrid composites with different sequence of fibre mat arrangement such as EFB/jute/EFB and jute/EFB/jute were fabricated by hand lay-up method. The effect of layering patterns on the mechanical performance of the composites was studied. The hybrid composites are intended for engineering applications as an alternative to synthetic fibre composites. Mechanical performance of hybrid composites were evaluated and compared with the pure EFB, pure jute composites and neat epoxy using flexural and impact testing. The flexural properties of hybrid composite is higher than that of pure EFB composite with respect to the weight fraction of fibre, where as the impact strength of pure EFB composite is much higher than those of hybrid composites. The flexural results were interpreted using sandwich theory. The fracture surface morphology of the impact testing samples of the hybrid composites was performed by scanning electron microscopy (SEM).

  16. Eco-friendly Rot and Crease Resistance Finishing of Jute Fabric using Citric Acid and Chitosan

    Science.gov (United States)

    Samanta, A. K.; Bagchi, A.

    2013-03-01

    Citric acid (CA) along with chitosan was used on bleached jute fabrics to impart anti crease and rot resistance properties in one step. The treatment was carried out by pad-dry-cure method in presence of sodium hypophosphite monohydrate catalyst. Curing at 150° Centigrade for 5 min delivered good crease resistant property (dry crease recovery angle is 244°) and high rot resistance simultaneously by a single treatment, which are durable for five washings with distilled water. Strength retention of jute fabric after 21 days soil burial was found to be 81 % and the loss (%) in strength due to this treatment was 15-18 %. The results showed that chitosan and CA treated-fabric exhibited higher rot resistance (as indicated by soil burial test) when compared to either CA or chitosan by individual treatment. The effect of CA and chitosan combination on the resistance to rotting of jute fabric was found to be synergistic which is higher than the sum of the effects of individual chemicals. CA possibly reacts with hydroxyl groups in cellulose or chitosan to form ester. The CA and chitosan finished fabric has adverse effect on stiffness. Thermal studies showed that final residue left at 500° C was much higher for CA and chitosan treated fabric than untreated jute fabric. FTIR spectroscopy suggested the formation of ester cross-linkage between the jute fibre, CA and chitosan and hence it is understood that this rot resistant finish on jute fabric become durable by this mechanism.

  17. Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres.

    Science.gov (United States)

    Shukla, S R; Pai, Roshan S

    2005-09-01

    The potential of a lignocellulosic fibre, jute, was assessed for adsorption of heavy metal ions like Cu(II), Ni(II) and Zn(II) from their aqueous solutions. The fibre was also used as adsorbent after chemically modifying it by two different techniques viz, loading of a dye with specific structure, C.I. Reactive Orange 13, and oxidising with hydrogen peroxide. Both the modified jute fibres gave higher metal ion adsorption. Thus, the dye loaded jute fibres showed metal ion uptake values of 8.4, 5.26 and 5.95 mg/g for Cu(II), Ni(II) and Zn(II), respectively, while the corresponding values for oxidised jute fibres were 7.73, 5.57 and 8.02 mg/g, as against 4.23, 3.37 and 3.55 mg/g for unmodified jute fibres. Adsorption isotherm models indicated best fit for Langmuir model for the modified jute fibres. The adsorption values decreased with lowering of pH. The desorption efficiency, regenerative and reuse capacity of these adsorbents were also assessed for three successive adsorption-desorption cycles. The adsorptive capacity was retained only when the caustic soda regeneration is carried out as an intermediate step after desorption. Possible mechanism has been given.

  18. An experimental study on moisture absorption for jute-epoxy composite with coatings exposed to different pH media

    Directory of Open Access Journals (Sweden)

    Radhika Londhe

    2016-09-01

    The purpose of this work is to study the moisture absorption and mechanical properties of jute-epoxy composites. Jute fibres are treated with NaOH before manufacturing of composite laminate in order to improve adhesion with epoxy material. Further jute-epoxy composite specimens were coated with epoxy resin and acrylic paint. Composite specimens with and without coatings are subjected to absorption in solutions of different pH media, for 28 days (666 h. The effect of coatings on reduction in moisture absorption for jute-epoxy composite is presented in this current work.

  19. Impact of Surface Modification and Nanoparticle on Sisal Fiber Reinforced Polypropylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Idowu David Ibrahim

    2016-01-01

    Full Text Available The use of plant fibers, polymer, and nanoparticles for composite has gained global attention, especially in the packaging, automobile, aviation, building, and construction industries. Nanocomposites materials are currently in use as a replacement for traditional materials due to their superior properties, such as high strength-to-weight ratio, cost effectiveness, and environmental friendliness. Sisal fiber (SF was treated with 5% NaOH for 2 hours at 70°C. A mixed blend of sisal fiber and recycled polypropylene (rPP was produced at four different fiber loadings: 10, 20, 30, and 40 wt.%, while nanoclay was added at 1, 3, and 5 wt.%. Maleic anhydride grafted polypropylene (MAPP was used as the compatibilizer for all composites prepared except the untreated sisal fibers. The characterization results showed that the fiber treatment, addition of MAPP, and nanoclay improved the mechanical properties and thermal stability and reduced water absorption of the SF/rPP nanocomposites. The tensile strength, tensile modulus, and impact strength increased by 32.80, 37.62, and 5.48%, respectively, when compared to the untreated SF/rPP composites. Water absorption was reduced due to the treatment of fiber and the incorporation of MAPP and nanoclay.

  20. Kenaf-glass fiber reinforced unsaturated polyester hybrid composites: Tensile properties

    Science.gov (United States)

    Zhafer, S. F.; Rozyanty, A. R.; Shahnaz, S. B. S.; Musa, L.; Zuliahani, A.

    2016-07-01

    The use of natural fibers in composite is rising in recent years due their lightweight, non-abrasive, combustible, non-toxic, low cost and biodegradable properties. However, in comparison with synthetic fibers, the mechanical properties of natural fibers are lower. Therefore, the inclusion of synthetic fibers could improve the mechanical performance of natural fiber based composites. In this study, kenaf bast fiber and glass fiber at different weight percentage loading were used as reinforcement to produce hybrid composites. Unsaturated polyester (UP) resin was used as matrix and hand lay-up process was performed to apply the UP resin on the hybrid kenaf bast/glass fiber composite. Effect of different fiber loading on tensile strength, tensile modulus and elongation at break of the hybrid composite was studied. It has been found that the highest value of tensile strength and modulus was achieved at 10 wt.% kenaf/10 wt.% glass fiber loading. It was concluded that addition of glass fiber has improved the tensile properties of kenaf bast fiber based UP composites.

  1. Impact of kenaf extracts on germination of green bean, tomato, cucumber, and Italian ryegrass

    Science.gov (United States)

    The chemical interaction between plants, referred to as allelopathy, may result in the inhibition of plant growth and development. The objective of this research was to determine the impact of kenaf (Hibiscus cannabinus L.) plant extracts on the seed germination of five plant species. Four concentra...

  2. KADAR HORMON AUKSIN PADA TANAMAN KENAF (Hibiscus cannabinus L. BERCABANG DAN TIDAK BERCABANG

    Directory of Open Access Journals (Sweden)

    Yunin Hidayati

    2009-09-01

    Full Text Available Kenaf is one of fiber producing plants. According to the existence of branches, kenaf is classified into two group, consisting of: kenaf with branch and with no branch.Morphology observation, consist of the height of plant, the number of node, the number of branch and the length of branch was observed. The morphology observation showed that there were differences morphological characters, including of the height of plant, the number of node, the length of branch, and the number of node more branching kenaf, control non branching (KR11 and control branching (SM004.Non branching plants (KR11 have the highest habitus and smallest number of branch compare to other groups. Control branching (SM004 was the shortest habitus and greatest number of branch compare to other group. The highest of Non branching plants (KR11 230,6 ± 36,7 cm and the smallest control branching (SM004 116,3 ± 64,4 cm. The greatest number of branch found in controled branch SM004, with 5,6 ± 2,7 branch in every plant and the smallest is KR11 with 0,8 ± 0,8 branch in every plant.According to this research the length of plant influence the branch. The highest level of auxin were in the shoot tip and the lowest level were in root tip. The higher auxin will produce less branch, the lower auxin will produce more branch.

  3. Tensile and Compressive Properties of Woven Kenaf/Glass Sandwich Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mohaiman J. Sharba

    2016-01-01

    Full Text Available Monotonic (tensile and compression properties of woven kenaf/glass reinforced unsaturated polyester sandwich hybrid composites have been experimentally investigated. Five types of composites laminates were fabricated using a combination of hand lay-up and cold press techniques, postcured for two hours at 80°C and left for 48 hours at room temperature. The hybrid composites contained fixed six layers of glass as a shell, three on each side, whereas the number of core kenaf layers was changed in three stages to get S1, S2, and S3 hybrid composites. Composites specimens with pure glass and kenaf were also fabricated for comparison. It was found that one kenaf layer replaced about 20% of total fiber weight fraction of the composite; this leads to reducing the density of final hybrid composite by 13%. Besides, in mechanical properties perspective, there are less than 1% reduction in compression strength and 40% in tensile strength when compared to pure glass composite. Generally, the results revealed that the best performance was observed in S1, which showed a good balance of all mechanical properties determined in this work.

  4. Removal of Reactive Orange 16 Dye from Aqueous Solution by Using Modified Kenaf Core Fiber

    Directory of Open Access Journals (Sweden)

    Maytham Kadhim Obaid

    2016-01-01

    Full Text Available Evaluated removal of reactive orange 16 (RO16 dye from aqueous solution was studied in batch mode by using kenaf core fiber as low-cost adsorbents. In this attempt, kenaf core fiber with size 0.25–1 mm was treated by using (3-chloro-2-hydroxypropyl trimethylammonium chloride (CHMAC as quaternization agent. Then effective parameters include adsorbent dose, pH, and contact time and initial dye concentration on adsorption by modified kenaf core fiber was investigated. In addition, isotherms and kinetics adsorption studies were estimated for determination of the equilibrium adsorption capacity and reactions dynamics, respectively. Results showed that the best dose of MKCF was 0.1 g/100 mL, the maximum removal of RO16 was 97.25 at 30°C, pH = 6.5, and agitation speed was 150 rpm. The results also showed that the equilibrium data were represented by Freundlich isotherm with correlation coefficients R2=0.9924, and the kinetic study followed the pseudo-second-order kinetic model with correlation coefficients R2=0.9997 for Co=100 mg/L. Furthermore, the maximum adsorption capacity was 416.86 mg/g. Adsorption through kenaf was found to be very effective for the removal of the RO16 dye.

  5. Expression analysis of kenaf cinnamate 4-hydroxylase (C4H) ortholog during developmental and stress responses

    Science.gov (United States)

    This study was conducted to clone and analyze the expression pattern of a C4H gene encoding cinnamate 4-hydroxylase from kenaf (Hibiscus cannabinus L.). A full-length C4H ortholog was cloned using degenerate primers and the RACE (rapid amplification of cDNA ends) method. The full-length C4H ortholog...

  6. Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, M R; Leman, Z; Sapuan, S M [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Edeerozey, A M M; Othman, I S, E-mail: zleman@eng.upm.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76109 Durian Tunggal, Melaka (Malaysia)

    2010-05-15

    Kenaf fibre has high potential to be used for composite reinforcement in biocomposite material. It is made up of an inner woody core and an outer fibrous bark surrounding the core. The aim of this study was to compare the mechanical properties of short kenaf bast and core fibre reinforced unsaturated polyester composites with varying fibre weight fraction i.e. 0%, 5%, 10%, 20%, 30% and 40%. The compression moulding technique was used to prepare the composite specimens for tensile, flexural and impact tests in accordance to the ASTM D5083, ASTM D790 and ASTM D256 respectively. The overall results showed that the composites reinforced with kenaf bast fibre had higher mechanical properties than kenaf core fibre composites. The results also showed that the optimum fibre content for achieving highest tensile strength for both bast and core fibre composites was 20%wt. It was also observed that the elongation at break for both composites decreased as the fibre content increased. For the flexural strength, the optimum fibre content for both composites was 10%wt while for impact strength, it was at 10%wt and 5%wt for bast and core fibre composites respectively.

  7. Accumulation of Kaempferitrin and Expression of Phenyl-Propanoid Biosynthetic Genes in Kenaf (Hibiscus cannabinus

    Directory of Open Access Journals (Sweden)

    Shicheng Zhao

    2014-10-01

    Full Text Available Kenaf (Hibiscus cannabinus is cultivated worldwide for its fiber; however, the medicinal properties of this plant are currently attracting increasing attention. In this study, we investigated the expression levels of genes involved in the biosynthesis of kaempferitrin, a compound with many biological functions, in different kenaf organs. We found that phenylalanine ammonia lyase (HcPAL was more highly expressed in stems than in other organs. Expression levels of cinnamate 4-hydroxylase (HcC4H and 4-coumarate-CoA ligase (Hc4CL were highest in mature leaves, followed by stems and young leaves, and lowest in roots and mature flowers. The expression of chalcone synthase (HcCHS, chalcone isomerase (HcCHI, and flavone 3-hydroxylase (HcF3H was highest in young flowers, whereas that of flavone synthase (HcFLS was highest in leaves. An analysis of kaempferitrin accumulation in the different organs of kenaf revealed that the accumulation of this compound was considerably higher (>10-fold in leaves than in other organs. On the basis of a comparison of kaempferitrin contents with the expression levels of different genes in different organs, we speculate that HcFLS plays an important regulatory role in the kaempferitrin biosynthetic pathway in kenaf.

  8. Kenaf (Hibiscus cannabinus L.) impact on post-germination seedling growth

    Science.gov (United States)

    The chemical interaction between plants, which is referred to as allelopathy, may result in the inhibition of plant growth and development. The objective of this research was to determine the impact of kenaf (Hibiscus cannabinus L.) plant extracts on the post-germination growth of five plant species...

  9. Effect of Rhizopus oryzae Fermentation on Kenaf-Based Polylactic Acid’s Monomer

    Directory of Open Access Journals (Sweden)

    Nur Aimi Mohd Nasir

    2011-12-01

    Full Text Available Kenaf biomass is the potential as raw materials used to produce polylactic acid's monomer which is lactic acid via fermentation by Rhizopus oryzae. Kenaf biomass' structure is complex due to its lignin and cellulose content. This matter had encouraged it to undergo pre- treatment process as the initial step before fermentation process can be done. In this paper, kenaf biomass was treated with dilute sulphuric acid (H2SO4 to hydrolyze the cellulose content in it as well as to convert the cellulose into glucose- a carbon source for Rhizopus to grow. Then, the fermentation process was carried out in shake flask for 3 days at pH 6. Several conditions for fermentation process had been chosen which were 25oC at 150 rpm, 25 oC at 200 rpm, 37 oC at 150 rpm and 37oC at 200 rpm. In this fermentation process, 0.471 g/L, 0.428 g/L, 0.444 g/L and 0.38 g/L of lactic acid was produced respectively. Sample at 25oC at 200 rpm produced maximum amount of lactic acid compared to others.ABSTRAK: Biojisim kenaf berpotensi sebagai bahan mentah dalam penghasilan monomer asid polylactic (poliester alifatik termoplastik diterbitkan daripada sumber boleh diperbaharu seperti kanji jagung yang merupakan asid laktik menerusi penapaian oleh Rhizopus oryzae (sejenis fungus yang hidup dalam jirim organik yang telah mati. Struktur biojisim kenaf adalah kompleks disebabkan kandungan lignin dan selulosanya. Hal ini menyebabkan ia perlu melalui proses pra-rawatan sebagai langkah awal sebelum proses penapaian dijalankan. Dalam kertas ini, biojirim kenaf dirawat dengan asid sulfurik (H2SO4 yang dicairkan untuk menghidrolisis kandungan selulosa di dalamnya di samping menukar selulosa menjadi glukosa - sumber karbon bagi tumbesaran Rhizopus. Kemudian, proses penapaian dijalankan di dalam kelalang goncang selama 3 hari pada pH 6. Beberapa ciri proses penapaian telah dipilih iaitu 25 oC pada 150 rpm, 25 oC pada 200 rpm, 37 oC pada 150 rpm dan 37 oC pada 200 rpm. Dalam proses penapaian

  10. Sisal fibers: surface chemical modification using reagent obtained from a renewable source; characterization of hemicellulose and lignin as model study.

    Science.gov (United States)

    Megiatto, Jackson D; Hoareau, William; Gardrat, Christian; Frollini, Elisabete; Castellan, Alain

    2007-10-17

    Sisal fibers have one of the greatest potentials among other lignocellulosic fibers to reinforce polymer matrices in composites. Sisal fibers have been modified to improve their compatibility with phenolic polymer matrices using furfuryl alcohol (FA) and polyfurfuryl alcohols (PFA) that can be obtained from renewable sources. The modification corresponded first to oxidation with ClO 2, which reacts mainly with guaiacyl and syringyl units of lignin, generating o- and p-quinones and muconic derivatives, followed by reaction with FA or PFA. The FA and PFA modified fibers presented a thin similar layer, indicating the polymer character of the coating. The untreated and treated sisal fibers were characterized by (13)C CP-MAS NMR spectrometry, thermal analysis, and scanning electron microscopy. Furthermore, for a better understanding of the reactions involved in the FA and PFA modifications, the sisal lignin previously extracted was also submitted to those reactions and characterized. The characterization of isolated lignin and hemicellulose provides some information on the chemical structure of the main constitutive macrocomponents of sisal fibers, such information being scarce in the literature.

  11. Evaluation of chicken manure, kenaf, and phanerochaete chrysosporium (white rot fungus) as enhancers of polychlorinated biphenyl biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, K.; Borazjani, A.; Diehl, S.V. [Mississippi State Univ., MS (United States)

    1995-12-31

    In this 150-day study, chicken manure, kenaf, and white rot fungus were added to soil microcosms in an attempt to enhance the degradation of polychlorinated biphenyls. The soil was contaminated with commercial PCB mixtures. Dishes were ammended with 5% dry weight chicken manure, 1% dry weight kenaf, and 1% dry weight kenaf plus Phanerochaete chrysosporium inoculant. PCB concentrations were determined at 30 day intervals by soxhlet extraction and gas chromatography analyses. Preliminary results of microbial populations and PCB degradation are presented. At 90 days, the microcosms amended with chicken manure had significantly higher populations of bacteria, fungi, and actinomycetes. However, at 120 days, these soils underwent great reductions in actinomycete and bacterial populations. Through 60 days, the concentration of the PCBs Aroclor 1242 and 1248 had its greatest reduction in the kenaf amended soils. The concentration of Aroclor 1260 either increased or stayed at high levels for 30 days before stabilizing or decreasing by day 60.

  12. Tentative Research of Short Process of Jute Degumming and Bleaching

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-ming; WANG Feng; CAI Zai-sheng; YU Jian-yong

    2008-01-01

    The feasibility of combination process of jute degumming and bleaching with alkali-hydrogen peroxide in one-step-one-bath was discussed.The combination process basically has the similar function as the traditional two-step-two-bath method.The factors such as hydrogen peroxide concentration.CBI concentration, sodium hydroxide concentration, treatment time and temperature were studied respectively, and then an orthogonal experiment was designed to study the interactions among the hydrogen peroxide concentration, CBI concentration, sodium hydroxide concentration.After the designed experiments, the optimum treatment conditions were obtained as follows: hydrogen peroxide of 12 g/L, sodium hydroxide of 4 g/L, CBI of 4 g/L, JFC of 1 g/L, treatment time of 60 min and temperature of 75℃

  13. Propriedades mecânicas de tração de compósitos poliéster/tecidos híbridos sisal/vidro Properties of polyester/hibrid sisal-glass fabrics

    Directory of Open Access Journals (Sweden)

    Laura H. de Carvalho

    2006-03-01

    Full Text Available O desempenho e o custo de compósitos podem ser alterados por hibridização e, neste sentido, é relativamente comum o uso combinado de fibras e reforços minerais no desenvolvimento destes materiais. No presente trabalho o desempenho mecânico de compósitos poliéster insaturado/ tecidos híbridos sisal-vidro foram investigados em função do teor de fibra e direção do teste. Foram confeccionados três tecidos híbridos (com 30, 40 e 50% em peso de vidro com fios de sisal no urdume e fibras de vidro na trama. Os compósitos foram moldados por compressão à temperatura ambiente com os tecidos alinhados. Os resultados indicam que houve um aumento nas propriedades mecânicas de tração de todos os compósitos com o aumento do teor de fibras. Para os compósitos reforçados por tecidos com baixo teor de fibra de vidro, as propriedades tenderam a ser mais elevadas quando os testes foram conduzidos na direção do sisal, enquanto que para os tecidos com elevado teor de vidro, o oposto foi observado. Estes comportamentos foram associados ao teor de fibra de vidro na direção do teste e ao diâmetro das fibras de sisal. Em baixos teores de fibra o sisal agiria como inclusão ou defeito, prejudicando as propriedades mecânicas; em elevados teores as propriedades do vidro suplantariam os defeitos provocados pelo sisal.Hybridization can alter both mechanical performance and cost of polymer composites, and novel composite materials can be obtained by the combination of both fibrous and mineral reinforcements. In the present work the mechanical performance of unsaturated polyester/hybrid sisal-glass fabrics was determined as a function of fibre content and test direction. Three different hybrid fabrics (30, 40 and 50% w/w glass content with sisal strings in the warp and glass roving in the weft were hand weaved. Aligned fabric compression moulded composites were obtained at room temperature. The results showed enhanced properties with fibre content

  14. Anti-hypercholesterolemic effect of kenaf (Hibiscus cannabinusL.) seed on high-fat diet Sprague dawley rats

    Institute of Scientific and Technical Information of China (English)

    Ng Shy Kai; Tee Ai Nee; Elaine Lai Chia Ling; Tan Chin Ping; Long Kamariah; Nyam Kar Lin

    2015-01-01

    Objective:To determine the antihypercholesterolemic effects of kenaf seed samples and compare with the commercial hypocholesterolemic drug on serum lipids profiles and malondialdehyde (MDA) level in the rat.Methods:Kenaf seed oil(KSO), microencapsulated kenaf seed oil(MKSO), kenaf seed extract(KSE) and defatted kenaf seed meal(DKSM) were prepared and phytochemicals screening on these samples were done prior in vivostudy.Phenolic compounds inKSE were quantified using high performance liquid chromatography.There were40(divided in eight diet groups of5) maleSprague dawley rats adapted to normal standard diet or hypercholesterolemic diet(HD) with or without the treatment of these kenaf samples for32 days.Results:All the kenaf samples exhibited to contain most of the major phytochemicals.KSE possessed gallic acid, tannic acid, catechin, benzaldehyde, benzoic acid, syringic acid, sinapic acid, ferulic acid, naringin acid, and protocatechuic acid.The significant higher(P<0.05) serum total cholesterol, low density lipoprotein cholesterol andMDA levels inHD group without treatment than the normal control group suggested the hypercholesterolemia was induced by the incorporation of cholesterol into diet.KSE exhibited higher cholesterol-lowering properties due to the significant lower(P<0.05) in serum triglycerides, total cholesterol andMDA levels.KSE showed the highest efficiency of cholesterol-lowering activity, followed byKSO,MKSO andDKSM.Conclusions:DKSM,MKSO, KSO andKSE appeared to have comparable anti-hypercholesterolemic effect with the commercial hypocholesterolemic drug.Hence, kenaf seed could be used as an alternative natural source to replace the synthetic hypocholesterolemic drugs.

  15. Influence of fiber surface-treatment on interfacial property of poly(L-lactic acid)/ramie fabric biocomposites under UV-irradiation hydrothermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dakai; Li Jing [Institute of Nano- and Bio-polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai 200092 (China); Ren Jie, E-mail: renjie6598@163.com [Institute of Nano- and Bio-polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai 200092 (China) and Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 200092 (China)

    2011-04-15

    Research highlights: {yields} Ramie fiber is used as reinforced material because it's lowest water absorption among sisal, jute, kenaf and ramie fiber. {yields} Fiber surface-treatment can cause an accelerated decline in mechanical properties of PLLA biocomposites after UV-irradiation hydrothermal aging. {yields} The swelling of ramie fibers reduce the interfacial adhesive strength in critical area of PLLA matrix-ramie fabric interface. - Abstract: The present study is devoted to the effect of fiber surface-treatment on the interfacial property of biocomposites based on poly(L-lactic acid) (PLLA) and ramie fabric. Ramie fiber is used as reinforced material because it's lowest water absorption among sisal, jute, kenaf and ramie fiber. Fiber surface-treatment can increase the water absorption of natural fibers. SEM images show that PLLA biocomposites with treated ramie fabric exhibit better interfacial adhesion character. DMA results show that the storage modulus of PLLA biocomposites with treated ramie increase compared to neat PLLA and PLLA biocomposites with untreated ramie. Unexpectedly, fiber surface-treatment can cause an accelerated decline in mechanical properties of PLLA biocomposites after UV-irradiation hydrothermal aging. Finally, GPC results show that there is no obvious decline in the molecular weight of PLLA. The main reason for this decline is the interfacial destructive effect induced by the water absorption of ramie fiber.

  16. PENINGKATAN KETAHANAN BENDING KOMPOSIT HIBRID SANDWICH SERAT KENAF DAN SERAT GELAS BERMATRIK POLYESTER DENGAN CORE KAYU SENGON LAU

    Directory of Open Access Journals (Sweden)

    Agus Hariyanto

    2017-01-01

    Full Text Available Tujuan penelitian ini adalah menyelidiki pengaruh ketebalan core dan perlakuan alkali serat kenaf terhadap peningkatan kekuatan bending komposit hibrid sandwich kombinasi serat kenaf dan serat gelas bermatrix Polyester dengan core kayu sengon laut. Mekanisme perpatahan diamati dengan photo makro.Bahan yang digunakan adalah serat kenaf (acak, anyam, serat E-Glass (anyam, resin unsaturated polyester 157 BQTN (UPRs, kayu sengon laut, dan NaOH teknis. Hardener yang digunakan adalah MEKPO dengan konsentrasi 1%. Komposit dibuat dengan metode cetak tekan. Komposit  hibrid sandwich  tersusun  terdiri  dari dua lamina komposit hibrid dengan core ditengahnya. Lamina komposit hibrid sebagai skin terdiri  dari satu lamina serat gelas anyam dan 3 lamina serat kenaf (acak - anyam – acak. Fraksi volume serat komposit hibrid adalah 30%. Core yang digunakan adalah kayu sengon laut yang dipotong pada arah melintang. Variabel utama penelitian yaitu perlakuan alkali serat kenaf  (0 & 2 jam dan tebal core (5,10,15,20 mm. Spesimen dan prosedur pengujian bending mengacu pada standard ASTM C 393. Hasil penelitian menunjukkan bahwa penambahan ketebalan core mampu meningkatkan kekuatan bending dan momen bending komposit hibrid sandwich. Perlakuan alkali pada serat kenaf menurunkan kekuatan bending pada komposit hybrid sandwich. Mekanisme patahan diawali oleh kegagalan komposit skin bagian tarik, core gagal geser, dan diakhiri oleh kegagalan skin sisi tekan. Pada bagian daerah batas core dan komposit skin menunjukkan adanya kegagalan delaminasi.

  17. Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings

    Institute of Scientific and Technical Information of China (English)

    HO Wai Mun; ANG Lai Hoe; LEE Don Koo

    2008-01-01

    The potential of kenaf (Hibiscus cannabinus L.) for phytoremediation of lead (Pb) on sand tailings was investigated. A pot experiment employing factorial design with two main effects of fertilizer and lead was conducted in a nursery using sand tailings from an ex-tin mine as the growing medium. Results showed that Pb was found in the root, stem, and seed capsule of kenaf but not in the leaf.Application of organic fertilizer promoted greater biomass yield as well as higher accumulation capacity of Pb. In Pb-spiked treatments,roots accumulated more than 85% of total plant Pb which implies that kenaf root can be an important sink for bioavailable Pb. Scanning transmission electron microscope (STEM) X-ray microanalysis confirmed that electron-dense deposits located along cell walls of kenaf roots were Pb precipitates. The ability of kenaf to tolerate Pb and avoid phytotoxicity could be attributed to the immobilization of Pb in the roots and hence the restriction of upward movement (translocation factor< 1). With the application of fertilizer, kenaf was also found to have higher biomass and subsequently higher bioaccumulation capacity, indicating its suitability for phytoremediation of Pb-contaminated site.

  18. Effect of winding layer and speed on kenaf/glass fiber hybrid reinforced acrylonitrile butadiene styrene (ABS) composites

    Science.gov (United States)

    Khoni, Norizzahthul Ainaa Abdul; Sharifah Shahnaz S., B.; Ghazali, Che Mohd Ruzaidi

    2016-07-01

    The usage of natural fiber is becoming significant in composite industries due to their good performance. Single and continuous natural fibers have relatively high mechanical properties; especially their young modulus can be as high as glass fibers. Filament winding is a method to produce technically aligned composites which have high fibers content. The properties of filament winding can be tailored to meet the end product requirements. This research studied the compression properties of kenaf/glass fibers hybrid reinforced composites. Kenaf/glass fibers hybrid composite samples were fabricated by filament winding technique and their properties were compared with the properties of neat kenaf fiber and glass fibers composites. The kenaf/glass fiber hybrid composites exhibited higher strength compared to the neat glass fibers composites. Composites of helical pattern, which produced at low winding speed showed better compression resistance than hoop pattern winding, which produced at high winding speed. As predicted, kenaf composite showed highest water absorption; followed by kenaf/glass fiber hybrid composites while neat glass fiber has lowest water absorption capability.

  19. Water Uptake Behavior and Young Modulus Prediction of Composites Based on Treated Sisal Fibers and Poly(Lactic Acid

    Directory of Open Access Journals (Sweden)

    Ander Orue

    2016-05-01

    Full Text Available The main aim of this work was to study the effect of sisal fiber surface treatments on water uptake behavior of composites based on untreated and treated fibers. For this purpose, sisal fibers were treated with different chemical treatments. All surface treatments delayed the water absorption of fibers only for a short time of period. No significant differences were observed in water uptake profiles of composites based on fibers with different surface treatments. After water uptake period, tensile strength and Young modulus values of sisal fiber/poly(lactic acid (PLA composites were decreased. On the other hand, composites based on NaOH + silane treated fibers showed the lowest diffusion coefficient values, suggesting that this treatment seemed to be the most effective treatment to reduce water diffusion rate into the composites. Finally, Young modulus values of composites, before water uptake period, were predicted using different micromechanical models and were compared with experimental data.

  20. Development and Characterization of 1,906 EST-SSR Markers from Unigenes in Jute (Corchorus spp.).

    Science.gov (United States)

    Zhang, Liwu; Li, Yanru; Tao, Aifen; Fang, Pingping; Qi, Jianmin

    2015-01-01

    Jute, comprising white and dark jute, is the second important natural fiber crop after cotton worldwide. However, the lack of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers has resulted in a large gap in the improvement of jute. Previously, de novo 48,914 unigenes from white jute were assembled. In this study, 1,906 EST-SSRs were identified from these assembled uingenes. Among these markers, di-, tri- and tetra-nucleotide repeat types were the abundant types (12.0%, 56.9% and 21.6% respectively). The AG-rich or GA-rich nucleotide repeats were the predominant. Subsequently, a sample of 116 SSRs, located in genes encoding transcription factors and cellulose synthases, were selected to survey polymorphisms among12 diverse jute accessions. Of these, 83.6% successfully amplified at least one fragment and detected polymorphism among the 12diverse genotypes, indicating that the newly developed SSRs are of good quality. Furthermore, the genetic similarity coefficients of all the 12 accessions were evaluated using 97 polymorphic SSRs. The cluster analysis divided the jute accessions into two main groups with genetic similarity coefficient of 0.61. These EST-SSR markers not only enrich molecular markers of jute genome, but also facilitate genetic and genomic researches in jute.

  1. Pretreatment of Woven Jute FRP Composite and Its Use in Strengthening of Reinforced Concrete Beams in Flexure

    Directory of Open Access Journals (Sweden)

    Tara Sen

    2013-01-01

    Full Text Available Environmental awareness motivates researchers worldwide to perform studies of natural fibre reinforced polymer composites, as they come with many advantages and are primarily sustainable. The present study aims at evaluating the mechanical characteristics of natural woven jute fibre reinforced polymer (FRP composite subjected to three different pretreatments, alkali, benzyl chloride, and lastly heat treatment. It was concluded that heat treatment is one of the most suitable treatment methods for enhancing mechanical properties of jute FRP. Durability studies on Jute FRP pertaining to some common environmental conditions were also carried out such as effect of normal water and thermal aging on the tensile strength of jute FRP followed by fire flow test. The heat treated woven jute FRP composites were subsequently used for flexural strengthening of reinforced concrete beams in full and strip wrapping configurations. The study includes the effect of flexural strengthening provided by woven jute FRP, study of different failure modes, load deflection behavior, effect on the first crack load, and ultimate flexural strength of concrete beams strengthened using woven jute FRP subjected to bending loads. The study concludes that woven jute FRP is a suitable material which can be used for flexural upgradation of reinforced concrete beams.

  2. Development and Characterization of 1,906 EST-SSR Markers from Unigenes in Jute (Corchorus spp..

    Directory of Open Access Journals (Sweden)

    Liwu Zhang

    Full Text Available Jute, comprising white and dark jute, is the second important natural fiber crop after cotton worldwide. However, the lack of expressed sequence tag-derived simple sequence repeat (EST-SSR markers has resulted in a large gap in the improvement of jute. Previously, de novo 48,914 unigenes from white jute were assembled. In this study, 1,906 EST-SSRs were identified from these assembled uingenes. Among these markers, di-, tri- and tetra-nucleotide repeat types were the abundant types (12.0%, 56.9% and 21.6% respectively. The AG-rich or GA-rich nucleotide repeats were the predominant. Subsequently, a sample of 116 SSRs, located in genes encoding transcription factors and cellulose synthases, were selected to survey polymorphisms among12 diverse jute accessions. Of these, 83.6% successfully amplified at least one fragment and detected polymorphism among the 12diverse genotypes, indicating that the newly developed SSRs are of good quality. Furthermore, the genetic similarity coefficients of all the 12 accessions were evaluated using 97 polymorphic SSRs. The cluster analysis divided the jute accessions into two main groups with genetic similarity coefficient of 0.61. These EST-SSR markers not only enrich molecular markers of jute genome, but also facilitate genetic and genomic researches in jute.

  3. Estudo dos efeitos da acetilação em fibras de sisal Study of the effects of acetylation treatments on sisal fiber

    Directory of Open Access Journals (Sweden)

    Fernanda F. M. Lopes

    2010-07-01

    Full Text Available O emprego de fibras vegetais na confecção de compósitos tem grande viabilidade, no que diz respeito ao uso de materiais oriundos de fontes renováveis, à biodegradabilidade e aos benefícios socioeconômicos gerados na produção de matéria-prima vegetal. As fibras de sisal são altamente higroscópicas e esta característica se apresenta como um dos principais problemas na produção de compósitos induzindo a variações dimensionais sob a influência da umidade, deposição dos produtos da matriz em seus poros e a degradação. Os tratamentos de acetilação nas fibras de sisal foram aplicados em diferentes temperaturas e tempos reacionais, e a eficiência desses tratamentos, considerando-se a redução da hidrofilicidade e a manutenção do desempenho mecânico das fibras, foi avaliada pela capacidade de absorção de água por imersão, ensaios de resistência mecânica e por espectroscopia de infravermelho. Fibras acetiladas apresentaram reduções de peso por absorção de até 50% quando comparadas com as não tratadas. Os tratamentos por 3 h apresentaram as maiores perdas na resistência mecânica e a 120 °C por 1h indicaram as melhores características físico-mecânicas, além de incremento satisfatório de grupos apolares com o tratamento.The use of vegetable fibers in composites is highly viable regarding about the use of materials from renewable sources, the biodegradability and the socioeconomic advantages in the production of raw vegetable. The sisal fibers are highly hygroscopic and this is a main problem in the production of composites, inducing dimensional changes under moisture influence, deposition of the matrix products and degradation. The treatment of the acetylation was applied at different temperatures and reaction times, and the efficiency of treatments, considering the reduction of the hydrophilicity and maintenance of the mechanical properties, was evaluated by water sorption, mechanical properties and the

  4. Production of extracellular polysaccharide by Bacillus megaterium RB-05 using jute as substrate.

    Science.gov (United States)

    Chowdhury, Sougata Roy; Basak, Ratan Kumar; Sen, Ramkrishna; Adhikari, Basudam

    2011-06-01

    Bacillus megaterium RB-05 was grown on glucose and on "tossa-daisee" (Corchorus olitorius)-derived jute, and production and composition of extracellular polysaccharide (EPS) were monitored. An EPS yield of 0.065 ± 0.013 and of 0.297 g ± 0.054 g(-1) substrate after 72 h was obtained for glucose and jute, respectively. EPS production in the presence of jute paralleled bacterial cellulase activity. High performance liquid chromatography (HPLC), matrix assisted LASER desorption/ionization-time of flight (MALDI-ToF) mass spectroscopy, and fourier transform infrared (FT-IR) spectroscopy demonstrated that the EPS synthesized in jute culture (JC) differed from that synthesized in glucose mineral salts medium (GMSM). While fucose was only a minor constituent (4.9 wt.%) of EPS from GMSM, it a major component (41.9 wt.%) of EPS synthesized in JC. This study establishes jute as an effective fermentation substrate for EPS production by a cellulase-producing bacterium. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Ecotoxicological effects of jute retting on the survival of two freshwater fish and two invertebrates.

    Science.gov (United States)

    Mondal, Debjit Kumar; Kaviraj, Anilava

    2008-04-01

    Severe deterioration of water quality occurs during jute retting in ponds, canals, floodplain lakes, and other inland water bodies in the rural areas of West Bengal in India. Attempts were made to evaluate changes in the physicochemical parameters of water caused by jute retting, and their impact on the survival of two species of freshwater fish (Labeo rohita and Hypophthalmicthys molitrix) and two species of freshwater invertebrate (Daphnia magna, a Cladocera, and Branchiura sowerbyi, an Oligochaeta). Results showed that jute retting in a pond for 30 days resulted in a sharp increase in the BOD (>1,000 times) and COD (>25 times) of the water, along with a sharp decrease in dissolved oxygen (DO). Free CO(2), total ammonia, and nitrate nitrogen also increased (three to five times) in water as a result of jute retting. Ninety-six-hour static bioassays performed in the laboratory with different dilutions of jute-retting water (JRW) revealed that D. magna and B. sowerbyi were not susceptible to even the raw JRW whereas fingerlings of both species of fish were highly susceptible, L. rohita being more sensitive (96 h LC(50) 37.55% JRW) than H. molitrix (96 h LC(50) 57.54% JRW). Mortality of fish was significantly correlated with the percentage of JRW.

  6. Interaction of higher plant (jute), electrofused bacteria and mycorrhiza on anthracene biodegradation.

    Science.gov (United States)

    Cheung, K C; Zhang, J Y; Deng, H H; Ou, Y K; Leung, H M; Wu, S C; Wong, M H

    2008-05-01

    The interaction of bacteria, mycorrhiza and jute (Corchotus capsulari, a higher plant) to reduce anthracene in different concentrations of spiked soils was investigated. Dominant indigenous bacterium (Pseudomonas sp.) isolated in the rhizosphere of jute was electrofused with anthracene degraders (Sphingomonas paucimobilis and Pseudomonas aeruginosa) which were able to produce different types of biosurfactants. The highest population (56 x 10(5)CFU/g) was found in the planted soil with the inoculation of mixtures of electrofused anthracene degraders after 7 days. The growth of anthracene degraders in the spiked soil was improved by gene transfer from indigenous bacteria. After 35 days, enhanced anthracene removals were observed in inoculated soils planted with jute (65.5-75.2%) compared with unplanted soil without inoculation (12.5%). The interaction of jute and electrofused S. paucimobilis enabled the greatest reduction of soil anthracene with or without the addition of P. aeruginosa. Mycorrhizal colonization was not significantly inhibited by anthracene in soils up to 150 mg/kg. Inoculation of jute with Glomus mosseae and Glomus intraradices improved plant growth and enhanced anthracene removal in the presence of electrofused S. paucimobilis.

  7. Overexpression of UDP-glucose pyrophosphorylase gene could increase cellulose content in Jute (Corchorus capsularis L.).

    Science.gov (United States)

    Zhang, Gaoyang; Qi, Jianmin; Xu, Jiantang; Niu, Xiaoping; Zhang, Yujia; Tao, Aifen; Zhang, Liwu; Fang, Pingping; Lin, Lihui

    2013-12-13

    In this study, the full-length cDNA of the UDP-glucose pyrophosphorylase gene was isolated from jute by homologous cloning (primers were designed according to the sequence of UGPase gene of other plants) and modified RACE techniques; the cloned gene was designated CcUGPase. Using bioinformatic analysis, the gene was identified as a member of the UGPase gene family. Real-time PCR analysis revealed differential spatial and temporal expression of the CcUGPase gene, with the highest expression levels at 40 and 120d. PCR and Southern hybridization results indicate that the gene was integrated into the jute genome. Overexpression of CcUGPase gene in jute revealed increased height and cellulose content compared with control lines, although the lignin content remained unchanged. The results indicate that the jute UGPase gene participates in cellulose biosynthesis. These data provide an important basis for the application of the CcUGPase gene in the improvement of jute fiber quality. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Comparative Studies on Dyeability with Direct, Acid and Reactive Dyes after Chemical Modification of Jute with Mixed Amino Acids Obtained from Extract of Waste Soya Bean Seeds

    Science.gov (United States)

    Bhaumik, Nilendu Sekhar; Konar, Adwaita; Roy, Alok Nath; Samanta, Ashis Kumar

    2017-06-01

    Jute fabric was treated with mixed natural amino acids obtained from waste soya bean seed extract for chemical modification of jute for its cataionization and to enhance its dyeability with anionic dyes (like direct, reactive and acid dye) as well enabling soya modified jute for salt free dyeing with anionic reactive dyes maintaining its eco-friendliness. Colour interaction parameters including surface colour strength were assessed and compared for both bleached and soya-modified jute fabric for reactive dyeing and compared with direct and acid dye. Improvement in K/S value (surface colour strength) was observed for soya-modified jute even in absence of salt applied in dye bath for reactive dyes as well as for direct and acid dyes. In addition, reactive dye also shows good dyeability even in acid bath in salt free conditions. Colour fastness to wash was evaluated for bleached and soya-modified jute fabric after dyeing with direct, acid and reactive dyes are reported. Treatment of jute with soya-extracted mixed natural amino acids showed anchoring of some amino/aldemine groups on jute cellulosic polymer evidenced from Fourier Transform Infra-Red (FTIR) Spectroscopy. This amino or aldemine group incorporation in bleached jute causes its cationization and hence when dyed in acid bath for reactive dye (instead of conventional alkali bath) showed dye uptake for reactive dyes. Study of surface morphology by Scanning Electron Microscopy (SEM) of said soya-modified jute as compared to bleached jute was studied and reported.

  9. A necrose da base da fôlha do sisal

    Directory of Open Access Journals (Sweden)

    J. C. Medina

    1943-04-01

    Full Text Available Sisal (Agave sisalana Perrine growing in various localities of the State of São Paulo is often heavely damaged by "leaf basal necrose", whose symptoms are identical with the "leaf foot disease" reported from Java, East Africa and Belgian Congo. The affected leaves show in the initial stages small spots of black, slightly shrivelled tissue on the lower part of the leaf. These gradually spread out. During the later stages the affected leaves bent over at this point. Only approximately mature leaves of plants between 18 to 30 months old are affected. This disturbance was first observed in Anapolis, Araraquara and Campinas. It was thought to be due to K deficiency in the soil. In order to prove this a small fertilizer experiment was established at Campinas mainly to study the effect of potassium sulfate as a control measure for this "disease". The experiment also included calcium carbonate and control plots, each treatment being replicated three times. The results demonstrated that the trouble can be easily controled by the use ot potassium sulfate applied in the first year of cultivation (two years after planting in the nursery. At all plots not treated with K the typical black spots appeared on the leaves about one year after planting. Considerable damage was caused by this physiological disturbance in all these plots, up to 86,6% of the plants and 15,4% of all leaves being damaged at the three control plots 18 months after planting. The "leaf basal necrose" is until now the single prevalent and destructive "disease" of sisal in the State of São Paulo, where the plant is generally cultivated on K deficient soils. This explains its occurrence in almost all plantations. To avoid this disturbance sisal should be cultivated on rich soils and fertilised with K sulfate if grown on poor ones.

  10. DESINFESTAÇÃO DE REBENTOS DE SISAL PARA UTILIZAÇÃO IN VITRO

    Directory of Open Access Journals (Sweden)

    Flavia Monique Sales Nobrega

    2015-08-01

    Full Text Available Em todo o mundo, o sisal (Agave sisalana é conhecido pelo alto teor de suas fibras, amplamente utilizadas na fabricação de utensílios, na indústria automotiva, na indústria química e na construção cívil. No entanto, alguns fatores podem inviabilizar o desenvolvimento da cultura, a exemplo de doenças, como a podridão do colo, causada por fungos do gênero Pythium sp. Visando à obtenção de mudas sadias e livres de patógenos buscou-se, com este trabalho, definir um protocolo eficiente para a desinfestação de rebentos de sisal, utilizando-se diferentes concentrações e diversas combinações do antibiótico Citrofloxacino e do Fungicida Baytan®. Os explantes foram desinfestados em soluções com detergente neutro, hipoclorito de sódio e formaldeído e, em seguida, submetidos a soluções com diferentes concentrações do antibiótico e do fungicida combinados e só então cultivados em meio MS. Foram realizadas avaliações aos 7, 15 e 21 dias, após o cultivo, para análise da taxa de contaminação bacteriana e fúngica. Observou-se, portanto, que a utilização de 0,5% do fungicida Baytan®, associado a 1% do antibiótico Citrofloxacino, foi mais eficiente na descontaminação de explantes de sisal.

