WorldWideScience

Sample records for jurkat cells transfected

  1. Promoter, transgene, and cell line effects in the transfection of mammalian cells using PDMAEMA-based nano-stars

    Directory of Open Access Journals (Sweden)

    Alexander Raup

    2016-09-01

    Full Text Available Non-viral transfection protocols are typically optimized using standard cells and reporter proteins, potentially underestimating cellular or transgene effects. Here such effects were studied for two human (Jurkat, HEK-293 and two rodent (CHO-K1, L929 cell lines and three fluorescent reporter proteins. Expression of the enhanced green fluorescent protein (EGFP was studied under the control of the human elongation factor 1 alpha promoter and three viral promoters (SV40, SV40/enhancer, CMV, that of ZsYellow1 (yellow fluorescence and mCherry (red fluorescence for the CMV promoter. Results varied with the cell line, in particular for the Jurkat cells. Pair-wise co-transfection of the CMV controlled transgenes resulted in a significant fraction of monochromatic cells (EGFP for EGFP/YFP and EGFP/RFP co-transfections, YFP in case of YFP/RFP co-transfections. Only Jurkat cells were almost incapable of expressing YFP. Dilution of the plasmid DNA with a non-expressed plasmid showed cell line dependent effects on transfection efficiency and/or expression levels.

  2. Transfection Agent Induced Nanoparticle Cell Loading

    Directory of Open Access Journals (Sweden)

    Karin Montet-Abou

    2005-07-01

    Full Text Available Loading cells with magnetic nanoparticles, and tracking their fate in vivo by high resolution MRI, is an attractive approach for enhancing the efficacy of cell-based therapies including those utilizing hematopoietic stem cells, neuroprogenitor cells, and T cells. The transfection agent (internalization agent assisted loading with the Feridex IV® nanoparticle is an attractive method of loading because of the low cost of materials, and possible low regulatory barriers for eventual clinical use. We therefore explored the interaction between Feridex IV® and three internalization agents protamine (PRO, polylysine (PLL, and lipofectamine (LFA. Feridex reacted with internalization agents to form aggregates, except when either the internalization agent or Feridex was present in large excess. When Jurkat T cells were incubated with Feridex/LFA or Feridex/PRO mixtures, and washed by centrifugation, nanoparticle aggregates co-purified with cells. With C17.2 cells large iron oxide particles adhered to the cell surface. At 30 μg/mL Feridex and 3 μg/mL LFA, internalization was largely mediated by LFA and was largely cytoplasmic. However, we found that the conditions used to label cells with Feridex and transfection agents need to be carefully selected to avoid the problems of surface adsorption and nanoparticle precipitation.

  3. Effect of loop structure of bovine lactoferricin on apoptosis in Jurkat cells.

    Science.gov (United States)

    Zhang, Tie-nan; Yang, Wei; Liu, Ning

    2010-06-01

    Bovine lactoferricin (LfcinB) is a cationic peptide that selectively induces apoptosis in Jurkat cells. However less is known about the influence of this kind of apoptosis on the intra-cellular ceramide metabolism and the structure-function relationship between the loop structure of LfcinB and its action of inducing apoptosis in Jurkat cells. In the present study, the artificially synthesized LfcinB and LfcinB-derived peptide (Cys 19 residue in LfcinB was replaced by Ala) was added in Jurkat cells, the nucleolus shape was observed by fluorescent microscopy, the ceramide concentration in Jurkat cells was determined by reversed phase high performance liquid chromatography (RP-HPLC). The results of MTT assay showed that LfcinB inhibited proliferation of Jurkat cells, and the inhibition rate was approximately 18.90%. Moreover, the inhibition rate of LfcinB together with MAPP was upto approximately 59.89%. The RP-HPLC result showed that LfcinB improved the ceramide level in Jurkat cells. By using the DNA fragmentation assay and observing the nucleolus shape, the result displayed deficiency of the loop structure could cause LfcinB losing the biological activity of inducing apoptosis in Jurkat cells.

  4. on Lymphoblastic Leukemia Jurkat Cells

    African Journals Online (AJOL)

    human tumor cell line (Hela) by using MTT assay. [13]. In the present study, we have observed the cytotoxic effect of ethanolic extract of C. arvensis against Jurkat cells, a human lymphoblastic leukemia cell line, by using Trypan blue, MTS assay and FACS analysis. It was shown from the trypan blue exclusion assay that ...

  5. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents.

    Science.gov (United States)

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.

  6. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents

    Science.gov (United States)

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40–80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles. PMID:26274324

  7. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents.

    Directory of Open Access Journals (Sweden)

    Kamel Chettab

    Full Text Available Sonoporation using low-frequency high-pressure ultrasound (US is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1 in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40-80%, as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.

  8. Bovine lactoferricin causes apoptosis in Jurkat T-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria

    International Nuclear Information System (INIS)

    Mader, Jamie S.; Richardson, Angela; Salsman, Jayme; Top, Deniz; Antueno, Roberto de; Duncan, Roy; Hoskin, David W.

    2007-01-01

    Bovine lactoferricin (LfcinB) is a cationic antimicrobial peptide that kills Jurkat T-leukemia cells by the mitochondrial pathway of apoptosis. However, the process by which LfcinB triggers mitochondria-dependent apoptosis is not well understood. Here, we show that LfcinB-induced apoptosis in Jurkat T-leukemia cells was preceded by LfcinB binding to, and progressive permeabilization of the cell membrane. Colloidal gold electron microscopy revealed that LfcinB entered the cytoplasm of Jurkat T-leukemia cells prior to the onset of mitochondrial depolarization. LfcinB was not internalized by endocytosis because endocytosis inhibitors did not prevent LfcinB-induced cytotoxicity. Furthermore, intracellular delivery of LfcinB via fusogenic liposomes caused the death of Jurkat T-leukemia cells, as well as normal human fibroblasts. Collectively, these findings suggest that LfcinB caused damage to the cell membrane that allowed LfcinB to enter the cytoplasm of Jurkat T-leukemia cells and mediate cytotoxicity. In addition, confocal microscopy showed that intracellular LfcinB co-localized with mitochondria in Jurkat T-leukemia cells, while flow cytometry and colloidal gold electron microscopy showed that LfcinB rapidly associated with purified mitochondria. Furthermore, purified mitochondria treated with LfcinB rapidly lost transmembrane potential and released cytochrome c. We conclude that LfcinB-induced apoptosis in Jurkat T-leukemia cells resulted from cell membrane damage and the subsequent disruption of mitochondrial membranes by internalized LfcinB

  9. Systems biology approach to transplant tolerance: proof of concept experiments using RNA interference (RNAi) to knock down hub genes in Jurkat and HeLa cells in vitro.

    Science.gov (United States)

    Lwin, Wint Wah; Park, Ken; Wauson, Matthew; Gao, Qin; Finn, Patricia W; Perkins, David; Khanna, Ajai

    2012-07-01

    Systems biology is gaining importance in studying complex systems such as the functional interconnections of human genes [1]. To investigate the molecular interactions involved in T cell immune responses, we used databases of physical gene-gene interactions to constructed molecular interaction networks (interconnections) with R language algorithms. This helped to identify highly interconnected "hub" genes AT(1)P5C1, IL6ST, PRKCZ, MYC, FOS, JUN, and MAPK1. We hypothesized that suppression of these hub genes in the gene network would result in significant phenotypic effects on T cells and examined this in vitro. The molecular interaction networks were then analyzed and visualized with Cytoscape. Jurkat and HeLa cells were transfected with siRNA for the selected hub genes. Cell proliferation was measured using ATP luminescence and BrdU labeling, which were measured 36, 72, and 96 h after activation. Following T cell stimulation, we found a significant decrease in ATP production (P cells. However, HeLa cells showed a significant (P cell proliferation when the genes MAPK1, IL6ST, ATP5C1, JUN, and FOS were knocked down. In both Jurkat and HeLa cells, targeted gene knockdown using siRNA showed decreased cell proliferation and ATP production in both Jurkat and HeLa cells. However, Jurkat T cells and HELA cells use different hub genes to regulate activation responses. This experiment provides proof of principle of applying siRNA knockdown of T cell hub genes to evaluate their proliferative capacity and ATP production. This novel concept outlines a systems biology approach to identify hub genes for targeted therapeutics. Published by Elsevier Inc.

  10. Activation of Stat-3 is involved in the induction of apoptosis after ligation of major histocompatibility complex class I molecules on human Jurkat T cells

    DEFF Research Database (Denmark)

    Skov, S; Nielsen, M; Bregenholt, S

    1998-01-01

    Activation of Janus tyrosine kinases (Jak) and Signal transducers and activators of transcription (Stat) after ligation of major histocompatibility complex class I (MHC-I) was explored in Jurkat T cells. Cross-linking of MHC-I mediated tyrosine phosphorylation of Tyk2, but not Jak1, Jak2, and Jak3......-probe derived from the interferon-gamma activated site (GAS) in the c-fos promoter, a common DNA sequence for Stat protein binding. An association between hSIE and Stat-3 after MHC-I ligation was directly demonstrated by precipitating Stat-3 from nuclear extracts with biotinylated hSIE probe and avidin......-coupled agarose. To investigate the function of the activated Stat-3, Jurkat T cells were transiently transfected with a Stat-3 isoform lacking the transactivating domain. This dominant-negative acting Stat-3 isoform significantly inhibited apoptosis induced by ligation of MHC-I. In conclusion, our data suggest...

  11. Site-specific integration of CAR gene into Jurkat T cells with a linear close-ended AAV-based DNA vector for CAR-T engineering.

    Science.gov (United States)

    Zhang, Yun; Liu, Xiaomei; Zhang, Jinju; Zhang, Chun

    2016-09-01

    To develop a site-specific integration strategy for CAR-T engineering by using a non-viral vector dependent on adeno-associated viral (AAV) genome, which tends to be integrated into AAVS1 site with the help of its Rep proteins. AAV-dependent vectors were produced in Sf9 cells. Structural analyses revealed the vector as covalently close-ended, linear duplex molecules, which was termed "CELiD" DNA. A plasmid CMV-Rep was constructed to express the integrases Rep78 and Rep68. Jurkat cells were co-electroporated with "CELiD" DNA and plasmid CMV-Rep in order to specifically integrate CAR gene into AAVS1 site. We examined 71 stably transfected Jurkat clones by nested PCR, sequencing and southern blotting, of which 30 clones bore CAR gene within AAVS1 site. The site-specific integration efficiency was nearly 42.2 %. The AAV-dependent vector preferentially integrated CAR into AAVS1 site, which could be further used in human T cell modification and enhance the security of CAR-T therapy.

  12. Targeting Jurkat T Lymphocyte Leukemia Cells by an Engineered Interferon-Alpha Hybrid Molecule

    Directory of Open Access Journals (Sweden)

    Dehai Yu

    2017-06-01

    Full Text Available Background/Aims: Adult T-cell leukemia/lymphoma (ATL is a very aggressive T cell malignancy that carries a poor prognosis, primarily due to its resistance to chemotherapy and to life-threatening infectious complications. Interferon-alpha (IFNα has been used in combination with the anti-retroviral drug zidovudine to treat patients with ATL. However, the efficacy of long-term therapy is significantly limited due to the systemic toxicity of IFNα. Methods: We utilized phage display library screening to identify short peptides that specifically bind to Jurkat T lymphocyte leukemia cells. By fusing the Jurkat-binding peptide to the C-terminus of IFNα, we constructed an engineered chimeric IFNα molecule (IFNP for the treatment of ATL. Results: We found that IFNP exhibited significantly higher activity than wild type IFNα in inhibiting the growth of leukemia cells and inducing cell blockage at the G0/G1 phase. The synthetic IFNP molecule exerted its antitumor activity by upregulating the downstream genes involved in the STAT1 pathway and in apoptosis. Using a cell receptor binding assay, we showed that this Jurkat-binding peptide facilitated the binding affinity of IFNα to the cell surface type I IFN receptor. Conclusion: The isolated Jurkat-binding peptide significantly potentiates the therapeutic activity of IFNα in T lymphocyte leukemia cells. The engineered IFNP molecule may prove to a novel antitumor approach in the treatment of patients with ATL.

  13. Functional and genomic analyses of FOXP3-transduced Jurkat-T cells as regulatory T (Treg)-like cells

    International Nuclear Information System (INIS)

    Kim, Joon-Young; Kim, Han-Jong; Hurt, Elaine M.; Chen, Xin; Howard, O.M. Zack; Farrar, William L.

    2007-01-01

    FOXP3, a forkhead transcription factor is essential for the development and function of CD4 + CD25 + regulatory T cells (Tregs). In contrast to conversion of murine naive T cells to Tregs by transduction of Foxp3, it is controversial whether ectopic expression of FOXP3 in human CD4 + T cells is sufficient for acquisition of suppressive activity. Here, we show that retroviral transduction of FOXP3 induces a Treg phenotype in human leukemic CD4 + Jurkat-T cells, evidenced by increased expression of Treg-associated cell surface markers as well as inhibition of cytokine production. Furthermore, FOXP3-transduced Jurkat-T cells suppress the proliferation of human CD4 + CD25 - T cells. Additionally, DNA microarray analysis identifies Treg-related genes regulated by FOXP3. Our study demonstrates that enforced expression of FOXP3 confers Treg-like properties on Jurkat-T cells, which can be a convenient and efficient Treg-like cell model for further study to identify Treg cell surface markers and target genes regulated by FOXP3

  14. Damage of Neuroblastoma Cell SH-SY5Y Mediated by MPP+ Inhibits Proliferation of T-Cell Leukemia Jurkat by Co-Culture System

    Directory of Open Access Journals (Sweden)

    Fuli Wang

    2014-06-01

    Full Text Available The adaptive immune system has implications in pathology of Parkinson’s disease (PD. Research data demonstrated that the peripheral CD4+ T-cell population decreased in pathogenesis of PD. The effect of damaged dopaminergic neurons on peripheral T cells of PD is still unknown. In this study, we constructed a neuronal and glial cells co-culture model by using human neuroblastoma cells SH-SY5Y and gliomas cells U87. After the co-culture cells were treated with neurotoxin 1-methyl-4-phenylpyridinium (MPP+ for 24 h, the conditioned media was harvested and used to cultivate T-cell leukemia Jurkat cells for another 24 h. We then analyzed the cell proliferation, cell cycle and necrosis effect of Jurkat cells. The results showed that co-culture medium of SH-SY5Y and U87 cells with MPP+ treatment inhibited the proliferation of Jurkat cells compared to control medium without MPP+, even though the same concentration of MPP+ had very little toxicity to the Jurkat cell. Furthermore, co-culture medium with low concentration of MPP+ (100 µM arrested Jurkat cells cycle in G2/M phase through increasing cell cycle division 2 (CDC2 and CyclinB1 expression level, whereas co-culture medium with high concentration of MPP+ (500 µM induced Jurkat cell necrosis through cellular swelling and membrane breakage. Our data implies that damaged dopamine neurons with glial cells can lead to the reduced number or inhibited proliferation activity of peripheral T cells.

  15. Theoretical evaluations of electro-manipulation from Jurkat T cells ...

    African Journals Online (AJOL)

    enoh

    2012-03-01

    Mar 1, 2012 ... Jurkat T cells exposed to pulsed electric fields (PEFs) ..... changes in ionic strength, surface-charge density or pH, therefore it is likely to ... loosely bound conformation. ... alone, is sufficient to trigger this protein's release (Ott et.

  16. [Heat shock protein 90--modulator of TNFalpha-induced apoptosis of Jurkat tumor cells].

    Science.gov (United States)

    Kaĭgorodova, E V; Riazantseva, N V; Novitskiĭ, V V; Moroshkina, A N; Belkina, M V; Iakushina, V D

    2011-01-01

    rTNFalpha-induced programmed death of Jurkat tumor cells cultured with 17-AAG, a selective inhibitor of heat shock protein (Hsp90), was studied by fluorescent microscopy with the use of FITC-labeled annexin V and propidium iodide. Caspase-3 and -8 activities were determined by spectrophotometry using a caspase- 3 and -8 colorimetric assay kit. It was shown that inhibition of Hsp90 leads to activation of Jurkat cell apoptosis while Hsp90 itself suppresses this process. 17-AAG enhances rTNFa-induced apoptosis of tumor cells.

  17. Proteasome inhibitor carfilzomib interacts synergistically with histone deacetylase inhibitor vorinostat in Jurkat T-leukemia cells.

    Science.gov (United States)

    Gao, Minjie; Gao, Lu; Tao, Yi; Hou, Jun; Yang, Guang; Wu, Xiaosong; Xu, Hongwei; Tompkins, Van S; Han, Ying; Wu, Huiqun; Zhan, Fenghuang; Shi, Jumei

    2014-06-01

    In the present study, we investigated the interactions between proteasome inhibitor carfilzomib (CFZ) and histone deacetylase inhibitor vorinostat in Jurkat T-leukemia cells. Coexposure of cells to minimally lethal concentrations of CFZ with very low concentration of vorinostat resulted in synergistic antiproliferative effects and enhanced apoptosis in Jurkat T-leukemia cells, accompanied with the sharply increased reactive oxygen species (ROS), the striking decrease in the mitochondrial membrane potential (MMP), the increased release of cytochrome c, the enhanced activation of caspase-9 and -3, and the cleavage of PARP. The combined treatment of Jurkat cells pre-treated with ROS scavengers N-acetylcysteine (NAC) significantly blocked the loss of mitochondrial membrane potential, suggesting that ROS generation was a former event of the loss of mitochondrial membrane potential. Furthermore, NAC also resulted in a marked reduction in apoptotic cells, indicating a critical role for increased ROS generation by combined treatment. In addition, combined treatment arrested the cell cycle in G2-M phase. These results imply that CFZ interacted synergistically with vorinostat in Jurkat T-leukemia cells, which raised the possibility that the combination of carfilzomib with vorinostat may represent a novel strategy in treating T-cell Leukemia. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  18. MUC1 (CD227) interacts with lck tyrosine kinase in Jurkat lymphoma cells and normal T cells.

    Science.gov (United States)

    Mukherjee, P; Tinder, T L; Basu, G D; Gendler, S J

    2005-01-01

    MUC1 (CD227) is a large transmembrane epithelial mucin glycoprotein, which is aberrantly overexpressed in most adenocarcinomas and is a target for immune therapy for epithelial tumors. Recently, MUC1 has been detected in a variety of hematopoietic cell malignancies including T and B cell lymphomas and myelomas; however, its function in these cells is not clearly defined. Using the Jurkat T cell lymphoma cell line and normal human T cells, we demonstrate that MUC1 is not only expressed in these cells but is also phosphorylated upon T cell receptor (TCR) ligation and associates with the Src-related T cell tyrosine kinase, p56lck. Upon TCR-mediated activation of Jurkat cells, MUC1 is found in the low-density membrane fractions, where linker of T cell activation is contained. Abrogation of MUC1 expression in Jurkat cells by MUC1-specific small interfering RNA resulted in defects in TCR-mediated downstream signaling events associated with T cell activation. These include reduction in Ca2+ influx and extracellular signal-regulated kinase 1/2 phosphorylation, leading to a decrease in CD69 expression, proliferation, and interleukin-2 production. These results suggest a regulatory role of MUC1 in modulating proximal signal transduction events through its interaction with proteins of the activation complex.

  19. Modification and uptake of a cisplatin carbonato complex by Jurkat cells.

    Science.gov (United States)

    Centerwall, Corey R; Tacka, Kirk A; Kerwood, Deborah J; Goodisman, Jerry; Toms, Bonnie B; Dubowy, Ronald L; Dabrowiak, James C

    2006-07-01

    The interactions of Jurkat cells with cisplatin, cis-[Pt(15NH3)2Cl2]1, are studied using 1H-15N heteronuclear single quantum coherence (HSQC) NMR and inductively coupled plasma mass spectrometry. We show that Jurkat cells in culture rapidly modify the monocarbonato complex cis-[Pt(15NH3)2(CO3)Cl]- (4), a cisplatin species that forms in culture media and probably also in blood. Analysis of the HSQC NMR peak intensity for 4 in the presence of different numbers of Jurkat cells reveals that each cell is capable of modifying 0.0028 pmol of 4 within approximately 0.6 h. The amounts of platinum taken up by the cell, weakly bound to the cell surface, remaining in the culture medium, and bound to genomic DNA were measured as functions of time of exposure to different concentrations of drug. The results show that most of the 4 that has been modified by the cells remains in the culture medium as a substance of molecular mass <3 kDa, which is HSQC NMR silent, and is not taken up by the cell. These results are consistent with a hitherto undocumented extracellular detoxification mechanism in which the cells rapidly modify 4, which is present in the culture medium, so it cannot bind to the cell. Because there is only a slow decrease in the amount of unmodified 4 remaining in the culture medium after 1 h, -1.1 +/- 0.4 microM h(-1), the cells subsequently lose their ability to modify 4. These observations have important implications for the mechanism of action of cisplatin.

  20. ArtinM Mediates Murine T Cell Activation and Induces Cell Death in Jurkat Human Leukemic T Cells

    Science.gov (United States)

    Oliveira-Brito, Patrícia Kellen Martins; Gonçalves, Thiago Eleutério; Vendruscolo, Patrícia Edivânia; Roque-Barreira, Maria Cristina

    2017-01-01

    The recognition of cell surface glycans by lectins may be critical for the innate and adaptive immune responses. ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus, activates antigen-presenting cells by recognizing TLR2 N-glycans and induces Th1 immunity. We recently demonstrated that ArtinM stimulated CD4+ T cells to produce proinflammatory cytokines. Here, we further studied the effects of ArtinM on adaptive immune cells. We showed that ArtinM activates murine CD4+ and CD8+ T cells, augmenting their positivity for CD25, CD69, and CD95 and showed higher interleukin (IL)-2 and interferon (IFN)-γ production. The CD4+ T cells exhibited increased T-bet expression in response to ArtinM, and IL-2 production by CD4+ and CD8+ T cells depended on the recognition of CD3εγ-chain glycans by ArtinM. The ArtinM effect on aberrantly-glycosylated neoplastic lymphocytes was studied in Jurkat T cells, in which ArtinM induced IL-2, IFN-γ, and IL-1β production, but decreased cell viability and growth. A higher frequency of AnnexinV- and propidium iodide-stained cells demonstrated the induction of Jurkat T cells apoptosis by ArtinM, and this apoptotic response was reduced by caspases and protein tyrosine kinase inhibitors. The ArtinM effects on murine T cells corroborated with the immunomodulatory property of lectin, whereas the promotion of Jurkat T cells apoptosis may reflect a potential applicability of ArtinM in novel strategies for treating lymphocytic leukemia. PMID:28665310

  1. Comprehensive RNA dataset of AGO2 associated RNAs in Jurkat cells following miR-21 over-expression

    Directory of Open Access Journals (Sweden)

    Claudia Carissimi

    2016-06-01

    Full Text Available We set out to identify miR-21 targets in Jurkat cells using a high-throughput biochemical approach (10.1016/j.biochi.2014.09.021 [1]. Using a specific monoclonal antibody raised against AGO2, RISC complexes were immunopurified in Jurkat cells over-expressing miR-21 following lentiviral trasduction as well as in Jurkat control cells lines. A parallel immunoprecipitation using isotype-matched rat IgG was performed as a control. AGO2 associated mRNAs were profiled by microarray (GEO: GSE37212. AGO2 bound miRNAs were profiled by RNA-seq.

  2. Ultrastructural Localization and Molecular Associations of HCV Capsid Protein in Jurkat T Cells

    Directory of Open Access Journals (Sweden)

    Cecilia Fernández-Ponce

    2018-01-01

    Full Text Available Hepatitis C virus core protein is a highly basic viral protein that multimerizes with itself to form the viral capsid. When expressed in CD4+ T lymphocytes, it can induce modifications in several essential cellular and biological networks. To shed light on the mechanisms underlying the alterations caused by the viral protein, we have analyzed HCV-core subcellular localization and its associations with host proteins in Jurkat T cells. In order to investigate the intracellular localization of Hepatitis C virus core protein, we have used a lentiviral system to transduce Jurkat T cells and subsequently localize the protein using immunoelectron microscopy techniques. We found that in Jurkat T cells, Hepatitis C virus core protein mostly localizes in the nucleus and specifically in the nucleolus. In addition, we performed pull-down assays combined with Mass Spectrometry Analysis, to identify proteins that associate with Hepatitis C virus core in Jurkat T cells. We found proteins such as NOLC1, PP1γ, ILF3, and C1QBP implicated in localization and/or traffic to the nucleolus. HCV-core associated proteins are implicated in RNA processing and RNA virus infection as well as in functions previously shown to be altered in Hepatitis C virus core expressing CD4+ T cells, such as cell cycle delay, decreased proliferation, and induction of a regulatory phenotype. Thus, in the current work, we show the ultrastructural localization of Hepatitis C virus core and the first profile of HCV core associated proteins in T cells, and we discuss the functions and interconnections of these proteins in molecular networks where relevant biological modifications have been described upon the expression of Hepatitis C virus core protein. Thereby, the current work constitutes a necessary step toward understanding the mechanisms underlying HCV core mediated alterations that had been described in relevant biological processes in CD4+ T cells.

  3. Pro-apoptotic effect of Persea americana var. Hass (avocado) on Jurkat lymphoblastic leukemia cells.

    Science.gov (United States)

    Bonilla-Porras, Angelica R; Salazar-Ospina, Andrea; Jimenez-Del-Rio, Marlene; Pereañez-Jimenez, Andres; Velez-Pardo, Carlos

    2013-11-05

    Abstract Context: Therapy for leukemia has a limited efficacy. There is a need to search for alternative anti-leukemia therapies. Persea americana Mill var. Hass (Lauraceae) is a tropical fruit (avocado) that might be used against cancer. Objective: To investigate whether P. americana induces death in Jurkat lymphoblastic leukemia cells. Materials and methods: Four ethanol extracts (0.1, 0.5, 1, 2 and 5 mg/mL) from avocado fruit (endocarp, whole seed, seed and leaves) were analyzed against Jurkat cells. Hydrogen peroxide generation by oxidation of 2',7'-dichlorodihydrofluorescein diacetate to the fluorescent compound 2',7'-dichlorfluorescein assay, acridine orange/ethidium bromide staining, flow cytometry analysis of annexin-V/7-amino-actinomycin, mitochondrial membrane potential and immunocytochemistry detection of transcription factor p53, caspase-3 and apoptosis-inducing factor (AIF) were evaluated. Results: Endocarp, seed, whole seed, and leaf (0.1 mg/mL) extracts induced significant apoptosis in Jurkat cells (p avocado and its therapeutic action on leukemia.

  4. Improved biolistic transfection of hair cells.

    Directory of Open Access Journals (Sweden)

    Hongyu Zhao

    Full Text Available Transient transfection of hair cells has proven challenging. Here we describe modifications to the Bio-Rad Helios Gene Gun that, along with an optimized protocol, improve transfection of bullfrog, chick, and mouse hair cells. The increased penetrating power afforded by our method allowed us to transfect mouse hair cells from the basal side, through the basilar membrane; this configuration protects hair bundles from damage during the procedure. We characterized the efficiency of transfection of mouse hair cells with fluorescently-tagged actin fusion protein using both the optimized procedure and a published procedure; while the efficiency of the two methods was similar, the morphology of transfected hair cells was improved with the new procedure. In addition, using the improved method, we were able to transfect hair cells in the bullfrog sacculus and chick cochlea for the first time. We used fluorescent-protein fusions of harmonin b (USH1C and PMCA2 (ATP2B2; plasma-membrane Ca(2+-ATPase isoform 2 to examine protein distribution in hair cells. While PMCA2-EGFP localization was similar to endogenous PMCA2 detected with antibodies, high levels of harmonin-EGFP were found at stereocilia tapers in bullfrog and chick, but not mouse; by contrast, harmonin-EGFP was concentrated in stereocilia tips in mouse hair cells.

  5. Carbon nanotubes on Jurkat cells: effects on cell viability and plasma membrane potential

    International Nuclear Information System (INIS)

    De Nicola, Milena; Ghibelli, Lina; Bellucci, Stefano; Bellis, Giovanni De; Micciulla, Federico; Traversa, Enrico

    2008-01-01

    Carbon nanotubes (CNT) are one of the most novel attractive materials in nanotechnology for their potential multiple applications, including in the biomedical fields. The biocompatibility and toxicity of these novel nanomaterials are still largely unknown and a systematic study on biological interference is essential. We present a toxicological assessment of different types of CNT on the human tumor lymphocytic Jurkat cells. The carbon nanomaterials examined differ in preparation, size, contaminants and morphology: (1) CNT composed of MWCNT+SWCNT, with no metal contaminants; (2) MWCNT and (3) SWCNT, both with metal contaminants; (4) carbon black as control. The results indicate that CNT exert a dose- and time-dependent cytotoxic effect on Jurkat cells, inducing apoptotic cell death, accelerating the transition to secondary necrosis and increasing the extent of apoptosis induced by damaging agents; interestingly, CNT induce a plasma membrane hyperpolarization. These alterations are produced by all types of CNT, but contaminants and/or the size modulate the extent of such effects. Thus CNT deeply affect cell behavior, suggesting that they might play a role in inflammation, and recommending greater attention in terms of evaluation of exposure risks.

  6. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering.

    Science.gov (United States)

    O'Brien, Paul J; Elahipanah, Sina; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-24

    The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types

  7. [Effect of PKA Gene on Acute Lymphoblastic Leukemia in Children and Its Mechanism].

    Science.gov (United States)

    Wang, Chao-Jie; Wang, Li-Juan; Zhao, Ding

    2018-02-01

    To explore the effect of PKA gene on acute T lymphocyte leukemia cells in children and its mechanism. Jurkat and Sup-T1 cells were divided into 2 group: control group (Jurkat and Sup-T1 cells treated with non-specific siRNA) and transfected group (Jurkat and Sup-T1 cells transfected with PKA siRNA). The effects of down-regulating the expression of PKA gene on the viability, proliferotion, migration and cell cycle distribution of Jurkat and Sup-T1 cells in 2 groups were analyzed by CCK-8 assay, transwell experiment, cell colony-formation test and flow cytometry; the cyclin-related protein levels after transfection with PKA siRNA were detected by Western blot. It was revealed that the expression of PKA in Jurkat and Sup-T1 cells decreased to different degree after siRNA transfection(PPKA gene expression can decrease the proliferation and migration of tumor cells, and also can restrict the cell proliferation through related cell cycle proteins.

  8. Human T-cell line (Jurkat cell) encapsulation by nano-organized polyelectrolytes and their response assessment in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Siddharth [Institute of Nuclear Medicine and Allied Sciences (INMAS), Stem Cell and Gene Therapy Research Group (India); Afrin, Fahrat [Jamia Hamdard, Department of Biotechnology (India); Tripathi, R. P.; Gangenahalli, Gurudutta, E-mail: gugdutta@rediffmail.com [Institute of Nuclear Medicine and Allied Sciences (INMAS), Stem Cell and Gene Therapy Research Group (India)

    2013-07-15

    Single living Jurkat cells have been encapsulated through polyelectrolytes nanoparticles poly(allyl amine hydrochloride) size 15.6 nm and poly(styrene-co-sulfonic acid sodium salt) size 30.2 nm, through layer by layer coating of oppositely charged plasma membrane. Confocal microscopy and scanning electron microscopy results showed complete shielding of Jurkat cells, and no changes in cell surface morphology of encapsulated cells were observed. Cell viability was not affected after encapsulation and no toxicity was found. In vivo studies demonstrated no significant changes in hematological and biochemical parameters of blood serum at day 1 and 7 in mice. Histopathological analyses of liver and spleen tissues showed nontoxic nature of prepared formulations.

  9. Nitric oxide signaling depends on biotin in Jurkat human lymphoma cells.

    Science.gov (United States)

    Rodriguez-Melendez, Rocio; Zempleni, Janos

    2009-03-01

    Biotin affects gene expression through a diverse array of cell signaling pathways. Previous studies provided evidence that cGMP-dependent signaling also depends on biotin, but the mechanistic sequence of cGMP regulation by biotin is unknown. Here we tested the hypothesis that the effects of biotin in cGMP-dependent cell signaling are mediated by nitric oxide (NO). Human lymphoid (Jurkat) cells were cultured in media containing deficient (0.025 nmol/L), physiological (0.25 nmol/L), and pharmacological (10 nmol/L) concentrations of biotin for 5 wk. Both levels of intracellular biotin and NO exhibited a dose-dependent relationship in regard to biotin concentrations in culture media. Effects of biotin on NO levels were disrupted by the NO synthase (NOS) inhibitor N-monomethyl-arginine. Biotin-dependent production of NO was linked with biotin-dependent expression of endothelial and neuronal NOS, but not inducible NOS. Previous studies revealed that NO is an activator of guanylate cyclase. Consistent with these previous observations, biotin-dependent generation of NO increased the abundance of cGMP in Jurkat cells. Finally, the biotin-dependent generation of cGMP increased protein kinase G activity. Collectively, the results of this study are consistent with the hypothesis that biotin-dependent cGMP signaling in human lymphoid cells is mediated by NO.

  10. Apoptosis induction in Jurkat cells and sCD95 levels in women's sera are related with the risk of developing cervical cancer

    Directory of Open Access Journals (Sweden)

    Bravo-Cuellar Alejandro

    2008-04-01

    Full Text Available Abstract Background Currently, there is clear evidence that apoptosis plays an important role in the development and progression of tumors. One of the best characterized apoptosis triggering systems is the CD95/Fas/APO-1 pathway; previous reports have demonstrated high levels of soluble CD95 (sCD95 in serum of patients with some types of cancer. Cervical cancer is the second most common cancer among women worldwide. As a first step in an attempt to design a minimally invasive test to predict the risk of developing cervical cancer in patients with precancerous lesions, we used a simple assay based on the capacity of human serum to induce apoptosis in Jurkat cells. We evaluated the relationship between sCD95 levels and the ability to induce apoptosis in Jurkat cells in cervical cancer patients and controls. Methods Jurkat cells were exposed to serum from 63 women (20 healthy volunteers, 21 with cervical intraepithelial neoplasia grade I [CIN 1] and 22 with cervical-uterine carcinoma. The apoptotic rate was measured by flow cytometry using Annexin-V-Fluos and Propidium Iodide as markers. Serum levels of sCD95 and soluble CD95 ligand (sCD95L were measured by ELISA kits. Results We found that serum from almost all healthy women induced apoptosis in Jurkat cells, while only fifty percent of the sera from women with CIN 1 induced cell death in Jurkat cells. Interestingly, only one serum sample from a patient with cervical-uterine cancer was able to induce apoptosis, the rest of the sera protected Jurkat cells from this killing. We were able to demonstrate that elimination of Jurkat cells was mediated by the CD95/Fas/Apo-1 apoptotic pathway. Furthermore, the serum levels of sCD95 measured by ELISA were significantly higher in women with cervical cancer. Conclusion Our results demonstrate that there is a strong correlation between low levels of sCD95 in serum of normal women and higher apoptosis induction in Jurkat cells. We suggest that an analysis of

  11. Development of a confocal ultrasound device using an inertial cavitation control for transfection in-vitro

    Science.gov (United States)

    Mestas, J. L.; Chettab, K.; Roux, S.; Prieur, F.; Lafond, M.; Dumontet, C.; Lafon, C.

    2015-12-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. We developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (peGFP- C1) in adherent and non-adherent cell lines. The frequency spectrum of the signal receive by a hydrophone is used to compute a cavitation index (CI) representative of the inertial cavitation activity. The influence of the CI on transfection efficiency, as well as reproducibility were determined. A real-time feedback loop control on CI was integrated in the process to regulate the cavitation level during sonoporation. In both adherent and non-adherent cell lines, the sonoporation device produced a highly efficient transfection of peGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. Moreover, the sonoporation of non-adherent cell lines Jurkat and K562 was found to be equivalent to nucleofection in terms of efficiency and toxicity while these two cell lines were resistant to transfection with lipofection.

  12. Differential Activity of Voltage- and Ca2+-Dependent Potassium Channels in Leukemic T Cell Lines: Jurkat Cells Represent an Exceptional Case

    Directory of Open Access Journals (Sweden)

    Salvador Valle-Reyes

    2018-05-01

    Full Text Available Activation of resting T cells relies on sustained Ca2+ influx across the plasma membrane, which in turn depends on the functional expression of potassium channels, whose activity repolarizes the membrane potential. Depending on the T-cells subset, upon activation the expression of Ca2+- or voltage-activated K+ channels, KCa or Kv, is up-regulated. In this study, by means of patch-clamp technique in the whole cell mode, we have studied in detail the characteristics of Kv and KCa currents in resting and activated human T cells, the only well explored human T-leukemic cell line Jurkat, and two additional human leukemic T cell lines, CEM and MOLT-3. Voltage dependence of activation and inactivation of Kv1.3 current were shifted up to by 15 mV to more negative potentials upon a prolonged incubation in the whole cell mode and displayed little difference at a stable state in all cell lines but CEM, where the activation curve was biphasic, with a high and low potential components. In Jurkat, KCa currents were dominated by apamine-sensitive KCa2.2 channels, whereas only KCa3.1 current was detected in healthy T and leukemic CEM and MOLT-3 cells. Despite a high proliferation potential of Jurkat cells, Kv and KCa currents were unexpectedly small, more than 10-fold lesser as compared to activated healthy human T cells, CEM and MOLT-3, which displayed characteristic Kv1.3high:KCa3.1high phenotype. Our results suggest that Jurkat cells represent perhaps a singular case and call for more extensive studies on primary leukemic T cell lines as well as a verification of the therapeutic potential of specific KCa3.1 blockers to combat acute lymphoblastic T leukemias.

  13. Ionizing Radiation Induces Morphological Changes and Immunological Modulation of Jurkat Cells.

    Science.gov (United States)

    Voos, Patrick; Fuck, Sebastian; Weipert, Fabian; Babel, Laura; Tandl, Dominique; Meckel, Tobias; Hehlgans, Stephanie; Fournier, Claudia; Moroni, Anna; Rödel, Franz; Thiel, Gerhard

    2018-01-01

    Impairment or stimulation of the immune system by ionizing radiation (IR) impacts on immune surveillance of tumor cells and non-malignant cells and can either foster therapy response or side effects/toxicities of radiation therapy. For a better understanding of the mechanisms by which IR modulates T-cell activation and alters functional properties of these immune cells, we exposed human immortalized Jurkat cells and peripheral blood lymphocytes (PBL) to X-ray doses between 0.1 and 5 Gy. This resulted in cellular responses, which are typically observed also in naïve T-lymphocytes in response of T-cell receptor immune stimulation or mitogens. These responses include oscillations of cytosolic Ca 2+ , an upregulation of CD25 surface expression, interleukin-2 and interferon-γ synthesis, elevated expression of Ca 2+ sensitive K + channels and an increase in cell diameter. The latter was sensitive to inhibition by the immunosuppressant cyclosporine A, Ca 2+ buffer BAPTA-AM, and the CDK1-inhibitor RO3306, indicating the involvement of Ca 2+ -dependent immune activation and radiation-induced cell cycle arrest. Furthermore, on a functional level, Jurkat and PBL cell adhesion to endothelial cells was increased upon radiation exposure and was highly dependent on an upregulation of integrin beta-1 expression and clustering. In conclusion, we here report that IR impacts on immune activation and functional properties of T-lymphocytes that may have implications in both toxic effects and treatment response to combined radiation and immune therapy in cancer patients.

  14. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

    Directory of Open Access Journals (Sweden)

    Marie Saghaeian Jazi

    2016-07-01

    Full Text Available Objective(s: T-cell acute lymphoblastic leukemia (T-ALL is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA as a recently emerged anti-neoplastic histone deacetylase (HDAC inhibitor and pioglitazone (PGZ as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. Materials and Methods: Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. Results: Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after   24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27 expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. Conclusion: These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies.