  11. Consumo e desempenho produtivo de ovinos alimentados com dietas que continham coprodutos do desfibramento do sisal

    Directory of Open Access Journals (Sweden)

    R.D. Santos

    2011-12-01

    Full Text Available Avaliaram-se o desempenho produtivo e o consumo de nutrientes e frações fibrosas em ovinos alimentados com dietas contendo coprodutos do desfibramento do sisal, Agave sisalana. Foram utilizados 24 ovinos, machos, alojados em baias individuais. O delineamento experimental utilizado foi o inteiramente ao acaso, com quatro tratamentos e seis repetições. Os tratamentos consistiram em quatro dietas isoproteicas, em que: i dieta padrão, contendo 38% de volumoso (silagem de milheto e 62% de concentrado (milho, farelo de soja e ureia; ii inclusão de 20% da silagem de mucilagem do sisal em substituição à silagem de milheto; iii inclusão de 20% da silagem de mucilagem associada ao pó da batedeira como aditivo em substituição à silagem de milheto; iv inclusão de 20% do feno da mucilagem em substituição à silagem de milheto. O peso corporal final, os ganhos médio diário e total e a conversão alimentar dos ovinos não foram influenciados pelas dietas avaliadas (P>0,05. Os consumos dos nutrientes, em g/dia e em %PC e g/kg0,75, não sofreram influência das dietas. Os resultados indicam que as dietas à base de coprodutos do sisal podem ser utilizadas como alternativa volumosa, além de possibilitar o aumento da rentabilidade da atividade na região semiárida brasileira.

  12. [Recycle of jute bags; asbestos in agriculture, exposure and pathology ].

    Science.gov (United States)

    Barbieri, P G; Somigliana, A; Lombardi, S; Girelli, R; Rocco, A; Pezzotti, C; Silvestri, S

    2008-01-01

    During the last four years, a deeper examination of malignant mesothelioma (MM) cases occurred within non asbestos textile industry highlighted asbestos past exposure in several textile industrial divisions. In spite of that, poor information about recycled textile bags previously containing asbestos fibres is available to the National Mesothelioma Registry, although holding a remarkable data bank on more than 3500 work histories and sources of asbestos exposures. Besides the analysis of the exposure circumstances and the registered health effects of the past exposure within the recycling activity, the aim of this research was to relate the possible involvement of the agricultural sector, where the use of recycled jute bags was very diffused. The MM cases were collected from the Mesothelioma Registry of Brescia, asbestosis, pleural plaques and lung cancer cases were collected from the Occupational Diseases Archive of the Local Public Occupational Health Service of the Province of Brescia. During the 1977-2006 period, 8 cases of MM, 4 cases of pulmonary asbestosis, 4 of isolated bilateral pleural plaques and I of lung cancer in pulmonary asbestosis, were observed among workers employed in bags recycling activity in 4 small companies, one of them still operating, employing about 50 workers. Even more, among the 65 MM cases classified by the Registry with "unknown asbestos exposure" (UAE), the most relevant frequency of working histories concerned the agriculture sector. Confirming a past signalling, the investigations underlined the cross linkage between this working activity and the diffusion of recycled bags in the agriculture sector. In the Province of Brescia, the activities of these small jute bags recycling plants were linked, even geographically, to the asbestos cement manufacture plant using a huge number of bags, roughly until mid seventies. Therefore, a large number of these recycled bags, previously containing asbestos, were generally used for harvesting

  13. Optimization on Impact Strength of Woven Kenaf Reinforced Polyester Composites using Taguchi Method

    Science.gov (United States)

    Khalid, S. N. A.; Ismail, A. E.; Zainulabidin, M. H.

    2017-01-01

    This paper focuses on the effect of weaving patterns and orientations on the energy absorption of woven kenaf reinforced polyester composites. Kenaf fiber in the form of yarn is weaved to produce different weaving patterns such as plain, twill and basket. Three woven mats are stacked together and mixed with polyester resin before it is compressed to squeeze out any excessive resin. There is nine different orientations are used during stacking processes by following Taguchi orthogonal arrays method. The hardened composites are cured for 24 hours before it is shaped according to specific dimensions for impact tests. The composites are perforated with 1m/s blunted projectile. According to the experimental findings, weaving pattern and orientation have distinct potential effects on value of energy absorption. The optimization using Taguchi method reveals preferable orientation of each weaving pattern composites. Based on the fracture observation, the fragmentations after optimization indicating lower distance surface fracture perforated obtained.

  14. Kenaf Powder Filled Recycled High Density Polyethylene/Natural Rubber Biocomposites: The Effect of Filler Content

    Directory of Open Access Journals (Sweden)

    Xuan Viet Cao

    2012-09-01

    Full Text Available The performance of kenaf powder (KP as filler for recycled high density polyethylene (rHDPE/natural rubber (NR thermoplastic elastomer (TPE composites was investigated. The composites with different filler loading were prepared in a Haake internal mixer. Increasing KP loading in rHDPE/NR/KP biocomposites reduced the tensile strength, elongation at break but increased the stabilization torque and the tensile modulus. SEM study of fracture surface indicated that fibrillation of rHDPE was reduced and detachment of kenaf powder from polymer matrix was present particularly at high filler loading. These observations were responsible for the deterioration of tensile strength and elongation at break of rHDPE/NR/KP biocomposites. Water absorption study also showed that the water absorption of these biocomposites increased with increasing KP content.

  15. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    Science.gov (United States)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-09-01

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD).

  16. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  17. A Review of the Flammability Factors of Kenaf and Allied Fibre Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    C. H. Lee

    2014-01-01

    Full Text Available Natural fibre is a well-known reinforcement fibre in polymer-matrix Composites (PMC lately. Natural fibre has fast growing and abundance properties which make it available at very low cost. For kenaf fibre there is long lists of research projects which have been done regarding its behaviour, and properties and modification made to it. In this paper, fire flammability is the main concern for natural fibre reinforced polymer (NFRP composites especially kenaf fibre. To estimate its flammability, a wide range of factors can be considered such as fibre content, type of matrices, pH conditions, treatment, and fire retardant (FR filler’s type. The most important criteria are the ignition time, rate of propagation, and fire behavior. thermogravimetric analysis (TGA, different scanning calorimetric (DSC, and dynamic mechanical analysis (DMA are the three most famous methods used to investigate the fire behaviour of composites.

  18. Purification of empty fruit bunch (EFB) and kenaf soda lignin with acidified water

    Science.gov (United States)

    Hashim, Sharifah Nurul Ain Syed; Zakaria, Sarani; Jaafar, Sharifah Nabihah Syed; Hua, Chia Chin

    2014-09-01

    In this current study, the soda lignins from empty fruit bunch (EFB) and kenaf core were recovered by two step precipitation method. The objective of this research is to study the purity of lignin by washing the lignins with acidified water. The purified lignins were undergone characterization by FT-IR, Uv-Vis and XRD. The FT-IR analysis shows that kenaf core has Guaiacyl(G) and Syringyl(S) unit meanwhile EFB has Hydroxyphenyl(H), Guaiacyl(G) and Syringyl(S) unit of lignin. As for XRD analysis, the non-purified shows that the existence of impurities which is salt (NaCl). The UV analysis shows the higher absorbance which lead to the purity of lignin.

  19. Interfacial Adhesion Characteristics of Kenaf Fibres Subjected to Different Polymer Matrices and Fibre Treatments

    Directory of Open Access Journals (Sweden)

    Umar Nirmal

    2014-01-01

    Full Text Available This study is aimed at determining the interfacial adhesion strength (IAS of kenaf fibres using different chemical treatments in hydrochloric (HCl and sodium hydroxide (NaOH with different concentrations. Single fibre pullout tests (SFPT were carried out for both untreated and treated fibres partially embedded into three different polymer matrices; polyester, epoxy, and polyurethane (PU as reinforcement blocks and tested under dry loading conditions. The study revealed that kenaf fibres treated with 6% NaOH subjected to polyester, epoxy, and PU matrices exhibits excellent IAS while poor in acidic treatment. The effect of SFPT results was mainly attributed to chemical composition of the fibres, types of fibre treatments, and variation in resin viscosities. By scanning electron microscopy examination of the material failure morphology, the fibres experienced brittle and ductile fibre breakage mechanisms after treatment with acidic and alkaline solutions.

  20. Modification of Jute Fibers with Polystyrene via Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Plackett, David; Jankova, Katja Atanassova; Egsgaard, Helge

    2005-01-01

    Atom transfer radical polymerization (ATRP) was investigated as a method of covalently bonding polystyrene to jute (Corchorus capsularis) and as a possible approach to fiber composites with enhanced properties. Jute fibers were modified with a brominated initiator and subsequently ATRP modified...... to attach polystyrene and then examined using SEM, DSC, TGA, FTIR, XPS, elemental analysis, and Py-GC-MS. These techniques confirmed that polystyrene had been covalently bound to the fibers and consequently ATRP-modified jute fiber mats were used to prepare hot-pressed polystyrene composites. Composite...... applications, we conclude that further optimization of the ATRP method is required, possibly targeting higher and more uniform loading of polystyrene on the fibers....

  1. Short Jute Fiber Reinforced Polypropylene Composites: Effect of Nonhalogenated Fire Retardants

    Directory of Open Access Journals (Sweden)

    Sk. Sharfuddin Chestee

    2017-01-01

    Full Text Available Short jute fiber reinforced polypropylene (PP composites were prepared using a single screw extrusion moulding. Jute fiber content in the composites is optimized with the extent of mechanical properties, and composites with 20% jute show higher mechanical properties. Dissimilar concentrations of several fire retardants (FRs, such as magnesium oxide (MO, aluminum oxide (AO, and phosphoric acid (PA, were used in the composites. The addition of MO, AO, and PA improved the fire retardancy properties (ignition time, flame height, and total firing time of the composites. Ignition time for 30% MO, flame height for 30% PA, and total firing time for 20% MO content composites showed good results which were 8 sec, 1 inch, and 268 sec, respectively. Mechanical properties (tensile strength, tensile modulus, bending strength, bending modulus, and elongation at break, degradation properties (soil test, weathering test, and percentage of weight loss, and water uptake were studied.

  2. Synthesis of Cotton from Tossa Jute Fiber and Comparison with Original Cotton

    Directory of Open Access Journals (Sweden)

    Md. Mizanur Rahman

    2015-01-01

    Full Text Available Cotton fibers were synthesized from tossa jute and characteristics were compared with original cotton by using FTIR and TGA. The FTIR results indicated that the peak intensity of OH group from jute cotton fibers occurred at 3336 cm−1 whereas the peak intensity of original cotton fibers occurred at 3338 cm−1. This indicated that the synthesized cotton fiber properties were very similar to the original cotton fibers. The TGA result showed that maximum rate of mass loss, the onset of decomposition, end of decomposition, and activation energy of synthesized cotton were higher than original cotton. The activation energy of jute cotton fibers was higher than the original cotton fibers.

  3. Modification of jute fibers with polystyrene via atom transfer radical polymerization.

    Science.gov (United States)

    Plackett, David; Jankova, Katja; Egsgaard, Helge; Hvilsted, Søren

    2005-01-01

    Atom transfer radical polymerization (ATRP) was investigated as a method of covalently bonding polystyrene to jute (Corchorus capsularis) and as a possible approach to fiber composites with enhanced properties. Jute fibers were modified with a brominated initiator and subsequently ATRP modified to attach polystyrene and then examined using SEM, DSC, TGA, FTIR, XPS, elemental analysis, and Py-GC-MS. These techniques confirmed that polystyrene had been covalently bound to the fibers and consequently ATRP-modified jute fiber mats were used to prepare hot-pressed polystyrene composites. Composite specimens were tensile tested and fracture surfaces examined using SEM. Although SEM examination suggested different fracture modes between unmodified fiber and ATRP-modified samples, the tensile strength of modified samples was slightly lower on average than that of unmodified samples. For fiber composite applications, we conclude that further optimization of the ATRP method is required, possibly targeting higher and more uniform loading of polystyrene on the fibers.

  4. Effect of crosslinker and nanoclay on starch and jute fabric based green nanocomposites.

    Science.gov (United States)

    Iman, Murshid; Maji, Tarun K

    2012-06-05

    'Green' nanocomposites were prepared by solution induced intercalation method using starch, jute, glutaraldehyde, nanoclay and glycerol. The concentration of glycerol was optimised. The synthesized composites were characterized by various physicochemical and spectrochemical techniques such as Fourier transform infrared spectroscopy, X-ray diffractometry, transmission electron microscopy, scanning electron microscopy, and thermogravimetric analysis. Fourier transform infrared spectroscopy study indicated an interaction between the jute, starch and clay. Good adhesion exists between starch and jute surface as revealed by scanning electron microscope study. The extent of exfoliation of clay was studied by X-ray diffraction and transmission electron microscope studies. The addition of glutaraldehyde and nanoclay has been found to improve the thermal stability, flame retardancy, dimensional stability and mechanical strength of the prepared composite. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Fatigue Behaviour and Life Assessment of Jute-epoxy Composites under Tension-Tension Loading

    Science.gov (United States)

    Padmaraj, N. H.; Chethan, K. N.; Pavan; Onkar, Anand

    2017-08-01

    The present study involves fabrication and fatigue life assessment of multi-layered, woven jute fibres with epoxy matrix composites. Jute fabric were treated with 1N sodium hydroxidesolution for a duration of 6 hours. Alkali treatment was done to modify internal structure as well as surface properties of fibre. Laminates were fabricated by laying up multi layered woven jute fabric at varying angle [0-900/ (±450)2/0-900]. Vacuum bagging method was used to reduce the void content and thus increase the quality of composites. Tension-Tension fatigue tests were performed with a constant fatigue stress ratio (R=0.1) and results obtained from the tests were used to plot S-N Curve. A model based on power law equation was used for curve fitting.

  6. Interaction of Meloidogyne javanica and Macrophomina phaseoli in Kenaf Root Rot.

    Science.gov (United States)

    Tu, C C; Cheng, Y H

    1971-01-01

    Incidence and severity of root-rot caused by the fungus Macrophomina phaseoli was increased in screenhouse-grown kenaf (Hibiscus cannabinus L.) seedlings simultaneously infected by the nematode Meloidogyne javanica. In seedlings inoculated at 5, 10 and 15 days of age, root rot lesions increased 70.3, 44.1 and 21.8%, and nematode penetration increased 49.0, 36.7, and 12.3% when both fungus and nematode were present.

  7. Changes in kenaf properties and chemistry as a function of growing time

    Science.gov (United States)

    Roger M. Rowell; James S. Han

    1999-01-01

    Kenaf Tainung 1 cultivar was grown in Madison, WI in 1994. The ratio of core to bast fiber, total plant yield, protein, ash, fiber length, extractives, lignin, and sugar content were determined as a function of growing age. Ash, protein, extractives, L-arabinose, L-rhamnose, D-galactose, and D-mannose contents decreased while lignin, D-glucose and D-xylose content...

  8. Retting of jute grown in arsenic contaminated area and consequent arsenic pollution in surface water bodies.

    Science.gov (United States)

    Majumder, Aparajita; Bairagya, M D; Basu, B; Gupta, P C; Sarkar, S

    2013-01-01

    Arsenic (As) toxicity of ground water in Bengal delta is a major environmental catastrophe. Cultivation of jute, a non edible crop after summer rice usually reduces arsenic load of the soil. However, during retting of jute As is present in the crop and thus increase its amount in surface water bodies. To test this hypothesis, a study was carried out in ten farmers' field located in As affected areas of West Bengal, India. As content of soil and variou the jute plant were recorded on 35 and 70 days after sowing (DAS) as well as on harvest date (110 DAS). During the study period, due to the influence of rainfall, As content of surface (0-150 mm) soil fluctuates in a narrow range. As content of jute root was in the range of 1.13 to 9.36 mg kg(-1). As content of both root and leaf attained highest concentration on 35 DAS and continuously decreased with the increase in crop age. However, in case of shoot, the As content initially decreased by 16 to 50% during 35 to 70 DAS and on 110 DAS the value slightly increased over 70 DAS. Retting of jute in pond water increased the water As content by 0.2 to 2.0 mg L(-1). The increment was 1.1 to 4 times higher over the WHO safe limit (0.05 mg L(-1)) for India and Bangladesh. Microbiological assessment in this study reveals the total bacterial population of pre and post retting pond water. Bacterial strains capable in transforming more toxic As-III to less toxic AS-V were screened and six of them were selected based on their As tolerance capacity. Importantly, identified bacterial strain Bacterium C-TJ19 (HQ834294) has As transforming ability as well as pectinolytic activity, which improves fibre quality of jute. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Kenaf Bast Fibers—Part II: Inorganic Nanoparticle Impregnation for Polymer Composites

    Directory of Open Access Journals (Sweden)

    Jinshu Shi

    2011-01-01

    Full Text Available The objective of this study was to investigate an inorganic nanoparticle impregnation (INI technique to improve the compatibility between kenaf bast fibers and polyolefin matrices. The Scanning Electron Microscopy (SEM was used to examine the surface morphology of the INI-treated fibers showing that the CaCO3 nanoparticle crystals grew onto the fiber surface. Energy-dispersive X-ray spectroscopy (EDS was used to verify the CaCO3 nanoparticle deposits on the fiber surface. The tension tests of the individual fiber were conducted, and the results showed that the tensile strength of the fibers increased significantly (more than 20% after the INI treatments. Polymer composites were fabricated using the INI-treated fiber as reinforcement and polypropylene (PP as the matrix. The results showed that the INI treatments improved the compatibility between kenaf fibers and PP matrix. The tensile modulus and tensile strength of the composites reinforced with INI-treated fibers increased by 25.9% and 10.4%, respectively, compared to those reinforced with untreated kenaf fibers.

  10. How Properties of Kenaf Fibers from Burkina Faso Contribute to the Reinforcement of Earth Blocks

    Directory of Open Access Journals (Sweden)

    Younoussa Millogo

    2015-04-01

    Full Text Available Physicochemical characteristics of Hibiscus cannabinus (kenaf fibers from Burkina Faso were studied using X-ray diffraction (XRD, infrared spectroscopy, thermal gravimetric analysis (TGA, chemical analysis and video microscopy. Kenaf fibers (3 cm long were used to reinforce earth blocks, and the mechanical properties of reinforced blocks, with fiber contents ranging from 0.2 to 0.8 wt%, were investigated. The fibers were mainly composed of cellulose type I (70.4 wt%, hemicelluloses (18.9 wt% and lignin (3 wt% and were characterized by high tensile strength (1 ± 0.25 GPa and Young’s modulus (136 ± 25 GPa, linked to their high cellulose content. The incorporation of short fibers of kenaf reduced the propagation of cracks in the blocks, through the good adherence of fibers to the clay matrix, and therefore improved their mechanical properties. Fiber incorporation was particularly beneficial for the bending strength of earth blocks because it reinforces these blocks after the failure of soil matrix observed for unreinforced blocks. Blocks reinforced with such fibers had a ductile tensile behavior that made them better building materials for masonry structures than unreinforced blocks.

  11. Effect of Impregnated Inorganic Nanoparticles on the Properties of the Kenaf Bast Fibers

    Directory of Open Access Journals (Sweden)

    Kaiwen Liang

    2014-08-01

    Full Text Available The objective of this research was to evaluate the properties of the chemically retted kenaf bast fiber impregnated with the inorganic nanoparticles. High quality kenaf bast fibers were obtained from a chemical retting process. An in situ inorganic nanoparticle impregnation (INI process was used to introduce the CaCO3 nanoparticles into the retted kenaf bast fibers. It was found that some of the lignin-based components in the retted fibers were further removed during the INI treatment. From the characterization results, the inorganic nanoparticles CaCO3, with different shapes and sizes, appeared at the surface of the impregnated fiber after treatment. Heterogeneous CaCO3 nanoparticle distribution was observed on the INI treated fibers. The CaCO3 contents were different at different locations along the impregnated fiber. The presence of CaCO3 inorganic nanoparticles at the fiber surface increased the root mean square (RMS surface roughness by 5.8% and decreased the hydrophilic nature of the retted fibers, evidenced by a 59.4% decrease in adhesion force between the fiber and hydrophilic AFM tip. In addition, the impregnation of CaCO3 dramatically increased the Young’s modulus of the fiber by 344%.

  12. EFFECT OF MALEIC ANHYDRIDE ON KENAF DUST FILLED POLYCAPROLACTONE/THERMOPLASTIC SAGO STARCH COMPOSITES

    Directory of Open Access Journals (Sweden)

    Siang Yee Chang,

    2012-02-01

    Full Text Available The utilization of biodegradable polymers for various applications has been restricted mainly by its high cost. This report aims to study the water absorption and mechanical properties of kenaf dust-filled polycaprolactone/thermoplastic sago starch biodegradable composites as a function of filler loading and treatment with maleic anhydride. While water absorption in untreated biocomposites increased as a function of filler loading, treated biocomposites resulted in weight loss, whereby low molecular weight substances were dissolved into the aging medium. The kenaf dust imparts reinforcing effects on the biocomposites, resulting in improved mechanical properties. This is further attested by morphological studies in which kenaf dust was well dispersed in the polycaprolactone/ thermoplastic sago starch blend matrix. The addition of maleic anhydride into the polycaprolactone/thermoplastic sago starch blend resulted in a homogeneous mixture. At low filler loading, strain at break of the maleated polycaprolactone/thermoplastic sago starch blend increased at the expense of tensile strength and modulus. This is most likely due to the excessive dicumyl peroxide content, which caused chain scission of the polycaprolactone backbone. Tensile strength and modulus improved only when high filler loading was employed.

  13. Is kenaf an effective land-use alternative for the energy and industrial sectors in Portugal?

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, A.; Morais, J.; Mendes, B.; Oliveira, J.F.S. [Grupo de Disciplinas de Ecologia da Hidrosfera, Unidate de Biotecnologia Ambiental, Faculdade de Ciencis e Tecnologia da Universidade Nova de Lisboa, Caparica (Portugal)

    2008-07-01

    The overall objective of this work was to evaluate kenaf as a non-food crop through an integrated approach for alternative land use in Portugal that will provide diversified opportunities for farmers and biological materials for the bio-based industries of the future. Results show that kenaf appears to represent an efficient land-use alternative in Portugal. At the pedoclimatic conditions of South Portugal, high yields can be achieved (28 t dry matter.ha-1.year-1), depending on the applied cultivation techniques. The time of sowing and the level of irrigation are the main crop management factors that affect biomass yields. Benefits of this crop relies not only on the possibility of its use as a renewable raw material for energy and industrial purposes but also on the possibility to make good use of set aside land or even derelict land, limiting erosion risks. Detailed consideration of the energy balances suggests that the use of kenaf-fibres for the production of thermal insulation boards are favored over its use as an energy feedstock, where energy balances may be poor.

  14. Kenaf Fibre Reinforced Polypropylene Composites: Effect of Cyclic Immersion on Tensile Properties

    Directory of Open Access Journals (Sweden)

    W. H. Haniffah

    2015-01-01

    Full Text Available This research studied the degradation of tensile properties of kenaf fibre reinforced polypropylene composites due to cyclic immersion into two different solutions, as well as comparison of the developed composites’ tensile properties under continuous and cyclic immersion. Composites with 40% and 60% fibre loadings were immersed in tap water and bleach for 4 cycles. Each cycle consisted of 3 days of immersion and 4 days of conditioning in room temperature (28°C and 55% humidity. The tensile strength and modulus of composites were affected by fibre composition, type of liquid of immersion, and number of cycles. The number of immersion cycles and conditioning caused degradation to tensile strength and modulus of kenaf fibre reinforced polypropylene composites. Continuous and cyclic immersion in bleach caused tensile strength of the composites to differ significantly whereas, for tensile modulus, the difference was insignificant in any immersion and fibre loadings. However, continuous immersion in the bleach reduced the tensile strength of composites more compared to cyclic immersion. These preliminary results suggest further evaluation of the suitability of kenaf fibre reinforced polypropylene composites for potential bathroom application where the composites will be exposed to water/liquid in cyclic manner due to discontinuous usage of bathroom.

  15. Mechanical Characterization and Water Absorption Behaviour of Interwoven Kenaf/PET Fibre Reinforced Epoxy Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Yakubu Dan-mallam

    2015-01-01

    Full Text Available The development of interwoven fabric for composite production is a novel approach that can be adopted to address the challenges of balanced mechanical properties and water absorption behaviour of polymer composites. In this paper, kenaf and PET (polyethylene terephthalate fibre were selected as reinforcing materials to develop the woven fabric, and low viscosity epoxy resin was chosen as the matrix. Vacuum infusion process was adopted to produce the hybrid composite due to its superior advantages over hand lay-up technique. The weight percentage composition of the Epoxy/kenaf/PET hybrid composite was maintained at 70/15/15 and 60/20/20, respectively. A significant increase in tensile strength and elastic modulus of approximately 73% and 53% was recorded in relation to neat epoxy. Similarly, a substantial increase in flexural, impact, and interlaminar properties was also realized in relation to neat epoxy. This enhancement in mechanical properties may be attributed to the interlocking structure of the interwoven fabric, individual properties of kenaf and PET fibres, strong interfacial bonding, and resistance of the fibres to impact loading. The water absorption of the composites was studied by prolonged exposure in distilled water, and the moisture absorption pattern was found to follow Fickian behaviour.

  16. Hydrolysis of wheat bran, rice bran and jute powder by immobilized enzymes from Macrophomina phaseolina.

    Science.gov (United States)

    Roy, P K; Roy, U; Vora, V C

    1993-03-01

    The stability of cellulolytic and hemicellulolytic enzymes from Macrophomina phaseolina improved on immobilization and was 1.5 to 2-fold more active against pre-treated wheat bran, rice bran or jute powder. The hydrolysis efficiency of the catalyst increased with a decrease in its particle size. About 80% (w/v) of the sugar obtained from wheat bran was assimilated by Saccharomyces sp., whereas the corresponding values for rice bran and jute powder were about 70 and 50% (w/v), respectively.

  17. Laboratory Performance Of Evaporative Cooler Using Jute Fiber Ropes As Cooling Media

    OpenAIRE

    Kulkarni, R K; S.P.S. Rajput

    2014-01-01

    Evaporative coolers use a variety of cooling media like wood wool, cellulose, aspen. This paper analyses the performance of jute fiber ropes as alternative cooling media. They are capable of retaining high moisture and have a large wetted surface area. Hot and dry air is allowed to flow over the wet jute rope bank tightly held between two plates which are integral part of two tanks. The inlet conditions of air varied from 30.5 0C dry bulb temperature and 52 % relative humidity to ...

  18. Low-velocity impact behavior of woven jute/poly(lactic acid) composites

    Science.gov (United States)

    Russo, Pietro; Simeoli, Giorgio; Papa, Ilaria; Acierno, Domenico; Lopresto, Valentina; Langella, Antonio

    2016-05-01

    Biocomposite laminates based on poly(lactic acid) (PLA) and woven jute fabric were obtained by film stacking and compression molding techniques. Sample laminates were systematically characterized by impact tests with a falling dart at impact energies equal to 5, 10 and 20 J. Tests showed that, investigated PLA/jute fabric plates suffer only barely visible damages at the first two levels of impact energy while they result to be perforated at 20 J as highlighted by photographic images taken on low and back side of impacted surfaces.

  19. Impacts of Temperature Disparity on Surface Modification of Short Jute Fiber-Reinforced Epoxy Composites

    Science.gov (United States)

    Basak, Reshmi; Choudhury, P. L.; Pandey, K. M.

    2017-08-01

    Chase for manufacturing composite materials without negotiating on the physio-mechanical performance has been prevailing since long. Short jute fiber-reinforced epoxy based composites are prepared and their mechanical properties have been analyzed. The fibers are peroxide-silane treated under varying conditions of temperature from low to high. Results display that the jute composites set at higher temperature values indicate higher values of mechanical properties compared to those synthesized under lower temperature range. The same can be cited for liquid retaining capacity.

  20. Microstructural Characterisation of Jute/Epoxy Quasi-Unidirectional Composites

    Science.gov (United States)

    Virk, Amandeep Singh; Hall, Wayne; Summerscales, John

    2014-12-01

    The elastic properties of a composite can be predicted by micromechanical models based on the properties of the individual constituent materials of the composite and their geometrical characteristics. This paper presents a novel methodology using image analysis to determine (a) the fibre volume fraction and (b) the fibre orientation distribution factor of quasi-unidirectional jute fibre reinforced epoxy resin composites. For fibre volume fraction, digital micrographs were smoothed to reduce noise in the image, an intensity histogram informed selection of the threshold intensity for conversion to a binary image, the image was morphologically closed and opened to remove internal voids and small features respectively and the fibre volume fraction was calculated as the ratio of the detected fibre area to the total image area. For fibre orientation, the image was sharpened with Contrast-Limited Adaptive Histogram Equalisation, a threshold was set for conversion to binary and then a masking image was rotated at a number of seed points over the image to find the angles with the minimum sum of intensity at each point. The data generated was then used to validate new rules-of-mixture equations for natural fibre composites.

  1. Characterization of Morphological Diversity of Jute Mallow (Corchorus spp.

    Directory of Open Access Journals (Sweden)

    Munguatosha Ngomuo

    2017-01-01

    Full Text Available Jute mallow is a traditional leaf vegetable that is an important part of daily diet for the majority of people in rural areas in sub-Saharan Africa. Here we employed quantitative and qualitative phenotypic traits to assess the morphological diversity of 90 accessions using univariate and multivariate analyses. Field experiments were conducted for two seasons to identify accessions suitable for leaf yield. The accessions were significantly variable in all traits. Highest variability among accessions was found in harvest index, biomass yield, and weight of 1000 seeds. The traits that significantly correlated with biomass yield include plant height (r=0.448, petiole length (r=0.237, primary branches (r=0.319, and number of leaves per plant (r=0.333. Principal component analysis showed that the first five PCs with eigenvalues ≥1 explained 72.9% of the total variability in the accessions. Pods per plant, primary branches, secondary branches, and number of leaves per plant accounted for highest variability in PC1. Cluster analysis grouped the accessions into five major clusters mainly based on their origin. Thus, the collection displayed high variation in morphological traits, particularly those related to leaf yield. These accessions are therefore useful in breeding for the improvement of the crop and germplasm management.

  2. Experimental weed control of Najas marina ssp. intermedia and Elodea nuttallii in lakes using biodegradable jute matting

    Directory of Open Access Journals (Sweden)

    Markus A. Hoffmann

    2013-10-01

    Full Text Available The use of jute matting in managing the invasive aquatic macrophyte species Elodea nuttallii (Planch. H. St. John and Najas marina ssp. intermedia (Wolfg. ex Gorski Casper (Najas intermedia was studied in laboratory experiments and field trials. Four German lakes with predominant population of Najas intermedia or Elodea nuttalli were chosen for the experiment and areas between 150 and 300 m² were covered with jute textile. The effect of the matting on the growth of invasive and non-invasive macrophytes was determined through comparison with control transects. Biodegradable jute matting successfully suppressed the invasive macrophyte Najas intermedia and significantly reduced the growth of Elodea nuttalli in lakes. The results indicate that the capability of the matting to inhibit the growth of Elodea nuttallii and Najas intermedia depends on the mesh size of the jute weaving and that environmental conditions can affect its efficiency. Various indigenous species like Charales or Potamogeton pusillus L. were able to grow through the jute fabric and populate the treated areas. Until the end of the vegetation period, none of the invasive species were able to penetrate the covering and establish a stable population; in fact, in the subsequent year the jute matting affected only the spread of Najas intermedia. Jute matting proved to be an easy-to-use and cheap method to control the growth of Elodea nuttallii and Najas intermedia.

  3. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals.

    Science.gov (United States)

    Arbaoui, Sarra; Evlard, Aricia; Mhamdi, Mohamed El Wafi; Campanella, Bruno; Paul, Roger; Bettaieb, Taoufik

    2013-07-01

    The potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for accumulation of cadmium and zinc was investigated. Plants have been grown in lysimetres containing dredging sludge, a substratum naturally rich in trace metals. Biomass production was determined. Sludge and water percolating from lysimeters were analyzed by atomic absorption spectrometry. No visible symptoms of toxicity were observed during the three- month culture. Kenaf and corn tolerate trace metals content in sludge. Results showed that Zn and Cd were found in corn and kenaf shoots at different levels, 2.49 mg/kg of Cd and 82.5 mg/kg of Zn in kenaf shoots and 2.1 mg/kg of Cd and 10.19 mg/kg in corn shoots. Quantities of extracted trace metals showed that decontamination of Zn and Cd polluted substrates is possible by corn and kenaf crops. Tolerance and bioaccumulation factors indicated that both species could be used in phytoremediation.

  4. Fabrication and evaluation of mechanical properties of alkaline treated sisal/hemp fiber reinforced hybrid composite

    Science.gov (United States)

    Venkatesha Gupta, N. S.; Akash; Sreenivasa Rao, K. V.; kumar, D. S. Arun

    2016-09-01

    Fiber reinforced polymer composite have acquired a dominant place in variety of applications because of higher specific strength and modulus, the plant based natural fiber are partially replacing currently used synthetic fiber as reinforcement for polymer composites. In this research work going to develop a new material which posses a strength to weight ratio that for exceed any of the present material. The hybrid composite sisal/hemp reinforced with epoxy matrix has been developed by compression moulding technique according to ASTM standards. Sodium hydroxide (NAOH) was used as alkali for treating the fibers. The amount of reinforcement was varied from 10% to 50% in steps of 10%. Prepared specimens were examined for mechanical properties such as tensile strength, flexural strength, and hardness. Hybrid composite with 40wt% sisal/hemp fiber were found to posses higher strength (tensile strength = 53.13Mpa and flexural strength = 82.07Mpa) among the fabricated hybrid composite specimens. Hardness value increases with increasing the fiber volume. Morphological examinations are carried out to analyze the interfacial characteristics, internal structure and fractured surfaces by using scanning electron microscope.

  5. [Use of kenaf fibre in the elaboration of specific substrates for Pleurotus ostreatus (Jacq. ex Fr.) Kummer cultivation].

    Science.gov (United States)

    Pardo Giménez, Arturo; Perona Zamora, Ma Aquilina; Pardo Núñez, José

    2008-03-01

    In this study, the viability of the kenaf fibre use, alone or combined with cereal straw, vine shoots and olive mill dried waste, in the elaboration of specific substrates for the cultivation of Pleurotus ostreatus (Jacq. ex Fr.) Kummer, second mushroom in importance cultivated in Spain, is described. Furthermore, three different methods of preparation of the substrate have been considered in order to obtain selectivity for the growth and later fruiting of Pleurotus sporophore. As for the production parameters, the best results have been provided by the substrates that combined kenaf with straw and with vine shoots, being unfavourable the substrates based in just kenaf or combined with olive mill dried waste. As for the treatment applied to the materials, the immersion in water alone and subsequent pasteurization and thermophilic conditioning, together with the semi-anaerobic fermentation, has been favoured in front of the immersion in water with fungicide and later pasteurization.

  6. Regenerated thermosetting styrene-co-acrylonitrile sandwich composite panels reinforced by jute fibre: structures and properties

    Indian Academy of Sciences (India)

    Jinglong Li; Qin Peng; Anrong Zeng; Junlin Li; Xiaole Wu; Xiaofei Liu

    2016-02-01

    Jute fibres-reinforced sandwich regenerated composite panels were fabricated using industrial waste thermosetting styrene-co-acrylonitrile (SAN) foam scraps via compression moulding for the purpose of recycling waste SAN foam and obtaining high physical performance. The jute fibres were, respectively, treated by heat, sodium hydroxide (NaOH) solution (5.0 wt%), and N,N-dimethylacetamide (DMAc) in order to improve the mechanical properties of the composites. The structures and mechanical properties of the composites were studied. The SAN matrix got compact and some crystalline region formed in SAN matrix via compression moulding. The composite reinforced by DMAc-treated jute fibres performed optimum mechanical properties among the regenerated panels whose impact strength, flexural strength, and compressive strength were 19.9 kJ m−2, 41.7 MPa, and 61.0 MPa, respectively. Good interfacial bonding between DMAc-treated fibres and SAN matrix was verified by peel test and exhibited in SEM photographs. Besides, the water absorption of DMAc-treated fibres composite was lower than other SAN/jute fibre-reinforced sandwich composite panels.

  7. Airborne endotoxin and its relationship to pulmonary function among workers in an Indian jute mill.

    Science.gov (United States)

    Mukherjee, Ashit K; Chattopadhyay, Bhakar P; Bhattacharya, Sanat K; Saiyed, Habibullah N

    2004-04-01

    Air samples from various processing areas of an Indian jute mill were examined for endotoxin. The authors assessed work-related respiratory symptoms and pulmonary function changes in the dust-exposed workers from the different processing areas using a standard questionnaire and spirometry. Endotoxin was estimated in water extract of jute dust from 3 milling areas, and in outside air, by the Limulus amebocyte lysate gel clot technique. The batching, spinning, and weaving areas of the jute mill showed endotoxin levels of 0.22-4.42 microg/m3, 0.04-1.47 microg/m3, and 0.01-0.07 microg/m3, respectively, values similar to those found in Indian cotton mills. Respiratory morbidities among the workers included typical byssinotic symptoms, along with acute changes in postshift forced expiratory volume in 1 s (FEV1.0) (31.8%). Results of this study demonstrated that increased exposure to bacterial endotoxin in airborne dust is related to byssinotic symptoms among Indian jute mill workers. Findings were similar to those reported previously for workers in the cotton, flax, and hemp industries.

  8. Studies on the mechanical properties of woven jute fabric reinforced poly(l-lactic acid composites

    Directory of Open Access Journals (Sweden)

    G.M. Arifuzzaman Khan

    2016-01-01

    Full Text Available Development of ecofriendly biocomposites to replace non-biodegradable synthetic fiber composites is the main objective of this study. To highlight the biocomposites as a perfect replacement, the plain woven jute fabric (WJF reinforced poly(l-lactic acid (PLLA composites were prepared by the hot press molding method. The influence of woven structure and direction on the mechanical properties i.e. tensile, flexural and impact properties was investigated. The average tensile strength (TS, tensile modulus (TM, flexural strength (FS, flexural modulus (FM, and impact strength (IS of untreated woven jute composite (in warp direction were improved about 103%, 211%, 95.2%, 42.4% and 85.9%, respectively and strain at maximum tensile stress for composite samples was enhanced by 11.7%. It was also found that the strengths and modulus of composites in warp direction are higher than those in weft direction. WJF composites in warp and weft directions presented superior mechanical properties than non-woven jute fabric (NWJF composites. Chemical treatment of jute fabric through benzoylation showed a positive effect on the properties of composites. Morphological studies by SEM demonstrated that better adhesion between the treated fabric and PLLA was achieved.

  9. High-Performance Flexible Supercapacitors obtained via Recycled Jute: Bio-Waste to Energy Storage Approach.

    Science.gov (United States)

    Zequine, Camila; Ranaweera, C K; Wang, Z; Dvornic, Petar R; Kahol, P K; Singh, Sweta; Tripathi, Prashant; Srivastava, O N; Singh, Satbir; Gupta, Bipin Kumar; Gupta, Gautam; Gupta, Ram K

    2017-04-26

    In search of affordable, flexible, lightweight, efficient and stable supercapacitors, metal oxides have been shown to provide high charge storage capacity but with poor cyclic stability due to structural damage occurring during the redox process. Here, we develop an efficient flexible supercapacitor obtained by carbonizing abundantly available and recyclable jute. The active material was synthesized from jute by a facile hydrothermal method and its electrochemical performance was further enhanced by chemical activation. Specific capacitance of 408 F/g at 1 mV/s using CV and 185 F/g at 500 mA/g using charge-discharge measurements with excellent flexibility (~100% retention in charge storage capacity on bending) were observed. The cyclic stability test confirmed no loss in the charge storage capacity of the electrode even after 5,000 charge-discharge measurements. In addition, a supercapacitor device fabricated using this carbonized jute showed promising specific capacitance of about 51 F/g, and improvement of over 60% in the charge storage capacity on increasing temperature from 5 to 75 °C. Based on these results, we propose that recycled jute should be considered for fabrication of high-performance flexible energy storage devices at extremely low cost.

  10. Jute: A Different Story about the Development of Manufacturing Industry and Trade between Britain and India.

    Science.gov (United States)

    Geyer, Patricia

    1997-01-01

    Examines the process used to develop a lesson plan from an academic research article. Includes a lesson plan developed from an article in the Spring 1997 issue of "The Journal of World History" tracing the history of jute (a substitute for flax) manufacturing in colonial India. (MJP)

  11. Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available Abaca fibre reinforced PP composites were fabricated with different fibre loadings (20, 30, 40, 50wt% and in some cases 35 and 45 wt%. Flax and jute fibre reinforced PP composites were also fabricated with 30 wt% fibre loading. The mechanical properties, odour emission and structure properties were investigated for those composites. Tensile, flexural and Charpy impact strengths were found to increase for fibre loadings up to 40 wt% and then decreased. Falling weight impact tests were also carried out and the same tendency was observed. Owing to the addition of coupling agent (maleated polypropylene -MAH-PP, the tensile, flexural and falling weight impact properties were found to increase in between 30 to 80% for different fibre loadings. When comparing jute and flax fibre composites with abaca fibre composites, jute fibre composites provided best tensile properties but abaca fibre polypropylene composites were shown to provide best notch Charpy and falling weight impact properties. Odours released by flax fibre composites were smaller than jute and abaca fibre composites.

  12. Effect of Moisture Absorption on the Mechanical Properties of Ceramic Filled Jute/Epoxy Hybrid Composites

    Science.gov (United States)

    Tapas Ranjan Swain, Priyadarshi; Biswas, Sandhyarani

    2017-02-01

    The present work emphasizes on the mechanical properties such as micro-hardness, flexural and impact strength of jute fiber and Al2O3 filler based polymer composites at dry and wet conditions. Composite samples reinforced with different wt.% of fibers and filler were prepared by hand lay-up technique. To improve the mechanical properties, jute fiber was hybridized with Al2O3 filler. The maximum flexural strength of 72.94 MPa and impact strength of 1.902 J is obtained for composites with 30 wt.% fiber content and 10 wt.% of filler content. The hardness of composite increases with increase in fiber and filler loading i.e 40 wt.% fiber content and 10 wt.% of filler content. The maximum hardness value is obtained 29.9 Hv. The effect of water absorption on mechanical properties of jute reinforced hybrid polymer composites is also investigated. To determine the influence of water absorption on the mechanical properties, specimens were immersed in distilled water for 10 days before testing. For reference purpose, dry specimens were tested. It is observed that the rate of water absorption depends on the fiber content as well as filler content. All the mechanical properties of composites are decreased after water absorption. Scanning electron microscopy (SEM) is used to characterise the microstructure and failure mechanisms of dry and wet jute fiber reinforced polymer composites.

  13. Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers.

    Science.gov (United States)

    Cao, Xinwang; Wang, Xianfeng; Ding, Bin; Yu, Jianyong; Sun, Gang

    2013-02-15

    Cellulose nanowhiskers as a kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Herein, for the first time, a novel controllable fabrication of spider-web-like nanoporous networks based on jute cellulose nanowhiskers (JCNs) deposited on the electrospun (ES) nanofibrous membrane by simple directly immersion-drying method is reported. Jute cellulose nanowhiskers were extracted from jute fibers with a high yield (over 80%) via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization. The morphology of JCNs nanoporous networks/ES nanofibrous membrane architecture, including coverage rate, pore-width and layer-by-layer packing structure of the nanoporous networks, can be finely controlled by regulating the JCNs dispersions properties and drying conditions. The versatile nanoporous network composites based on jute cellulose nanowhiskers with ultrathin diameters (3-10 nm) and nanofibrous membrane supports with diameters of 100-300 nm, would be particularly useful for filter applications. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. The Processing Design of Jute Spun Yarn/PLA Braided Composite by Pultrusion Molding

    Directory of Open Access Journals (Sweden)

    Anin Memon

    2013-01-01

    Full Text Available Prevalently, the light has been shed on the green composite from the viewpoint of environmental protection. Jute fibers are natural fibers superior due to light weight, low cost, and being environmentally friendly corresponding to the green composite materials. Meticulously, fibers of polylactic acid (PLA thermoplastic biopolymer were used as the resin fibers. In this study, the fabrication of tubular jute spun yarn/PLA braided composite by pultrusion molding was presented. The intermediate materials were prepared by commingled technique. The braiding technique manufactured preform which had jute fiber diagonally oriented at certain angles with the glass fiber inserted into the braiding yarns along the longitudinal direction. The braided preforms were pulled through a heated die where the consolidation flow took place due to reduced matrix viscosity and pressure. The pultrusion experiments were done with jute/PLA commingled yarns and combined with glass fiber yarns to fabricate the tubular composite. Impregnation quality was evaluated by microscope observation of the pultruded cross-sections. The flexural mechanical properties of the pultruded were measured by four-point bending test.

  15. Thermal performance of sisal fiber-cement roofing tiles for rural constructions Desempenho térmico de telhas de fibrocimento reforçadas com polpa de sisal para construções rurais

    Directory of Open Access Journals (Sweden)

    Gustavo Henrique Denzin Tonoli

    2011-02-01

    Full Text Available Roofing provides the main protection against direct solar radiation in animal housing. Appropriate thermal properties of roofing materials tend to improve the thermal comfort in the inner ambient. Nonasbestos fiber-cement roofing components reinforced with cellulose pulp from sisal (Agave sisalana were produced by slurry and dewatering techniques, with an optional addition of polypropylene fibers. Nonasbestos tiles were evaluated and compared with commercially available asbestos-cement sheets and ceramic tiles (frequently chosen as roofing materials for animal housing. Thermal conductivity and thermal diffusivity of tiles were determined by the parallel hot-wire method, along with the evaluation of the downside surface temperature. Cement-based components reinforced with sisal pulp presented better thermal performance at room temperature (25ºC, while those reinforced with sisal pulp added by polypropylene fibers presented better thermal performance at 60ºC. Non-asbestos cement tiles provided more efficient protection against radiation than asbestos corrugated sheets.O telhado fornece a principal proteção contra a radiação solar direta em galpões para animais. Propriedades térmicas apropriadas dos materiais contribuem para o melhor conforto térmico no interior das construções. Telhas sem amianto reforçadas com polpa de celulose de sisal (Agave sisalana e com adição opcional de fibras de polipropileno foram produzidas pela técnica de mistura e sucção do excesso de água. Telhas corrugadas de cimento amianto, telhas cerâmicas e telhas à base de cimento reforçadas com polpa de celulose (com ou sem adição de fibras sintéticas foram comparadas quanto às suas propriedades térmicas. A condutividade térmica e a difusividade térmica foram determinadas pelo método do fio quente paralelo, assim como a temperatura da superfície inferior das telhas foi avaliada em diferentes períodos. Telhas de cimento reforçados com polpa de

  16. Extraction and Determination of Pectin from Sisal Residue%剑麻渣果胶提取与测定

    Institute of Scientific and Technical Information of China (English)

    陶进转; 陈伟南

    2014-01-01

    从剑麻的麻渣、纤维中提取果胶,测定果胶的含量、纯度和酯化度。将湿麻渣在密封与敞开空气中自然发酵后提取果胶,探讨湿麻渣在发酵后对果胶品质的影响。结果表明,果胶得率最高的是湿麻渣(13.342%),最低的是直纤维(0.450%),干麻渣的果胶得率(1.662%)略高于湿纤维(1.326%)与乱纤维(1.264%)的;果胶纯度最高的是直纤维(73.360%),最低的是干麻渣(32.567%)。直纤维果胶的酯化度(45.452%)略大于麻渣和乱纤维的(32%~35%);湿麻渣经过自然发酵后,果胶得率与纯度均降低,但湿麻渣完全发酵后的果胶酯化度(33.432%)接近于干麻渣的(33.156%)。%To extract pectin from sisal residue and fiber , the content , purity and esterification de-gree of pectin were determined.Pectin was extracted from fresh sisal residue after fermentation in the air-proof and ample air , and the effects on the quality of pectin were investigated.The results showed that fresh sisal residue yields the most pectin ( 13.342%) , and the fiber yields the least ( 0.450%) .The yield of pectin extracted from dry sisal residue (1.662%) was higher than these extracted from wet kinky fiber (1.326%) and dry kinky fiber ( 1.264%) slightly.The highest purity of pectin was from fiber (73.360%) , and the lowest was from dry sisal residue (32.567%) .The esterification degree of pec-tin extracted from fiber (45.452%) was higher than these of dry sisal residue and the kinky fiber (32%~35%) .The yield and purity of pectin decreased while the fresh sisal residue was fermented in nature condition.But the result of esterification degree of pectin extracted from sisal residue ( 33.432%) fer-mented completely was close to the one of dry sisal residue (33.156%) .

  17. Development and characterization of a hydrophobic treatment for jute fibres based on zinc oxide nanoparticles and a fatty acid

    Science.gov (United States)

    Arfaoui, M. A.; Dolez, P. I.; Dubé, M.; David, É.

    2017-03-01

    This work aims at developing a hydrophobic treatment for jute fibres based on the grafting and growth of zinc oxide (ZnO) nanorods on the fibre surface. The first step consists in removing impurities from the fibre surface with a scouring treatment. In the second step, the jute fibres are coated with a layer of ZnO nanoseeds. A hydrothermal process is carried out as a third step to ensure a uniform growth of ZnO nanorods on the surface of the jute fibres. Finally, a hydrophobic treatment is performed on the ZnO nanorod-covered jute fibres using stearic acid (SA), i.e., a typical fatty acid. A large improvement in the fibre hydrophobicity was obtained without any negative effect on thermal stability and limited reduction in strength. Complementary measurements by scanning electron microscopy and X-ray diffraction were also performed and revealed a hexagonal system for the ZnO nanorods.

  18. Removal of reactive dyes from textile wastewater by immobilized chitosan upon grafted Jute fibers with acrylic acid by gamma irradiation

    Science.gov (United States)

    Hassan, Mahmoud S.

    2015-10-01

    Jute fibers were grafted with acrylic acid by gamma irradiation technique. Chitosan was immobilized upon the grafted Jute fibers to be used as an adsorbent for waste reactive dye. The treated Jute fibers were characterized by using of Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of Jute treatment on its thermal stability by using thermogravimetric analysis (TGA) and its mechanical properties were investigated. The adsorption isotherm and the different factors affecting the dye adsorption such as pH and contact time were also studied. It was found that the dye adsorption was enhanced in the low pH range and increased with increasing of the contact time, regardless of temperature change.

  19. Comparative analysis of the mechanical and thermal properties of polyester hybrid composites reinforced by jute and glass fiber.

    Directory of Open Access Journals (Sweden)

    Braga, R. A

    2015-05-01

    Full Text Available This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced polyester hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Polyester resin, jute and glass fibers were laminated in three weight ratios(77/23/0, 68/25/7 and 56/21/23 respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in polyester, increase the density, the impact energy, the tensile strength and the flexural strength, but decrease the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope.

  20. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites.

    Science.gov (United States)

    Braga, R A; Magalhaes, P A A

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effect of Copper/Graphite Addition on Electrical Conductivity and Thermal Insulation of Unsaturated Polyester/Jute Composites

    Science.gov (United States)

    Biswas, Bhabatosh; Chabri, Sumit; Mitra, Bhairab Chandra; Das, Kunal; Bandyopadhyay, Nil Ratan; Sinha, Arijit

    2017-04-01

    Jute fibre along with Cu particle reinforced unsaturated polyester composites having different filler loading viz. 2, 5, 10 and 15 wt% were fabricated by compression molding technique. In present investigation, it was observed that with fillers (Jute and Cu) incorporation, the electrical conductivity was monotonically increased up to 10 wt% of filler content followed by saturation at 15 wt% of filler content. It was further observed that along with fillers (Jute and Cu) incorporation, the thermal insulation was decreased monotonically up to 10 wt% of filler content and achieved a saturation at 15 wt% of filler content. A similar trend was observed with the variation of electrical conductivity and thermal insulation after incorporation of graphite within copper reinforced UP/Jute composites. Structural investigation through SEM, XRD and FTIR confirm the dispersion of fillers. An improvement of crystallinity of the matrix with fillers addition was observed from XRD analyses. The interfacial bonding between fillers and matrix was studied from FTIR pattern.

  2. Investigation on the Effect of Kenaf Core and Stalk Fiber on the Medium Density Fiber Board Properties Made of Poplar Fibers

    Directory of Open Access Journals (Sweden)

    Fahimeh SH.Alizadeh

    2012-01-01

    Full Text Available In order to optimize the use of material non-forest resources, in this study the possibility of using the kenaf stalk fibers mixed with poplar fibers in producing medium density fiber board was considered. Variable factors such as density at two levels (0.55, 0.75 g/cm3 and the percentage incorporation of fiber (%50 poplar fibers, - %50 kenaf core fiber, %50 poplar fiber, -% 50 kenaf stalk fiber and %100 poplar fibers were considered. Steaming time and temperature (175°C, 10min, press time and temperature (5 min, 175°C, Pressing pressure (30 kg/cm3, fiber cake moisture (%12 and urea-formaldehyde resin with Concentration of %50 of the study factors were fixed. Results show that adding kenaf core fibers to the poplar fibers increases modulus of elasticity and water absorption but thickness swelling reduces. Increased density in board made with kenaf core has caused increase in bending strength, modulus of elasticity and internal bond strength and their water absorption and thickness swelling after 2 and 24 hours were competitive with poplar (MDF. On the other hand Populus fiber– kenaf stalk board mechanical and physical properties were competitive with (MDF board made of %100 poplar fibers. Finally we can say that according to the statistical analysis, the best treatment in this study was using kenaf core fibers, in making poplar (MDF with 0.75 g/cm3 density.

  3. UTILIZATION OF MICRO SISAL FIBERS AS REINFORCEMENT AGENT AND POLYPROPYLENE OR POLYLACTIC ACID AS POLYMER MATRICES IN BIOCOMPOSITES MANUFACTURE

    Directory of Open Access Journals (Sweden)

    Subyakto Subyakto

    2013-06-01

    Full Text Available Sisal (Agave sisalana as a perennial tropical plant grows abundantly in Indonesia. Its fibers can be used as the reinforcement agent of biocomposite products. Utilization of sisal as natural fiber has some notable benefits compared to synthetic fibers, such as renewable, light in weight, and low in cost. Manufacture of biocomposite requires the use of matrix such as thermoplastic polymer, e.g. polypropylene (PP and polylactic acid (PLA to bond together with the reinforcement agent (e.g. sisal fibers. In relevant, experiment was conducted on biocomposites manufacture that comprised sisal fibers and PP as well as PLA. Sisal fibers were converted into pulp, then refined to micro-size fibrillated fibers such that their diameter reduced to about 10 μm, and dried in an oven. The dry microfibrillated sisal pulp fibers cellulose (MSFC were thoroughly mixed with either PP or PLA with varying ratios of MSFC/PP as well as MSFC/PLA, and then shaped into the mat (i.e. MSFC-PP and MSFC-PLA biocomposites. Two kinds of shaping was employed, i.e. hot-press molding and injection molding. In the hot-press molding, the ratio of  MSFC/PP as well as MSFC/PLA ranged about 30/70-50/50. Meanwhile in the injection (employed only on assembling the MSFC-PLA biocomposite, the ratio of MSFC/PLA varied about 10/90-30/70. The resulting shaped MSFC-PP and MSFC-PLA biocomposites were then tested of its physical and mechanical properties. With the hot-press molding device, the physical and mechanical (strength properties of MSFC-PLA biocomposite were higher than those of  MSFC-PP biocomposite. The optimum ratio of  MSFC/PP as well as MSFC/PLA reached concurrently at 40/60. The strengths of MSFC-PP as well as MSFC-PLA biocomposites were greater than those of individual polymer (PP and PLA. With the injection molding device, only the MSFC-PLA  biocomposite  was formed  and its strengths  reached  maximum  at 30/70  ratio.  The particular strengths (MOR and MOE of MSFC

  4. 聚乳酸/剑麻复合材料流变性能表征%Characterization of rheological properties of polylactic acid/sisal fiber composites

    Institute of Scientific and Technical Information of China (English)

    冯彦洪; 李展洪; 瞿金平; 刘斌; 何和智; 伍巍

    2011-01-01

    Rheological properties of polylactic acid/sisal fiber composites with different sisal fiber mass fraction were evaluated by the method of torque rheometer rheological properties testing. The lengths and widths of sisal fibers in the composites and the molecular weights of polylactic acid, including the processed materials and unprocessed PLA were measured. The effect of sisal fiber mass fraction and rotor speed on the length of sisal fiber in the composites were analysed. The degradation status of polylactic acid was also analyzed. The results showed that the non-Newtonian index of composites presented a peak at the sisal fiber mass fraction about 10%, then decreased with further increasing mass fraction. In the composites, because of the forces that were applied on the rigid sisal fiber by rotor, polylactic acid melt and interaction among fibers, the sisal fibers were snipped and the length-diameter ratio decreased. In addition, polyactic acid degraded due to the effect of rotor speed and sisal fiber content. These factors affected the rheological properties of polylactic acid/sisal fiber composites.%利用转矩流变仪测量流变特性的方法,表征了不同剑麻纤维含量下,聚乳酸(PLA)/剑麻复合材料的流变性能,并测量实验后纤维的长度和宽度、PLA分子量,分析剑麻纤维含量和转速对复合材料体系中纤维长度的影响,以及PLA降解情况.结果表明,复合材料的非牛顿指数在纤维含量为10%左右出现峰值,并进一步随含量的增加而减小.复合体系中,刚性剑麻纤维受到来自于转子、聚合物和纤维之间的作用力,纤维被剪短,长径比减小;聚乳酸会受到转速和纤维含量的影响发生降解,这些因素都会影响PLA/剑麻复合材料的流变性能.

  5. Comparison of thermal behavior of natural and hot-washed sisal fibers based on their main components: Cellulose, xylan and lignin. TG-FTIR analysis of volatile products

    Energy Technology Data Exchange (ETDEWEB)

    Benítez-Guerrero, Mónica, E-mail: monica_benitez_guerrero@yahoo.es [Departamento de Ingeniería Civil, Materiales y Fabricación, Universidad de Málaga, Escuela de Ingenierías, C/ Dr. Ortiz Ramos s/n, Campus Teatinos, 29071 Málaga (Spain); López-Beceiro, Jorge [Departamento de Ingeniería Industrial II, Escola Politécnica Superior, Universidade da Coruña, Avda. Mendizábal, 15403 Ferrol (Spain); Sánchez-Jiménez, Pedro E. [Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, C/ Américo Vespucio 49, 41092 Sevilla (Spain); Pascual-Cosp, José [Departamento de Ingeniería Civil, Materiales y Fabricación, Universidad de Málaga, Escuela de Ingenierías, C/ Dr. Ortiz Ramos s/n, Campus Teatinos, 29071 Málaga (Spain)

    2014-04-01

    Highlights: • Thermal decomposition of sisal fibers has been discussed. • Decompositions of lignocellulosic components and sisal are compared by TXRD and TG-FTIR. • Hot washing reduces the temperature range in which sisal decomposition occurs. • Sisal cellulose decomposition goes by an alternative route to levoglucosan generation. - Abstract: This paper presents in a comprehensive way the thermal behavior of natural and hot-washed sisal fibers, based on the fundamental components of lignocellulosic materials: cellulose, xylan and lignin. The research highlights the influence exerted on the thermal stability of sisal fibers by other constituents such as non-cellulosic polysaccharides (NCP) and mineral matter. Thermal changes were investigated by thermal X-ray diffraction (TXRD), analyzing the crystallinity index (%Ic) of cellulosic samples, and by simultaneous thermogravimetric and differential thermal analysis coupled with Fourier-transformed infrared spectrometry (TG/DTA-FTIR), which allowed to examine the evolution of the main volatile compounds evolved during the degradation under inert and oxidizing atmospheres. The work demonstrates the potential of this technique to elucidate different steps during the thermal decomposition of sisal, providing extensible results to other lignocellulosic fibers, through the analysis of the evolution of CO{sub 2}, CO, H{sub 2}O, CH{sub 4}, acetic acid, formic acid, methanol, formaldehyde and 2-butanone, and comparing it with the volatile products from pyrolysis of the biomass components. The hydroxyacetaldehyde detected during pyrolysis of sisal is indicative of an alternative route to that of levoglucosan, generated during cellulose pyrolysis. Hot-washing at 75 °C mostly extracts non-cellulosic components of low decomposition temperature, and reduces the range of temperature in which sisal decomposition occurs, causing a retard in the pyrolysis stage and increasing Tb{sub NCP} and Tb{sub CEL}, temperatures at the

  6. Cellulose whiskers from sisal fibers: a study about the variable of extraction by acid hydrolysis; Whiskers de cellulose obtido a partir de fibras de sisal: estudo de variaveis de extracao por hidrolise acida

    Energy Technology Data Exchange (ETDEWEB)

    Teodoro, Kelcilene B.R., E-mail: rakelcilene@ig.com.br [Universidade Federal de Sao Carlos - UFSCar, Sao Carlos, SP (Brazil); Teixeira, Eliangela de Morais; Correa, Ana Carolina; Campos, Adriana de; Marconcini, Jose Manoel; Mattoso, Luiz Henrique Capparelli [Empresa Brasileira de Pesquisa Agropecuaria - EMBRAPA, Sao Carlos, SP (Brazil). Lab. Nacional de Nanotecnologia para o Agronegocio (LNNA)

    2011-07-01

    The incorporation of cellulosic nanostructures in polymeric matrices has been studied due to their properties of biodegradation, and expected higher mechanical performance than the traditional composites. In this work, cellulose nanofibers were obtained from sisal bleached with reagents without chlorine, where it was used an acid mixture, with acetic acid and nitric acid, and after the bleached fibers were submitted to acid hydrolysis. The influence of the temperature and time of hydrolysis on the morphology and dimensions, crystallinity and thermal stability were analyzed by scanning transmission electronic microscopy (TEM), x-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. The hydrolysis condition of 60 deg C and 15 minutes showed to be the most effective condition to obtain whiskers from sisal fibers, resulting in nanostructures with higher crystallinity and thermal. (author)

  7. Effect of fiber loading on flexural strength of hybrid sisal/hemp-HDPE composites

    Science.gov (United States)

    Aggarwal, Lakshya; Sinha, Shishir; Gupta, V. K.

    2015-05-01

    The continuing demand for sustainable materials and increasing environmental concerns have led to intense research in the field of natural fiber reinforced composites. Natural fibers are favored over synthetic fibers as reinforcement due to positive environmental benefits such as raw material utilization at source and easy disposable of the biodegradable fiber. In the present work, we have investigated flexural behavior of hybrid natural fiber reinforced HDPE composites. The matrix comprises of 50-50 ratio of virgin and recycled HDPE and the content of fibers (sisal and hemp) in the composite is varied from 10 to 30%. The natural fibers were mercerized with NaOH solution and chemically treated with maleic anhydride. The flexural specimens were prepared by injection moulding process and the testing was conducted in accordance to ASTM D790 standards. It is revealed that the flexural strength of the hybrid composite increases with the increase in fibers content when compared to specimen containing 100% HDPE.

  8. Control of Meloidogyne javanica and M. arenaria on kenaf and roselle with genetic resistance and nematicides.

    Science.gov (United States)

    Minton, N A; Adamson, W C

    1979-01-01

    Kenaf (Hibiscus cannabinus) and roselle (H. sabdarifla) were evaluated in nematicide-treated and untreated field soil naturally infested with either Meloidogyne javanica or M. arenaria. Root-knot indices indicated that the kenaf breeding line j-l-113 had moderate resistance to M. javanica and low resistance to M. arenaria. Kenaf cv Everglades 71 was highly susceptible to both M. javanica and M. arenaria, and roselle breeding line A59-56 was highly resistant. Both nematode species reproduced on all plant entries, but more larvae were recovered from the soil in plots planted to Everglades 71 than in plots planted to j-l-l13 or A59-56. In untreated soil infested with M. javanica, dry-matter yields were greater (P = 0.05) for j-l-l13 and A59-56 than for Everglades 71. The percentages of live plants at harvest were: j-l-l13, 88; A59-56, 93; and Everglades 71, 9. Ethylene dibromide (1,2-dibromoethane) at 73.9 kg a.i./ha and DBCP (1,2-dibromo-3-chloropropane) at 17.6 kg a.i./ha increased dry-matter yields significantly for all entries planted in soil infested with M. arenaria. Carbofuran (2.3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate) at 5.9 kg a.i./ha did not increase the dry-matter yields of any entry. None of the nematicides increased the growth of any entry significantly in soil infested with M. javanica.

  9. Woven hybrid composites: Tensile and flexural properties of oil palm-woven jute fibres based epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Jawaid, M. [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abdul Khalil, H.P.S., E-mail: akhalilhps@gmail.com [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abu Bakar, A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2011-06-15

    Highlights: {yields} Woven hybrid composites show good tensile and flexural properties. {yields} Hybridization with 20% woven jute gives rise to sufficient modulus to composites. {yields} Layering pattern affect mechanical properties of hybrid composites. {yields} Statistical analysis shows that there is significant difference between composites. - Abstract: In this research, tensile and flexural performance of tri layer oil palm empty fruit bunches (EFB)/woven jute (Jw) fibre reinforced epoxy hybrid composites subjected to layering pattern has been experimentally investigated. Sandwich composites were fabricated by hand lay-up technique in a mould and cured with 105 deg. C temperatures for 1 h by using hot press. Pure EFB and woven jute composites were also fabricate for comparison purpose. Results showed that tensile and flexural properties of pure EFB composite can be improved by hybridization with woven jute fibre as extreme woven jute fibre mat. It was found that tensile and flexural properties of hybrid composite is higher than that of EFB composite but less than woven jute composite. Statistical analysis of composites done by ANOVA-one way, it showed significant differences between the results obtained. The fracture surface morphology of the tensile samples of the hybrid composites was performed by using scanning electron microscopy.

  10. A Role of Electron Beam Irradiation in the Property Improvement of Random and 2-D Type Jute/PLA Green Composites

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Donghwan; Ji, Sanggyu; Hwang, Junghyu; Lee, Byungchul [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2011-07-01

    The purpose of this research is to improve the interfacial adhesion between natural jute fibers and PlA and the mechanical and thermal properties of jute/PLA green composites by means of electron beam irradiation under optimal conditions for the modification of sustainable and naturally calculably natural fibers. In ths present study, randomly aligned jute fiber/PLA and 2-directionally aligned jute fabric/PLA green composites with jute treated with electron beam at different dosages were fabricated by compression molding method and the effect of electron beam treatment on their mechanical, impact and thermal properties and fracture surfaces was extensively investigated. It was clearly concluded that electron beam irradiation to jute fibers and jute fabrics at 10 kGy was surely improved the tensile, flexural, impact, dynamic mechanical properties, thermal expansion, heat deflection temperature and thermal stability of random jute fiber/PLA and 2-D jute fabric/PLA green composites, All the results were consistent with each other, supporting the positive role of electron beam irradiation on the improved properties of their green composites.

  11. Thermal performance of sisal fiber-cement roofing tiles for rural constructions Desempenho térmico de telhas de fibrocimento reforçadas com polpa de sisal para construções rurais

    OpenAIRE

    Gustavo Henrique Denzin Tonoli; Sérgio Francisco dos Santos; José Antonio Rabi; Wilson Nunes dos Santos; Holmer Savastano Junior

    2011-01-01

    Roofing provides the main protection against direct solar radiation in animal housing. Appropriate thermal properties of roofing materials tend to improve the thermal comfort in the inner ambient. Nonasbestos fiber-cement roofing components reinforced with cellulose pulp from sisal (Agave sisalana) were produced by slurry and dewatering techniques, with an optional addition of polypropylene fibers. Nonasbestos tiles were evaluated and compared with commercially available asbestos-cement sheet...

  12. Preparation and Characterization of Microcrystalline Cellulose (MCC from Kenaf and Cotton Stem

    Directory of Open Access Journals (Sweden)

    Farshad Mirehki

    2013-11-01

    Full Text Available Cellulose, microcrystalline cellulose (MCC and nanofiber cellulose are the ones of materials which are being used recently as biodegradable filler and reinforcing agent for making composites. In this research, microcrystalline cellulose were prepared from kenaf and cotton bast by hydrochloric acid hydrolysis. The effects of hydrolysis condition on amount of crystallinity and crystal size of MCC were investigated by infrared spectroscopy (FT-IR, X-ray diffraction (XRD and scanning electron microscopy (SEM. Results have shown that in both samples increasing the acid ratio increased the crystallinity; however, the size of crystals did not change. SEM results have shown that after hydrolysis the size of sample particles was micro.

  13. Kenaf-polypropylene composites: effect of amphiphilic coupling agent on surface properties of fibres and composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2010-10-01

    Full Text Available Water absorption characteristics of kenaf core to use as animal bedding material. Industrial 391 Crops and Products, 2, 73–79. 392 Momany, F.A., Sessa, D.J., Lawton, J.W., Gordon, W., Selling, G.W., Hamaker, S.A.H., & 393 Willet, J.L., (2006...-POLYPROPYLENE COMPOSITES: EFFECT OF AMPHIPHILIC COUPLING AGENT ON SURFACE PROPERTIES OF FIBRES AND COMPOSITES Authors: Maya Jacob John, Cornelia Bellmann, Rajesh D. Anandjiwala PII: S0144-8617(10)00390-5 DOI: doi:10.1016/j.carbpol.2010.05.015 Reference: CARP 4858...

  14. Experimental Investigation and Analysis of Mechanical Properties of Palm fibre reinforced Epoxy composites and Sisal fibre reinforced Polyester composites

    Directory of Open Access Journals (Sweden)

    B. Muthu Chozha Rajan

    2015-12-01

    Full Text Available The objective of this paper was investigated to evaluate tensile, flexural and Impact properties of Palm fibre reinforced Epoxy composites (PFRP and compared with Sisal fibre reinforced Polyester composites (SFRP. Untreated chopped Palmyra Palm fruit fibre was used as reinforcement in Epoxy resin matrix and chopped sisal fibre was used as reinforcement in Polyester resin matrix. The chopped palm fibrereinforced composite were prepared in volume fractions (Vf such as 10 %, 20 % and 30 % of specimens by using Epoxy and the chopped sisalfibre reinforced composite were prepared in volume fractions (Vf such as 10 %, 20 % and 30 % of specimens by using Polyester. The specimens are tested for their mechanical Properties strictly as per ASTM procedures. Static analysis is performed by FEA based software ANSYS R15 with design constraints as Equivalent stress, Shear stress and deflection.The experimental result and analysis shows that the fibre volume fraction increases the tensile, flexural, Impact strength and modulus of the fibre reinforced composites

  15. Formation mechanism, structural characterization, optical properties and photocatalytic activity of hierarchically arranged sisal-like ZnO architectures

    Science.gov (United States)

    Xu, Fen; Du, Gao-Hui; Halasa, Matej; Su, Bao-Lian

    2006-07-01

    A simple low-temperature solution-based self-construction approach has been demonstrated for fabricating the highly uniform assembly of ZnO nanocones with much higher aspect ratio, in which a highly non-equilibrium chemical environment favors for the large-scale generation of the complex architectures mimicking the sisal-like structures. The formation mechanism has been studied at molecular level. The optical and photocatalytic properties of the as-synthesized product have been correlated with their chemical composition, morphology and structural features. These sisal-like ZnO nanocone assemblies have shown a strong UV emission with a broad blue emission band and a high photocatalytic activity in decomposition of polyaromatics, suggesting their potentials in light and field emission and environmental applications.

  16. [The application of RAPD technology in genetic diversity detection of Jute].

    Science.gov (United States)

    Qi, Jian-Min; Zhou, Dong-Xin; Wu, Wei-Ren; Lin, Li-Hui; Fang, Ping-Ping; Wu, Jian-Mei

    2003-10-01

    The fingerprints of 10 species including 27 accessions in genus Corchorus were investigated with the technique of RAPD. Twenty-five primers were screened from 119 random primers, and a total of 329 DNA fragments were amplified ranging from 0.3-3.0 kb, 253 (87.78%), which were polymorphic. The average number of DNA band produced by each primer was 13.16. UPGMA cluster analysis and Nei's similarity coefficients were carried out and a dendrogram was constructed using software Biol D++. The results showed as follows: (1) There were abundant genetic diversities among 15 wild species and 12 cultivated species in Corchorus with genetic similarity coefficients ranging from 0.49-0.98. (2) The accessions could be clustered into three groups at cultivated species, and their close wild species were obviously different from wild species genetically. (3) At the level of D = 0.850, 27 accessions of Jute could be classified into ten groups, including C. sestuans, C. tridens, C. fascicularis, C. psendo-olitorius, C. psendo-capsularis, C. tilacutaris, Tian Jute (untitled), C. capsularis, C. olitorius and C. uriticifolius. Among which C. capsularis presented closer relationship with C. olitorius and further relationship with C. uriticifolius. The results matched well with that of the morphologic classification. (4) According to the molecular cluster tree, C. uritifolius, Chinese Tina Jute (untitled) and C. aestuans were at the basic level, revealing that these three species could be the primary wild species of Jute. (5) The tree also showed that C. tilacularis 21C from Africa could be a ecological subspecies of C. tilacularis, whilst niannian cai, ma cai and zhu cai collected different ecological types of C. aestuans, C. capsularis from Hainan was a close wild species of round fruit Jute cultivated species, and three species of C. olitorius collected from zhangpu, Henan and Mali were close wild species of long fruit Jute cultivated species. (6) within two cultivated species, the

  17. Investigation of the bacterial retting community of kenaf (Hibiscus cannabinus) under different conditions using next-generation semiconductor sequencing

    Science.gov (United States)

    The use of the natural fibers requires the development of cost-efficient processing of fibers with consistent, uniform properties. The microbial communities associated with kenaf (Hibiscus cannabinus) plant fibers during retting were determined in an effort to identify possible means of accelerating...

  18. Growth and biomass productivity of kenaf (Hibiscus cannabinus, L.) under different agricultural inputs and management practices in central Greece

    NARCIS (Netherlands)

    Danalatos, N.G.; Archontoulis, S.V.

    2010-01-01

    The growth and biomass productivity of kenaf (Hibiscus cannabinus, L.) cultivars Tainung 2 and Everglades 41 were determined under three irrigation applications (low: 25%, moderate: 50% and fully: 100% of maximum evapotranspiration; ETm), four nitrogen dressings (0, 50, 100 and 150 kg hat), two sowi

  19. Validity of plant fiber length measurement : a review of fiber length measurement based on kenaf as a model

    Science.gov (United States)

    James S. Han; Theodore. Mianowski; Yi-yu. Lin

    1999-01-01

    The efficacy of fiber length measurement techniques such as digitizing, the Kajaani procedure, and NIH Image are compared in order to determine the optimal tool. Kenaf bast fibers, aspen, and red pine fibers were collected from different anatomical parts, and the fiber lengths were compared using various analytical tools. A statistical analysis on the validity of the...

  20. Regulation of 4CL, encoding 4-coumarate: coenzyme A ligase, expression in kenaf under diverse stress conditions

    Science.gov (United States)

    We cloned the full length 4CL ortholog encoding 4-coumarate: coenzymeA ligase from kenaf (Hibiscus cannabiuns) using degenerate primers and RACE (rapid amplification of cDNA ends) systems. The 4CL is a key regulatory enzyme of the phenylpropanoid pathway that regulates the activation of cinnamic ac...

  1. Impact of kenaf (Hibiscus cannabinus L.) leaf, bark, and core extracts on germination of five plant species

    Science.gov (United States)

    The chemical interaction between plants, which is referred to as allelopathy, may result in the inhibition of plant growth and development. The objective of this research was to determine the impact of kenaf (Hibiscus cannabinus L.) plant extracts on the germination and post-germination development ...

  2. Post-harvest Handling, Processing and Marketing of Sisal Fibres and Crafts in the Shiselweni District of Swaziland

    Directory of Open Access Journals (Sweden)

    T.T. Mkhonta

    2014-03-01

    Full Text Available The aim of the study was to assess current status of post-harvest handling, processing and marketing of sisal fibres and crafts in the Shiselweni district of Swaziland. A variety of natural fibre based products are made in Swaziland using Agave sisalana for the local market and for export. However, there is limited information pertaining to post-harvest handling, processing and dyeing of plant fibres in the Shiselweni region of Swaziland. A qualitative and quantitative study using the Participatory Rural Appraisals (PRAs approach and questionnaires was carried out with two groups of participants from two parts of the Shiselweni region. Information gathered was analyzed, to capture the background of the participants, evaluate their methods of fibre harvesting, extraction, spinning, weaving and dyeing and to document challenges faced by the participants. The findings revealed that the sisal trade was dominated by women. The women used skills passed from generation to generation and generated profits in the business until the demand for natural fibres decreased. Fifty two percent of the women from Lavumisa were no longer satisfied with the returns of their trade, while 80% in Nhlangano felt the same way. However, both groups felt that working with sisal had improved their household food security to a certain extent. Further findings revealed that there was a great need to train the concerned women in product development, marketing skills, environmental conservation and entrepreneurship.

  3. Experimental Investigation of Mechanical and Thermal properties of sisal fibre reinforced composite and effect of sic filler material

    Science.gov (United States)

    Surya Teja, Malla; Ramana, M. V.; Sriramulu, D.; Rao, C. J.

    2016-09-01

    With a view of exploring the potential use of natural recourses, we made an attempt to fabricate sisal fibre polymer composites by hand lay-up method. Natural fiber composites are renewable, cheap and biodegradable. Their easy availability, lower density, higher specific properties, lower cost, satisfactory mechanical and thermal properties, non-corrosive nature, makes them an attractive ecological alternative to glass, carbon or other man-made synthetic fibers. In this work, the effect of SiC on mechanical and thermal properties of natural sisal fiber composites are investigated. The composite has been made with and without SiC incorporating natural sisal fiber with polyester as bonding material. The experimental outcomes exhibited that the tensile strength of composite with 10%SiC 2.53 times greater than that of composite without SiC. The impact strength of composite with 10% SiC is 1.73 times greater than that of composite without SiC plain polyester. Thermal properties studied include thermal conductivity, specific heat capacity, thermal diffusivity, thermal degradation and stability. Three different samples with 0%, 5%, 10% SiC powder are considered. With the addition of SiC filler powder, thermal conductivity increases, specific heat capacity gradually increases then decreases, thermal diffusivity increases and thermal stability improves with Sic powder.

  4. DESENVOLVIMENTO DE TECIDOS DE SISAL PARA UTILIZAÇÃO EM COMPÓSITOS POLIMÉRICOS

    Directory of Open Access Journals (Sweden)

    Camila Cruz da Silva

    2010-01-01

    Full Text Available A utilização das fibras naturais (lignocelulosicas como reforço, em materiais compósitos polimérico, é algo que vem crescendo significativamente dia, após dia. Devido ao fato desses materiais serem biodegradáveis, provém de fontes renováveis, desenvolvendo assim as regiões onde são extraídas possibilitando dessa forma a permanência do homem no campo, fazendo parte assim de um modelo ecologicamente correto. Dentre essas fibras dá um destaque a fibra de sisal,onde esta está sendo bastante estudada e utilizada na indústria automobilística. A fibra é extraída da folha do agave sisalina, e que foi introduzida no Brasil em meados de 1900, tendo como maiores produtores os estados da Bahia, Paraíba e Rio Grande do Norte. O objetivo deste trabalho é o desenvolvimento de dois tecidos de sisal para a utilização em materiais compósitos poliméricos, já que estes não são encontrados na indústria. Dessa forma foram fabricados dois tecidos sendo um do tipo plano e o outro do tipo plano basket, onde estes foram obtidos em teares manuais. PALAVRAS-CHAVE: Materiais Compósitos, Sisal e Tecidos.

  5. Resíduos de sisal como reforço em compósitos de polipropileno virgem e reciclado Virgin and recycled polypropylene composites reinforced with sisal by-product

    Directory of Open Access Journals (Sweden)

    Francisco Rosário

    2011-01-01

    Full Text Available Foram estudadas as propriedades térmicas e mecânicas de compósitos de polipropileno, virgem e reciclado, reforçados com 30% em massa de fibras residuais de sisal, assim como o perfil de processamento e a morfologia da matriz polimérica. Para tanto, foram determinadas a resistência à tração, o módulo de Young, alongamento na ruptura, e energia de impacto. As amostras também foram caracterizadas por MEV, DMTA e TG. Para ambos os compósitos de polipropileno, virgem e reciclado, com a adição das fibras, o alongamento na ruptura mostrou uma queda significativa, enquanto que a resistência à tração não sofreu grandes variações. Houve um aumento significativo nos valores de tração na ruptura e de energia de impacto com a adição das fibras de sisal na matriz de polipropileno. As análises térmicas mostraram ligações secundárias, como as ligações polares, entre as fibras e a matriz, concordando com o comportamento mecânico dos compósitos. Constatou-se que a temperatura de transição vítrea não variou após a adição da fibra.The mechanical and thermal properties of virgin and recycled polypropylene composites reinforced with 30% by mass of residual sisal fibers were studied, in addition to an analysis of the extrusion process and morphology of the polymeric matrix. Tensile strength, Young's modulus, elongation at break, and impact energy were determined. The samples were also characterized by SEM, DMTA and TG analyses. Elongation at break of the composites presented a significant decrease, while the tensile strength was not affected significantly by addition of sisal fibers. A significant increase was observed in the tension of rupture and in the impact energy of the composite reinforced with sisal fiber. The thermal analyses indicated secondary interactions, such as polar interactions, between the fibers and the matrix, consistent with the mechanical behavior of the composites. The glass transition temperature has not

  6. Impact Strength of Different Weaving Patterns of Woven Kenaf Reinforced Polyester Composites

    Science.gov (United States)

    Khalid, S. N. A.; Ismail, A. E.; Zainulabidin, M. H.

    2017-01-01

    This paper focuses on the effect of weaving patterns and orientations on the energy absorption of woven kenaf reinforced polyester composites. Kenaf fiber in the form of yarn is weaved to produce different weaving patterns such as plain, twill and basket. Three woven mats are stacked together and mixed with polyester resin before it is compressed to squeeze out any excessive resin. There is 9 different orientations are used during stacking processes. The hardened composites are cured for 24 hours before it is shaped according to specific dimensions for imp act tests. The composites are perforated with 1m/s blunted projectile. According to the experimental findings, both weaving patterns and orientations have distinct potential effects on the force-displacement diagrams. However, fiber orientations have insignificant effect for plain woven especially in the first stage of deformations. Energy absorption performances for each composite condition are calculated and then plotted against fiber orientations for different weaving patterns. It is found there is no strong relationship between energy absorption and fiber orientations. However for each case of composites, higher energy absorption is found for the composites orientated using [+40°/-15°/+40°/+75°]. Based on the fracture observation, both plain and basket-type woven composites reveal large fragmentations occurred indicating lower energy absorption performances. While for twill condition, no obvious fragmentation is observed where the impact damage around the perforated hole is uniformly distributed leading to higher capability of energy absorptions.

  7. Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure

    Science.gov (United States)

    Karunakaran, S.; Majid, D. L.; Mohd Tawil, M. L.

    2016-10-01

    This study investigates the flammability properties of kenaf fiber reinforced acrylonitrile butadiene styrene (ABS) with nanoclays composites. Natural fiber is one of the potential materials to be used with thermoplastic as a composite due to its attractive properties such as lightweight and strong. In this paper, flammability properties of this material are evaluated through Underwriters Laboratory 94 Horizontal Burning (UL94 HB), which has been conducted for both controlled and uncontrolled conditions, smoke density and limiting oxygen index tests (LOI). These flammability tests are in compliance with the Federal Aviation Regulation (FAR) requirement. The results from UL94 HB and smoke density tests show that the presence of nanoclays with effective composition of kenaf fiber reinforced ABS has enhanced the burning characteristics of the material by hindering propagation of flame spread over the surface of the material through char formation. Consequently, this decreases the burning rate and produces low amount of smoke during burning. On contrary, through LOI test, this material requires less oxygen to burn when exposed to fire, which hinders the enhancement of burning characteristics. This is due to burning mechanism exhibited by nanoclays that catalyzes barrier formation and flame propagation rate over the surface of the biocomposite material. Overall, these experimental results suggest that this biocomposite material is capable of self-extinguishing and possesses effective fire extinction. The observed novel synergism from the result obtained is promising to be implemented in secondary structures of aircraft with significant benefits such as cost-effective, lightweight and biodegradable self-extinguishing biocomposite.

  8. Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature.

    Science.gov (United States)

    Ninomiya, Kazuaki; Kamide, Kazuki; Takahashi, Kenji; Shimizu, Nobuaki

    2012-01-01

    This study demonstrates for the first time that the enzymatic hydrolysis of cellulose is drastically enhanced following ultrasonic pretreatment of lignocellulosic material in ionic liquids (ILs) when compared to conventional thermal pretreatment. Five types of ILs, 1-buthyl-3-methylimidazolium chloride (BmimCl), 1-allyl-3-methylimidazolium chloride (AmimCl), 1-ethyl-3-methylimidazolium chloride (EmimCl), 1-ethyl-3-methylimidazolium diethyl phosphate (EmimDep), and 1-ethyl-3-methylimidazolium acetate (EmimOAc) were tested. Cellulose saccharification ratio was about 20% for kenaf powders pretreated in BmimCl, AmimCl, EmimCl, and EmimDep by conventional heating at 110 °C for 120 min. Conversely, 60-95% of cellulose was hydrolyzed to glucose, subsequent to ultrasonic pretreatment in the same ILs for 120 min at 25 °C. The cellulose saccharification ratio of kenaf powder in EmimOAc was 86% after only 15 min of the ultrasonic pretreatment at 25 °C, compared to only 47% in that case of thermal pretreatment in the IL.

  9. EFFECTS OF ALKALINE PRE-IMPREGNATION AND PULPING ON MALAYSIA CULTIVATED KENAF (HIBISCUS CANNABINUS

    Directory of Open Access Journals (Sweden)

    Lin Suan Ang

    2010-05-01

    Full Text Available This study was carried out to identify an appropriate alkaline pulping condition for Malaysia cultivated kenaf (Hibiscus cannabinus L.. The chemical composition of the kenaf bast and core fibers, and also whole stalk with different growing time were examined prior to pulping attempts. The results of various soda-AQ pulping showed that the degree of carbohydrate degradation and delignification increased with the increase of active alkali and cooking temperature, but decreased with the increase of liquor to material (L:M ratio. The most satisfactory properties of pulp and handsheets from bast could be attained by employing soda-AQ pulping with 19.4% active alkali, 0.10% AQ, and L:M ratio of 7:1 cooked for 2 hours at 160˚C. Besides, it was also found that a mild alkaline pre-impregnation prior pulping improved the pulp viscosity and handsheets’ strength properties, especially the tensile index and folding endurance effectively. Moreover, among the three alkaline pulping processes—kraft, kraft-AQ, and soda-AQ—the results of pulp and handsheet properties showed that the soda-AQ pulp was comparable or even slightly of higher quality than the kraft pulps. Between the unbeaten bast and core soda-AQ handsheets, the strength properties of the core were higher than the bast, as the thin-walled core fibers exhibited much better conformability than the thick-walled bast fibers.

  10. PULPING PROPERTIES OF KRAFT PULP OF NIGERIAN-GROWN KENAF (HIBISCUS CANNABINUS L.

    Directory of Open Access Journals (Sweden)

    Abiodun Oluwafemi Oluwadare

    2011-02-01

    Full Text Available This study was centered on finding a locally sourced alternative to imported long-fibre pulp for Nigerian pulp and paper mills. Fibre characteristics, chemical composition, and paper properties of pulp handsheets at different levels of kappa number and freeness in the range of 10 oSR and 62 oSR were evaluated using air-dried bast fibre obtained from decorticated kenaf plants grown in southern guinea savanna near Jebba, Nigeria. Kenaf bast fibre compared well with softwood, with an average fibre length of 2.90 mm, a flexibility ratio of 57%, and a Runkel ratio of 0.76. Ash, lignin, and pentosan contents were 0.6%, 12.5%, and 10.6%, respectively, while the cellulose content was 55.5%. Under alkali charge of 15.0 and, sulphidity of 17.5 with constant temperature, cooking time, and liquor-to-fibre ratio of 4.5:1, the screen yield was between 48.8 to 52.8 % with kappa number 12.04 to 20.5. Unbleached pulpsheets at kappa number between 15 and18.5 and pulp freeness 55 oSR and bleached pulp freeness between 148 and 336 mLs had better quality paper in terms of overall pulpsheet strength properties.

  11. A CHEMICAL PROCESS FOR PREPARING CELLULOSIC FIBERS HIERARCHICALLY FROM KENAF BAST FIBERS

    Directory of Open Access Journals (Sweden)

    Jinshu Shi

    2011-02-01

    Full Text Available The objective of this research was to evaluate an all-chemical process to prepare nano-scale to macro-scale cellulosic fibers from kenaf bast fibers, for polymer composite reinforcement. The procedure used in this all-chemical process included alkaline retting to obtain single cellulosic retted fiber, bleaching treatment to obtain delignified bleached fiber, and acidic hydrolysis to obtain both pure-cellulose microfiber and cellulose nanowhisker (CNW. At each step of this chemical process, the resultant fibers were characterized for crystallinity using X-ray diffraction (XRD, for functional groups using the Fourier Transform Infrared spectroscopy (FTIR, and for surface morphology using both the scanning electron microscopy (SEM and transmission electron microscopy (TEM. The chemical components of the different scale fibers were analyzed. Based on the raw kenaf bast fibers, the yields of retted fibers and bleached fibers were 44.6% and 41.4%. The yield of the pure cellulose microfibers was 26.3%. The yield of CNWs was 10.4%, where about 22.6% α-cellulose had been converted into CNWs. The fiber crystallinity increased as the scale of the fiber decreased, from 49.9% (retted single fibers to 83.9% (CNWs. The CNWs had fiber lengths of 100 nm to 1400 nm, diameters of 7 to 84 nm, and aspect ratios of 10 to 50. The incorporation of 9% (wt% CNWs in polyvinyl alcohol (PVA composites increased the tensile strength by 46%.

  12. The effect of polyethylene glycol on the characteristics of kenaf cellulose/low-density polyethylene biocomposites.

    Science.gov (United States)

    Tajeddin, Behjat; Rahman, Russly Abdul; Abdulah, Luqman Chuah

    2010-08-01

    Toward the development of biocomposites for packaging applications, the possibility of using kenaf cellulose (KC) was investigated in the production of low-density polyethylene (LDPE)/KC/polyethylene glycol (PEG) biocomposites. First, cellulose was extracted from the cell walls of kenaf-bast fibers. Then, different weights of LDPE, KC, and PEG were blended, and the effects of varying the concentrations of KC and PEG on the synthesis process were evaluated, and the resulting composites were characterized with respect to their mechanical, thermal, biodegradability and water-absorption properties. A scanning electron microscope (SEM) was also used to observe the surface morphology of the samples before and after biodegradation tests. The results showed that the mechanical properties of the biocomposites decreased slightly as the KC content was increased from 0 to 50wt% in the biocomposite formulation; however, there was a good homogeneity between samples with added PEG. The addition of KC improved the thermal resistance of these biocomposites; PEG also had positive role in the thermal behavior of the composites. Based on a soil-burial test, the biodegradability of the composites showed a clear trend of increase degradation with increasing KC content in the formulation. While water-absorption values for the composites were higher than that of pure LDPE polymer, the addition of PEG to the formulation reduced the water absorption of the composites.

  13. Static Strength of Adhesively-bonded Woven Fabric Kenaf Composite Plates

    Science.gov (United States)

    Hilton, Ahmad; Lee, Sim Yee; Supar, Khairi

    2017-06-01

    Natural fibers are potentially used as reinforcing materials and combined with epoxy resin as matrix system to form a superior specific strength (or stiffness) materials known as composite materials. The advantages of implementing natural fibers such as kenaf fibers are renewable, less hazardous during fabrication and handling process; and relatively cheap compared to synthetic fibers. The aim of current work is to conduct a parametric study on static strength of adhesively bonded woven fabric kenaf composite plates. Fabrication of composite panels were conducted using hand lay-up techniques, with variation of stacking sequence, over-lap length, joint types and lay-up types as identified in testing series. Quasi-static testing was carried out using mechanical testing following code of practice. Load-displacement profiles were analyzed to study its structural response prior to ultimate failures. It was found that cross-ply lay-up demonstrates better static strength compared to quasi-isotropic lay-up counterparts due to larger volume of 0° plies exhibited in cross-ply lay-up. Consequently, larger overlap length gives better joining strength, as expected, however this promotes to weight penalty in the joining structure. Most samples showed failures within adhesive region known as cohesive failure modes, however, few sample demonstrated interface failure. Good correlations of parametric study were found and discussed in the respective section.

  14. Determination of Suitable Microspore Stage and Callus Induction from Anthers of Kenaf (Hibiscus cannabinus L.

    Directory of Open Access Journals (Sweden)

    Ahmed Mahmood Ibrahim

    2014-01-01

    Full Text Available Kenaf (Hibiscus cannabinus L. is one of the important species of Hibiscus cultivated for fiber. Availability of homozygous parent lines is prerequisite to the use of the heterosis effect reproducible in hybrid breeding. The production of haploid plants by anther culture followed by chromosome doubling can be achieved in short period compared with inbred lines by conventional method that requires self pollination of parent material. In this research, the effects of the microspore developmental stage, time of flower collection, various pretreatments, different combinations of hormones, and culture condition on anther culture of KB6 variety of Kenaf were studied. Young flower buds with immature anthers at the appropriate stage of microspore development were sterilized and the anthers were carefully dissected from the flower buds and subjected to various pretreatments and different combinations of hormones like NAA, 2,4-D, Kinetin, BAP, and TDZ to induce callus. The best microspore development stage of the flower buds was about 6–8 mm long collected 1-2 weeks after flower initiation. At that stage, the microspores were at the uninucleate stage which was suitable for culture. The best callus induction frequency was 90% in the optimized semisolid MS medium fortified with 3.0 mg/L BAP + 3.0 mg/L NAA.