  15. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways

    Science.gov (United States)

    Yang, Tingfang; Yao, Shuluan; Zhang, Xianfeng; Guo, Yan

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro), the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 μg/mL Andro could significantly induce Jurkat cells’ apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro’s dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days. PMID:27114702

  16. Transfection of bone marrow derived cells with immunoregulatory proteins.

    Science.gov (United States)

    Khantakova, Julia N; Silkov, Alexander N; Tereshchenko, Valeriy P; Gavrilova, Elena V; Maksyutov, Rinat A; Sennikov, Sergey V

    2018-03-23

    In vitro electroporation gene transfer was first performed in 1982. Today, this technology has become one of the major vehicles for non-viral transfection of cells. All non-viral transfections, such as calcium phosphate precipitation, lipofection, and magnetic transfection, have been shown to achieve a transfection efficiency of up to 70% in commonly used cell lines, but not in primary cells. Here we describe the use of electroporation to transfect primary mouse bone marrow-derived cells, such as macrophages (Mφ) and dendritic cells (DCs) with high efficiencies (45%-72%) and minimal cell death. The transfection efficiencies and cell death varied depending on the culture duration of the DCs and Mφ. Moreover, the electroporation efficiency was increased when conditioning medium was used for culturing the cells. Furthermore, we demonstrated that measuring the plasmid-encoded secreted proteins is a highly sensitive method for determining the transfection efficiency. In summary, electroporation with plasmid vectors is an efficient method for producing DCs and Mφ with transient expression of immunoregulatory proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Apoptosis induction in Jurkat cells and sCD95 levels in women's sera are related with the risk of developing cervical cancer

    International Nuclear Information System (INIS)

    Aguilar-Lemarroy, Adriana; Jave-Suarez, Luis F; Romero-Ramos, Jose E; Olimon-Andalon, Vicente; Hernandez-Flores, Georgina; Lerma-Diaz, Jose M; Ortiz-Lazareno, Pablo C; Morgan-Villela, Gilberto; Toro-Arreola, Susana del; Bravo-Cuellar, Alejandro

    2008-01-01

    Currently, there is clear evidence that apoptosis plays an important role in the development and progression of tumors. One of the best characterized apoptosis triggering systems is the CD95/Fas/APO-1 pathway; previous reports have demonstrated high levels of soluble CD95 (sCD95) in serum of patients with some types of cancer. Cervical cancer is the second most common cancer among women worldwide. As a first step in an attempt to design a minimally invasive test to predict the risk of developing cervical cancer in patients with precancerous lesions, we used a simple assay based on the capacity of human serum to induce apoptosis in Jurkat cells. We evaluated the relationship between sCD95 levels and the ability to induce apoptosis in Jurkat cells in cervical cancer patients and controls. Jurkat cells were exposed to serum from 63 women (20 healthy volunteers, 21 with cervical intraepithelial neoplasia grade I [CIN 1] and 22 with cervical-uterine carcinoma). The apoptotic rate was measured by flow cytometry using Annexin-V-Fluos and Propidium Iodide as markers. Serum levels of sCD95 and soluble CD95 ligand (sCD95L) were measured by ELISA kits. We found that serum from almost all healthy women induced apoptosis in Jurkat cells, while only fifty percent of the sera from women with CIN 1 induced cell death in Jurkat cells. Interestingly, only one serum sample from a patient with cervical-uterine cancer was able to induce apoptosis, the rest of the sera protected Jurkat cells from this killing. We were able to demonstrate that elimination of Jurkat cells was mediated by the CD95/Fas/Apo-1 apoptotic pathway. Furthermore, the serum levels of sCD95 measured by ELISA were significantly higher in women with cervical cancer. Our results demonstrate that there is a strong correlation between low levels of sCD95 in serum of normal women and higher apoptosis induction in Jurkat cells. We suggest that an analysis of the apoptotic rate induced by serum in Jurkat cells and the

  18. Influence of Polyplex Formation on the Performance of Star-Shaped Polycationic Transfection Agents for Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Alexander Raup

    2016-06-01

    Full Text Available Genetic modification (“transfection” of mammalian cells using non-viral, synthetic agents such as polycations, is still a challenge. Polyplex formation between the DNA and the polycation is a decisive step in such experiments. Star-shaped polycations have been proposed as superior transfection agents, yet have never before been compared side-by-side, e.g., in view of structural effects. Herein four star-shaped polycationic structures, all based on (2-dimethylamino ethyl methacrylate (DMAEMA building blocks, were investigated for their potential to deliver DNA to adherent (CHO, L929, HEK-293 and non-adherent (Jurkat, primary human T lymphocytes mammalian cells. The investigated vectors included three structures where the PDMAEMA arms (different arm length and grafting densities had been grown from a center silsesquioxane or silica-coated γ-Fe2O3-core and one micellar structure self-assembled from poly(1,2-butadiene-block PDMAEMA polymers. All nano-stars combined high transfection potential with excellent biocompatibility. The micelles slightly outperformed the covalently linked agents. For method development and optimization, the absolute amount of polycation added to the cells was more important than the N/P-ratio (ratio between polycation nitrogen and DNA phosphate, provided a lower limit was passed and enough polycation was present to overcompensate the negative charge of the plasmid DNA. Finally, the matrix (NaCl vs. HEPES-buffered glucose solution, but also the concentrations adjusted during polyplex formation, affected the results.

  19. Differential expression of muscarinic acetylcholine receptor subtypes in Jurkat cells and their signaling.

    Science.gov (United States)

    Alea, Mileidys Perez; Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Fuxe, Kjell; Garriga, Pere

    2011-08-15

    Muscarinic acetylcholine receptors expression and signaling in the human Jurkat T cell line were investigated. Semiquantitative real-time PCR and radioligand binding studies, using a wide set of antagonist compounds, showed the co-existence of M(3), M(4), and M(5) subtypes. Stimulation of these subpopulations caused a concentration and time- dependent activation of second messengers and ERK signaling pathways, with a major contribution of the M(3) subtype in a G(q/11)-mediated response. In addition, we found that T-cell stimulation leads to increased expression of M(3) and M(5) both at transcriptional and protein levels in a PLC/PKCθ dependent manner. Our data clarifies the functional role of AChR subtypes in Jurkat cells and pave the way to future studies on the potential cross-talk among these subpopulations and their regulation of T lymphocytes immune function. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Correlation between cationic lipid-based transfection and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael, E-mail: michael@elbaum.ac.il

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24 h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. - Highlights: • Cationic lipid-based transfection supports protein expression without cell division. • Protein expression is unrelated to cell cycle status at the time of transfection. • Time-lapse imaging provides direct evaluation without statistical averaging. • Lipoplex dissociation is a likely target for improvement of transfection efficiency.

  1. Ionizing Radiation Induces Morphological Changes and Immunological Modulation of Jurkat Cells

    Directory of Open Access Journals (Sweden)

    Patrick Voos

    2018-04-01

    Full Text Available Impairment or stimulation of the immune system by ionizing radiation (IR impacts on immune surveillance of tumor cells and non-malignant cells and can either foster therapy response or side effects/toxicities of radiation therapy. For a better understanding of the mechanisms by which IR modulates T-cell activation and alters functional properties of these immune cells, we exposed human immortalized Jurkat cells and peripheral blood lymphocytes (PBL to X-ray doses between 0.1 and 5 Gy. This resulted in cellular responses, which are typically observed also in naïve T-lymphocytes in response of T-cell receptor immune stimulation or mitogens. These responses include oscillations of cytosolic Ca2+, an upregulation of CD25 surface expression, interleukin-2 and interferon-γ synthesis, elevated expression of Ca2+ sensitive K+ channels and an increase in cell diameter. The latter was sensitive to inhibition by the immunosuppressant cyclosporine A, Ca2+ buffer BAPTA-AM, and the CDK1-inhibitor RO3306, indicating the involvement of Ca2+-dependent immune activation and radiation-induced cell cycle arrest. Furthermore, on a functional level, Jurkat and PBL cell adhesion to endothelial cells was increased upon radiation exposure and was highly dependent on an upregulation of integrin beta-1 expression and clustering. In conclusion, we here report that IR impacts on immune activation and functional properties of T-lymphocytes that may have implications in both toxic effects and treatment response to combined radiation and immune therapy in cancer patients.

  2. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways

    Directory of Open Access Journals (Sweden)

    Yang T

    2016-04-01

    Full Text Available Tingfang Yang,1 Shuluan Yao,2 Xianfeng Zhang,3 Yan Guo2 1Department of Pediatrics, Jining No 1 People’s Hospital, Shandong Province, People’s Republic of China; 2Department of Respiratory Medicine, Jining Medical University Affiliated Hospital, Shandong Province, People’s Republic of China; 3Department of Psychiatry, Jining Psychiatric Hospital, Shandong Province, People’s Republic of China Abstract: T-cell acute lymphoblastic leukemia (T-ALL as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro, the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 µg/mL Andro could significantly induce Jurkat cells’ apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro’s dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days. Keywords: andrographolide, PI3K, AKT, Burkitt lymphoma, Jurkat cell

  3. Transfection in Primary Cultured Neuronal Cells.

    Science.gov (United States)

    Marwick, Katie F M; Hardingham, Giles E

    2017-01-01

    Transfection allows the introduction of foreign nucleic acid into eukaryotic cells. It is an important tool in understanding the roles of NMDARs in neurons. Here, we describe using lipofection-mediated transfection to introduce cDNA encoding NMDAR subunits into postmitotic rodent primary cortical neurons maintained in culture.

  4. Single-cell analysis reveals a link between CD3- and CD59-mediated signaling pathways in Jurkat T cells

    International Nuclear Information System (INIS)

    Lipp, A. M.

    2012-01-01

    Elevation of intracellular free calcium concentration ([Ca2+]i) is a key signal during T cell activation and is commonly used as a read-out parameter for stimulation of T cell signaling. Upon T cell stimulation a variety of calcium signals is produced by individual cells of the T cell population and the type of calcium signal strongly influences cell fate decisions. The heterogeneous nature of T cells is masked in ensemble measurements, which highlights the need for single-cell measurements. In this study we used single-cell calcium measurements in Jurkat cells to investigate signaling pathways, which are triggered by different proteins, namely CD3 and CD59. By application of an automated cluster algorithm the presented assay provides unbiased analysis of a large data set of individual calcium time traces generated by the whole cell population. By using this method we could demonstrate that the Jurkat population generates heterogeneous calcium signals in a stimulus-dependent manner. Furthermore, our data revealed the existence of a link between CD3- and CD59-mediated signaling pathways. Single-cell calcium measurements in Jurkat cells expressing different levels of the T cell receptor (TCR) complex indicated that CD59-mediated calcium signaling is critically dependent on TCR surface expression levels. In addition, triggering CD59-mediated calcium signaling resulted in down-regulation of TCR surface expression levels, which is known to happen upon direct TCR triggering too. Moreover, by using siRNA-mediated protein knock-downs and protein knock-out Jurkat mutants we could show that CD3- and CD59-mediated calcium signaling require identical key proteins. We therefore explored by which mechanism CD59-mediated signaling couples into TCR-mediated signaling. Fluorescence recovery after photobleaching (FRAP) experiments and live-cell protein-protein interaction assays provided no evidence of a direct physical interaction between CD3- and CD59-mediated signaling pathways

  5. Transfection of bovine spermatogonial stem cells in vitro.

    Science.gov (United States)

    Tajik, P; Hoseini Pajooh, Kh; Fazle Elahi, Z; Javdani Shahedin, G; Ghasemzadeh-Nava, H

    2017-01-01

    Spermatogonial stem cells (SSCs) are the only stem cells in adults that can transfer genetic information to the future generations. Considering the fact that a single SSC gives rise to a vast number of spermatozoa, genetic manipulation of these cells is a potential novel technology with feasible application to various animal species. The aim of this study was to evaluate enhanced green fluorescent protein (EGFP) gene transfection into bovine SSCs via liposome carrier and assess the best incubation day in uptake exogenous gene by SSCs. Transfection efficiency of EGFP gene with lipofectamine 2000 was determined in days following each three day of transfection (day 4, 6 and 8 of the culture) by fluorescent microscope. Results showed that the transfected cells through lipofection increased significantly (Ptransfection in comparison with those of the control groups. The transfected SSCs were higher in comparison with those of the free exogenous gene carrier groups (Ptransfection proceeds at day four. It was concluded that lipofectamine can be used safely for direct loading exogenous DNA to SSCs particularly during the fourth day of culture.

  6. Transcriptome analysis of the human T lymphocyte cell line Jurkat and human peripheral blood mononuclear cells exposed to deoxynivalenol (DON): New mechanistic insights

    Energy Technology Data Exchange (ETDEWEB)

    Katika, Madhumohan R. [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Department of Health Risk Analysis and Toxicology, Maastricht University (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Hendriksen, Peter J.M. [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Shao, Jia [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Department of Health Risk Analysis and Toxicology, Maastricht University (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Loveren, Henk van [Department of Health Risk Analysis and Toxicology, Maastricht University (Netherlands); National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Peijnenburg, Ad, E-mail: ad.peijnenburg@wur.nl [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Netherlands Toxicogenomics Centre (Netherlands)

    2012-10-01

    Deoxynivalenol (DON) or vomitoxin is a commonly encountered type-B trichothecene mycotoxin, produced by Fusarium species predominantly found in cereals and grains. DON is known to exert toxic effects on the gastrointestinal, reproductive and neuroendocrine systems, and particularly on the immune system. Depending on dose and exposure time, it can either stimulate or suppress immune function. The main objective of this study was to obtain a deeper insight into DON-induced effects on lymphoid cells. For this, we exposed the human T-lymphocyte cell line Jurkat and human peripheral blood mononuclear cells (PBMCs) to various concentrations of DON for various times and examined gene expression changes by DNA microarray analysis. Jurkat cells were exposed to 0.25 and 0.5 μM DON for 3, 6 and 24 h. Biological interpretation of the microarray data indicated that DON affects various processes in these cells: It upregulates genes involved in ribosome structure and function, RNA/protein synthesis and processing, endoplasmic reticulum (ER) stress, calcium-mediated signaling, mitochondrial function, oxidative stress, the NFAT and NF-κB/TNF-α pathways, T cell activation and apoptosis. The effects of DON on the expression of genes involved in ER stress, NFAT activation and apoptosis were confirmed by qRT-PCR. Other biochemical experiments confirmed that DON activates calcium-dependent proteins such as calcineurin and M-calpain that are known to be involved in T cell activation and apoptosis. Induction of T cell activation was also confirmed by demonstrating that DON activates NFATC1 and induces its translocation from the cytoplasm to the nucleus. For the gene expression profiling of PBMCs, cells were exposed to 2 and 4 μM DON for 6 and 24 h. Comparison of the Jurkat microarray data with those obtained with PBMCs showed that most of the processes affected by DON in the Jurkat cell line were also affected in the PBMCs. -- Highlights: ► The human T cell line Jurkat and human

  7. Effects of in vitro Brevetoxin Exposure on Apoptosis and Cellular Metabolism in a Leukemic T Cell Line (Jurkat

    Directory of Open Access Journals (Sweden)

    John W. Sleasman

    2008-06-01

    Full Text Available Harmful algal blooms (HABs of the toxic dinoflagellate, Karenia brevis, produce red tide toxins, or brevetoxins. Significant health effects associated with red tide toxin exposure have been reported in sea life and in humans, with brevetoxins documented within immune cells from many species. The objective of this research was to investigate potential immunotoxic effects of brevetoxins using a leukemic T cell line (Jurkat as an in vitro model system. Viability, cell proliferation, and apoptosis assays were conducted using brevetoxin congeners PbTx-2, PbTx-3, and PbTx-6. The effects of in vitro brevetoxin exposure on cell viability and cellular metabolism or proliferation were determined using trypan blue and MTT (1-(4,5-dimethylthiazol-2-yl-3,5- diphenylformazan, respectively. Using MTT, cellular metabolic activity was decreased in Jurkat cells exposed to 5 - 10 μg/ml PbTx-2 or PbTx-6. After 3 h, no significant effects on cell viability were observed with any toxin congener in concentrations up to 10 μg/ml. Viability decreased dramatically after 24 h in cells treated with PbTx-2 or -6. Apoptosis, as measured by caspase-3 activity, was significantly increased in cells exposed to PbTx-2 or PbTx-6. In summary, brevetoxin congeners varied in effects on Jurkat cells, with PbTx-2 and PbTx-6 eliciting greater cellular effects compared to PbTx-3.

  8. NF-kappa B activity in T cells stably expressing the Tax protein of human T cell lymphotropic virus type I

    International Nuclear Information System (INIS)

    Lacoste, J.; Cohen, L.; Hiscott, J.

    1991-01-01

    The effect of constitutive Tax expression on the interaction of NF-κ B with its recognition sequence and on NF-κ B-dependent gene expression was examined in T lymphoid Jurkat cell lines (19D and 9J) stably transformed with a Tax expression vector. Tax expressing T cell lines contained a constitutive level of NF-κ B binding activity, detectable by mobility shift assay and uv cross-linking using a palindromic NF-κ B probe homologous to the interferon beta PRDII site. In Jurkat and NC2.10 induction with phorbol esters resulted in the appearance of new DNA binding proteins of 85, 75, and 54 kDa, whereas in Tax expressing cells the 85-kDa protein and a 92-kDa DNA binding protein were constitutively induced. Expression of Tax protein in 19D and 9J resulted in transcription of the endogenous NF-kappa B-dependent granulocyte-macrophage colony stimulating factor gene and increased basal level expression of transfected NF-kappa B-regulated promoters. Nonetheless transcription of both the endogenous and the transfected gene was inducible by PMA treatment. Tax expression in Jurkat T cells may alter the stoichiometry of NF-kappa B DNA binding proteins and thus change the expression of NF-kappa B-regulated promoters

  9. Efficient transfection of DNA into primarily cultured rat sertoli cells by electroporation.

    Science.gov (United States)

    Li, Fuping; Yamaguchi, Kohei; Okada, Keisuke; Matsushita, Kei; Enatsu, Noritoshi; Chiba, Koji; Yue, Huanxun; Fujisawa, Masato

    2013-03-01

    The expression of exogenous DNA in Sertoli cells is essential for studying its functional genomics, pathway analysis, and medical applications. Electroporation is a valuable tool for nucleic acid delivery, even in primarily cultured cells, which are considered difficult to transfect. In this study, we developed an optimized protocol for electroporation-based transfection of Sertoli cells and compared its efficiency with conventional lipofection. Sertoli cells were transfected with pCMV-GFP plasmid by square-wave electroporation under different conditions. After transfection of plasmid into Sertoli cells, enhanced green fluorescent protein (EGFP) expression could be easily detected by fluorescent microscopy, and cell survival was evaluated by dye exclusion assay using Trypan blue. In terms of both cell survival and the percentage expressing EGFP, 250 V was determined to produce the greatest number of transiently transfected cells. Keeping the voltage constant (250 V), relatively high cell survival (76.5% ± 3.4%) and transfection efficiency (30.6% ± 5.6%) were observed with a pulse length of 20 μm. The number of pulses significantly affected cell survival and EGFP expression (P transfection methods, the transfection efficiency of electroporation (21.5% ± 5.7%) was significantly higher than those of Lipofectamine 2000 (2.9% ± 1.0%) and Effectene (1.9% ± 0.8%) in this experiment (P transfection of Sertoli cells.

  10. [Apoptosis-modulating effects of heat shock proteins: the influence of Hsp27 chaperone on TBA Bcl-2 family proteins in Jurkat cell line].

    Science.gov (United States)

    Riazantseva, N V; Kaĭgorodova, E V; Maroshkina, A N; Belkina, M V; Novitskiĭ, V V

    2012-01-01

    The in vitro phosphorylated and non-phosphorylated Hsp27 forms concentrations and Bcl-2 proteins affected by Hsp27 inhibition were studied in Jurkat-line tumor cells and healthy donor mononuclear lymphocytes by Western blotting technique. The Hsp27 inhibition causes the increase of intracellular Bax protein concentration and the decrease of Bcl-2 level leading to an increase of apoptotic changes in Jurkat line cells.

  11. Transfection in perfused microfluidic cell culture devices: A case study.

    Science.gov (United States)

    Raimes, William; Rubi, Mathieu; Super, Alexandre; Marques, Marco P C; Veraitch, Farlan; Szita, Nicolas

    2017-08-01

    Automated microfluidic devices are a promising route towards a point-of-care autologous cell therapy. The initial steps of induced pluripotent stem cell (iPSC) derivation involve transfection and long term cell culture. Integration of these steps would help reduce the cost and footprint of micro-scale devices with applications in cell reprogramming or gene correction. Current examples of transfection integration focus on maximising efficiency rather than viable long-term culture. Here we look for whole process compatibility by integrating automated transfection with a perfused microfluidic device designed for homogeneous culture conditions. The injection process was characterised using fluorescein to establish a LabVIEW-based routine for user-defined automation. Proof-of-concept is demonstrated by chemically transfecting a GFP plasmid into mouse embryonic stem cells (mESCs). Cells transfected in the device showed an improvement in efficiency (34%, n = 3) compared with standard protocols (17.2%, n = 3). This represents a first step towards microfluidic processing systems for cell reprogramming or gene therapy.

  12. Benzalkonium chloride (BAK induces apoptosis or necrosis, but has no major influence on the cell cycle of Jurkat cells

    Directory of Open Access Journals (Sweden)

    Piotr Pozarowski

    2011-07-01

    Full Text Available Benzalkonium chloride (BAK is a cationic detergent with a very slow turnover. Because of its strong antibacterial activities, BAK is widely used especially in dentistry and ophthalmology. It is the most commonly used preservative in topical ophthalmic medications. Due to chronicity and widespread use of such treatments, BAK’s side effects are of great importance. BAK toxicity for adherent cells, probably related to its pro-oxidative activities, is time- and dose-dependent. Although lymphocytes often infiltrate superficial eye tissues, the BAK influence on them is yet to be established. The aim of this study was to check BAK cytotoxicity on T lymphocytic Jurkat line cells and to verify the suggestion that BAK can induce G2M cell blocks. A dose- and time-dependent cytotoxic effect of BAK on lymphoid cells in relatively low concentrations was shown in this study. In lower concentrations, it shows a moderate apoptotic and minimal antiproliferative effect on Jurkat cells, while in higher concentrations it shows a rapid necrotic effect. No G2M cell blocks were observed. Our findings could suggest lymphoid dysfunction during intensive, prolonged topical BAK treatment, even at dosages relatively non-toxic to epithelial eye cells. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 2, pp. 225–230

  13. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    DEFF Research Database (Denmark)

    Edvardsen, K; Pedersen, P H; Bjerkvig, R

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...... of the injection site, with a sharply demarcated border between the tumor and brain tissue. In contrast, the parental cell line showed single-cell infiltration and more pronounced destruction of normal brain tissue. Using a 51Cr-release assay, spleen cells from rats transplanted with BT4Cn tumor cells generally...

  14. Repeated Gene Transfection Impairs the Engraftment of Transplanted Porcine Neonatal Pancreatic Cells

    Directory of Open Access Journals (Sweden)

    Min Koo Seo

    2011-02-01

    Full Text Available BackgroundPreviously, we reported that neonatal porcine pancreatic cells transfected with hepatocyte growth factor (HGF gene in an Epstein-Barr virus (EBV-based plasmid (pEBVHGF showed improved proliferation and differentiation compared to those of the control. In this study, we examined if pancreatic cells transfected repeatedly with pEBVHGF can be successfully grafted to control blood glucose in a diabetes mouse model.MethodsNeonatal porcine pancreatic cells were cultured as a monolayer and were transfected with pEBVHGF every other day for a total of three transfections. The transfected pancreatic cells were re-aggregated and transplanted into kidney capsules of diabetic nude mice or normal nude mice. Blood glucose level and body weight were measured every other day after transplantation. The engraftment of the transplanted cells and differentiation into beta cells were assessed using immunohistochemistry.ResultsRe-aggregation of the pancreatic cells before transplantation improved engraftment of the cells and facilitated neovascularization of the graft. Right before transplantation, pancreatic cells that were transfected with pEBVHGF and then re-aggregated showed ductal cell marker expression. However, ductal cells disappeared and the cells underwent fibrosis in a diabetes mouse model two to five weeks after transplantation; these mice also did not show controlled blood glucose levels. Furthermore, pancreatic cells transplanted into nude mice with normal blood glucose showed poor graft survival regardless of the type of transfected plasmid (pCEP4, pHGF, or pEBVHGF.ConclusionFor clinical application of transfected neonatal porcine pancreatic cells, further studies are required to develop methods of overcoming the damage for the cells caused by repeated transfection and to re-aggregate them into islet-like structures.

  15. Effect of Light Irradiation and Sex Hormones on Jurkat T Cells: 17β-Estradiol but Not Testosterone Enhances UVA-Induced Cytotoxicity in Jurkat Lymphocytes

    Directory of Open Access Journals (Sweden)

    Michael F. Angel

    2005-04-01

    Full Text Available In Eastern cultures, such as India, it is traditionally recommended that women but not men cover their heads while working in the scorching sun. The purpose of this pilot study was to determine whether there was any scientific basis for this cultural tradition. We examined the differential cytotoxic effects of ultraviolet A light (UVA on an established T cell line treated with female and male sex hormones. CD4+ Jurkat T cells were plated in 96 well plates at 2 x 106 cells/ml and treated with 17β-estradiol (EST or testosterone (TE. These cells were irradiated by UVA light with an irradiance of 170 J/cm2 for 15min at a distance of 6 cm from the surface of the 96-well plate. Controls included cells not treated with hormones or UVA. The effects of EST and TE were investigated between 1 and 20 ng/mL. Cytotoxicity by fluorescein-diacetate staining and COMET assay generating single strand DNA cleavage, tail length and tail moment measurements were examined. The effect of estrogen (5ng/mL on apoptosis and its mediators was further studied using DNA laddering and western blotting for bcl-2 and p53. We found that EST alone, without UVA, enhanced Jurkat T cell survival. However, EST exhibited a dose-related cytotoxicity in the presence of UVA; up to 28% at 20 ng/ml. TE did not alter UVA-induced cytotoxicity. Since TE did not alter cell viability in the presence of UVA further damaging studies were not performed. COMET assay demonstrated the harmful effects of EST in the presence of UVA while EST without UVA had no significant effect on the nuclear damage. Apoptosis was not present as indicated by the absence of DNA laddering on agarose gel electrophoresis at 5ng/ml EST or TE ± UVA. Western blot showed that estrogen down regulated bcl-2 independently of UVA radiation while p53 was down regulated in the presence of UVA treatment. EST and TE have differential effects on UVA-induced cytotoxicity in Jurkat T-lymphocyte which suggested that women

  16. mRNA transfection of mouse and human neural stem cell cultures.

    Directory of Open Access Journals (Sweden)

    Samuel McLenachan

    Full Text Available The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  17. mRNA Transfection of Mouse and Human Neural Stem Cell Cultures

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J.; Chen, Fred K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages. PMID:24386231

  18. mRNA transfection of mouse and human neural stem cell cultures.

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J; Chen, Fred K

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  19. Successful validation of genomic biomarkers for human immunotoxicity in Jurkat T cells in vitro.

    Science.gov (United States)

    Schmeits, Peter C J; Shao, Jia; van der Krieken, Danique A; Volger, Oscar L; van Loveren, Henk; Peijnenburg, Ad A C M; Hendriksen, Peter J M

    2015-07-01

    Previously, we identified 25 classifier genes that were able to assess immunotoxicity using human Jurkat T cells. The present study aimed to validate these classifiers. For that purpose, Jurkat cells were exposed for 6 h to subcytotoxic doses of nine immunotoxicants, five non-immunotoxicants and four compounds for which human immunotoxicity has not yet been fully established. RNA was isolated and subjected to Fluidigm quantitative real time (qRT)-PCR analysis. The sensitivity, specificity and accuracy of the screening assay as based on the nine immunotoxicants and five non-immunotoxicants used in this study were 100%, 80% and 93%, respectively, which is better than the performance in our previous study. Only one compound was classified as false positive (benzo-e-pyrene). Of the four potential (non-)immunotoxicants, chlorantraniliprole and Hidrasec were classified immunotoxic and Sunset yellow and imidacloprid as non-immunotoxic. ToxPi analysis of the PCR data provided insight in the molecular pathways that were affected by the compounds. The immunotoxicants 2,3-dichloro-propanol and cypermethrin, although structurally different, affected protein metabolism and cholesterol biosynthesis and transport. In addition, four compounds, i.e. chlorpyrifos, aldicarb, benzo-e-pyrene and anti-CD3, affected genes in cholesterol metabolism and transport, protein metabolism and transcription regulation. qRT-PCR on eight additional genes coding for similar processes as defined in ToxPi analyzes, supported these results. In conclusion, the 25 immunotoxic classifiers performed very well in a screening with new non-immunotoxic and immunotoxic compounds. Therefore, the Jurkat screening assay has great promise to be applied within a tiered approach for animal free testing of human immunotoxicity. Copyright © 2014 John Wiley & Sons, Ltd.

  20. [ABIN1 is not involved in imatinib upregulating A20 to inhibit the activation of NF-κB pathway in Jurkat T cells].

    Science.gov (United States)

    Chen, Qian; Wang, Senlin; Lin, Chen; Chen, Shaohua; Zhao, Xiaoling; Li, Yangqiu

    2017-05-01

    Objective To investigate the effect of imatinib (IM) on the expressions of A20-binding inhibitor of NF-κB1 (ABIN1) and A20 in Jurkat T cells. Methods Jurkat T cells were treated with 25, 50 and 100 nmol/L IM for 24 hours. The mRNA and protein levels of ABIN1, A20 and NF-κB were detected by real-time quantitative PCR and Western blotting. Results IM significantly inhibited both mRNA and protein levels of ABIN1 and NF-κB, but raised the mRNA and protein levels of A20; while phorbol 12-myristate 13-acetate/ionomycin increased the expression levels of ABIN1 and A20 mRNA and protein. Conclusion IM could upregulate A20 protein to inhibit the activation of NF-κB pathway in Jurkat T cells, which was independent of the ABIN1 protein.

  1. Proteome alteration induced by hTERT transfection of human fibroblast cells.

    Science.gov (United States)

    Mazzucchelli, Gabriel D; Gabelica, Valérie; Smargiasso, Nicolas; Fléron, Maximilien; Ashimwe, Wilson; Rosu, Frédéric; De Pauw-Gillet, Marie-Claire; Riou, Jean-François; De Pauw, Edwin

    2008-04-17

    Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT) gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38). Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV) and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis) analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest that telomerase expression enhances natural cell repair

  2. Proteome alteration induced by hTERT transfection of human fibroblast cells

    Directory of Open Access Journals (Sweden)

    Riou Jean-François

    2008-04-01

    Full Text Available Abstract Background Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38. Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. Results 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. Conclusion We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest

  3. Exposure of Jurkat cells to bis (tri-n-butyltin) oxide (TBTO) induces transcriptomics changes indicative for ER- and oxidative stress, T cell activation and apoptosis

    International Nuclear Information System (INIS)

    Katika, Madhumohan R.; Hendriksen, Peter J.M.; Loveren, Henk van; Peijnenburg, Ad

    2011-01-01

    Tributyltin oxide (TBTO) is an organotin compound that is widely used as a biocide in agriculture and as an antifouling agent in paints. TBTO is toxic for many cell types, particularly immune cells. The present study aimed to identify the effects of TBTO on the human T lymphocyte cell line Jurkat. Cells were treated with 0.2 and 0.5 μM TBTO for 3, 6, 12 and 24 h and then subjected to whole genome gene expression microarray analysis. The biological interpretation of the gene expression profiles revealed that endoplasmic reticulum (ER) stress is among the earliest effects of TBTO. Simultaneously or shortly thereafter, oxidative stress, activation of NFKB and NFAT, T cell activation, and apoptosis are induced. The effects of TBTO on genes involved in ER stress, NFAT pathway, T cell activation and apoptosis were confirmed by qRT-PCR. Activation and nuclear translocation of NFATC1 and the oxidative stress response proteins NRF2 and KEAP1 were confirmed by immunocytology. Taking advantage of previously published microarray data, we demonstrated that the induction of ER stress, oxidative stress, T cell activation and apoptosis by TBTO is not unique for Jurkat cells but does also occur in mouse thymocytes both ex vivo and in vivo and rat thymocytes ex vivo. We propose that the induction of ER stress leading to a T cell activation response is a major factor in the higher sensitivity of immune cells above other types of cells for TBTO. - Research Highlights: → The human T lymphocyte cell line Jurkat was exposed to TBTO. → Whole-genome microarray experiments were performed. → Data analysis revealed the induction of ER stress and activation of NFAT and NFKB. → Exposure to TBTO also led to T cell activation, oxidative stress and apoptosis.

  4. Simulation of micro/nano electroporation for cell transfection

    Science.gov (United States)

    Zhang, Guocheng; Fan, Na; Jiang, Hai; Guo, Jian; Peng, Bei

    2018-03-01

    The 3D micro/nano electroporation for transfection has become a powerful biological cell research technique with the development of micro-nano manufacturing technology. The micro channels connected the cells with transfection reagents on the chip were important to the transmemnbrane potentical, which directly influences the electroporation efficiency. In this study, a two-dimensional model for electroporation of cells was designed to address the effects of channels’ sizes and number on transmembrane potential. The simulation results indicated that the transmembrane potential increased with increasing size of channels’ entrances. Moreover, compared with single channel entrance, the transmembrane potential was higher when the cells located at multiple channels entrances. These results suggest that it IS required to develop higher micro manufacturing technology to create channels as we expected size.

  5. Characterization of cell lines stably transfected with rubella virus replicons

    International Nuclear Information System (INIS)

    Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K.

    2012-01-01

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was ∼9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  6. Characterization of cell lines stably transfected with rubella virus replicons

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  7. Up-regulated Ectonucleotidases in Fas-Associated Death Domain Protein- and Receptor-Interacting Protein Kinase 1-Deficient Jurkat Leukemia Cells Counteract Extracellular ATP/AMP Accumulation via Pannexin-1 Channels during Chemotherapeutic Drug-Induced Apoptosis.

    Science.gov (United States)

    Boyd-Tressler, Andrea M; Lane, Graham S; Dubyak, George R

    2017-07-01

    Pannexin-1 (Panx1) channels mediate the efflux of ATP and AMP from cancer cells in response to induction of extrinsic apoptosis by death receptors or intrinsic apoptosis by chemotherapeutic agents. We previously described the accumulation of extracellular ATP /AMP during chemotherapy-induced apoptosis in Jurkat human leukemia cells. In this study, we compared how different signaling pathways determine extracellular nucleotide pools in control Jurkat cells versus Jurkat lines that lack the Fas-associated death domain (FADD) or receptor-interacting protein kinase 1 (RIP1) cell death regulatory proteins. Tumor necrosis factor- α induced extrinsic apoptosis in control Jurkat cells and necroptosis in FADD-deficient cells; treatment of both lines with chemotherapeutic drugs elicited similar intrinsic apoptosis. Robust extracellular ATP/AMP accumulation was observed in the FADD-deficient cells during necroptosis, but not during apoptotic activation of Panx1 channels. Accumulation of extracellular ATP/AMP was similarly absent in RIP1-deficient Jurkat cells during apoptotic responses to chemotherapeutic agents. Apoptotic activation triggered equivalent proteolytic gating of Panx1 channels in all three Jurkat cell lines. The differences in extracellular ATP/AMP accumulation correlated with cell-line-specific expression of ectonucleotidases that metabolized the released ATP/AMP. CD73 mRNA, and α β -methylene-ADP-inhibitable ecto-AMPase activity were elevated in the FADD-deficient cells. In contrast, the RIP1-deficient cells were defined by increased expression of tartrate-sensitive prostatic acid phosphatase as a broadly acting ectonucleotidase. Thus, extracellular nucleotide accumulation during regulated tumor cell death involves interplay between ATP/AMP efflux pathways and different cell-autonomous ectonucleotidases. Differential expression of particular ectonucleotidases in tumor cell variants will determine whether chemotherapy-induced activation of Panx1 channels

  8. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, C.D.; Trombone, A.P.F.; Lorenzi, J.C.C.; Almeida, L.P.; Gembre, A.F.; Padilha, E. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ramos, S.G. [Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, C.L.; Coelho-Castelo, A.A.M. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-09-21

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.

  9. Evaluating the role of low-speed centrifugation towards transfecting human peripheral blood mononuclear cell culture.

    Science.gov (United States)

    Majumdar, M; Ratho, R; Chawla, Y; Singh, M P

    2014-01-01

    The conventional method of transfection of suspension cells by chemical has proven to be very difficult. We present a new transfection protocol, wherein, low-speed centrifugation of cell culture plates immediately after adding the lipid: DNA complex significantly enhances the transfection efficiency. Peripheral blood mononuclear cells (PBMCs) were transfected with BLOCK-iT™ Fluorescent Oligo (scrambled siRNA) and lipofectamine complex using conventional and low-speed centrifugation modified transfection protocols. The efficiency of transfection was determined using flowcytometer and cell viability was checked using MTT assay. Incorporation of low-speed centrifugation significantly enhances the transfection efficiency of BLOCK-iT™ in the suspension culture of PBMCs as compared to conventional transfection method (99.8% vs 28.3%; P Centrifugation enhanced transfection (CET) technique is simple, time-saving and novel application without compromising the cell viability in the context of recently popular RNA interference in suspension cultures of PBMCs. This undemanding modification might be applicable to a wide variety of cell lines and solve crucial problem of researchers working with RNA interference in suspension cultures.

  10. Evaluating the role of low-speed centrifugation towards transfecting human peripheral blood mononuclear cell culture

    Directory of Open Access Journals (Sweden)

    M Majumdar

    2014-01-01

    Full Text Available The conventional method of transfection of suspension cells by chemical has proven to be very difficult. We present a new transfection protocol, wherein, low-speed centrifugation of cell culture plates immediately after adding the lipid: DNA complex significantly enhances the transfection efficiency. Peripheral blood mononuclear cells (PBMCs were transfected with BLOCK-iT™ Fluorescent Oligo (scrambled siRNA and lipofectamine complex using conventional and low-speed centrifugation modified transfection protocols. The efficiency of transfection was determined using flowcytometer and cell viability was checked using MTT assay. Incorporation of low-speed centrifugation significantly enhances the transfection efficiency of BLOCK-iT™ in the suspension culture of PBMCs as compared to conventional transfection method (99.8% vs 28.3%; P < 0.0001, even at a low concentration of 40 picomoles without affecting the cell viability. Centrifugation enhanced transfection (CET technique is simple, time-saving and novel application without compromising the cell viability in the context of recently popular RNA interference in suspension cultures of PBMCs. This undemanding modification might be applicable to a wide variety of cell lines and solve crucial problem of researchers working with RNA interference in suspension cultures.

  11. Nonviral transfection of adipose tissue stromal cells: an experimental study.

    Science.gov (United States)

    Lopatina, T V; Kalinina, N I; Parfyonova, E V

    2009-04-01

    Delivery of plasmid DNA and interfering RNA into adipose tissue stromal cells was carried out by the methods of lipofection, calcium phosphate method, and by electroporation. The percent of transfected cells after delivery of plasmid DNA by the calcium phosphate method and lipofection was 0 and 15%, respectively, vs. more than 50% after electroporation. Similar results were obtained for delivery of short-strand RNA into cells. These data indicate that electroporation is the most effective method of nonviral transfection of adipose tissue stromal cells.

  12. Non-Viral Transfection Methods Optimized for Gene Delivery to a Lung Cancer Cell Line

    OpenAIRE

    Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas

    2013-01-01

    Background Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. Methods In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize deliver...

  13. Rat embryo cells immortalized with transfected oncogenes are transformed by gamma irradiation.

    Science.gov (United States)

    Endlich, B; Salavati, R; Sullivan, T; Ling, C C

    1992-12-01

    Cesium-137 gamma rays were used to transform rat embryo cells (REC) which were first transfected with activated c-myc or c-Ha-ras oncogenes to produce immortal cell lines (REC:myc and REC:ras). When exposed to 6 Gy of 137Cs gamma rays, some cells became morphologically transformed with focus formation frequencies of approximately 3 x 10(-4) for REC:myc and approximately 1 x 10(-4) for REC:ras, respectively. Cells isolated from foci of gamma-ray-transformed REC:myc (REC:myc:gamma) formed anchorage-independent colonies and were tumorigenic in nude mice, but foci from gamma-ray-transformed REC:ras (REC:ras:gamma) did not exhibit either of these criteria of transformation. Similar to the results with gamma irradiation, we observed a sequence-dependent phenomenon when myc and ras were transfected into REC, one at a time. REC immortalized by ras transfection were not converted to a tumorigenic phenotype by secondary transfection with myc, but REC transfected with myc were very susceptible to transformation by subsequent ras transfection. This suggests that myc-immortalized cells are more permissive to transformation via secondary treatments. In sequentially transfected REC, myc expression was high whether it was transfected first or second, whereas ras expression was highest when the ras gene was transfected secondarily into myc-containing REC. Molecular analysis of REC:ras:gamma transformants showed no alterations in structure of the transfected ras or of the endogenous ras, myc, p53, or fos genes. The expression of ras and p53 was increased in some isolates of REC:ras:gamma, but myc and fos expression were not affected. Similarly, REC:myc:gamma transformants did not demonstrate rearrangement or amplification of the transfected or the endogenous myc genes, or of the potentially cooperating Ha-, Ki-, or N-ras genes. Northern hybridization analysis revealed increased expression of N-ras in two isolates, REC:myc:gamma 33 and gamma 41, but no alterations in the expression

  14. Non-Viral Transfection Methods Optimized for Gene Delivery to a Lung Cancer Cell Line

    Science.gov (United States)

    Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas

    2013-01-01

    Background Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. Methods In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize delivery of a plasmid construct that expressed Green Fluorescent Protein (GFP). Transgene expression was detected by fluorescent microscopy and flowcytometry. Toxicities of the methods were estimated by trypan blue staining. In order to evaluate the density of the transfected gene, we used a plasmid construct that expressed the Stromal cell-Derived Factor-1 (SDF-1) gene and measured its expression by real-time PCR. Results Mean levels of GFP-expressing cells 48 hr after transfection were 8.4% (CaP), 8.2% (DEAE-dextran), 4.9% (superfect), 34.1% (electroporation), and 40.1% (lipofection). Lipofection had the highest intense SDF-1 expression of the analyzed methods. Conclusion This study has shown that the lipofection and electroporation methods were more efficient at gene delivery to Mehr-80 cells. The quantity of DNA per transfection, reagent concentration, and incubation time were identified as essential factors for successful transfection in all of the studied methods. PMID:23799175

  15. Non-viral transfection methods optimized for gene delivery to a lung cancer cell line.

    Science.gov (United States)

    Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas

    2013-04-01

    Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize delivery of a plasmid construct that expressed Green Fluorescent Protein (GFP). Transgene expression was detected by fluorescent microscopy and flowcytometry. Toxicities of the methods were estimated by trypan blue staining. In order to evaluate the density of the transfected gene, we used a plasmid construct that expressed the Stromal cell-Derived Factor-1 (SDF-1) gene and measured its expression by real-time PCR. Mean levels of GFP-expressing cells 48 hr after transfection were 8.4% (CaP), 8.2% (DEAE-dextran), 4.9% (superfect), 34.1% (electroporation), and 40.1% (lipofection). Lipofection had the highest intense SDF-1 expression of the analyzed methods. This study has shown that the lipofection and electroporation methods were more efficient at gene delivery to Mehr-80 cells. The quantity of DNA per transfection, reagent concentration, and incubation time were identified as essential factors for successful transfection in all of the studied methods.