  15. Caracterização mecânica de laminados cimentíceos esbeltos reforçados com fibras de sisal Mechanical characterization of cement-based thin-walled laminates reinforced with sisal fibre

    Directory of Open Access Journals (Sweden)

    Paulo R. L. Lima

    2007-12-01

    Full Text Available Com a proibição progressiva do uso de fibras de asbesto na fabricação de laminados à base de cimento, novos produtos têm sido desenvolvidos para suprir esta demanda do setor construtivo. A utilização de fibras de sisal como substituto ao asbesto, além de ser uma proposta ecológica tem grande importância socioeconômica, pois agregará valor a um produto cultivado com sucesso no semi-árido nordestino. Produziram-se, neste trabalho, placas laminadas com matriz de argamassa reforçadas com fibras longas de sisal. Ensaios de flexão em três pontos foram realizados com o objetivo de se estudar a influência da adição de fibras (3%, do número de camadas (2 e 3, da orientação das camadas (0 e 90° e da pressão de moldagem (0 e 2 MPa sobre o comportamento à flexão dos laminados. Os resultados indicam que a adição de fibras de sisal aumentou, para todos os casos estudados, a capacidade de absorver energia, a resistência à flexão pós-fissuração e a deflexão última do material. Os laminados reforçados com 3% de fibras de sisal, distribuídas em três camadas ortogonais à direção do carregamento e submetidos à pressão de moldagem de 2 MPa, apresentaram o melhor comportamento mecânico.Because of hazards to human and animal health, the use of asbestos and its products is being prohibited all around the world and academic institutions and fibre cement producers have been engaged in intensive research to find asbestos-free cement products. The application of natural fibres such as sisal to replace asbestos fibres can bring economical and ecological benefits due to their availability, low cost, low consumption of energy and suitability to the semi-arid area of the Northeast of Brazil (where not many plants can grow. In this paper, cement-based laminates reinforced with continuous sisal fibre were produced. Three point bending tests were carried out to evaluate the influence of addition of fibre (3%, number of layers of

  16. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization.

    Science.gov (United States)

    Thomas, Martin George; Abraham, Eldho; Jyotishkumar, P; Maria, Hanna J; Pothen, Laly A; Thomas, Sabu

    2015-11-01

    Nanocellulose fibers having an average diameter of 50nm were isolated from raw jute fibers by steam explosion process. The isolation of nanocellulose from jute fibers by this extraction process is proved by SEM, XRD, FTIR, birefringence and TEM characterizations. This nanocellulose was used as the reinforcing agent in natural rubber (NR) latex along with crosslinking agents to prepare crosslinked nanocomposite films. The effects of nanocellulose loading on the morphology and mechanics of the nanocomposites have been carefully analyzed. Significant improvements in the Young's modulus and tensile strength of the nanocomposite were observed because of the reinforcing ability of the nanocellulose in the rubber matrix. A mechanism is suggested for the formation of the Zn-cellulose complex. The three-dimensional network of cellulose nanofibers (cellulose/cellulose network and Zn/cellulose network) in the NR matrix plays a major role in improving the properties of the crosslinked nanocomposites.

  17. Pathogenicity of Macrophomina phaseoli on Jute in the Presence of Meloidogyne incognita and Hoplolaimus indicus.

    Science.gov (United States)

    Haque, M D; Mukhopadhyaya, M C

    1979-10-01

    Seedlings of Corchorus capsularis (cv. C4444) were inoculated with Meloidogyne incognita, Hoplolaimus indicus, and a fungus pathogen of jute, Macrophomina phaseoli, separately and in all possible combinations. The significant damage of jute plants caused individually by the pathogens was aggravated when the fungus was associated with either of the nematode species. M. incognita alone caused greater damage than either H. indicus or Macrophomina phaseoli alone. Plants inoculated with M. incognita and Macrophomina phaseoli were more severely damaged than plants inoculated with H. indicus and the fungus. Plant growth was minimum and disease symptoms were maximum when all pathogens acted together. In the presence of the fungus, M. incognita produced fewer galls. The reproduction of H. indicus was not influenced by the other organisms.

  18. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment.

    Science.gov (United States)

    Saha, Prosenjit; Manna, Suvendu; Chowdhury, Sougata Roy; Sen, Ramkrishna; Roy, Debasis; Adhikari, Basudam

    2010-05-01

    The physico-chemical properties of jute fibers treated with alkali (NaOH) solution have been investigated in this study. The treatments were applied under ambient and elevated temperatures and high pressure steaming conditions. To the knowledge of these authors the influence of alkali-steam treatment on the uniaxial tensile strength of natural ligno-cellulosic fibers, such as jute, has not been investigated earlier. The results from this investigation indicate that a 30 min dipping of the fibers in 0.5% alkali solution followed by 30 min alkali-steam treatment leads to an increase in the tensile strength of up to 65%. The increase appears to be due to fiber separation and removal of non-cellulosic materials, which, in turn, resulted in an increased crystallinity.

  19. A Study on Coloring Properties of Rheum emodi on Jute Union Fabrics

    Directory of Open Access Journals (Sweden)

    Lopamudra Nayak

    2014-01-01

    Full Text Available Jute-cotton and jute-wool union fabrics have been printed with colorant extracted from Rheum emodi with guar gum and albumin as thickening agents and aluminium sulphate, copper sulphate, and ferrous sulphate as mordants. Printing with Rheum emodi colorant with different mordants resulted in different shades ranging from yellowish brown, deep brown, reddish brown, and gray shades to olive black. The K/S value showed that mordants, namely, CuSO4 and FeSO4, exhibited high colour absorption regardless of the nature of material used. All the printed samples have good to excellent wash, rubbing and light fastness properties regardless of the nature of materials, mordants, and thickeners used. Guar gum is closely at par with albumin as a thickening agent and considering the cost and availability of raw material, guar gum is the better choice for the textile industry.

  20. Dyeing of Jute with Reactive Dyes: Optimisation of the Process Variables and Assessment of Colourfastness Characteristics

    Science.gov (United States)

    Samanta, A. K.; Chakraborty, Sharmistha; Guha Roy, T. K.

    2012-08-01

    This paper deals with the studies on the effect of dye concentration, electrolyte (common salt) concentration, dyeing time, dyeing temperature, soda ash concentration, pH of the dye solution and material to liquor ratio (MLR) on colour strength and other colour parameters after being dyed of jute fabrics with reactive dyes, namely, Turquoise blue, Lemon Yellow, Red CN colours. The dye absorption increases with increase in electrolyte (common salt) concentration, dyeing time, dyeing temperature, soda ash concentration, pH and decreases with increase of MLR. Colour fastness to wash, light and rubbing for the dyed samples has been studied and reported. It is observed that reactive dye gives overall good colour fastness to both washing and rubbing. But the light fastness has been found to be moderate only, due to the UV-light initiated fading of jute fibre itself change of the colour substrate, ie, undyed material. This colour fastness has been significantly resolved by post treatment with 1 % benzotriazole.

  1. In situ growth of silver nanoparticles on TEMPO-oxidized jute fibers by microwave heating.

    Science.gov (United States)

    Cao, Xinwang; Ding, Bin; Yu, Jianyong; Al-Deyab, Salem S

    2013-01-30

    Cellulose fibers deposited with metallic nanoparticles as one kind of renewable, biocompatible and antimicrobial nanomaterials evoke much interest because of their versatility in various applications. Herein, for the first time, a facile, simple and rapid method was developed to fabricate TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) selectively oxidized jute fibers in situ deposited with silver nanoparticles in the absence of reducing reagents. The average size of silver nanoparticles deposited on the fibers is 50.0 ± 2.0 nm by microwave heating for 5 min and 90.0 ± 4.7 nm for 10 min heating sample, respectively. The versatile jute-silver nanoparticles nanocomposites with superior thermal stability and high crystallinity would be particularly useful for applications in the public health care and biomedical fields. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Byssinosis and COPD rates among factory workers manufacturing hemp and jute

    Directory of Open Access Journals (Sweden)

    Mukremin Er

    2016-02-01

    Full Text Available Objectives: Prior studies have been performed on cotton textile plants throughout the world. This study was planned to identify the rate of byssinosis and chronic obstructive pulmonary disease (COPD in hemp and jute workers and those who worked with both of them. Material and Methods: The study was realized in a factory which consecutively processed hemp and jute. The study enrollment included 266 people, 164 of whom were active workers and 102 were retired. A questionnaire, plain chest X-rays, physical examination and pulmonary function tests were performed. Dust levels were measured in various sections of the factory during 8 h work shifts. Endotoxin levels of various quality hemp fibers and dusts were measured. Results: The rate of byssinosis (28.2% was higher among the workers that who exposed to both jute and hemp dust. The frequency of chronic bronchitis in retired workers who previously smoked was higher (20% as compared to currently smoking workers (17%. High dust levels were measured in some parts of the factory (mean (M = 2.69 mg/m3. Working in dense dust areas, active smoking, being older than 40 years of age, being an ex-smoker, and working in the factory for a period exceeding 15 years were significantly associated with bronchitis and emphysema development. High endotoxin levels were determined for fine hemp dust (605 EU/mg, coarse hemp dust (336 EU/mg and poor quality hemp fibers (114 EU/mg, whereas in fresh hemp stalks the level of endotoxin was determined to be lower (0.27 EU/mg. Conclusions: Because of high exposures to jute and hemp dusts that are associated with high byssinosis rates, personal protection and environmental hygiene is crucial to prevention of byssinosis.

  3. Byssinosis and COPD rates among factory workers manufacturing hemp and jute.

    Science.gov (United States)

    Er, Mukremin; Emri, Salih A; Demir, Ahmet U; Thorne, Peter S; Karakoca, Yalcin; Bilir, Nazmi; Baris, Izzettin Y

    2016-01-01

    Prior studies have been performed on cotton textile plants throughout the world. This study was planned to identify the rate of byssinosis and chronic obstructive pulmonary disease (COPD) in hemp and jute workers and those who worked with both of them. The study was realized in a factory which consecutively processed hemp and jute. The study enrollment included 266 people, 164 of whom were active workers and 102 were retired. A questionnaire, plain chest X-rays, physical examination and pulmonary function tests were performed. Dust levels were measured in various sections of the factory during 8 h work shifts. Endotoxin levels of various quality hemp fibers and dusts were measured. The rate of byssinosis (28.2%) was higher among the workers that who exposed to both jute and hemp dust. The frequency of chronic bronchitis in retired workers who previously smoked was higher (20%) as compared to currently smoking workers (17%). High dust levels were measured in some parts of the factory (mean (M) = 2.69 mg/m3). Working in dense dust areas, active smoking, being older than 40 years of age, being an ex-smoker, and working in the factory for a period exceeding 15 years were significantly associated with bronchitis and emphysema development. High endotoxin levels were determined for fine hemp dust (605 EU/mg), coarse hemp dust (336 EU/mg) and poor quality hemp fibers (114 EU/mg), whereas in fresh hemp stalks the level of endotoxin was determined to be lower (0.27 EU/mg). Because of high exposures to jute and hemp dusts that are associated with high byssinosis rates, personal protection and environmental hygiene is crucial to prevention of byssinosis. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  4. IMPACT OF JUTE RETTING ON PHYTOPLANKTON DIVERSITY AND AQUATIC HEALTH: BIOMONITORING IN A TROPICAL OXBOW LAKE

    Directory of Open Access Journals (Sweden)

    Dipankar Ghosh

    2015-11-01

    Full Text Available Phytoplankton acts as a primary producer and biological filter of aquatic ecosystem. Jute retting during monsoon is a common anthropological activity in the rural Bengal. Quantitative seasonal bio-monitoring of phytoplankton community composition with relative abundance and its diversity indices was carried out in this study from April 2013 to March 2014 to assess water quality and the impact of jute retting on phytoplankton diversity of a tropical fresh water oxbow lake in Nadia district of India. We recorded a total of 34 genera of 5 distinct classes, Chlorophyceae (15, Bacillariophyceae (13, Cyanophyceae (4, Dinophyceae (1 and Euglenophyceae (1. Members of Chlorophyceae dominated throughout the year. Unlike Cyanophyceae, Bacillariophyceae was found to be significantly increased during monsoon when compared to the rest of the year. Average phytoplankton density was highest in post-monsoon (8760/L followed by monsoon (4680/L and pre-monsoon (3650/L. Owing to the dominance of class Chlorophyceae and Bacillariophyceae we found this lake to be oligotrophic to mesotrophic. Indices values of genera richness, Shannon-Wiener, evenness and Simpson’s diversity reached their lowest 14, 1.61, 0.61 and 0.68 in monsoon and highest 23, 2.42, 0.77 and 0.86 in post monsoon respectively. The lowest diversity values during monsoon clearly suggested that the selected lake has highest anthropogenic pollution due to jute retting which impacted significantly on phytoplankton diversity. Therefore, the lake is not conducive for fish growth especially during monsoon and we opine that there is a need to regulate jute retting process, intensity and its density in the lake during the monsoon to ensure enhanced biodiversity for sustainable management and conservation of aquatic environment of this Oxbow lake.

  5. Ecofriendly Fire Retardant and Rot Resistance Finishing of Jute Fabric Using Tin and Boron Based Compound

    Science.gov (United States)

    Samanta, Ashis Kumar; Bagchi, Arindam

    2017-06-01

    Treatment with sodium stannate followed by treatment with boric acid imparts jute fabric wash fast fire resistance property as indicated by its Limiting Oxygen Index (LOI) value and 45° inclined flammability test results. The treatment was carried out by impregnation of sodium stannate followed by impregnation with an aqueous solution of boric acid and drying. Application of sodium stannate (20%) and boric acid (20%) treatment on jute fabric showed balanced flame retardancy property (LOI value 34) with some loss in fabric tenacity (loss of tenacity is 14.5%). Treated fabric retained good fire retardant property after three consecutive washing. Treated fabric also possessed good rot resistance property as indicated by soil burial test and strength retention after 21 days soil burial was found to be 65%. It is found that of sodium stannate and boric acid combination by double bath process form a synergistic durable fire-retardant as well as rot resistant when impregnated on jute material, which is considerably greater than the use of either sodium stannate or boric acid alone. TGA, FTIR and SEM analysis are also reported to support the results and reaction mechanism.

  6. Mechanical Behaviour of Aluminium Dispersed Unsaturated Polyester/Jute Composites for Structural Applications

    Science.gov (United States)

    Biswas, Bhabatosh; Chabri, Sumit; Mitra, Bhairab Chandra; Bandyopadhyay, Nil Ratan; Sinha, Arijit

    2016-07-01

    The fibrous filler Jute along with Al particle reinforced unsaturated polyester composites having different filler (both Jute and Al were in equal wt%) were fabricated by compression molding technique. The variation of loading was taken as 2, 5, 10 and 15 wt% in the fabricated composites. In present investigation, it was observed that with fillers (Jute and Al) incorporation the microhardness increases and become optimum at 10 wt% of fillers content followed by slight deterioration at 15 wt%. Structural investigation through scanning electron microscopy and X-ray diffraction confirm the dispersion of the fillers within the composites. An improvement of crystallinity % of the matrix with filler addition was observed as predicted from X-ray diffraction technique. The results of tensile testing shows that the strength and modulus increase monotonically up to 10 wt% of filler addition followed by slight decreases at 15 wt% of the same. The scratch result shows the optimization of strength and toughness of the composites with filler content of 10 wt%.

  7. Laboratory Performance Of Evaporative Cooler Using Jute Fiber Ropes As Cooling Media

    Directory of Open Access Journals (Sweden)

    R.K.Kulkarni

    2014-12-01

    Full Text Available Evaporative coolers use a variety of cooling media like wood wool, cellulose, aspen. This paper analyses the performance of jute fiber ropes as alternative cooling media. They are capable of retaining high moisture and have a large wetted surface area. Hot and dry air is allowed to flow over the wet jute rope bank tightly held between two plates which are integral part of two tanks. The inlet conditions of air varied from 30.5 0C dry bulb temperature and 52 % relative humidity to 34.5 0C dry bulb temperature and 32 % relative humidity. Outlet temperature of air is measured and saturation efficiency and cooling capacity are calculated. The outlet dry bulb temperature is obtained between 25.8 0C and 26.2 0C.The saturation efficiencies range from 69 % to 59 % and the cooling capacity is obtained between 6173 kJ/h and 11979 kJ/h. Thus jute fiber ropes prove to be a good alternative cooling media in evaporative cooler

  8. Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites

    Science.gov (United States)

    Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi

    2017-04-01

    The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.

  9. A Study of Time Series Model for Predicting Jute Yarn Demand: Case Study

    Directory of Open Access Journals (Sweden)

    C. L. Karmaker

    2017-01-01

    Full Text Available In today’s competitive environment, predicting sales for upcoming periods at right quantity is very crucial for ensuring product availability as well as improving customer satisfaction. This paper develops a model to identify the most appropriate method for prediction based on the least values of forecasting errors. Necessary sales data of jute yarn were collected from a jute product manufacturer industry in Bangladesh, namely, Akij Jute Mills, Akij Group Ltd., in Noapara, Jessore. Time series plot of demand data indicates that demand fluctuates over the period of time. In this paper, eight different forecasting techniques including simple moving average, single exponential smoothing, trend analysis, Winters method, and Holt’s method were performed by statistical technique using Minitab 17 software. Performance of all methods was evaluated on the basis of forecasting accuracy and the analysis shows that Winters additive model gives the best performance in terms of lowest error determinants. This work can be a guide for Bangladeshi manufacturers as well as other researchers to identify the most suitable forecasting technique for their industry.

  10. Comparative genomics of two jute species and insight into fibre biogenesis.

    Science.gov (United States)

    Islam, Md Shahidul; Saito, Jennifer A; Emdad, Emdadul Mannan; Ahmed, Borhan; Islam, Mohammad Moinul; Halim, Abdul; Hossen, Quazi Md Mosaddeque; Hossain, Md Zakir; Ahmed, Rasel; Hossain, Md Sabbir; Kabir, Shah Md Tamim; Khan, Md Sarwar Alam; Khan, Md Mursalin; Hasan, Rajnee; Aktar, Nasima; Honi, Ummay; Islam, Rahin; Rashid, Md Mamunur; Wan, Xuehua; Hou, Shaobin; Haque, Taslima; Azam, Muhammad Shafiul; Moosa, Mahdi Muhammad; Elias, Sabrina M; Hasan, A M Mahedi; Mahmood, Niaz; Shafiuddin, Md; Shahid, Saima; Shommu, Nusrat Sharmeen; Jahan, Sharmin; Roy, Saroj; Chowdhury, Amlan; Akhand, Ashikul Islam; Nisho, Golam Morshad; Uddin, Khaled Salah; Rabeya, Taposhi; Hoque, S M Ekramul; Snigdha, Afsana Rahman; Mortoza, Sarowar; Matin, Syed Abdul; Islam, Md Kamrul; Lashkar, M Z H; Zaman, Mahboob; Yuryev, Anton; Uddin, Md Kamal; Rahman, Md Sharifur; Haque, Md Samiul; Alam, Md Monjurul; Khan, Haseena; Alam, Maqsudul

    2017-01-30

    Jute (Corchorus sp.) is one of the most important sources of natural fibre, covering ∼80% of global bast fibre production(1). Only Corchorus olitorius and Corchorus capsularis are commercially cultivated, though there are more than 100 Corchorus species(2) in the Malvaceae family. Here we describe high-quality draft genomes of these two species and their comparisons at the functional genomics level to support tailor-designed breeding. The assemblies cover 91.6% and 82.2% of the estimated genome sizes for C. olitorius and C. capsularis, respectively. In total, 37,031 C. olitorius and 30,096 C. capsularis genes are identified, and most of the genes are validated by cDNA and RNA-seq data. Analyses of clustered gene families and gene collinearity show that jute underwent shared whole-genome duplication ∼18.66 million years (Myr) ago prior to speciation. RNA expression analysis from isolated fibre cells reveals the key regulatory and structural genes involved in fibre formation. This work expands our understanding of the molecular basis of fibre formation laying the foundation for the genetic improvement of jute.

  11. An Experimental Study on strength behavior of Pavement using jute geo textile

    Directory of Open Access Journals (Sweden)

    S.Krishna Prashanth

    2016-12-01

    Full Text Available This experimental investigation studies the benefits of reinforcing the various sub grade soils in flexible pavement. Three types of soils A, B and C and a particular type of Jute geo textile material were selected for the study. Fundamental properties of soils like specific gravity, liquid limit, plastic limit and optimum moisture content were determined on unreinforced soils; California Bearing Ratio (CBR test and Unconfined Compression (UCC Strength test were also conducted on unreinforced and reinforced soils. The optimum quantity of jute geo textile was arrived based on the results from CBR test, other parameters such as modulus of elasticity and failure stress were ascertained from the results of UCC test. Using the optimum geo textile content, the thickness of pavement required over the three types of sub grade soils with and without reinforcement was determined based on the guidelines specified in IRC 37-2001. A comparative analysis was carried out to identify the economy in the material due to the effect of reinforcing the soils with jute geo textile. Subsequently cost benefit analysis of reinforced and unreinforced pavement was also done to ascertain the economic viability of fibre material. From the result analysis it was observed there is a significant material save of about 25% per every km of pavement

  12. Ecofriendly Fire Retardant and Rot Resistance Finishing of Jute Fabric Using Tin and Boron Based Compound

    Science.gov (United States)

    Samanta, Ashis Kumar; Bagchi, Arindam

    2017-02-01

    Treatment with sodium stannate followed by treatment with boric acid imparts jute fabric wash fast fire resistance property as indicated by its Limiting Oxygen Index (LOI) value and 45° inclined flammability test results. The treatment was carried out by impregnation of sodium stannate followed by impregnation with an aqueous solution of boric acid and drying. Application of sodium stannate (20%) and boric acid (20%) treatment on jute fabric showed balanced flame retardancy property (LOI value 34) with some loss in fabric tenacity (loss of tenacity is 14.5%). Treated fabric retained good fire retardant property after three consecutive washing. Treated fabric also possessed good rot resistance property as indicated by soil burial test and strength retention after 21 days soil burial was found to be 65%. It is found that of sodium stannate and boric acid combination by double bath process form a synergistic durable fire-retardant as well as rot resistant when impregnated on jute material, which is considerably greater than the use of either sodium stannate or boric acid alone. TGA, FTIR and SEM analysis are also reported to support the results and reaction mechanism.

  13. Hybrid filler composition optimization for tensile strength of jute fibre-reinforced polymer composite

    Indian Academy of Sciences (India)

    ANURAG GUPTA; HARI SINGH; R SWALIA

    2016-09-01

    In present research work, pultrusion process is used to develop jute fibre-reinforced polyester (GFRP) composite and experiments have been performed on an indigenously developed pultrusion experimental setup. The developed composite consists of natural jute fibre as reinforcement and unsaturated polyester resin as matrix with hybrid filler containing bagasse fibre, carbon black and calcium carbonate (CaCO$_3$). The effect of weight content of bagasse fibre, carbon black and calcium carbonate on tensile strength of pultruded GFRP composite is evaluated and the optimum hybrid filler composition for maximizing the tensile strength is determined. Different compositions of hybrid filler are prepared by mixing three fillers using Taguchi L$_9$ orthogonal array. Fifteen percent of hybrid filler of different composition by weight was mixed in the unsaturated polyester resin matrix. Taguchi L$_9$ orthogonal array (OA) has been used to plan the experiments and ANOVA is used for analysing tensile strength. A regression model has also been proposed to evaluate the tensile strength of the composite within 7% error by varying the abovefillers weight. A confirmation experiment was performed which gives 73.14 MPa tensile strength of pultruded jute fibre polymer composite at the optimum composition of hybrid filler.

  14. Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites

    Science.gov (United States)

    Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi

    2016-01-01

    The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.

  15. Brazilian natural fiber (jute as raw material for activated carbon production

    Directory of Open Access Journals (Sweden)

    CARLA F.S. ROMBALDO

    2014-12-01

    Full Text Available Jute fiber is the second most common natural cellulose fiber worldwide, especially in recent years, due to its excellent physical, chemical and structural properties. The objective of this paper was to investigate: the thermal degradation of in natura jute fiber, and the production and characterization of the generated activated carbon. The production consisted of carbonization of the jute fiber and activation with steam. During the activation step the amorphous carbon produced in the initial carbonization step reacted with oxidizing gas, forming new pores and opening closed pores, which enhanced the adsorptive capacity of the activated carbon. N2 gas adsorption at 77K was used in order to evaluate the effect of the carbonization and activation steps. The results of the adsorption indicate the possibility of producing a porous material with a combination of microporous and mesoporous structure, depending on the parameters used in the processes, with resulting specific surface area around 470 m2.g–1. The thermal analysis indicates that above 600°C there is no significant mass loss.

  16. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Braga, R.A., E-mail: roney.braga@fiat.com.br [FIAT Automóveis S.A., Teardown, CEP 32530-000 Betim, MG (Brazil); Magalhaes, P.A.A., E-mail: pamerico@pucminas.br [PUC—MINAS, Instituto Politécnico, CEP 30535-610 Belo Horizonte, MG (Brazil)

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope. - Highlights: • The work is the study of the mechanical of raw jute and glass fiber with epoxy resin. • The mechanical properties increased with more proportions of glass fibers. • The density of E69-J31-V0 was the lower. • The flexural strength did not have a significant increase. • The water absorption of E69-J31-V0 was the best.

  17. High-Throughput Sequencing Reveals Diverse Sets of Conserved, Nonconserved, and Species-Specific miRNAs in Jute.

    Science.gov (United States)

    Islam, Md Tariqul; Ferdous, Ahlan Sabah; Najnin, Rifat Ara; Sarker, Suprovath Kumar; Khan, Haseena

    2015-01-01

    MicroRNAs play a pivotal role in regulating a broad range of biological processes, acting by cleaving mRNAs or by translational repression. A group of plant microRNAs are evolutionarily conserved; however, others are expressed in a species-specific manner. Jute is an agroeconomically important fibre crop; nonetheless, no practical information is available for microRNAs in jute to date. In this study, Illumina sequencing revealed a total of 227 known microRNAs and 17 potential novel microRNA candidates in jute, of which 164 belong to 23 conserved families and the remaining 63 belong to 58 nonconserved families. Among a total of 81 identified microRNA families, 116 potential target genes were predicted for 39 families and 11 targets were predicted for 4 among the 17 identified novel microRNAs. For understanding better the functions of microRNAs, target genes were analyzed by Gene Ontology and their pathways illustrated by KEGG pathway analyses. The presence of microRNAs identified in jute was validated by stem-loop RT-PCR followed by end point PCR and qPCR for randomly selected 20 known and novel microRNAs. This study exhaustively identifies microRNAs and their target genes in jute which will ultimately pave the way for understanding their role in this crop and other crops.

  18. Fixed-bed column study for hexavalent chromium removal and recovery by short-chain polyaniline synthesized on jute fiber.

    Science.gov (United States)

    Kumar, Potsangbam Albino; Chakraborty, Saswati

    2009-03-15

    Fixed-bed column studies were conducted to evaluate performance of a short-chain polymer, polyaniline, synthesized on the surface of jute fiber (PANI-jute) for the removal of hexavalent chromium [Cr(VI)] in aqueous environment. Influent pH, column bed depth, influent Cr(VI) concentrations and influent flow rate were variable parameters for the present study. Optimum pH for total chromium removal was observed as 3 by electrostatic attraction of acid chromate ion (HCrO(4)(-)) with protonated amine group (NH(3)(+)) of PANI-jute. With increase in column bed depth from 40 to 60 cm, total chromium uptake by PANI-jute increased from 4.14 to 4.66 mg/g with subsequent increase in throughput volume from 9.84 to 12.6L at exhaustion point. The data obtained for total chromium removal were well described by BDST equation till 10% breakthrough. Adsorption rate constant and dynamic bed capacity at 10% breakthrough were observed as 0.01 L/mgh and 1069.46 mg/L, respectively. Adsorbed total chromium was recovered back from PANI-jute as non-toxic Cr(III) after ignition with more than 97% reduction in weight, minimizing the problem of solid waste disposal.

  19. High-Throughput Sequencing Reveals Diverse Sets of Conserved, Nonconserved, and Species-Specific miRNAs in Jute

    Directory of Open Access Journals (Sweden)

    Md. Tariqul Islam

    2015-01-01

    Full Text Available MicroRNAs play a pivotal role in regulating a broad range of biological processes, acting by cleaving mRNAs or by translational repression. A group of plant microRNAs are evolutionarily conserved; however, others are expressed in a species-specific manner. Jute is an agroeconomically important fibre crop; nonetheless, no practical information is available for microRNAs in jute to date. In this study, Illumina sequencing revealed a total of 227 known microRNAs and 17 potential novel microRNA candidates in jute, of which 164 belong to 23 conserved families and the remaining 63 belong to 58 nonconserved families. Among a total of 81 identified microRNA families, 116 potential target genes were predicted for 39 families and 11 targets were predicted for 4 among the 17 identified novel microRNAs. For understanding better the functions of microRNAs, target genes were analyzed by Gene Ontology and their pathways illustrated by KEGG pathway analyses. The presence of microRNAs identified in jute was validated by stem-loop RT-PCR followed by end point PCR and qPCR for randomly selected 20 known and novel microRNAs. This study exhaustively identifies microRNAs and their target genes in jute which will ultimately pave the way for understanding their role in this crop and other crops.

  20. Tendências tecnológicas do uso do sisal em compósitos a partir da prospecção em documentos de patentes

    Directory of Open Access Journals (Sweden)

    Felipe Scopel

    2013-01-01

    Full Text Available As fibras naturais têm sido pesquisadas e empregadas de maneira crescente no desenvolvimento de produtos com sustentabilidade econômica, social e ambiental, sendo o sisal uma das mais importantes para o Brasil, pela sua posição de liderança na produção mundial. O presente artigo analisa a evolução temporal e o interesse das empresas e instituições em tecnologias associadas ao sisal, a partir de informações e indicadores extraídos de documentos de patentes no período de 1960 a 2009. Foi verificado o crescente patenteamento associado ao sisal em áreas de química, ciência dos materiais e dos polímeros, com destaque para o reforço do de compósitos plásticos. Além do crescente número de patentes, houve também um expressivo aumento do número de empresas e instituições titulares das patentes, o que reflete a possível desconcentração do mercado nesse crescimento do interesse pelas tecnologias associadas ao sisal. O Brasil, apesar da sua proeminência na produção do sisal, possui pequena presença no patenteamento mundial. Também foi verificada a importância da análise de patentes para o acompanhamento da evolução das tecnologias e interesses, pela disponibilidade de informações públicas que podem ser transformadas em indicadores úteis para análise de tecnologia e mercado associados ao sisal ou a outras áreas tecnológicas.

  1. Tendências tecnológicas do uso do sisal em compósitos a partir da prospecção em documentos de patentes

    OpenAIRE

    2013-01-01

    As fibras naturais têm sido pesquisadas e empregadas de maneira crescente no desenvolvimento de produtos com sustentabilidade econômica, social e ambiental, sendo o sisal uma das mais importantes para o Brasil, pela sua posição de liderança na produção mundial. O presente artigo analisa a evolução temporal e o interesse das empresas e instituições em tecnologias associadas ao sisal, a partir de informações e indicadores extraídos de documentos de patentes no período de 1960 a 2009. Foi verifi...

  2. Additives effect on chemical composition and quality of sisal co-product silage

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo Neves Brandão

    2013-12-01

    Full Text Available Fermentation profile and nutritional value of sisal co-product silage (SC subjected to seven treatments (additives, were evaluated. The SC was ensiled in natura and added with: soy meal, urea, wheat meal, palm kernel cake, A. sisalana dust, licuri cake and cottonseed cake. Experimental silos with capacity for approximately 15 kg of silage, were used. The silos were opened 60 days after ensilage process. It was used a completely randomized design with three replications. The SC in natura present low values of dry mater (DM 12.3% and the additives increased dry matter silages, exception for urea. The SC silage additivated with soybean meal (pH 4.9 and palm kernel cake (butyric acid = 0.07% DM differed, respectively, for pH and butyric acid, compared with in natura SC silage (pH = 4.1 and butyric acid = 0.03% DM. The addition of soybean meal, urea, cottonseed meal, wheat bran and palm kernel, increased crude protein (CP of in natura SC silage. The NDF in silage increased with addition of cottonseed meal or palm kernel cake (60.1 and 66.2% DM in relation in natura SC silage (42.9% DM. The in natura and additivated silages of SC were considered as good or excellent quality.

  3. Natural sisal fibers derived hierarchical porous activated carbon as capacitive material in lithium ion capacitor

    Science.gov (United States)

    Yang, Zhewei; Guo, Huajun; Li, Xinhai; Wang, Zhixing; Yan, Zhiliang; Wang, Yansen

    2016-10-01

    Lithium-ion capacitor (LIC) is a novel advanced electrochemical energy storage (EES) system bridging gap between lithium ion battery (LIB) and electrochemical capacitor (ECC). In this work, we report that sisal fiber activated carbon (SFAC) was synthesized by hydrothermal treatment followed by KOH activation and served as capacitive material in LIC for the first time. Different particle structure, morphology, specific surface area and heteroatoms affected the electrochemical performance of as-prepared materials and corresponding LICs. When the mass ratio of KOH to char precursor was 2, hierarchical porous structured SFAC-2 was prepared and exhibited moderate specific capacitance (103 F g-1 at 0.1 A g-1), superior rate capability and cyclic stability (88% capacity retention after 5000 cycles at 1 A g-1). The corresponding assembled LIC (LIC-SC2) with optimal comprehensive electrochemical performance, displayed the energy density of 83 Wh kg-1, the power density of 5718 W kg-1 and superior cyclic stability (92% energy density retention after 1000 cycles at 0.5 A g-1). It is worthwhile that the source for activated carbon is a natural and renewable one and the synthesis method is eco-friendly, which facilitate that hierarchical porous activated carbon has potential applications in the field of LIC and other energy storage systems.

  4. In vitro ovicidal and larvicidal activity of Agave sisalana Perr. (sisal) on gastrointestinal nematodes of goats.

    Science.gov (United States)

    Botura, Mariana B; dos Santos, Jener David G; da Silva, Gisele D; de Lima, Hélimar G; de Oliveira, João Victor A; de Almeida, Maria Angela O; Batatinha, Maria José M; Branco, Alexsandro

    2013-02-18

    This study describes the in vitro anthelmintic activity of aqueous extracts (AE), ethyl acetate extracts (EE), flavonoid fractions (FF) and saponin fractions (SF) obtained from sisal waste (Agave sisalana) against gastrointestinal nematodes of goats. The activity of these extracts was evaluated by performing inhibition of egg hatch (EHA) and larval migration (LMI) assays. The EC(50) results of the EHA corresponded to 4.7, 0.1 and 0.05 mg/mL for EE, EA and FF, respectively. The SF fraction showed no ovicidal activity. The percent efficacies that were observed for the LMI were 50.3, 33.2 and 64.1% for the AE, EE and SF, respectively. The FF fraction did not show activity against the larvae. The analysis of the FF fraction indicates the presence of a homoisoflavonoid. This report suggests that the A. sisalana has activity in vitro against gastrointestinal nematodes of goats. This effect is likely related to the presence of homoisoflavonoid and saponin compounds, which have different actions for specific stages of nematode development.

  5. Two-Stage Fungal Pre-Treatment for Improved Biogas Production from Sisal Leaf Decortication Residues

    Science.gov (United States)

    Muthangya, Mutemi; Mshandete, Anthony Manoni; Kivaisi, Amelia Kajumulo

    2009-01-01

    Sisal leaf decortications residue (SLDR) is amongst the most abundant agro-industrial residues in Tanzania and is a good feedstock for biogas production. Pre-treatment of the residue prior to its anaerobic digestion (AD) was investigated using a two-stage pre-treatment approach with two fungal strains, CCHT-1 and Trichoderma reesei in succession in anaerobic batch bioreactors. AD of the pre-treated residue with CCTH-1 at 10% (wet weight inoculum/SLDR) inoculum concentration incubated for four days followed by incubation for eight days with 25% (wet weight inoculum/SLDR) of T. reesei gave a methane yield of 0.292 ± 0.04 m3 CH4/kg volatile solids (VS)added. On reversing the pre-treatment succession of the fungal inocula using the same parameters followed by AD, methane yield decreased by about 55%. Generally, an increment in the range of 30–101% in methane yield in comparison to the un-treated SLDR was obtained. The results confirmed the potential of CCHT-1 followed by Trichoderma reesei fungi pre-treatment prior to AD to achieve significant improvement in biogas production from SLDR. PMID:20087466

  6. Biogas production from UASB and polyurethane carrier reactors treating sisal processing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rubindamayugi, M.S.T.; Salakana, L.K.P. [Univ. of Dar es Salaam, Faculty of Science, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    The fundamental benefits which makes anaerobic digestion technology (ADT) attractive to the poor developing include the low cost and energy production potential of the technology. In this study the potential of using UASB reactor and Polyurethane Carrier Reactor (PCR) as pollution control and energy recovery systems from sisal wastewater were investigated in lab-scale reactors. The PCR demonstrated the shortest startup period, whereas the UASB reactor showed the highest COD removal efficiency 79%, biogas production rate (4.5 l biogas/l/day) and process stability than the PCR under similar HRT of 15 hours and OLR of 8.2 g COD/l/day. Both reactor systems became overloaded at HRT of 6 hours and OLR of 15.7 g COD/l/day, biogas production ceased and reactors acidified to pH levels which are inhibiting to methanogenesis. Based on the combined results on reactor performances, the UASB reactor is recommended as the best reactor for high biogas production and treatment efficiency. It was estimated that a large-scale UASB reactor can be designed under the same loading conditions to produce 2.8 m{sup 3} biogas form 1 m{sup 3} of wastewater of 5.16 kg COD/m{sup 3}. Wastewater from one decortication shift can produce 9,446 m{sup 3} og biogas. The energy equivalent of such fuel energy is indicated. (au)

  7. Incorporation of coconut shell based nanoparticles in kenaf/coconut fibres reinforced vinyl ester composites

    Science.gov (United States)

    S, Abdul Khalil H. P.; Masri, M.; Saurabh, Chaturbhuj K.; Fazita, M. R. N.; Azniwati, A. A.; Sri Aprilia, N. A.; Rosamah, E.; Dungani, Rudi

    2017-03-01

    In the present study, a successful attempt has been made on enhancing the properties of hybrid kenaf/coconut fibers reinforced vinyl ester composites by incorporating nanofillers obtained from coconut shell. Coconut shells were grinded followed by 30 h of high energy ball milling for the production of nanoparticles. Particle size analyzer demonstrated that the size of 90% of obtained nanoparticles ranged between 15–140 nm. Furthermore, it was observed that the incorporation of coconut shell nanofillers into hybrid composite increased water absorption capacity. Moreover, tensile, flexural, and impact strength increased with the filler loading up to 3 wt.% and thereafter decrease was observed at higher filler concentration. However, elongation at break decreased and thermal stability increased in nanoparticles concentration dependent manner. Morphological analysis of composite with 3% of filler loading showed minimum voids and fiber pull outs and this indicated that the stress was successfully absorbed by the fiber.

  8. Mechanical and thermal properties of polylactic acid composites reinforced with cellulose nanoparticles extracted from kenaf fibre

    Science.gov (United States)

    Ketabchi, Mohammad Reza; Khalid, Mohammad; Thevy Ratnam, Chantara; Walvekar, Rashmi

    2016-12-01

    Different approaches have been attempted to use biomass as filler for production of biodegradable polymer composites. In this study, cellulose nanoparticles (CNP) extracted from kenaf fibres were used to produce polylactic acid (PLA) based biodegradable nanocomposites. CNP concentration was varied from 1-5 wt. % and blended with PLA using Brabender twin-screw compounder. Effects of CNP loading on the mechanical, thermal and dynamic properties of PLA were investigated. Studies on the morphological properties and influence of CNP loading on the properties of CNP/PLA nanocomposite were also conducted. The results show an adequate compatibility between CNP and PLA matrix. Moreover, addition of 3 wt. % of CNP improved the PLA tensile strength by 25%.

  9. Evaluation gamma radiation in composite sisal fiber- polyurethane derived of castor oil by bending test; Avaliacao da influencia da radiacao gama em compositos de fibra de sisal - poliuretano derivado de oleo de mamona atraves de ensaios de flexao

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Felipe H. de; Geraldo, Ricardo R.; Vasco, Marina C.; Azevedo, Elaine, E-mail: helunica@yahoo.com.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Claro Neto, Salvador [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica

    2013-07-01

    Materials used for making furniture and accessories or positioning in X -ray examination rooms should not exhale volatile organic compounds and are resistant to ionizing radiation. One solution is the use of vegetable fiber and polyurethane composites of vegetable origin, since they are biodegradable, derived from renewable raw materials and have no volatile organic compounds. The main difficulty in developing this material is fiber adhesion with the polymer. The objective of this study is to evaluate the mechanical properties of composite sisal fiber composite, without further treatment, and polyurethane derived from castor oil, with a dose of 25 kGy gamma radiation, subjected to 3 points bending tests. (author)

  10. Pollen and Anther Cultures as Potential Means in Production of Haploid Kenaf (Hibiscus cannabinus L.

    Directory of Open Access Journals (Sweden)

    Dwi Susanto

    2013-01-01

    Full Text Available Kenaf (Hibiscus cannabinus L. is one of the important species of Hibiscus for human needs. It is annual upright plant that produces high biomass, has good adaptability to its environment and inexpensive to be grown. Kenaf has been cultivated in many countries since long time ago mainly for fibers. In Malaysia, however, this plant is considered new and cultivated especially in the eastern parts of Peninsular to replace tobacco plantations that have been no longer supported by the government. This plant has potential to be bred to improve the quality and the adaptability. One of the potential breeding methods to improve the plant is by the production of hybrid varieties. These varieties are superior over the inbred varieties because of the heterosis effect (hybrid vigor ofF1heterozygous. Hybrid varieties can be produced by reciprocal combinations of crosses among homozygous lines. Homozygous lines conventionally can bachieved by repeated selfing till seven or more generations that need a lot of times. The production of haploid plants in vitro followed by chromosome doubling is a ‘short-cut’ method to produce homozygous lines in relatively short time compared to conventional methods. The objective of this study is to produce haploid lines through pollen and anther cultures in vitro. The population of haploid plantlets from this research will be induced for diploidization to produce homozygous-heterogeneous population as a basis for the production of hybrid varieties. Preliminary result showed that callus can easily be induced from the anthers compared those from the pollen grains.

  11. Comparative molecular cytogenetic analyses of a major tandemly repeated DNA family and retrotransposon sequences in cultivated jute Corchorus species (Malvaceae).

    Science.gov (United States)

    Begum, Rabeya; Zakrzewski, Falk; Menzel, Gerhard; Weber, Beatrice; Alam, Sheikh Shamimul; Schmidt, Thomas

    2013-07-01

    The cultivated jute species Corchorus olitorius and Corchorus capsularis are important fibre crops. The analysis of repetitive DNA sequences, comprising a major part of plant genomes, has not been carried out in jute but is useful to investigate the long-range organization of chromosomes. The aim of this study was the identification of repetitive DNA sequences to facilitate comparative molecular and cytogenetic studies of two jute cultivars and to develop a fluorescent in situ hybridization (FISH) karyotype for chromosome identification. A plasmid library was generated from C. olitorius and C. capsularis with genomic restriction fragments of 100-500 bp, which was complemented by targeted cloning of satellite DNA by PCR. The diversity of the repetitive DNA families was analysed comparatively. The genomic abundance and chromosomal localization of different repeat classes were investigated by Southern analysis and FISH, respectively. The cytosine methylation of satellite arrays was studied by immunolabelling. Major satellite repeats and retrotransposons have been identified from C. olitorius and C. capsularis. The satellite family CoSat I forms two undermethylated species-specific subfamilies, while the long terminal repeat (LTR) retrotransposons CoRetro I and CoRetro II show similarity to the Metaviridea of plant retroelements. FISH karyotypes were developed by multicolour FISH using these repetitive DNA sequences in combination with 5S and 18S-5·8S-25S rRNA genes which enable the unequivocal chromosome discrimination in both jute species. The analysis of the structure and diversity of the repeated DNA is crucial for genome sequence annotation. The reference karyotypes will be useful for breeding of jute and provide the basis for karyotyping homeologous chromosomes of wild jute species to reveal the genetic and evolutionary relationship between cultivated and wild Corchorus species.

  12. Potential of Hymenopteran larval and egg parasitoids to control stored-product beetle and moth infestation in jute bags.

    Science.gov (United States)

    Adarkwah, C; Ulrichs, C; Schaarschmidt, S; Badii, B K; Addai, I K; Obeng-Ofori, D; Schöller, M

    2014-08-01

    The control of stored-product moths in bagged commodities is difficult because the developmental stages of the moths are protected by the bagging material from control measures such as the application of contact insecticides. Studies were carried out to assess the ability of Hymenopteran parasitoids to locate their hosts inside jute bags in the laboratory. The ability of different parasitoids to penetrate jute bags containing rice was investigated in a controlled climate chamber. Few Habrobracon hebetor (Say) (Hymenoptera: Braconidae) passed through the jute material while a high percentage of Lariophagus distinguendus (Förster), Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae), Theocolax elegans (Westwood) (Hymenoptera: Pteromalidae) and Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae) were able to enter the Petri-dishes. Significantly more L. distinguendus and T. elegans entered compared to H. hebetor. There was significant difference in the mean percentage parasitoids invading depending on species. Head capsules and/or thorax widths were measured in order to determine whether the opening in the jute material would be large enough for entry of the parasitoids. These morphometric data differed depending on parasitoid species and sex. The parasitoid Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae) did not enter the bags, but located host larvae inside the jute bags and parasitized rice moths Corcyra cephalonica larvae by stinging through the jute material. Venturia canescens significantly reduced the number of C. cephalonica adults emerging from the bagged rice; therefore, it could be released in storage rooms containing bagged rice for biological control of C. cephalonica. The use of parasitoids to suppress stored-product insect pests in bagged commodities could become a valuable supplement to the use of synthetic pesticides.

  13. Damaging biting behaviors in intensively kept rearing gilts: the effect of jute sacks and relations with production characteristics.

    Science.gov (United States)

    Ursinus, W W; Wijnen, H J; Bartels, A C; Dijvesteijn, N; van Reenen, C G; Bolhuis, J E

    2014-11-01

    Pigs may display biting behavior directed at pen mates, resulting in body damage such as tail wounds. We assessed the suitability of jute sacks (hung vertically at wall) to reduce biting behaviors and tail wounds in rearing gilts. Additionally, we assessed several characteristics of different types of tail biters. Tail docked rearing gilts originated from 72 litters, which were kept in partly slatted pens with jute sacks (J) or barren control pens (CON; 36 litters per treatment). Tail and ear damage were observed at weaning (4 wk) and during the weaner and rearing phase (17 J and 19 CON pens). Sow (dam) damage was also considered. Biting behaviors (tail, ear, and other) were observed during the weaner and rearing phase. Weight was recorded at birth, weaning, and end of the weaner phase and ADG was calculated from birth till weaning and from weaning till 9 wk. Furthermore, estimated breeding values for litter size, litter birth weight, back fat, and growth between birth and ∼ 105 kg, and ∼ 25 to 105 kg were determined. Jute sacks reduced tail and ear damage at weaning (both P Jute sacks also reduced tail damage post-weaning (P jute sack (P jute sacks may profoundly reduce damaging behaviors and tail wounds in rearing gilts, probably because they partly meet the behavioral need of pigs for rooting and chewing. Furthermore, (tail) biting is associated with production level of the gilts (phenotypically and genetically), which suggests a role for breeding programs and additional research focusing on metabolic demands of (tail) biting pigs.

  14. VALORIZAÇÃO DOS RESÍDUOS DE SISAL: UMA PROPOSTA PARA A REGIÃO DO SEMIARIDO DO ESTADO DA BAHIA

    Directory of Open Access Journals (Sweden)

    Antonivalda Tosta Dias

    2015-01-01

    Full Text Available O presente estudo tem como objetivo apresentar uma proposta para a valorizaçãodos resíduos de sisal que reduza e/ou elimine o passivo ambiental existente naRegião Sisaleira da Bahia. Este trabalho foi desenvolvido em duas etapas. Naprimeira etapa, foi feito um diagnóstico visual dos problemas fitossanitáriosassociados ao beneficiamento do sisal na Comunidade Rose do município deSantaluz, complementado com análise das propriedades químicas dos solos(arenoso e argiloso em seis unidades produtivas, onde foram avaliados locaiscom ou sem o resíduo do sisal nas profundidades de 0 - 20cm e 20 - 40cm. Nasegunda etapa, foi montado um experimento de compostagem na UniversidadeEstadual de Feira de Santana, com os seguintes tratamentos: T! - resíduo desisal, T2 - resíduo de sisal + poda de árvores + urina humana + esterco de cabra,T3 - resíduo de sisal + poda de árvores + esterco de cabra e T4 - resíduo de sisal+ poda de árvores + urina humana + esterco de cabra. Estes resíduos foramdispostos em camadas de 20cm, exceto o tratamento T4, em que a matéria primafoi homogeneizada antes da montagem das pilhas. Foram avaliados osparâmetros físicos e químicos do composto formado. Os resultados encontradosna primeira etapa demonstram que não existe um local definitivo para odesfibramento do sisal que é descartado no campo, ocupando áreas antesprodutivas por mais de dois anos, tempo necessário para sua degradação. Oresíduo é um meio adequado para produção de moscas. O solo, por sua vez, érico em matéria orgânica, entretanto, o teor de nutrientes foi muito maior no localcom a presença do resíduo de sisal. O composto orgânico em todos ostratamentos apresentou teores de nutrientes e metais pesados de acordo com osvalores pré-estabelecidos pelo MAPA, com exceção do nitrogênio que ficouabaixo do exigido. É possível obter um composto orgânico de boa qualidade apartir da mistura de resíduos de sisal com outros componentes

  15. Women and work after the Second World War: a case study of the jute industry, circa 1945-1954.

    Science.gov (United States)

    Morelli, Carlo; Tomlinson, Jim

    2008-01-01

    This article examines the attempts by the Dundee jute industry to recruit women workers in the years circa 1945-1954. It locates its discussion of these attempts in the literature on the impact of the Second World War on the participation of women in the British labour market more generally, and the forces determining that participation. It stresses the peculiarities of jute as a traditional major employer of women operating in very specific market conditions, but suggests that this case study throws light on the broader argument about the impact of war and early post-war conditions on women's participation in paid work.

  16. Effect of pMDI isocyanate additive on mechanical and thermal properties of Kenaf fibre reinforced thermoplastic polyurethane composites

    Indian Academy of Sciences (India)

    Y A El-Shekeil; S M Sapuan; K Abdan; E S Zainudin; O M Al-Shuja’a

    2012-12-01

    The effect of polymeric methylene diphenyl diisocyanate (pMDI) on mechanical and thermal properties of Kenaf fibre (KF) reinforced thermoplastic polyurethane (TPU) composites was studied. Various percentages viz. 2%, 4% and 6%, were studied. The composites were characterized by using tensile testing, thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR). It was noticed that the addition of pMDI 2%, 4%and 6% did not induce a better tensile nor thermal properties.

  17. Natural-fiber-reinforced polymer composites in automotive applications

    Science.gov (United States)

    Holbery, James; Houston, Dan

    2006-11-01

    In the past decade, natural-fiber composites with thermoplastic and thermoset matrices have been embraced by European car manufacturers and suppliers for door panels, seat backs, headliners, package trays, dashboards, and interior parts. Natural fibers such as kenaf, hemp, flax, jute, and sisal offer such benefits as reductions in weight, cost, and CO2, less reliance on foreign oil sources, and recyclability. However, several major technical considerations must be addressed before the engineering, scientific, and commercial communities gain the confidence to enable wide-scale acceptance, particularly in exterior parts where a Class A surface finish is required. Challenges include the homogenization of the fiber's properties and a full understanding of the degree of polymerization and crystallization, adhesion between the fiber and matrix, moisture repellence, and flame-retardant properties, to name but a few.

  18. A review on the fabrication method of bio-sourced hybrid composites for aerospace and automotive applications

    Science.gov (United States)

    Zin, M. H.; Razzi, M. F.; Othman, S.; Liew, K.; Abdan, K.; Mazlan, N.

    2016-10-01

    Development of bio-sourced materials over the recent years has shown growing interests due to their eco-friendly characteristics. The combination of bio-sourced material such as kenaf, jute, sisal and many more into current synthetic fibres such as glass and carbon fibre, which is also known as hybrid composites, offers several significant benefits including sustainability, cost reduction, product variety and high specific mechanical properties. There are many methods used to fabricate composite parts nowadays. However, each method has its own requirement and usability. This review paper intends to focus on suitable technique to be adopted in order to fabricate bio-sourced hybrid composites. Some of the fabrication methods are customized in order to suit with the application of natural fibres. The selected methods are also highlighted with the application in aerospace and automotive industry. The process and outcomes are presented comparatively.

  19. Antibacterial Properties of Hemp and Other Natural Fibre Plants: A Review

    Directory of Open Access Journals (Sweden)

    Belas Ahmed Khan

    2014-03-01

    Full Text Available Intervention against pathogenic bacteria using natural plant material has a long history. Plant materials also have been widely used as fillers and/or reinforcers in polymer composites. Some natural fibre plants, such as hemp, are regarded to possess antibacterial activity against a wide range of pathogenic bacteria. Innovative applications can be explored if they are incorporated in polymer composites. This review aims to compile the relevant investigations on antibacterial activity of hemp and other fibre plants such as jute, flax, kenaf, sisal, and bamboo. The antibacterial character might be contributed from cannabinoids, alkaloids, other bioactive compounds, or phenolic compounds of lignin. This review is intended to encourage utilization of hemp and other natural fibre plants in value-added diversified products. Some potential applications are also discussed.

  20. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29) Cell Lines.

    Science.gov (United States)

    Abd Ghafar, Siti Aisyah; Ismail, Maznah; Saiful Yazan, Latifah; Fakurazi, Sharida; Ismail, Norsharina; Chan, Kim Wei; Md Tahir, Paridah

    2013-01-01

    Kenaf (Hibiscus cannabinus) from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as β -sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO) was from supercritical carbon dioxide extraction fluid (SFE) at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29) and mouse embryonic fibroblast (NIH/3T3) cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

  1. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29 Cell Lines

    Directory of Open Access Journals (Sweden)

    Siti Aisyah Abd Ghafar

    2013-01-01

    Full Text Available Kenaf (Hibiscus cannabinus from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as β-sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO was from supercritical carbon dioxide extraction fluid (SFE at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29 and mouse embryonic fibroblast (NIH/3T3 cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

  2. An efficient and cost effective method of RNA extraction from mucilage, phenol and secondary metabolite rich bark tissue of tossa jute (C. olitorius L.) actively developing phloem fiber.

    Science.gov (United States)

    Choudhary, S B; Kumar, M; Chowdhury, I; Singh, R K; Pandey, S P; Sharma, H K; Karmakar, P G

    2016-06-01

    Tossa jute is an important natural fiber crop of Southeast Asian countries including India, Bangladesh, China, Thailand, Myanmar etc. Traditional industrial application of jute fiber is limited to the packaging products like hessians, sacks, etc. and the fiber found unsuitable for textile industries largely due to significantly high lignin content. Therefore, understanding genetic factors underlying lignin biosynthesis in tossa jute holds promise for jute based product diversification. The major limiting factor in undertaking such study is unavailability of efficient protocol for RNA extraction at secondary growth active stage of tossa jute. Here we report a simplified, swift and cost effective protocol for isolating fairly good quality RNA from bark tissue of 65-days-old field grown tossa jute plant with active secondary growth. The purity, concentration and integrity of extracted RNA ascertained. To confirm downstream amenability, isolated RNA samples were reverse transcribed and PCR analysis done by using CCoAMT1 primer. Results established that method of RNA extraction presented here is an improvement over the other methods, particularly for bark tissue of field grown tossa jute at advance developmental stage. Therefore, present study will enhance our ability to understand expression pattern of fiber formation and maturation related genes in mature bark tissue that holds key for much talked genetic manipulation of fiber quality via lignin optimisation in the crop.

  3. Application of Multi-Criteria Decision Making (MCDM) Technique for Gradation of Jute Fibres

    Science.gov (United States)

    Choudhuri, P. K.

    2014-12-01

    Multi-Criteria Decision Making is a branch of Operation Research (OR) having a comparatively short history of about 40 years. It is being popularly used in the field of engineering, banking, fixing policy matters etc. It can also be applied for taking decisions in daily life like selecting a car to purchase, selecting bride or groom and many others. Various MCDM methods namely Weighted Sum Model (WSM), Weighted Product Model (WPM), Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solutions (TOPSIS) and Elimination and Choice Translating Reality (ELECTRE) are there to solve many decision making problems, each having its own limitations. However it is very difficult to decide which MCDM method is the best. MCDM methods are prospective quantitative approaches for solving decision problems involving finite number of alternatives and criteria. Very few research works in textiles have been carried out with the help of this technique particularly where decision taking among several alternatives becomes the major problem based on some criteria which are conflicting in nature. Gradation of jute fibres on the basis of the criteria like strength, root content, defects, colour, density, fineness etc. is an important task to perform. The MCDM technique provides enough scope to be applied for the gradation of jute fibres or ranking among several varieties keeping in view a particular object and on the basis of some selection criteria and their relative weightage. The present paper is an attempt to explore the scope of applying the multiplicative AHP method of multi-criteria decision making technique to determine the quality values of selected jute fibres on the basis of some above stated important criteria and ranking them accordingly. A good agreement in ranking is observed between the existing Bureau of Indian Standards (BIS) grading and proposed method.

  4. Treatments of jute fibers aiming at improvement of fiber-phenolic matrix adhesion

    Directory of Open Access Journals (Sweden)

    Ilce Aiko Tanaka Razera

    2014-08-01

    Full Text Available Composites based on a thermoset phenolic matrix and jute fibers were prepared and characterized. The fibers were alternatively treated with ionized air or aqueous alkaline solution (mercerization with the aim of introducing changes in the morphology, dispersive component of surface free energy, γS D (estimated by Inverse Gas Chromatography, IGC and the acid/base character of their surfaces, shown by their ANs/DNs ratio (estimated by IGC, and their degree of crystallinity. The final objective was to investigate the influence of these modifications on the adhesion at the jute fiber/phenolic matrix interface in the composites. The untreated jute fiber showed 50% crystallinity, γS D=18 mJ m- 2 and ANs/DNs= 0.9 (amphoteric surface, tensile strength = 460 MPa and maximum elongation = 0.7%, while the respective composite had an impact strength of 72.6 J m- 1. The treatments positively modified the fibers and the adhesion at the interface was better in the composites reinforced with treated fibers than with untreated fibers. The best set of results was exhibited by the fiber treated with 10% NaOH [46% crystallinity, γS D = 26 J m- 2 (phenolic matrix γS D = 32 J m- 2, ANs/DNs = 1.8 (surface predominantly acidic, similar to phenolic matrix, ANs/DNs = 1.4, tensile strength approximately 900 MPa, maximum elongation = 2%, impact strength of respective composite approximately 95 J m- 1]. The fibers treated for 5 h with ionized air exhibited favorable properties [(45% crystallinity, γS D = 27 J m- 2, ANs/DNs = 2.1 (acidic surface] for further use as reinforcement of a phenolic matrix, but their partial degradation during the treatment decreased their tensile properties (395 MPa and 0.5% for tensile strength and maximum elongation, respectively and their action as reinforcement (impact strength of the respective composite approximately 73 J m- 1.

  5. Woven Hybrid Composites - Tensile and Flexural Properties of Jute Mat Fibres with Epoxy Composites

    Science.gov (United States)

    Gopal, P.; Bupesh Raja, V. K.; Chandrasekaran, M.; Dhanasekaran, C.

    2017-03-01

    The jute mat fibers are fabricated with several layers of fiber with opposite orientation in addition with coconut shell powder and resins. In current trends, metallic components are replaced by natural fibers because of the inherent properties such as light in weight, easy to fabricate, less cost and easy availability. This material has high strength and withstands the load. In this investigation the plates are made without stitching the fiber. The result of tensile strength and flexural strength are compared with nano material (coconut shell powder).

  6. Effect of inter-laminar fibre orientation on the tensile properties of sisal fibre reinforced polyester composites

    Science.gov (United States)

    Senthilkumar, K.; Siva, I.; Winowlin Jappes, J. T.; Amico, S. C.; Cardona, F.; Sultan, M. T. H.

    2016-10-01

    In this present work, effects of interlamina fibre orientation on the tensile properties of composites were studied and the results were discussed. The varying types of fibre oriented composites were prepared using the compression moulding technique at a pressure of 17 MPa. The different types of oriented composites investigated were 90°/0 ° /90 °, 0 ° /90 ° /0 °, 90 ° /0 ° /0 ° /90 °, 0 ° /45 ° /0 °, 0 ° /90 ° /45 ° /45 ° /90 ° /0 °, 0 ° /45 ° /90 ° /90 ° /45 ° /0 ° and these composites were subjected to tensile testing according to ASTM: D3039-08. The sisal fibres were arranged in various angles with the help of specially designed mould. It was found that the tensile strength of sisal fibre composites improved when 0 ° oriented fibres were positioned at the extreme layers of the composites compared to 90 ° oriented fibres. The highest tensile strength among the types of composites was observed for 0 ° /90 ° /0 °. The scanning electron microscopy (SEM) analysis was performed to understand the interphase adhesion mechanism.

  7. Estudio del comportamiento de la escayola reforzada con fibras de sisal, para componentes en viviendas de bajo coste

    Directory of Open Access Journals (Sweden)

    de Oteiza San José, Ignacio

    1993-08-01

    Full Text Available The present article is a brief description of the work done for the elaboration of the doctoral thesis and its conclusions. Starting from the possibilities of using plaster in developing countries, due to its abundance and low cost, a series of mechanical tests have been carried out in order to learn about the physical and mechanical properties of plaster reinforced with sisal fibres for its future use in components for low cost housing.

    El presente artículo es una breve descripción de los trabajos realizados para la elaboración de la tesis doctoral y de las conclusiones de la misma. Partiendo de las posibilidades de utilización en los países en vías de desarrollo del material de escayola, por su abundancia y bajo coste, se llevan a cabo una serie de ensayos mecánicos, con el fin de conocer las propiedades físicas y mecánicas de la escayola reforzada con fibras de sisal, para una futura aplicación en componentes para viviendas de bajo coste.

  8. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid Green Composites during Thermal Cycling

    Directory of Open Access Journals (Sweden)

    Hideaki Katogi

    2016-07-01

    Full Text Available This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid (PLA during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin.

  9. Water Absorption of Jute/Polylactic Acid Composite Intended for an Interior Application and Comparison with Wood-Based Panels

    Science.gov (United States)

    Zandvliet, C.; Bandyopadhyay, N. R.; Ray, D.

    2014-04-01

    Jute/polylactic acid (PLA) composite is of special interest because it is entirely from renewable resources with high mechanical properties. Thus, it could be a more eco-friendly alternative to the conventional wood-based panels made of formaldehyde resin which is asserted to be carcinogenic. Yet the water affinity of the natural fibres and susceptibility of polylactic acid towards hydrolysis raise a question about the water resistance of such composites in service condition. In this work, the water absorption behaviour of jute/PLA composites, jute/maleated polypropylene was investigated with regard to interior applications following the standard test method in accordance to ISO 16983:2003 `Wood-based panels—determination of swelling in thickness after immersion in water' and compared to standard of wood-based panels. Untreated and treated jute/PLA composites exhibited a superior water resistance property compared to particleboard, MDF and hardboard and they are by far, below the minimum requirement of the ISO standard 16983.

  10. Damaging biting behaviors in intensively kept rearing gilts: the effect of jute sacks, and relations with production characteristics

    NARCIS (Netherlands)

    Ursinus, W.W.; Wijnen, H.J.; Bartels, A.C.; Duijvesteijn, N.; Reenen, van C.G.; Bolhuis, J.E.

    2014-01-01

    Pigs may display biting behavior directed at pen mates, resulting in body damage such as tail wounds. We assessed the suitability of jute sacks (hung vertically at wall) to reduce biting behaviors and tail wounds in rearing gilts. Additionally, we assessed several characteristics of different types

  11. Load Handling and Repetitive Movements Are Associated with Chronic Low Back Pain among Jute Mill Workers in India.

    Science.gov (United States)

    Goswami, S; Dasgupta, S; Samanta, A; Talukdar, G; Chanda, A; Ray Karmakar, P; Majumdar, A; Bhattacharya, D; Chakrabarti, A

    2016-01-01

    Introduction. WHO recognizes low back pain as one of the most important ergonomic stressors. Therefore, the present study was designed to find out the magnitude of the problem among jute mill workers in India and identify possible associations. Methodology. This cross-sectional workplace based study was conducted among eight (8) selected jute mills of India. Subjects with self-reported back pain for at least last 12 weeks were included and n = 717 male jute mill workers actively engaged in work entered the study and completed all assessments. Results. Among all participants 55% (n = 392) had current chronic low back pain. Age was an important association with subjects in the age group of 40-59 years more likely to have pain (p = 0.02, OR 1.44). Regarding ergonomic risk factors lifting of load of more than 20 kg (p = 0.04, OR 1.42) and repetitive movements of limbs (p = 0.03, OR 0.67) were significant associations of chronic low back pain. Conclusion. This study identified a significant prevalence of current chronic low back pain among jute mill workers. Regarding ergonomic risk factors the present study has identified two significant associations: lifting of load above 20 kg and repetitive movements of limbs. Therefore, this study has identified need for workplace interventions in this occupational group employing approximately 3,50,000 workers in India.

  12. Load Handling and Repetitive Movements Are Associated with Chronic Low Back Pain among Jute Mill Workers in India

    Directory of Open Access Journals (Sweden)

    S. Goswami

    2016-01-01

    Full Text Available Introduction. WHO recognizes low back pain as one of the most important ergonomic stressors. Therefore, the present study was designed to find out the magnitude of the problem among jute mill workers in India and identify possible associations. Methodology. This cross-sectional workplace based study was conducted among eight (8 selected jute mills of India. Subjects with self-reported back pain for at least last 12 weeks were included and n=717 male jute mill workers actively engaged in work entered the study and completed all assessments. Results. Among all participants 55% (n=392 had current chronic low back pain. Age was an important association with subjects in the age group of 40–59 years more likely to have pain (p=0.02, OR 1.44. Regarding ergonomic risk factors lifting of load of more than 20 kg (p=0.04, OR 1.42 and repetitive movements of limbs (p=0.03, OR 0.67 were significant associations of chronic low back pain. Conclusion. This study identified a significant prevalence of current chronic low back pain among jute mill workers. Regarding ergonomic risk factors the present study has identified two significant associations: lifting of load above 20 kg and repetitive movements of limbs. Therefore, this study has identified need for workplace interventions in this occupational group employing approximately 3,50,000 workers in India.

  13. Isolation of RNA from field-grown jute (Corchorus capsularis) plant in different developmental stages for effective downstream molecular analysis.

    Science.gov (United States)

    Samanta, Pradipta; Sadhukhan, Sanjoy; Das, Subrata; Joshi, Alpana; Sen, Soumitra K; Basu, Asitava

    2011-10-01

    Jute (Corchorus capsularis), as a natural fibre producing plant species, ranks next to cotton only. Today, biotechnological approach has been considered as most accepted means for any genetic improvement of plant species. However, genetic control of the fibre development in jute has not yet been explored sufficiently for desired genetic improvement. One of the major impediments in exploring the genetic architecture in this crop at molecular level is the availability of good quality RNA from field-grown plant tissues mostly due to the presence of high amount of mucilage and phenolics. Development of a suitable RNA isolation method is becoming essential for deciphering developmental stage-specific gene expression pattern related to fibre formation in this crop species. A combination of modified hot borate buffer followed by isopycnic centrifugation (termed as HBIC) was adopted and found to be the best isolation method yielding sufficient quantity (~350-500 μg/gm fresh tissue) and good quality (A(260/280) ratio 1.88 to 1.91) RNA depending on the developmental stage of stem tissue from field-grown jute plant. The poly A(+) RNA purified from total RNA isolated by the present method was found amenable to efficient RT-PCR and cDNA library construction. The present development of RNA isolation was found to be appropriate for gene expression analysis related to fibre formation in this economically important jute plant in near future.

  14. Damaging biting behaviors in intensively kept rearing gilts: the effect of jute sacks, and relations with production characteristics

    NARCIS (Netherlands)

    Ursinus, W.W.; Wijnen, H.J.; Bartels, A.C.; Duijvesteijn, N.; Reenen, van C.G.; Bolhuis, J.E.

    2014-01-01

    Pigs may display biting behavior directed at pen mates, resulting in body damage such as tail wounds. We assessed the suitability of jute sacks (hung vertically at wall) to reduce biting behaviors and tail wounds in rearing gilts. Additionally, we assessed several characteristics of different types

  15. Investigation of an Optimum Method of Biodegradation Process for Jute Polymer Composites

    Directory of Open Access Journals (Sweden)

    Kh. Mumtahenah Siddiquee

    2016-07-01

    Full Text Available - Natural fiber reinforced polymer composites are currently being developed as an alternative for plastic material because of having some environmental benefits such as biodegradability, reduced dependence on non-renewable material, greenhouse gas emissions and enhanced energy recovery. This study focuses on the fabrication of jute polymer composites, biodegradation and the investigation of an optimum method of biodegradation. Polyethylene and Polypropylene were reinforced with 5%, 10% and 15% of fiber. Jute fiber of 1mm and 3mm fiber length were used to fabricate composites using compression molding. Degradation behavior of composites was studied in terms of percentage weight loss. Samples are kept in compost heap and in soil burial to observe the degradation of the specimens. In weather degradation the effect of natural phenomena were observed. The biodegradability of composites was enhanced in compost condition with respect to soil burial and weather degradation. Degradation rate were higher in compost condition considering natural weather and soil and higher fiber reinforced ratio shows higher degradation.

  16. A procedure for identifying textile bast fibres using microscopy: Flax, nettle/ramie, hemp and jute

    Energy Technology Data Exchange (ETDEWEB)

    Bergfjord, Christian, E-mail: christian.bergfjord@uib.no [Institute for Physics and Technology, University of Bergen, Allegt. 55, 5007 Bergen (Norway); Holst, Bodil, E-mail: bodil.holst@uib.no [Institute for Physics and Technology, University of Bergen, Allegt. 55, 5007 Bergen (Norway)

    2010-08-15

    Identifying and distinguishing between natural textile fibres is an important task in both archaeology and criminology. Wool, silk and cotton fibres can readily be distinguished from the textile bast fibres flax, nettle/ramie, hemp and jute. Distinguishing between the bast fibres is, however, not easily done and methods based on surface characteristics, chemical composition and cross section size and shape are not conclusive. A conclusive method based on X-ray microdiffraction exists, but as the method requires the use of a synchrotron it is not readily available. In this paper we present a simple procedure for identifying the above mentioned textile bast fibres. The procedure is based on measuring the fibrillar orientation with polarised light microscopy and detecting the presence of calcium oxalate crystals (CaC{sub 2}O{sub 4}) in association with the fibres. To demonstrate the procedure, a series of fibre samples of flax, nettle, ramie, hemp and jute were investigated. The results are presented here. An advantage of the procedure is that only a small amount of fibre material is needed.

  17. Development of SSR markers and construction of a linkage map in jute

    Indian Academy of Sciences (India)

    Maumita Das; Sumana Banerjee; Raman Dhariwal; Shailendra Vyas; Reyazul R. Mir; Niladri Topdar; Avijit Kundu; Jitendra P. Khurana; Akhilesh K. Tyagi; Debabrata Sarkar; Mohit K. Sinha; Harindra S. Balyan; Pushpendra K. Gupta

    2011-04-01

    Jute is an important natural fibre crop, which is only second to cotton in its importance at the global level. It is mostly grown in Indian subcontinent and has been recently used for the development of genomics resources.We recently initiated a programme to develop simple sequence repeat markers and reported a set of 2469 SSR that were developed using four SSR-enriched libraries (Mir et al. 2009). In this communication, we report an additional set of 607 novel SSR in 393 SSR containing sequences. However, primers could be designed for only 417 potentially useful SSR. Polymorphism survey was carried out for 374 primer pairs using two parental genotypes (JRO 524 and PPO4) of a mapping population developed for fibre fineness; only 66 SSR were polymorphic. Owing to a low level of polymorphism between the parental genotypes and a high degree of segregation distortion in recombinant inbred lines, genotypic data of only 53 polymorphic SSR on the mapping population consisting of 120 RIL could be used for the construction of a linkage map; 36 SSR loci were mapped on six linkage groups that covered a total genetic distance of 784.3 cM. Hopefully, this map will be enriched with more SSR loci in future and will prove useful for identification of quantitative trait loci/genes for molecular breeding involving improvement of fibre fineness and other related traits in jute.

  18. Surface Resistance of Jute Fibre/Polylactic Acid Biocomposite to Wet Heat

    Science.gov (United States)

    Zandvliet, Clio; Bandyopadhyay, N. R.; Ray, Dipa

    2016-04-01

    Jute fibre/polylactic acid (PLA) composite is of special interest because both resin and reinforcement come from renewable resources. Thus, it could be a more eco-friendly alternative to glass fibre composite [1] and to conventional wood-based panels made with phenol-formaldehyde resin which present many drawbacks for the workers and the environment [2]. Yet the water affinity of the natural fibres, the susceptibility of PLA towards hydrolysis and the low glass transition of the PLA raise a question about the surface resistance of such composites to wet heat in service condition for a furniture application [3]. In this work, the surface resistance of PLA/jute composite alone and with two different varnishes are investigated in regard to an interior application following the standard test method in accordance to BS EN 18721:2009: "Furniture: assessment of surface resistance to wet heat". It is compared to two common wood based panels, plywood and hardboard. After test, the composite material surface is found to be more affected than plywood and hardboard, but it becomes resistant to wet heat when a layer of biosourced varnish or petrol-based polyurethane varnish are applied on the surface.

  19. Modification of Monolignol Biosynthetic Pathway in Jute: Different Gene, Different Consequence.

    Science.gov (United States)

    Shafrin, Farhana; Ferdous, Ahlan Sabah; Sarkar, Suprovath Kumar; Ahmed, Rajib; Amin, Al-; Hossain, Kawsar; Sarker, Mrinmoy; Rencoret, Jorge; Gutiérrez, Ana; Del Rio, Jose C; Sanan-Mishra, Neeti; Khan, Haseena

    2017-01-04

    Lignin, a cross-linked macromolecule of hydrophobic aromatic structure, provides additional rigidity to a plant cell wall. Although it is an integral part of the plant cell, presence of lignin considerably reduces the quality of the fiber of fiber-yielding plants. Decreasing lignin in such plants holds significant commercial and environmental potential. This study aimed at reducing the lignin content in jute-a fiber crop, by introducing hpRNA-based vectors for downregulation of two monolignoid biosynthetic genes- cinnamate 4-hydroxylase (C4H) and caffeic acid O-methyltransferase (COMT). Transgenic generations, analyzed through Southern, RT-PCR and northern assays showed downregulation of the selected genes. Transgenic lines exhibited reduced level of gene expression with ~ 16-25% reduction in acid insoluble lignin for the whole stem and ~13-14% reduction in fiber lignin content compared to the control lines. Among the two transgenic plant types one exhibited an increase in cellulose content and concomitant improvement of glucose release. Composition of the lignin building blocks was found to alter and this alteration resulted in a pattern, different from other plants where the same genes were manipulated. It is expected that successful COMT-hpRNA and C4H-hpRNA transgenesis in jute will have far-reaching commercial implications leading to product diversification and value addition.

  20. Occupational exposure and pulmonary function of jute mill workers in Sunsari, Nepal.

    Science.gov (United States)

    Das, P K L; Jha, N

    2009-12-01

    Most workers of building, pottery, timber, food and mine industries suffer from non-specific lung diseases and ventilatory disorders. There are many such industries operative in Sunsari, Nepal and so far no study has been reported on pulmonary function of jute mill workers of this region, who are also exposed to dust as other workers in similar types of industries. A brief clinical sheet regarding age, occupational particulars, smoking habits and presence or absence of respiratory symptoms was recorded for each worker. Spirometric parameters were recorded using an electronic spirometer. The group consisted of 95 male workers with mean age 28.43 +/- 7.58 yrs, weight 53.77 +/- 8.70 kg and height 164.83 +/- 6.82 cm. The study indicated an overall reduction in FVC, FEV1, PEFR, FEF25-75% and MVV. FEV1/FVC was within the normal range. Further division of workers into smokers and non-smokers, showed comparatively more decline in PEFR, FEF 25.0-75.0% and FEV1/ FVC in smokers. From this study, it can be concluded that exposure of jute dust leads to combined types of spirometric deficit revealing restrictive or obstructive diseases.

  1. Use of jute processing wastes for treatment of wastewater contaminated with dye and other organics.

    Science.gov (United States)

    Banerjee, Souvik; Dastidar, M G

    2005-11-01

    A study was conducted to examine the potential of jute processing waste (JPW) for the treatment of wastewater contaminated with dye and other organics generated from various activities associated with jute cultivation and fibre production. Adsorption studies in batch mode have been conducted using dye solution as an adsorbate and JPW as an adsorbent. A comparative adsorption study was made with standard adsorbents such as powdered and granular activated carbon (PAC and GAC, respectively). A maximum removal of 81.7% was obtained with methylene blue dye using JPW as compared to 61% using PAC and 40% using GAC under similar conditions. The adsorption potential of JPW was observed to be dependent on various parameters such as type of dye, initial dye concentration, pH and dosage of adsorbent. The batch sorption data conformed well to the Langmuir and Freundlich isotherms. However, lower BOD (33.3%) and COD (13.8%) removal from retting effluent was observed using JPW as compared to 75.6% BOD removal and 71.1% COD removal obtained with GAC.

  2. Jute stick pyrolysis for bio-oil production in fluidized bed reactor.

    Science.gov (United States)

    Asadullah, M; Anisur Rahman, M; Mohsin Ali, M; Abdul Motin, M; Borhanus Sultan, M; Robiul Alam, M; Sahedur Rahman, M

    2008-01-01

    Pyrolysis of jute stick for bio-oil production has been investigated in a continuous feeding fluidized bed reactor at different temperatures ranging from 300 degrees C to 600 degrees C. At 500 degrees C, the yields of bio-oil, char and non-condensable gas were 66.70 wt%, 22.60 wt% and 10.70 wt%, respectively based on jute stick. The carbon based non-condensable gas was the mixture of carbon monoxide, carbon dioxide, methane, ethane, ethene, propane and propene. The density and viscosity of bio-oil were found to be 1.11 g/mL and 2.34 cP, respectively. The lower heating value (LHV) of bio-oil was found to be 18.2 5 MJ/kg. Since bio-oil contains some organic acids such as formic acid, acetic acid, etc., the pH and acid value of the bio-oil were found to be around 4 and 135 mg KOH/g, respectively. The water, lignin, solid and ash contents of bio-oil were determined and found to be around 15 wt%, 4.90 wt%, 0.02 wt% and 0.10 wt%, respectively.

  3. Development of SSR markers and construction of a linkage map in jute.

    Science.gov (United States)

    Das, Moumita; Banerjee, Sumana; Dhariwal, Raman; Vyas, Shailendra; Mir, Reyazul R; Topdar, Niladri; Kundu, Avijit; Khurana, Jitendra P; Tyagi, Akhilesh K; Sarkar, Debabrata; Sinha, Mohit K; Balyan, Harindra S; Gupta, Pushpendra K

    2012-01-01

    Jute is an important natural fibre crop, which is only second to cotton in its importance at the global level. It is mostly grown in Indian subcontinent and has been recently used for the development of genomics resources.We recently initiated a programme to develop simple sequence repeat markers and reported a set of 2469 SSR that were developed using four SSR-enriched libraries (Mir et al. 2009). In this communication, we report an additional set of 607 novel SSR in 393 SSR containing sequences. However, primers could be designed for only 417 potentially useful SSR. Polymorphism survey was carried out for 374 primer pairs using two parental genotypes (JRO 524 and PPO4) of a mapping population developed for fibre fineness; only 66 SSR were polymorphic. Owing to a low level of polymorphism between the parental genotypes and a high degree of segregation distortion in recombinant inbred lines, genotypic data of only 53 polymorphic SSR on the mapping population consisting of 120 RIL could be used for the construction of a linkage map; 36 SSR loci were mapped on six linkage groups that covered a total genetic distance of 784.3 cM. Hopefully, this map will be enriched with more SSR loci in future and will prove useful for identification of quantitative trait loci/genes for molecular breeding involving improvement of fibre fineness and other related traits in jute.

  4. A procedure for identifying textile bast fibres using microscopy: flax, nettle/ramie, hemp and jute.

    Science.gov (United States)

    Bergfjord, Christian; Holst, Bodil

    2010-08-01

    Identifying and distinguishing between natural textile fibres is an important task in both archaeology and criminology. Wool, silk and cotton fibres can readily be distinguished from the textile bast fibres flax, nettle/ramie, hemp and jute. Distinguishing between the bast fibres is, however, not easily done and methods based on surface characteristics, chemical composition and cross section size and shape are not conclusive. A conclusive method based on X-ray microdiffraction exists, but as the method requires the use of a synchrotron it is not readily available. In this paper we present a simple procedure for identifying the above mentioned textile bast fibres. The procedure is based on measuring the fibrillar orientation with polarised light microscopy and detecting the presence of calcium oxalate crystals (CaC2O4) in association with the fibres. To demonstrate the procedure, a series of fibre samples of flax, nettle, ramie, hemp and jute were investigated. The results are presented here. An advantage of the procedure is that only a small amount of fibre material is needed. 2010 Elsevier B.V. All rights reserved.

  5. THERMOMECHANICAL PROPERTIES OF JUTE/BAGASSE HYBRID FIBRE REINFORCED EPOXY THERMOSET COMPOSITES

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar Saw

    2009-11-01

    Full Text Available Natural fibres are partly replacing currently used synthetic fibres as reinforcement for polymer composites. Jute fibre bundles were high-cellulose-content modified by alkali treatment, while the bagasse fibre bundles were modified by creating quinones in the lignin portions of fibre surfaces and reacting them with furfuryl alcohol (FA to increase their adhesiveness. The effects of different fibre bundle loading and modification of bagasse fibre surfaces in hybrid fibre reinforced epoxy composites have been studied. The role of fibre/matrix interactions in chemically modified hybrid composites were investigated using Differential Scanning Calorimeter, Differential Thermo Gravimetry, and a Universal Tensile Machine and compared with those of unmodified bagasse fibre bundles incorporated with modified jute fibre bundles reinforced hybrid composites. Fibre surface modification reduced the hydrophilicity of fibre bundles, and significantly increased mechanical properties of hybrid composites were observed in conjunction with SEM images. The SEM analysis of the fibre and the composite fractured surfaces have confirmed the FA grafting and shown a better compatibility at the interface between chemically modified fibre bundles and epoxy resin. This paper incorporates interesting results of thermomechanical properties and evaluation of fibre/matrix interactions.

  6. A method of direct PCR without DNA extraction for rapid detection of begomoviruses infecting jute and mesta.

    Science.gov (United States)

    Biswas, C; Dey, P; Satpathy, S

    2014-04-01

    We have developed a simple method of direct PCR (dPCR) without time-consuming procedures of DNA extraction by directly using the leaf bits for rapid detection of begomoviruses in jute and mesta. The leaf bits were treated with a lysis buffer for 35 min, and the lysate was used as PCR template. Different components and their concentration in lysis buffer systems were optimized and the optimal buffer system composed of 20 mmol l(-1) tris (hydroxymethyl aminomethane (Tris)-Cl (pH 8·0), 1·5 mmol l(-1) ethylenediaminetetraacetic acid (EDTA) (pH 8·0), 1·4 mol l(-1) NaCl and 200 μg/mL Proteinase K. Further, 3% PVP (w/v) and β-marcaptoethanol (1% v/v) were additionally added into the buffer in case of jute. Under optimized PCR conditions, both viral DNA as well as plant (jute and mesta) genomic DNA were amplified from the lysate. dPCR required fewer reagents and less incubation time reducing both time and cost of detection. Identification of begomoviruses by serology is not suitable due to difficulty in preparing high titre and specific antisera. Begomoviruses are routinely detected by PCR-based techniques using universal or specific primers. However, it is a prerequisite to isolate pure DNA from the samples before PCR. DNA extraction from some plants such as jute, mesta is very difficult due to the presence of mucilage and other impurities. Therefore, we have developed a method of direct PCR without DNA extraction for detection of begomoviruses from these crops. It is the first report of a direct PCR method in jute and mesta. © 2013 The Society for Applied Microbiology.

  7. Thermoplastic polyolefins as formaldehyde free binders in highly filled lignocellulosic panel boards: using glycerine as a processing aid in kenaf fiber polypropylene boards

    Directory of Open Access Journals (Sweden)

    Anand Ramesh Sanadi

    2008-12-01

    Full Text Available A new technique was developed to make highly loaded (up to 95% formaldehyde free natural fiber boards. The purpose of the paper is to report a broad study on 85% kenaf boards using linear thermoplastic polymers as the binder in preparing the boards to determine if these materials have potential in commercial applications by comparing them to other commercial materials. In these materials, linear thermoplastic polymer chains act as an adhesive and the product resembles a typical wood based panel (e.g., phenol formaldehyde fiber board. The process involved the use of small amount of glycerine in the fiber to enhance processibility in a thermo-kinetic mixer followed by hot pressing. In this paper, we report the properties of 85% by weight kenaf fiber boards using polypropylene as the adhesive. A maleated polypropylene was used to improve the adhesion and stress transfer between the adhesive and kenaf fiber. The addition of 2% by weight of glycerine based on the dry weight of kenaf fiber resulted in the best properties of the boards. Differential scanning calorimetric studies suggested that the glycerine had a little effect on the percent crystallinity of the matrix. Dynamic mechanical tests of the 85% boards showed some differences compared to conventional 60% by weight kenaf-PP composites. The 85% kenaf boards had a flexural strength of 75 MPa and a flexural modulus of 6.8 GPa with a specific gravity of 1.24. These properties are comparable to standard formaldehyde free high density hardboards with flexural strengths of 48.3 MPa and flexural modulus of 5.5 GPa, and a specific gravity of 1.28. This paper gives a broad overview of an initial study of these new materials.

  8. The development of kenaf ecological geotextile of China%我国红麻生态土工布的发展

    Institute of Scientific and Technical Information of China (English)

    肖鸽; 闫星月; 谢光银

    2015-01-01

    The concept of industrial geotextile, classification and function were introduced.The kenaf geotextile in the application and development status at home and abroad were analyzed.The development prospects of 3D kenaf fabric were predicted.%简述产业用土工布的概念、分类及功能,分析红麻土工布在国内外的应用与发展现状,展望红麻三维立体织物的发展。

  9. Resíduo de sisal incorporado à substrato comercial na formação de mudas de jiló e brócolis

    Directory of Open Access Journals (Sweden)

    M. J. R. Silva

    2015-10-01

    Full Text Available O objetivo do trabalho foi avaliar o efeito da incorporação de resíduo de sisal ao substrato comercial sobre a emergência e a qualidade de mudas de jiló e brócolis. Os experimentos foram realizados em casa de vegetação com sombrite 50% no Departamento de Tecnologia e Ciências Sociais da UNEB, em Juazeiro, BA, utilizando-se sementes comerciais de jiló e brócolis. Nas duas espécies, os tratamentos consistiram na incorporação de diferentes porcentagens de resíduo de sisal (RSL ao substrato comercial Tropstrato®. Foi incorporado: 0, 10, 20, 30, 40, 50, 60 e 80% do RSL ao substrato comercial. Determinou-se o índice de velocidade e a porcentagem de emergência das plântulas, e aos 26 dias após a semeadura foram determinadas as seguintes características: comprimento de raiz e da parte aérea, diâmetro do colo, número de folhas, volume de raízes e massa seca da parte aérea e de raízes. O resíduo de sisal pode ser incorporado ao substrato comercial Tropstrato® na formação de mudas de jiló e brócolis sem interferir na sua qualidade, sendo mais indicada a incorporação 50% do resíduo de sisal ao substrato comercial.Sisal residue incorporated into the commercial substrate in the formation of eggplant and broccoli seedlingsAbstract: The aim of this study was to evaluate the effect of sisal residue incorporation the commercial substrate on the emergency and the quality of eggplant and broccoli seedlings. The experiments were performed in a greenhouse with 50% shade at Department of Technology and Social Sciences of UNEB, in Juazeiro, BA, using commercial seeds of eggplant and broccoli. In both species, the treatments consisted of the incorporation of different sisal residue percentages (SLR the commercial substrate Tropstrato®. Was incorporated: 0, 10, 20, 30, 40, 50, 60 and 80% of SLR at the commercial substrate. Determined the speed index and the percentage of seedling emergence and at 26 days after sowing were determined

  10. Flexural performance of woven hybrid composites

    Science.gov (United States)

    Maslinda, A. B.; Majid, M. S. Abdul; Dan-mallam, Y.; Mazawati, M.

    2016-07-01

    This paper describes the experimental investigation of the flexural performance of natural fiber reinforced polymer composites. Hybrid composites consist of interwoven kenaf/jute and kenaf/hemp fibers was prepared by infusion process using epoxy as polymer matrix. Woven kenaf, jute and hemp composites were also prepared for comparison. Both woven and hybrid composites were subjected to three point flexural test. From the result, bending resistance of hybrid kenaf/jute and kenaf/hemp composites was higher compared to their individual fiber. Hybridization with high strength fiber such as kenaf enhanced the capability of jute and hemp fibers to withstand bending load. Interlocking between yarns in woven fabric make pull out fibers nearly impossible and increase the flexural performance of the hybrid composites.

  11. SODA-ANTHRAQUINONE PULP FROM MALAYSIAN CULTIVATED KENAF FOR LINERBOARD PRODUCTION

    Directory of Open Access Journals (Sweden)

    Ahmad Azizi Mossello

    2010-06-01

    Full Text Available The goal of this study was to prepare soda- anthraquinone pulp from kenaf whole stem and to compare the resultant core and bast pulps for linerboard production. Pulping was done under mild cooking conditions (active alkali 12-15% with a cooking time of 30-90 min and a temperature of 160ºC. During the pulping process, kappa numbers ranged from 56.0 to 20.6, while total yields varied from 58.4 to 54.2% with a rejection rate of 2.3 to 0.1%. Based on the quality of pulp produced, kappa numbers 49.4 and 25.4 was selected as symbolic of high and low pulps respectively. The results of the study revealed significant difference between the properties of core, whole stem (KHK and KLK, and bast pulps. Core pulps with low freeness and high drainage time the study found produced sheets with greater density, tensile index, burst index and RCT, with lower light scattering coefficient and tear index than bast pulp. Whole stem pulps showed properties between those of core and bast pulps. Moreover, KLK with high drainage time produced papers with significantly higher strength properties than KHK.

  12. Relationships between tensile strength, morphology and crystallinity of treated kenaf bast fibers

    Science.gov (United States)

    Sosiati, H.; Rohim, Ar; Ma`arif, Triyana, K.; Harsojo

    2013-09-01

    Surface treatments on kenaf bast fibers were carried out with steam, alkali and a combination of steam-alkali. To verify and gain an understanding of their inter-relationship, tensile strength, surface morphology and crystallinity of treated and raw fibers were characterized. Tensile strength of fibers was measured with a universal tensile machine (UTM), crystallinity was estimated using X-ray diffraction (XRD) and Fourier transformation infrared (FTIR) spectroscopy, and surface morphology was examined by scanning electron microscopy (SEM). Tensile strength of the treated fibers was higher than that of the raw fiber. Tensile strength increased after steam treatment and was further improved by alkali treatment, but slightly reduced after steam treatment followed by alkalization. Increase of concentration of alkali tended to increase tensile strength. Differences in tensile strength of the treated fibers are discussed in relation to the changes in surface morphology and crystallinity. Understanding of these relationships may provide direction towards the goal of producing better performance of natural fiber composites.

  13. Review of research on the insect pests of kenaf and their control in the Sudan.

    Science.gov (United States)

    Eldin, N S; El-Amin, E M

    1981-01-01

    Kenaf, Hibiscus cannabinus L., is grown in many parts of the Sudan as a fibre plant. During its various stages of growth, 17 different species of insects were detected, out of which only the cotton flea beetle Podagrica puncticollis Weise is of economic importance. The attack by this pest is most serious in the seedling stage; late sowings coupled with early light showers suffer the heaviest damage. In the leaves the beetles eat out round holes ('shot-hole effect'). The entire life cycle takes about 4 to 5 weeks, and about five generations are completed on the plant depending on the weather conditions. Cultural practices incorporating early sowing and eradication of the main host plants, Hibiscus esculentus and Abutilon spp., considerably reduce the size of the initial infestation. Chemicals tested as seed-dressing or sprays for the control of the beetle failed to give good results. However, granular insecticides showed a better performance and longer residual effect. Disyston 5G was effective for six weeks and also improved the general condition of the plants.