  16. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    Science.gov (United States)

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. © 2015 Wiley Periodicals, Inc.

  17. Optical sorting and photo-transfection of mammalian cells

    CSIR Research Space (South Africa)

    Mthunzi, P

    2010-02-01

    Full Text Available and that the scattering force can enable sorting through axial guiding onto laminin coated glass coverslips upon which the selected cells adhere. Following this, I report on transient photo-transfection of mammalian cells including neuroblastomas (rat/mouse and human...

  18. Effect of NCAM-transfection on growth and invasion of a human cancer cell line

    DEFF Research Database (Denmark)

    Edvardsen, K; Bock, E; Jirus, S

    1997-01-01

    of modulating NCAM expression in vivo. In nude mice, NCAM-transfected cells developed tumors with longer latency periods and slower growth rates than tumors induced by NCAM-negative control cells, implying that NCAM may be involved not only in adhesive and motile behavior of tumor cells but also in their growth......-transfected cells. The fact that NCAM expression influences growth regulation attributes a pivotal role to this cell adhesion molecule during ontogenesis and tumor development.......A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial...

  19. Delivery of proteins to mammalian cells via gold nanoparticle mediated laser transfection

    International Nuclear Information System (INIS)

    Heinemann, D; Kalies, S; Schomaker, M; Ertmer, W; Meyer, H; Ripken, T; Murua Escobar, H

    2014-01-01

    Nanoparticle laser interactions are in widespread use in cell manipulation. In particular, molecular medicine needs techniques for the directed delivery of molecules into mammalian cells. Proteins are the final mediator of most cellular cascades. However, despite several methodical approaches, the efficient delivery of proteins to cells remains challenging. This paper presents a new protein transfection technique via laser scanning of cells previously incubated with gold nanoparticles. The laser-induced plasmonic effects on the gold nanoparticles cause a transient permeabilization of the cellular membrane, allowing proteins to enter the cell. Applying this technique, it was possible to deliver green fluorescent protein into mammalian cells with an efficiency of 43%, maintaining a high level of cell viability. Furthermore, a functional delivery of Caspase 3, an apoptosis mediating protein, was demonstrated and evaluated in several cellular assays. Compared to conventional protein transfection techniques such as microinjection, the methodical approach presented here enables high-throughput transfection of about 10 000 cells per second. Moreover, a well-defined point in time of delivery is guaranteed by gold nanoparticle mediated laser transfection, allowing the detailed temporal analysis of cellular pathways and protein trafficking. (papers)

  20. CD147 and CD98 complex-mediated homotypic aggregation attenuates the CypA-induced chemotactic effect on Jurkat T cells.

    Science.gov (United States)

    Guo, Na; Zhang, Kui; Lv, Minghua; Miao, Jinlin; Chen, Zhinan; Zhu, Ping

    2015-02-01

    Homotypic cell aggregation plays important roles in physiological and pathological processes, including embryogenesis, immune responses, angiogenesis, tumor cell invasion and metastasis. CD147 has been implicated in most of these phenomena, and it was identified as a T cell activation-associated antigen due to its obvious up-regulation in activated T cells. However, the explicit function and mechanism of CD147 in T cells have not been fully elucidated. In this study, large and compact aggregates were observed in Jurkat T cells after treatment with the specific CD147 monoclonal antibody HAb18 or after the expression of CD147 was silenced by RNA interference, which indicated an inhibitory effect of CD147 in T cell homotypic aggregation. Knocking down CD147 expression resulted in a significant decrease in CD98, along with prominent cell aggregation, similar to that treated by CD98 and CD147 monoclonal antibodies. Furthermore, decreased cell chemotactic activity was observed following CD147- and CD98-mediated cell aggregation, and increased aggregation was correlated with a decrease in the chemotactic ability of the Jurkat T cells, suggesting that CD147- and CD98-mediated homotypic cell aggregation plays a negative role in T cell chemotaxis. Our data also showed that p-ERK, p-ZAP70, p-CD3ζ and p-LCK were significantly decreased in the CD147- and CD98-knocked down Jurkat T cells, which suggested that decreased CD147- and/or CD98-induced homotypic T cell aggregation and aggregation-inhibited chemotaxis might be associated with these signaling pathways. A role for CD147 in cell aggregation and chemotaxis was further indicated in primary CD4(+) T cells. Similarly, low expression of CD147 in primary T cells induced prominent cell aggregation and this aggregation attenuated primary T cell chemotactic ability in response to CypA. Our results have demonstrated the correlation between homotypic cell aggregation and the chemotactic response of T cells to CypA, and these data

  1. Mutant p53 transfection of astrocytic cells results in altered cell cycle control, radiation sensitivity, and tumorigenicity

    International Nuclear Information System (INIS)

    Kanady, Kirk E.; Mei Su; Proulx, Gary; Malkin, David M.; Pardo, Francisco S.

    1995-01-01

    Introduction: Alterations in the p53 tumor suppressor gene are one of the most frequent genetic alterations in malignant gliomas. An understanding of the molecular genetic events leading to glial tumor progression would aid in designing therapeutic vectors for controlling these challenging tumor types. We investigated whether mutations in coding exons of the p53 gene result in functional changes altering cell cycle 'checkpoint' control and the intrinsic radiation sensitivity of glial cells. Methods: An astrocytic cell line was derived from a low grade astrocytoma and characterized to be of human karyotype and GFAP positivity. Additionally, the cellular population has never formed tumors in immune-deficient mice. At early passage ( 2 as parameters. Cell kinetic analyses after 2, 5, and 10 Gy of ionizing radiation were conducted using propidium iodide FACS analyses. Results: Overall levels of p53 expression were increased 5-10 fold in the transfected cellular populations. Astrocytic cellular populations transfected with mutant p53 revealed a statistically significant increase in levels of resistance to ionizing radiation in vitro (2-tailed test, SF2, MID). Astrocytic cellular populations transfected with mutant p53, unlike the parental cells, were tumorigenic in SCID mice. Cell kinetic analyses indicated that the untransfected cell line demonstrated dose dependent G1 and G2 arrests. Following transfection, however, the resultant cellular population demonstrated a predominant G2 arrest. Conclusions: Astrocytic cellular populations derived from low grade astrocytomas, are relatively radiation sensitive, non-tumorigenic, and have intact cell cycle ''checkpoints.'' Cellular populations resulting upon transfection of parental cells with a dominant negative p53 mutation, are relatively radiation resistant, when compared to both parental and mock-transfected cells. Transfected cells demonstrate abnormalities of cell cycle control at the G1/S checkpoint, increases in levels

  2. Non-viral genetic transfection of rat Schwann cells with FuGENE HD© lipofection and AMAXA© nucleofection is feasible but impairs cell viability.

    Science.gov (United States)

    Kraus, Armin; Täger, Joachim; Kohler, Konrad; Haerle, Max; Werdin, Frank; Schaller, Hans-Eberhard; Sinis, Nektarios

    2010-11-01

    To determine transfection efficiency of FuGENE HD© lipofection and AMAXA© nucleofection on rat Schwann cells (SC). The ischiadic and median nerves of 6-8 week old Lewis rats were cultured in modified melanocyte-growth medium. SCs were genetically transfected with green fluorescent protein (GFP) as reporter gene using FuGENE HD© lipofection and AMAXA© nucleofection. Transfection rates were determined by visualization of GFP fluorescence under fluorescence microscopy and cell counting. Transfected cell to non-transfected cell relation was determined. Purity of Schwann cell culture was 88% as determined by immunohistologic staining. Transfection rate of FuGENE HD© lipofection was 2%, transfection rate of AMAXA© nucleofection was 10%. With both methods, Schwann cells showed pronounced aggregation behavior which made them unfeasible for further cultivation. Settling of Schwann cells on laminin and poly-L-ornithine coated plates was compromised by either method. Non-viral transfection of rat SC with FuGENE HD© lipofection and AMAXA© nucleofection is basically possible with a higher transfection rate for nucleofection than for lipofection. As cell viability is compromised by either method however, viral transfection is to be considered if higher efficiency is required.

  3. Polysaccharide Isolated from Zizyphus jujuba (紅棗 Hóng Zǎo Inhibits Interleukin-2 Production in Jurkat T Cells

    Directory of Open Access Journals (Sweden)

    Bo-Yang Hsu

    2014-04-01

    Full Text Available Zizyphus jujuba (紅棗 Hóng Zǎo, a traditional Chinese herb widely used in many Asian countries, has been shown to possess vital biological activities such as anti-cancer activity. The objective of this study was to evaluate the immunomodulatory effect of deproteinated polysaccharide (DP isolated from Z. jujuba. The DP isolated from Z. jujuba consisted of two polysaccharide fractions and their molecular weights (MWs were found to be 143,108 and 67,633 Da, respectively. The DP could significantly decrease interleukin (IL-2 production in phytohemagglutinin (PHA-activated Jurkat T cells in a dose-dependent manner after 48 h of incubation, with the inhibition being 47.5%, 61.2%, and 81.7% for DP concentrations of 0.75, 1.75, and 2.5 mg/ml, respectively. Thus, our study showed that DP isolated from Z. jujuba may possess anti-inflammatory activity as it could significantly reduce IL-2 production in activated Jurkat T cells.

  4. Enhanced photo-transfection efficiency of mammalian cells on graphene coated substrates

    Science.gov (United States)

    Mthunzi, Patience; He, Kuang; Ngcobo, Sandile; Warner, Jamie W.

    2014-03-01

    Literature reports graphene, an atomic-thick sheet of carbon atoms as one of the promising biocompatible scaffolds that promotes cellular proliferation in human mesenchymal stem cells. On the other hand, different mammalian cell lines including the induced pluripotent stem cells exhibited an accelerated proliferation rate when cultured on graphene or graphene oxide coated substrates. These findings provide strong motivation to explore the full capability of graphene in further pluripotent stem cell research activities as there exists an urgent requirement to preserve their therapeutic potential. This therefore calls for non-invasive procedures for handling stem cells in-vitro. For example, resent literature has shown successful laser light driven transfection in both multipotent and pluripotent stem cells. In order to explore the non-invasive nature of optical transfection alongside biocompatible qualities of graphene, in this work we investigated the impact of optically transfecting mouse embryonic stem (mES) cells plated on graphene coated sample chambers. Using Chinese Hamster Ovary cells (CHO-K1), we further studied the influence of graphene on cell viability as well as cell cytotoxicity through assessing changes in levels of mitochondrial adenosine triphosphate (ATP) activity and the release of cytosolic lactate dehydrogenase (LHD) respectively. Our results showed that compared to those treated on plain glass, CHO-K1 cells optically treated while plated on graphene coated substrates exhibited a higher production of ATP and a milder release of LDH. In addition there was enhanced photo-transfection efficiency in both CHO-K1 and mES cells irradiated on graphene sample chambers.

  5. Femtograms of Interferon-γ Suffice to Modulate the Behavior of Jurkat Cells: A New Light in Immunomodulation

    Directory of Open Access Journals (Sweden)

    Sara Castiglioni

    2017-12-01

    Full Text Available Since interferon-γ (IFN-γ tunes both innate and adaptive immune systems, it was expected to enter clinical practice as an immunomodulatory drug. However, the use of IFN-γ has been limited by its dose-dependent side effects. Low-dose medicine, which is emerging as a novel strategy to treat diseases, might circumvent this restriction. Several clinical studies have proved the efficacy of therapies with a low dose of cytokines subjected to kinetic activation, while no in vitro data are available. To fill this gap, we investigated whether low concentrations, in the femtogram range, of kinetically activated IFN-γ modulate the behavior of Jurkat cells, a widely used experimental model that has importantly contributed to the present knowledge about T cell signaling. In parallel, IFN-γ in the nanogram range was used and shown to activate Signal transducer and activator of transcription (STAT-1 and then to induce suppressor of cytokine signaling-1 (SOCS-1, which inhibits downstream signaling. When added together, femtograms of IFN-γ interfere with the transduction cascade activated by nanograms of IFN-γ by prolonging the activation of STAT-1 through the downregulation of SOCS-1. We conclude that femtograms of IFN-γ exert an immunomodulatory action in Jurkat cells.

  6. Uptake of DNA by cancer cells without a transfection reagent

    Directory of Open Access Journals (Sweden)

    Yanping Kong

    Full Text Available Abstract Background Cancer cells exhibit elevated levels of glucose uptake and may obtain pre-formed, diet-derived fatty acids from the bloodstream to boost their rapid growth; they may also use nucleic acid from their microenvironment. The study of processing nucleic acid by cancer cells will help improve the understanding of the metabolism of cancer. DNA is commonly packaged into a viral or lipid particle to be transferred into cells; this process is called transfection in laboratory. Cancer cells are known for having gene mutations and the evolving ability of endocytosis. Their uptake of DNAs might be different from normal cells; they may take in DNAs directly from the environment. In this report, we studied the uptake of DNAs in cancer cells without a transfection reagent. Methods A group of DNA fragments were prepared with PCR and labeled with isotope phosphorous-32 to test their uptake by Huh 7 (liver cancer and THLE3 (normal liver cells after incubation overnight by counting radioactivity of the cells’ genomic DNA. Multiple cell lines including breast cancer and lung cancer were tested with the same method. DNA molecules were also labeled with fluorescence to test the location in the cells using a kit of “label it fluorescence in situ hybridization (FISH” from Mirus (USA. Results The data demonstrated that hepatocellular carcinoma cells possess the ability to take in large DNA fragments directly without a transfection reagent whereas normal liver cells cannot. Huh7 and MDA-MB231 cells displayed a significantly higher Rhodamine density in the cytoplasmic phagosomes and this suggests that the mechanism of uptake of large DNA by cancer cells is likely endocytosis. The efficacy of uptake is related to the DNA’s size. Some cell lines of lung cancer and breast cancer also showed similar uptake of DNA. Conclusions In the present study, we have revealed the evidence that some cancer cells, but not nontumorigenic cells, can take DNA

  7. Protein-free transfection of CHO host cells with an IgG-fusion protein: selection and characterization of stable high producers and comparison to conventionally transfected clones.

    Science.gov (United States)

    Lattenmayer, Christine; Loeschel, Martina; Schriebl, Kornelia; Steinfellner, Willibald; Sterovsky, Thomas; Trummer, Evelyn; Vorauer-Uhl, Karola; Müller, Dethardt; Katinger, Hermann; Kunert, Renate

    2007-04-15

    In order to improve the current techniques of cell cultivation in the absence of serum, we have developed a protein-free transfection protocol for CHO cells, based on the Nucleofector technology. After starting with a heterogeneous pool of primary transfectants which express the fusion protein EpoFc, we isolated single clones and compared them with parallel clones generated by lipofection in serum-dependent cultivation. Our intensive characterization program was based on determination of specific productivity (q(p)) and analysis of genetic parameters. In two nucleofection experiments, transfection with 5 microg of DNA resulted in best productivities of the primary cell pools. After subcloning, the q(p) could be raised up to 27 pg x cells(-1) x day(-1). While the serum-dependent transfectants exhibited specific productivities up to 57 pg x cells(-1) x day(-1) in serum-dependent cultivation, a significant decrease that resulted in the range of q(p) of the protein-free transfectants was observed after switching to protein-free conditions. Investigation of genetic parameters revealed higher mRNA levels and gene copy numbers (GCN) for the protein-free adapted serum-dependent transfectants. Therefore, we assume that problems during protein-free adaptation (PFA) lead to a less efficient translation machinery after serum deprivation. We describe the generation of stable-producing recombinant CHO clones by protein-free transfection of a protein-free adapted host cell line, which reduces the risk of adverse clonal changes after PFA. The main advantage of this approach is the earlier predictability of clone behavior, which makes the generation of production clones by protein-free transfection, a viable and highly efficient strategy for recombinant cell line development. (c) 2006 Wiley Periodicals, Inc.

  8. Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells

    OpenAIRE

    Aires, Virginie; Hichami, Aziz; Moutairou, Kabirou; Khan, Naim Akhtar

    2003-01-01

    Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N-dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery.Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells.To assess the role of calcium in t...

  9. Cell transfection as a tool to study growth hormone action

    DEFF Research Database (Denmark)

    Norstedt, G; Enberg, B; Francis, S

    1994-01-01

    The isolation of growth hormone receptor (GHR) cDNA clones has made possible the transfection of GHRs into cultured cells. Our aim in this minireview is to show how the application of such approaches have benefited GHR research. GH stimulation of cells expressing GHR cDNAs can cause an alteration...... is important in GH action. The GH signals are transmitted to the nucleus and GH regulated genes have now begun to be characterized. The ability to use cell transfection for mechanistic studies of GH action will be instrumental to define domains within the receptor that are of functional importance...

  10. A Trichostatin A (TSA)/Sp1-mediated mechanism for the regulation of SALL2 tumor suppressor in Jurkat T cells.

    Science.gov (United States)

    Hepp, Matías I; Escobar, David; Farkas, Carlos; Hermosilla, Viviana; Álvarez, Claudia; Amigo, Roberto; Gutiérrez, José L; Castro, Ariel F; Pincheira, Roxana

    2018-05-17

    SALL2 is a transcription factor involved in development and disease. Deregulation of SALL2 has been associated with cancer, suggesting that it plays a role in the disease. However, how SALL2 is regulated and why is deregulated in cancer remain poorly understood. We previously showed that the p53 tumor suppressor represses SALL2 under acute genotoxic stress. Here, we investigated the effect of Histone Deacetylase Inhibitor (HDACi) Trichostatin A (TSA), and involvement of Sp1 on expression and function of SALL2 in Jurkat T cells. We show that SALL2 mRNA and protein levels were enhanced under TSA treatment. Both, TSA and ectopic expression of Sp1 transactivated the SALL2 P2 promoter. This transactivation effect was blocked by the Sp1-binding inhibitor mithramycin A. Sp1 bound in vitro and in vivo to the proximal region of the P2 promoter. TSA induced Sp1 binding to the P2 promoter, which correlated with dynamic changes on H4 acetylation and concomitant recruitment of p300 or HDAC1 in a mutually exclusive manner. Our results suggest that TSA-induced Sp1-Lys703 acetylation contributes to the transcriptional activation of the P2 promoter. Finally, using a CRISPR/Cas9 SALL2-KO Jurkat-T cell model and gain of function experiments, we demonstrated that SALL2 upregulation is required for TSA-mediated cell death. Thus, our study identified Sp1 as a novel transcriptional regulator of SALL2, and proposes a novel epigenetic mechanism for SALL2 regulation in Jurkat-T cells. Altogether, our data support SALL2 function as a tumor suppressor, and SALL2 involvement in cell death response to HDACi. Copyright © 2018. Published by Elsevier B.V.

  11. Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of cancer cells.

    Science.gov (United States)

    Baumgart, Judith; Humbert, Laure; Boulais, Étienne; Lachaine, Rémi; Lebrun, Jean-Jaques; Meunier, Michel

    2012-03-01

    A femtosecond laser based transfection method using off-resonance plasmonic gold nanoparticles is described. For human cancer melanoma cells, the treatment leads to a very high perforation rate of 70%, transfection efficiency three times higher than for conventional lipofection, and very low toxicity (transfection for skin cancer treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Cooperativity of CD44 and CD49d in leukemia cell homing, migration, and survival offers a means for therapeutic attack.

    Science.gov (United States)

    Singh, Vibuthi; Erb, Ulrike; Zöller, Margot

    2013-11-15

    A CD44 blockade drives leukemic cells into differentiation and apoptosis by dislodging from the osteogenic niche. Because anti-CD49d also supports hematopoietic stem cell mobilization, we sought to determine the therapeutic efficacy of a joint CD49d/CD44 blockade. To unravel the underlying mechanism, the CD49d(-) EL4 lymphoma was transfected with CD49d or point-mutated CD49d, prohibiting phosphorylation and FAK binding; additionally, a CD44(-) Jurkat subline was transfected with murine CD44, CD44 with a point mutation in the ezrin binding site, or with cytoplasmic tail-truncated CD44. Parental and transfected EL4 and Jurkat cells were evaluated for adhesion, migration, and apoptosis susceptibility in vitro and in vivo. Ligand-binding and Ab-blocking studies revealed CD44-CD49d cooperation in vitro and in vivo in adhesion, migration, and apoptosis resistance. The cooperation depends on ligand-induced proximity such that both CD44 and CD49d get access to src, FAK, and paxillin and via lck to the MAPK pathway, with the latter also supporting antiapoptotic molecule liberation. Accordingly, synergisms were only seen in leukemia cells expressing wild-type CD44 and CD49d. Anti-CD44 together with anti-CD49d efficiently dislodged EL4-CD49d/Jurkat-CD44 in bone marrow and spleen. Dislodging was accompanied by increased apoptosis susceptibility that strengthened low-dose chemotherapy, the combined treatment most strongly interfering with metastatic settlement and being partly curative. Ab treatment also promoted NK and Ab-dependent cellular cytotoxicity activation, which affected leukemia cells independent of CD44/CD49d tail mutations. Thus, mostly owing to a blockade of joint signaling, anti-CD44 and anti-CD49d hamper leukemic cell settlement and break apoptosis resistance, which strongly supports low-dose chemotherapy.

  13. Novel insights into the antiproliferative effects and synergism of quercetin and menadione in human leukemia Jurkat T cells.

    Science.gov (United States)

    Baran, Irina; Ionescu, Diana; Filippi, Alexandru; Mocanu, Maria Magdalena; Iftime, Adrian; Babes, Ramona; Tofolean, Ioana Teodora; Irimia, Ruxandra; Goicea, Alexandru; Popescu, Valentin; Dimancea, Alexandru; Neagu, Andrei; Ganea, Constanta

    2014-07-01

    The flavonoid quercetin and menadione (vitamin K3) are known as potent apoptogens in human leukemia Jurkat T cells. We explored some underlying mechanisms and the potential relevance of the combination quercetin-menadione for clinical applications. In acute treatments, quercetin manifested a strong antioxidant character, but induced a transient loss of Δψm, likely mediated by opening of the mitochondrial permeability transition pore. After removal of quercetin, persistent mitochondrial hyperpolarization was generated via stimulation of respiratory Complex I. In contrast, menadione-induced Δψm dissipation was only partially and transiently reversed after menadione removal. Results indicate that Ca(2+) release is a necessary event in quercetin-induced cell death and that the survival response to quercetin is delineated within 1h from exposure. Depending on dose, the two agents exhibited either antagonistic or synergistic effects in reducing clonogenicity of Jurkat cells. 24-h combinatorial regimens at equimolar concentrations of 10-15 μM, which are compatible with a clinically achievable (and safe) scheme, reduced cell viability at efficient rates. Altogether, these findings support the idea that the combination quercetin-menadione could improve the outcome of conventional leukemia therapies, and warrant the utility of additional studies to investigate the therapeutic effects of this combination in different cellular or animal models for leukemia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Shinji [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan)]. E-mail: shinjit@fmsrsa.fukui-med.ac.jp; Furukawa, Takako [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Mori, Tetsuya [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Yonekura, Yoshiharu [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Yoshida, Fukui 910-1193 (Japan)

    2005-11-01

    The transplantation of functional cells such as dopaminergic cells into damaged tissue is now clinically ongoing, but at present the population of surviving cells at the transplantation site mostly cannot be noninvasively examined. To visualize surviving transplanted functional cells using a noninvasive method, we chose the estrogen receptor ligand binding domain (ERL) as a reporter molecule and 16{alpha}-[{sup 18}F]-fluoro-17{beta}-estradiol (FES) for its ligand. We used a mouse embryonic stem (ES) cell line for recipient cells as a model. To obtain ES cells that constitutively or inducibly express ERL, we transfected two types of expression vectors into EB5 parental ES cell line using the lipofection method and obtained about 30 clones for each of the two types of transfectants. Then, to examine the expression level of ERL, we performed Western blotting analysis. Ligand uptake experiments were carried out using [{sup 3}H]-estradiol with or without excessive unlabeled estradiol for control cells and ERL transfectants. Each selected clone was also used for in vivo positron emission tomography (PET) imaging studies involving FES in nude mice transplanted with control cells and ERL transfectants. In some of the clones transfected with the inducible-type ERL gene, protein was expressed much higher than in the controls. However, constitutive-type ERL gene-transfected ES cells showed no protein production in spite of their gene expression activity being considerably high. All clones also expressed equal levels of the Oct-3/4 gene, a marker of pluripotency, in comparison with the parental cells. Also, the specific uptake of [{sup 3}H]-estradiol was over 30 times higher in inducer-treated ERL-expressing ES cells compared to untreated control cells. Finally, by performing dynamic PET imaging, we successfully visualized ERL-expressing teratomas using FES.

  15. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene

    International Nuclear Information System (INIS)

    Takamatsu, Shinji; Furukawa, Takako; Mori, Tetsuya; Yonekura, Yoshiharu; Fujibayashi, Yasuhisa

    2005-01-01

    The transplantation of functional cells such as dopaminergic cells into damaged tissue is now clinically ongoing, but at present the population of surviving cells at the transplantation site mostly cannot be noninvasively examined. To visualize surviving transplanted functional cells using a noninvasive method, we chose the estrogen receptor ligand binding domain (ERL) as a reporter molecule and 16α-[ 18 F]-fluoro-17β-estradiol (FES) for its ligand. We used a mouse embryonic stem (ES) cell line for recipient cells as a model. To obtain ES cells that constitutively or inducibly express ERL, we transfected two types of expression vectors into EB5 parental ES cell line using the lipofection method and obtained about 30 clones for each of the two types of transfectants. Then, to examine the expression level of ERL, we performed Western blotting analysis. Ligand uptake experiments were carried out using [ 3 H]-estradiol with or without excessive unlabeled estradiol for control cells and ERL transfectants. Each selected clone was also used for in vivo positron emission tomography (PET) imaging studies involving FES in nude mice transplanted with control cells and ERL transfectants. In some of the clones transfected with the inducible-type ERL gene, protein was expressed much higher than in the controls. However, constitutive-type ERL gene-transfected ES cells showed no protein production in spite of their gene expression activity being considerably high. All clones also expressed equal levels of the Oct-3/4 gene, a marker of pluripotency, in comparison with the parental cells. Also, the specific uptake of [ 3 H]-estradiol was over 30 times higher in inducer-treated ERL-expressing ES cells compared to untreated control cells. Finally, by performing dynamic PET imaging, we successfully visualized ERL-expressing teratomas using FES

  16. Immunocytological and biochemical analysis of the mode of action of bis (tri-n-butyltin) tri-oxide (TBTO) in Jurkat cells

    NARCIS (Netherlands)

    Katika, M.R.; Hendriksen, P.J.M.; Ruijter, de N.C.A.; Loveren, van H.; Peijnenburg, A.A.C.M.

    2012-01-01

    Bis (tri-n-butyltin) oxide (TBTO) is one of the organotin compounds known to induce immunosuppression. Previously, we examined the effect of TBTO on whole-genome mRNA expression in the human T lymphocyte cell line Jurkat, which led to the hypothesis that induction of endoplasmic reticulum (ER)

  17. Inhibition of IGF1-R overcomes IGFBP7-induced chemotherapy resistance in T-ALL

    International Nuclear Information System (INIS)

    Bartram, Isabelle; Erben, Ulrike; Ortiz-Tanchez, Jutta; Blunert, Katja; Schlee, Cornelia; Neumann, Martin; Heesch, Sandra; Baldus, Claudia D.

    2015-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease with the need for treatment optimization. Previously, high expression of Insulin-like growth factor binding protein 7 (IGFBP7), a member of the IGF system, was identified as negative prognostic factor in adult T-ALL patients. Since aberrant IGFBP7 expression was observed in a variety of neoplasia and was relevant for prognosis in T-ALL, we investigated the functional role of IGFBP7 in Jurkat and Molt-4 cells as in vitro models for T-ALL. Jurkat and Molt-4 cells were stably transfected with an IGFBP7 over-expression vector or the empty vector as control. Proliferation of the cells was assessed by WST-1 assays and cell cycle status was measured by flow-cytometry after BrDU/7-AAD staining. The effect of IGFBP7 over-expression on sensitivity to cytostatic drugs was determined in AnnexinV/7-AAD assays. IGF1-R protein expression was measured by Western Blot and flow-cytometric analysis. IGF1-R associated gene expression profiles were generated from microarray gene expression data of 86 T-ALL patients from the Microarrays Innovations in Leukemia (MILE) multicenter study. IGFBP7-transfected Jurkat cells proliferated less, leading to a longer survival in a nutrient–limited environment. Both IGFBP7-transfected Jurkat and Molt-4 cells showed an arrest in the G0/G1 cell cycle phase. Furthermore, Jurkat IGFBP7-transfected cells were resistant to vincristine and asparaginase treatment. Surface expression and whole protein measurement of IGF1-R protein expression showed a reduced abundance of the receptor after IGFBP7 transfection in Jurkat cells. Interestingly, combination of the IGF1-R inhibitor NPV-AEW541 restored sensitivity to vincristine in IGFBP7-transfected cells. Additionally, IGF1-R associated GEP revealed an up-regulation of important drivers of T-ALL pathogenesis and regulators of chemo-resistance and apoptosis such as NOTCH1, BCL-2, PRKCI, and TP53. This study revealed a

  18. Lipid-based Transfection Reagents Exhibit Cryo-induced Increase in Transfection Efficiency

    Directory of Open Access Journals (Sweden)

    Helena Sork

    2016-01-01

    Full Text Available The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents.

  19. Protocol for Lipid-Mediated Transient Transfection in A549 Epithelial Lung Cell Line.

    Science.gov (United States)

    Marcos-Vadillo, Elena; García-Sánchez, Asunción

    2016-01-01

    Trials of transfection in eukaryotic cells are essential tools for the study of gene and protein function. They have been used in a wide range of research fields. In this chapter, a method of transient transfection of the A549 cell line, human lung cells of alveolar epithelium, with an expression plasmid is described. In addition, the fundamental characteristics of this experimental procedure are addressed.

  20. Transfection of brain capillary endothelial cells in primary culture with defined blood-brain barrier properties.

    Science.gov (United States)

    Burkhart, Annette; Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Lichota, Jacek; Fazakas, Csilla; Krizbai, István; Moos, Torben

    2015-08-07

    Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood-brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells' integrity. Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly

  1. Inorganic nanoparticles for transfection of mammalian cells and removal of viruses from aqueous solutions.

    Science.gov (United States)

    Link, Nils; Brunner, Tobias J; Dreesen, Imke A J; Stark, Wendelin J; Fussenegger, Martin

    2007-12-01

    Owing to their small size, synthetic nanoparticles show unprecedented biophysical and biochemical properties which may foster novel advances in life-science research. Using flame-spray synthesis technology we have produced non-coated aluminum-, calcium-, cerium-, and zirconium-derived inorganic metal oxide nanoparticles which not only exhibit high affinity for nucleic acids, but can sequester such compounds from aqueous solution. This non-covalent DNA-binding capacity was successfully used to transiently transfect a variety of mammalian cells including human, reaching transfection efficiencies which compared favorably with classic calcium phosphate precipitation (CaP) procedures and lipofection. In this straightforward protocol, transfection was enabled by simply mixing nanoparticles with DNA in solution prior to addition to the target cell population. Transiently transfected cells showed higher production levels of the human secreted glycoprotein SEAP compared to isogenic populations transfected with established technologies. Inorganic metal oxide nanoparticles also showed a high binding capacity to human-pathogenic viruses including adenovirus, adeno-associated virus and human immunodeficiency virus type 1 and were able to clear these pathogens from aqueous solutions. The DNA transfection and viral clearance capacities of inorganic metal oxide nanoparticles may provide cost-effective biopharmaceutical manufacturing and water treatment in developing countries.

  2. In vitro studies of magnetically enhanced transfection in COS-7 cells

    International Nuclear Information System (INIS)

    Ang, D.; Tay, C.Y.; Tan, L.P.; Preiser, P.R.; Ramanujan, R.V.

    2011-01-01

    In the magnetically enhanced gene delivery technique, DNA complexed with polymer coated aggregated magnetic nanoparticles (AMNPs) is used for effecting transfection. The aim of this study is to examine the relationship between transfection efficiency and the physical characteristics of the polymer coated AMNPs. In vitro studies of transfection efficiency in COS-7 cells were carried out using pEGFP-N1 and pMIR-REPORT complexed polyethylenimine (PEI) coated iron oxide magnetic nanoparticles. PEI coated AMNPs (PEI-AMNPs) with average individual particle diameters in the range of 8 nm to 30 nm were studied and characterized by transmission electron microscopy, vibrating sample magnetometry, X-ray diffractometry, thermal gravimetric analysis and photon correlation spectroscopy methods. PEI-A8MNP and PEI-A30MNP yielded higher transfection efficiency compared to commercial polyMAG particles as well as PEI of equivalent molar ratio of nitrogen/phosphorous (N/P ratio). The transfection efficiency was related to the physical characteristics of the PEI-AMNPs and its complexes: transfection efficiency was strongly positively correlated with saturation magnetization (Ms) and susceptibility (χ), strongly negatively correlated with N/P ratio, moderately positively correlated to zeta potential and moderately negatively correlated to hydrodynamic diameter of the complex. PEI-A8MNP and PEI-A30MNP possessing higher Ms, χ, lower N/P ratio and smaller complex size exhibited higher transfection efficiency compared to PEI-A16MNP which have weaker magnetic properties, higher N/P ratio and larger complex size. We have demonstrated that optimization of the physical properties of PEI-AMNPs is needed to maximize transfection efficiency. - Research highlights: →The transfection efficiency in magnetically enhanced gene delivery was studied. →Transfection efficiency was strongly positively correlated to magnetic properties. →Transfection efficiency was strongly negatively correlated with

  3. Inhibition of human colorectal adenocarcinoma cells with AdCMV-p53 gene transfection induced by irradiation

    International Nuclear Information System (INIS)

    Liu Bing; Min Fengling; Xie Yi; Zhou Qingming; Duan Xin; Chinese Academy of Sciences, Beijing; Zhang Hong; Li Wenjian; Hao Jifang; Zhou Guangming; Gao Qingxiang

    2006-01-01

    The effect of AdCMV-p53 gene transfection induced by γ-ray irradiation on human colorectal adenocarcinoma cells was investigated. The HT-29 cells were irradiated by 0.5, 1.0, 2.0 Gy 60 Co γ-rays, then were transfected with AdCMV-GFP (a replication of deficient recombinant adenoviral vector containing a CMV promoter and green fluorescent protein) or AdCMV-p53 (a replication of deficient recombinant adenoviral vector containing a CMV promoter and carrying human wild p53 gene). Cytotoxity was measured by clonogenic survival assay; apoptosis and the p53 expression were determined by flow cytometry. The results show that the pre-exposure of 0.5 Gy 60 Co γ-rays significantly enhanced the inhibition of HT-29 cells with AdCMV-53 transfection and promoted cell apoptosis. The inhibition rates for the groups of pre-exposure with 0.5 Gy and transfection with 40 and 80 MOI AdCMV-p53 were 50% and 20% higher than those for the groups of the mere transfection, and 40% more than the mere irradiation group. In the case of higher than 0.5 Gy pre-exposure, no significant difference was found between the pre-exposure with transfection group and the mere irradiation group. So 0.5 Gy pre-irradiation and AdCMV-p53 transfection obviously increases the inhibition of HT-29 cells with AdCMV-p53 transfection. The optimum condition is the lower than 1.0 Gy pre-exposure combined with the lower than 80 MOI AdCMV-p53 transfection. (authors)

  4. DODAB:monoolein-based lipoplexes as non-viral vectors for transfection of mammalian cells.

    Science.gov (United States)

    Silva, J P Neves; Oliveira, A C N; Casal, M P P A; Gomes, A C; Coutinho, P J G; Coutinho, O P; Oliveira, M E C D Real

    2011-10-01

    DNA/Cationic liposome complexes (lipoplexes) have been widely used as non-viral vectors for transfection. Neutral lipids in liposomal formulation are determinant for transfection efficiency using these vectors. In this work, we studied the potential of monoolein (MO) as helper lipid for cellular transfection. Lipoplexes composed of pDNA and dioctadecyldimethylammonium bromide (DODAB)/1-monooleoyl-rac-glycerol (MO) at different molar ratios (4:1, 2:1 and 1:1) and at different cationic lipid/DNA ratios were investigated. The physicochemical properties of the lipoplexes (size, charge and structure), were studied by Dynamic Light Scattering (DLS), Zeta Potential (ζ) and cryo-transmission electron microscopy (cryo-TEM). The effect of MO on pDNA condensation and the effect of heparin and heparan sulphate on the percentage of pDNA release from the lipoplexes were also studied by Ethidium Bromide (EtBr) exclusion assays and electrophoresis. Cytotoxicity and transfection efficiency of these lipoplexes were evaluated using 293T cells and compared with the golden standard helper lipids 1,2-dioleoyl-sn-glycero-3-hosphoethanolamine (DOPE) and cholesterol (Chol) as well as with a commercial transfection agent (Lipofectamine™ LTX). The internalization of transfected fluorescently-labeled pDNA was also visualized using the same cell line. The results demonstrate that the presence of MO not only increases pDNA compactation efficiency, but also affects the physicochemical properties of the lipoplexes, which can interfere with lipoplex-cell interactions. The DODAB:MO formulations tested showed little toxicity and successfully mediated in vitro cell transfection. These results were supported by fluorescence microscopy studies, which illustrated that lipoplexes were able to access the cytosol and deliver pDNA to the nucleus. DODAB:MO-based lipoplexes were thus validated as non-toxic, efficient lipofection vectors for genetic modification of mammalian cells. Understanding the

  5. Enhanced transfection efficiency of human embryonic stem cells by the incorporation of DNA liposomes in extracellular matrix.

    Science.gov (United States)

    Villa-Diaz, Luis G; Garcia-Perez, Jose L; Krebsbach, Paul H

    2010-12-01

    Because human embryonic stem (hES) cells can differentiate into virtually any cell type in the human body, these cells hold promise for regenerative medicine. The genetic manipulation of hES cells will enhance our understanding of genes involved in early development and will accelerate their potential use and application for regenerative medicine. The objective of this study was to increase the transfection efficiency of plasmid DNA into hES cells by modifying a standard reverse transfection (RT) protocol of lipofection. We hypothesized that immobilization of plasmid DNA in extracellular matrix would be a more efficient method for plasmid transfer due to the affinity of hES cells for substrates such as Matrigel and to the prolonged exposure of cells to plasmid DNA. Our results demonstrate that this modification doubled the transfection efficiency of hES cells and the generation of clonal cell lines containing a piece of foreign DNA stably inserted in their genomes compared to results obtained with standard forward transfection. In addition, treatment with dimethyl sulfoxide further increased the transfection efficiency of hES cells. In conclusion, modifications to the RT protocol of lipofection result in a significant and robust increase in the transfection efficiency of hES cells.