  14. Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum.

    Science.gov (United States)

    Das, Lalitendu; Liu, Enshi; Saeed, Areej; Williams, David W; Hu, Hongqiang; Li, Chenlin; Ray, Allison E; Shi, Jian

    2017-11-01

    This study takes combined field trial, lab experiment, and economic analysis approaches to evaluate the potential of industrial hemp in comparison with kenaf, switchgrass and biomass sorghum. Agronomy data suggest that the per hectare yield (5437kg) of industrial hemp stem alone was at a similar level with switchgrass and sorghum; while the hemp plants require reduced inputs. Field trial also showed that ∼1230kg/ha hemp grain can be harvested in addition to stems. Results show a predicted ethanol yield of ∼82gallons/dry ton hemp stems, which is comparable to the other three tested feedstocks. A comparative cost analysis indicates that industrial hemp could generate higher per hectare gross profit than the other crops if both hemp grains and biofuels from hemp stem were counted. These combined evaluation results demonstrate that industrial hemp has great potential to become a promising regional commodity crop for producing both biofuels and value-added products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite

    Directory of Open Access Journals (Sweden)

    Y. A. El-Shekeil

    2012-12-01

    Full Text Available In this study, the effect of polymeric Methylene Diphenyl Diisocyanate (pMDI chemical treatment on kenaf (Hibiscus cannabinus reinforced thermoplastic polyurethane (TPU/KF was examined using two different procedures. The first consisted of treating the fibers with 4% pMDI, and the second involved 2% NaOH + 4% pMDI. The composites were characterized according to their tensile properties, Fourier Transform Infrared Spectroscopy (FTIR and Scanning Electron Microscopy (SEM. The treatment of the composite with 4% pMDI did not significantly affect its tensile properties, but the treatment with 2% NaOH + 4% pMDI significantly increased the tensile properties of the composite (i.e., 30 and 42% increases in the tensile strength and modulus, respectively. FTIR also showed that treatment with 2% NaOH + 4% pMDI led to the strongest H-bonding. Additionally, the surface morphology of specimens after tensile fracture confirmed that the composite treated with 2% NaOH + 4% pMDI had the best adhesion and wettability.

  16. Extraction of Pectin from Sisal Residue%剑麻渣果胶提取工艺的研究

    Institute of Scientific and Technical Information of China (English)

    陈芳艳; 王林川; 杨艳; 陈希; 刘伟强

    2012-01-01

    The method of pectin extraction from sisal residue was optimized by orthogonal experiments, and pectin separation and decoloration were also studied. The optimized extraction conditions were as follows ; 2. 2 mol ? L"' oxalic acid-ammonium oxalate buffer as extracting agent, the solid to liquid ratio 0. 1 g ? mL"', time 90 min, temperature 80 t. Pectin was precipitated by alcohol at pH 4. 0; the yield of sisal pectin was 14. 87%. The primrose yellow pectin was decolored by 1. 8% -2.4% H2O2. The results of physicochemical property were that the degree of esterification of sisal pectin was 23% , galactu-ronic acid 66% , pH and ash all complying with Chinese light industey standards.%以剑麻渣为原料提取果胶,采用正交试验优化提取条件,并对剑麻果胶的分离及脱色进行研究,得出制备剑麻果胶的最佳工艺条件为:以2.2 mol· L-1的草酸-草酸铵缓冲溶液为提取剂,料液比为0.1 g· mL-1,时间90min,温度80℃,在pH4.0条件下用乙醇沉淀果胶,果胶产率为14.87%;用ω为1.8%~2.4%的过氧化氢脱色,获得浅黄色果胶.理化性质研究表明,剑麻果胶为酯化度23%的低酯果胶,ω(半乳糖醛酸)为66%,pH、灰分等指标均符合国家轻工行业标准.

  17. Evaluation of anthelmintic activity of liquid waste of Agave sisalana (sisal in goats Avaliação da atividade anti-helmíntica do resíduo líquido de Agave sisalana (sisal em caprinos

    Directory of Open Access Journals (Sweden)

    Luciana Ferreira Domingues

    2010-12-01

    Full Text Available It was evaluated the anthelmintic activity of Agave sisalana (sisal juice against gastrointestinal nematodes and its potential toxic effects in goats. In vitro tests showed more than 95% reduction in larval counts of the genus Haemonchus spp. at concentrations between 86.5 and 146.3 mg.mL-1. In vivo the percent reduction of larvae of the fourth (L4 and fifth (L5 stages of Haemonchus, Oesophagostomum and Trichostrongylus was less than 95% in groups GI and GII, and between 80 and 90% in group GIII. A. sisalana juice at the concentrations tested in vitro was effective against gastrointestinal nematodes in goats; however, its anthelmintic efficacy was reduced when administered to animals.Foi avaliada a atividade anti-helmíntica do suco de Agave sisalana (sisal contra nematódeos gastrintestinais e possíveis efeitos tóxicos em caprinos. Nos testes in vitro, encontrou-se redução superior a 95% na contagem de larvas do gênero Haemonchus spp. nas concentrações entre 86,5 e 146,3 mg.mL-1. In vivo, o percentual de redução de larvas de quarto (L4 e quinto (L5 estágios de Haemonchus, Oesophagostomum e Trichostrongylus foi inferior a 95% para o GI e GII, e entre 80 e 90% para o GIII. O suco de A. sisalana nas concentrações testadas in vitro foi efetivo contra nematódeos gastrintestinais de caprinos, apresentando, no entanto, reduzida eficácia anti-helmíntica quando administrado nos animais.

  18. Efeito de diferentes condições de fermentação sobre o teor e composição da fração de sapogeninas do suco de sisal The effect of different fermentation conditions on the yield and composition of the sapogenin fraction of sisal juice

    National Research Council Canada - National Science Library

    Marco Antonio Teixeira Zullo; Roberto Machado de Moraes; Antonio Luiz de Barros Salgado; Anísio Azzini

    1984-01-01

    Suco de sisal (Agave sisalana (Engelm.) Perrine), recém-colhido, foi deixado fermentar por dez dias, espontaneamente ou por Saccharomyces cerevisae, processando-se, em cada caso, a fermentação protegida ou não do ambiente...

  19. Estudo da influência de tratamentos químicos da fibra de sisal nas propriedades de compósitos com borracha nitrílica Study of the influence from chemical treatments of sisal fibers on the properties of composites with nitrile rubber

    Directory of Open Access Journals (Sweden)

    Marco A. Iozzi

    2010-01-01

    Full Text Available A influência de diferentes tratamentos das fibras de sisal nas propriedades dos compósitos de borracha nitrílica/fibras de sisal, e borracha nitrílica/carbonato de cálcio/fibras de sisal foi investigada. Os compósitos, com fibras curtas aleatoriamente distribuídas, foram processados em moinho de dois rolos e caracterizados através de ensaios mecânicos de resistência à tração, microscopia eletrônica de varredura (MEV, análise por termogravimetria (TG e calorimetria exploratória diferencial (DSC. O tratamento de mercerização das fibras levou a uma maior adesão na interface fibra/matriz. O uso combinado de 67 pcr de carbonato com 33 pcr de fibras de sisal mercerizadas produziu um compósito com aumento significativo no módulo de elasticidade e sem perda da resistência à tração de ruptura. Os resultados da análise térmica mostraram que os compósitos são termicamente estáveis até cerca de 300 °C. Os materiais obtidos possuem uma boa relação custo/benefício tornando promissora sua utilização.In this work, composites were produced with nitrile rubber and sisal fibers, and nitrile rubber with calcium carbonate and sisal fibers. The composites were processed on a two-roll mixing mill and their properties were investigated with regard to the influence of chemical treatments of the fibers. The composites, with short fibers randomly distributed, were characterized by mechanical analysis, scanning electron microscopy (SEM, thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. Mercerization treatment of the fibers promoted increasing the adhesion between the fiber and the rubber matrix. The composites of nitrile rubber with 67 pcr of calcium carbonate and 33 pcr of mercerized sisal fibers showed the best mechanical properties. Thermal analysis demonstrated that the composites are thermally stable up to 300 °C. The materials developed have a good cost/benefit relationship making their utilization

  20. Study on Planting Technology of Marijuana-Jute/Kenaf for Two Batches A Year%大麻-黄麻/红麻1年2茬种植技术初探

    Institute of Scientific and Technical Information of China (English)

    张丽霞; 郭晓彦; 吕玉虎; 乔利; 李梅; 陈雪青; 潘兹亮

    2016-01-01

    麻类是国内一种重要的经济作物.针对市场上麻纤产品需求日益增加,麻类作物种植面积不断减少的问题,通过田间小区试验,对大麻作前茬,大麻收获后接茬种植黄麻/红麻的种植模式进行研究.结果显示:大麻-黄麻种植模式,麻纤总产量比单独种植大麻或黄麻分别最低增产90.8%和34.2%.大麻-红麻种植模式,麻纤总产量比单独种植大麻或红麻分别最少增产92.7%和28.8%;同时,大麻和黄麻/红麻接茬种植,其净收益和产投比均较单独播种时增加,而且6月20日左右接茬净收益和产投比最高.从麻纤产量、净收益和产投比等指标综合来看,大麻-黄麻/红麻的种植模式可以实现麻类的增产、增收,提高农民的经济收益,值得大面积应用推广.

  1. Production of Oxidative and Hydrolytic Enzymes by Coprinus cinereus (Schaeff. Gray from Sisal Wastes Supplemented with Cow Dung Manure

    Directory of Open Access Journals (Sweden)

    Prosper Raymond

    2015-01-01

    Full Text Available The activity of oxidative and hydrolytic enzymes of the edible and medicinal white rot fungi Coprinus cinereus (Schaeff. Gray mushroom was observed during mycelia growth and fruiting body development in solid substrate fermentation using sisal waste fractions amended with cow dung manure as supplement. Laccase had the highest titre value among the five detected enzymes. Its activity was higher during mycelia growth compared to fruiting phase, with 10% supplemented substrate formulation unmixed sisal leaf decortication residues [abbreviated SL : SB (100 : 0] displaying the highest activity of 39.45±12.05 Ug−1. Lignin peroxidase (LiP exhibited a characteristic wave-like pattern with the highest peaks found either during full mycelia colonization or soon after first flush harvest; the highest activity of 1.93±0.62 Ug−1 was observed on unsupplemented SL : SB (100 : 0 substrate formulation during mycelia colonization. For hydrolytic enzymes, the highest carboxymethyl cellulase (CMCase activity of 2.03±0.70 Ug−1 was observed on 20% supplemented SL : SB (0 : 100 after first flush; that of pectinase (1.90±0.32 Ug−1 was revealed after third flush on 10% supplemented SL : SB (0 : 100 substrate formulation while 10% supplemented SL : SB (25 : 75 exhibited the highest xylanase activity (1.23±0.12 Ug−1 after first flush. These findings show that the activities of both oxidative and hydrolytic enzymes were regulated in line with developmental phase of growth of Coprinus cinereus.

  2. CHLORINE DIOXIDE BLEACHING OF SODA-ANTHRAQUINONE JUTE PULP TO A VERY HIGH BRIGHTNESS

    Directory of Open Access Journals (Sweden)

    M. Sarwar Jahan

    2010-05-01

    Full Text Available Bleaching of soda-anthraquinone jute pulp by chlorine dioxide (ClO2 was studied to reach a target brightness of above 88% for the purpose of using less bleaching chemicals. The performance of either chlorine dioxide or peroxide in the final bleaching to boost brightness was also studied. The experimental results revealed that the final brightness depended on ClO2 charge in the Do and D1 stages. The brightness reversion was lower when the final stage brightening was done by peroxide. The use of Mg(OH2 in the D1 and D2 stages improved the final brightness due to the formation of less chlorate and chlorite during the Mg(OH2- based ClO2 brightening stages. The strength properties of pulp bleached by peroxide in the final stage was slightly better than that from ClO2 as the final ClO2 bleaching stage.

  3. Effect of Fillers on E-Glass/Jute Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Sudeep Deshpande

    2014-08-01

    Full Text Available In this work, an investigation was carried out on E-glass fiber/jute fiber reinforced epoxy composites filled with varying concentrations of bone and coconut shell powder. The composites were fabricated by hand lay-up technique and the mechanical properties such as ultimate tensile strength, flexural strength, inter laminar shear strength (ILSS, tensile modulus, impact strength and hardness of the fabricated composites were tested. The test results of these were compared with unfilled HFRP composites. From the results it was found that the mechanical properties of the composites increased with the increase in filler content. Composites filled with 15% volume coconut shell powder exhibited maximum flexural strength, inter laminar shear strength (ILSS, tensile modulus and hardness. Maximum impact strength was achieved by addition of filler (15% Vol. of bone powder.

  4. High-capacity adsorption of aniline using surface modification of lignocellulose-biomass jute fibers.

    Science.gov (United States)

    Gao, Da-Wen; Hu, Qi; Pan, Hongyu; Jiang, Jiping; Wang, Peng

    2015-10-01

    Pyromellitic dianhydride (PMDA) modified jute fiber (MJF) were prepared with microwave treatment to generate a biosorbent for aniline removal. The characterization of the biosorbent was investigated by SEM, BET and FT-IR analysis to discuss the adsorption mechanism. The studies of various factors influencing the adsorption behavior indicated that the optimum dosage for aniline adsorption was 3g/L, the maximum adsorption capacity was observed at pH 7.0 and the adsorption process is spontaneous and endothermic. The aniline adsorption follows the pseudo second order kinetic model and Langmuir isotherm model. Moreover, the biosorbent could be regenerated through the desorption of aniline by using 0.5M HCl solution, and the adsorption capacity after regeneration is even higher than that of virgin MJF. All these results prove MJF is a promising adsorbent for aniline removal in wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Finite-Element Analysis of Jute- and Coir-Fiber-Reinforced Hybrid Composite Multipanel Plates

    Science.gov (United States)

    Nirbhay, M.; Misra, R. K.; Dixit, A.

    2015-09-01

    Natural-fiber-reinforced polymer composite materials are rapidly gaining interest worldwide both in terms of research and industrial applications. The present work includes the characterization and modeling of jute- and coir-fiber-reinforced hybrid composite materials. The mechanical behavior of a two-panel plate and a sixpanel box structure is analyzed under various loading regimes by using the finite-element software ABAQUS®. Exhaustive parametric studies are also performed to obtain a clear insight into the relationships between various parameters and deflections of the panels and stress distributions in them. Deflections of both the structures are compared and found to be in good agreement with published results. To determine the mechanical behavior of natural-fiber-reinforced composite panels, a finite-element analysis is performed.

  6. Detection of Corchorus golden mosaic virus Associated with Yellow Mosaic Disease of Jute (Corchorus capsularis).

    Science.gov (United States)

    Ghosh, Raju; Palit, Paramita; Paul, Sujay; Ghosh, Subrata Kumar; Roy, Anirban

    2012-06-01

    Yellow mosaic disease, caused by a whitefly transmitted New World Begomovirus, named Corchorus golden mosaic virus (CoGMV), is emerging as a serious biotic constraint for jute fibre production in Asia. For rapid and sensitive diagnosis of the Begomovirus associated with this disease, a non-radiolabelled diagnostic probe, developed against the DNA A component of the east Indian isolate of CoGMV, detected the presence of the virus in infected plants and viruliferous whiteflies following Southern hybridization and nucleic acid spot hybridization tests. Presence of the virus was also confirmed when polymerase chain reaction amplification was performed using virus-specific primers on DNA templates isolated from infected plants and viruliferous whiteflies.

  7. An outbreak of Koro among 19 workers in a jute mill in south Bengal.

    Science.gov (United States)

    Chakraborty, Suddhendu; Sanyal, Debasish

    2011-01-01

    Koro is a culture-bound syndrome that is characterized by the belief of retraction of genitals into the abdomen. It was initially reported in Asian countries, as having a usual acute and brief course. Two case clusters have been described in this article. Both occurred in the same jute mill in southern West Bengal among the workers. The case clusters depict unique socioeconomic factors and interesting health-seeking behavior toward koro. All the cases had a self-limiting course and reasonably good outcome. The case cluster yet again confirms that koro is not as rare as it is thought of and social and economic factors continue to play an important role in the etiology of the disease.

  8. An outbreak of Koro among 19 workers in a jute mill in south Bengal

    Directory of Open Access Journals (Sweden)

    Suddhendu Chakraborty

    2011-01-01

    Full Text Available Koro is a culture-bound syndrome that is characterized by the belief of retraction of genitals into the abdomen. It was initially reported in Asian countries, as having a usual acute and brief course. Two case clusters have been described in this article. Both occurred in the same jute mill in southern West Bengal among the workers. The case clusters depict unique socioeconomic factors and interesting health-seeking behavior toward koro. All the cases had a self-limiting course and reasonably good outcome. The case cluster yet again confirms that koro is not as rare as it is thought of and social and economic factors continue to play an important role in the etiology of the disease.

  9. Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites

    Science.gov (United States)

    Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath

    2015-07-01

    The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.

  10. Application of Response Surface Methodology (RSM for Optimizing Production Condition for Removal of Pb (II and Cu (II Onto Kenaf Production Condition for Removal of Pb (II and Cu (II Onto Kenaf

    Directory of Open Access Journals (Sweden)

    Z.Z. Chowdhury

    2012-03-01

    Full Text Available This research aims to find out the feasibility of preparing kenaf fiber based carbon for removal of divalent cations of Pb (II and Cu (II from waste water. Activated carbon was prepared by using physiochemical activation method which involves two step of potassium hydroxide impregnation (KOH with carbon dioxide activation of the semi carbonized char. The effects of three preparation variables; temperature (500-700ºC, time (1-3 h and Impregnation Ratio (IR by using KOH (1-3 on the removal percentage of Pb (II and Cu (II ions were investigated by using Design of Experiment (DOE. Quadratic models were developed to correlate activated carbon preparation variables from kenaf fibers with the two responses by applying Central Composite Design (CCD. Experimental data were analysed by using analysis of variance (ANOVA and the most influential factor on each experimental design response was identified. Process optimization was done by validating both the model to obtain maximum removal efficiency with possible maximum yield of activated carbon.

  11. The 2010 outbreak of cholera among workers of a jute mill in Kolkata, West Bengal, India.

    Science.gov (United States)

    Mridha, Prakash; Biswas, Asit K; Ramakrishnan, R; Murhekar, Manoj V

    2011-02-01

    On 10 March 2010, an outbreak of diarrhoeal disease was reported among workers of a jute mill in Kolkata, West Bengal, India. The cluster was investigated to identify the agent(s) and the source of infection and make recommendations. A suspected case of cholera was defined as having >3 loose watery stools in a 24-hour period and searched for case-patients in the workers' colony. The outbreak was described by time, place, and person, and a case-control study was conducted to identify the source of infection. Rectal swabs were collected from the hospitalized case-patients, and the local water-supply system was assessed. In total, 197 case-patients were identified among 5,910 residents of the workers' colony (attack rate 3.33%). Fifteen of 24 stool samples were positive for Vibrio cholerae O1. The outbreak started on 7 March, peaked on 11 March, and ended on 16 March 2010. Compared to 120 controls, 60 cases did not differ in terms of age and socioeconomic status. Drinking-water from the reservoir within the mill premises was associated with an increased risk of illness [odds ratio: 26.7, 95% confidence interval (CI) 11.4-62.6) and accounted for most cases (population attributable risk percentage = 82%, 95% CI 70.8-92.9). An outbreak of cholera occurred among workers of the jute mill due to contamination of the drinking-water reservoir. It occurred within a few days of re-opening of the mill after the workers' strike. Health authorities need to enforce disinfection of drinking-water and regularly test its bacteriological quality, particularly before re-opening of the mill after the strike.

  12. Inclusão de feixes de sisal na produção de painéis MDP de eucalipto

    DEFF Research Database (Denmark)

    de Almeida Mesquita, Ricardo G; Mendes, Lourival Marin; Mendes, Rafael Farinassi;

    2015-01-01

    with the substitution on eucalyptus wood for sisal bundles in the panels’ core in doses of 0, 5, 10, 15, 20 and 25%. The MDP panels were produced with face/core 40/60 (base dry mass of the particles), urea-formaldehyde adhesive, nominal density of 0,70 g.cm-3 and pressing cycle of 8 minutes, 3,92 MPa pressure...

  13. Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model.

    Science.gov (United States)

    Roy, Aparna; Chakraborty, Sumit; Kundu, Sarada Prasad; Basak, Ratan Kumar; Majumder, Subhasish Basu; Adhikari, Basudam

    2012-03-01

    Chemically modified jute fibres are potentially useful as natural reinforcement in composite materials. Jute fibres were treated with 0.25%-1.0% sodium hydroxide (NaOH) solution for 0.5-48 h. The hydrophilicity, surface morphology, crystallinity index, thermal and mechanical characteristics of untreated and alkali treated fibres were studied.The two-parameter Weibull distribution model was applied to deal with the variation in mechanical properties of the natural fibres. Alkali treatment enhanced the tensile strength and elongation at break by 82% and 45%, respectively but decreased the hydrophilicity by 50.5% and the diameter of the fibres by 37%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Kinetic Approach for the Adsorption of Organophosphorous Pesticides from Aqueous Solution Using “Waste” Jute Fiber Carbon

    Directory of Open Access Journals (Sweden)

    S. Senthilkumaar

    2010-01-01

    Full Text Available Chemically activated “Waste” Jute Fiber carbon has been effectively used for the removal of five organophosphorous pesticides (malathion, monocrotophos, methylparathion, phosphamidon and dimethoate from aqueous solutions. The prepared activated jute fiber carbon was characterized by using Elemental analyzer and proximate analysis methods. The adsorption equilibrium was examined at 28 ºC. Three different kinetic models, the pseudo first order, pseudo second order and Elovich kinetic models were selected to analyses the adsorption process. To compare the fitness of pseudo first order and pseudo second order, sum of the squares of the errors and correlation coefficient, r2 values were calculated. The Elovich model was used to confirm the chemisorptions.

  15. Growth Dynamics of Celosia cristata Grown in Cocopeat, Burnt Rice Hull and Kenaf Core Fiber Mixtures

    Directory of Open Access Journals (Sweden)

    Yahya Awang

    2010-01-01

    Full Text Available Problem statement: Understanding the growth dynamics of short-lived plant could be critical as it would complete its life cycle in a short time period. It does not normally has much time to adjust to hostile environmental condition. This study provides a detail account on growth dynamics of Celosia cristata grown in five growing media for the production of high quality flowers. Approach: Celosia cristata plants were grown on five growing media (v/v: 100% Cocopeat (CP; 70% CP: 30% Burnt Rice Hull (BRH; 70% CP: 30% perlite; 70% CP: 30% Kenaf Core Fiber (KCF and 40% CP: 60% KCF. To explore the dynamics of plant growth and development, data on plant height and canopy diameter were regressed against Days After Transplanting (DAT by using the equation y = A/(1+be-cx while its derivative [dy/dx = (Abce-cx/(1+be-cx2] was used to estimate the growth rate of the parameter. The variation in leaf number, flower length and flower diameter were modeled using an exponential function of y = Aebx and their rate of change was derived using dx/dy = Abebx. Results: The growth rates of plant height, canopy diameter and leaf number of plants grown in media containing 100% CP, 70% CP: 30% BRH, 70% CP: 30% perlite, 70% CP: 30% KCF were higher than those grown on media containing 40% CP: 60% KCF. The growth rates of stem and canopy of the plants grown in the later media tended to be higher at the end of the growth cycle. This, however would not be sufficient to compensate their early losses, since the rate of growth in leaf number did not increase concurrently. Negative effects of media containing KCF were also detected in flower size. Conclusion: Overall results showed that CP is an excellent growing media for the production of Celosia cristata. Replacing 30% of CP with BRH, perlite and KCF did not affect the growth and flowering of the plants.

  16. EFFECT OF ACCELERATED WEATHERING ON TENSILE PROPERTIES OF KENAF REINFORCED HIGH-DENSITY POLYETHYLENE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Umar A.H.

    2012-06-01

    Full Text Available Umar A.H1, Zainudin E.S1,2 and Sapuan S.M.1,21Department of Mechanical and Manufacturing EngineeringFaculty of Engineering, Universiti Putra MalaysiaSelangor, Malaysia.2Biocomposite LaboratoryInstitute of Tropical Forestry and Forest Product (INTROPUniversiti Putra Malaysia, Selangor, Malaysia.Email: umarhanan@yahoo.com ABSTRACTIn this study, a high-density polyethylene composite reinforced with kenaf (Hibiscus Cannabinus L. bast fibres (K-HDPE was fabricated and tested for durability with regard to weather elements. The material consists of 40% (by weight fibres and 60% matrix. Other additives, such as ultraviolet (UV stabiliser and maleic anhydride grafted polyethylene (MaPE as a coupling agent were added to the composite material. The biocomposite was subjected to 1000 hours (h of accelerated weathering tests, which consisted of heat, moisture and UV light, intended to imitate the outdoor environment. The tensile properties of the K-HDPE composite were recorded after 0, 200, 400, 600, 800 and 1000 h of exposure to the accelerated weathering. Compared with neat high-density polyethylene (HDPE, the K-HDPE composite has 22.7% lower tensile strength when produced but displays a less rapid rate of strength deterioration under weathering (After 1000 h of exposure the tensile strength of K-HDPE drops 29.4%, whereas, for neat HDPE, it falls rapidly by 36%. Due to better stiffness, the Young’s modulus of the K-HDPE composite is much higher than that of neat HDPE. The fibres on the surface of the K-HDPE composite gradually start to whiten after 200 h of exposure and become completely white after 600 h of exposure. For neat HDPE, micro-cracking on the surface can be observed after 200 h of exposure and the stress-strain curve obtained from the tensile test indicates its increase in brittleness proportional to the amount of weathering time.

  17. Application of foam column as green technology for concentration of saponins from sisal (Agave sisalana and Juá (Ziziphus joazeiro

    Directory of Open Access Journals (Sweden)

    B. D. Ribeiro

    2013-12-01

    Full Text Available Saponins, molecules classified as triterpenic or steroidal glycosides, are metabolites distributed in all the plant kingdom that can be used for the production of foods, cosmetics, and pharmaceuticals, as well as in soil bioremediation. Saponins are normally extracted from natural resources with water, ethanol and/or methanol, and then concentrated by liquid-liquid partitioning with n-butanol. An alternative concentration method is with a foam column, by which the saponins can be concentrated via preferential adsorption at a gas-liquid interface. Therefore, the objective of this work was the use of a foam column for the concentration of saponins from juá and sisal, evaluating parameters such as: initial working volume in the column, saponin concentration in the extracts from juá and sisal, air flow rate, pH, Raschig rings loading and operation time. When a gradient air flow rate and 25 g of Raschig rings were used, 82.6% of the jua saponins loaded onto the system were recovered in a 3.46-fold concentrated solution after 9 h of operation. Regarding sisal saponins, a concentration factor of 1.98 was observed with 90.5% of saponin recovery during 4.5 h of operation.

  18. Experimental Evaluation of Tensile Strength and Young’s Modulus of Woven Jute fiber and Polyurethane Composite

    Directory of Open Access Journals (Sweden)

    Shrikant Shinde*

    2015-08-01

    Full Text Available Natural fiber reinforced composites (NFRCs are increasingly used in a variety of commercial applications, but there has been little theoretical, micromechanical modeling of structure/property relationships in these materials. These can’t be met by conventional metal alloys. The scope of possible uses of natural fibers is enormous.Plenty of research work is done on natural fiber composites. But, woven jute fiber and bio based polyurethane resin matrix is not used extensively for research studies. Mostly mathematical model is used to investigate and predict the properties and fiber loads effect on mechanical properties. The combination of jute fiber with PU produced the material that is competitive to synthetic composites. Literature review shows that composite made of combination of these constituents is not studied mechanically in order to evaluate its properties. The present paper focus is on the experimental analysis and testing of untreated woven jute fiber and PUR composite. The tensile properties of natural fiber reinforced composites (NFRCs are modeled experimental method.

  19. Xyloglucan endotransglycosylase/hydrolase genes from a susceptible and resistant jute species show opposite expression pattern following Macrophomina phaseolina infection.

    Science.gov (United States)

    Sharmin, Sazia; Azam, Muhammad Shafiul; Islam, Md Shahidul; Sajib, Abu Ashfaqur; Mahmood, Niaz; Hasan, A M Mahedi; Ahmed, Razib; Sultana, Kishwar; Khan, Haseena

    2012-11-01

    Two of the most widely and intensively cultivated jute species, Corchorus capsularis and Corchorus olitorius, suffer severely from a stem rot disease caused by the fungus Macrophomina phaseolina. Wild jute species, C. trilocularis, shows resistance to this pathogenic fungus. In this study, the technique of differential display was applied to identify genes which are differentially expressed, under both infected and un-infected conditions, between C. trilocularis and C. olitorius var O-72. Two xyloglucan endotransglycosylase/hydrolase (XTH) genes designated CoXTH1 (from Corchorus olitorius) and CtXTH1 (from C.trilocularis) were identified from each of the two species which show different expression patterns upon fungal infection. A steady rise in the expression of CtXTH1 in response to infection was observed by quantitative real time PCR whereas the expression of CoXTH1 was found to be downregulated. Full length sequences of these two genes were determined using primer based gene walking and RACE PCR. This study confirms the involvement of XTH in molecular interactions between M. phaseolina and jute. However, it remains to be explored whether XTH is an essential component of the signaling pathway involved in plant-fungal interaction.

  20. Preparation and Characterization of Jute Cellulose Crystals-Reinforced Poly(L-lactic acid Biocomposite for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Mohammed Mizanur Rahman

    2014-01-01

    Full Text Available Crystalline cellulose was extracted from jute by hydrolysis with 40% H2SO4 to get mixture of micro/nanocrystals. Scanning electron microscope (SEM showed the microcrystalline structure of cellulose and XRD indicated the Iβ polymorph of cellulose. Biodegradable composites were prepared using crystalline cellulose (CC of jute as the reinforcement (3–15% and poly(lactic acid (PLA as a matrix by extrusion and hot press method. CC was cellulose derived from mercerized and bleached jute fiber by acid hydrolysis to remove the amorphous regions. FT-IR studies showed hydrogen bonding between the CC and the PLA matrix. The X-ray diffraction (XRD and differential scanning calorimetry (DSC studies showed that the percentage crystallinity of PLA in composites was found to be higher than that of neat PLA as a result of the nucleating ability of the crystalline cellulose. Furthermore, Vicker hardness and yield strength were found to increase with increasing cellulose content in the composite. The SEM images of the fracture surfaces of the composites were indicative of poor adhesion between the CC and the PLA matrix. The composite with 15% CC showed antibacterial effect though pure films but had no antimicrobial effect; on the other hand its cytotoxicity in biological medium was found to be medium which might be suitable for its potential biomedical applications.

  1. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution.

    Science.gov (United States)

    Asadullah, Mohammad; Asaduzzaman, Mohammad; Kabir, Mohammad Shajahan; Mostofa, Mohammad Golam; Miyazawa, Tomohisa

    2010-02-15

    Activated carbons have been prepared from jute sticks by chemical activation using ZnCl(2) and physical activation using steam for the removal of Brilliant Green dye from aqueous solution. The activated carbons and charcoal prepared from jute sticks were characterized by evaluating the surface chemistry, structural features and surface morphology. The maximum BET surface area was obtained to be 2304 m(2)/g for chemical activated carbon (ACC) while it is 730 and 80 m(2)/g for steam activated carbon (ACS) and charcoal, respectively. The FT-IR spectra exhibited that the pyrolysis and steam activation of jute sticks resulted in the release of aliphatic and O-containing functional groups by thermal effect. However, the release of functional groups is the effect of chemical reaction in the ZnCl(2) activation process. A honeycomb-type carbon structure in ACC was formed as observed on SEM images. Although charcoal and ACC were prepared at 500 degrees C the ACC exhibited much lower Raman sensitivity due to the formation of condensed aromatic ring systems. Due to high surface area and high porous structure with abundance of functional groups, the ACC adsorbed dye molecules with much higher efficiency than those of ACS and charcoal.

  2. Study on work load and work-related musculoskeletal disorders amongst male jute mill workers of West Bengal, India.

    Science.gov (United States)

    Sett, Moumita; Sahu, Subhashis

    2012-01-01

    Work-related problems, many of which could be prevented with proper ergonomic techniques are particularly common in developing countries. The aim of this study was to evaluate the work stress and the development of the work-related musculoskeletal disorders (WRMSDs) of workers employed in the jute mills of India. About 219 male workers engaged in different departments of three jute industries in 24-Parganas (North) and Hooghly districts of West Bengal, India volunteered for this study. Questionnaires along with direct observation of work postures were conducted. Physical parameters such as body weight, height; physiological parameters like heart rate response, blood pressure and psycho-physiological parameters such as perceived exertion rating were studied during different tasks performed by them. It was observed that the 'hacklers' are mostly stressed. Analyses of working postures (OWAS) suggested that their adopted awkward postures were very stressful. A large number of hacklers (92.5% suffer from intense pain in different body parts as compared to workers in other departments of the jute industries. Workers report that the pain even lasts many hours after work. Since most of the workers perform repetitive tasks, so both the workplace as well as the work-rest schedule must be reorganized.

  3. Effect of functionalized metal oxides addition on the mechanical, thermal and swelling behaviour of polyester/jute composites

    Directory of Open Access Journals (Sweden)

    Jaideep Adhikari

    2017-04-01

    Full Text Available The unsaturated polyester composites were fabricated in hand lay-up method by reinforcing with jute fibre along with alumina or zirconia particles in different filler loading viz. 5, 10, 15 and 20 wt%. It was observed that with incorporation of fillers, the microhardness value of the resulting composites increases and reaches its maximum at 20 wt% filler content. Characterizations were performed on the composites fabricated with overall 20 wt% filler content (18 wt% fibre and 2 wt% metal oxide particles. Various characterizations like Vicker’s microhardness testing, scanning electron microscopy (SEM, Energy-dispersive X-ray spectroscopy (EDS, X-ray Diffraction (XRD, Fourier transform infrared (FTIR spectroscopy, thermogravimetric (TG analysis, differential scanning calorimetry (DSC, limiting oxygen index (LOI testing and water absorption test were performed. Tensile, Flexural testing were also performed on the normal and water absorbed samples. SEM analysis ensured good dispersion of filler within the polymer matrix. EDS and XRD were performed to identify the filler in the composites. FITR spectroscopy revealed the bonding of fillers with the matrix. TG analysis showed that thermal stability, degradation temperature of jute-ZrO2 composites were best over the others. LOI testing also shows similar trend, showing better fire resistant property of jute-ZrO2 composites than the Al2O3 dispersed. Water absorption test indicates the stability of different composite in various atmospheres (normal, boiling, simulated marine, alkali and acid water.

  4. Análise cromossômica em bulbilhos de sisal (Agave spp. cultivados em diferentes municípios baianos, Brasil Chromosomal analysis of immature bulbs of sisal (Agave spp. cultivated in different districts in Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Sandra Regina de Oliveira Domingos Queiroz

    2012-12-01

    Full Text Available O plantio de sisal tornou-se uma das atividades econômicas mais importantes na região do semiárido baiano, onde as adversidades ambientais impedem o plantio de outras culturas. Diante da importância econômica, estudos de citogenética são necessários, pois podem fornecer informações que auxiliem na produção de linhagens melhoradas. A análise de bulbilhos, coletados de cinco localidades diferentes da Bahia, mostrou a presença de indivíduos diplóides e pentaplóides, com comprimento cromossômico variando de 24,56 µm até 0,43 µm nos diferentes exemplares. A formulação cariotípica para o híbrido n° 11648 (2n = 2x = 60, coletado no município de Valente, foi de 2mv + 38m + 10sm + 8st + 2t. Já para os pentaplóides (2n = 5x = 142 c.a. coletadas nos municípios de Conceição do Coité e Valente a classificação cromossômica encontrada foi: 14m + 66sm + 38st + 2a + 22t e 82m + 48sm + 12st, respectivamente. Fatores como maior comprimento genômico, presença de cromossomos acrocêntricos, subtelocêntricos e telocêntricos nos cariótipos bimodais e a diminuição na quantidade de cromossomos grandes com conseqüente aumento no número de cromossomos pequenos podem indicar o andamento de um processo divergente.Sisal plantations have become one of the more important economic activities in the semiarid region of Bahia, where the environmental adversities are too harsh for most other agricultural operations. In the face of economic importance, cytogenetic studies of sisal are necessary because they could provide information that would aid in the production of improved lineages. In this study, the analyses of the immature bulbs, collected from five different areas in Bahia, showed the presence of diploid and pentaploid individuals, with chromosomal lengths varying from 24.56 µm to 0.43 µm in the different samples. The karyotype formulation for the hybrid n° 11648 (2n = 2x = 60, collected in the district of Valente, was 2mv + 38

  5. A simple method of DNA isolation from jute (Corchorus olitorius) seed suitable for PCR-based detection of the pathogen Macrophomina phaseolina (Tassi) Goid.

    Science.gov (United States)

    Biswas, C; Dey, P; Satpathy, S; Sarkar, S K; Bera, A; Mahapatra, B S

    2013-02-01

    A simple method was developed for isolating DNA from jute seed, which contains high amounts of mucilage and secondary metabolites, and a PCR protocol was standardized for detecting the seedborne pathogen Macrophomina phaseolina. The cetyl trimethyl ammonium bromide method was modified with increased salt concentration and a simple sodium acetate treatment to extract genomic as well as fungal DNA directly from infected jute seed. The Miniprep was evaluated along with five other methods of DNA isolation in terms of yield and quality of DNA and number of PCR positive samples. The Miniprep consistently recovered high amounts of DNA with good spectral qualities at A260/A280. The DNA isolated from jute seed was found suitable for PCR amplification. Macrophomina phaseolina could be detected by PCR from artificially inoculated as well as naturally infected jute seeds. The limit of PCR-based detection of M. phaseolina in jute seed was determined to be 0·62 × 10(-7) CFU g(-1) seed. © 2012 The Society for Applied Microbiology.

  6. Confamiliar transferability of simple sequence repeat (SSR) markers from cotton (Gossypium hirsutum L.) and jute (Corchorus olitorius L.) to twenty two Malvaceous species.

    Science.gov (United States)

    Satya, Pratik; Paswan, Pramod Kumar; Ghosh, Swagata; Majumdar, Snehalata; Ali, Nasim

    2016-06-01

    Cross-species transferability is a quick and economic method to enrich SSR database, particularly for minor crops where little genomic information is available. However, transferability of SSR markers varies greatly between species, genera and families of plant species. We assessed confamiliar transferability of SSR markers from cotton (Gossypium hirsutum) and jute (Corchorus olitorius) to 22 species distributed in different taxonomic groups of Malvaceae. All the species selected were potential industrial crop species having little or no genomic resources or SSR database. Of the 14 cotton SSR loci tested, 13 (92.86 %) amplified in G. arboreum and 71.43 % exhibited cross-genera transferability. Nine out of 11 jute SSRs (81.81 %) showed cross-transferability across genera. SSRs from both the species exhibited high polymorphism and resolving power in other species. The correlation between transferability of cotton and jute SSRs were highly significant (r = 0.813). The difference in transferability among species was also significant for both the marker groups. High transferability was observed at genus, tribe and subfamily level. At tribe level, transferability of jute SSRs (41.04 %) was higher than that of cotton SSRs (33.74 %). The tribe Byttnerieae exhibited highest SSR transferability (48.7 %). The high level of cross-genera transferability (>50 %) in ten species of Malvaceae, where no SSR resource is available, calls for large scale transferability testing from the enriched SSR databases of cotton and jute.

  7. Artificial miRNA-mediated down-regulation of two monolignoid biosynthetic genes (C3H and F5H) cause reduction in lignin content in jute.

    Science.gov (United States)

    Shafrin, Farhana; Das, Sudhanshu Sekhar; Sanan-Mishra, Neeti; Khan, Haseena

    2015-11-01

    Artificial microRNAs (amiRNA) provide a new feature in the gene silencing era. Concomitantly, reducing the amount of lignin in fiber-yielding plants such as jute holds significant commercial and environmental potential, since this amount is inversely proportional to the quality of the fiber. The present study aimed at reducing the lignin content in jute, by introducing amiRNA based vectors for down-regulation of two monolignoid biosynthetic genes of jute, coumarate 3-hydroxylase (C3H) and ferulate 5-hydroxylase (F5H). The transgenic lines of F5H-amiRNA and C3H-amiRNA showed a reduced level of gene expression, which resulted in about 25% reduction in acid insoluble lignin content for whole stem and 12-15% reduction in fiber lignin as compared to the non-transgenic plants. The results indicate successful F5H-amiRNA and C3H-amiRNA transgenesis for lignin reduction in jute. This is likely to have far-reaching commercial implications and economic acceleration for jute producing countries.

  8. IMPACT OF JUTE RETTING ON NATIVE FISH DIVERSITY AND AQUATIC HEALTH OF ROADSIDE TRANSITORY WATER BODIES: AN ASSESSMENT IN EASTERN INDIA

    Directory of Open Access Journals (Sweden)

    Dipankar Ghosh

    2015-09-01

    Full Text Available Roadside transitory water bodies being manmade depressions have a great ecological and socio-economic importance from years. The effects of agricultural runoffs, jute retting, macro-phytes infestations and inadequate rainfall in changed climate often degrade transitory water bodies’ environment while the biodiversity have impacted severely because of population pressure, over exploitation and indiscriminate use of fine meshed fishing gears as a whole. Physico-chemical and biological analysis with fish species composition, relative abundance, diversity indices like species richness, evenness and Shannon-Wiener index were carried out for pre-, during and post-jute retting season and for year mean as a whole to assess impact of jute retting on the roadside transitory water body’s environmental health and indigenous fish diversity at Sahebnagar village in Nadia District, India. All the physico-chemical parameters barring biochemical oxygen demand and water transparency remained more or less same or marginally got little changed during those three seasons. As much as 19 native fish species with varied relative abundances and dominances were identified. Jute retting impacted lower native fish diversity indices like Shannon-Wiener index values (1.94 to 2.68 clearly indicated poor to moderate pollution status of the transitory water body in that area during monsoon in particular and throughout the year in general. So we opined there should be some control over the intense jute retting in the road side transitory water bodies for sustainable management of these manmade resources.

  9. Efeito da argila calcinada sobre a durabilidade de argamassas reforçadas com fibras curtas de sisal Effect of calcined clay on aging of sisal short fiber reinforced mortar

    Directory of Open Access Journals (Sweden)

    João de Farias Filho

    2010-10-01

    Full Text Available O interesse pelo uso de fibras vegetais como reforço de matrizes, à base de cimento, tem crescido em todo o mundo nos últimos anos, sendo limitado pela baixa durabilidade das fibras no meio alcalino. Com o tempo, as fibras podem mineralizar devido à migração de hidróxido de cálcio (CH da matriz para o lúmen e paredes das fibro-células. Procurou-se consumir, no presente estudo, o CH livre utilizando-se resíduo de tijolo moído e metacaulinita em substituição parcial, de 20 e 40% em peso, do cimento portland. Compósitos com fibras de sisal e matrizes cimento-pozolana foram submetidos a ensaios de resistência a flexão, após 28 dias de cura em água, 135 e 180 dias de envelhecimento natural e após 94 ciclos de molhagem e secagem. Os resultados indicaram que é possível consumir todo o CH da matriz, o que resultou na manutenção da tenacidade inicial do compósito e no aumento da sua resistência a flexão após exposição natural ou ciclos de molhagem e secagem.In the last few years a growing interest in the use of sisal fibers as reinforcement in cement based composites has been observed. However, the main concern for its use is related with the durability of the fibers in the alkaline water of concrete as they can mineralize due to the migration of calcium hydroxide to the fiber lumen and cell walls. In this study, the alkalinity of the matrix was reduced using metakaolin and crushed waste calcined clay bricks as cement replacement. The percentage of cement replacement ranged from 20 to 40% on weight basis. Flexural tests were carried out in the composites after 28 days of cure in water, 135 and 180 days of ageing in the open air and after 94 cycles of wetting and drying. These results indicated that the mixture with cement replacement consumed all calcium hydroxide and kept the toughness over time.

  10. Isolation and characterization of microfibrillated cellulose (MFC) from jute%黄麻微纤化纤维素的制备及特征分析

    Institute of Scientific and Technical Information of China (English)

    段玲; 于伟东

    2015-01-01

    Jute microfibrillated cellulose ( MFC ) was extracted from jute by means of a super-grinding method. Jute purified cellulose were prepared by treating jute fibers with dimethyl sulfoxide (DMSO) pre-treatment and then applying acidified sodium chlorite and hydrogen peroxide/sodium hydroxide solution. Finally passed the slurry of purified cellulose through a grinder. Non-cellulosic materials were removed ef-ficiently during purified process. The jute samples after each treatment stage were characterized by chemi-cal testing, SEM, FE-SEM, FTIR and XRD. The result showed that the crystallinity of jute MFC was 70. 95%,and its diameter is in the range of 6~34 nm.%以黄麻为原料,先用二甲基亚砜溶液对黄麻进行前处理,再经酸性亚氯酸钠和双氧水/氢氧化钠溶液处理,除去其中的木质素与半纤维素等成分,得到黄麻纯纤维素,通过超微粉碎机处理,分离出黄麻微纤化纤维素。各阶段产物进行化学成分测试、扫描电镜( SEM)、场发射扫描电镜( FE-SEM)、傅里叶变换红外吸收光谱( FTIR)、X射线衍射(XRD)表征。结果表明,黄麻微纤化纤维素结晶度达到70.95%,直径主要分布在6~34 nm之间。

  11. Identifying acetylated lignin units in non-wood fibers using pyrolysis-gas chromatography/mass spectrometry.

    Science.gov (United States)

    del Río, José C; Gutiérrez, Ana; Martínez, Angel T

    2004-01-01

    A series of non-wood plant fibers, namely kenaf, jute, sisal and abaca, have been analyzed upon pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) of the whole material. The pyrolysis products mainly arise from the carbohydrate and lignin moieties of the fibers. The lignin-derived phenols belonged to the p-hydroxyphenylpropanoid (H), guaiacylpropanoid (G) and syringylpropanoid (S) structures, and showed a high S/G ratio of between 2.0 and 5.4, the highest corresponding to kenaf. Among the lignin-derived phenols released, small amounts of sinapyl and coniferyl acetates (in both cis- and trans-forms) were identified for the first time upon Py-GC/MS of lignocellulosic materials. Acetylation of the sinapyl and coniferyl alcohols was at the gamma-position of the side chain. The release of these alcohols derived from intact acetylated lignin units upon pyrolysis seems to indicate that the native lignin in the fibers selected for this study is at least partially acetylated. Sinapyl (and coniferyl) acetates have recently been suggested to be authentic lignin precursors involved in the polymerization of lignin along with the normal sinapyl and coniferyl alcohols. Py-GC/MS will offer a convenient and rapid tool for analyzing naturally acetylated lignins, as well as to screen plant materials for the presence of acetylated units in lignin.