  6. Construction of rat beta defensin-2 eukaryotic expression vector and expression in the transfected rat corneal epithelial cell

    Directory of Open Access Journals (Sweden)

    Jing Dan

    2017-03-01

    Full Text Available AIM: To construct a recombinant eukaryotic expression vector of rat beta defensin-2(rBD-2, transfect it into the rat corneal epithelial cells with lipofection, determine the expression of target gene in the transfected cells, and discuss the potentiality of recombinant plasmid expressed in corneal epithelial cells, hoping to provide an experimental foundation for further study on the antimicrobial activity of rBD-2 in vitro and in vivo and to assess the probability of defensins as a new application for infectious corneal diseases in the future. METHODS: The synthetic rBD-2 DNA fragment was inserted between the XhoI and BamHI restriction enzyme cutting sites of eukaryotic expression vector pIRES2-ZsGreen1 to construct the recombinant plasmid pIRES2-ZsGreen1-rBD-2, then transformed it into E.coli DH5α, positive clones were screened by kanamycin and identified with restriction endonucleases and sequencing analysis. Transfection into the rat corneal epithelial cells was performed by lipofection. Then the experiment was divided into three groups: rat corneal epithelial cell was transfected with the recombinant plasmid pIRES2- ZsGreen1-rBD-2, rat corneal epithelial cell was transfected with the empty plasmid pIRES2-ZsGreen1 and the non-transfected group. The inverted fluorescence microscope was used to observe the transfection process. At last, the level of rBD-2 mRNA expressed in the transfected cells and the control groups are compared by the real-time fluoresence relative quantitative PCR. RESULTS: The recombinant eukaryotic expression vector of pIRES2-ZsGreen1-rBD-2 was successfully constructed. The level of rBD-2 mRNA in transfected cells was significantly higher than that in control groups through the real-time fluorescence relative quantitative PCR. CONCLUSION: The recombinant eukaryotic expression vector pIRES2-ZsGreen1-rBD-2 could be transfected into rat corneal epithelial cells, and exogenous rBD-2 gene could be transcripted into mRNA in

  7. Flow-through electroporation based on constant voltage for large-volume transfection of cells.

    Science.gov (United States)

    Geng, Tao; Zhan, Yihong; Wang, Hsiang-Yu; Witting, Scott R; Cornetta, Kenneth G; Lu, Chang

    2010-05-21

    Genetic modification of cells is a critical step involved in many cell therapy and gene therapy protocols. In these applications, cell samples of large volume (10(8)-10(9)cells) are often processed for transfection. This poses new challenges for current transfection methods and practices. Here we present a novel flow-through electroporation method for delivery of genes into cells at high flow rates (up to approximately 20 mL/min) based on disposable microfluidic chips, a syringe pump, and a low-cost direct current (DC) power supply that provides a constant voltage. By eliminating pulse generators used in conventional electroporation, we dramatically lowered the cost of the apparatus and improved the stability and consistency of the electroporation field for long-time operation. We tested the delivery of pEFGP-C1 plasmids encoding enhanced green fluorescent protein into Chinese hamster ovary (CHO-K1) cells in the devices of various dimensions and geometries. Cells were mixed with plasmids and then flowed through a fluidic channel continuously while a constant voltage was established across the device. Together with the applied voltage, the geometry and dimensions of the fluidic channel determined the electrical parameters of the electroporation. With the optimal design, approximately 75% of the viable CHO cells were transfected after the procedure. We also generalize the guidelines for scaling up these flow-through electroporation devices. We envision that this technique will serve as a generic and low-cost tool for a variety of clinical applications requiring large volume of transfected cells. Copyright 2010 Elsevier B.V. All rights reserved.

  8. N-(1-Pyrenyl Maleimide Induces Bak Oligomerization and Mitochondrial Dysfunction in Jurkat Cells

    Directory of Open Access Journals (Sweden)

    Pei-Rong Huang

    2015-01-01

    Full Text Available N-(1-pyrenyl maleimide (NPM is a fluorescent reagent that is frequently used as a derivatization agent for the detection of thio-containing compounds. NPM has been shown to display a great differential cytotoxicity against hematopoietic cancer cells. In this study, the molecular mechanism by which NPM induces apoptosis was examined. Here, we show that treatment of Jurkat cells with NPM leads to Bak oligomerization, loss of mitochondrial membrane potential (Δψm, and release of cytochrome C from mitochondria to cytosol. Induction of Bak oligomerization appears to play a critical role in NPM-induced apoptosis, as downregulation of Bak by shRNA significantly prevented NPM-induced apoptosis. Inhibition of caspase 8 by Z-IETD-FMK and/or depletion of Bid did not affect NPM-induced oligomerization of Bak. Taken together, these results suggest that NPM-induced apoptosis is mediated through a pathway that is independent of caspase-8 activation.

  9. Quantitative comparison of HTLV-1 and HIV-1 cell-to-cell infection with new replication dependent vectors.

    Directory of Open Access Journals (Sweden)

    Dmitriy Mazurov

    2010-02-01

    Full Text Available We have developed an efficient method to quantify cell-to-cell infection with single-cycle, replication dependent reporter vectors. This system was used to examine the mechanisms of infection with HTLV-1 and HIV-1 vectors in lymphocyte cell lines. Effector cells transfected with reporter vector, packaging vector, and Env expression plasmid produced virus-like particles that transduced reporter gene activity into cocultured target cells with zero background. Reporter gene expression was detected exclusively in target cells and required an Env-expression plasmid and a viral packaging vector, which provided essential structural and enzymatic proteins for virus replication. Cell-cell fusion did not contribute to infection, as reporter protein was rarely detected in syncytia. Coculture of transfected Jurkat T cells and target Raji/CD4 B cells enhanced HIV-1 infection two fold and HTLV-1 infection ten thousand fold in comparison with cell-free infection of Raji/CD4 cells. Agents that interfere with actin and tubulin polymerization strongly inhibited HTLV-1 and modestly decreased HIV-1 cell-to-cell infection, an indication that cytoskeletal remodeling was more important for HTLV-1 transmission. Time course studies showed that HTLV-1 transmission occurred very rapidly after cell mixing, whereas slower kinetics of HIV-1 coculture infection implies a different mechanism of infectious transmission. HTLV-1 Tax was demonstrated to play an important role in altering cell-cell interactions that enhance virus infection and replication. Interestingly, superantigen-induced synapses between Jurkat cells and Raji/CD4 cells did not enhance infection for either HTLV-1 or HIV-1. In general, the dependence on cell-to-cell infection was determined by the virus, the effector and target cell types, and by the nature of the cell-cell interaction.

  10. The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis

    International Nuclear Information System (INIS)

    Reich, Charles F.; Pisetsky, David S.

    2009-01-01

    Microparticles are small membrane-bound vesicles that are released from apoptotic cells during blebbing. These particles contain DNA and RNA and display important functional activities, including immune system activation. Furthermore, nucleic acids inside the particle can be analyzed as biomarkers in a variety of disease states. To elucidate the nature of microparticle nucleic acids, DNA and RNA released in microparticles from the Jurkat T and HL-60 promyelocytic cell lines undergoing apoptosis in vitro were studied. Microparticles were isolated from culture media by differential centrifugation and characterized by flow cytometry and molecular approaches. In these particles, DNA showed laddering by gel electrophoresis and was present in a form that allowed direct binding by a monoclonal anti-DNA antibody, suggesting antigen accessibility even without fixation. Analysis of RNA by gel electrophoresis showed intact 18s and 28s ribosomal RNA bands, although lower molecular bands consistent with 28s ribosomal RNA degradation products were also present. Particles also contained messenger RNA as shown by RT-PCR amplification of sequences for β-actin and GAPDH. In addition, gel electrophoresis showed the presence of low molecular weight RNA in the size range of microRNA. Together, these results indicate that microparticles from apoptotic Jurkat and HL-60 cells contain diverse nucleic acid species, indicating translocation of both nuclear and cytoplasmic DNA and RNA as particle release occurs during death

  11. In vitro expression of erythropoietin by transfected human mesenchymal stromal cells.

    Science.gov (United States)

    Mok, P-L; Cheong, S-K; Leong, C-F; Othman, A

    2008-01-01

    Mesenchymal stromal cells (MSC) are pluripotent progenitor cells that can be found in human bone marrow (BM). These cells have low immunogenicity and could suppress alloreactive T-cell responses. In the current study, MSC were tested for their capacity to carry and deliver the erythropoietin (EPO) gene in vitro. Expanded BM MSC was transfected with EPO-encoded plasmid pMCV1.2 and EPO-encoded MIDGE (minimalistic immunologically defined gene expression) vector by electroporation. The expressed EPO was used to induce hematopoietic stem cells (HSC) into erythroid colonies. The results showed that the MIDGE vector was more effective and stable than the plasmid (pMCV1.2) in delivering EPO gene into MSC. The supernatants containing EPO obtained from the transfected cell culture were able to induce the differentiation of HSC into erythroid colonies. MSC hold promise as a cell factory for the production of biologic molecules, and MIDGE vector is more effective and stable than the plasmid in nucleofection involving the EPO gene.

  12. Quantitative Evaluation of Myostatin Gene in Stably Transfected Caprine Fibroblast Cells by Anti-Myostatin shRNA.

    Science.gov (United States)

    Jain, Sudhir Kumar; Jain, Hemlata; Kumar, Dharmendra; Bedekar, Megha Kadam; Pandey, Akhilesh Kumar; Sarkhel, Bikash Chandra

    2015-09-01

    Skeletal muscle is the major component of lean tissue that is used for consumption, and myostatin is a negative regulator of skeletal muscle growth. Downregulation of this gene therefore offers a strategy for developing superior animals with enhanced muscle growth. Knockdown of myostatin was achieved by RNA interference technology. The anti-myostatin shRNA were designed and stably transfected in caprine fibroblast cells. The reduced expression of target gene was achieved and measured in clonal fibroblast cells by real-time PCR. Two single-cell clones induced significant decrease of myostatin gene expression by 73.96 and 72.66 %, respectively (P < 0.05). To ensure the appropriate growth of transfected cell, seven media were tested. The best suited media was used for transfected fibroblast cell proliferation. The findings suggest that shRNA provides a novel potential tool for gene knockdown and these stably transfected cells can be used as the donor cells for animal cloning.

  13. High efficiency non-viral transfection of retinal and iris pigment epithelial cells with pigment epithelium-derived factor.

    Science.gov (United States)

    Thumann, G; Stöcker, M; Maltusch, C; Salz, A K; Barth, S; Walter, P; Johnen, S

    2010-02-01

    Transplantation of pigment epithelial cells in patients with age-related macular degeneration and Parkinson's disease has the potential to improve functional rehabilitation. Genetic modification of cells before transplantation may allow the delivery of neuroprotective factors to achieve functional improvement. As transplantation of cells modified using viral vectors is complicated by the possible dissemination of viral particles and severe immune reactions, we have explored non-viral methods to insert genetic material in pigment epithelial cells. Using lipofection or nucleofection ARPE-19 cells, freshly isolated and primary retinal and iris pigment epithelial (IPE) cells were transfected with plasmids encoding green fluorescent protein (GFP) and with three plasmids encoding recombinant pigment epithelium-derived factor (PEDF) and GFP. Transfection efficiency was evaluated by fluorescence microscopy and stability of protein expression by immunoblotting. Pigment epithelial cells were successfully transfected with plasmid encoding GFP. Expression of GFP in ARPE-19 was transient, but was observed for up to 1 year in IPE cells. Analysis of pigment epithelial cells transfected with PEDF plasmids revealed that PEDF fusion proteins were successfully expressed and functionally active. In conclusion, efficient transfer of genetic information in pigment epithelial cells can be achieved using non-viral transfection protocols.

  14. Reverse Transfection Using Gold Nanoparticles

    Science.gov (United States)

    Yamada, Shigeru; Fujita, Satoshi; Uchimura, Eiichiro; Miyake, Masato; Miyake, Jun

    Reverse transfection from a solid surface has the potential to deliver genes into various types of cell and tissue more effectively than conventional methods of transfection. We present a method for reverse transfection using a gold colloid (GC) as a nanoscaffold by generating nanoclusters of the DNA/reagentcomplex on a glass surface, which could then be used for the regulation of the particle size of the complex and delivery of DNA into nuclei. With this method, we have found that the conjugation of gold nanoparticles (20 nm in particle size) to the pEGFP-N1/Jet-PEI complex resulted in an increase in the intensity of fluorescence of enhanced green fluorescent protein (EGFP) (based on the efficiency of transfection) from human mesenchymal stem cells (hMSCs), as compared with the control without GC. In this manner, we constructed a method for reverse transfection using GC to deliver genes into the cells effectively.

  15. Transfection of small numbers of human endothelial cells by electroporation and synthetic amphiphiles

    NARCIS (Netherlands)

    van Leeuwen, E B; van der Veen, A Y; Hoekstra, D; Engberts, J B; Halie, M R; van der Meer, J; Ruiters, M H

    OBJECTIVES: This study compared the efficiency of electroporation and synthetic amphiphiles. (SAINT-2pp/DOPE) in transfecting small numbers of human endothelial cells. METHODS AND RESULTS: Optimal transfection conditions were tested and appeared to be 400 V and 960 microF for electroporation and a

  16. Upregulation of cellular glutathione levels in human ABCB5- and murine Abcb5-transfected cells.

    Science.gov (United States)

    Kondo, Shingo; Hongama, Keita; Hanaya, Kengo; Yoshida, Ryota; Kawanobe, Takaaki; Katayama, Kazuhiro; Noguchi, Kohji; Sugimoto, Yoshikazu

    2015-12-15

    Previously, we have demonstrated that human ABCB5 is a full-sized ATP-binding cassette transporter that shares strong homology with ABCB1/P-glycoprotein. ABCB5-transfected cells showed resistance to taxanes and anthracyclines. Herein, we further screened ABCB5 substrates, and explored the mechanism of resistance. Sensitivity of the cells to test compounds was evaluated using cell growth inhibition assay. Cellular levels of buthionine sulfoximine (BSO), glutathione and amino acids were measured using HPLC and an enzyme-based assay. Cellular and vesicular transport of glutathione was evaluated by a radiolabeled substrate. Expression levels of glutathione-metabolizing enzymes were assessed by RT-PCR. Human ABCB5-transfected 293/B5-11 cells and murine Abcb5-transfected 293/mb5-8 cells showed 6.5- and 14-fold higher resistance to BSO than the mock-transfected 293/mock cells, respectively. BSO is an inhibitor of gamma-glutamylcysteine ligase (GCL), which is a key enzyme of glutathione synthesis. 293/B5-11 and 293/mb5-8 cells also showed resistance to methionine sulfoximine, another GCL inhibitor. A cellular uptake experiment revealed that BSO accumulation in 293/B5-11 and 293/mb5-8 cells was similar to that in 293/mock cells, suggesting that BSO is not an ABCB5 substrate. The cellular glutathione content in 293/B5-11 and 293/mb5-8 cells was significantly higher than that in 293/mock cells. Evaluation of the BSO effect on the cellular glutathione content showed that compared with 293/mock cells the BSO concentration required for a 50 % reduction in glutathione content in 293/B5-11 and 293/mb5-8 cells was approximately 2- to 3-fold higher. This result suggests that the BSO resistance of the ABCB5- and Abcb5-transfected cells can be attributed to the reduced effect of BSO on the transfectants. Cellular and vesicular transport assays showed that the transport of radiolabeled glutathione in 293/B5-11 cells was similar to that in 293/mock cells. The mRNA expression of genes

  17. Complementation of radiation-sensitive Ataxia telangiectasia cells after transfection of cDNA expression libraries and cosmid clones from wildtype cells

    International Nuclear Information System (INIS)

    Fritz, E.

    1994-06-01

    In this Ph.D.-thesis, phenotypic complementation of AT-cells (AT5BIVA) by transfection of cDNA-expression-libraries was adressed: After stable transfection of cDNA-expression-libraries G418 resistant clones were selected for enhanced radioresistance by a fractionated X-ray selection. One surviving transfectant clone (clone 514) exhibited enhanced radiation resistance in dose-response experiments and further X-ray selections. Cell cycle analysis revealed complementation of untreated and irradiated 514-cells in cell cycle progression. The rate of DNA synthesis, however, is not diminished after irradiation but shows the reverse effect. A transfected cDNA-fragment (AT500-cDNA) was isolated from the genomic DNA of 514-cells and proved to be an unknown DNA sequence. A homologous sequence could be detected in genomic DNA from human cell lines, but not in DNA from other species. The cDNA-sequence could be localized to human chromosome 11. In human cells the cDNA sequence is part of two large mRNAs. 4 different cosmid clones containing high molecular genomic DNA from normal human cells could be isolated from a library, each hybridizing to the AT500-cDNA. After stable transfection into AT-cells, one cosmid-clone was able to confer enhanced radiation resistance both in X-ray selections and dose-response experiments. The results indicate that the cloned cDNA-fragment is based on an unknown gene from human chromosome 11 which partially complements the radiosensitivity and the defective cell cycle progression in AT5BIVA cells. (orig.) [de

  18. Femtosecond laser assisted photo-transfection and differentiation of mouse embryonic stem cells

    Science.gov (United States)

    Thobakgale, Lebogang; Manoto, Sello; Ombinda Lemboumba, Satuurnin; Maaza, Malik; Mthunzi-Kufa, Patience

    2018-02-01

    In tissue engineering research, stem cells have been used as starting material in the synthesis of mammalian cells for the treatment of various cell based diseases. This is done by manipulating the DNA content of the cells to induce a specific effect such as increased proliferation or developing a new cell type through the process of differentiation. Such controlled gene expression of stem cells is achieved by the method of transfection, where exogenous plasmid deoxyribonucleic acid (pDNA) is inserted into a stem cell using chemical, viral or physical methods. In this research, we used femtosecond (fs) laser pulses from a home-build microscope system to perforate the cellular membrane and allow entry of selected pDNA to alter the behaviour of mouse embryonic stem cells (mESCs). In one set of experiments, we induce fluorescence on mESCs using green fluorescence protein plasmid (pGFP) while in other tests; differentiation of mESCs into endoderm cells is performed using Sox-17 plasmid DNA (pSox-17). Primitive endoderm formation was thereafter confirmed using polymerase chain reactions (PCR) and the Sox-17 primer. Cell viability studies using adenosine triphosphate were also conducted. From the data, it was concluded that the photo-transfection method is biocompatible since it was able to induce fluorescence in mESCs. Secondly, it was confirmed that Sox-17 was photo-transfected successfully using 6 μW laser power, 128 fs pulses and 1kHz pulse repetition rate.

  19. Caspase-dependent inhibition of store-operated Ca2+ entry into apoptosis-committed Jurkat cells

    International Nuclear Information System (INIS)

    Onopiuk, Marta; Wierzbicka, Katarzyna; Brutkowski, Wojciech; Szczepanowska, Joanna; Zablocki, Krzysztof

    2010-01-01

    Activation of T-cells triggers store-operated Ca 2+ entry, which begins a signaling cascade leading to induction of appropriate gene expression and eventually lymphocyte proliferation and differentiation. The simultaneous enhancement of Fas ligand gene expression in activated cells allows the immune response to be limited by committing the activated cells to apoptosis. In apoptotic cells the store-operated calcium entry is significantly inhibited. It has been documented that moderate activation of Fas receptor may cause reversible inhibition of store-operated channels by ceramide released from hydrolyzed sphingomyelin. Here we show that activation of Fas receptor in T-cells results in caspase-dependent decrease of cellular STIM1 and Orai1 protein content. This effect may be responsible for the substantial inhibition of Ca 2+ entry into Jurkat cells undergoing apoptosis. In turn, this inhibition might prevent overloading of cells with calcium and protect them against necrosis. -- Research highlights: → Fas activation reduces STIM1 and Orai1 protein content in caspase dependent manner. → Fas activation partially reduces mitochondrial potential in caspase dependent manner. → Fas stimulation inhibits of store-operated Ca 2+ entry in caspase dependent manner. → Inhibition of Ca 2+ entry in apoptotic cells may protect them from secondary necrosis.

  20. Immune monitoring using mRNA-transfected dendritic cells

    DEFF Research Database (Denmark)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by m......RNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate...... and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA....

  1. BMP7 transfection induces in-vitro osteogenic differentiation of dental pulp mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ka Po John Yau

    2013-01-01

    Full Text Available Objective: To assess whether in-vitro osteogenic differentiation of human dental pulp mesenchymal stem cells can be induced by transient transfection with the gene encoding human bone morphogenic protein 7 (BMP7. Materials and Methods: A mesenchymal stem cell population was isolated from the dental pulp of two extracted permanent premolars, expanded and characterized. The human BMP7 gene, as a recombinant pcDNA3.1/V5-His-TOPO-BMP7 plasmid, was transfected into the cells. Three negative controls were used: No plasmid, empty vector, and an unrelated vector encoding green fluorescent protein. After the interval of 24 and 48 h, mRNA levels of alkaline phosphatase and osteocalcin as markers of in-vitro osteogenic differentiation were measured by real-time polymerase chain reaction and standardized against β-actin mRNA levels. Results: The level of alkaline phosphatase mRNA was significantly higher for the BMP7 group than for all three negative controls 48 h after transfection (706.9 vs. 11.24 for untransfected cells, 78.05 for empty vector, and 73.10 for green fluorescent protein vector. The level of osteocalcin mRNA was significantly higher for the BMP7 group than for all three negative controls 24 h after transfection (1.0, however, decreased after another 24 h. Conclusions: In-vitro osteoblastic differentiation of human dental pulp mesenchymal stem cells, as indicated by expression of alkaline phosphatase and osteocalcin, can be induced by transient transfection with the BMP7 gene.

  2. NO-donating aspirin inhibits the growth of leukemic Jurkat cells and modulates β-catenin expression

    International Nuclear Information System (INIS)

    Nath, Niharika; Labaze, Georges; Rigas, Basil; Kashfi, Khosrow

    2004-01-01

    β-Catenin has been implicated in leukemic cell proliferation. We compared the effects of aspirin (ASA) and the ortho, meta, and para positional isomers of NO-donating aspirin (NO-ASA) on cell growth and β-catenin expression in human Jurkat T leukemic cells. Cell growth inhibition was strong: IC 50 for p-, o-, and m- were 20 ± 1.6 (mean ± SEM), 15 ± 1.5, and 200 ± 12 μM, respectively, in contrast to that of ASA (3200 ± 375 μM). The para isomer of NO-ASA degraded β-catenin in a dose- and time-dependent manner coinciding with increasing expression of activated caspase-3. The caspase inhibitor ZVAD blocked β-catenin cleavage by p-NO-ASA and partially reversed cell growth inhibition by p-NO-ASA but not that by ASA. A denitrated analog of p-NO-ASA did not degrade β-catenin indicating the importance of the NO-donating moiety. Our findings suggest that NO-ASA merits further study as an agent against leukemia

  3. Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles

    Directory of Open Access Journals (Sweden)

    Lummis Sarah CR

    2011-06-01

    Full Text Available Abstract Background Biolistic transfection is proving an increasingly popular method of incorporating DNA or RNA into cells that are difficult to transfect using traditional methods. The technique routinely uses 'microparticles', which are ~1 μm diameter projectiles, fired into tissues using pressurised gas. These microparticles are efficient at delivering DNA into cells, but cannot efficiently transfect small cells and may cause significant tissue damage, thus limiting their potential usefulness. Here we describe the use of 40 nm diameter projectiles - nanoparticles - in biolistic transfections to determine if they are a suitable alternative to microparticles. Results Examination of transfection efficiencies in HEK293 cells, using a range of conditions including different DNA concentrations and different preparation procedures, reveals similar behaviour of microparticles and nanoparticles. The use of nanoparticles, however, resulted in ~30% fewer damaged HEK293 cells following transfection. Biolistic transfection of mouse ear tissue revealed similar depth penetration for the two types of particles, and also showed that 20% in microparticle-transfected samples. Visualising details of small cellular structures was also considerably enhanced when using nanoparticles. Conclusions We conclude that nanoparticles are as efficient for biolistic transfection as microparticles, and are more appropriate for use in small cells, when examining cellular structures and/or where tissue damage is a problem.

  4. Benzo[a]pyrene affects Jurkat T cells in the activated state via the antioxidant response element dependent Nrf2 pathway leading to decreased IL-2 secretion and redirecting glutamine metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Murugaiyan, Jayaseelan; Rockstroh, Maxie; Wagner, Juliane [Department of Proteomics, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Baumann, Sven [Department of Metabolomics, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Schorsch, Katrin [Department of Proteomics, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Trump, Saskia; Lehmann, Irina [Department of Environmental Immunology, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Bergen, Martin von [Department of Proteomics, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Department of Environmental Immunology, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg (Denmark); Tomm, Janina M., E-mail: Janina.tomm@ufz.de [Department of Proteomics, Helmholtz-Centre for Environmental Research — UFZ, Permoserstr. 15, 04318 Leipzig (Germany)

    2013-06-15

    There is a clear evidence that environmental pollutants, such as benzo[a]pyrene (B[a]P), can have detrimental effects on the immune system, whereas the underlying mechanisms still remain elusive. Jurkat T cells share many properties with native T lymphocytes and therefore are an appropriate model to analyze the effects of environmental pollutants on T cells and their activation. Since environmental compounds frequently occur at low, not acute toxic concentrations, we analyzed the effects of two subtoxic concentrations, 50 nM and 5 μM, on non- and activated cells. B[a]P interferes directly with the stimulation process as proven by an altered IL-2 secretion. Furthermore, B[a]P exposure results in significant proteomic changes as shown by DIGE analysis. Pathway analysis revealed an involvement of the AhR independent Nrf2 pathway in the altered processes observed in unstimulated and stimulated cells. A participation of the Nrf2 pathway in the change of IL-2 secretion was confirmed by exposing cells to the Nrf2 activator tBHQ. tBHQ and 5 μM B[a]P caused similar alterations of IL-2 secretion and glutamine/glutamate metabolism. Moreover, the proteome changes in unstimulated cells point towards a modified regulation of the cytoskeleton and cellular stress response, which was proven by western blotting. Additionally, there is a strong evidence for alterations in metabolic pathways caused by B[a]P exposure in stimulated cells. Especially the glutamine/glutamate metabolism was indicated by proteome pathway analysis and validated by metabolite measurements. The detrimental effects were slightly enhanced in stimulated cells, suggesting that stimulated cells are more vulnerable to the environmental pollutant model compound B[a]P. - Highlights: • B[a]P affects the proteome of Jurkat T cells also at low concentrations. • Exposure to B[a]P (50 nM, 5 μM) did not change Jurkat T cell viability. • Both B[a]P concentrations altered the IL-2 secretion of stimulated cells.

  5. Photo-transfection of mammalian cells via femtosecond laser pulses

    CSIR Research Space (South Africa)

    Mthunzi, P

    2009-06-01

    Full Text Available on transient photo-transfection of ovary (CHO-Kl), neuroblastoma (NG-I08 & SKN-SH) and embryonic kidney (HEK-293) as well as primary non-differentiated stem cells (EI4g2a) using a tightly focused titanium sapphire laser beam (1.1 urn diameter spot size...

  6. STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Brender, C; Nielsen, M; Kaltoft, K

    2001-01-01

    ) obtained from affected skin from a patient with mycosis fungoides (MF) and from peripheral blood from a patient with Sezary syndrome (SS). In contrast, constitutive SOCS-3 expression is not found in the leukemic Jurkat T-cell line, the MOLT-4 acute lymphoblastic leukemia cell line, and the monocytic......, it has been hypothesized that an aberrant SOCS expression plays a role in neoplastic transformation. This study reports on a constitutive SOCS-3 expression in cutaneous T-cell lymphoma (CTCL) cell lines. SOCS-3 protein is constitutively expressed in tumor cell lines (but not in nonmalignant T cells...... leukemic cell line U937. Expression of SOCS-3 coincides with a constitutive activation of STAT3 in CTCL tumor cells, and stable transfection of CTCL tumor cells with a dominant negative STAT3 strongly inhibits SOCS-3 expression, whereas transfection with wild-type STAT3 does not. Moreover, the reduced SOCS...

  7. pSv3neo transfection and radiosensitivity of human cancer cell lines

    International Nuclear Information System (INIS)

    Parris, C.N.; Masters, J.R.W.; Green, M.H.L.

    1990-01-01

    Immortalisation of human fibroblasts by transfection with a plasmid, pSV3neo, results in an increase in their radioresistance. The change in radiosensitivity may either be a consequence of transformation or due to expression of the SV40 T-antigen in pSV3neo. To investigate these two possibilities, we transfected pSV3neo into cells already transformed and immortalised. The radiosensitivies of three human bladder cancer cell lines were unaltered in clones expressing T-antigen, indicating that the changes observed in fibroblasts probably are a consequence of transformation, and not the presence of SV40 T-antigen. (author)

  8. Influence of zinc deficiency on cell-membrane fluidity in Jurkat, 3T3 and IMR-32 cells.

    Science.gov (United States)

    Verstraeten, Sandra V; Zago, M Paola; MacKenzie, Gerardo G; Keen, Carl L; Oteiza, Patricia I

    2004-01-01

    We investigated whether zinc deficiency can affect plasma membrane rheology. Three cell lines, human leukaemia T-cells (Jurkat), rat fibroblasts (3T3) and human neuroblastoma cells (IMR-32), were cultured for 48 h in control medium, in zinc-deficient medium (1.5 microM zinc; 1.5 Zn), or in the zinc-deficient medium supplemented with 15 microM zinc (15 Zn). The number of viable cells was lower in the 1.5 Zn group than in the control and 15 Zn groups. The frequency of apoptosis was higher in the 1.5 Zn group than in the control and 15 Zn groups. Membrane fluidity was evaluated using the 6-(9-anthroyloxy)stearic acid and 16-(9-anthroyloxy)palmitic acid probes. Membrane fluidity was higher in 1.5 Zn cells than in the control cells; no differences were observed between control cells and 15 Zn cells. The effect of zinc deficiency on membrane fluidity at the water/lipid interface was associated with a higher phosphatidylserine externalization. The higher membrane fluidity in the hydrophobic region of the bilayer was correlated with a lower content of arachidonic acid. We suggest that the increased fluidity of the membrane secondary to zinc deficiency is in part due to a decrease in arachidonic acid content and the apoptosis-related changes in phosphatidylserine distribution. PMID:14629198

  9. Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection.

    Science.gov (United States)

    Magro, Massimiliano; Martinello, Tiziana; Bonaiuto, Emanuela; Gomiero, Chiara; Baratella, Davide; Zoppellaro, Giorgio; Cozza, Giorgio; Patruno, Marco; Zboril, Radek; Vianello, Fabio

    2017-11-01

    Conversely to common coated iron oxide nanoparticles, novel naked surface active maghemite nanoparticles (SAMNs) can covalently bind DNA. Plasmid (pDNA) harboring the coding gene for GFP was directly chemisorbed onto SAMNs, leading to a novel DNA nanovector (SAMN@pDNA). The spontaneous internalization of SAMN@pDNA into cells was compared with an extensively studied fluorescent SAMN derivative (SAMN@RITC). Moreover, the transfection efficiency of SAMN@pDNA was evaluated and explained by computational model. SAMN@pDNA was prepared and characterized by spectroscopic and computational methods, and molecular dynamic simulation. The size and hydrodynamic properties of SAMN@pDNA and SAMN@RITC were studied by electron transmission microscopy, light scattering and zeta-potential. The two nanomaterials were tested by confocal scanning microscopy on equine peripheral blood-derived mesenchymal stem cells (ePB-MSCs) and GFP expression by SAMN@pDNA was determined. Nanomaterials characterized by similar hydrodynamic properties were successfully internalized and stored into mesenchymal stem cells. Transfection by SAMN@pDNA occurred and GFP expression was higher than lipofectamine procedure, even in the absence of an external magnetic field. A computational model clarified that transfection efficiency can be ascribed to DNA availability inside cells. Direct covalent binding of DNA on naked magnetic nanoparticles led to an extremely robust gene delivery tool. Hydrodynamic and chemical-physical properties of SAMN@pDNA were responsible of the successful uptake by cells and of the efficiency of GFP gene transfection. SAMNs are characterized by colloidal stability, excellent cell uptake, persistence in the host cells, low toxicity and are proposed as novel intelligent DNA nanovectors for efficient cell transfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. [EFFECT OF RECOMBINANT ADENOVIRUS-BONE MORPHOGENETIC PROTEIN 12 TRANSFECTION ON DIFFERENTIATION OF PERIPHERAL BLOOD MESENCHYMAL STEM CELLS INTO TENDON/LIGAMENT CELLS].

    Science.gov (United States)

    Fu, Weili; Chen, Gang; Tang, Xin; Li, Qi; Ll, Jian

    2015-04-01

    To research the effect of recombinant adenovirus-bone morphogenetic protein 12 (Ad-BMP-12) transfection on the differentiation of peripheral blood mesenchymal stem cells (MSCs) into tendon/ligament cells. Peripheral blood MSCs were isolated from New Zealand rabbits (3-4 months old) and cultured in vitro until passage 3. The recombinant adenoviral vector system was prepared using AdEasy system, then transfected into MSCs at passage 3 (transfected group); untransfected MSCs served as control (untransfected group). The morphological characteristics and growth of transfected cells were observed under inverted phase contrast microscope. The transfection efficiency and green fluorescent protein (GFP) expression were detected by flow cytometry (FCM) and fluorescence microscopy. After cultured for 14 days in vitro, the expressions of tendon/ligament-specific markers were determined by immunohistochemistry and real-time fluorescent quantitative PCR. GFP expression could be observed in peripheral blood MSCs at 8 hours after transfection. At 24 hours after transfection, the cells had clear morphology and grew slowly under inverted phase contrast microscope and almost all expressed GFP at the same field under fluorescence microscopy. FCM analysis showed that the transfection efficiency of the transfected group was 99.57%, while it was 2.46% in the untransfected group. The immunohistochemistry showed that the expression of collagen type I gradually increased with culture time in vitro. Real-time fluorescent quantitative PCR results showed that the mRNA expressions of the tendon/ligament-specific genes (Tenomodulin, Tenascin-C, and Decorin) in the transfected group were significantly higher than those in untransfected group (0.061+/- 0.013 vs. 0.004 +/- 0.002, t = -7.700, P=0.031; 0.029 +/- 0.008 vs. 0.003 +/- 0.001, t = -5.741, P=0.020; 0.679 +/- 0.067 vs. 0.142 +/- 0.024, t = -12.998, P=0.000). Ad-BMP-12 can significantly promote differentiation of peripheral blood MSCs into

  11. A full scale comparative study of methods for generation of functional Dendritic cells for use as cancer vaccines

    Directory of Open Access Journals (Sweden)

    Kvalheim Gunnar

    2007-07-01

    Full Text Available Background Dendritic cells (DCs are professional antigen-presenting cells with the ability to induce primary T-cell responses and are commonly produced by culturing monocytes in the presence of IL-4 and GM-CSF for 5–7 days (Standard DC. Recently, Dauer and co-workers presented a modified protocol for differentiation of human monocytes into mature DCs within 48 hours (Fast DC. Here we report a functional comparison of the two strategies for generation of DCs from human monocytes with adaptions for large-scale clinical use. Methods The Elutra Cell Selection System was used to isolate monocytes after collection of leukapheresis product. The enriched monocytes were cultured in gas permeable Teflon bags with IL-4 and GM-CSF for 24 hours (Fast DC or 5 days (Standard DC to obtain immature DCs. The cells were then transfected with mRNA from the leukemia cell line Jurkat E6 by electroporation and incubated for additional 24 h or 2 days in the presence of pro-inflammatory cytokines (TNFα, IL-1β, IL-6 and PGE2 to obtain mature DCs. Results Mature Fast DC and Standard DC displayed comparable levels of many markers expressed on DC, including HLA-DR, CD83, CD86, CD208 and CCR7. However, compared to Standard DC, mature Fast DC was CD14high CD209low. Fast DC and Standard DC transfected with Jurkat E6-cell mRNA were equally able to elicit T cell specifically recognizing transfected DCs in vitro. IFNγ-secreting T cells were observed in both the CD4+ and CD8+ subsets. Conclusion Our results indicate that mature Fast DC are functional antigen presenting cells (APCs capable of inducing primary T-cell responses, and suggest that these cells may be valuable for generation of anti-tumor vaccines.

  12. A full scale comparative study of methods for generation of functional Dendritic cells for use as cancer vaccines.

    Science.gov (United States)

    Jarnjak-Jankovic, Silvija; Hammerstad, Hege; Saebøe-Larssen, Stein; Kvalheim, Gunnar; Gaudernack, Gustav

    2007-07-03

    Dendritic cells (DCs) are professional antigen-presenting cells with the ability to induce primary T-cell responses and are commonly produced by culturing monocytes in the presence of IL-4 and GM-CSF for 5-7 days (Standard DC). Recently, Dauer and co-workers presented a modified protocol for differentiation of human monocytes into mature DCs within 48 hours (Fast DC). Here we report a functional comparison of the two strategies for generation of DCs from human monocytes with adaptions for large-scale clinical use. The Elutra Cell Selection System was used to isolate monocytes after collection of leukapheresis product. The enriched monocytes were cultured in gas permeable Teflon bags with IL-4 and GM-CSF for 24 hours (Fast DC) or 5 days (Standard DC) to obtain immature DCs. The cells were then transfected with mRNA from the leukemia cell line Jurkat E6 by electroporation and incubated for additional 24 h or 2 days in the presence of pro-inflammatory cytokines (TNFalpha, IL-1beta, IL-6 and PGE2) to obtain mature DCs. Mature Fast DC and Standard DC displayed comparable levels of many markers expressed on DC, including HLA-DR, CD83, CD86, CD208 and CCR7. However, compared to Standard DC, mature Fast DC was CD14high CD209low. Fast DC and Standard DC transfected with Jurkat E6-cell mRNA were equally able to elicit T cell specifically recognizing transfected DCs in vitro. IFNgamma-secreting T cells were observed in both the CD4+ and CD8+ subsets. Our results indicate that mature Fast DC are functional antigen presenting cells (APCs) capable of inducing primary T-cell responses, and suggest that these cells may be valuable for generation of anti-tumor vaccines.

  13. Effects of Circular DNA Length on Transfection Efficiency by Electroporation into HeLa Cells.

    Science.gov (United States)

    Hornstein, Benjamin D; Roman, Dany; Arévalo-Soliz, Lirio M; Engevik, Melinda A; Zechiedrich, Lynn

    2016-01-01

    The ability to produce extremely small and circular supercoiled vectors has opened new territory for improving non-viral gene therapy vectors. In this work, we compared transfection of supercoiled DNA vectors ranging from 383 to 4,548 bp, each encoding shRNA against GFP under control of the H1 promoter. We assessed knockdown of GFP by electroporation into HeLa cells. All of our vectors entered cells in comparable numbers when electroporated with equal moles of DNA. Despite similar cell entry, we found length-dependent differences in how efficiently the vectors knocked down GFP. As vector length increased up to 1,869 bp, GFP knockdown efficiency per mole of transfected DNA increased. From 1,869 to 4,257 bp, GFP knockdown efficiency per mole was steady, then decreased with increasing vector length. In comparing GFP knockdown with equal masses of vectors, we found that the shorter vectors transfect more efficiently per nanogram of DNA transfected. Our results rule out cell entry and DNA mass as determining factors for gene knockdown efficiency via electroporation. The length-dependent effects we have uncovered are likely explained by differences in nuclear translocation or transcription. These data add an important step towards clinical applications of non-viral vector delivery.

  14. Effect of UV irradiation on the apoptosis and necrosis of Jurkat cells using UV LEDs

    Science.gov (United States)

    Inada, Shunko A.; Amano, Hiroshi; Akasaki, Isamu; Morita, Akimichi; Kobayashi, Keiko

    2009-02-01

    Phototherapy is a very effective method for treating most of the incurable skin diseases. A fluorescent light bulb is used as a conventional UV light source for this type of therapy. However, infrared radiation from the light source sometimes causes serious problems on patient's health. In addition, the normal part of the skin is irradiated when a large fluorescent light bulb is used. Moreover, a conventional UV irradiation system is heavy and has a short lifetime and a high electrical power consumption. Therefore, a new UV light source for solving the problems of phototherapy is required. To realize low-power-consumption, lightweight and long-lifetime systems, group III nitride-based UV-A1 light-emitting diodes (LEDs) were investigated. We examined the UV LED irradiation of Jurkat cell, which is a tumor cell and more sensitive to UV light than a healthy cell. The numbers of apoptotic and necrotic cells were confirmed to be the same using a UV LED and a conventional lamp system. The UV LED showed the possibility of realizing a new UV light source for phototherapy.

  15. Effects of Different Concentrations of Opium on the Secretion of Interleukin-6, Interferon-γ and Transforming Growth Factor Beta Cytokines from Jurkat Cells.