  12. The Effect of Various Weave Designs on Mechanical Behavior of Lamina Intraply Composite Made from Kenaf Fiber Yarn

    Science.gov (United States)

    Yuhazri, M. Y.; Amirhafizan, M. H.; Abdullah, A.; Sihombing, H.; Saarah, A. B.; Fadzol, O. M.

    2016-11-01

    The development of lamina intraply composite is a novel approach that can be adopted to address the challenges of balance mechanical properties of polymer composite. This research will focuses on the effects of weave designs on the mechanical behavior of a single ply or also known as lamina intraply composite. The six (6) specimens of lamina intraply composites were made by kenaf fiber as a reinforcement and unsaturated polyester resin as a matrix in various weave designs which were plain, twill, satin, basket, mock leno and leno weave. The vacuum infusion technique was adopted due to advantages over hand lay-up. It was found that the plain, twill and satin weave exhibited better mechanical properties on tensile strength. The fiber content of the specimen was 40% and the result of the resin content of the specimen was 60% due to the higher permeability of natural fiber.

  13. Influence of coagulation concentration on properties of regenerated kenaf core membranes produced in NaOH/urea aqueous solution

    Science.gov (United States)

    Azahari, Nor Aziawati; Jaafar, Sharifah Nabihah Syed; Zakaria, Sarani

    2016-11-01

    Cellulose was extracted from kenaf core pulp by a series of bleaching processes and subsequently dissolved using an alkaline NaOH/urea solvent at low temperature. The produced cellulose solution was coagulated with H2SO4 at concentration from 5 to 12 wt% to produce a series of regenerated cellulose (RC) membranes. The surface morphology, structure and physical properties of the membranes were measured with variable pressure scanning electron microscope (VPSEM), X-ray diffraction (XRD), UV-vis spectrophotometer and tensile testing. The results from VPSEM revealed that the pore size of the membranes changed as a function of the concentration of H2SO4 coagulant. RC membranes coagulated with relatively dilute H2SO4 solution exhibited better mechanical properties. Thus, this work provided a promising way to prepare cellulose membranes with different pore sizes and good physical properties.

  14. Overcoming the Recalcitrance for the Conversion of Kenaf Pulp to Glucose via Microwave-Assisted Pre-Treatment Processes

    Directory of Open Access Journals (Sweden)

    Miguel A. Hurtado

    2011-02-01

    Full Text Available This study evaluates the pre-treatment of cellulose from kenaf plant to yield sugar precursors for the production of ethanol or butanol for use as biofuel additives. In order to convert the crystalline cellulosic form to the amorphous form that can undergo enzymatic hydrolysis of the glycosidic bond to yield sugars, kenaf pulp samples were subjected to two different pre-treatment processes. In the acid pre-treatment, the pulp samples were treated with 37.5% hydrochloric acid in the presence of FeCl3 at 50 °C or 90 °C whereas in the alkaline method, the pulp samples were treated with 25% sodium hydroxide at room temperature and with 2% or 5% sodium hydroxide at 50 °C. Microwave-assisted NaOH-treatment of the cellulose was also investigated and demonstrated to be capable of producing high glucose yield without adverse environmental impact by circumventing the use of large amounts of concentrated acids i.e., 83–85% phosphoric acid employed in most digestion processes. The treated samples were digested with the cellulase enzyme from Trichoderma reesei. The amount of glucose produced was quantified using the QuantichromTM glucose bioassay for assessing the efficiency of glucose production for each of the treatment processes. The microwave-assisted alkaline pre-treatment processes conducted at 50 °C were found to be the most effective in the conversion of the crystalline cellulose to the amorphous form based on the significantly higher yields of sugar produced by enzymatic hydrolysis compared to the untreated sample.

  15. Antagonistic Effects of Fertilizer on Photochemical Efficiency of Hibiscus cannabinus L. (Kenaf Planted on Beach Ridges Interspersed with Swales Soil

    Directory of Open Access Journals (Sweden)

    Mohd-Hazimy Yusoff

    2011-01-01

    Full Text Available Problem statement: Hibiscus cannabinus L. or Kenaf is a highly productive, warmseasonal C3 annual crop and is one of the potential candidates to substitute kenaf fiber as raw product for pulp and paper production. It survives well on less fertile soils including those of Beach Ridges Interspersed with Swales (BRIS soil. Approach: The objective of this study was to determine the effect of fertilizer on photochemical efficiency of H. cannabinus L. planted on BRIS soil using chlorophyll fluorescence technique. NPK with the ratio of 12:12:36 + 2MgO + TE (Trace-elements are mineral substances that act as an essential nutrients at a very low concentration and the micronutrient of the trace elements compositions are Boron, Copper, Iron, Manganese, Molybdenum and Zinc were used for fertilizer treatment. Three levels of fertilizer treatments were applied in three plots; high (1960 kg plot-1, medium (1260 kg plot-1 and low (700 kg plot-1 respectively each plot comprising 106, 000 plants and were planted in 20 lines. Photochemical efficiency in terms of Fv/Fm ratio was determined under water deficit condition, fertilizer toxicity and interaction of both factors. Results: Contrasting trends for photochemical parameters were observed between different fertilizer levels where antagonistic effects were found between the three fertilizer treatments. The mean values ranged for minimal fluorescence (Fo were from 256.27-273.06, maximal fluorescence (Fm were from 970-1110.5, variable fluorescence (Fv were from 705-854.23 and the ratio of Fv/Fm (photochemical efficiency were from 0.72-0.77, respectively. Hitherto, for stress level, percentage for the low fertilizer level was 23.5% as compared to medium with 26.8 and 27.6% for high fertilizer level. Conclusion: The present study revealed that an appropriate amount of fertilizer is required to maximize the yield production cost effectively.

  16. Action of sisal (Agave sisalana, Perrine) extract in the in vitro development of sheep and goat gastrointestinal nematodes.

    Science.gov (United States)

    Silveira, Roberta X; Chagas, Ana Carolina S; Botura, Mariana B; Batatinha, Maria J M; Katiki, Luciana M; Carvalho, Camila O; Bevilaqua, Cláudia M L; Branco, Alexsandro; Machado, Elane A A; Borges, Simone L; Almeida, Maria A O

    2012-06-01

    Active compounds from Agave sisalana with antiparasitic action against gastrointestinal nematodes (GINs) could be an alternative to diversify the range of parasite management methods in the livestock sector. The objective of this study was to evaluate the in vitro action of A. sisalana extract on the development of sheep and goat GINs. The extract, obtained from shredded sisal leaves, was utilized at various concentrations in the egg hatch test (EHT), larval development test (LDT), larval feeding inhibition test (LFIT) and adult motility test (AMT). The LC(50) and LC(95) in the EHT were 6.90 and 24.79 mg/mL, in the LDT were 0.041 and 0.067 mg/mL and in the LFIT were 0.053 and 0.24 mg/mL, respectively, showing a dose-dependent relationship. The development and feeding inhibition on L(1) were both 100% at a dose of 0.12 mg/mL. In the AMT there was 100% inhibition at 75 mg/mL after 24h of exposure. The extract of A. sisalana therefore demonstrated significant action on L(1) at 0.12 mg/mL. So, if part of the A. sisalana extract passes through the animal's gastrointestinal system, this material can have a significant effect on the parasites in the feces. This is an interesting approach because it can drastically reduce the pasture contamination as well as the infection of herds.

  17. A influência do espaçamento sôbre o ciclo vegetativo do sisal

    Directory of Open Access Journals (Sweden)

    J. C. Medina

    1946-01-01

    Full Text Available The present paper deals with the influence of different rates of spacing on the poling of sisal plants (Agave sisalana Perrine. The results were obtained from spacing trials (four randomized blocks of nine treatments carried out at the Ribeirão Preto and Pindorama Experimental Stations. The percentages of poling plants, up to the 5th leaf cutting, were 20,0% and 91,7% for the narrowest (1,2 x 2,0 m and widest (2,0 x 3,0 m spacings tried in Pindorama, while in Ribeirão Preto they were 12,5% and 02,5%, respectivelly. According to these results it may be concluded that the narrow spaced plants were less liable to early poling than the wide spacing ones. The trial at Ribeirão Preto also indicated that among the plants, grown under the same conditions, those producing leaves at a faster rate were the first to pole. At that Station, the yearly average lenf production per plant (for all treatments up to the 4th leaf cutting, has been 41,5 leaves for those plants poling after 63 months ; 38,0 leaves for those poling after 74 months ; and 35,3 leaves for those plants not poled up to 5 th cutting.

  18. Characterization of the antioxidant properties of hydrophilic and lipophilic extracts of Jute (Corchorus olitorius) leaf.

    Science.gov (United States)

    Oboh, G; Raddatz, H; Henle, T

    2009-01-01

    Corchorus olitorius (jute) is a native plant of tropical Africa and Asia, and has since spread to Australia, South America and some parts of Europe. Its leafy vegetable is popularly used in soup preparation and folk medicine for the treatment of fever, chronic cystitis, cold and tumours. A comparative study of the antioxidant properties of hydrophilic extract (HE) and lipophilic extract (LE) constituents of the leafy vegetable has been assessed. HE and LE of the leaf were prepared using water and hexane, respectively and their antioxidant properties were determined. HE had a significantly higher (P0.05) in their Fe(II) chelating ability (HE, 57.7-66.7%; LE, 56.4-61.1%). The higher 1,1-diphenyl-2-picrylhydrazyl radical-scavenging ability, reducing power and trolox equivalent antioxidant capacity of the hydrophilic extract may be due to its significantly higher (P<0.05) total phenol (630.8 mg/100 g), total flavonoid (227.8 mg/100 g) and non-flavonoid polyphenols (403.0 mg/100 g), and its high ascorbic acid content (32.6 mg/100 g). While the higher OH. scavenging ability of LE may be due to its high total carotenoid content (42.5 mg/100 g). Therefore, the additive/synergistic antioxidant activities of the hydrophilic and lipophilic constituents may contribute to the medicinal properties of C. olitorius leaf.

  19. Optimization of woven jute/glass fibre-reinforced polyester hybrid composite solar parabolic trough collector

    Science.gov (United States)

    Reddy, K. S.; Singla, Hitesh

    2017-07-01

    In the present work, structural analysis of 5.77m × 4m woven jute (J)/glass (G) fibre-reinforced polyester hybrid composite solar parabolic trough is carried out based on trough parameters to obtain the minimum RMS local slope deviation, termed as SDx value under gravity loading. The optimization is done by varying parameters viz. direction and size of reinforced conduits, stacking number and sequence of hybrid trough laminate at fibre orientation of Δθ=45° and Δθ=60° amongst the layers at 0° collector angle. The analysis revealed that the configuration in which the conduits are placed in both X and Y directions is preferred over other configurations to scale down the effect of wind loads. Furthermore it has been observed that laminate of the order [0°G/45°G/-45°J/90°J]s undergoes minimum surface deformation amongst all the other configurations at conduit reinforcement in both X and Y directions for a conduit thickness of 0.75 mm and radius of 10 mm and obtains the overall SDx value of 1.3492 mrad. The results shows that proposed trough model is very promising and evolves a cost effective system.

  20. Rendimiento y calidad de forraje de kenaf y sorgo nervadura café en unicultivo y en asociación con maíz

    OpenAIRE

    David Guadalupe Reta Sánchez; J. Santos Serrato Corona; José Antonio Cueto Wong; Jesús Santamaría Cesar; Juan Francisco José Chávez González; Jaime Isaías Romero Paredes

    2006-01-01

    El kenaf (Hibiscus cannabinus L.) y el sorgo (Sorghum bicolor L. Moench) de nervadura café presentan características de adaptación y calidad de forraje de potencial importancia para la Comarca Lagunera. En este estudio se evaluó el rendimiento y calidad de forraje, en unicultivo y en asociación de las variedades de kenaf ‘Tainung 2’ y ‘Everglades 41’, el híbrido de maíz (Zea mays L.) ‘P-3025W’ y el sorgo híbrido de nervadura café ‘Silo Master Bar100’. El estudio se hizo en el Campo Experiment...

  1. International competition and strategic response in the Dundee jute industry during the inter-war (1919-1939) and post-war (1945-1960s) period : the case of jute industries, Buist Spinning, Craiks and Scott & Fyfe

    OpenAIRE

    Masrani, Swapnesh

    2008-01-01

    This research uses the ‘demand-side thesis’ to examine the decline of the Dundee jute industry. In particular, it examines the effect of international competition and the strategic response of the industry during the inter-war (1919-1939) and the post-war (1945-1960s) period to counter this challenge. The strategic response is studied by examining strategies employed at the firm and the industry level. Strategy at the firm level is studied in the form of capability development usi...

  2. Analysis of Processing Method Status of Sisal Leaf in Guangxi%广西剑麻叶片加工方法现状分析

    Institute of Scientific and Technical Information of China (English)

    黄富宇; 张小玲

    2012-01-01

    广西剑麻叶片加工方式主要有2种:全自动生产线加工和手拉式打麻机加工。通过试验,调查比较,全自动生产线加工比手拉式打麻机加工具有明显优势:加工出来的剑麻纤维质量好;劳动生产率提高;费用低、经济效益明显。但全自动生产线加工存在产地与工厂脱节、原料有序调配难、价格优势缩小等问题,建议政府加大协调扶持力度,以促进剑麻产业的健康发展。%There are mainly two methods: automatic production line and hand brake scutcher for processing sisal leaf in Guangxi. The experiment on investigation and comparison of two process methods was conducted. The results showed that, compared with the hand brake scutcher, the automatic production line which can process top quality sisal fiber has obvious advantages: high production efficiency, low cost and remarkable economic benefit. But the automatic production line also has some existing problems such as disjunction of producing area and factory, difficulty in orderly allocation of raw materials and reduction of price advantage. It was proposed that the government should intensify coordination and support to promote the sound development of sisal industry.

  3. Resíduos de sisal como reforço em compósitos de polipropileno virgem e reciclado

    OpenAIRE

    Rosário, Francisco; Pachekoski,Wagner M.; Silveira,Ana P. J.; Santos,Sérgio F. dos; Júnior,Holmer S.; Casarin,Suzan Aline

    2011-01-01

    Foram estudadas as propriedades térmicas e mecânicas de compósitos de polipropileno, virgem e reciclado, reforçados com 30% em massa de fibras residuais de sisal, assim como o perfil de processamento e a morfologia da matriz polimérica. Para tanto, foram determinadas a resistência à tração, o módulo de Young, alongamento na ruptura, e energia de impacto. As amostras também foram caracterizadas por MEV, DMTA e TG. Para ambos os compósitos de polipropileno, virgem e reciclado, com a adição das ...

  4. Resistência mecânica de compósitos cimentícios leves utilizando resíduos industriais e fibras de sisal Mechanical resistence of lightweight cement composites utilizing industrial residues and fibers of sisal

    Directory of Open Access Journals (Sweden)

    Nivaldo T. de Arruda Filho

    2012-08-01

    Full Text Available A valorização de materiais alternativos incorporados com resíduos como opção ao convencional deve possibilitar a geração de um produto com qualidade, estética, produtividade e com potencial de reduzir impactos da poluição ambiental. Este trabalho foi realizado com o objetivo de desenvolver elementos construtivos para forro e divisórias, a partir de matrizes cimentícias com incorporação de resíduos industriais (resíduo cerâmico, etil vinil acetato - EVA e fibras de sisal. Desenvolveram-se técnicas de moldagem em matrizes cimentícias autoadensáveis e se avaliou a resistência mecânica dos novos compósitos. Uma placa com resíduos de EVA foi produzida e, através de trabalhos de reologia, encontrou-se a pasta matriz de revestimento desta placa, com teor adequado de adições pozolânicas e aditivo superplastificante. Avaliaram-se as resistências mecânicas das placas, da pasta matriz de revestimento encontrada, com e sem adição de fibras, e do novo compósito formado pela união desses dois elementos. Utilizou-se a técnica de alinhamento de fibras com o intuito de incrementar resistência ao novo compósito leve. A adição da matriz com fibras alinhadas melhorou a resistência a flexão do novo compósito.The appreciation of alternative materials incorporated in waste as an option to conventional material should enable to generate a product with quality, aesthetics, productivity and reduce the potential impacts of environmental pollution. This study aims to develop constructive elements for ceilings and walls from cementitious matrix incorporating industrial waste (ceramic waste, ethyl vinyl acetate - EVA and sisal fibers. Moulding techniques to produce self-compacting cementitious matrices were developed and the strength of the new composites were evaluated. A plate with EVA waste was produced and through rheology studies, a matrix plaster for coating of plate surface was found, with appropriate content of pozzolanic and

  5. Estudo das propriedades de compósitos biodegradáveis de amido/glúten de milho/glicerol reforçados com fibras de sisal Study of properties of biodegradable composites of starch/gluten/glycerol reinforced with sisal fibers

    Directory of Open Access Journals (Sweden)

    Elisângela Corradini

    2008-01-01

    Full Text Available Neste estudo, fibras de sisal foram utilizadas como reforço para a matriz constituída de amido, glúten de milho e glicerol. O teor de fibra em relação a matriz variou de 5 a 30%. O processamento da matriz e dos compósitos foi realizado em um reômetro de torque Haake à 130 °C, 50 rpm por 10 minutos. As misturas obtidas foram moldadas por compressão à quente. As propriedades mecânicas; termodinâmico-mecânico (DMTA e de absorção de água foram investigadas em função do teor de fibras na matriz de amido/glúten de milho/glicerol. O aumento do conteúdo de fibra provocou uma melhoria nas propriedades mecânicas dos compósitos com relação à matriz. O compósito reforçado com 30% de fibra de sisal apresentou aumento no módulo de elasticidade e tensão na ruptura de aproximadamente de 560 e 162%, respectivamente e diminuição nos valores de elongação na ruptura de 81%. Os resultados obtidos por DMTA mostraram aumento progressivo do módulo de armazenamento (E' e diminuição do módulo de amortecimento (tan d com o aumento do teor de fibra, confirmando o efeito de reforço das fibras de sisal na matriz de amido/glúten de milho/glicerol. A incorporação das fibras na matriz também provocou diminuição da absorção de umidade e no coeficiente de difusão de água. A análise da morfologia dos compósitos mostrou boa dispersão das fibras na matriz.Biocomposites using starch/gluten/glycerol as matrix and sisal fibers were produced by melt-mixing in an intensive batch mixer connected to a torque rheometer at 130 °C. The samples were compression molded and than characterized by water absorption and mechanical test. In tensile test, the increasing in the Young's modulus and ultimate tensile strenght were respectively of aproximately 560 and 162% in relation to matrix, whereas elongation at break decreased. The storage modulus increased with increasing fiber content whereas tan d curves decreased, confirming the reinforcing

  6. Draft Genome Sequence of Grammothele lineata SDL-CO-2015-1, a Jute Endophyte with a Potential for Paclitaxel Biosynthesis.

    Science.gov (United States)

    Das, Avizit; Ahmed, Oly; Baten, A K M Abdul; Bushra, Samira; Islam, M Tariqul; Ferdous, Ahlan Sabah; Islam, Mohammad Riazul; Khan, Haseena

    2017-08-17

    Grammothele lineata strain SDL-CO-2015-1, a basidiomycete fungus, was identified as an endophyte from a jute species, Corchorus olitorius var. 2015, and found to produce paclitaxel, a diterpenic polyoxygenated pseudoalkaloid with antitumor activity. Here, we report the draft genome sequence (42.8 Mb with 9,395 genes) of this strain. Copyright © 2017 Das et al.

  7. Efeito de diferentes condições de fermentação sobre o teor e composição da fração de sapogeninas do suco de sisal

    National Research Council Canada - National Science Library

    Marco Antonio Teixeira Zullo; Roberto Machado de Moraes; Antonio Luiz de Barros Salgado; Anísio Azzini

    1984-01-01

    Suco de sisal (Agave sisalana (Engelm.) Perrine), recém-colhido, foi deixado fermentar por dez dias, espontaneamente ou por Saccharomyces cerevisae, processando-se, em cada caso, a fermentação protegida ou não do ambiente...

  8. The effectiveness of jute and coir blankets for erosion control in different field and laboratory conditions

    Science.gov (United States)

    Kalibová, Jana; Jačka, Lukáš; Petrů, Jan

    2016-03-01

    Vegetation cover is found to be an ideal solution to most problems of erosion on steep slopes. Biodegradable geotextiles (GTXs) have been proved to provide sufficient protection against soil loss in the period before vegetation reaches maturity, so favouring soil formation processes. In this study, 500 g m-2 jute (J500), 400 g m-2 (C400), and 700 g m-2 coir (C700) GTXs were first installed on a 9° slope under "no-infiltration" laboratory conditions, then on a 27° slope under natural field conditions. The impact of GTXs on run-off and soil loss was investigated to compare the performance of GTXs under different conditions. Laboratory run-off ratio (percentage portion of control plot) equalled 78, 83, and 91 %, while peak discharge ratio equalled 83, 91, and 97 % for J500, C700, and C400 respectively. In the field, a run-off ratio of 31, 62, and 79 %, and peak discharge ratio of 37, 74, and 87 % were recorded for C700, J500, and C400 respectively. All tested GTXs significantly decreased soil erosion. The greatest soil loss reduction in the field was observed for J500 (by 99.4 %), followed by C700 (by 97.9 %) and C400 (by 93.8 %). Irrespective of slope gradient or experimental condition, C400 performed with lower run-off and peak discharge reduction than J500 and C700. The performance ranking of J500 and C700 in the laboratory differed from the field, which may be explained by different slope gradients, and also by the role of soil, which was not included in the laboratory experiment.

  9. Toxicity and bioefficacy of individual and combination of diversified insecticides against jute hairy caterpillar, Spilarctia obliqua.

    Science.gov (United States)

    Selvaraj, K; Ramesh, V; Gotyal, B S; Satpathy, S

    2015-11-01

    Toxicity of conventional (profenofos 50 EC and λ-cyhalothrin 5 EC) and non-conventional (flubendiamide 480 SC, chlorantraniliprole 18.5 SC, emamectin benzoate 5 SG) insecticides was determined on the basis of median lethal concentration (LC50) values on third instar larvae of jute hairy caterpillar, Spilarctia obliqua under laboratory conditions. Further, the promising binary insecticides combinations with lesser LC50 values and adequate synergistic activity were evaluated under field conditions. The LC50 values calculated for insecticides viz., chlorantraniliprole, flubendiamide emamectin benzoate, λ-cyhalothrin and profenophos were 0.212, 0.232, 0.511, 0.985 and 3.263 ppm, respectively. Likewise, the LC50 values for flubendiamide with λ-cyhalothrin in 3:1 proportion was most toxic (0.103 ppm) amongst all the other binary combinations with λ-cyhalothrin. Chlorantraniliprole in combination with λ-cyhalothrin at 1:1 proportion (0.209 ppm) was most toxic followed by 3:1 proportion (0.345 ppm). Similarly, emamectin benzoate in combination with λ-cyhalothrin at 1:1 proportion was more toxic (0.271 ppm) than 3:1 ratio (0.333 ppm). Toxicity index of flubendiamide + λ-cyhalothrin (3:1 ratio) was highest (970.87). Bioefficacy of synergistic binary combinations along with individual insecticides established the superiority of profenophos + λ-cyhalothrin (3:1) with 89.12% reduction in infestation and recorded maximum fibre yield 38.67qha' under field condition. Moreover, combination of diverse insecticides group might sustain toxicity against the target insect for longer period with least probability of resistance development.

  10. Corchorus olitorius (jute) extract induced cytotoxicity and genotoxicity on human multiple myeloma cells (ARH-77).

    Science.gov (United States)

    İşeri, Özlem Darcansoy; Yurtcu, Erkan; Sahin, Feride Iffet; Haberal, Mehmet

    2013-06-01

    Corchorus olitorius L. (Malvaceae) has industrial importance in world jute production and is a widely cultivated and consumed crop in Cyprus and in some Arabic countries. The present study investigated cytotoxic and genotoxic effects of leaf extracts (LE) and seed extracts (SE) of the C. olitorius on the multiple myeloma-derived ARH-77 cells. The extracts were also evaluated for their total phenol content (TPC) and free radical scavenging activity (FRSA). C. olitorius was collected from Nicosia, Cyprus. TPC and FRSA were measured by Folin-Ciocalteu and DPPH free radical methods, respectively. Cytotoxicity was evaluated by the MTT assay (4-2048 µg/mL range), and DNA damage (at IC50 and ½IC50) was measured by the comet assay. The LE had significantly higher total phenol (78 mg GAE/g extract) than the SE (2 mg GAE/g extract) with significantly higher FRSA (IC50 LE: 23 µg/mL and IC50 SE: 10 401 µg/mL). Both LE and SE exerted cytotoxic effects on cells after 48 h. The IC50 of SE (17 µg/mL) was lower than LE (151 µg/mL), which demonstrates its higher cytotoxicity on cells. The extracts were applied at 150 and 75 µg/mL for LE and at 17 and 8.5 µg/mL for SE, and the results of the comet assay revealed that the extracts induced genotoxic damage on ARH-77 cells. In both 48 h leaf and seed extract treatments, genotoxic damage significantly increased with increasing concentrations at relevant cytotoxic concentrations. To our knowledge, this is the first report demonstrating the high cytotoxic potential of C. olitorius SE and the genotoxic potential of LE and SE.

  11. De novo transcriptome sequence and identification of major bast-related genes involved in cellulose biosynthesis in jute (Corchorus capsularis L.).

    Science.gov (United States)

    Zhang, Liwu; Ming, Ray; Zhang, Jisen; Tao, Aifen; Fang, Pingping; Qi, Jianmin

    2015-12-15

    Jute fiber, extracted from stem bast, is called golden fiber. It is essential for fiber improvement to discover the genes associated with jute development at the vegetative growth stage. However, only 858 EST sequences of jute were deposited in the GenBank database. Obviously, the public available data is far from sufficient to understand the molecular mechanism of the fiber biosynthesis. It is imperative to conduct transcriptomic sequence for jute, which can be used for the discovery of a number of new genes, especially genes involved in cellulose biosynthesis. A total of 79,754,600 clean reads (7.98 Gb) were generated using Illumina paired-end sequencing. De novo assembly yielded 48,914 unigenes with an average length of 903 bp. By sequence similarity searching for known proteins, 27,962 (57.16 %) unigenes were annotated for their function. Out of these annotated unigenes, 21,856 and 11,190 unigenes were assigned to gene ontology (GO) and euKaryotic Ortholog Groups (KOG), respectively. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) indicated that 14,216 unigenes were mapped to 268 KEGG pathways. Moreover, 5 Susy, 3 UGPase, 9 CesA, 18 CSL, 2 Kor (Korrigan), and 12 Cobra unigenes involving in cellulose biosynthesis were identified. Among these unigenes, the unigenes of comp11264_c0 (SuSy), comp24568_c0 (UGPase), comp11363_c0 (CesA), comp11363_c1 (CesA), comp24217_c0 (CesA), and comp23531_c0 (CesA), displayed relatively high expression level in stem bast using FPKM and RT-qPCR, indicating that they may have potential value of dissecting mechanism on cellulose biosynthesis in jute. In addition, a total of 12,518 putative gene-associate SNPs were called from these assembled uingenes. We characterized the transcriptome of jute, discovered a broad survey of unigenes associated with vegetative growth and development, developed large-scale SNPs, and analyzed the expression patterns of genes involved in cellulose biosynthesis for bast

  12. Axial Crushing and Energy Absorption of Empty and Foam Filled Jute-glass/ Epoxy Bi-tubes

    Directory of Open Access Journals (Sweden)

    Khalid Asad A.

    2016-01-01

    Full Text Available Experimental work on the axial crushing of empty and polyurethane foam filled bi-tubular composite cone-tube has been carried out. Hand lay-up method was used to fabricate the bi-tubes using woven roving glass, jute and hybrid jute-glass/epoxy materials. The tubes were of 56 mm diameter, and the cones top diameters were 65 mm. Cone semi-apical angles of 5°, 10°, 15°, 20° and 25° were examined. Height of 120 mm was maintained for all the fabricated specimens. Effects of material used, cone semi apical angle and foam filler on the load-displacement relation, maximum load, crush force efficiency, and the specific energy absorption and failure mode were investigated. Results show that the foam filler improved the progressive crushing process, increased the maximum load and the absorbed energy of the bi-tubes. The maximum crushing load and the specific energy absorption increased with increasing the cone semi apical angle up to 20° for the empty bi-tubes and up to 25° for the foam filled bi-tubes. Progressive failure mode with fiber and matrix cracking was observed at the top narrow side of the fractured bi-tubes as well as at the bottom surface of 20° and 25° cone semi-apical angle bi-tubes.

  13. Assessment of changes in community level physiological profile and molecular diversity of bacterial communities in different stages of jute retting.

    Science.gov (United States)

    Das, Biswapriya; Chakrabarti, Kalyan; Ghosh, Sagarmoy; Chakraborty, Ashis; Saha, Manabendra Nath

    2013-12-01

    Retting of jute is essentially microbiological and biochemical in nature. Community Level Physiological Profiles (CLPP) as well as genomic diversity of bacterial communities were assessed in water samples collected during pre-retting, after 1st and 2nd charges of retting. The water samples were collected from two widely cultivated jute growing locations, Sonatikari (22 degrees 41'27"N; 88 degrees 35'44"E) and Baduria (22 degrees 44'24"N; 88 degrees 47'24"E), West Bengal, India. The CLPP, expressed as net area under substrate utilization curve, was studied by carbon source utilization patterns in BIOLOG Ecoplates. Molecular diversity was studied by polymerase chain reaction followed by denaturing gradient gel electrophoresis (PCR-DGGE) of total DNA from water samples. Both between locations and stages of retting, substrate utilizations pattern were carbohydrates > carboxylic acids > polymers > amino acids > amines/amides > phenolic compounds. Differential substrate utilization pattern as well as variation in banding pattern in DGGE profiles was observed between the two locations and at different stages of retting. The variations in CLPP in different stages of retting were due to the change in bacterial communities.

  14. Stability analysis of a high fibre yield and low lignin content "thick stem" mutant in tossa jute (Corchorus olitorius L.).

    Science.gov (United States)

    Mandal, Aninda; Datta, Animesh K

    2014-01-01

    A "thick stem" mutant of Corchorus olitorius L. was induced at M2 (0.50%, 4 h, EMS) and the true breeding mutant is assessed across generations (M5 to M7) considering morphometric traits as well as SEM analysis of pollen grains and raw jute fibres, stem anatomy, cytogenetical attributes, and lignin content in relation to control. Furthermore, single fibre diameter and tensile strength are also analysed. The objective is to assess the stability of mutant for its effective exploration for raising a new plant type in tossa jute for commercial exploitation and efficient breeding. The mutant trait is monogenic recessive to normal. Results indicate that "thick stem" mutant is stable across generations (2n = 14) with distinctive high seed and fibre yield and significantly low lignin content. Stem anatomy of the mutant shows significant enhancement in fibre zone, number of fibre pyramids and fibre bundles per pyramid, and diameter of fibre cell in relation to control. Moreover, tensile strength of mutant fibre is significantly higher than control fibre and the trait is inversely related to fibre diameter. However the mutant is associated with low germination frequency, poor seed viability, and high pollen sterility, which may be eliminated through mutational approach followed by rigorous selection and efficient breeding.

  15. Effect of jute dust exposure on ventilatory function and the pertinence of cough and smoking to the response.

    Science.gov (United States)

    Chattopadhyay, B P; Alams, J; Gangopadhyay, P K; Saiyed, H N

    1995-06-01

    The ventilatory capacity of 32 men exposed to jute dust in the jute industry, was estimated at the beginning and end of shifts on the first day and last day of a working week. A detailed occupational, clinical and smoking history was recorded and a more detailed questionnaire on respiratory symptoms was completed prior to the pulmonary function tests. The presence of a productive cough among workers was noted. A mean decrease of forced expiratory volume at one second (FEV1) was observed among workers according to processes, concentration of dust exposure and smoking habit on the first day and last day of the week. The mean difference of values was observed in most of the comparisons but only a few were statistically significant. Low mean values of FEV1 were observed in workers having high dust exposure, a smoking history and productive cough in comparison to the low dust exposure group, non-smokers and workers without cough symptoms. The significant deterioration of FEV1 was found between before shift and after shift values of the low dust exposed group of workers who had a cough and smoking history. The relevance of these factors on the ventilatory function is observed and discussed.

  16. Optimization of mechanical properties of non-woven short sisal fibre-reinforced vinyl ester composite using factorial design and GA method

    Indian Academy of Sciences (India)

    S Velumani; P Navaneethakrishnan; S Jayabal; D S Robinson Smart

    2013-08-01

    This work presents a systematic approach to evaluate and study the effect of process parameters on tensile, flexural and impact strength of untreated short sisal fibre-reinforced vinyl ester polymer-based composites and predicts the optimum properties of random natural fibre-reinforced composites. The natural fibre of sisal at lengths of 10, 30 and 50 mm and vinyl ester resin at loadings of 15, 30 and 45 (wt%) were prepared. The composite panel was then fabricated using hand lay method in cold process of size 180 × 160 mm2. Samples were then cut from the panel and subjected to mechanical properties testing such as tensile, flexural and impact strengths. The average tensile strength ranges between 27.1 and 43.9 MPa. The flexural strength ranged between 26.9 and 49.5 MPa and the impact strength ranged between 16 and 93 J/m. The strength values were optimized using factorial design and genetic algorithm (GA) method. The predicted optimum process parameter values are in good agreement with the experimental results.

  17. Valorization of an industrial organosolv-sugarcane bagasse lignin: Characterization and use as a matrix in biobased composites reinforced with sisal fibers.

    Science.gov (United States)

    Ramires, Elaine C; Megiatto, Jackson D; Gardrat, Christian; Castellan, Alain; Frollini, Elisabete

    2010-11-01

    In the present study, the main focus was the characterization and application of the by-product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic-type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p-hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin-formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m(-1) for a 40 wt% sisal fiber-reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber-reinforced biobased composites displaying high mechanical properties.

  18. Aplicação de cinzas residuais e de fibra de sisal na produção de argamassas e concretos: Revisão

    Directory of Open Access Journals (Sweden)

    Indara Soto Izquierdo

    2014-01-01

    Full Text Available The industrial development linked to the growing addiction to con - sumption, obsession with fossil fuels, and general desire for short term profit, cause a certain insensitivity to more sustainable alternatives. The construction industry is a sector in which the incorporation of various types of waste presents as favorable. Three types of waste with different characteristics and origins have proved attractive and advantageous for many developing countries. They are incinerated municipal solid waste, bagasse ash from sugar-cane and sisal fiber. The aim of the paper was to realize a literature review of the characteristics, use and importance of these residues as application in construction. The interest in the re-use of these waste materials as raw material in mortar and concrete allows for proper disposal and minimizing the generation of waste, moreover, would no longer be the primary cause of problems relating to public health and the environment. Fortunately, there is a tendency among researchers to stimulate the search for new raw materials that come from cleaner and renewable sources. All studies referenced in the article showed the feasibility of using sisal fiber and residual ash for the manufacture of concrete and mortar.

  19. Whiskers de fibra de sisal obtidos sob diferentes condições de hidrólise ácida: efeito do tempo e da temperatura de extração Whiskers from sisal fibers obtained under different acid hydrolysis conditions: effect of time and temperature of extraction

    Directory of Open Access Journals (Sweden)

    Kelcilene B. R. Teodoro

    2011-01-01

    Full Text Available Neste trabalho, os efeitos de diferentes condições de tempo e temperatura usados para a preparação de whiskers de sisal foram investigados com o objetivo de se determinar a influência destes parâmetros experimentais na morfologia, cristalinidade e estabilidade térmica dos materiais preparados. A obtenção dos whiskers deu-se após o pré-branqueamento da fibra de sisal com solução alcalina de peróxido de hidrogênio. A fibra branqueada foi submetida ao processo de hidrólise com solução de ácido sulfúrico 60% (m/m sob três diferentes condições de temperatura e tempos de extração: 45 °C e 60 minutos (WS45_60; 45 °C e 75 minutos (WS45_75 e 60 °C e 30 minutos (WS60_30. Os whiskers foram caracterizados quanto à morfologia por microscopia eletrônica de transmissão (MET, quanto à cristalinidade (DRX, carga superficial (potencial zeta , teor de enxofre (análise elementar e quanto à estabilidade térmica por termogravimetria (TGA. Os resultados mostraram que os whiskers de sisal apresentaram comprimento e diâmetro médios e 210 nm e 5 nm respectivamente. Devido à alta aglomeração dos whiskers, diferenças relativas às características dimensionais não puderam ser determinadas. Os resultados obtidos revelaram uma forte dependência da cristalinidade final dos whiskers com a temperatura e tempo de extração. O uso de temperatura mais alta (60 °C associado a um menor tempo de extração (30 minutos resulta em whiskers com boa estabilidade térmica (235 °C, maior cristalinidade e sem o comprometimento da estrutura cristalina da celulose.In this work, the effects of different conditions of time and temperature, used for the preparation of whiskers from sisal, were investigated to determine the influence of experimental parameters on morphology, crystallinity and thermal stability of materials prepared. The whiskers were obtained after the bleaching of sisal raw fiber with a solution of hydrogen peroxide alkaline. The

  20. Composites from bast fibres - prospects and potential in the changing market environment

    CSIR Research Space (South Africa)

    Anandjiwala, RD

    2004-10-01

    Full Text Available Composite materials reinforced with natural fibres, such as flax, hemp, kenaf and jute, are gaining increasing importance in automotive, aerospace, packaging and other industrial applications due to their lighter weight, competitive specific...

  1. Optimization of Blending Parameters and Fiber Size of Kenaf-Bast-Fiber-Reinforced the Thermoplastic Polyurethane Composites by Taguchi Method

    Directory of Open Access Journals (Sweden)

    Y. A. El-Shekeil

    2013-01-01

    Full Text Available “Kenaf-fibers- (KF-” reinforced “thermoplastic polyurethane (TPU” composites were prepared by the melt-blending method followed by compression molding. Composite specimens were cut from the sheets that were prepared by compression molding. The criteria of optimization were testing the specimens by tensile test and comparing the ultimate tensile strength. The aim of this study is to optimize processing parameters (e.g., processing temperature, time, and speed and fiber size using the Taguchi approach. These four parameters were investigated in three levels each. The L9 orthogonal array was used based on the number of parameters and levels that has been selected. Furthermore, analysis of variance (ANOVA was used to determine the significance of different parameters. The results showed that the optimum values were 180°C, 50 rpm, 13 min, and 125–300 micron for processing temperature, processing speed, processing time, and fiber size, respectively. Using ANOVA, processing temperature showed the highest significance value followed by fiber size. Processing time and speed did not show any significance on the optimization of TPU/KF.

  2. Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute fibre and its composite

    Indian Academy of Sciences (India)

    E Sinha; S K Rout

    2009-02-01

    Jute fibres (Corchorus olitorious), an environmentally and ecologically friendly product, were chemically modified and treated with 5% NaOH solution at room temperature for 2 h, 4 h and 8 h. The above samples were characterized and morphologically analysed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT–IR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Instron 1185. Alkali treatment affects the supramolecular structure of the fibre as shown by XRD by improving the degree of crystallinity of the fibre. Surface chemistry of the fibre also altered as depicted by FT–IR studies. This chemical treatment was also found to alter the characteristic of the fibre surface topography as seen by the SEM. From the mechanical single fibre test it was found that the tenacity and modulus of the fibre improved after alkali treatment. This might be due to the improvement in the crystallinity. DSC data demonstrated that the thermal degradation temperature for the cellulose get lowered from 365.26°C to 360.62°C after alkali treatment led to the reduction in fibre thermal stability. Jute fibre reinforced composite were prepared with treated and untreated jute fibre (15 wt%) reinforced unsaturated polyester (UPE). Effectiveness of these composites was experimentally investigated through the study of the composites by DSC, Instron 1195 for mechanical property of composites, volume fraction of the porosity and hydrophobic finishing of the composite. From the DSC analysis it was found that thermal stability enhanced for treated fibre reinforced composite. This could be due to the resistance offered by the closely packed cellulose chain in combination with the resin. Flexural strength of the composite prepared with 2 h and 4 h alkali treated fibre were found to increase by 3.16% and 9.5%, respectively. Although 8 h treated fibre exhibited maximum strength properties, but the composite prepared with them showed lower strength

  3. High-density genetic map construction and QTLs identification for plant height in white jute (Corchorus capsularis L.) using specific locus amplified fragment (SLAF) sequencing.

    Science.gov (United States)

    Tao, Aifen; Huang, Long; Wu, Guifen; Afshar, Reza Keshavarz; Qi, Jianmin; Xu, Jiantang; Fang, Pingping; Lin, Lihui; Zhang, Liwu; Lin, Peiqing

    2017-05-08

    Genetic mapping and quantitative trait locus (QTL) detection are powerful methodologies in plant improvement and breeding. White jute (Corchorus capsularis L.) is an important industrial raw material fiber crop because of its elite characteristics. However, construction of a high-density genetic map and identification of QTLs has been limited in white jute due to a lack of sufficient molecular markers. The specific locus amplified fragment sequencing (SLAF-seq) strategy combines locus-specific amplification and high-throughput sequencing to carry out de novo single nuclear polymorphism (SNP) discovery and large-scale genotyping. In this study, SLAF-seq was employed to obtain sufficient markers to construct a high-density genetic map for white jute. Moreover, with the development of abundant markers, genetic dissection of fiber yield traits such as plant height was also possible. Here, we present QTLs associated with plant height that were identified using our newly constructed genetic linkage groups. An F8 population consisting of 100 lines was developed. In total, 69,446 high-quality SLAFs were detected of which 5,074 SLAFs were polymorphic; 913 polymorphic markers were used for the construction of a genetic map. The average coverage for each SLAF marker was 43-fold in the parents, and 9.8-fold in each F8 individual. A linkage map was constructed that contained 913 SLAFs on 11 linkage groups (LGs) covering 1621.4 cM with an average density of 1.61 cM per locus. Among the 11 LGs, LG1 was the largest with 210 markers, a length of 406.34 cM, and an average distance of 1.93 cM between adjacent markers. LG11 was the smallest with only 25 markers, a length of 29.66 cM, and an average distance of 1.19 cM between adjacent markers. 'SNP_only' markers accounted for 85.54% and were the predominant markers on the map. QTL mapping based on the F8 phenotypes detected 11 plant height QTLs including one major effect QTL across two cultivation locations, with each QTL

  4. 剑麻载银复合抗菌纤维的制备及其性能%Preparation of silver-loading antibacterial sisal fiber and its properties

    Institute of Scientific and Technical Information of China (English)

    马肃; 刘峥; 刘进

    2012-01-01

    Based on self-assembly monolayer (SAM) technology, silver-loading antibacterial sisal fiber is prepared with self-made silver nanoparticle (AgNPs) as an antibacterial agent and silane coupling agent (YDH602) N-p-aminoethyl-y-aminopropyl-methyl dimethoxy as a bridging agent. Taking the content of silver loaded onto the sisal fiber as an index, influences of the concentration of nano-silver, reaction time, pH value are studied. The structures of AgNPs and the antibacterial sisal fiber are characterized by TEM, SEM, EDS and UV methods. The results show that the quantity of silver loaded onto the sisal fiber is large and the nano silver is uniformly distributed with silver release of 0.17% in 48 h, which indicates that a strong bond between silver and sisal fiber is formed, and silver is released stably. The silver-loading sisal fiber has good antibacterial effect on Staphylo-coccus aureus and Klebsiella pneumonia.%以自制纳米银粒子为抗菌剂,基于膜自组装原理,采用N-β-(氨乙基)-γ-氨丙基甲基二甲氧基硅烷偶联剂(YDH602)为架桥剂,制备了键合型载银剑麻复合抗菌纤维.以纤维载银量为指标,考察了纳米银溶胶质量浓度、反应时间、pH值对载银效果的影响.利用TEM、紫外光谱仪、SEM、X-射线能谱仪等对纳米银粒子和剑麻抗菌纤维结构进行了表征.结果表明,所制备的剑麻抗菌纤维载银量较多,并且分布比较均匀,在48h内,银释放量为0.17%,说明银与剑麻的结合能力较强,并且会持续稳定地释放出银.此外,载银剑麻纤维对金黄色葡萄球菌和肺炎克雷伯菌的抗菌效果较好.

  5. Physico-mechanical comparison of urea formaldehyde bonded particle board manufactured from jute sticks and wood of Trewia nudiflora

    Directory of Open Access Journals (Sweden)

    Abu Saleh Md. Golam Kibria

    2012-11-01

    Full Text Available This study is to know the physical and mechanical properties ofparticle board made up of jute sticks (jutex board and wood chips (woodex board of Trewia nudiflora. Two leading particle board manufacturing industries of Bangladesh were selected first which have the same manufacturing process and adhesive composition. Boards of available thicknesses were collected randomly. From each thickness category, three replications were taken. The parameters were studied as adhesive composition, mass of a board, density, bending strength, modulus of elasticity, surface soundness, tensile strength, screw withdrawal, pressure and pressing time. Urea formaldehyde resin is used to manufacture both types of particle board. For achieving the greater efficiency of boards, some chemical compounds were mixed with the resin. Due to the change in thicknesses, boards were not always different in terms of the physical and mechanical properties. Moreover, except the modulus of elasticity (MOE, woodex boards were superior to the properties of jutex boards.

  6. Physico-mechanical comparison of urea formaldehyde bonded particle board manufactured from jute sticks and wood of Trewia nudiflora

    Directory of Open Access Journals (Sweden)

    Abu Saleh Md. Golam Kibria

    2012-12-01

    Full Text Available This study is to know the physical and mechanical properties of particle board made up of jute sticks (jutex board and wood chips (woodex board of Trewia nudiflora. Two leading particle board manufacturing industries of Bangladesh were selected first which have the same manufacturing process and adhesive composition. Boards of available thicknesses were collected randomly. From each thickness category, three replications were taken. The parameters were studied as adhesive composition,mass of a board, density, bending strength, modulus of elasticity,surface soundness, tensile strength, screw withdrawal, pressure and pressing time. Urea formaldehyde resin is used to manufacture both types of particle board. For achieving the greater efficiency of boards, some chemical compounds were mixed with the resin. Due to the change in thicknesses, boards were not always different in terms of the physical and mechanical properties. Moreover, except the modulus of elasticity (MOE, woodex boards were superior to the properties of jutex boards. 