    Science.gov (United States)

    Asadikaram, Gholamreza; Igder, Somayeh; Jamali, Zahra; Shahrokhi, Nader; Najafipour, Hamid; Shokoohi, Mostafa; Jafarzadeh, Abdollah; Kazemi-Arababadi, Mohammad

    2015-01-01

    The risk of infectious, autoimmune and immunodeficiency diseases and cancers rise in opioid addicts due to changes in innate and acquired immune responses. Three types of opioid receptors (К-δ-μ) are expressed on the surface of lymphocytes and mononuclear phagocytes. The present study was designed to examine the effects of different concentrations of opium on the secretion of some cytokines produced by lymphocyte cells. Jurkat cells were exposed to different concentrations of opium for periods of 6, 24 and 72 h in cell culture medium. The amount of interleukin-6 (IL-6), interferon-γ (IFN-γ) and transforming growth factor-b (TGF-β) were then measured using enzyme-linked immunosorbent assay (ELISA) method. The results showed that opium increases the secretion of IL-6 in different concentration of opium in 6 h. The amount of IFN-γ decreased in 6 h and increased in 24 h significantly compared with control. On the other hand, opium had an inhibitory effect on the TGF-β secretion in 6, 24 and 72 h. Overall, the study showed that opium stimulates pro-inflammatory and suppressed anti-inflammatory cytokine secretion in Jurkat cells. This may account for the negative effect of opium on the immune system leading to chronic inflammation and a base for many disorders in opium addicts.

  16. Cell number and transfection volume dependent peptide nucleic acid antisense activity by cationic delivery methods

    DEFF Research Database (Denmark)

    Llovera Nadal, Laia; Berthold, Peter; Nielsen, Peter E

    2012-01-01

    have now quantitatively compared the cellular activity (in the pLuc705 HeLa cell splice correction system) of PNA antisense oligomers using lipoplex delivery of cholesterol- and bisphosphonate-PNA conjugates, polyplex delivery via a PNA-polyethyleneimine conjugate and CPP delivery via a PNA......Efficient intracellular delivery is essential for high activity of nucleic acids based therapeutics, including antisense agents. Several strategies have been developed and practically all rely on auxiliary transfection reagents such as cationic lipids, cationic polymers and cell penetrating...... peptides as complexing agents and carriers of the nucleic acids. However, uptake mechanisms remain rather poorly understood, and protocols always require optimization of transfection parameters. Considering that cationic transfection complexes bind to and thus may up-concentrate on the cell surface, we...

  17. Optimizing conditions for calcium phosphate mediated transient transfection

    Directory of Open Access Journals (Sweden)

    Ling Guo

    2017-03-01

    Conclusions: Calcium phosphate mediated transfection is the most low-cost approach to introduce recombinant DNA into culture cells. However, the utility of this procedure is limited in highly-differentiated cells. Here we describe the specific HBS-buffered saline, PH, glycerol shock, vortex strength, transfection medium, and particle concentrations conditions necessary to optimize this transfection method in highly differentiated cells.

  18. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro--a quantitative study.

    Science.gov (United States)

    Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje

    2010-01-25

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Biophysical effects in off-resonant gold nanoparticle mediated (GNOME) laser transfection of cell lines, primary- and stem cells using fs laser pulses.

    Science.gov (United States)

    Schomaker, Markus; Killian, Doreen; Willenbrock, Saskia; Heinemann, Dag; Kalies, Stefan; Ngezahayo, Anaclet; Nolte, Ingo; Ripken, Tammo; Junghanß, Christian; Meyer, Heiko; Murua Escobar, Hugo; Heisterkamp, Alexander

    2015-08-01

    Gold nanoparticle mediated (GNOME) laser transfection is a powerful technique to deliver small biologically relevant molecules into cells. However, the transfection of larger and especially negatively charged DNA remains challenging. The efficiency for pDNA was 0.57% using parameter that does not influence the endo- and exogenous DNA. In order to gain a deeper understanding of the actual molecule uptake process, the uptake efficiency was determined using molecules of different sizes. It was evaluated that uncharged dextran molecules (2000 kDa) were delivered with an efficiency of 68%. The intracellular distribution of injected molecules was visualized and larger molecules were primary found in the cytoplasm. Patch clamp measurements suggested a permeabilization time up to 15 minutes. The uptake efficiency depended on the size and charge of the molecule to deliver as well as the cell size. A minor role for transfection plays the cell type since primary stem cells were successfully transfected. The perforation efficiency of semi-adherent and suspension cells is influenced by the cell and molecule size. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Transient transfection of serum-free suspension HEK 293 cell culture for efficient production of human rFVIII

    Science.gov (United States)

    2011-01-01

    Background Hemophilia A is a bleeding disorder caused by deficiency in coagulation factor VIII. Recombinant factor VIII (rFVIII) is an alternative to plasma-derived FVIII for the treatment of hemophilia A. However, commercial manufacturing of rFVIII products is inefficient and costly and is associated to high prices and product shortage, even in economically privileged countries. This situation may be solved by adopting more efficient production methods. Here, we evaluated the potential of transient transfection in producing rFVIII in serum-free suspension HEK 293 cell cultures and investigated the effects of different DNA concentration (0.4, 0.6 and 0.8 μg/106 cells) and repeated transfections done at 34° and 37°C. Results We observed a decrease in cell growth when high DNA concentrations were used, but no significant differences in transfection efficiency and in the biological activity of the rFVIII were noticed. The best condition for rFVIII production was obtained with repeated transfections at 34°C using 0.4 μg DNA/106 cells through which almost 50 IU of active rFVIII was produced six days post-transfection. Conclusion Serum-free suspension transient transfection is thus a viable option for high-yield-rFVIII production. Work is in progress to further optimize the process and validate its scalability. PMID:22115125

  1. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J. [and others

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  2. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    International Nuclear Information System (INIS)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J.

    1995-01-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to α-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMVΒ vector; and (2) the antibiotic hygromycin-resistant transfected cells

  3. Phytol isolated from watermelon (Citrullus lanatus) sprouts induces cell death in human T-lymphoid cell line Jurkat cells via S-phase cell cycle arrest.

    Science.gov (United States)

    Itoh, Tomohiro; Ono, Akito; Kawaguchi, Kaori; Teraoka, Sayaka; Harada, Mayo; Sumi, Keitaro; Ando, Masashi; Tsukamasa, Yasuyuki; Ninomiya, Masayuki; Koketsu, Mamoru; Hashizume, Toshiharu

    2018-05-01

    The phytol isolated from watermelon (Citrullus lanatus) sprouts inhibited the growth of a human T-cell leukemia line Jurkat cell and suppressed tumor progression in a xenograft model of human lung adenocarcinoma epithelial cell line A549 in nude mice. To elucidate the mechanisms underlying the phytol-induced cell death in the present study, we examined the changes in cell morphology, DNA fragmentation, and intracellular reactive oxygen species (ROS) levels and performed flow cytometric analysis to evaluate cell cycle stage. There were no significant changes in apoptosis, autophagy, and necrosis marker in cells treated with the phytol. But, we found, for the first time, that phytol remarkably induced S-phase cell cycle arrest accompanied with intracellular ROS production. Western blot analyses showed that phytolinduced S-phase cell cycle arrest was mediated through the decreased expression of cyclins A and D and the downregulations of MAPK and PI3K/Akt. The tumor volume levels in mice treated with phytol were lower than those of non-treatment groups, and it showed very similar suppression compared with those of mice treated with cyclophosphamide. Based on the data of in vitro and in vivo studies and previous studies, we suggest phytol as a potential therapeutic compound for cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Induction of osteogenic differentiation of stem cells via a lyophilized microRNA reverse transfection formulation on a tissue culture plate

    DEFF Research Database (Denmark)

    Wu, Kaimin; Xu, Jie; Liu, Mingzhe

    2013-01-01

    MicroRNA (miRNA) regulation is a novel approach to manipulating the fate of mesenchymal stem cells, but an easy, safe, and highly efficient method of transfection is required. In this study, we developed an miRNA reverse transfection formulation by lyophilizing Lipofectamine 2000-miRNA lipoplexes...... of the intracellular target miRNA level. Reverse transfection formulations containing Lipofectamine 2000 1 µL per well generated much higher transfection efficiency without obvious cytotoxicity compared with conventional and other transfection methods. Further, the transfection efficiency of the reverse transfection...... formulations did not deteriorate during 90 days of storage at 4°C and -20°C. We then assessed the efficiency of the miRNA reverse transfection formulation in promoting osteogenic differentiation of mesenchymal stem cells. We found that transfection with anti-miR-138 and miR-148b was efficient for enhancing...

  5. Enhancement of DNA-transfection frequency by X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Ryota; Fushimi, Kazuo; Hiraki, Yoshio; Namba, Masayoshi [Okayama University Medical School (Japan). Institute of Cellular and Molecular Biology

    1997-02-01

    This study was conducted to evaluate the frequency of DNA transfection into human cells following X-ray irradiation. We transfected plasmid DNA (pSV2neo) into human cells, HeLa and PA-1, by either calcium phosphate precipitation or the lipofection method immediately after irradiating the cells with various doses of X-rays. The transfection frequency was evaluated by counting the number of G418-resistant colonies. When circular plasmid DNA was used, irradiation up to a dose of 2 Gy dose-dependently increased the transfection frequency, which reached a maximum of 5 to 10-fold that of the control unirradiated cells. When linear plasmid DNA was used, the transfection frequency was 2 times higher than that of circular DNA. All five of the clones that were randomly chosen expressed the transfected neo gene. In addition, the pSV2neo gene was randomly integrated into the genomic DNA of each clone. These findings indicate that X-ray treatment can facilitate foreign DNA transfer into human cells and that radiation-induced DNA breaks may promote the insertion of foreign DNA into host DNA. The enhancement of DNA transfection with X-rays may be instrumental in practicing gene therapy. (author)

  6. Enhancement of DNA-transfection frequency by X-rays

    International Nuclear Information System (INIS)

    Iwamoto, Ryota; Fushimi, Kazuo; Hiraki, Yoshio; Namba, Masayoshi

    1997-01-01

    This study was conducted to evaluate the frequency of DNA transfection into human cells following X-ray irradiation. We transfected plasmid DNA (pSV2neo) into human cells, HeLa and PA-1, by either calcium phosphate precipitation or the lipofection method immediately after irradiating the cells with various doses of X-rays. The transfection frequency was evaluated by counting the number of G418-resistant colonies. When circular plasmid DNA was used, irradiation up to a dose of 2 Gy dose-dependently increased the transfection frequency, which reached a maximum of 5 to 10-fold that of the control unirradiated cells. When linear plasmid DNA was used, the transfection frequency was 2 times higher than that of circular DNA. All five of the clones that were randomly chosen expressed the transfected neo gene. In addition, the pSV2neo gene was randomly integrated into the genomic DNA of each clone. These findings indicate that X-ray treatment can facilitate foreign DNA transfer into human cells and that radiation-induced DNA breaks may promote the insertion of foreign DNA into host DNA. The enhancement of DNA transfection with X-rays may be instrumental in practicing gene therapy. (author)

  7. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection

    Science.gov (United States)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-01-01

    Abstract. In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage. PMID:25069006

  8. Caspase-dependant activation of chymotrypsin-like proteases mediates nuclear events during Jurkat T cell apoptosis

    International Nuclear Information System (INIS)

    O'Connell, A.R.; Lee, B.W.; Stenson-Cox, C.

    2006-01-01

    Apoptosis involves a cascade of biochemical and morphological changes resulting in the systematic disintegration of the cell. Caspases are central mediators of this process. Supporting and primary roles for serine proteases as pro-apoptotic mediators have also been highlighted. Evidence for such roles comes largely from the use of pharmacological inhibitors; as a consequence information regarding their apoptotic function and biochemical properties has been limited. Here, we circumvented limitations associated with traditional serine protease inhibitors through use of a fluorescently labelled inhibitor of serine proteases (FLISP) that allowed for analysis of the specificity, regulation and positioning of apoptotic serine proteases within a classical apoptotic cascade. We demonstrate that staurosporine triggers a caspase-dependant induction of chymotrypsin-like activity in the nucleus of apoptotic Jurkat T cells. We show that serine protease activity is required for the generation of late stage nuclear events including condensation, fragmentation and DNA degradation. Furthermore, we reveal caspase-dependant activation of two chymotrypsin-like protein species that we hypothesize mediate cell death-associated nuclear events

  9. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    Science.gov (United States)

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  10. Adipogenic differentiation and EGFP gene transfection of amniotic fluid-derived stem cells from goat fetus at terminal gestational age.

    Science.gov (United States)

    He, Xiao-Ying; Zheng, Yue-Mao; Qiu, Shuang; Qi, Ying-Pei; Zhang, Yong

    2011-08-01

    The aims of this study were to determine whether stem cells could be isolated from amniotic fluid of goat fetus at terminal gestational age and to determine if these stem cells could differentiate into adipogenic cells and be transfected with a reporter gene, EGFP (enhanced green fluorescent protein). The stem cells were isolated from amniotic fluid of goat fetus at terminal gestational age, induced to differentiate into adipogenic cells in vitro and transfected with the EGFP gene using lipofection. Markers associated with undifferentiated AFS (amniotic fluid-derived stem) cells were tested by RT (reverse transcription)-PCR. The results demonstrated that AFS cells could be isolated from amniotic fluid of goat fetus at terminal gestational age and could differentiate into adipogenic cells. The EGFP gene was transfected into AFS cells successfully. EGFP gene transfection efficiency of the three groups of transgenic AFS cells were 26.0, 29.9 and 30.5%, respectively. Both transgenic and wild-type AFS cells could express Hes1 (hairy and enhancer of split 1), Oct4 (octamer-binding protein 4) and Nanog.

  11. Acceleration of gene transfection efficiency in neuroblastoma cells through polyethyleneimine/poly(methyl methacrylate core-shell magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Tencomnao T

    2012-06-01

    Full Text Available Tewin Tencomnao,1,* Kewalin Klangthong,2,* Nuttaporn Pimpha,3 Saowaluk Chaleawlert-umpon,3 Somsak Saesoo,3 Noppawan Woramongkolchai,3 Nattika Saengkrit,31Center for Excellence in Omics-Nano Medical Technology Development Project, 2Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 3National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, Thailand*Both authors contributed equally to this workBackground: The purpose of this study was to demonstrate the potential of magnetic poly(methyl methacrylate (PMMA core/polyethyleneimine (PEI shell (mag-PEI nanoparticles, which possess high saturation magnetization for gene delivery. By using mag-PEI nanoparticles as a gene carrier, this study focused on evaluation of transfection efficiency under magnetic induction. The potential role of this newly synthesized nanosphere for therapeutic delivery of the tryptophan hydroxylase-2 (TPH-2 gene was also investigated in cultured neuronal LAN-5 cells.Methods: The mag-PEI nanoparticles were prepared by one-step emulsifier-free emulsion polymerization, generating highly loaded and monodispersed magnetic polymeric nanoparticles bearing an amine group. The physicochemical properties of the mag-PEI nanoparticles and DNA-bound mag-PEI nanoparticles were investigated using the gel retardation assay, atomic force microscopy, and zeta size measurements. The gene transfection efficiencies of mag-PEI nanoparticles were evaluated at different transfection times. Confocal laser scanning microscopy confirmed intracellular uptake of the magnetoplex. The optimal conditions for transfection of TPH-2 were selected for therapeutic gene transfection. We isolated the TPH-2 gene from the total RNA of the human medulla oblongata and cloned it into an expression vector. The plasmid containing TPH-2 was subsequently bound onto the

  12. MicroRNA-122 mimic transfection contributes to apoptosis in HepG2 cells.

    Science.gov (United States)

    Huang, Hongyan; Zhu, Yueyong; Li, Shaoyang

    2015-11-01

    There is currently a requirement for effective treatment strategies for human hepatocellular carcinoma (HCC), a leading cause of cancer‑associated mortality. MicroRNA-122 (miR-122), a repressor of the endogenous apoptosis regulator Bcl‑w, is frequently downregulated in HCC. Thus, it is hypothesized that the activation of miR‑122 may induce selective hepatocellular apoptosis via caspase activation in a model of HCC. In the present study, an miR‑122 mimic transfection was performed in HepG2 cells, and used to investigate the role and therapeutic potential of miR‑122 in the regulation of HCC‑derived cell lines. The apoptotic rates of HepG2 cells were significantly increased following miR‑122 mimic transfection. Reverse transcription‑polymerase chain reaction analysis revealed that Bcl‑w mRNA was significantly reduced, while the mRNA levels of caspase‑9 and caspase‑3 were markedly increased. The immunocytochemistry results supported the mRNA trends. Collectively, the present results suggest that endogenous miR‑122 contributes to HepG2 apoptosis and that transfection of mimic miR‑122 normalizes apoptotic levels in a model of HCC.

  13. Differentiation of Odontoblast-Like Cells From Mouse Induced Pluripotent Stem Cells by Pax9 and Bmp4 Transfection.

    Science.gov (United States)

    Seki, Daisuke; Takeshita, Nobuo; Oyanagi, Toshihito; Sasaki, Shutaro; Takano, Ikuko; Hasegawa, Masakazu; Takano-Yamamoto, Teruko

    2015-09-01

    The field of tooth regeneration has progressed in recent years, and human tooth regeneration could become viable in the future. Because induced pluripotent stem (iPS) cells can differentiate into odontogenic cells given appropriate conditions, iPS cells are a potential cell source for tooth regeneration. However, a definitive method to induce iPS cell-derived odontogenic cells has not been established. We describe a novel method of odontoblast differentiation from iPS cells using gene transfection. We generated mouse iPS cell-derived neural crest-like cells (iNCLCs), which exhibited neural crest markers. Next, we differentiated iNCLCs into odontoblast-like cells by transfection of Pax9 and Bmp4 expression plasmids. Exogenous Pax9 upregulated expression of Msx1 and dentin matrix protein 1 (Dmp1) in iNCLCs but not bone morphogenetic protein 4 (Bmp4) or dentin sialophosphoprotein (Dspp). Exogenous Bmp4 upregulated expression of Msx1, Dmp1, and Dspp in iNCLCs, but not Pax9. Moreover, cotransfection of Pax9 and Bmp4 plasmids in iNCLCs revealed a higher expression of Pax9 than when Pax9 plasmid was used alone. In contrast, exogenous Pax9 downregulated Bmp4 overexpression. Cotransfection of Pax9 and Bmp4 synergistically upregulated Dmp1 expression; however, Pax9 overexpression downregulated exogenous Bmp4-induced Dspp expression. Together, these findings suggest that an interaction between exogenous Pax9- and Bmp4-induced signaling modulated Dmp1 and Dspp expression. In conclusion, transfection of Pax9 and Bmp4 expression plasmids in iNCLCs induced gene expression associated with odontoblast differentiation, suggesting that iNCLCs differentiated into odontoblast-like cells. The iPS cell-derived odontoblast-like cells could be a useful cell source for tooth regeneration. It has been reported that induced pluripotent stem (iPS) cells differentiate into odontogenic cells by administration of recombinant growth factors and coculture with odontogenic cells. Therefore, they can

  14. Quantitative Secretome Analysis of Activated Jurkat Cells Using Click Chemistry-Based Enrichment of Secreted Glycoproteins.

    Science.gov (United States)

    Witzke, Kathrin E; Rosowski, Kristin; Müller, Christian; Ahrens, Maike; Eisenacher, Martin; Megger, Dominik A; Knobloch, Jürgen; Koch, Andrea; Bracht, Thilo; Sitek, Barbara

    2017-01-06

    Quantitative secretome analyses are a high-performance tool for the discovery of physiological and pathophysiological changes in cellular processes. However, serum supplements in cell culture media limit secretome analyses, but serum depletion often leads to cell starvation and consequently biased results. To overcome these limiting factors, we investigated a model of T cell activation (Jurkat cells) and performed an approach for the selective enrichment of secreted proteins from conditioned medium utilizing metabolic marking of newly synthesized glycoproteins. Marked glycoproteins were labeled via bioorthogonal click chemistry and isolated by affinity purification. We assessed two labeling compounds conjugated with either biotin or desthiobiotin and the respective secretome fractions. 356 proteins were quantified using the biotin probe and 463 using desthiobiotin. 59 proteins were found differentially abundant (adjusted p-value ≤0.05, absolute fold change ≥1.5) between inactive and activated T cells using the biotin method and 86 using the desthiobiotin approach, with 31 mutual proteins cross-verified by independent experiments. Moreover, we analyzed the cellular proteome of the same model to demonstrate the benefit of secretome analyses and provide comprehensive data sets of both. 336 proteins (61.3%) were quantified exclusively in the secretome. Data are available via ProteomeXchange with identifier PXD004280.

  15. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers.

    Science.gov (United States)

    Leonhardt, Carolin; Schwake, Gerlinde; Stögbauer, Tobias R; Rappl, Susanne; Kuhr, Jan-Timm; Ligon, Thomas S; Rädler, Joachim O

    2014-05-01

    In artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and predictable in terms of mathematical modeling. We measured the single-cell expression time-courses and levels of enhanced green fluorescent protein (eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby the dose-response relation. Our results establish a statistical framework for mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs. This team of authors established a statistical framework for mRNA transfection by using a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby their dose-response relation. This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Effects of Microbubble Size on Ultrasound-Mediated Gene Transfection in Auditory Cells

    Directory of Open Access Journals (Sweden)

    Ai-Ho Liao

    2014-01-01

    Full Text Available Gene therapy for sensorineural hearing loss has recently been used to insert genes encoding functional proteins to preserve, protect, or even regenerate hair cells in the inner ear. Our previous study demonstrated a microbubble- (MB-facilitated ultrasound (US technique for delivering therapeutic medication to the inner ear. The present study investigated whether MB-US techniques help to enhance the efficiency of gene transfection by means of cationic liposomes on HEI-OC1 auditory cells and whether MBs of different sizes affect such efficiency. Our results demonstrated that the size of MBs was proportional to the concentration of albumin or dextrose. At a constant US power density, using 0.66, 1.32, and 2.83 μm albumin-shelled MBs increased the transfection rate as compared to the control by 30.6%, 54.1%, and 84.7%, respectively; likewise, using 1.39, 2.12, and 3.47 μm albumin-dextrose-shelled MBs increased the transfection rates by 15.9%, 34.3%, and 82.7%, respectively. The results indicate that MB-US is an effective technique to facilitate gene transfer on auditory cells in vitro. Such size-dependent MB oscillation behavior in the presence of US plays a role in enhancing gene transfer, and by manipulating the concentration of albumin or dextrose, MBs of different sizes can be produced.

  17. Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP.

    Directory of Open Access Journals (Sweden)

    Caleb C Roth

    Full Text Available Nanosecond electrical pulse (nsEP exposure activates signaling pathways, produces oxidative stress, stimulates hormone secretion, causes cell swelling and induces apoptotic and necrotic death. The underlying biophysical connection(s between these diverse cellular reactions and nsEP has yet to be elucidated. Using global genetic analysis, we evaluated how two commonly studied cell types, U937 and Jurkat, respond to nsEP exposure. We hypothesized that by studying the genetic response of the cells following exposure, we would gain direct insight into the stresses experienced by the cell and in turn better understand the biophysical interaction taking place during the exposure. Using Ingenuity Systems software, we found genes associated with cell growth, movement and development to be significantly up-regulated in both cell types 4 h post exposure to nsEP. In agreement with our hypothesis, we also found that both cell lines exhibit significant biological changes consistent with mechanical stress induction. These results advance nsEP research by providing strong evidence that the interaction of nsEPs with cells involves mechanical stress.

  18. Glycosylphosphatidylinositol-anchored CD4 supports human immunodeficiency virus type 1 replication, but not cytopathic effect, in T-cell transfectants.

    OpenAIRE

    Marshall, W L; Mittler, E S; Avery, P; Lawrence, J P; Finberg, R W

    1994-01-01

    Despite equivalent p24 antigen production, HSB-2 T cells expressing glycosylphosphatidylinositol (GPi)-linked CD4 were productively infected without cell death or syncytium formation, unlike HSB-2 transfectants expressing wild-type CD4 (wtCD4). HSB-2 transfectants dually expressing wtCD4 and GPi-linked CD4 formed syncytia and died. Thus, wtCD4 expression is critical for human immunodeficiency virus cytopathic effect in HSB-2 transfectants.

  19. Activation of Tax protein by c-Jun-N-terminal kinase is not dependent on the presence or absence of the early growth response-1 gene product.

    Science.gov (United States)

    Parra, Eduardo; Gutierréz, Luís; Ferreira, Jorge

    2016-02-01

    The Tax protein of human T cell leukemia virus type 1 plays a major role in the pathogenesis of adult T cell leukemia (ATL), an aggressive neoplasia of CD4+ T cells. In the present study, we investigated whether the EGR-1 pathway is involved in the regulation of Tax-induced JNK expression in human Jurkat T cells transfected to express the Tax protein in the presence or absence of PMA or ionomycin. Overexpression of EGR-1 in Jurkat cells transfected to express Tax, promoted the activation of several genes, with the most potent being those that contained AP-1 (Jun/c-Fos), whereas knockdown of endogenous EGR-1 by small interfering RNA (siRNA) somewhat reduced Tax-mediated JNK-1 transcription. Additionally, luciferase-based AP-1 and NF-κB reporter gene assays demonstrated that inhibition of EGR-1 expression by an siRNA did not affect the transcriptional activity of a consensus sequence of either AP-1 or NF-κB. On the other hand, the apoptosis assay, using all-trans retinoic acid (ATRA) as an inducer of apoptosis, confirmed that siRNA against EGR-1 failed to suppress ATRA-induced apoptosis in Jurkat and Jurkat-Tax cells, as noted by the low levels of both DEVDase activity and DNA fragmentation, indicating that the induction of apoptosis by ATRA was Egr-1-independent. Finally, our data showed that activation of Tax by JNK-1 was not dependent on the EGR-1 cascade of events, suggesting that EGR-1 is important but not a determinant for the activity for Tax-induced proliferation of Jurkat cells.

  20. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase

    International Nuclear Information System (INIS)

    Iri-Sofla, Farnoush Jafari; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Rasaee, Mohammad J.

    2011-01-01

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3ζ/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of FcγRII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.

  1. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase

    Energy Technology Data Exchange (ETDEWEB)

    Iri-Sofla, Farnoush Jafari [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Rahbarizadeh, Fatemeh, E-mail: rahbarif@modares.ac.ir [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ahmadvand, Davoud [Center of Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O (Denmark); Rasaee, Mohammad J. [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-11-01

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3{zeta}/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of Fc{gamma}RII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.

  2. Gene transfection mediated by polyethyleneimine-polyethylene glycol nanocarrier prevents cisplatin-induced spiral ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Guan-gui Chen

    2015-01-01

    Full Text Available Polyethyleneimine-polyethylene glycol (PEI-PEG, a novel nanocarrier, has been used for transfection and gene therapy in a variety of cells. In our previous study, we successfully carried out PEI-PEG-mediated gene transfer in spiral ganglion cells. It remains unclear whether PEI-PEG could be used for gene therapy with X-linked inhibitor of apoptosis protein (XIAP in the inner ear. In the present study, we performed PEI-PEG-mediated XIAP gene transfection in the cochlea of Sprague-Dawley rats, via scala tympani fenestration, before daily cisplatin injections. Auditory brainstem reflex tests demonstrated the protective effects of XIAP gene therapy on auditory function. Immunohistochemical staining revealed XIAP protein expression in the cytoplasm of cells in the spiral ganglion, the organ of Corti and the stria vascularis. Reverse transcription-PCR detected high levels of XIAP mRNA expression in the cochlea. The present findings suggest that PEI-PEG nanocarrier-mediated XIAP gene transfection results in XIAP expression in the cochlea, prevents damage to cochlear spiral ganglion cells, and protects hearing.

  3. mRNA transfection of mouse and human neural stem cell cultures

    OpenAIRE

    McLenachan, Samuel; Zhang, D.; Palomo, A.B.; Edel, Michael John; Chen, F.K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has ...

  4. One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Protic-Sabljic, M.; Kraemer, K.H.

    1985-01-01

    The authors have developed a host cell reactivation assay of DNA repair utilizing UV-treated plasmid vectors. The assay primarily reflects cellular repair of transcriptional activity of damaged DNA measured indirectly as enzyme activity of the transfected genes. They studied three plasmids (pSV2cat, 5020 base pairs; pSV2catSVgpt, 7268 base pairs; and pRSVcat, 5027 base pairs) with different sizes and promoters carrying the bacterial cat gene (CAT, chloramphenicol acetyltransferase) in a construction that permits cat expression in human cells. All human simian virus 40-transformed cells studied expressed high levels of the transfected cat gene. UV treatment of the plasmids prior to transfection resulted in differential decrease in CAT activity in different cell lines. With pSV2catSVgpt, UV inactivation of CAT expression was greater in the xeroderma pigmentosum group A and D lines than in the other human cell lines tested. The D 0 of the CAT inactivation curve was 50 J X m-2 for pSV2cat and for pRSVcat in the xeroderma pigmentosum group A cells. The similarity of the D0 data in the xeroderma pigmentosum group A cells for three plasmids of different size and promoters implies they all have similar UV-inactivation target size. UV-induced pyrimidine dimer formation in the plasmids was quantified by assay of the number of UV-induced T4 endonuclease V-sensitive sites. In the most sensitive xeroderma pigmentosum cells, with all three plasmids, one UV-induced pyrimidine dimer inactivates a target of about 2 kilobases, close to the size of the putative CAT mRNA

  5. Photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    CSIR Research Space (South Africa)

    Thobakgale, Lebogang

    2017-01-01

    Full Text Available This presentation is about the photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses. It outlines the background on embryonic stem cells (ES) and phototransfection....

  6. Transfection efficiency of chitosan and thiolated chitosan in retinal pigment epithelium cells: A comparative study

    Directory of Open Access Journals (Sweden)

    Ana V Oliveira

    2013-01-01

    Full Text Available Objective: Gene therapy relies on efficient vector for a therapeutic effect. Efficient non-viral vectors are sought as an alternative to viral vectors. Chitosan, a cationic polymer, has been studied for its gene delivery potential. In this work, disulfide bond containing groups were covalently added to chitosan to improve the transfection efficiency. These bonds can be cleaved by cytoplasmic glutathione, thus, releasing the DNA load more efficiently. Materials and Methods: Chitosan and thiolated chitosan nanoparticles (NPs were prepared in order to obtain a NH3 + :PO4− ratio of 5:1 and characterized for plasmid DNA complexation and release efficiency. Cytotoxicity and gene delivery studies were carried out on retinal pigment epithelial cells. Results: In this work, we show that chitosan was effectively modified to incorporate a disulfide bond. The transfection efficiency of chitosan and thiolated chitosan varied according to the cell line used, however, thiolation did not seem to significantly improve transfection efficiency. Conclusion: The apparent lack of improvement in transfection efficiency of the thiolated chitosan NPs is most likely due to its size increase and charge inversion relatively to chitosan. Therefore, for retinal cells, thiolated chitosan does not seem to constitute an efficient strategy for gene delivery.

  7. Optical transfection using an endoscope-like system.

    Science.gov (United States)

    Ma, Nan; Gunn-Moore, Frank; Dholakia, Kishan

    2011-02-01

    Optical transfection is a powerful method for targeted delivery of therapeutic agents to biological cells. A tightly focused pulsed laser beam may transiently change the permeability of a cell membrane to facilitate the delivery of foreign genetic material into cells. We report the first realization of an endoscope-like integrated system for optical transfection. An imaging fiber (coherent optical fiber bundle) with ∼ 6000 cores (pixels) embedded in a fiber cladding of ∼ 300 μm in diameter, produces an image circle (area) of ∼ 270 μm diam. This imaging fiber, with an ordered axicon lens array chemically etched at its exit face, is used for the delivery of a femtosecond laser to the cell membrane for optical transfection along with subcellular resolution imaging. A microcapillary-based microfluidic system for localized drug delivery was also combined in this miniature, flexible system. Using this novel system, a plasmid transfection efficiency up to ∼ 72% was obtained for CHO-K1 cells. This endoscope-like system opens a range of exciting applications, in particular, in the targeted in vivo optical microsurgery area.

  8. Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems

    DEFF Research Database (Denmark)

    Selmeczi, Dávid; Hansen, Thomas Steen; Met, Özcan

    2016-01-01

    with high cell survival. Continuous flow of suspended dendritic cells through a channel incorporating spatially separated microporous meshes with a synchronized electrical pulsing sequence can yield dendritic cell transfection rates of >75 % with survival rates of >90 %. This chapter describes...

  9. Transfection of cultured cells of the cotton boll weevil, Anthonomus grandis, with a heat-shock-promoter-chloramphenicol-acetyltransferase construct.

    Science.gov (United States)

    Stiles, B; Heilmann, J; Sparks, R B; Santoso, A; Leopold, R A

    1992-01-01

    Expression of heat shock proteins (hsp) in the BRL-AG-3C cell line from the cotton boll weevil was examined. It was determined that the maximal expression of endogenous hsp occurred at 41 degrees C. Various transfection methods were then compared using this cell line in conjunction with a transiently expressed bacterial gene marker (chloramphenicol acetyltransferase) which was under the control of the Drosophila hsp 70 gene promoter. The cationic lipid preparation Lipofectin was found to be very efficient at transfecting the boll weevil cells. Polylysine and 20-hydroxyecdysone-conjugated polylysine were moderately effective, whereas polybrene and electroporation, under the conditions reported herein, were ineffective at transfecting this cell line.

  10. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury

    OpenAIRE

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal ...

  11. Molecular regulation of MHC class I chain-related protein A expression after HDAC-inhibitor treatment of Jurkat T cells

    DEFF Research Database (Denmark)

    Andresen, Lars; Jensen, Helle; Pedersen, Marianne T

    2007-01-01

    In this study, we characterize the molecular signal pathways that lead to MHC class I chain-related protein A (MICA) expression after histone deacetylase (HDAC)-inhibitor (HDAC-i) treatment of Jurkat T cells. Chelating calcium with BAPTA-AM or EGTA potently inhibited HDAC- and CMV-mediated MICA......1 site from position -113 to -93 relative to the mRNA start site was important for HDAC and CMV-induced promoter activity. Sp1 was subsequently shown to be important, as targeted mutation of the Sp1 binding sequence or siRNA mediated down modulation of Sp1-inhibited MICA promoter activity...

  12. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  13. Gene Transfection Method Using Atmospheric Pressure Dielectric-Barrier Discharge Plasmas

    Science.gov (United States)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2013-09-01

    Gene transfection which is the process of deliberately introducing nucleic acids into cells is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure dielectric-barrier discharge (AP-DBD) plasmas. AP-DBD He plasmas are irradiated to the living cell covered with genes. Preliminarily, we use fluorescent dye YOYO-1 instead of the genes and use LIVE/DEAD Stain for cell viability test, and we analyze the transfection efficiency and cell viability under the various conditions. It is clarified that the transfection efficiency is strongly dependence on the plasma irradiation time and cell viability rates is high rates (>90%) regardless of long plasma irradiation time. These results suggest that ROS (Reactive Oxygen Species) and electric field generated by the plasma affect the gene transfection. In addition to this (the plasma irradiation time) dependency, we now investigate the effect of the plasma irradiation under the various conditions.

  14. Transfection efficiency and uptake process of polyplexes in human lung endothelial cells: a comparative study in non-polarized and polarized cells.

    Science.gov (United States)

    Mennesson, Eric; Erbacher, Patrick; Piller, Véronique; Kieda, Claudine; Midoux, Patrick; Pichon, Chantal

    2005-06-01

    Following systemic administration, polyplexes must cross the endothelium barrier to deliver genes to the target cells underneath. To design an efficient gene delivery system into lung epithelium, we evaluated capture and transfection efficiencies of DNA complexed with either Jet-PEI (PEI-polyplexes) or histidylated polylysine (His-polyplexes) in human lung microvascular endothelial cells (HLMEC) and tracheal epithelial cells. After optimizing growth conditions to obtain a tight HLMEC monolayer, we characterized uptake of polyplexes by flow cytometry and evaluated their transfection efficiency. Polyplexes were formulated as small particles. YOYO-labelled plasmid fluorescence intensity and luciferase activity were used as readouts for uptake and gene expression, respectively. PEI-polyplexes were more efficiently taken up than His-polyplexes by both non-polarized (2-fold) and polarized HLMEC (10-fold). They were mainly internalized by a clathrin-dependent pathway whatever the cell state. In non-polarized cells, His-polyplexes entered also mainly via a clathrin-dependent pathway but with an involvement of cholesterol. The cell polarization decreased this way and a clathrin-independent pathway became predominant. PEI-polyplexes transfected more efficiently HLMEC than His-polyplexes (10(7) vs. 10(5) relative light units (RLU)/mg of proteins) with a more pronounced difference in polarized cells. In contrast, no negative effect of the cell polarization was observed with tracheal epithelial cells in which both polyplexes had comparable efficiency. We show that the efficiency of polyplex uptake by HLMEC and their internalization mechanism are polymer-dependent. By contrast with His-polyplexes, the HLMEC polarization has little influence on the uptake process and on the transfection efficiency of PEI-polyplexes. Copyright (c) 2005 John Wiley & Sons, Ltd.

  15. Genomic Knockout of Endogenous Canine P-Glycoprotein in Wild-Type, Human P-Glycoprotein and Human BCRP Transfected MDCKII Cell Lines by Zinc Finger Nucleases.

    Science.gov (United States)

    Gartzke, Dominik; Delzer, Jürgen; Laplanche, Loic; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Sydor, Jens; Fricker, Gert

    2015-06-01

    To investigate whether it is possible to specifically suppress the expression and function of endogenous canine P-glycoprotein (cPgp) in Madin-Darby canine kidney type II cells (MDCKII) transfected with hPGP and breast cancer resistance protein (hBCRP) by zinc finger nuclease (ZFN) producing sequence specific DNA double strand breaks. Wild-type, hPGP-transfected, and hBCRP-transfected MDCKII cells were transfected with ZFN targeting for cPgp. Net efflux ratios (NER) of Pgp and Bcrp substrates were determined by dividing efflux ratios (basal-to-apical / apical-to-basal) in over-expressing cell monolayers by those in wild-type ones. From ZFN-transfected cells, cell populations (ko-cells) showing knockout of cPgp were selected based on genotyping by PCR. qRT-PCR analysis showed the significant knock-downs of cPgp and interestingly also cMrp2 expressions. Specific knock-downs of protein expression for cPgp were shown by western blotting and quantitative targeted absolute proteomics. Endogenous canine Bcrp proteins were not detected. For PGP-transfected cells, NERs of 5 Pgp substrates in ko-cells were significantly greater than those in parental cells not transfected with ZFN. Similar result was obtained for BCRP-transfected cells with a dual Pgp and Bcrp substrate. Specific efflux mediated by hPGP or hBCRP can be determined with MDCKII cells where cPgp has been knocked out by ZFN.

  16. Induction of osteogenic differentiation of stem cells via a lyophilized microRNA reverse transfection formulation on a tissue culture plate

    Directory of Open Access Journals (Sweden)

    Wu K

    2013-05-01

    Full Text Available Kaimin Wu,1,* Jie Xu,2,* Mengyuan Liu,1 Wen Song,1 Jun Yan,1 Shan Gao,3 Lingzhou Zhao,2 Yumei Zhang1 1Department of Prosthetic Dentistry, 2Department of Periodontology and Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China; 3The Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark; School of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China*Both authors contributed equally to this workAbstract: MicroRNA (miRNA regulation is a novel approach to manipulating the fate of mesenchymal stem cells, but an easy, safe, and highly efficient method of transfection is required. In this study, we developed an miRNA reverse transfection formulation by lyophilizing Lipofectamine 2000-miRNA lipoplexes on a tissue culture plate. The lipoplexes can be immobilized on a tissue culture plate with an intact pseudospherical structure and lyophilization without any lyoprotectant. In this study, reverse transfection resulted in highly efficient cellular uptake of miRNA and enabled significant manipulation of the intracellular target miRNA level. Reverse transfection formulations containing Lipofectamine 2000 1 µL per well generated much higher transfection efficiency without obvious cytotoxicity compared with conventional and other transfection methods. Further, the transfection efficiency of the reverse transfection formulations did not deteriorate during 90 days of storage at 4°C and -20°C. We then assessed the efficiency of the miRNA reverse transfection formulation in promoting osteogenic differentiation of mesenchymal stem cells. We found that transfection with anti-miR-138 and miR-148b was efficient for enhancing osteogenic differentiation, as indicated by enhanced osteogenesis-related gene expression, amount of alkaline phosphatase present, production of collagen, and matrix mineralization. Overall

  17. Optimal transfection methods and comparison of PK-15 and Dulac cells for rescue of chimeric porcine circovirus type 1-2.