  7. Fractionation and physicochemical characterization of lignin from waste jute bags: Effect of process parameters on yield and thermal degradation.

    Science.gov (United States)

    Ahuja, Dheeraj; Kaushik, Anupama; Chauhan, Ghanshyam S

    2017-04-01

    In this work lignin was extracted from waste jute bags using soda cooking method and effect of varying alkali concentration and pH on yield, purity, structure and thermal degradation of lignin were studied. The Lignin yield, chemical composition and purity were assessed using TAPPI method and UV-vis spectroscopy. Yield and purity of lignin ranged from 27 to 58% and 50-94%, respectively for all the samples and was maximum for 8% alkali concentration and at pH 2 giving higher thermal stability. Chemical structure, thermal stability and elementary analysis of lignin were studied using FTIR, (H)NMR, thermo gravimetric analysis (TGA) and Elemental analyzer. FTIR and (H)NMR results showed that core structure of lignin starts breaking beyond 10% alkali concentration. S/G ratio shows the dominance of Syringyl unit over guaiacyl unit. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution.

    Science.gov (United States)

    Panda, Gopal C; Das, Sujoy K; Guha, Arun K

    2009-05-15

    Jute stick powder (JSP) has been found to be a promising material for adsorptive removal of congo red (C.I. 22120) and rhodamine B (C.I. 45170) from aqueous solutions. Physico-chemical parameters like dye concentration, solution pH, temperature and contact time have been varied to study the adsorption phenomenon. Favorable adsorption occurs at around pH 7.0 whereas temperature has no significant effect on adsorption of both the dyes. The maximum adsorption capacity has been calculated to be 35.7 and 87.7mg/g of the biomass for congo red and rhodamine B, respectively. The adsorption process is in conformity with Freundlich and Langmuir isotherms for rhodamine B whereas congo red adsorption fits well to Langmuir isotherm only. In both the cases, adsorption occurs very fast initially and attains equilibrium within 60min. Kinetic results suggest the intra-particle diffusion of dyes as rate limiting step.

  9. The CCoAOMT1 gene from jute (Corchorus capsularis L.) is involved in lignin biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Gaoyang; Zhang, Yujia; Xu, Jiantang; Niu, Xiaoping; Qi, Jianmin; Tao, Aifen; Zhang, Liwu; Fang, Pingping; Lin, LiHui; Su, Jianguang

    2014-08-10

    The Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is a key enzyme in lignin biosynthesis in plants. In this study we cloned the full-length cDNA of the Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) gene from jute using homology clone (primers were designed according to the sequence of CCoAOMT gene of other plants), and a modified RACE technique, subsequently named "CcCCoAOMT1". Bioinformatic analyses showed that the gene is a member of the CCoAOMT gene family. Real-time PCR analysis revealed that the CcCCoAOMT1 gene is constitutively expressed in all tissues, and the expression level was greatest in stem, followed by stem bark, roots and leaves. In order to understand this gene's function, we transformed it into Arabidopsis thaliana; integration (one insertion site) was confirmed following PCR and southern hybridization. The over-expression of CcCCoAOMT1 in these transgenic A.thaliana plants resulted in increased plant height and silique length relative to non-transgenic plants. Perhaps the most important finding was that the transgenic Arabidopsis plants contained more lignin (20.44-21.26%) than did control plants (17.56%), clearly suggesting an important role of CcCCoAOMT1 gene in lignin biosynthesis. These data are important for the success of efforts to reduce jute lignin content (thereby increasing fiber quality) via CcCCoAOMT1 gene inhibition. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Lipophilic extractives from several nonwoody lignocellulosic crops (flax, hemp, sisal, abaca) and their fate during alkaline pulping and TCF/ECF bleaching.

    Science.gov (United States)

    Marques, Gisela; del Río, José C; Gutiérrez, Ana

    2010-01-01

    The fate of lipophilic extractives from several nonwoody species (flax, hemp, sisal and abaca) used for the manufacturing of cellulose pulps, was studied during soda/anthraquinone (AQ) pulping and totally chorine free (TCF) and elemental chlorine free (ECF) bleaching. With this purpose, the lipophilic extracts from the raw materials and their unbleached and bleached industrial pulps, were analyzed by gas chromatography-mass spectrometry. Aldehydes, hydroxyfatty acids and esterified compounds such as ester waxes, sterol esters and alkylferulates strongly decreased after soda/AQ pulping while alkanes, alcohols, free sterols and sterol glycosides survived the cooking process. Among the lipophilic extractives that remained in the unbleached pulps, some amounts of free sterols were still present in the TCF pulps whereas they were practically absent in the ECF pulps. Sterol glycosides were also removed after both TCF and ECF bleaching. By contrast, saturated fatty acids, fatty alcohols and alkanes were still present in both bleached pulps.

  11. Study on Preparation of Degradable Sponge from Sisal Waste%剑麻废弃物制备可降解海绵的工艺研究

    Institute of Scientific and Technical Information of China (English)

    侯天福; 海洪; 金文英; 杨峰; 程芳芳; 王慧

    2012-01-01

    以剑麻纤维废弃物麻糠和麻头为基本原料,以氢氧化钠、脲、水为溶剂体系制备了纤维素溶液,以Na2SO4为成孔剂,利用纤维素易于再生的特性制备了纤维素海绵.研究了氢氧化钠、脲的低温溶液对纤维素的溶解能力以及成孔剂的用量对海绵的吸水性及力学性能的影响.结果表明,制备剑麻纤维素海绵的最佳条件为每100mL溶液中NaOH和脲的质量分别为12g和8g,纤维素的质量分数为4.5%左右,成孔剂的用量为35g左右.%The bran and hemp sisal hemp waste head as the basic raw material, sodium hydroxide, urea, water as solvent system prepared cellulose solution, to the Na2SO4 as pore-forming agent, using easily regenerated cellulose characteristics, prepared cellulose sponge. Study of NaOH, urea solution at low temperature and the solubility of cellulose amount of pore-forming agent absorbent sponge and mechanical properties. The results show that the optimal preparation conditions for sisal cellulose sponges for each 100mL solution of NaOH and urea, respectively 12g and the quality of 8g; cellulose mass fraction of around 4.5%; the amount of pore-forming agent is about 35g.

  12. Preliminary research on jute fiber reinforcing unsaturated polyester resin%黄麻纤维增强不饱和聚酯树脂初步研究

    Institute of Scientific and Technical Information of China (English)

    张永春; 李爱元; 邱从平; 张慧波

    2013-01-01

    The unsaturated polyester composites were prepared using sodium hydroxide - oleic acid treated jute fiber cloth as the filler material and the oleic acid was using as the coupling agent. The appropriate concentration of sodium hydroxide treated the the jute fibers, tensile strength, impact strength and water absorption of the composites were investigated and tested. The results showed that the appropriate concentration of sodium hydroxide was 20%. The maximum impact strength and tensile strength of jute fiber reinforced unsaturated polyester resin were 12. 75 kJ/m2 and 33. 05 MPa, respetively. The maximum water absorption of the composite was 4. 07 %. Oleic acid - treated jute fiber could effectively improve the performance of the unsaturated polyester composites.%以油酸为偶联剂,将氢氧化钠-油酸处理后的黄麻纤维布作为填充材料制备了不饱和聚酯复合材料,并对氢氧化钠处理黄麻纤维的适宜浓度、复合材料的拉伸强度、冲击强度、吸水率进行了研究测试.结果表明:氢氧化钠的适宜浓度为20%,黄麻纤维增强不饱和聚酯树脂的冲击强度及拉伸强度最大值分别为12.75 kJ/m2和33.05 MPa,复合材料的最大吸水率为4.07%.经油酸处理的黄麻纤维可有效提高不饱和聚酯复合材料的性能.

  13. Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water.

    Science.gov (United States)

    Du, Zhaolin; Zheng, Tong; Wang, Peng; Hao, Linlin; Wang, Yanxia

    2016-02-01

    A low-cost and recyclable biosorbent derived from jute fiber was developed for high efficient adsorption of Pb(II), Cd(II) and Cu(II) from water. The jute fiber was rapidly pretreated and grafted with metal binding groups (COOH) under microwave heating (MH). The adsorption behavior of carboxyl-modified jute fiber under MH treatment (CMJFMH) toward heavy metal ions followed Langmuir isotherm model (R(2)>0.99) with remarkably high adsorption capacity (157.21, 88.98 and 43.98mg/g for Pb(II), Cd(II) and Cu(II), respectively). Also, CMJFMH showed fast removal ability for heavy metals in a highly significant correlation with pseudo second-order kinetics model. Besides, CMJFMH can be easily regenerated with EDTA-2Na solution and reused up to at least four times with equivalent high adsorption capacity. Overall, cheap and abundant production, rapid and facile preparation, fast and efficient adsorption of heavy metals and high regeneration ability can make the CMJFMH a preferred biosorbent for heavy metal removal from water.

  14. Effect of Cadmium Stress on the Growth, Antioxidative Enzymes and Lipid Peroxidation in Two Kenaf (Hibiscus cannabinus L.) Plant Seedlings

    Institute of Scientific and Technical Information of China (English)

    LI Feng-tao; QI Jian-min; ZHANG Gao-yang; LIN Li-hui; FANG Ping-ping; TAO Ai-fen; XU Jian-tang

    2013-01-01

    The effects of cadmium stress on the growth, antioxidative enzymes and lipid peroxidation in two kenaf plants, Fuhong 991 and ZM412, were analysed under control (0.5-strength Hoagland’s nutrient solution) or five levels of cadmium stress (0.5-strength Hoagland’s nutrient solution containing different concentrations of Cd2+). The leaves and roots of control and cadmium-stressed plants were harvested after 3 wk. At the same Cd concentration, the Cd tolerance index of Fuhong 991 was higher than that of ZM412, indicating that Fuhong 991 may be more tolerant to Cd than ZM412. The superoxide dismutase (SOD), catalase activity (CAT) and peroxidase (POD) activities fluctuated in the leaves of the Cd-stressed plants compared to the control, whereas the glutathione reductase activity (GR) was much larger than the control for Fuhong 991, ensuring that sufficient quantities of GSH were available to respond to the cadmium stress. In comparison to the control, the dynamic tendency of the SOD, CAT and POD activities in roots of the Cd-stressed plants all increased and then declined, but the POD activity of Fuhong 991 remained nearly unchanged at all of the stress levels. The increase in the enzyme activities demonstrated that Fuhong 991 was more tolerant to cadmium than ZM 412. The lipid peroxidation was enhanced only in the leaves of Cd-stressed ZM 412. These findings indicated that antioxidative activities may play important roles in Cd-stressed Fuhong 991 and ZM 412 and that the leaf and root cell membranes of Fuhong 991 have a greater stability than those of ZM 412. For pollution monitoring purposes, the GR activity in the roots and leaves may serve as a biomarker of Cd for Fuhong 991, whereas lipid peroxidation may serve as biomarker for ZM 412.

  15. Caracterização mecânica e térmica de compósitos de poli (cloreto de vinila reforçados com fibras de sisal Mechanical and thermal characterization of the polyvinyl chloride-sisal fibers composites

    Directory of Open Access Journals (Sweden)

    Gilson S. Martins

    2004-12-01

    Full Text Available Compósitos de PVC, plastificados com diferentes sistemas de plastificação e reforçados com fibras de sisal, foram processados em moinho de dois rolos. A influência do tipo e teor do plastificante, do comprimento e do teor das fibras nas propriedades dos compósitos obtidos foi estudada. Dois tipos de plastificantes foram usados, um líquido (do tipo poliéster e um sólido permanente (copolímero etileno/ acetato de vinila/ monóxido de carbono. As fibras usadas foram previamente lavadas com água a 80 °C por uma hora. Os compósitos, com fibras curtas aleatoriamente distribuídas, foram caracterizados através de ensaio mecânico de resistência à tração, microscopia eletrônica de varredura (MEV, e análises térmicas de calorimetria exploratória diferencial (DSC e análise por termogravimetria (TG. O comprimento ótimo de fibra obtido para os compósitos foi de 6 mm. O uso do plastificante sólido mostrou-se viável e promoveu uma maior molhabilidade da fibra pela matriz nos compósitos, principalmente para teores acima de 40 pcr. As análises térmicas mostraram que a substituição do plastificante líquido pelo plastificante sólido não afetou a estabilidade térmica das matrizes e dos compósitos.Composites consisting of flexible polyvinyl chloride (PVC, plasticized with two different types of plasticizers and reinforced with sisal fibers, were processed on a two-roll mixing mill. Two plasticizers were used, a liquid plasticizer (polyester and a permanent solid plasticizer (ethylene/ vinyl acetate/ carbon monoxide copolymer - Elvaloy® , to form two kinds of polymeric matrices. For each one of these matrices, the influence of plasticizers type, plasticizers content, size and quantity of sisal fibers in the composite properties has been studied. The fibers were washed with water at 80 °C during one hour. The composites with randomly distributed short fibers were characterized by mechanical analysis, scanning electron microscopy

  16. Binary solvent extraction system and extraction time effects on phenolic antioxidants from kenaf seeds (Hibiscus cannabinus L.) extracted by a pulsed ultrasonic-assisted extraction.

    Science.gov (United States)

    Wong, Yu Hua; Lau, Hwee Wen; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-01-01

    The aim of this study was to determine the best parameter for extracting phenolic-enriched kenaf (Hibiscus cannabinus L.) seeds by a pulsed ultrasonic-assisted extraction. The antioxidant activities of ultrasonic-assisted kenaf seed extracts (KSE) were determined by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, β -carotene bleaching inhibition assay, and ferric reducing antioxidant power (FRAP) assay. Total phenolic content (TPC) and total flavonoid content (TFC) evaluations were carried out to determine the phenolic and flavonoid contents in KSE. The KSE from the best extraction parameter was then subjected to high performance liquid chromatography (HPLC) to quantify the phenolic compounds. The optimised extraction condition employed 80% ethanol for 15 min, with the highest values determined for the DPPH, ABTS, and FRAP assay. KSE contained mainly tannic acid (2302.20 mg/100 g extract) and sinapic acid (1198.22 mg/100 g extract), which can be used as alternative antioxidants in the food industry.

  17. Binary Solvent Extraction System and Extraction Time Effects on Phenolic Antioxidants from Kenaf Seeds (Hibiscus cannabinus L. Extracted by a Pulsed Ultrasonic-Assisted Extraction

    Directory of Open Access Journals (Sweden)

    Yu Hua Wong

    2014-01-01

    Full Text Available The aim of this study was to determine the best parameter for extracting phenolic-enriched kenaf (Hibiscus cannabinus L. seeds by a pulsed ultrasonic-assisted extraction. The antioxidant activities of ultrasonic-assisted kenaf seed extracts (KSE were determined by a 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging capacity assay, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS radical scavenging assay, β-carotene bleaching inhibition assay, and ferric reducing antioxidant power (FRAP assay. Total phenolic content (TPC and total flavonoid content (TFC evaluations were carried out to determine the phenolic and flavonoid contents in KSE. The KSE from the best extraction parameter was then subjected to high performance liquid chromatography (HPLC to quantify the phenolic compounds. The optimised extraction condition employed 80% ethanol for 15 min, with the highest values determined for the DPPH, ABTS, and FRAP assay. KSE contained mainly tannic acid (2302.20 mg/100 g extract and sinapic acid (1198.22 mg/100 g extract, which can be used as alternative antioxidants in the food industry.

  18. Bioaccumulation and associated dietary risks of Pb, Cd, and Zn in amaranth (Amaranthus cruentus) and jute mallow (Corchorus olitorius) grown on soil irrigated using polluted water from Asa River, Nigeria.

    Science.gov (United States)

    Ogunkunle, Clement Oluseye; Ziyath, Abdul M; Adewumi, Faderera Esther; Fatoba, Paul Ojo

    2015-05-01

    Dietary uptake of heavy metals through the consumption of vegetables grown on polluted soil can have serious human health implications. Thus, the study presented in this paper investigated the bioaccumulation and associated dietary risks of Pb, Zn, and Cd present in vegetables widely consumed in Nigeria, namely amaranth and jute mallow, grown on soil irrigated with polluted water from Asa River. The study found that the soil was polluted with Zn, Pb, and Cd with Pb and Cd being contributed by polluted river, while Zn was from geogenic sources. The metal concentration in amaranth and jute mallow varied in the order of Zn > Pb > Cd and Zn > Pb ≈ Cd, respectively. Jute mallow acts as an excluder plant for Pb, Cd, and Zn. Consequently, the metal concentrations in jute mallow were below the toxic threshold levels. Furthermore, non-cancer human health risk of consuming jute mallow from the study site was not significant. In contrast, the concentrations of Pb and Cd in amaranth were found to be above the recommended safe levels and to be posing human health risks. Therefore, further investigation was undertaken to identify the pathways of heavy metals to amaranth. The study found that the primary uptake pathway of Pb and Cd by amaranth is foliar route, while root uptake is the predominant pathway of Zn in amaranth.

  19. sisal fibre- epoxy compos

    African Journals Online (AJOL)

    eobe

    2015-10-04

    Oct 4, 2015 ... glass/flax/polypropylene composite was a function of ... plastic/composite materials and structured adhesives. [33]. However ..... Figure 6: Load versus crosshead and its corresponding stress-strain for sample set A. (a). (b).

  20. Composição bromatológica do co-produto do desfibramento do sisal tratado com uréia Chemical composition of the sisal co-product treated with urea

    Directory of Open Access Journals (Sweden)

    Mário Marcos de Santana Faria

    2008-03-01

    Full Text Available O trabalho foi desenvolvido com o objetivo de avaliar os efeitos da amonização com uréia pecuária sobre a composição bromatológica do co-produto do processamento do sisal (Agave sisalana, Perrine em diferentes tempos de estocagens. Foram utilizados 300 kg do co-produto, igualmente distribuídos em 60 sacos de polietileno preto, onde se adicionou uréia nas concentrações de 0, 2, 4, 6 e 8% (base matéria seca - MS nos tempos de estocagem de 0, 2, 4 e 6 semanas. Determinaram-se os teores de matéria seca (MS, proteína bruta (PB, fibra em detergente neutro (FDN, fibra em detergente ácido (FDA e carboidratos não fibrosos (CNF. O consumo (CMS e a digestibilidade (DMS de MS foram obtidos por estimativa. O delineamento utilizado foi inteiramente casualizado (DIC, com 20 tratamentos e três repetições, seguindo o esquema fatorial 5 ´ 4 (cinco doses de uréia e quatro períodos de estocagem. A análise de variância revelou significância para o efeito da dose de uréia para as variáveis PB e MS. Para FDA, CNF e DMS, houve efeito significativo da interação dose de uréia ´ período de fermentação, ao passo que para FDN não houve significância de nenhum dos fatores. O teor de PB cresceu linearmente com a adição de uréia. Além disso, foi observado acréscimo nos teores de FDA, em função do decréscimo dos teores de CNF. As diminuições dos teores de CNF com o aumento dos níveis de uréia indicam que estes foram usados, provavelmente, para a síntese microbiana ou carreados com o efluente. Conclui-se que a adição de até 8% de uréia elevou os teores de PB e, com o aumento do tempo de estocagem, reduziu os teores de CNF e a DMS.The experiment was carried out to evaluate addition effects of five urea levels with four ammonization periods on Agave sisalana residue chemical composition in the different storage times. It was used 300 kg of this co-product, equally distributed in 60 black polyethylene bags, which urea was added

  1. Effects of Plant Density, Seeding and Harvest Time on the Growth of Two Kenaf (Hibiscus Cannabinus L. Varieties

    Directory of Open Access Journals (Sweden)

    Lorenzo Barbanti

    2008-12-01

    Full Text Available Kenaf is an annual C3 multipurpose crop for the fibre and energy industry, whose growth has been widely investigated in the tropics, but not at relatively-high latitudes. This work aimed at evaluating the effects of two genotypes (Tainung 2 and Everglades 41, two plant densities (20 and 40 plants m-2, two seeding times (S1 and S2 and two harvest times (H1 and H2 on growth and its relations with climatic factors over three years (2003-2005 in Northern Italy (c. 45° N. Fitting curves for whole-plant dry biomass (DB and dry stems (DS on heat sums always gave a reliable description of the growth pattern along the season, explaining over 90% of the total variation. In general, the best-fitting models were the sigmoid and the exponential one for DB and DS, respectively. Among the four studied factors, only seeding time originated consistent growth differences among years, whereas the two varieties showed an equivalent behaviour, as well as the two densities. Furthermore, the thinner density allowed savings in the cost of seed at no prejudice for yield potential. S1 in general showed higher asymptotic yields than S2 in 2003 and 2004, while S2 consistently grew faster than S1 in all the three years. RUE showed a generally low value (e.g., 1.35 g MJ-1 for DB in S1, indicating a moisture constraint on crop growth, especially in the first year. As for the correlations, three traits, plant height, base stem diameter and fresh biomass, resulted significantly associated to DB and DS, with correlation coefficients (r ranging from 0.65 to 0.90; a higher degree of association with DB and DS was achieved by the multiple linear regressions of the same three traits (adj. R2 of about 0.85. A high dependence of DB and especially of DS on associated heat and rain (adj. R2 0.76 and 0.86, respectively was also observed in the variable environmental conditions among the three years, which attributes a non-negligible power of prediction to the two environmental

  2. Freqüência e severidade de corte das fôlhas do sisal(*. Influência sôbre o desenvolvimento das plantas, produção e características da fibra Frequency and severity of leaf cutting upon the growth, longevity and yield of the sisal plant

    Directory of Open Access Journals (Sweden)

    J. C. Medina

    1954-01-01

    Full Text Available O A. apresenta nêste artigo os resultados obtidos em uma experiência de corte das folhas do sisal (Agave sisalana Perrine, na qual se procurou comparar os efeitos da combinação de diversas freqüências e severidades de corte sobre o desenvolvimento, produção e longevidade da planta, assim como sôbre as características tecnológicas da fibra. Ficou provado que, com cortes freqüentes e severos, o ciclo de vida das plantas fica bastante prolongado, ao mesmo tempo que a produção de fibras por unidade de área decai sensivelmente, em conseqüência da redução de tamanho das fôlhas e menor conteúdo de fibras nas fôlhas das plantas submetidas a êsse sistema de corte. Os exames de laboratório demonstraram que, enquanto as características químicas das fibras não eram afetadas pelos sistemas de corte estudados, as características físicas eram, pelo contrário, sensivelmente afetados pelo corte freqüente e severo.This paper describes the results obtained with the sisal plant (Agave sisalana Perrine in a cutting trial located in the "Estação Experimental Central do Instituto Agronômico", at Campinas. This trial was designed to compare the effects of four cutting cycles, combined with three levels of severity of cutting, upon growth, longevity, and yield of the sisal plant, and on the quality of its fiber. The experiment was laid out in 4 randomized blocks of 4 plots, each plot having 3 sub-plots. Sub-plot size was of twelve plants spaced 2.5 x 1.5 m and arranged in two rows of 6 plants each. The results can be summarized as follows : (a The life cycle of the sisal plant was greatly influenced by the cutting method used. The greater the frequency and severity of cutting the slower was the growth of the plant and the longer it took to pole. (b Light cutting at six to twelve-month cycles was conducive to early poling, and the plant yielded fewer, though heavier, leaves. (c Heavy cutting at a three-month cycle reduced plant size

  3. An improved method of DNA isolation suitable for PCR-based detection of begomoviruses from jute and other mucilaginous plants.

    Science.gov (United States)

    Ghosh, Raju; Paul, Sujay; Ghosh, Subrata Kumar; Roy, Anirban

    2009-07-01

    A relatively quick and inexpensive modified cetyl trimethylammonium bromide method for extraction of DNA from leaf materials containing large quantities of mucilage is described. The modification including use of more volume of extraction buffer and dissolving crude nucleic acid pellet in 1 M NaCl, reduced markedly the viscosity of the mucilage and thus in the final purification step yielded a larger quantity of mucilage-free DNA suitable for subsequent PCR-based detection of begomoviruses. The method was standardized with jute samples with yellow mosaic disease and validated with different other mucilaginous-hosts with low titre of begomoviruses. DNA isolated using this method showed consistency in yield and compatibility with PCR for detection of begomoviruses from different mucilaginous plant species. The method was compared for efficacy with other reported methods and it was found to be superior over the existing methods described for isolation of DNA from mucilaginous hosts. Thus the method described could be used on a wider scale for reliable and consistent detection of begomoviruses from mucilaginous hosts for characterization and variability study.

  4. Cadmium induced pathophysiology: prophylactic role of edible jute (Corchorus olitorius) leaves with special emphasis on oxidative stress and mitochondrial involvement.

    Science.gov (United States)

    Dewanjee, Saikat; Gangopadhyay, Moumita; Sahu, Ranabir; Karmakar, Sarmila

    2013-10-01

    The present study was undertaken to evaluate the protective effect of aqueous extract of Corchorus olitorius leaves (AECO) against CdCl₂ intoxication. In vitro bioassay on isolated mice hepatocytes confirmed dose dependent cytoprotective effect of AECO. The CdCl₂ (30 μM) exhibited a significantly increased levels of lipid peroxidation, protein carbonylation along with the reduction of antioxidant enzymes and reduced glutathione levels in hepatocytes. AECO (200 and 400 μg/ml) + CdCl₂ (30 μM) could significantly restore the aforementioned oxidation parameters in hepatocytes. Beside this, AECO could significantly reduce Cd-induced increase in Bad/Bcl-2 ratio and the over-expression of NF-κB, caspase 3 and caspase 9. In in vivo assay, CdCl₂ (4 mg/kg body weight, for 6 days) treated rats exhibited a significantly increased intracellular Cd accumulation, oxidative stress and DNA fragmentation in the organs. In addition, the haematological parameters were significantly altered in the CdCl₂ treated rats. Simultaneous administration of AECO (50 and 100 mg/kg body weight), could significantly restore the biochemical, antioxidant and haematological parameters near to the normal status. Histological studies of the organs supported the protective role of jute leaves. Presence of substantial quantity of phenolic compounds and flavonoids in extract may be responsible for overall protective effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Effect of Sisal Pretreatment on Mechanical Properties and Degradation Property of Thermoplastic Starch Composites%剑麻预处理对热塑性淀粉复合材料力学性能及降解性能的影响

    Institute of Scientific and Technical Information of China (English)

    何和智; 王克翔; 姚东明

    2013-01-01

    Based on the alkali treatment and steam blasting for pretreating the sisal fibre, the effects of different pretreatment methods on the mechanical properties and degradation property of sisal fiber reinforced thermoplastic starch composite were investigated. The results show that: the mechanical properties of composites improve after been alkali treated, and the degradation period of composites extends, alkali treatment is a kind of effective pretreatment method for preparation of sisal fibre reinforced thermoplastic starch composites. In addition, the mechanism of sisal fibre reinforced thermoplastic starch composites is discovered, that is glycerol plays the role of bridge between starch and sisal fibre; the the interface binding force between thermoplastic starch and sisal fibre increases, thus the mechanical properties of composites improve.%采用碱、蒸汽爆破等对剑麻纤维进行预处理,考察了不同预处理方法对剑麻纤维增强热塑性淀粉力学性能及降解性能的影响.结果表明:碱处理能够提高复合材料的力学性能,延长材料降解周期,是制备剑麻纤维增强热塑性淀粉复合材料有效的预处理方法;剑麻纤维增强热塑性淀粉的机理是甘油在淀粉及剑麻纤维之间起到桥梁作用,提高了热塑性淀粉与剑麻纤维的界面结合力,从而提高了复合材料的力学性能.

  6. Advances on Research of Sisal Fiber and Its Composites%剑麻纤维及其复合材料研究进展

    Institute of Scientific and Technical Information of China (English)

    房昆

    2012-01-01

    The structural features, physical and mechanical properties of sisal fiber ( SF) were introduced, and the fiber surface modification was also introduced.Based on fiber morphology and enhanced matrix, short and long SF and SF mixed fiber reinfored composites and SF reinforced thermoplastic, thermosetting resin and elastomer matrix composites were reviewed.The developing trend of SF reinforced composites was pointed out.%介绍了剑麻纤维(SF)的结构特点、物理力学性能以及纤维改性处理方法,从纤维形态及增强基质出发综述了长、短SF及SF混杂纤维增强复合材料以及SF增强热塑性、热固性树脂和弹性体复合材料方面的研究与开发,指出了SF增强复合材料今后的研究方向.

  7. 离子色谱法测定剑麻叶中氯离子的研究%Determination of Chlorine in Sisal Leaves by Ion Chromatography

    Institute of Scientific and Technical Information of China (English)

    何秀芬; 陈歆; 张瑞芳; 汤建彪

    2012-01-01

    A method for the determination of chlorine (C1-) in sisal leaves was established with ion chromatography. The sample was extracted with water by ultrasonic method, and purified by SPE on carbon black micro-column, then determined with ion chromatography. Tests for recovery and precision were made, giving values of recovery ranged from 95%-106%, RSD was less than 0.45%. The method is simple, accurate, stable and precise. It can be easily and conveniently adopted for the routine quality control analysis.%提出离子色谱法测定剑麻叶中氯离子的方法:剑麻叶样品在超声波振荡条件下用水进行浸提,经炭黑小柱对提取的水溶液进行净化之后,采用离子色谱测定。经大批样品的实验测定结果证明,本方法平均回收率在95%~106%,RSD小于0.45%。该方法具有简单、重复性好、灵敏度高、准确性好等较多优点,适用于剑麻样品分析。

  8. Impact of Layer-by-Layer Self-Assembly Clay-Based Nanocoating on Flame Retardant Properties of Sisal Fiber Cellulose Microcrystals

    Directory of Open Access Journals (Sweden)

    Chun Wei

    2015-01-01

    Full Text Available The renewable cationic polyelectrolyte chitosan (CH and anionic nanomontmorillonite (MMT layers were alternately deposited on the surface of sisal fiber cellulose microcrystals (SFCM via layer-by-layer (LBL self-assembly method. The structure and properties of the composites were characterized by zeta potential, thermal gravimetric analysis (TGA, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, Fourier transform infrared spectrometer (FTIR, microcalorimeter (MCC, and so forth. The zeta potential results show that the cellulose microcrystalline surface charge reversed due to the adsorption of CH and MMT nanoplatelets during multilayer deposition. MMT characteristic diffraction peaks appear in XRD patterns of SFCM(CH/MMT5 and SFCM(CH/MMT10 composites. Additionally, FESEM reveals that the SFCM(CH/MMT10 surface is covered with a layer of material containing Si, which has been verified by elemental analysis. TGA results show that the initial decomposition (weight loss of 5% temperature of SFCM(CH/MMT5 is increased by 4°C compared to that of pure SFCM. On the other hand, carbon residue percentage of SFCM(CH/MMT10 is 25.1%, higher than that of pure SFCM (5.4% by 19.7%. Eventually, it is testified by MCC measurement that CH/MMT coating can significantly reinforce the flame retardant performance of SFCM.

  9. Potential Use of Plant Fibres and their Composites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Farideh Namvar

    2014-05-01

    Full Text Available Plant-based fibers such as flax, jute, sisal, hemp, and kenaf have been frequently used in the manufacturing of biocomposites. Natural fibres possess a high strength to weight ratio, non-corrosive nature, high fracture toughness, renewability, and sustainability, which give them unique advantages over other materials. The development of biocomposites by reinforcing natural fibres has attracted attention of scientists and researchers due to environmental benefits and improved mechanical performance. Manufacturing of biocomposites from renewable sources is a challenging task, involving metals, polymers, and ceramics. Biocomposites are already utilized in biomedical applications such as drug/gene delivery, tissue engineering, orthopedics, and cosmetic orthodontics. The first essential requirement of materials to be used as biomaterial is its acceptability by the human body. A biomaterial should obtain some important common properties in order to be applied in the human body either for use alone or in combination. Biocomposites have potential to replace or serve as a framework allowing the regeneration of traumatized or degenerated tissues or organs, thus improving the patients’ quality of life. This review paper addresses the utilization of plant fibres and its composites in biomedical applications and considers potential future research directed at environment-friendly biodegradable composites for biomedical applications.

  10. Polylactide-based renewable green composites from agricultural residues and their hybrids.

    Science.gov (United States)

    Nyambo, Calistor; Mohanty, Amar K; Misra, Manjusri

    2010-06-14

    Agricultural natural fibers like jute, kenaf, sisal, flax, and industrial hemp have been extensively studied in green composites. The continuous supply of biofibers in high volumes to automotive part makers has raised concerns. Because extrusion followed by injection molding drastically reduces the aspect ratio of biofibers, the mechanical performance of injection molded agricultural residue and agricultural fiber-based composites are comparable. Here, the use of inexpensive agricultural residues and their hybrids that are 8-10 times cheaper than agricultural fibers is demonstrated to be a better way of getting sustainable materials with better performance. Green renewable composites from polylactide (PLA), agricultural residues (wheat straw, corn stover, soy stalks, and their hybrids) were successfully prepared through twin-screw extrusion, followed by injection molding. The effect on mechanical properties of varying the wheat straw amount from 10 to 40 wt % in PLA-wheat straw composites was studied. Tensile moduli were compared with theoretical calculations from the rule of mixture (ROM). Combination of agricultural residues as hybrids is proved to reduce the supply chain concerns for injection molded green composites. Densities of the green composites were found to be lower than those of conventional glass fiber composites.

  11. Efeito de diferentes condições de fermentação sobre o teor e composição da fração de sapogeninas do suco de sisal

    OpenAIRE

    Marco Antonio Teixeira Zullo; Roberto Machado de Moraes; Antonio Luiz de Barros Salgado; Anísio Azzini

    1984-01-01

    Suco de sisal (Agave sisalana (Engelm.) Perrine), recém-colhido, foi deixado fermentar por dez dias, espontaneamente ou por Saccharomyces cerevisae, processando-se, em cada caso, a fermentação protegida ou não do ambiente. Observou-se que os teores de sapogeninas totais, hecogenina, tigogenina, de duas sapogeninas não-identificadas, e de sólidos totais são significativamente dependentes do tipo e da duração da fermentação, sendo a última característica dependente também da condição de ferment...

  12. Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute: complexity of the interplay between necrotroph-host plant interactions.

    Directory of Open Access Journals (Sweden)

    Tuhin Subhra Sarkar

    Full Text Available M. phaseolina, a global devastating necrotrophic fungal pathogen causes charcoal rot disease in more than 500 host plants. With the aim of understanding the plant-necrotrophic pathogen interaction associated with charcoal rot disease of jute, biochemical approach was attempted to study cellular nitric oxide production under diseased condition. This is the first report on M. phaseolina infection in Corchorus capsularis (jute plants which resulted in elevated nitric oxide, reactive nitrogen species and S nitrosothiols production in infected tissues. Time dependent nitric oxide production was also assessed with 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate using single leaf experiment both in presence of M. phaseolina and xylanases obtained from fungal secretome. Cellular redox status and redox active enzymes were also assessed during plant fungal interaction. Interestingly, M. phaseolina was found to produce nitric oxide which was detected in vitro inside the mycelium and in the surrounding medium. Addition of mammalian nitric oxide synthase inhibitor could block the nitric oxide production in M. phaseolina. Bioinformatics analysis revealed nitric oxide synthase like sequence with conserved amino acid sequences in M. phaseolina genome sequence. In conclusion, the production of nitric oxide and reactive nitrogen species may have important physiological significance in necrotrophic host pathogen interaction.

  13. Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute: complexity of the interplay between necrotroph-host plant interactions.

    Science.gov (United States)

    Sarkar, Tuhin Subhra; Biswas, Pranjal; Ghosh, Subrata Kumar; Ghosh, Sanjay

    2014-01-01

    M. phaseolina, a global devastating necrotrophic fungal pathogen causes charcoal rot disease in more than 500 host plants. With the aim of understanding the plant-necrotrophic pathogen interaction associated with charcoal rot disease of jute, biochemical approach was attempted to study cellular nitric oxide production under diseased condition. This is the first report on M. phaseolina infection in Corchorus capsularis (jute) plants which resulted in elevated nitric oxide, reactive nitrogen species and S nitrosothiols production in infected tissues. Time dependent nitric oxide production was also assessed with 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate using single leaf experiment both in presence of M. phaseolina and xylanases obtained from fungal secretome. Cellular redox status and redox active enzymes were also assessed during plant fungal interaction. Interestingly, M. phaseolina was found to produce nitric oxide which was detected in vitro inside the mycelium and in the surrounding medium. Addition of mammalian nitric oxide synthase inhibitor could block the nitric oxide production in M. phaseolina. Bioinformatics analysis revealed nitric oxide synthase like sequence with conserved amino acid sequences in M. phaseolina genome sequence. In conclusion, the production of nitric oxide and reactive nitrogen species may have important physiological significance in necrotrophic host pathogen interaction.

  14. Nitric Oxide Production by Necrotrophic Pathogen Macrophomina phaseolina and the Host Plant in Charcoal Rot Disease of Jute: Complexity of the Interplay between Necrotroph–Host Plant Interactions

    Science.gov (United States)

    Sarkar, Tuhin Subhra; Biswas, Pranjal; Ghosh, Subrata Kumar; Ghosh, Sanjay

    2014-01-01

    M. phaseolina, a global devastating necrotrophic fungal pathogen causes charcoal rot disease in more than 500 host plants. With the aim of understanding the plant-necrotrophic pathogen interaction associated with charcoal rot disease of jute, biochemical approach was attempted to study cellular nitric oxide production under diseased condition. This is the first report on M. phaseolina infection in Corchorus capsularis (jute) plants which resulted in elevated nitric oxide, reactive nitrogen species and S nitrosothiols production in infected tissues. Time dependent nitric oxide production was also assessed with 4-Amino-5-Methylamino-2′,7′-Difluorofluorescein Diacetate using single leaf experiment both in presence of M. phaseolina and xylanases obtained from fungal secretome. Cellular redox status and redox active enzymes were also assessed during plant fungal interaction. Interestingly, M. phaseolina was found to produce nitric oxide which was detected in vitro inside the mycelium and in the surrounding medium. Addition of mammalian nitric oxide synthase inhibitor could block the nitric oxide production in M. phaseolina. Bioinformatics analysis revealed nitric oxide synthase like sequence with conserved amino acid sequences in M. phaseolina genome sequence. In conclusion, the production of nitric oxide and reactive nitrogen species may have important physiological significance in necrotrophic host pathogen interaction. PMID:25208092

  15. A method of multiplex PCR for detection of field released Beauveria bassiana, a fungal entomopathogen applied for pest management in jute (Corchorus olitorius).

    Science.gov (United States)

    Biswas, Chinmay; Dey, Piyali; Gotyal, B S; Satpathy, Subrata

    2015-04-01

    The fungal entomopathogen Beauveria bassiana is a promising biocontrol agent for many pests. Some B. bassiana strains have been found effective against jute pests. To monitor the survival of field released B. bassiana a rapid and efficient detection technique is essential. Conventional methods such as plating method or direct culture method which are based on cultivation on selective media followed by microscopy are time consuming and not so sensitive. PCR based methods are rapid, sensitive and reliable. A single primer PCR may fail to amplify some of the strains. However, multiplex PCR increases the possibility of detection as it uses multiple primers. Therefore, in the present investigation a multiplex PCR protocol was developed by multiplexing three primers SCA 14, SCA 15 and SCB 9 to detect field released B. bassiana strains from soil as well as foliage of jute field. Using our multiplex PCR protocol all the five B. bassiana strains could be detected from soil and three strains viz., ITCC 6063, ITCC 4563 and ITCC 4796 could be detected even from the crop foliage after 45 days of spray.

  16. A multiplex nested PCR assay for simultaneous detection of Corchorus golden mosaic virus and a phytoplasma in white jute (Corchorus capsularis L.).

    Science.gov (United States)

    Biswas, C; Dey, P; Satpathy, S

    2013-05-01

    A multiplex nested PCR assay was developed by optimizing reaction components and reaction cycling parameters for simultaneous detection of Corchorus golden mosaic virus (CoGMV) and a phytoplasma (Group 16Sr V-C) causing little leaf and bunchy top in white jute (Corchorus capsularis). Three sets of specific primers viz. a CoGMV specific (DNA-A region) primer, a 16S rDNA universal primer pair P1/P7 and nested primer pair R16F2n/R2 for phytoplasmas were used. The concentrations of the PCR components such as primers, MgCl2 , Taq DNA polymerase, dNTPs and PCR conditions including annealing temperature and amplification cycles were examined and optimized. Expected fragments of 1 kb (CoGMV), 674 bp (phytoplasma) and 370 bp (nested R16F2n/R2) were successfully amplified by this multiplex nested PCR system ensuring simultaneous, sensitive and specific detection of the phytoplasma and the virus. The multiplex nested PCR provides a sensitive, rapid and low-cost method for simultaneous detection of jute little leaf phytoplasma and CoGMV. Based on BLASTn analyses, the phytoplasma was found to belong to the Group 16Sr V-C. © 2013 The Society for Applied Microbiology.

  17. Development of a transgenic hairy root system in jute (Corchorus capsularis L.) with gusA reporter gene through Agrobacterium rhizogenes mediated co-transformation.

    Science.gov (United States)

    Chattopadhyay, Tirthartha; Roy, Sheuli; Mitra, Adinpunya; Maiti, Mrinal K

    2011-04-01

    Transgenic hairy root system is important in several recalcitrant plants, where Agrobacterium tumefaciens-mediated plant transformation and generation of transgenic plants are problematic. Jute (Corchorus spp.), the major fibre crop in Indian subcontinent, is one of those recalcitrant plants where in vitro tissue culture has provided a little success, and hence, Agrobacterium-mediated genetic transformation remains to be a challenging proposition in this crop. In the present work, a system of transgenic hairy roots in Corchorus capsularis L. has been developed through genetic transformation by Agrobacterium rhizogenes harbouring two plasmids, i.e. the natural Ri plasmid and a recombinant binary vector derived from the disarmed Ti plasmid of A. tumefaciens. Our findings indicate that the system is relatively easy to establish and reproducible. Molecular analysis of the independent lines of transgenic hairy roots revealed the transfer of relevant transgenes from both the T-DNA parts into the plant genome, indicating the co-transformation nature of the event. High level expression and activity of the gusA reporter gene advocate that the transgenic hairy root system, thus developed, could be applicable as gene expression system in general and for root functional genomics in particular. Furthermore, these transgenic hairy roots can be used in future as explants for plantlet regeneration to obtain stable transgenic jute plants.

  18. Statistical model to predict dry sliding wear behaviour of Aluminium-Jute bast ash particulate composite produced by stir-casting

    Directory of Open Access Journals (Sweden)

    Gambo Anthony VICTOR

    2017-06-01

    Full Text Available A model to predict the dry sliding wear behaviour of Aluminium-Jute bast ash particulate composites produced by double stir-casting method was developed in terms of weight fraction of jute bast ash (JBA. Experiments were designed on the basis of the Design of Experiments (DOE technique. A 2k factorial, where k is the number of variables, with central composite second-order rotatable design was used to improve the reliability of results and to reduce the size of experimentation without loss of accuracy. The factors considered in this study were sliding velocity, sliding distance, normal load and mass fraction of JBA reinforcement in the matrix. The developed regression model was validated by statistical software MINITAB-R14 and statistical tool such as analysis of variance (ANOVA. It was found that the developed regression model could be effectively used to predict the wear rate at 95% confidence level. The wear rate of cast Al-JBAp composite decreased with an increase in the mass fraction of JBA and increased with an increase of the sliding velocity, sliding distance and normal load acting on the composite specimen.

  19. A complete genetic linkage map and QTL analyses for bast fibre quality traits, yield and yield components in jute (Corchorus olitorius L.).

    Science.gov (United States)

    Topdar, N; Kundu, A; Sinha, M K; Sarkar, D; Das, M; Banerjee, S; Kar, C S; Satya, P; Balyan, H S; Mahapatra, B S; Gupta, P K

    2013-01-01

    We report the first complete microsatellite genetic map of jute (Corchorus olitorius L.; 2n = 2x = 14) using an F6 recombinant inbred population. Of the 403 microsatellite markers screened, 82 were mapped on the seven linkage groups (LGs) that covered a total genetic distance of 799.9 cM, with an average marker interval of 10.7 cM. LG5 had the longest and LG7 the shortest genetic lengths, whereas LG1 had the maximum and LG7 the minimum number of markers. Segregation distortion of microsatellite loci was high (61%), with the majority of them (76%) skewed towards the female parent. Genomewide non-parametric single-marker analysis in combination with multiple quantitative trait loci (QTL)-models (MQM) mapping detected 26 definitive QTLs for bast fibre quality, yield and yield-related traits. These were unevenly distributed on six LGs, as colocalized clusters, at genomic sectors marked by 15 microsatellite loci. LG1 was the QTL-richest map sector, with the densest colocalized clusters of QTLs governing fibre yield, yield-related traits and tensile strength. Expectedly, favorable QTLs were derived from the desirable parents, except for nearly all of those of fibre fineness, which might be due to the creation of new gene combinations. Our results will be a good starting point for further genome analyses in jute.

  20. Stability Analysis of a High Fibre Yield and Low Lignin Content “Thick Stem” Mutant in Tossa Jute (Corchorus olitorius L.)

    Science.gov (United States)

    Mandal, Aninda; Datta, Animesh K.

    2014-01-01

    A “thick stem” mutant of Corchorus olitorius L. was induced at M2 (0.50%, 4 h, EMS) and the true breeding mutant is assessed across generations (M5 to M7) considering morphometric traits as well as SEM analysis of pollen grains and raw jute fibres, stem anatomy, cytogenetical attributes, and lignin content in relation to control. Furthermore, single fibre diameter and tensile strength are also analysed. The objective is to assess the stability of mutant for its effective exploration for raising a new plant type in tossa jute for commercial exploitation and efficient breeding. The mutant trait is monogenic recessive to normal. Results indicate that “thick stem” mutant is stable across generations (2n = 14) with distinctive high seed and fibre yield and significantly low lignin content. Stem anatomy of the mutant shows significant enhancement in fibre zone, number of fibre pyramids and fibre bundles per pyramid, and diameter of fibre cell in relation to control. Moreover, tensile strength of mutant fibre is significantly higher than control fibre and the trait is inversely related to fibre diameter. However the mutant is associated with low germination frequency, poor seed viability, and high pollen sterility, which may be eliminated through mutational approach followed by rigorous selection and efficient breeding. PMID:24860822