    Science.gov (United States)

    Li, Jizong; Yu, Tianqi; Zhou, Jinzhu; Tu, Wei; Gao, Song; Liu, Xiufan

    2014-11-01

    A chimeric porcine circovirus type 1-2 (PCV1-2) infectious DNA clone has low transfection efficiency and exhibits low levels of proliferation. Electroporation and lipofection parameters were optimized for PK-15 and Dulac cells with the purpose of increasing the efficiency for rescuing infectious PCV1-2. Titers of PCV1-2 in Dulac cells were 100-fold higher than those in PK-15 cells following transfection. The electroporation efficiency into Dulac cells was high when three 400 μs pulses at 250 V with 6 μg of plasmid DNA was used, lipofection efficiency was high when the ratio of DNA to transfection reagent was 1:3. The proportion of infected cells was 55.6% compared with 44.2%, for the electroporation and lipofection techniques respectively. Virus titers were higher in Dulac cells, from 10(4.44) to 10(5.32)TCID50/mL compared with 10(1.90)-10(3.38)TCID(50)/mL for PK-15 cells. Dulac cells were more permissive to PCV1-2 than PK-15 cells regardless of the transfection technique. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Transfection of the Human Heme Oxygenase Gene Into Rabbit Coronary Microvessel Endothelial Cells: Protective Effect Against Heme and Hemoglobin Toxicity

    Science.gov (United States)

    Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.

    1995-07-01

    Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

  19. Epigonal Conditioned Media from Bonnethead Shark, Sphyrna tiburo, Induces Apoptosis in a T-Cell Leukemia Cell Line, Jurkat E6-1

    Directory of Open Access Journals (Sweden)

    Courtney Bennett

    2013-08-01

    Full Text Available Representatives of Subclass Elasmobranchii are cartilaginous fish whose members include sharks, skates, and rays. Because of their unique phylogenetic position of being the most primitive group of vertebrates to possess all the components necessary for an adaptive immune system, the immune regulatory compounds they possess may represent the earliest evolutionary forms of novel compounds with the potential for innovative therapeutic applications. Conditioned medium, generated from short term culture of cells from the epigonal organ of bonnethead sharks (Sphyrna tiburo, has been shown to have potent reproducible cytotoxic activity against a variety of human tumor cell lines in vitro. Existing data suggest that epigonal conditioned medium (ECM exerts this cytotoxic activity through induction of apoptosis in target cells. This manuscript describes apoptosis induction in a representative tumor cell line, Jurkat E6-1, in response to treatment with ECM at concentrations of 1 and 2 mg/mL. Data indicate that ECM exposure initiates the mitochondrial pathway of apoptosis through activation of caspase enzymes. Future purification of ECM components may result in the isolation of an immune-regulatory compound with potential therapeutic benefit for treatment of human cancer.

  20. C-terminal KDEL-modified cystatin C is retained in transfected CHO cells

    DEFF Research Database (Denmark)

    Johansen, Teit Eliot; Vogel, Charlotte Katrine; Schwartz, Thue W.

    1990-01-01

    The significance of a C-terminal tetrapeptide, Lys-Asp-Glu-Leu (KDEL), as a retention signal for the endoplasmatic reticulum was studied using cystatin C, a general thiol protease inhibitor, as the reporter protein. Clones of CHO cells were analyzed after stable transfection with eukaryotic...

  1. [VEGF165 transfected endothelial progenitor cells mediated by lentivirus alleviated ALI in rats].

    Science.gov (United States)

    He, Zhaohui; He, Huiwei; Lu, Yuanhua; Chen, Zhi; Xu, Fanghua; Wang, Rongsheng; Yang, Chunli

    2017-11-01

    To investigate the protective effects of vascular endothelial growth factor-165 (VEGF165) transfected the endothelial progenitor cells (EPCs) mediated by lentivirus on acute lung injury (ALI) in rats. The mononuclear cells from the male Sprague-Dawley (SD) rats were isolated and cultured to get the EPCs for study. The lentivirus vector carrying the human VEGF165 gene was constructed. According to the random number table method, 90 male SD rats were divided into ALI model group, phosphate buffer solution (PBS) group, EPCs treatment group, none transfected EPCs treatment group and VEGF165 transfected EPCs treatment group, and the rats in each group were subdivided into 4, 12 and 48 hours subgroups, with 6 rats in each subgroup. The rat model of ALI was reproduced by intravenous injection of oleic acid (0.15 μL/g). Then each treatment group was given PBS, EPCs, none transfected EPCs and VEGF165 transfected EPCs respectively with the same volume of 0.2 mL. For the groups with cells, about 1×10 6 cells were contained. Abdominal aortic blood and lung tissue were harvested at 4, 12 and 48 hours. Arterial blood gas analysis was performed. The lung wet/dry weight ratio (W/D) was calculated. The expressions of induced nitric oxide synthase (iNOS), endothelin-1 (ET-1) and VEGF165 were determined by enzyme-linked immunosorbent assay (ELISA). After dyed with hematoxylin-eosin (HE), the lung tissue pathology was observed and the lung injury score was performed. Compared with the ALI model group, the arterial partial pressure of oxygen (PaO 2 ) in EPCs, none transfected EPCs and VEGF165 transfected EPCs treatment groups was significantly increased from 4 hours, and lung W/D, expressions of iNOS and ET-1 were significantly decreased, and VEGF165 expression was significantly increased. Compared with the EPCs treatment group, the increase in PaO 2 , the decrease in lung W/D and expressions of iNOS and ET-1, and the increase in VEGF165 expression in VEGF165 transfected EPCs

  2. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone

    International Nuclear Information System (INIS)

    Adachi, A.; Gendelman, H.E.; Koenig, S.; Folks, T.; Willey, R.; Rabson, A.; Martin, M.A.

    1986-01-01

    The authors considered an infectious molecular clone of acquired immunodeficiency syndrome-associated retrovirus. Upon transfection, this clone directed the production of infectious virus particles in a wide variety of cells in addition to human T4 cells. The progeny, infectious virions, were synthesized in mouse, mink, monkey, and several human non-T cell lines, indicating the absence of any intracellular obstacle to viral RNA or protein production or assembly. During the course of these studies, a human colon carcinoma cell line, exquisitely sensitive to DNA transfection, was identified

  3. JS-K, a nitric oxide-releasing prodrug, modulates ß-catenin/TCF signaling in leukemic Jurkat cells: evidence of an S-nitrosylated mechanism.

    Science.gov (United States)

    Nath, Niharika; Chattopadhyay, Mitali; Pospishil, Liliya; Cieciura, Lucyna Z; Goswami, Satindra; Kodela, Ravinder; Saavedra, Joseph E; Keefer, Larry K; Kashfi, Khosrow

    2010-12-01

    β-Catenin is a central player of the Wnt signaling pathway that regulates cell-cell adhesion and may promote leukemia cell proliferation. We examined whether JS-K, an NO-donating prodrug, modulates the Wnt/β-catenin/TCF-4 signaling pathway in Jurkat T-Acute Lymphoblastic Leukemia cells. JS-K inhibited Jurkat T cell growth in a concentration and time-dependent manner. The IC(50)s for cell growth inhibition were 14±0.7 and 9±1.2μM at 24 and 48h, respectively. Treatment of the cells with JS-K for 24h, caused a dose-dependent increase in apoptosis from 16±3.3% at 10μM to 74.8±2% at 100μM and a decrease in proliferation. This growth inhibition was also due, in part, to alterations in the different phases of the cell cycle. JS-K exhibited a dose-dependent cytotoxicity as measured by LDH release at 24h. However, between 2 and 8h, LDH release was less than 20% for any indicated JS-K concentration. The β-catenin/TCF-4 transcriptional inhibitory activity was reduced by 32±8, 63±5, and 93±2% at 2, 10, and 25μM JS-K, respectively, based on luciferase reporter assays. JS-K reduced nuclear β-catenin and cyclin D1 protein levels, but cytosolic β-catenin expression did not change. Based on a time-course assay of S-nitrosylation of proteins by a biotin switch assay, S-nitrsolyation of nuclear β-catenin was determined to precede its degradation. A comparison of the S-nitrosylated nuclear β-catenin to the total nuclear β-catenin showed that β-catenin protein levels were degraded at 24h, while S-nitrosylation of β-catenin occurred earlier at 0-6h. The NO scavenger PTIO abrogated the JS-K mediated degradation of β-catenin demonstrating the need for NO. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Elusive Role of the CD94/NKG2C NK Cell Receptor in the Response to Cytomegalovirus: Novel Experimental Observations in a Reporter Cell System

    Directory of Open Access Journals (Sweden)

    Aldi Pupuleku

    2017-10-01

    Full Text Available Human cytomegalovirus (HCMV infection promotes the differentiation and persistent expansion of a mature NK cell subset, which displays high surface levels of the activating CD94/NKG2C NK cell receptor, together with additional distinctive phenotypic and functional features. The mechanisms underlying the development of adaptive NK cells remain uncertain but some observations support the involvement of a cognate interaction of CD94/NKG2C with ligand(s displayed by HCMV-infected cells. To approach this issue, the heterodimer and its adaptor (DAP12 were expressed in the human Jurkat leukemia T cell line; signaling was detected by transfection of a reporter plasmid encoding for Luciferase (Luc under NFAT/AP1-dependent control. Engagement of the receptor by solid-phase bound CD94- or NKG2C-specific monoclonal antibodies (mAbs triggered Luc expression. Moreover, reporter activation was detectable upon interaction with HLA-E+ 721.221 (.221-AEH cells, as well as with 721.221 cells incubated with synthetic peptides, which stabilized surface expression of endogenous HLA-E; the response was specifically antagonized by soluble NKG2C- and HLA-E-specific mAbs. By contrast, activation of Jurkat-NKG2C+ was undetectable upon interaction with Human Fetal Foreskin Fibroblasts (HFFF infected with HCMV laboratory strains (i.e., AD169, Towne, regardless of their differential ability to preserve surface HLA-E expression. On the other hand, infection with two clinical isolates or with the endotheliotropic TB40/E strain triggered Jurkat-NKG2C+ activation; yet, this response was not inhibited by blocking mAbs and was independent of CD94/NKG2C expression. The results are discussed in the framework of previous observations supporting the hypothetical existence of specific ligand(s for CD94/NKG2C in HCMV-infected cells.

  5. Restoration of u.v.-induced excision repair in Xeroderma D cells transfected with the denV gene of bacteriophage T4

    International Nuclear Information System (INIS)

    Arrand, J.E.; Squires, S.; Bone, N.M.; Johnson, R.T.

    1987-01-01

    The heritable DNA repair defect in human Xeroderma D cells, resulting in failure to incise at u.v. light-induced pyrimidine dimers, has been partially but stably corrected by transfection of immortalised cells with the denV pyrimidine dimer glycosylase gene of bacteriophage T4. Transfectants selected either for a dominant marker on the mammalian vector carrying the prokaryotic gene or for dominant marker plus resistance to killing by u.v. light, were shown to express the denV gene to varying degrees. denV expression results in significant phenotypic change in the initially repair-deficient, u.v.-hypersensitive cells. Increased resistance to u.v. light and more rapid recovery of replicative DNA synthesis following u.v. irradiation were correlated with improved repair DNA synthesis and with a novel dimer incision capability present in denV transfected Xeroderma cells but not as evident in transfected normal cells. Most transfectants contain a single integrated copy of the denV gene; increase in denV copy number does not result in either increased gene expression or enhanced survival to u.v. light. Results show that expression of a heterologous prokaryotic repair gene can partially compensate for the genetic defect in a human Xeroderma D cell. (author)

  6. Photobiomodulation on KATP Channels of Kir6.2-Transfected HEK-293 Cells

    Directory of Open Access Journals (Sweden)

    Fu-qing Zhong

    2014-01-01

    Full Text Available Background and Objective. ATP-sensitive potassium (KATP channel couples cell metabolism to excitability. To explore role of KATP channels in cellular photobiomodulation, we designed experiment to study effect of low intensity 808 nm laser irradiation on the activity of membrane KATP channel. Study Design/Materials and Methods. Plasmids encoding Kir6.2 was constructed and heterologously expressed in cultured mammalian HEK-293 cells. The patch-clamp and data acquisition systems were used to record KATP channel current before and after irradiation. A laser beam of Ga-As 808 nm at 5 mW/cm2 was used in experiments. A one-way ANOVA test followed by a post hoc Student-Newman-Keuls test was used to assess the statistical differences between data groups. Results. Obvious openings of KATP channels of Kir6.2-transfected HEK-293 cells and excised patches were recorded during and after low intensity 808 nm laser irradiation. Compared with the channels that did not undergo irradiation, open probability, current amplitude, and dwell time of KATP channels after irradiation improved. Conclusions. Low intensity 808 nm laser irradiation may activate membrane KATP channels of Kir6.2-transfected HEK-293 cells and in excised patches.

  7. Expression of bovine herpesvirus 1 glycoproteins gI and gIII in transfected murine cells

    International Nuclear Information System (INIS)

    Fitzpatrick, D.R.; Zamb, T.; Parker, M.D.; van Drunen Littel-van den Hurk, S.; Babiuk, L.A.; Lawman, M.J.P.

    1988-01-01

    Genes encoding two of the major glycoproteins of bovine herpesvirus 1 (BHV-1), gI and gIII, were cloned into the eucaryotic expression vectors pRSVcat and pSV2neo and transfected into murine LMTK - cells, and cloned cell lines were established. The relative amounts of gI or gIII expressed from the two vectors were similar. Expression of gI was cell associated and localized predominantly in the perinuclear region, but nuclear and plasma membrane staining was also observed. Expression of gI was additionally associated with cell fusion and the formation of polykaryons and giant cells. Expression of gIII was localized predominantly in the nuclear and plasma membranes. Radioimmunoprecipitation in the presence or absence of tunicamycin revealed that the recombinant glycoproteins were proteolytically processed and glycosylated and had molecular weights similar to those of the forms of gI and gIII expressed in BHV-1 infected bovine cells. However, both recombinant glycoproteins were glycosylated to a lesser extent than were the forms found in BHV-1 infected bovine cells. For gI, a deficiency in N-linked glycosylated of the amino-terminal half of the protein was identified; for gIII, a deficiency in O-linked glycosylation was implicated. The reactivity pattern of a panel of gI- and gIII-specific monoclonal antibodies, including six which recognize conformation-dependent epitopes, was found to be unaffected by the glycosylation differences and was identical for transfected of BHV-1-infected murine cells. Use of the transfected cells as targets in immune-mediated cytotoxicity assays demonstrated the functional recognition of recombinant gI and gIII by murine antibody and cytotoxic T lymphocytes

  8. The effect of aloe emodin–encapsulated nanoliposome-mediated r-caspase-3 gene transfection and photodynamic therapy on human gastric cancer cells

    International Nuclear Information System (INIS)

    Li, Kai-Ting; Duan, Qin-Qin; Chen, Qing; He, Juan-Wen; Tian, Si; Lin, Hai-Dan; Gao, Qing; Bai, Ding-Qun

    2015-01-01

    Gastric carcinoma (GC) has high incidence and mortality rates in China. Surgery and chemotherapy are the main treatments. Photodynamic therapy (PDT) has become a new treatment modality, appearing in recent experimental studies and clinical trials in various tumors. This study explores the combined effect of gene transfection with PDT on GC cells using aloe emodin (AE)–encapsulated nanoliposomes, which acted as gene carrier as well as one photosensitizer (PS). AE-encapsulated nanoliposomes (nano-AE) were prepared by reverse evaporation method. Electron microscopy and nano-ZS90 analyzer were used to detect its morphology, size, and wavelength. Western blot was used to detect the expression of the caspase-3 after transfection. MTT assay and flow cytometry were employed to determine the cytotoxic and apoptotic rates, respectively. Hoechst 33342 staining was adopted to detect the morphological changes in death gastric cancer cells. Cellular reactive oxygen species (ROS) contents were measured by DCFH-DA staining. Outcomes demonstrated that the nano-AE has good properties as gene delivery carriers as well as a PS. The group in which the recombinant plasmid of r-caspase-3 was transfected had higher protein expression of the caspase-3 than controls, meanwhile the proliferation rates of the transfected cells were inhibited by the nano-AE-mediated PDT in an energy-dependent manner. In addition, in the transfected cells, the death rate increased to 77.3% as assessed 12 h after PDT (6.4 J/cm 2 ). Hochest 33342 staining also revealed that the death rate increased significantly in the transfected group compared with other groups. Compared to control groups, the production of ROS in nano-AE PDT group had quadrupled in SGC-7901 cells as early as 1 h after PDT, while it is similar to the group of nano-AE transfection and PDT. Nano-AE-mediated r-caspase-3 gene transfection coupled with PDT could inhibit the proliferation rate and increase the apoptotic rate remarkably in human

  9. Combinatorial treatment with lithium chloride enhances recombinant antibody production in transiently transfected CHO and HEK293E cells

    DEFF Research Database (Denmark)

    Kim, Che Lin; Kwang Ha, Tae; Min Lee, Gyun

    2016-01-01

    Lithium chloride (LiCl), which induces cell cycle arrest at G2/M phase, is known as a specific production rate (qp)-enhancing additive in recombinant Chinese hamster ovary (CHO) cell culture. To determine the potential of LiCl as a chemical additive that enhances transient gene expression (TGE), Li......Cl was added to the CHO-NK and human embryonic kidney 293E (HEK293E) cell cultures before and/or after transfection with polyethylenimine as a transfection reagent. The effect of this addition on transfection efficiency (pre-treatment) and qp enhancement during TGE (post-treatment) was examined. For the TGE...... of monoclonal antibody (mAb) in CHO-NK cells, pretreatment alone with 10 mM LiCl and post-treatment alone with 5 mM LiCl resulted in 1.2- and 3.4-fold increase of maximum mAb concentration (MMC), respectively, compared with the TGE without LiCl treatment. Furthermore, combinatorial treatment with LiCl (10 m...

  10. Cytokinesis is blocked in mammalian cells transfected with Chlamydia trachomatis gene CT223

    Directory of Open Access Journals (Sweden)

    Weeks Sara K

    2009-01-01

    Full Text Available Abstract Background The chlamydiae alter many aspects of host cell biology, including the division process, but the molecular biology of these alterations remains poorly characterized. Chlamydial inclusion membrane proteins (Incs are likely candidates for direct interactions with host cell cytosolic proteins, as they are secreted to the inclusion membrane and exposed to the cytosol. The inc gene CT223 is one of a sequential set of orfs that encode or are predicted to encode Inc proteins. CT223p is localized to the inclusion membrane in all tested C. trachomatis serovars. Results A plasmid transfection approach was used to examine the function of the product of CT223 and other Inc proteins within uninfected mammalian cells. Fluorescence microscopy was used to demonstrate that CT223, and, to a lesser extent, adjacent inc genes, are capable of blocking host cell cytokinesis and facilitating centromere supranumeracy defects seen by others in chlamydiae-infected cells. Both phenotypes were associated with transfection of plasmids encoding the carboxy-terminal tail of CT223p, a region of the protein that is likely exposed to the cytosol in infected cells. Conclusion These studies suggest that certain Inc proteins block cytokinesis in C. trachomatis-infected cells. These results are consistent with the work of others showing chlamydial inhibition of host cell cytokinesis.

  11. DON shares a similar mode of action as the ribotoxic stress inducer anisomycin while TBTO shares ER stress patterns with the ER stress inducer Thapsigargin based on comparative gene expression profiling in Jurkat T cells

    NARCIS (Netherlands)

    Schmeits, P.C.J.; Katika, M.R.; Peijnenburg, A.A.C.M.; Loveren, van H.; Hendriksen, P.J.M.

    2014-01-01

    Previously, we studied the effects of deoxynivalenol (DON) and tributyltin oxide (TBTO) on whole genome mRNA expression profiles of human T lymphocyte Jurkat cells. These studies indicated that DON induces ribotoxic stress and both DON and TBTO induced ER stress which resulted into T-cell activation

  12. Biochemical characterization of cells transformed via transfection by feline sarcoma virus proviral DNA.

    OpenAIRE

    Rosenberg, Z F; Sahagan, B G; Snyder, H W; Worley, M B; Essex, M; Haseltine, W A

    1981-01-01

    Murine fibroblasts transformed by transfection with DNA from mink cells infected with the Snyder-Theilen strain of feline sarcoma virus and subgroup B feline leukemia virus were analyzed for the presence of integrated proviral DNA and the expression of feline leukemia virus- and feline sarcoma virus-specific proteins. The transformed murine cells harbored at least one intact feline sarcoma virus provirus, but did not contain feline leukemia virus provirus. The transformed murine cells express...

  13. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    Energy Technology Data Exchange (ETDEWEB)

    Amand, Helene L., E-mail: helene.amand@chalmers.se [Chalmers University of Technology, Department of Chemical and Biological Engineering/Physical Chemistry, SE-412 96 Gothenburg (Sweden); Norden, Bengt, E-mail: norden@chalmers.se [Chalmers University of Technology, Department of Chemical and Biological Engineering/Physical Chemistry, SE-412 96 Gothenburg (Sweden); Fant, Kristina, E-mail: kristina.fant@sp.se [Chalmers University of Technology, Department of Chemical and Biological Engineering/Physical Chemistry, SE-412 96 Gothenburg (Sweden)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. Black-Right-Pointing-Pointer Dimer formation enhances peptiplex stability, resulting in increased transfection. Black-Right-Pointing-Pointer By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes ('peptiplexes') enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the 'chelate effect' and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide

  14. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    International Nuclear Information System (INIS)

    Åmand, Helene L.; Nordén, Bengt; Fant, Kristina

    2012-01-01

    Highlights: ► Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. ► Dimer formation enhances peptiplex stability, resulting in increased transfection. ► By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes (“peptiplexes”) enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the “chelate effect” and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from its stronger binding to DNA.

  15. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury.

    Science.gov (United States)

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-08-15

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.

  16. Transfection of tumor-infiltrating T cells with mRNA encoding CXCR2

    DEFF Research Database (Denmark)

    Idorn, Manja; thor Straten, Eivind Per; Svane, Inge Marie

    2016-01-01

    Adoptive T-cell therapy based on the infusion of patient’s own immune cells after ex vivo culturing is among the most potent forms of personalized treatment among recent clinical developments for the treatment of cancer. However, despite high rates of successful initial clinical responses, only...... infused T cells migrating to the tumor and the clinical response, but also that only a small fraction of adoptively transferred Tcells reach the tumor site. In this chapter, we describe a protocol for transfection of TILs with mRNA encoding the chemokine receptor CXCR2 transiently redirecting...

  17. Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells

    Science.gov (United States)

    2011-01-01

    Background During functional studies on the rat stress-inducible Hspa1b (hsp70.1) gene we noticed that some liposome-based DNA carriers, which are used for transfection, induce its promoter activity. This observation concerned commercial liposome formulations (LA), Lipofectin and Lipofectamine 2000. This work was aimed to understand better the mechanism of this phenomenon and its potential biological and practical consequences. Results We found that a reporter gene driven by Hspa1b promoter is activated both in the case of transient transfections and in the stably transfected cells treated with LA. Using several deletion clones containing different fragments of Hspa1b promoter, we found that the regulatory elements responsible for most efficient LA-driven inducibility were located between nucleotides -269 and +85, relative to the transcription start site. Further studies showed that the induction mechanism was independent of the classical HSE-HSF interaction that is responsible for gene activation during heat stress. Using DNA microarrays we also detected significant activation of the endogenous Hspa1b gene in cells treated with Lipofectamine 2000. Several other stress genes were also induced, along with numerous genes involved in cellular metabolism, cell cycle control and pro-apoptotic pathways. Conclusions Our observations suggest that i) some cationic liposomes may not be suitable for functional studies on hsp promoters, ii) lipofection may cause unintended changes in global gene expression in the transfected cells. PMID:21663599

  18. Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells

    Directory of Open Access Journals (Sweden)

    Lisowska Katarzyna Marta

    2011-06-01

    Full Text Available Abstract Background During functional studies on the rat stress-inducible Hspa1b (hsp70.1 gene we noticed that some liposome-based DNA carriers, which are used for transfection, induce its promoter activity. This observation concerned commercial liposome formulations (LA, Lipofectin and Lipofectamine 2000. This work was aimed to understand better the mechanism of this phenomenon and its potential biological and practical consequences. Results We found that a reporter gene driven by Hspa1b promoter is activated both in the case of transient transfections and in the stably transfected cells treated with LA. Using several deletion clones containing different fragments of Hspa1b promoter, we found that the regulatory elements responsible for most efficient LA-driven inducibility were located between nucleotides -269 and +85, relative to the transcription start site. Further studies showed that the induction mechanism was independent of the classical HSE-HSF interaction that is responsible for gene activation during heat stress. Using DNA microarrays we also detected significant activation of the endogenous Hspa1b gene in cells treated with Lipofectamine 2000. Several other stress genes were also induced, along with numerous genes involved in cellular metabolism, cell cycle control and pro-apoptotic pathways. Conclusions Our observations suggest that i some cationic liposomes may not be suitable for functional studies on hsp promoters, ii lipofection may cause unintended changes in global gene expression in the transfected cells.

  19. Unexpected transcellular protein crossover occurs during canonical DNA transfection.

    Science.gov (United States)

    Arsenault, Jason; Cuijpers, Sabine A G; Niranjan, Dhevahi; Davletov, Bazbek

    2014-12-01

    Transfection of DNA has been invaluable for biological sciences, yet the effects upon membrane homeostasis are far from negligible. Here, we demonstrate that Neuro2A cells transfected using Lipofectamine LTX with the fluorescently coupled Botulinum serotype A holoenzyme (EGFP-LcA) cDNA express this SNAP25 protease that can, once translated, escape the transfected host cytosol and become endocytosed into untransfected cells, without its innate binding and translocation domains. Fluorescent readouts revealed moderate transfection rates (30-50%) while immunoblotting revealed a surprisingly total enzymatic cleavage of SNAP25; the transgenic protein acted beyond the confines of its host cell. Using intracellular dyes, no important cytotoxic effects were observed from reagent treatment alone, which excluded the possibility of membrane ruptures, though noticeably, intracellular acidic organelles were redistributed towards the plasma membrane. This drastic, yet frequently unobserved, change in protein permeability and endosomal trafficking following reagent treatment highlights important concerns for all studies using transient transfection. © 2014 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  20. Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection.

    Science.gov (United States)

    Baumgart, J; Bintig, W; Ngezahayo, A; Lubatschowski, H; Heisterkamp, A

    2010-02-01

    Fs-laser based opto-perforation is a gentle method for gene transfer into sensitive cells such as stem cells or primary cells. The high selectivity and the low damage to the cell lead to a high efficiency of transfection. However, there are side effects which induce stress to the cell due to the exchange of intra- and extracellular media as well as the disintegration of the structure of biomolecules resulting from the laser exposure. Moreover, the mechanisms of the optical transfection are still unclear. In this paper, we present our study on calcium (Ca(2+)) homeostasis during cell surgery, especially during laser induced membrane perforation. We show that the manipulation of cells can induce an increase in the cytosolic Ca(2+) concentration. This increase was not observed if the manipulation of the cells was performed in absence of the extracellular calcium indicating the importance of the Ca(2+) uptake. We found, that the uptake of extracellular Ca(2+) strongly depends on the repetition rate and the irradiation time of the laser pulses. The exposure for several seconds to kHz pulses even induces Ca(2+) induced Ca(2+) release. Dependent on the location of perforation, probably in the vicinity of an intracellular Ca(2+) stock, an instantaneous intracellular Ca(2+) release can be induced. Since Ca(2+) could be involved in negative side effect by cell surgery, we propose an application of the optoperforation technique in nominal Ca(2+)-free external solution.

  1. Tripartite polyionic complex (PIC) micelles as non-viral vectors for mesenchymal stem cell siRNA transfection.

    Science.gov (United States)

    Raisin, Sophie; Morille, Marie; Bony, Claire; Noël, Danièle; Devoisselle, Jean-Marie; Belamie, Emmanuel

    2017-08-22

    In the context of regenerative medicine, the use of RNA interference mechanisms has already proven its efficiency in targeting specific gene expression with the aim of enhancing, accelerating or, more generally, directing stem cell differentiation. However, achievement of good transfection levels requires the use of a gene vector. For in vivo applications, synthetic vectors are an interesting option to avoid possible issues associated with viral vectors (safety, production costs, etc.). Herein, we report on the design of tripartite polyionic complex micelles as original non-viral polymeric vectors suited for mesenchymal stem cell transfection with siRNA. Three micelle formulations were designed to exhibit pH-triggered disassembly in an acidic pH range comparable to that of endosomes. One formulation was selected as the most promising with the highest siRNA loading capacity while clearly maintaining pH-triggered disassembly properties. A thorough investigation of the internalization pathway of micelles into cells with tagged siRNA was made before showing an efficient inhibition of Runx2 expression in primary bone marrow-derived stem cells. This work evidenced PIC micelles as promising synthetic vectors that allow efficient MSC transfection and control over their behavior, from the perspective of their clinical use.

  2. Transfection of HeLa-cells with pEGFP plasmid by impedance power-assisted electroporation

    DEFF Research Database (Denmark)

    Glahder, Jacob; Norrild, Bodil; Persson, Mikael B

    2005-01-01

    Bioimpedance spectrometry was applied to study cell viability and pEGFP plasmid-transfection efficiency in electroporation (EP) of 20,000 HeLa cells with 0.3 microg DNA in 90 microl low conductivity 0.32 M sucrose medium of pH 7.5. Monopolar rectangular pulses, of field strength 75 V/mm, and puls...

  3. Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble.

    Science.gov (United States)

    Kodama, Tetsuya; Tomita, Yukio; Koshiyama, Ken-Ichiro; Blomley, Martin J K

    2006-06-01

    The combination of ultrasound and ultrasound contrast agents (UCAs) is able to induce transient membrane permeability leading to direct delivery of exogenous molecules into cells. Cavitation bubbles are believed to be involved in the membrane permeability; however, the detailed mechanism is still unknown. In the present study, the effects of ultrasound and the UCAs, Optison on transfection in vitro for different medium heights and the related dynamic behaviors of cavitation bubbles were investigated. Cultured CHO-E cells mixed with reporter genes (luciferase or beta-gal plasmid DNA) and UCAs were exposed to 1 MHz ultrasound in 24-well plates. Ultrasound was applied from the bottom of the well and reflected at the free surface of the medium, resulting in the superposition of ultrasound waves within the well. Cells cultured on the bottom of 24-well plates were located near the first node (displacement node) of the incident ultrasound downstream. Transfection activity was a function determined with the height of the medium (wave traveling distance), as well as the concentration of UCAs and the exposure time was also determined with the concentration of UCAs and the exposure duration. Survival fraction was determined by MTT assay, also changes with these values in the reverse pattern compared with luciferase activity. With shallow medium height, high transfection efficacy and high survival fraction were obtained at a low concentration of UCAs. In addition, capillary waves and subsequent atomized particles became significant as the medium height decreased. These phenomena suggested cavitation bubbles were being generated in the medium. To determine the effect of UCAs on bubble generation, we repeated the experiments using crushed heat-treated Optison solution instead of the standard microbubble preparation. The transfection ratio and survival fraction showed no additional benefit when ultrasound was used. These results suggested that cavitation bubbles created by the

  4. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells.

    Science.gov (United States)

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-08-28

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  5. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells

    Directory of Open Access Journals (Sweden)

    Yao Pan

    2015-08-01

    Full Text Available Trichloroethylene (TCE is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA and dichloroacetic acid (DCA, on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  6. IL-1RA gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules could alleviate rheumatoid arthritis.

    Science.gov (United States)

    Hu, Jianhua; Li, Hongjian; Chi, Guanhao; Yang, Zhao; Zhao, Yi; Liu, Wei; Zhang, Chao

    2015-01-01

    In order to investigate the encapsulation of interleukin 1 receptor antagonist (IL-RA) gene-modified mesenchymal stem cells (MSCs) in alginate-poly-L-lysine (APA) microcapsules for the persistent delivery of interleukin 1 receptor antagonist (IL-RA) to treat Rheumatoid arthritis (RA). We transfect mesenchymal stem cells with IL-RA gene, and quantify the IL-RA proteins released from the encapsulated cells followed by microencapsulation of recombinant mesenchymal stem cells, and thus observe the permeability of APA microcapsules and evaluate clinical effects after induction and treatment of collagen-induced arthritis (CIA). The concentration of IL-RA in the supernatant was determined by IL-RA ELISA kit by run in technical triplicates using samples from three separate mice. Encapsulated IL-RA gene-transfected cells were capable of constitutive delivery of IL-RA proteins for at least 30 days. Moreover, the APA microcapsules could inhibit the permeation of fluorescein isothiocyanate-conjuncted immunoglobulin G. Also, it has been found that the APA microcapsules can significantly attenuate collagen induced arthritis after delivering of APA microcapsules to rats. Our results demonstrated that the nonautologous IL-RA gene-transfected stem cells are of potential utility for RA therapy.

  7. Human Breast Adipose-Derived Stem Cells Transfected with the Stromal Cell-Derived Factor-1 Receptor CXCR4 Exhibit Enhanced Viability in Human Autologous Free Fat Grafts

    Directory of Open Access Journals (Sweden)

    Fang-tian Xu

    2014-11-01

    Full Text Available Background: The main complication of autologous free fat tissue transplantation is fat resorption and calcification due to the ischemic necrosis of fat. The promotion of transplant neovascularization soon after autologous free fat grafts may reduce these outcomes. In adulthood, stromal cell-derived factor-1 (SDF-1 and its membrane receptor C-X-C chemokine receptor type 4 (CXCR4 are involved in the homing and migration of multiple stem cell types, neovascularization, and cell proliferation. We hypothesized that CXCR4 may improve the long-term survival of free fat tissue transplants by recruiting endothelial progenitor cells (EPCs and may therefore improve graft revascularization. In this study, we aimed to determine the effect of human breast adipose-derived stem cells (HBASCs transfected with the CXCR4 gene on the survival rate of human autologous free fat transplants in nude mice. Methods: Human breast adipose-derived stem cells (HBASCs were expanded ex vivo for 3 passages, labeled with green fluorescent protein (GFP and transfected with CXCR4 or left untransfected. Autologous fat tissues were mixed with the GFP-labeled, CXCR4-transfected HBASCs (group A, GFP-labeled HBASCs (group B, the known vascularization-promoting agent VEGF (group C, or medium (group D and then injected subcutaneously into 32 nude mice at 4 spots in a random fashion. Six months later, the transplanted tissue volume and histology were evaluated, and neo-vascularization was quantified by counting the capillaries. CXCR4 and SDF-1α mRNA expression in the transplants was determined using real-time quantitative PCR analysis (qPCR. Results: The data revealed that the control (group D transplant volume survival was 28.3 ± 4.5%. Mixing CXCR4-transfected (group A and untransfected (group B HBASCs significantly increased transplant volume survival (79.5 ± 8.3% and 67.2 ± 5.9%, respectively, whereas VEGF-transfected HBASCs (group C were less effective (41.2 ± 5.1%. Histological

  8. GnRH receptor activation competes at a low level with growth signaling in stably transfected human breast cell lines

    International Nuclear Information System (INIS)

    Morgan, Kevin; Meyer, Colette; Miller, Nicola; Sims, Andrew H; Cagnan, Ilgin; Faratian, Dana; Harrison, David J; Millar, Robert P; Langdon, Simon P

    2011-01-01

    Gonadotrophin releasing hormone (GnRH) analogs lower estrogen levels in pre-menopausal breast cancer patients. GnRH receptor (GnRH-R) activation also directly inhibits the growth of certain cells. The applicability of GnRH anti-proliferation to breast cancer was therefore analyzed. GnRH-R expression in 298 primary breast cancer samples was measured by quantitative immunofluorescence. Levels of functional GnRH-R in breast-derived cell lines were assessed using 125 I-ligand binding and stimulation of 3 H-inositol phosphate production. Elevated levels of GnRH-R were stably expressed in cells by transfection. Effects of receptor activation on in vitro cell growth were investigated in comparison with IGF-I and EGF receptor inhibition, and correlated with intracellular signaling using western blotting. GnRH-R immunoscoring was highest in hormone receptor (triple) negative and grade 3 breast tumors. However prior to transfection, functional endogenous GnRH-R were undetectable in four commonly studied breast cancer cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231). After transfection with GnRH-R, high levels of cell surface GnRH-R were detected in SVCT and MDA-MB-231 clones while low-moderate levels of GnRH-R occurred in MCF-7 clones and ZR-75-1 clones. MCF-7 sub-clones with high levels of GnRH-R were isolated following hygromycin phosphotransferase transfection. High level cell surface GnRH-R enabled induction of high levels of 3 H-inositol phosphate and modest growth-inhibition in SVCT cells. In contrast, growth of MCF-7, ZR-75-1 or MDA-MB-231 clones was unaffected by GnRH-R activation. Cell growth was inhibited by IGF-I or EGF receptor inhibitors. IGF-I receptor inhibitor lowered levels of p-ERK1/2 in MCF-7 clones. Washout of IGF-I receptor inhibitor resulted in transient hyper-elevation of p-ERK1/2, but co-addition of GnRH-R agonist did not alter the dynamics of ERK1/2 re-phosphorylation. Breast cancers exhibit a range of GnRH-R immunostaining, with higher levels of

  9. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    Directory of Open Access Journals (Sweden)

    Lee K

    2015-03-01

    Full Text Available Kunwoo Lee,1,2 Pengzhi Yu,3 Nithya Lingampalli,1 Hyun Jin Kim,1 Richard Tang,1 Niren Murthy1,2 1Department of Bioengineering, University of California, Berkeley, CA, USA; 2UC Berkeley and UCSF Joint Graduate Program in Bioengineering, Berkeley/San Francisco, CA, USA; 3Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA Abstract: The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from a-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. Keywords: direct cardiac

  10. The effects of human TSH receptor gene transfection on iodide uptake and thyroid-specific gene expression in poorly differentiated thyroid carcinoma cell line

    International Nuclear Information System (INIS)

    Hou Shasha; Wang Hui; Feng Fang; Lin Ning; Fu Hongliang; Du Xueliang; Wu Jingchuan

    2011-01-01

    Objective: To investigate the changes of iodide uptake and the expression of thyroid-specific genes in poorly differentiated follicular thyroid carcinoma (FTC) cells after transfection of human TSH receptor (hTSHR) gene in vitro. Methods: The recombinant eukaryotic expression plasmid PcDNA3.1/hTSHR-cDNA was transformed into DH 5a bacterial for amplification and then the recombinant plasmid was extracted. The recombinant was identified with PCR amplifying, restriction enzyme digestion analysis and DNA sequencing. The recombinant plasmid pcDNA3.1/hTSHR was transfected into FTC-133 cell line by lipofectin method in vitro. Immunofluorescence, iodide uptake studies and real time-PCR were applied to detect target protein expression. Statistical analysis was performed with t-test using SPSS 13.0 software. Results: Kpn I and Xba I restriction enzyme digestion, PCR amplifying and DNA sequencing confirmed that pcDNA3.1/hTSHR was successfully constructed. After transfection of the recombinant plasmid pcDNA3.1/hTSHR-cDNA and the stimulation of hTSH, the tumor cells displayed the expression of hTSHR protein at cell surface and cytoplasm. The iodine uptake in pcDNA3.1/hTSHR transfected cells was 2.9 times higher than that of control(pcDNA3.1(+) transfected cells) group(t = 28.63, P<0.01). The expression of TSHR, NIS, TPO and Tg (mRNA levels) in pcDNA3.1/hTSHR transfected cells were also significantly elevated by 1.74 (t =5.959, P<0.01), 7.2 (t =3.807, P<0.05), 2.88 (t=4.769, P<0.01) and 2.67 times (t=6.388, P<0.01) respectively compared to those of the control group. Conclusion: The study demonstrates that iodide uptake may be reactivated by hTSHR receptor gene transfection in poorly differentiated FTC cell. (authors)

  11. Efficient transfection of Xenobiotic Responsive Element-biosensor plasmid using diether lipid and phosphatidylcholine liposomes in differentiated HepaRG cells.

    Science.gov (United States)

    Demazeau, Maxime; Quesnot, Nicolas; Ripoche, Nicolas; Rauch, Claudine; Jeftić, Jelena; Morel, Fabrice; Gauffre, Fabienne; Benvegnu, Thierry; Loyer, Pascal

    2017-05-30

    In this study, we evaluated cationic liposomes prepared from diether-NH 2 and egg phosphatidylcholine (EPC) for in vitro gene delivery. The impact of the lipid composition, i.e. the EPC and Diether-NH 2 molar ratio, on in vitro transfection efficiency and cytotoxicity was investigated using the human HEK293T and hepatoma HepaRG cells known to be permissive and poorly permissive cells for liposome-mediated gene transfer, respectively. Here, we report that EPC/Diether-NH 2 -based liposomes enabled a very efficient transfection with low cytotoxicity compared to commercial transfection reagents in both HEK293T and proliferating progenitor HepaRG cells. Taking advantage of these non-toxic EPC/Diether-NH 2 -based liposomes, we developed a method to efficiently transfect differentiated hepatocyte-like HepaRG cells and a biosensor plasmid containing a Xenobiotic Responsive Element and a minimal promoter driving the transcription of the luciferase reporter gene. We demonstrated that the luciferase activity was induced by a canonical inducer of cytochrome P450 genes, the benzo[a]pyrene, and two environmental contaminants, the fluoranthene, a polycyclic aromatic hydrocarbon, and the endosulfan, an organochlorine insecticide, known to induce toxicity and genotoxicity in differentiated HepaRG cells. In conclusion, we established a new efficient lipofection-mediated gene transfer in hepatocyte-like HepaRG cells opening new perspectives in drug evaluation relying on xenobiotic inducible biosensor plasmids. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. TOM1L Is Involved in a Novel Signaling Pathway Important for the IL-2 Production in Jurkat T Cells Stimulated by CD3/CD28 CoLigation

    Directory of Open Access Journals (Sweden)

    Ahmed Elmarghani

    2009-01-01

    Full Text Available TOM1L (target of Myb-1 Like was identified as a binding partner for the full length and catalytically-active Lck in a yeast 2-hybrid screening assay. Here we show that in Jurkat T cells stimulated by CD3/CD28 coligation where the expression of TOM1L is reduced by lenti virus mediated-siRNA results in a dramatically lower IL-2 production. The production of IL-2 in siRNA treated cells stimulated with PMA/ionomycin was not affected indicating an involvement of TOM1L in a pathway proximal of TCR and CD28. The coexpression of Fyn with TOM1L increased the level of the phosphorylated form of Fyn indicating that TOM1L has the ability to activate Fyn. The ability of TOM1L to activate Fyn was further shown in a kinase assay using angiotensin II as a substrate. By confocal microscopy, we show that the expression of TOM1L in non-treated HeLa and SK-N-SH cells colocalizes with the mitochondrial membrane but not with lysosomal compartments or the trans-Golgi network. Furthermore, we show that the over-expression of TOM1L in Jurkat cells causes an increase of the STAT3 expression . Based on our results, we here propose that TOM1L is involved in a novel signaling pathway that is important for the IL-2 production in T cells.

  13. Membrane fusion inducers, chloroquine and spermidine increase lipoplex-mediated gene transfection

    International Nuclear Information System (INIS)

    Wong-Baeza, Carlos; Bustos, Israel; Serna, Manuel; Tescucano, Alonso; Alcantara-Farfan, Veronica; Ibanez, Miguel; Montanez, Cecilia; Wong, Carlos; Baeza, Isabel

    2010-01-01

    Gene transfection into mammalian cells can be achieved with viral and non-viral vectors. Non-viral vectors, such as cationic lipids that form lipoplexes with DNA, are safer and more stable than viral vectors, but their transfection efficiencies are lower. Here we describe that the simultaneous treatment with a membrane fusion inducer (chlorpromazine or procainamide) plus the lysosomotropic agent chloroquine increases lipoplex-mediated gene transfection in human (HEK293 and C-33 A) and rat (PC12) cell lines (up to 9.2-fold), as well as in situ in BALB/c mice spleens and livers (up to 6-fold); and that the polyamine spermidine increases lipoplex-mediated gene transfection and expression in cell cultures. The use of these four drugs provides a novel, safe and relatively inexpensive way to considerably increase lipoplex-mediated gene transfection efficiency.

  14. Construction of a CD147 Lentiviral Expression Vector and Establishment of Its Stably Transfected A549 Cell Line

    Directory of Open Access Journals (Sweden)

    Shaoxing YANG

    2012-12-01

    Full Text Available Background and objective CD147, a type of transmembrane glycoprotein embedded on the surface of tumor cells, can promote tumor invasion and metastasis. This aim of this study is to construct a CD147 lentiviral expression vector, establish its stably transfected A549 cell line, and observe the effect of CD147 on MMP-9 proliferation as well as on the invasive ability of human lung adenocarcinoma cells. Methods Full-length CD147 gene was amplified by real-time polymerase chain reaction (RT-PCR, inserted into a pEGFP vector to construct pEGFP-CD147 and pEGFP vectors, and then transfected into 293FT cells to precede the lentivirus equipment package. Subsequently, we collected the lentivirus venom to infect the A549 cells and establish a stable, overexpressed cell line named A549-CD147. The mRNA expression of MMP-9 was examined by RT-PCR. The proliferation and invasive ability of the human lung cancer cells before and after transfection were examined by the CCK-8 and Transwell methods. Results A CD147 lentiviral expression vector (pEGFP-CD147 was successfully constructed by restrictive enzyme digestion and plasmid sequencing. RT-PCR and Western blot analyses revealed increased mRNA and protein expression of CD147 gene in cells transfected with pEGFP-CD147 compared with the control groups. Therefore, the A549-CD147 cell line was successfully established through the experiment. The mRNA expression of MMP-9 also significantly increased after the upregulation of CD147 expression. Meanwhile, CCK-8 and Transwell assays indicated that the proliferation and invasive ability significantly increased in the A549-CD147 cells. Conclusion A lentiviral CD147 expression vector and its A549 cell line (A549-CD14 were successfully constructed. CD147 overexpression upregulated the protein expression of MMP-9, and strengthened the proliferation and invasive ability of human lung adenocarcinoma cells.

  15. Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection.

    Science.gov (United States)

    Van Pham, Phuc; Thi-My Nguyen, Phuoc; Thai-Quynh Nguyen, Anh; Minh Pham, Vuong; Nguyen-Tu Bui, Anh; Thi-Tung Dang, Loan; Gia Nguyen, Khue; Kim Phan, Ngoc

    2014-06-01

    Numerous studies have sought to identify diabetes mellitus treatment strategies with fewer side effects. Mesenchymal stem cell (MSC) therapy was previously considered as a promising therapy; however, it requires the cells to be trans-differentiated into cells of the pancreatic-endocrine lineage before transplantation. Previous studies have shown that PDX-1 expression can facilitate MSC differentiation into insulin-producing cells (IPCs), but the methods employed to date use viral or DNA-based tools to express PDX-1, with the associated risks of insertional mutation and immunogenicity. Thus, this study aimed to establish a new method to induce PDX-1 expression in MSCs by mRNA transfection. MSCs were isolated from human umbilical cord blood and expanded in vitro, with stemness confirmed by surface markers and multipotentiality. MSCs were transfected with PDX-1 mRNA by nucleofection and chemically induced to differentiate into IPCs (combinatorial group). This IPC differentiation was then compared with that of untransfected chemically induced cells (inducer group) and uninduced cells (control group). We found that PDX-1 mRNA transfection significantly improved the differentiation of MSCs into IPCs, with 8.3±2.5% IPCs in the combinatorial group, 3.21±2.11% in the inducer group and 0% in the control. Cells in the combinatorial group also strongly expressed several genes related to beta cells (Pdx-1, Ngn3, Nkx6.1 and insulin) and could produce C-peptide in the cytoplasm and insulin in the supernatant, which was dependent on the extracellular glucose concentration. These results indicate that PDX-1 mRNA may offer a promising approach to produce safe IPCs for clinical diabetes mellitus treatment. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  16. The M1 muscarinic receptor and its second messenger coupling in human neuroblastoma cells and transfected murine fibroblast cells

    International Nuclear Information System (INIS)

    Mei, Lin.

    1989-01-01

    The data of this study indicate that pirenzepine (PZ)-high affinity muscarinic receptors (mAChRs) are coupled to the hydrolysis of inositol lipids and not to the adenylate cyclase system in human neuroblastoma SH-SY5Y cells. The maximal carbachol(CCh)-stimulated [ 3 H]IP 1 accumulation in the SH-SY5Y cells was decreased in the presence of 1μg/ml pertussis toxin, suggesting that a pertussis toxin sensitive G-protein may be involved in the coupling. Several cell clones which express only M 1 mAChR were generated by transfecting the murine fibroblast B82 cells with the cloned rat genomic m 1 gene. The transfected B82 cells (cTB10) showed specific [ 3 H](-)QNB binding activity. The mAChRs in these cells are of the M 1 type defined by their high affinity for PZ and low affinity for AF-DX 116 and coupled to hydrolysis of inositol lipids, possibly via a pertussis toxin sensitive G protein. The relationship between the M 1 mAChR density and the receptor-mediated hydrolysis of inositol lipids was studied in 7 clones. The M 1 mAChR densities in these cells characterized by [ 3 H](-)MQNB binding ranged from 12 fmol/10 6 cells in LK3-1 cells to 260 fmol/10 6 cells in the LK3-8 cells

  17. Spermidine/spermine N1-acetyltransferase (SSAT) activity in human small-cell lung carcinoma cells following transfection with a genomic SSAT construct.

    Science.gov (United States)

    Murray-Stewart, Tracy; Applegren, Nancy B; Devereux, Wendy; Hacker, Amy; Smith, Renee; Wang, Yanlin; Casero, Robert A

    2003-07-15

    Spermidine/spermine N (1)-acetyltransferase (SSAT) activity is typically highly inducible in non-small-cell lung carcinomas in response to treatment with anti-tumour polyamine analogues, and this induction is associated with subsequent cell death. In contrast, cells of the small-cell lung carcinoma (SCLC) phenotype generally do not respond to these compounds with an increase in SSAT activity, and usually are only moderately affected with respect to growth. The goal of the present study was to produce an SSAT-overexpressing SCLC cell line to further investigate the role of SSAT in response to these anti-tumour analogues. To accomplish this, NCI-H82 SCLC cells were stably transfected with plasmids containing either the SSAT genomic sequence or the corresponding cDNA sequence. Individual clones were selected based on their ability to show induced SSAT activity in response to exposure to a polyamine analogue, and an increase in the steady-state SSAT mRNA level. Cells transfected with the genomic sequence exhibited a significant increase in basal SSAT mRNA expression, as well as enhanced SSAT activity, intracellular polyamine pool depletion and growth inhibition following treatment with the analogue N (1), N (11)-bis(ethyl)norspermine. Cells containing the transfected cDNA also exhibited an increase in the basal SSAT mRNA level, but remained phenotypically similar to vector control cells with respect to their response to analogue exposure. These studies indicate that both the genomic SSAT sequence and polyamine analogue exposure play a role in the transcriptional and post-transcriptional regulation and subsequent induction of SSAT activity in these cells. Furthermore, this is the first production of a cell line capable of SSAT protein induction from a generally unresponsive parent line.

  18. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro.

    Science.gov (United States)

    Kneuer, C; Sameti, M; Bakowsky, U; Schiestel, T; Schirra, H; Schmidt, H; Lehr, C M

    2000-01-01

    Diverse polycationic polymers have been used as nonviral transfection agents. Here we report the ability of colloidal silica particles with covalently attached cationic surface modifications to transfect plasmid DNA in vitro and make an attempt to describe the structure of the resulting transfection complexes. In analogy to the terms lipoplex and polyplex, we propose to describe the nanoparticle-DNA complexes by the term "nanoplex". Three batches, Si10E, Si100E, and Si26H, sized between 10 and 100 nm and with zeta potentials ranging from +7 to +31 mV at pH 7.4 were evaluated. The galactosidase expression plasmid DNA pCMVbeta was immobilized on the particle surface and efficiently transfected Cos-1 cells. The transfection activity was accompanied by very low cytotoxicity, with LD(50) values in the milligrams per milliliter range. The most active batch, Si26H, was produced by modification of commercially available silica particles with N-(6-aminohexyl)-3-aminopropyltrimethoxysilane, yielding spherical nanoparticles with a mean diameter of 26 nm and a zeta potential of +31 mV at pH 7.4. Complexes of Si26H and pCMVbeta plasmid DNA formed at w/w ratios of 10 were most effective in promoting transfection of Cos-1 cells in the absence of serum. At this ratio, >90% of the DNA was associated with the particles, yielding nanoplexes with a net negative surface charge. When the transfection medium was supplemented with 10% serum, maximum gene expression was observed at a w/w ratio of 30, at which the resulting particle-DNA complexes possessed a positive surface charge. Transfection was strongly increased in the presence of 100 microM chloroquine in the incubation medium and reached approximately 30% of the efficiency of a 60 kDa polyethylenimine. In contrast to polyethylenimine, no toxicity was observed at the concentrations required. Atomic force microscopy of Si26H-DNA complexes revealed a spaghetti-meatball-like structure. The surface of complexes prepared at a w/w ratio of

  19. Stabilization of Transfected Cells Expressing Low-Incidence Blood Group Antigens: Novel Methods Facilitating Their Use as Reagent-Cells.

    Directory of Open Access Journals (Sweden)

    Cecilia González

    Full Text Available The identification of erythrocyte antibodies in the serum of patients rely on panels of human red blood cells (RBCs, which coexpress many antigens and are not easily available for low-incidence blood group phenotypes. These problems have been addressed by generating cell lines expressing unique blood group antigens, which may be used as an alternative to human RBCs. However, the use of cell lines implies several drawbacks, like the requirement of cell culture facilities and the high cost of cryopreservation. The application of cell stabilization methods could facilitate their use as reagent cells in clinical laboratories.We generated stably-transfected cells expressing low-incidence blood group antigens (Dia and Lua. High-expresser clones were used to assess the effect of TransFix® treatment and lyophilization as cell preservation methods. Cells were kept at 4°C and cell morphology, membrane permeability and antigenic properties were evaluated at several time-points after treatment.TransFix® addition to cell suspensions allows cell stabilization and proper antigen detection for at least 120 days, despite an increase in membrane permeability and a reduction in antigen expression levels. Lyophilized cells showed minor morphological changes and antigen expression levels were rather conserved at days 1, 15 and 120, indicating a high stability of the freeze-dried product. These stabilized cells have been proved to react specifically with human sera containing alloantibodies.Both stabilization methods allow long-term preservation of the transfected cells antigenic properties and may facilitate their distribution and use as reagent-cells expressing low-incidence antigens, overcoming the limited availability of such rare RBCs.

  20. Ultrasound-mediated interferon β gene transfection inhibits growth of malignant melanoma

    International Nuclear Information System (INIS)

    Yamaguchi, Kazuki; Feril, Loreto B.; Tachibana, Katsuro; Takahashi, Akira; Matsuo, Miki; Endo, Hitomi; Harada, Yoshimi; Nakayama, Juichiro

    2011-01-01

    Highlights: → Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-β genes both in vitro and in vivo. → Ultrasound-mediated IFN-β transfection inhibited proliferation of melanoma cells in vitro. → Ultrasound-mediated IFN-β transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon β (IFN-β) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-β in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-β genes mixed with microbubbles. Successful sonotransfection with IFN-β gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-β gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  1. Specific Destruction of HIV Proviral p17 Gene in T Lymphoid Cells Achieved by the Genome Editing Technology.

    Science.gov (United States)

    Kishida, Tsunao; Ejima, Akika; Mazda, Osam

    2016-01-01

    Recent development in genome editing technologies has enabled site-directed deprivation of a nucleotide sequence in the chromosome in mammalian cells. Human immunodeficiency (HIV) infection causes integration of proviral DNA into the chromosome, which potentially leads to re-emergence of the virus, but conventional treatment cannot delete the proviral DNA sequence from the cells infected with HIV. In the present study, the transcription activator-like effector nucleases (TALENs) specific for the HIV p17 gene were constructed, and their activities to destroy the target sequence were evaluated. SSA assay showed a high activity of a pair of p17-specific TALENs. A human T lymphoid cell line, Jurkat, was infected with a lentivirus vector followed by transfection with the TALEN-HIV by electroporation. The target sequence was destructed in approximately 10-95% of the p17 polymerase chain reaction clones, and the efficiencies depended on the Jurkat-HIV clones. Because p17 plays essential roles for assembly and budding of HIV, and this gene has relatively low nucleotide sequence diversity, genome editing procedures targeting p17 may provide a therapeutic benefit for HIV infection.

  2. Induction of PLSCR1 in a STING/IRF3-dependent manner upon vector transfection in ovarian epithelial cells.

    Directory of Open Access Journals (Sweden)

    Karthik M Kodigepalli

    Full Text Available Toll-like receptors (TLRs are the primary sensors of the innate immune system that recognize pathogenic nucleic acids including double-stranded plasmid DNA (dsDNA. TLR signaling activates multiple pathways including IRF3 which is involved in transcriptional induction of inflammatory cytokines (i.e. interferons (IFNs. Phospholipid scramblase 1, PLSCR1, is a highly inducible IFN-regulated gene mediating anti-viral properties of IFNs. Herein, we report a novel finding that dsDNA transfection in T80 immortalized normal ovarian surface epithelial cell line leads to a marked increase in PLSCR1 mRNA and protein. We also noted a comparable response in primary mammary epithelial cells (HMECs. Similar to IFN-2α treated cells, de novo synthesized PLSCR1 was localized predominantly to the plasma membrane. dsDNA transfection, in T80 and HMEC cells, led to activation of MAPK and IRF3. Although inhibition of MAPK (using U0126 did not modulate PLSCR1 mRNA and protein, IRF3 knockdown (using siRNA significantly ablated the PLSCR1 induction. In prior studies, the activation of IRF3 was shown to be mediated by cGAS-STING pathway. To investigate the contribution of STING to PLSCR1 induction, we utilized siRNA to reduce STING expression and observed that PLSCR1 protein was markedly reduced. In contrast to normal T80/HMECs, the phosphorylation of IRF3 as well as induction of STING and PLSCR1 were absent in ovarian cancer cells (serous, clear cell, and endometrioid suggesting that the STING/IRF3 pathway may be dysregulated in these cancer cells. However, we also noted induction of different TLR and IFN mRNAs between the T80 and HEY (serous epithelial ovarian carcinoma cell lines upon dsDNA transfection. Collectively, these results indicate that the STING/IRF3 pathway, activated following dsDNA transfection, contributes to upregulation of PLSCR1 in ovarian epithelial cells.

  3. The Synergistic Effect between Electrical and Chemical Factors in Plasma Gene/Molecule-Transfection

    Science.gov (United States)

    Jinno, Masafumi

    2016-09-01

    This study has been done to know what kind of factors in plasma and processes on cells promote plasma gene/molecule transfection. We have discovered a new plasma source using a microcapillary electrode which enables high transfection efficiency and high cell survivability simultaneously. However, the mechanism of the transfection by plasma was not clear. To clarify the transfection mechanisms by micro plasma, we focused on the effects of electrical (current, charge, field, etc.) and chemical (radicals, RONS, etc.) factors generated by the micro plasma and evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones. At first, the necessity of the electrical factors was estimated by the laser produced plasma (LPP). Mouse L-929 fibroblast cell was cultured on a 96-well plate or 12-well micro slide chamber. Plasmids pCX-EGFP in Tris-EDTA buffer was dropped on the cells and they were exposed to the capillary discharge plasma (CDP) or the LPP. In the case of the CDP, the plasma was generated between the tip of the capillary electrode and the cells so that both electrical and chemical factors were supplied to the cells. In this setup, about 20% of average transfection efficiency was obtained. In the case of the LPP, the plasma was generated apart from the cells so that electrical factors were not supplied to the cells. In this setup, no transfection was observed. These results show that the electrical factors are necessary for the plasma gene transfection. Next, the necessity of the chemical factors was estimated the effect of catalase to remove H2O2 in CDP. The transfection efficiency decreased to 0.4 by scavenging H2O2 with catalase. However, only the solution of H2O2 caused no gene transfection in cells. These results shows that H2O2 is important species to cause gene/molecule transfection but still needs a synergistic effect with electrical or other chemical factors. This work was partly supported by

  4. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  5. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture

    International Nuclear Information System (INIS)

    Martien, Ronny; Loretz, Brigitta; Sandbichler, Adolf Michael; Schnuerch, Andreas Bernkop

    2008-01-01

    The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38 mV for unmodified chitosan nanoparticles and 4.3 ± 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy

  6. Infectious alphavirus production from a simple plasmid transfection+

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2011-07-01

    Full Text Available Abstract We have developed a new method for producing infectious double subgenomic alphaviruses from plasmids transfected into mammalian cells. A double subgenomic Sindbis virus (TE3'2J was transcribed from a cytomegalovirus PolII promoter, which results in the production of infectious virus. Transfection of as little as 125 ng of plasmid is able to produce 1 × 108 plaque forming units/ml (PFU/ml of infectious virus 48 hours post-transfection. This system represents a more efficient method for producing recombinant Sindbis viruses.

  7. Lipofection: A Highly Efficient, Lipid-Mediated DNA-Transfection Procedure

    Science.gov (United States)

    Felgner, Philip L.; Gadek, Thomas R.; Holm, Marilyn; Roman, Richard; Chan, Hardy W.; Wenz, Michael; Northrop, Jeffrey P.; Ringold, Gordon M.; Danielsen, Mark

    1987-11-01

    A DNA-transfection protocol has been developed that makes use of a synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA). Small unilamellar liposomes containing DOTMA interact spontaneously with DNA to form lipid-DNA complexes with 100% entrapment of the DNA. DOTMA facilitates fusion of the complex with the plasma membrane of tissue culture cells, resulting in both uptake and expression of the DNA. The technique is simple, highly reproducible, and effective for both transient and stable expression of transfected DNA. Depending upon the cell line, lipofection is from 5- to >100-fold more effective than either the calcium phosphate or the DEAE-dextran transfection technique.

  8. Cysteine-dependent immune regulation by TRX and MIF/GIF family proteins.

    Science.gov (United States)

    Kondo, Norihiko; Ishii, Yasuyuki; Son, Aoi; Sakakura-Nishiyama, Junko; Kwon, Yong-Won; Tanito, Masaki; Nishinaka, Yumiko; Matsuo, Yoshiyuki; Nakayama, Toshinori; Taniguchi, Masaru; Yodoi, Junji

    2004-03-29

    Thioredoxin (TRX) superfamily proteins that contain a conserved redox-active site -Cys-Xa.a.-Xa.a.-Cys- includes proinflammatory cytokine, macrophage migration inhibiting factor (MIF) and the immune regulatory cytokine, glycosylation inhibiting factor (GIF) in which Cys-60 is cysteinylated. In this report, we have analyzed the functional interaction between TRX and MIF/GIF. The stable Jurkat T cell line transfected with human TRX gene (TRX-transfectant) was highly resistant to hydrogen peroxide-induced apoptosis, but not the cell line transfected with vector (mock-transfectant). The expression level of MIF/GIF protein of TRX-transfectant was lower than that of mock-transfectant. Conversely, the expression level of intracellular TRX protein in CD4(+)-T cells derived from MIF -/- mice were significantly higher than that from background BALB/c mice. These findings collectively suggest that oxidative stress-induced apoptosis on T lymphocytes might be protected by the reciprocal regulation of TRX and MIF/GIF expression.

  9. Optimizing the transient transfection process of HEK-293 suspension cells for protein production by nucleotide ratio monitoring

    DEFF Research Database (Denmark)

    de Los Milagros Bassani Molinas, Maria; Beer, Christiane; Hesse, F

    2014-01-01

    Large scale, transient gene expression (TGE) is highly dependent of the physiological status of a cell line. Therefore, intracellular nucleotide pools and ratios were used for identifying and monitoring the optimal status of a suspension cell line used for TGE. The transfection efficiency upon po...

  10. Photoenhanced gene transfection by a curcumin loaded CS-g-PZLL micelle.

    Science.gov (United States)

    Lin, Jian-Tao; Pan, Wen-Jia; Zhang, Jun-Ai; Wang, Wei; Zhong, Jia; Su, Jia-Min; Li, Tong; Zou, Ying; Wang, Guan-Hai

    2017-09-01

    The codelivery of drug and gene is a promising method for cancer treatment. In our previous works, we prepared a cationic micelles based on chitosan and poly-(N-3-carbobenzyloxylysine) (CS-g-PZLL), but transfection ratio of CS-g-PZLL to Hela cell was low. Herein, to improve the transfection efficiency of CS-g-PZLL, curcumin was loaded in the CS-g-PZLL micelle. After irradiation, the obtained curcumin loaded micelle showed a better transfection, and the p53 protein expression in Hela cells was higher. The apoptosis assay showed that the complex could induce a more significant apoptosis to Hela cells than that of curcumin or p53 used alone, and the curcumin loaded micelle inducing apoptosis was best after irradiation. Therefore, CS-g-PZLL is a safe and effective carrier for the codelivery of drug/gene, and curcumin could be used as a photosensitizer to induce a photoenhanced gene transfection, which should be encouraged in improving transfection and tumor therapy. Copyright © 2017. Published by Elsevier B.V.

  11. Efficient propagation of archetype JC polyomavirus in COS-7 cells: evaluation of rearrangements within the NCCR structural organization after transfection.

    Science.gov (United States)

    Prezioso, Carla; Scribano, Daniela; Bellizzi, Anna; Anzivino, Elena; Rodio, Donatella Maria; Trancassini, Maria; Palamara, Anna Teresa; Pietropaolo, Valeria

    2017-12-01

    John Cunningham virus (JCPyV) is an ubiquitous human pathogen that causes disease in immunocompromised patients. The JCPyV genome is composed of an early region and a late region, which are physically separated by the non-coding control region (NCCR). The DNA sequence of the NCCR distinguishes two forms of JCPyV, the designated archetype and the prototype, which resulted from a rearrangement of the archetype sequence. To date, the cell culture systems for propagating JCPyV archetype have been very limited in their availability and robustness. Prior to this study, it was demonstrated that JCPyV archetype DNA replicates in COS-7 simian kidney cells expressing SV40 TAg and COS-7 cells expressing HIV-1 Tat. Based on these observations, the present study was conducted to reproduce an in vitro model in COS-7 cells transfected with the JCPyV archetype strain in order to study JCPyV DNA replication and analyze NCCR rearrangements during the viral life cycle. The efficiency of JCPyV replication was evaluated by quantitative PCR (Q-PCR) and by hemagglutination (HA) assay after transfection. In parallel, sequence analysis of JCPyV NCCR was performed. JCPyV efficiently replicated in kidney-derived COS-7 cells, as demonstrated by a progressive increase in viral load and virion particle production after transfection. The archetypal structure of NCCR was maintained during the viral cycle, but two characteristic point mutations were detected 28 days after transfection. This model is a useful tool for analyzing NCCR rearrangements during in vitro replication in cells that are sites of viral persistence, such as tubular epithelial cells of the kidney.

  12. Incorporation of Viral Glycoprotein VSV-G Improves the Delivery of DNA by Erythrocyte Ghost into Cells Refractory to Conventional Transfection.

    Science.gov (United States)

    Liu, Xin; Li, Yun-Pan; Zhong, Zhen-Min; Tan, Hui-Qi; Lin, Hao-Peng; Chen, Shao-Jun; Fu, Yu-Cai; Xu, Wen-Can; Wei, Chi-Ju

    2017-02-01

    The objective of this study was to formulate a novel gene delivery system based on the erythrocyte ghost (EG) integrated with fusogenic viral glycoprotein vesicular stomatitis virus glycoprotein G (VSV-G). VSV-G proteins were harvested as condition medium of Ad293 cells carrying a VSV-G transgene and then incorporated into EG. Plasmid DNA was condensed by various transfection reagents. A luciferase expression construct (pGL3-control) and a DsRed expression cassette (pCMV-DsRed) were used to evaluate the delivery efficiency of DNA/EG/VSV-G complexes. VSV-G proteins could be incorporated into EG in static incubation under acidic conditions as evidenced by the Western blot analysis. Condensed plasmid DNA was bound mostly to the outer surface of EG, which could be detected by electromicroscopy and measured by electrophoresis. EG/VSV-G complexes stimulated the delivery of pGL3-control into Ad293 cells significantly with the luciferase activity increased about 4-fold as compared to that of the control. The delivery of pCMV-DsRed was also enhanced with the percentage of DsRed-positive Ad293 cells increased from 55 % to about 80 %. Moreover, the transfection efficiency in 3T3, HeLa, INS-1, and bone marrow stem cell (BMSC) cells increased about 2-3-fold. Finally, confocal microscopy analysis showed that incorporation of VSV-G significantly enhanced the endocytosis of EG into target cells. In the present study, a novel type of non-viral DNA delivery vehicle consisting of EG and fusogenic VSV-G proteins was formulated, which showed superior transfection efficiency even in cells resistant to classical transfection.

  13. Enhanced functional recombinant factor VII production by HEK 293 cells stably transfected with VKORC1 where the gamma-carboxylase inhibitor calumenin is stably suppressed by shRNA transfection.

    Science.gov (United States)

    Wajih, Nadeem; Owen, John; Wallin, Reidar

    2008-01-01

    Recombinant members of the vitamin K-dependent protein family (factors IX and VII and protein C) have become important pharmaceuticals in treatment of bleeding disorders and sepsis. However, because the in vivo gamma-carboxylation system in stable cell lines used for transfection has a limited capacity of post translational gamma-carboxylation, the recovery of fully gamma-carboxylated and functional proteins is low. In this work we have engineered recombinant factor VII producing HEK 293 cells to stably overexpress VKORC1, the reduced vitamin K gamma-carboxylase cofactor and in addition stably silenced the gamma-carboxylase inhibitory protein calumenin. Stable cell lines transfected with only a factor VII cDNA had a 9% production of functional recombinant factor VII. On the other hand, these recombinant factor VII producing cells when engineered to overexpress VKORC1 and having calumenin stably suppressed more than 80% by shRNA expression, produced 68% functional factor VII. The technology presented should be applicable to all vertebrae members of the vitamin K-dependent protein family and should lower the production cost of the clinically used factors VII, IX and protein C.

  14. X-ray sensitive strains of CHO cells show decreased frequency of stable transfection

    International Nuclear Information System (INIS)

    Jeggo, P.; Smith, J.

    1987-01-01

    Six X-ray sensitive (xrs) strains of the Chinese hamster ovary cell line have previously been isolated and shown to have a defect in double strand break rejoining. In this study, these strains have been investigated for their ability to take up and integrate foreign DNA. All the xrs strains investigated so far have shown a decreased frequency of stable transfectants compared to their parent line, in experiments using the plasmid pSV2gpt, which contains the selectable bacterial gene, guanine phosphoribosyl transferase. This decreased frequency is observed over a wide range of DNA concentrations (0.1 to 20 μg DNA) but is more pronounced at higher DNA concentrations. In contrast, these xrs strains show the same level of transfection proficiency as the wild type parent using a transient transfection system with a plasmid containing the bacterial CAT (chloramphenicol acetyl transferase) gene. Since the level of CAT activity does not depend on integration of foreign DNA, this suggests that the xrs strains are able to take up the same amount of DNA as the parent strains, but have a defect in the integration of foreign DNA. Since this integration of foreign DNA probably occurs by non-homologous recombination, this may indicate a role of the xrs gene product in this process

  15. Development of electrochemical reporter assay using HeLa cells transfected with vector plasmids encoding various responsive elements

    Energy Technology Data Exchange (ETDEWEB)

    Shiku, Hitoshi, E-mail: shiku@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-Aoba, Sendai 980-8579 (Japan); Takeda, Michiaki; Murata, Tatsuya [Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-Aoba, Sendai 980-8579 (Japan); Akiba, Uichi; Hamada, Fumio [Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata gakuen-machi, Akita 010-8502 (Japan); Matsue, Tomokazu, E-mail: matsue@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-Aoba, Sendai 980-8579 (Japan)

    2009-04-27

    Electrochemical assay using HeLa cell lines transfected with various plasmid vectors encoding SEAP (secreted alkaline phosphatase) as the reporter has been performed by using SECM (scanning electrochemical microscopy). The plasmid vector contains different responsive elements that include GRE (glucocorticoid response elements), CRE (cAMP responsive elements), or {kappa}B (binding site for NF{kappa}B (nuclear factor kappa B)) upstream of the SEAP sequence. The transfected HeLa cells were patterned on a culture dish in a 4 x 4 array of circles of diameter 300 {mu}m by using the PDMS (poly(dimethylsiloxane)) stencil technique. The cellular array was first exposed to 100 ng mL{sup -1} dexamethasone, 10 ng mL{sup -1} forskolin, or 100 ng mL{sup -1} TNF-{alpha} (tumor necrosis factor {alpha}) after which it was further cultured in an RPMI culture medium for 6 h. After incubation, the cellular array was soaked in a measuring solution containing 4.7 mM PAPP (p-aminophenylphosphate) at pH 9.5, following which electrochemical measurements were performed immediately within 40 min. The SECM method allows parallel evaluation of different cell lines transfected with pGRE-SEAP, pCRE-SEAP, and pNF{kappa}B-SEAP patterned on the same solid support for detection of the oxidation current of PAP (p-aminophenol) flux produced from only 300 HeLa cells in each stencil pattern. The results of the SECM method were highly sensitive as compared to those obtained from the conventional CL (chemiluminescence) protocol with at least 5 x 10{sup 4} cells per well.

  16. Differentiation of human induced pluripotent stem cells into insulin-like cell clusters with miR-186 and miR-375 by using chemical transfection.

    Science.gov (United States)

    Shaer, Anahita; Azarpira, Negar; Karimi, Mohammad Hosein

    2014-09-01

    Diabetes mellitus is characterized by either the inability to produce insulin or insensitivity to insulin secreted by the body. Islet cell replacement is an effective approach for diabetes treatment; however, it is not sufficient for all the diabetic patients. MicroRNAs (miRNAs) are a class of small noncoding RNAs that play an important role in mediating a broad and expanding range of biological activities, such as pancreas development. The present study aimed to develop a protocol to efficiently differentiate human induced pluripotent stem (iPS) cells into islet-like cell clusters (ILCs) in vitro by using miR-186 and miR-375. The human iPS colonies were transfected with hsa-miR-186 and hsa-miR-375 by using siPORT™ NeoFX™ Transfection Agent, and the differentiation was compared to controls. Total RNA was extracted 24 and 48 h after transfection. The gene expressions of insulin, NGN3, GLUT2, PAX4, PAX6, KIR6.2, NKX6.1, PDX1, Glucagon, and OCT4 were then evaluated through real-time qPCR. On the third day, the potency of the clusters was assessed in response to high glucose levels. Dithizone (DTZ) was used to identify the existence of the β-cells. Besides, the presence of insulin and NGN3 proteins was investigated by immunocytochemistry. Morphological changes were observed on the first day after the chemical transfection, and cell clusters were formed on the third day. The expression of pancreatic specific transcription factors was increased on the first day and significantly increased on the second day. The ILCs were positive for insulin and NGN3 proteins in the immunocytochemistry. Besides, the clusters were stained with DTZ and secreted insulin in glucose challenge test. Overexpression of miR-186 and miR-375 can be an alternative strategy for producing ILCs from the iPS cells in a short time. This work provides a new approach by using patient-specific iPSCs for β-cell replacement therapy in diabetic patients.

  17. Gene expression profiles in primary duodenal chick cells following transfection with avian influenza virus H5 DNA plasmid encapsulated in silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Jazayeri SD

    2013-02-01

    Full Text Available Seyed Davoud Jazayeri,1 Aini Ideris,1,2 Kamyar Shameli,3 Hassan Moeini,1 Abdul Rahman Omar1,21Institute of Bioscience, 2Faculty of Veterinary Medicine, 3Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaAbstract: In order to develop a systemically administered safe and effective nonviral gene delivery system against avian influenza virus (AIV that induced cytokine expression, the hemagglutinin (H5 gene of AIV, A/Ck/Malaysia/5858/04 (H5N1 and green fluorescent protein were cloned into a coexpression vector pIRES (pIREGFP-H5 and formulated using green synthesis of silver nanoparticles (AgNPs with poly(ethylene glycol and transfected into primary duodenal cells taken from 18-day-old specific-pathogen-free chick embryos. The AgNPs were prepared using moderated temperature and characterized for particle size, surface charge, ultraviolet-visible spectra, DNA loading, and stability. AgNPs and AgNP-pIREGFP-H5 were prepared in the size range of 13.9 nm and 25 nm with a positive charge of +78 ± 0.6 mV and +40 ± 6.2 mV, respectively. AgNPs with a positive surface charge could encapsulate pIREGFP-H5 efficiently. The ultraviolet-visible spectra for AgNP-pIREGFP-H5 treated with DNase I showed that the AgNPs were able to encapsulate pIREGFP-H5 efficiently. Polymerase chain reaction showed that AgNP-pIREGFP-H5 entered into primary duodenal cells rapidly, as early as one hour after transfection. Green fluorescent protein expression was observed after 36 hours, peaked at 48 hours, and remained stable for up to 60 hours. In addition, green fluorescent protein expression generally increased with increasing DNA concentration and time. Cells were transfected using Lipocurax in vitro transfection reagent as a positive control. A multiplex quantitative mRNA gene expression assay in the transfected primary duodenal cells via the transfection reagent and AgNPs with pIREGFP-H5 revealed expression of interleukin (IL-18, IL-15, and IL-12

  18. Towards gene therapy based on femtosecond optical transfection

    Science.gov (United States)

    Antkowiak, M.; Torres-Mapa, M. L.; McGinty, J.; Chahine, M.; Bugeon, L.; Rose, A.; Finn, A.; Moleirinho, S.; Okuse, K.; Dallman, M.; French, P.; Harding, S. E.; Reynolds, P.; Gunn-Moore, F.; Dholakia, K.

    2012-06-01

    Gene therapy poses a great promise in treatment and prevention of a variety of diseases. However, crucial to studying and the development of this therapeutic approach is a reliable and efficient technique of gene and drug delivery into primary cell types. These cells, freshly derived from an organ or tissue, mimic more closely the in vivo state and present more physiologically relevant information compared to cultured cell lines. However, primary cells are known to be difficult to transfect and are typically transfected using viral methods, which are not only questionable in the context of an in vivo application but rely on time consuming vector construction and may also result in cell de-differentiation and loss of functionality. At the same time, well established non-viral methods do not guarantee satisfactory efficiency and viability. Recently, optical laser mediated poration of cell membrane has received interest as a viable gene and drug delivery technique. It has been shown to deliver a variety of biomolecules and genes into cultured mammalian cells; however, its applicability to primary cells remains to be proven. We demonstrate how optical transfection can be an enabling technique in research areas, such as neuropathic pain, neurodegenerative diseases, heart failure and immune or inflammatory-related diseases. Several primary cell types are used in this study, namely cardiomyocytes, dendritic cells, and neurons. We present our recent progress in optimizing this technique's efficiency and post-treatment cell viability for these types of cells and discuss future directions towards in vivo applications.

  19. Use of short interfering RNA delivered by cationic liposomes to enable efficient down-regulation of PTPN22 gene in human T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Valentina Perri

    Full Text Available Type 1 diabetes and thyroid disease are T cell-dependent autoimmune endocrinopathies. The standard substitutive administration of the deficient hormones does not halt the autoimmune process; therefore, development of immunotherapies aiming to preserve the residual hormonal cells, is of crucial importance. PTPN22 C1858T mutation encoding for the R620W lymphoid tyrosine phosphatase variant, plays a potential pathophysiological role in autoimmunity. The PTPN22 encoded protein Lyp is a negative regulator of T cell antigen receptor signaling; R620W variant, leading to a gain of function with paradoxical reduced T cell activation, may represent a valid therapeutic target. We aimed to develop novel wild type PTPN22 short interfering RNA duplexes (siRNA and optimize their delivery into Jurkat T cells and PBMC by using liposomal carriers. Conformational stability, size and polydispersion of siRNA in lipoplexes was measured by CD spectroscopy and DLS. Lipoplexes internalization and toxicity evaluation was assessed by confocal microscopy and flow cytometry analysis. Their effect on Lyp expression was evaluated by means of Western Blot and confocal microscopy. Functional assays through engagement of TCR signaling were established to evaluate biological consequences of down-modulation. Both Jurkat T cells and PBMC were efficiently transfected by stable custom lipoplexes. Jurkat T cell morphology and proliferation was not affected. Lipoplexes incorporation was visualized in CD3+ but also in CD3- peripheral blood immunotypes without signs of toxicity, damage or apoptosis. Efficacy in affecting Lyp protein expression was demonstrated in both transfected Jurkat T cells and PBMC. Moreover, impairment of Lyp inhibitory activity was revealed by increase of IL-2 secretion in culture supernatants of PBMC following anti-CD3/CD28 T cell receptor-driven stimulation. The results of our study open the pathway to future trials for the treatment of autoimmune diseases based

  20. Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down.

    Directory of Open Access Journals (Sweden)

    Dag Heinemann

    Full Text Available Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.

  1. Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down.

    Science.gov (United States)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Murua Escobar, Hugo; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.

  2. Gold Nanoparticle Mediated Laser Transfection for Efficient siRNA Mediated Gene Knock Down

    Science.gov (United States)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Escobar, Hugo Murua; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types. PMID:23536802

  3. Alterations of DNA content in human endometrial stromal cells transfected with a temperature-sensitive SV40: tetraploidization and physiological consequences.

    Science.gov (United States)

    Rinehart, C A; Mayben, J P; Butler, T D; Haskill, J S; Kaufman, D G

    1992-01-01

    The normal genomic stability of human cells is reversed during neoplastic transformation. The SV40 large T antigen alters the DNA content in human endometrial stromal cells in a manner that relates to neoplastic progression. Human endometrial stromal cells were transfected with a plasmid containing the A209 temperature-sensitive mutant of SV40 (tsSV40), which is also defective in the viral origin of replication. Ninety-seven clonal transfectants from seven different primary cell strains were isolated. Initial analysis revealed that 20% of the clonal populations (19/97) had an apparent diploid DNA content, 35% (34/97) had an apparent tetraploid DNA content, and the remainder were mixed populations of diploid and tetraploid cells. No aneuploid populations were observed. Diploid tsSV40 transformed cells always give rise to a population of cells with a tetraploid DNA content when continuously cultured at the permissive temperature. The doubling of DNA content can be vastly accelerated by the sudden reintroduction of large T antigen activity following a shift from non-permissive to permissive temperature. Tetraploid tsSV40 transfected cells have a lower capacity for anchorage-independent growth and earlier entry into 'crisis' than diploid cells. These results indicate that during the pre-crisis, extended lifespan phase of growth, the SV40 large T antigen causes a doubling of DNA content. This apparent doubling of DNA content does not confer growth advantage during the extended lifespan that precedes 'crisis'.

  4. Evaluation of the magnetic field requirements for nanomagnetic gene transfection

    Science.gov (United States)

    Fouriki, A.; Farrow, N.; Clements, M.A.; Dobson, J.

    2010-01-01

    The objective of this work was to examine the effects of magnet distance (and by proxy, field strength) on nanomagnetic transfection efficiency. Methods non-viral magnetic nanoparticle-based transfection was evaluated using both static and oscillating magnet arrays. Results Fluorescence intensity (firefly luciferase) of transfected H292 cells showed no increase using a 96-well NdFeB magnet array when the magnets were 5 mm from the cell culture plate or nearer. At 6 mm and higher, fluorescence intensity decreased systematically. Conclusion In all cases, fluorescence intensity was higher when using an oscillating array compared to a static array. For distances closer than 5 mm, the oscillating system also outperformed Lipofectamine 2000™. PMID:22110859

  5. Evaluation of the magnetic field requirements for nanomagnetic gene transfection

    Directory of Open Access Journals (Sweden)

    A. Fouriki

    2010-07-01

    Full Text Available The objective of this work was to examine the effects of magnet distance (and by proxy, field strength on nanomagnetic transfection efficiency. Methods: non-viral magnetic nanoparticle-based transfection was evaluated using both static and oscillating magnet arrays. Results: Fluorescence intensity (firefly luciferase of transfected H292 cells showed no increase using a 96-well NdFeB magnet array when the magnets were 5 mm from the cell culture plate or nearer. At 6 mm and higher, fluorescence intensity decreased systematically. Conclusion: In all cases, fluorescence intensity was higher when using an oscillating array compared to a static array. For distances closer than 5 mm, the oscillating system also outperformed Lipofectamine 2000™.

  6. Imbalance of morphofunctional responses of Jurkat T lymphoblasts at short-term culturing with relief zinc- or copper-containing calcium phosphate coating on titanium.

    Science.gov (United States)

    Litvinova, L S; Shupletsova, V V; Dunets, N A; Khaziakhmatova, O G; Yurova, K A; Khlusova, M Yu; Slepchenko, G B; Cherempey, E G; Sharkeev, Yu P; Komarova, E G; Sedelnikova, M B; Khlusov, I A

    2017-01-01

    Morphofunctional response of Jurkat T cells that were cultured for 24 h on substrates prepared from commercially pure titanium with relief microarc bilateral calcium phosphate coating containing copper or zinc was studied. Changes in the concentration of essential trace elements contained in this coating can cause significant imbalance of molecular processes of differentiation, secretion, apoptosis, and necrosis and reduce tumor cell survival.

  7. Role of cholesterol on the transfection barriers of cationic lipid/DNA complexes

    Science.gov (United States)

    Pozzi, Daniela; Cardarelli, Francesco; Salomone, Fabrizio; Marchini, Cristina; Amenitsch, Heinz; Barbera, Giorgia La; Caracciolo, Giulio

    2014-08-01

    Most lipid formulations need cholesterol for efficient transfection, but the precise motivation remains unclear. Here, we have investigated the effect of cholesterol on the transfection efficiency (TE) of cationic liposomes made of 1,2-dioleoyl-3-trimethylammonium-propane and dioleoylphosphocholine in Chinese hamster ovary cells. The transfection mechanisms of cholesterol-containing lipoplexes have been investigated by TE, synchrotron small angle X-ray scattering, and laser scanning confocal microscopy experiments. We prove that cholesterol-containing lipoplexes enter the cells using different endocytosis pathways. Formulations with high cholesterol content efficiently escape from endosomes and exhibit a lamellar-nonlamellar phase transition in mixture with biomembrane mimicking lipid formulations. This might explain both the DNA release ability and the high transfection efficiency. These studies highlight the enrichment in cholesterol as a decisive factor for transfection and will contribute to the rational design of lipid nanocarriers with superior TE.

  8. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles

    Science.gov (United States)

    Fan, Z.; Chen, D.; Deng, C.X.

    2013-01-01

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. We conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmid coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9% ± 2.2% (n = 9), comparable with lipofection (7.5% ± 0.8%, n = 9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. PMID:23770009

  9. Effects of molecular size and chemical factor on plasma gene transfection

    Science.gov (United States)

    Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Jinno, Masafumi

    2016-07-01

    In order to clarify the mechanism of plasma gene transfection, the relationship between transfection efficiency and transferred molecular size was investigated. Molecules with low molecular mass (less than 50 kDa; dye or dye-labeled oligonucleotide) and high molecular mass (more than 1 MDa; plasmid DNA or fragment of plasmid DNA) were transferred to L-929 cells. It was found that the transfection efficiency decreases with increasing in transferred molecular size and also depends on the tertiary structure of transferred molecules. Moreover, it was suggested the transfection mechanism is different between the molecules with low (less than 50 kDa) and high molecular mass (higher than 1 MDa). For the amount of gene transfection after plasma irradiation, which is comparable to that during plasma irradiation, it is shown that H2O2 molecules are the main contributor. The transfection efficiency decreased to 0.40 ± 0.22 upon scavenging the H2O2 generated by plasma irradiation using the catalase. On the other hand, when the H2O2 solution is dropped into the cell suspension without plasma irradiation, the transfection efficiency is almost 0%. In these results, it is also suggested that there is a synergetic effect of H2O2 with electrical factors or other reactive species generated by plasma irradiation.

  10. DNA transfection of bone marrow mesenchymal stem cells using micro electroporation chips

    KAUST Repository

    Deng, Peigang; Chang, Donald C.; Lee, Yi Kuen; Zhou, Junwei; Li, Gang

    2011-01-01

    Experimental study of electroporation of bone marrow mesenchymal stem cells (MSCs) at the single-cell level was carried out on a micro EP chip by using single electric rectangular pulse. The threshold values of the electrode potential and pulse width for gas bubble generation on the micro electrodes due to electrolysis of water were revealed as 4.5 volt and 100 μs, respectively. Quantitative EP study was performed with various electric field strengths for various pulse widths, ranging from 20μs to 15ms. Over 1,000 single-cell EP results were used to construct an EP "phase diagram", which delineates the boundaries for (1) effective EP of MSCs and (2) electric cell lysis of MSCs. Finally, the micro EP chip showed successful transfection of the pEGFP-C1 plasmid into the MSCs by properly choosing the electric parameters from the EP "phase diagram". © 2011 IEEE.

  11. DNA transfection of bone marrow mesenchymal stem cells using micro electroporation chips

    KAUST Repository

    Deng, Peigang

    2011-02-01

    Experimental study of electroporation of bone marrow mesenchymal stem cells (MSCs) at the single-cell level was carried out on a micro EP chip by using single electric rectangular pulse. The threshold values of the electrode potential and pulse width for gas bubble generation on the micro electrodes due to electrolysis of water were revealed as 4.5 volt and 100 μs, respectively. Quantitative EP study was performed with various electric field strengths for various pulse widths, ranging from 20μs to 15ms. Over 1,000 single-cell EP results were used to construct an EP "phase diagram", which delineates the boundaries for (1) effective EP of MSCs and (2) electric cell lysis of MSCs. Finally, the micro EP chip showed successful transfection of the pEGFP-C1 plasmid into the MSCs by properly choosing the electric parameters from the EP "phase diagram". © 2011 IEEE.

  12. Ultraviolet light-resistant primary transfectants of xeroderma pigmentosum cells are also DNA repair-proficient

    International Nuclear Information System (INIS)

    Stark, M.; Naiman, T.; Canaani, D.

    1989-01-01

    In a previous work, an immortal xeroderma pigmentosum cell line belonging to complementation group C was complemented to a UV-resistant phenotype by transfection with a human cDNA clone library. We now report that the primary transformants selected for UV-resistance also acquired normal levels of DNA repair. This was assessed both by measurement of UV-induced [ 3 H]thymidine incorporation and by equilibrium sedimentation analysis of repair-DNA synthesis. Therefore, the transduced DNA element which confers normal UV-resistance also corrects the excision repair defect of the xeroderma pigmentosum group C cell line

  13. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite

    KAUST Repository

    Zhang, G.

    2015-06-25

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in ‘double transfections’, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments.

  14. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite

    KAUST Repository

    Zhang, G.; He, L.-S.; Wong, Y. H.; Yu, L.; Qian, P.-Y.

    2015-01-01

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in ‘double transfections’, in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments.

  15. Plasmid DNA transfection using magnetite cationic liposomes for construction of multilayered gene-engineered cell sheet.

    Science.gov (United States)

    Ino, Kosuke; Kawasumi, Tamayo; Ito, Akira; Honda, Hiroyuki

    2008-05-01

    Modification of cellular functions by overexpression of genes is being increasingly practiced for tissue engineering. In the present study, we investigated whether transfection efficiency could be enhanced by magnetofection that involves the use of plasmid DNA (pDNA)/magnetite cationic liposomes (MCLs) complexes (pDNA/MCL) and magnetic force. The transfection efficiencies of the magnetofection technique by pDNA/MCL in fibroblasts and keratinocytes using reporter genes were 36- and 10-fold higher, respectively, than those of a lipofection technique by cationic liposomes. Moreover, in vitro construction of three-dimensional (3D) tissues is an important challenge. We recently proposed a novel technique termed "magnetic force-based tissue engineering" (Mag-TE) to produce 3D tissues. Since the fibroblasts after magnetofection incorporated both magnetite nanoparticles and pDNA, we investigated whether multilayered heterotypic cell sheets expressing transgene could be fabricated by Mag-TE. First, the fibroblasts were seeded onto an ultra-low attachment culture plate. When a magnet was placed under the plate, the cells accumulated at the bottom of the culture plate. After 24 h of culture, the transgene-expressing cells formed a multilayered cell sheet-like structure. These results indicated that MCLs are a potent biomanipulation tool for both gene transfer and 3D tissue construction, suggesting that these techniques are useful for tissue engineering. Copyright 2007 Wiley Periodicals, Inc.

  16. Structure-activity correlation in transfection promoted by pyridinium cationic lipids.

    Science.gov (United States)

    Parvizi-Bahktar, P; Mendez-Campos, J; Raju, L; Khalique, N A; Jubeli, E; Larsen, H; Nicholson, D; Pungente, M D; Fyles, T M

    2016-03-21

    The efficiency of the transfection of a plasmid DNA encoding a galactosidase promoted by a series of pyridinium lipids in mixtures with other cationic lipids and neutral lipids was assessed in CHO-K1 cells. We identify key molecular parameters of the lipids in the mixture - clog P, lipid length, partial molar volume - to predict the morphology of the lipid-DNA lipoplex and then correlate these same parameters with transfection efficiency in an in vitro assay. We define a Transfection Index that provides a linear correlation with normalized transfection efficiency over a series of 90 different lipoplex compositions. We also explore the influence of the same set of molecular parameters on the cytotoxicity of the formulations.

  17. Transplantation of motoneurons derived from MASH1-transfected mouse ES cells reconstitutes neural networks and improves motor function in hemiplegic mice.

    Science.gov (United States)

    Ikeda, Ritsuko; Kurokawa, Manae S; Chiba, Shunmei; Yoshikawa, Hideshi; Hashimoto, Takuo; Tadokoro, Mamoru; Suzuki, Noboru

    2004-10-01

    Mouse embryonic stem (ES) cells were transfected with a MASH1 expression vector and G418-resistant cells were selected. The MASH1-transfected cells became neuron-like appearance and expressed betaIIItubulin and panNCAM. Glial fibrillary acidic protein (GFAP) and galactocerebroside (GalC)-expressing cells were rarely detected. Half of the neural cells differentiated into the Islet1+ motoneuron lineage. Thus, we obtained motoneuron lineage-enriched neuronal cells by transfection of ES cells with MASH1. A hemiplegic model of mice was developed by cryogenic injury of the motor cortex, and motoneuron lineage-enriched neuronal cells were transplanted underneath the injured motor cortex neighboring the periventricular region. The motor function of the recipients was assessed by a beam walking and rotarod tests, whereby the results gradually improved, but little improvement was observed in vehicle injected control mice. We found that the grafted cells not only remained close to the implantation site, but also exhibited substantial migration, penetrating into the damaged lesion in a directed manner up to the cortical region. Grafted neuronal cells that had migrated into the cortex were elongated axon-positive for neurofilament middle chain (NFM). Synaptophysin immunostaining showed a positive staining pattern around the graft, suggesting that the transplanted neurons interacted with the recipient neurons to form a neural network. Our study suggests that the motoneuron lineage can be induced from ES cells, and grafted cells adapt to the host environment and can reconstitute a neural network to improve motor function of a paralyzed limb.

  18. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    Science.gov (United States)

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  19. Transcriptional activation of immediate-early gene ETR101 by human T-cell leukaemia virus type I Tax

    DEFF Research Database (Denmark)

    Chen, Li; Ma, Shiliang; Li, Bo

    2003-01-01

    Human T-cell leukaemia virus type I (HTLV-I) Tax regulates viral and cellular gene expression through interactions with multiple cellular transcription pathways. This study describes the finding of immediate-early gene ETR101 expression in HTLV-I-infected cells and its regulation by Tax. ETR101...... was persistently expressed in HTLV-I-infected cells but not in HTLV-I uninfected cells. Expression of ETR101 was dependent upon Tax expression in the inducible Tax-expressing cell line JPX-9 and also in Jurkat cells transiently transfected with Tax-expressing vectors. Tax transactivated the ETR101 gene promoter......-DNA complex in HTLV-I-infected cell lines. EMSA with specific antibodies confirmed that the CREB transcription factor was responsible for formation of this specific protein-DNA complex. These results suggested that Tax directly transactivated ETR101 gene expression, mainly through a CRE sequence via the CREB...

  20. Live Cell Imaging and 3D Analysis of Angiotensin Receptor Type 1a Trafficking in Transfected Human Embryonic Kidney Cells Using Confocal Microscopy.

    Science.gov (United States)

    Kadam, Parnika; McAllister, Ryan; Urbach, Jeffrey S; Sandberg, Kathryn; Mueller, Susette C

    2017-03-27

    Live-cell imaging is used to simultaneously capture time-lapse images of angiotensin type 1a receptors (AT1aR) and intracellular compartments in transfected human embryonic kidney-293 (HEK) cells following stimulation with angiotensin II (Ang II). HEK cells are transiently transfected with plasmid DNA containing AT1aR tagged with enhanced green fluorescent protein (EGFP). Lysosomes are identified with a red fluorescent dye. Live-cell images are captured on a laser scanning confocal microscope after Ang II stimulation and analyzed by software in three dimensions (3D, voxels) over time. Live-cell imaging enables investigations into receptor trafficking and avoids confounds associated with fixation, and in particular, the loss or artefactual displacement of EGFP-tagged membrane receptors. Thus, as individual cells are tracked through time, the subcellular localization of receptors can be imaged and measured. Images must be acquired sufficiently rapidly to capture rapid vesicle movement. Yet, at faster imaging speeds, the number of photons collected is reduced. Compromises must also be made in the selection of imaging parameters like voxel size in order to gain imaging speed. Significant applications of live-cell imaging are to study protein trafficking, migration, proliferation, cell cycle, apoptosis, autophagy and protein-protein interaction and dynamics, to name but a few.

  1. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles.

    Science.gov (United States)

    Fan, Z; Chen, D; Deng, C X

    2013-09-28

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. In this study, we conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome, and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmids coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9%±2.2% (n=9), comparable with lipofection (7.5%±0.8%, n=9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Effects of ionizing radiation on expression of P21 protein in Jurkat cell line and p21 gene in thymocytes and splenocytes of mice

    International Nuclear Information System (INIS)

    Ni Guanying; Wu Ning; Guo Haizhuo; Jin Shunzi

    2011-01-01

    Objective: To investigate the effects of ionizing radiation on the expression of P21 protein in Jurkat cell line and p21 gene in thymocytes and splenocytes of mice. Methods: Flow cytometry (FCM) was used to analyze the expression of P21 protein in Jurkat cells at 12 and 24 h after irradiation to 0, 0.5, 1.0, 2.0, 4.0, and 6.0 Gy. Real-time PCR was used to detect the expression of p21 gene in thymocytes and splenocytes of mice at 4 and 24 h after irradiation to 0, 0.5, 1.0, 2.0, 4.0, and 6.0 Gy. Multi-staining was used to analyze the micronucleus rates of Rct in bone marrow. Results: The expressions of P21 protein were increased in a dose-dependent manner during 0.5-4.0 Gy (t=-24.23 - -3.96, P<0.05), but decreased at 6.0 Gy at 12 and 24 h post-irradiation (t=-11.19, -14.50, P<0.05). The expressions of p21 gene in both thymocytes and splenocytes of mice were increased in dose-dependent manner in the range of 0-6.0 Gy (including 6.0 Gy) (t=-29.96-8.80, P<0.05), and reached to the peak at 6.0 Gy at 4 and 24 h post-irradiation (t=-11.84 - -3.42, P<0.05), except thymocytes at 4 h and 1.0 Gy post-irradiation (t=-3.42, P>0.05). Conclusions: The expressions of P21 protein and p21 gene could be increased by X-ray irradiation, which shows good dose-dependent manners in certain range of dose. (authors)

  3. Electroporation of mRNA as Universal Technology Platform to Transfect a Variety of Primary Cells with Antigens and Functional Proteins.

    Science.gov (United States)

    Gerer, Kerstin F; Hoyer, Stefanie; Dörrie, Jan; Schaft, Niels

    2017-01-01

    Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than a decade to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs), and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers, and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs for therapeutic vaccination in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types, (2) scalability from 10 6 to approximately 10 8 cells per shot, (3) high transfection efficiency (80-99 %), (4) homogenous protein expression, (5) GMP compliance if the EP is performed in a class A clean room, and (6) no transgene integration into the genome. The provided protocol involves: Opti-MEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time is altered. Next to the basic protocol, we also provide an extensive list of hints and tricks, which in our opinion are of great value for everyone who intends to use this transfection technique.

  4. Inhibitory effects of recombinant plasmid pshuttle-Egr1-shTRAIL transfection in combination with X-irradiation on growth of liver cancer cells SMMC7721

    International Nuclear Information System (INIS)

    Chen Zhiyong; Liu Min; Dong Lihua; Gong Shouliang

    2011-01-01

    Objective: To investigate the effect of recombinant plasmid pshuttle-Egr1-shTRAIL stable transfection in combination with X-ray irradiation on the TRAIL protein expression and the apoptosis in human SMMC7721 hepatoma cells. Methods: The pshuttle-Egr1-shTRAIL packaged with liposome was stably transfected into SMMC7721 cells in vitro. The shTRAIL protein expression were measured with ELISA assay, Annexin V-FITC kit was adopted to measure the apoptosis of pshuttle-Egr1-shTRAIL cells, and the changes in survival rate of SMMC7721 cells measured with cell cloning assay. Results: The TRAIL protein expressions in pshuttle-Egr1-shTRAIL plus different doses of irradiation groups were significantly increased compared with 0 Gy group (P<0.001). The percentage of apoptotic cells was significantly higher than that in 0 Gy group (P<0.05 or P<0.001), and the survival rate of SMMC7721 cells was decreased significantly (P<0.05 or P<0.001). Conclusion: The pshuttle-Egr1-shTRAIL stable transfection in combination with irradiation can significantly induce the apoptosis of SMMC7721 tumor cells and inhibit the cell proliferation. (authors)

  5. UV-induced transcription from the human immunodeficiency virus type 1 (HIV-1) long terminal repeat and UV-induced secretion of an extracellular factor that induces HIV-1 transcription in nonirradiated cells

    International Nuclear Information System (INIS)

    Stein, B.; Kraemer, M.R.; Rahmsdorf, H.J.; Ponta, H.; Herrlich, P.

    1989-01-01

    UV irradiation, but not visible sunlight, induces the transcription of human immunodeficiency virus type 1 (HIV-1). Chimeric constructs carrying all or parts of the HIV-1 long terminal repeat linked to an indicator gene were transfected into HeLa cells or murine and human T-cell lines, and their response to irradiation was tested. The cis-acting element conferring UV responsiveness is identical to the sequence binding transcription factor NF kappa B. UV irradiation enhances NF kappa B binding activity as assayed by gel retardation experiments. Interestingly, the requirement for UV irradiation can be replaced by cocultivation of transfected cells with UV-irradiated nontransfected (HIV-1-negative) cells. A UV-induced extracellular protein factor is detected in the culture medium conditioned by UV-treated cells. The factor is produced upon UV irradiation by several murine and human cell lines, including HeLa, Molt-4, and Jurkat, and acts on several cells. These data suggest that the UV response of keratinocytes in human skin can be magnified and spread to deeper layers that are more shielded, including the Langerhans cells, and that this indirect UV response may contribute to the activation of HIV-1 in humans

  6. Mechanism of gene transfection by polyamidoamine (PAMAM) dendrimers modified with ornithine residues.

    Science.gov (United States)

    Kumar, Ajay; Yellepeddi, Venkata K; Vangara, Kiran K; Strychar, Kevin B; Palakurthi, Srinath

    2011-11-01

    The aim of this study was to prepare and investigate the mechanism of uptake of the dendriplexes prepared with ornithine-conjugated polyamidoamine (PAMAM) G4 dendrimers. Ornithine-conjugated PAMAMG4 dendrimers were prepared by Fmoc synthesis. A comparative transfection study in NCI H157G cells and polyamine transport-deficient cell line NCI H157R was performed to confirm the role of the polyamine transporter system (PAT) in the dendriplex uptake. Transfection efficiency significantly increased with increase in generation number and extent of ornithine conjugation. Transfection efficiency of the PAMAMG4-ORN60 dendrimers significantly decreased in presence of excess of ornithine (P dendrimers. Transfection efficiency of PAMAMG4-ORN60 was significantly low in NCI H157R (31.66 ± 3.95%, RFU: 17.87 ± 1.34) as compared to NCI H157G cell line (63.07 ± 6.8%, relative fluorescence units (RFU): 23.28 ± 0.66). Results indicate the role of PAT in addition to charge-mediated endocytosis in the internalization of ornithine-conjugated PAMAMG4 dendrimers. Cytotoxicity analysis (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay) in human embryonic kidney cell line (HEK) 293T cells showed that the dendriplexes were non-toxic at N/P 10.

  7. Transfection of primary brain capillary endothelial cells for protein synthesis and secretion of recombinant erythropoietin: a strategy to enable protein delivery to the brain.

    Science.gov (United States)

    Burkhart, Annette; Andresen, Thomas Lars; Aigner, Achim; Thomsen, Louiza Bohn; Moos, Torben

    2017-07-01

    Treatment of chronic disorders affecting the central nervous system (CNS) is complicated by the inability of drugs to cross the blood-brain barrier (BBB). Non-viral gene therapy applied to brain capillary endothelial cells (BCECs) denotes a novel approach to overcome the restraints in this passage, as turning BCECs into recombinant protein factories by transfection could result in protein secretion further into the brain. The present study aims to investigate the possibility of transfecting primary rat brain endothelial cells (RBECs) for recombinant protein synthesis and secretion of the neuroprotective protein erythropoietin (EPO). We previously showed that 4% of RBECs with BBB properties can be transfected without disrupting the BBB integrity in vitro, but it can be questioned whether this is sufficient to enable protein secretion at therapeutic levels. The present study examined various transfection vectors, with regard to increasing the transfection efficiency without disrupting the BBB integrity. Lipofectamine 3000™ was the most potent vector compared to polyethylenimine (PEI) and Turbofect. When co-cultured with astrocytes, the genetically modified RBECs secreted recombinant EPO into the cell culture medium both luminally and abluminally, and despite lower levels of EPO reaching the abluminal chamber, the amount of recombinant EPO was sufficient to evolve a biological effect on astrocytes cultured at the abluminal side in terms of upregulated gene expression of brain-derived neurotropic factor (BDNF). In conclusion, non-viral gene therapy to RBECs leads to protein secretion and signifies a method for therapeutic proteins to target cells inside the CNS otherwise omitted due to the BBB.

  8. Evaluation of FTA(®) card for the rescue of infectious foot-and-mouth disease virus by chemical transfection of extracted RNA in cultured cells.

    Science.gov (United States)

    Biswal, Jitendra K; Subramaniam, Saravanan; Ranjan, Rajeev; Pattnaik, Bramhadev

    2016-08-01

    Foot-and-mouth disease (FMD) is a highly contagious epidemic disease of transboundary importance. Inadequate storage and shipment of suspected clinical samples can compromise the ability to detect and characterise FMD virus (FMDV) in endemic countries, thereby, leading to the loss of valuable virological and epidemiological data. This study, investigates the potential of using FTA(®) cards for dry transportation of clinical samples and subsequent recovery of infectious FMDV by chemical transfection of FTA(®) card fixed RNA as an alternative to the conventional cell culture based virus isolation method. A higher proportion of infectious FMDV was rescued from clinical samples (cell culture isolates, tongue epithelial suspension and impression smears) by the FTA(®) card fixed RNA transfection method (76%) compared to the conventional cell culture based virus isolation (56%), suggesting a better performance of the current RNA transfection procedure. Furthermore, it was possible to rescue live virus by the transfection of RNA extracted from FTA(®) card impregnated with clinical samples that had been stored at varying temperature (4-37 °C) up to a period of six weeks. The VP1 sequence data and antigenic relationships with the vaccine strains, between viruses rescued by FTA(®) card fixed RNA transfection and conventional cell culture, were comparable. Therefore, these results support the use of the FTA(®) card for the economic, dry, non-hazardous transport of FMD suspected clinical samples from the site of collection to national/international reference laboratories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Depletion of 4-hydroxynonenal in hGSTA4-transfected HLE B-3 cells results in profound changes in gene expression

    International Nuclear Information System (INIS)

    Patrick, Brad; Li Jie; Jeyabal, Prince V.S.; Reddy, Prasada M.R.V.; Yang Yusong; Sharma, Rajendra; Sinha, Mala; Luxon, Bruce; Zimniak, Piotr; Awasthi, Sanjay; Awasthi, Yogesh C.

    2005-01-01

    Previously, we have shown that overexpression of 4-hydroxy-2-nonenal (HNE)-detoxifying enzyme glutathione S-transferase A4-4 (hGSTA4-4) in human lens epithelial cells (HLE B-3) leads to pro-carcinogenic phenotypic transformation of these cells [R. Sharma, et al. Eur. J. Biochem. 271 (2004) 1960-1701]. We now demonstrate that hGSTA4-transfection also causes a profound change in the expression of genes involved in cell adhesion, cell cycle control, proliferation, cell growth, and apoptosis, which is consistent with phenotypic changes of the transformed cells. The expression of p53, p21, p16, fibronectin 1, laminin γ1, connexin 43, Fas, integrin α6, TGFα, and c-jun was down-regulated, while the expression of protein kinase C beta II (PKCβII), c-myc, cyclin-dependent kinase 2 (CDK2), and TGFβ was up-regulated in transfected cells. These results demonstrate that HNE serves as a crucial signaling molecule and, by modulating the expression of genes, can influence cellular functions

  10. Loss of retrovirus production in JB/RH melanoma cells transfected with H-2Kb and TAP-1 genes.

    Science.gov (United States)

    Li, M; Xu, F; Muller, J; Huang, X; Hearing, V J; Gorelik, E

    1999-01-20

    JB/RH1 melanoma cells, as well as other melanomas of C57BL/6 mice (B16 and JB/MS), express a common melanoma-associated antigen (MAA) encoded by an ecotropic melanoma-associated retrovirus (MelARV). JB/RH1 cells do not express the H-2Kb molecules due to down-regulation of the H-2Kb and TAP-1 genes. When JB/RH1 cells were transfected with the H-2Kb and cotransfected with the TAP-1 gene, it resulted in the appearance of H-2Kb molecules and an increase in their immunogenicity, albeit they lost expression of retrovirus-encoded MAA recognized by MM2-9B6 mAb. Loss of MAA was found to result from a complete and stable elimination of ecotropic MelARV production in the H-2Kb/TAP-1-transfected JB/RH1 cells. Northern blot analysis showed no differences in ecotropic retroviral messages in MelARV-producing and -nonproducing melanoma cells, suggesting that loss of MelARV production was not due to down-regulation of MelARV transcription. Southern blot analysis revealed several rearrangements in the proviral DNA of H-2Kb-positive JB/RH1 melanoma cells. Sequence analysis of the ecotropic proviral DNA from these cells showed numerous nucleotide substitutions, some of which resulted in the appearance of a novel intraviral PstI restriction site and the loss of a HindIII restriction site in the pol region. PCR amplification of the proviral DNAs indicates that an ecotropic provirus found in the H-2Kb-positive cells is novel and does not preexist in the parental H-2Kb-negative melanoma cells. Conversely, the ecotropic provirus of the parental JB/RH1 cells was not amplifable from the H-2Kb-positive cells. Our data indicate that stable loss of retroviral production in the H-2Kb/TAP-1-transfected melanoma cells is probably due to the induction of recombination between a productive ecotropic MelARV and a defective nonecotropic provirus leading to the generation of a defective ecotropic provirus and the loss of MelARV production and expression of the retrovirus-encoded MAA. Copyright 1999

  11. Identification of valid reference genes for the normalization of RT-qPCR expression studies in human breast cancer cell lines treated with and without transient transfection.

    Directory of Open Access Journals (Sweden)

    Lin-Lin Liu

    Full Text Available Reverse transcription-quantitative polymerase chain reaction (RT-qPCR is a powerful technique for examining gene expression changes during tumorigenesis. Target gene expression is generally normalized by a stably expressed endogenous reference gene; however, reference gene expression may differ among tissues under various circumstances. Because no valid reference genes have been documented for human breast cancer cell lines containing different cancer subtypes treated with transient transfection, we identified appropriate and reliable reference genes from thirteen candidates in a panel of 10 normal and cancerous human breast cell lines under experimental conditions with/without transfection treatments with two transfection reagents. Reference gene expression stability was calculated using four algorithms (geNorm, NormFinder, BestKeeper and comparative delta Ct, and the recommended comprehensive ranking was provided using geometric means of the ranking values using the RefFinder tool. GeNorm analysis revealed that two reference genes should be sufficient for all cases in this study. A stability analysis suggests that 18S rRNA-ACTB is the best reference gene combination across all cell lines; ACTB-GAPDH is best for basal breast cancer cell lines; and HSPCB-ACTB is best for ER+ breast cancer cells. After transfection, the stability ranking of the reference gene fluctuated, especially with Lipofectamine 2000 transfection reagent in two subtypes of basal and ER+ breast cell lines. Comparisons of relative target gene (HER2 expression revealed different expressional patterns depending on the reference genes used for normalization. We suggest that identifying the most stable and suitable reference genes is critical for studying specific cell lines under certain circumstances.

  12. COBRA1 inhibits AP-1 transcriptional activity in transfected cells

    International Nuclear Information System (INIS)

    Zhong Hongjun; Zhu Jianhua; Zhang Hao; Ding Lihua; Sun Yan; Huang Cuifen; Ye Qinong

    2004-01-01

    Mutations in the breast cancer susceptibility gene (BRCA1) account for a significant proportion of hereditary breast and ovarian cancers. Cofactor of BRCA1 (COBRA1) was isolated as a BRCA1-interacting protein and exhibited a similar chromatin reorganizing activity to that of BRCA1. However, the biological role of COBRA1 remains largely unexplored. Here, we report that ectopic expression of COBRA1 inhibited activator protein 1 (AP-1) transcriptional activity in transfected cells in a dose-dependent manner, whereas reduction of endogenous COBRA1 with a small interfering RNA significantly enhanced AP-1-mediated transcriptional activation. COBRA1 physically interacted with the AP-1 family members, c-Jun and c-Fos, and the middle region of COBRA1 bound to c-Fos. Lack of c-Fos binding site in the COBRA1 completely abolished the COBRA1 inhibition of AP-1 trans-activation. These findings suggest that COBRA1 may directly modulate AP-1 pathway and, therefore, may play important roles in cell proliferation, differentiation, apoptosis, and oncogenesis

  13. The effects of MicroRNA transfections on global patterns of gene expression in ovarian cancer cells are functionally coordinated

    Directory of Open Access Journals (Sweden)

    Shahab Shubin W

    2012-08-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a class of small RNAs that have been linked to a number of diseases including cancer. The potential application of miRNAs in the diagnostics and therapeutics of ovarian and other cancers is an area of intense interest. A current challenge is the inability to accurately predict the functional consequences of exogenous modulations in the levels of potentially therapeutic miRNAs. Methods In an initial effort to systematically address this issue, we conducted miRNA transfection experiments using two miRNAs (miR-7, miR-128. We monitored the consequent changes in global patterns of gene expression by microarray and quantitative (real-time polymerase chain reaction. Network analysis of the expression data was used to predict the consequence of each transfection on cellular function and these predictions were experimentally tested. Results While ~20% of the changes in expression patterns of hundreds to thousands of genes could be attributed to direct miRNA-mRNA interactions, the majority of the changes are indirect, involving the downstream consequences of miRNA-mediated changes in regulatory gene expression. The changes in gene expression induced by individual miRNAs are functionally coordinated but distinct between the two miRNAs. MiR-7 transfection into ovarian cancer cells induces changes in cell adhesion and other developmental networks previously associated with epithelial-mesenchymal transitions (EMT and other processes linked with metastasis. In contrast, miR-128 transfection induces changes in cell cycle control and other processes commonly linked with cellular replication. Conclusions The functionally coordinated patterns of gene expression displayed by different families of miRNAs have the potential to provide clinicians with a strategy to treat cancers from a systems rather than a single gene perspective.

  14. Transfection of primary brain capillary endothelial cells for protein synthesis and secretion of recombinant erythropoietin: a strategy to enable protein delivery to the brain

    DEFF Research Database (Denmark)

    Burkhart, Annette; Andresen, Thomas Lars; Aigner, Achim

    2017-01-01

    , as turning BCECs into recombinant protein factories by transfection could result in protein secretion further into the brain. The present study aims to investigate the possibility of transfecting primary rat brain endothelial cells (RBECs) for recombinant protein synthesis and secretion...... of the neuroprotective protein erythropoietin (EPO). We previously showed that 4% of RBECs with BBB properties can be transfected without disrupting the BBB integrity in vitro, but it can be questioned whether this is sufficient to enable protein secretion at therapeutic levels. The present study examined various......-derived neurotropic factor (BDNF). In conclusion, non-viral gene therapy to RBECs leads to protein secretion and signifies a method for therapeutic proteins to target cells inside the CNS otherwise omitted due to the BBB....

  15. Efficient transfection of primarily cultured porcine embryonic fibroblasts using the Amaxa Nucleofection system.

    Science.gov (United States)

    Nakayama, Asuka; Sato, Masahiro; Shinohara, Mariko; Matsubara, Shyuichiro; Yokomine, Takaaki; Akasaka, Eri; Yoshida, Mitsutoshi; Takao, Sonshin

    2007-01-01

    Porcine embryonic fibroblasts (PEF) are important as donor cells for nuclear transfer for generation of genetically modified pigs. In this study, we determined an optimal protocol for transfection of PEF with the Amaxa Nucleofection system, which directly transfers DNA into the nucleus of cells, and compared its efficiency with conventional lipofection and electroporation. Cell survival and transfection efficiency were assessed using dye-exclusion assay and a green fluorescent protein (GFP) reporter construct, respectively. Our optimized nucleofection parameters yielded survival rates above 60%. Under these conditions, FACS analysis demonstrated that 79% of surviving cells exhibited transgene expression 48 h after nucleofection when program U23 was used. This efficiency was higher than that of transfection of PEFs with electroporation (ca. 3-53%) or lipofection (ca. 3-8%). Transfected cells could be expanded as stably transgene-expressing clones over a month. When porcine nuclear transfer (NT) was performed using stable transformant expressing GFP as a donor cell, 5-6% of reconstituted embryos developed to blastocysts, from which 30-50% of embryos exhibited NT-embryo-derived green fluorescence. Under the conditions evaluated, nucleofection exhibited higher efficiency than conventional electroporation and lipofection, and may be a useful alternative for generation of genetically engineered pigs through nuclear transfer.

  16. New Transfection Agents Based on Liposomes Containing Biosurfactant MEL-A.

    Science.gov (United States)

    Nakanishi, Mamoru; Inoh, Yoshikazu; Furuno, Tadahide

    2013-08-16

    Nano vectors are useful tools to deliver foreign DNAs, oligonucleotides, and small interfering double-stranded RNAs (siRNAs) into mammalian cells with gene transfection and gene regulation. In such experiments we have found the liposomes with a biosurfacant mannosylerythriol lipid (MEL-A) are useful because of their high transfer efficiency, and their unique mechanism to transfer genes to target cells with the lowest toxicity. In the present review we will describe our current work, which may contribute to the great advance of gene transfer to target cells and gene regulations. For more than two decades, the liposome technologies have changed dramatically and various methods have been proposed in the fields of biochemistry, cell biology, biotechnology, and so on. In addition, they were towards to pharmaceutics and clinical applications. The liposome technologies were expected to use gene therapy, however, they have not reached a requested goal as of yet. In the present paper we would like to present an approach using a biosurfactant, MEL-A, which is a surface-active compound produced by microorganisms growing on water-insoluble substrates and increases efficiency in gene transfection. The present work shows new transfection agents based on liposomes containing biosurfactant MEL-A.

  17. Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Jielu Tan; Xiangrong Zheng; Shanshan Zhang; Yujia Yang; Xia Wang; Xiaohe Yu; Le Zhong

    2014-01-01

    Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge-nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into ifve groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular en-dothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. hTe cerebral palsy model was established by ligating the letf common carotid artery followed by exposure to hypox-ia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. Atfer transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vas-cular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for ifnding water and the ifnding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. hTese ifndings indicate that the transplantation of vascu-lar endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deifcits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy.

  18. Novel HIV-1 knockdown targets identified by an enriched kinases/phosphatases shRNA library using a long-term iterative screen in Jurkat T-cells.

    Directory of Open Access Journals (Sweden)

    Sylvie Rato

    2010-02-01

    Full Text Available HIV-1 is a complex retrovirus that uses host machinery to promote its replication. Understanding cellular proteins involved in the multistep process of HIV-1 infection may result in the discovery of more adapted and effective therapeutic targets. Kinases and phosphatases are a druggable class of proteins critically involved in regulation of signal pathways of eukaryotic cells. Here, we focused on the discovery of kinases and phosphatases that are essential for HIV-1 replication but dispensable for cell viability. We performed an iterative screen in Jurkat T-cells with a short-hairpin-RNA (shRNA library highly enriched for human kinases and phosphatases. We identified 14 new proteins essential for HIV-1 replication that do not affect cell viability. These proteins are described to be involved in MAPK, JNK and ERK pathways, vesicular traffic and DNA repair. Moreover, we show that the proteins under study are important in an early step of HIV-1 infection before viral integration, whereas some of them affect viral transcription/translation. This study brings new insights for the complex interplay of HIV-1/host cell and opens new possibilities for antiviral strategies.

  19. Solanine induced apoptosis and increased chemosensitivity to Adriamycin in T-cell acute lymphoblastic leukemia cells.

    Science.gov (United States)

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Chen, Jie-Ru; Wang, Hong; Li, You-Jie

    2018-05-01

    Solanine is an alkaloid and is the main extract of the traditional Chinese herb, Solanum nigrum Linn . It has been reported that Solanine has anti-inflammatory and antitumor properties. The present study aimed to investigate the antitumor effect of Solanine in Jurkat cells and demonstrate the molecular mechanism of antitumor activity of Solanine. A Cell Counting Kit-8 assay demonstrated that Solanine inhibited the proliferation of Jurkat cells in a dose-and time-dependent manner. Cell apoptosis was measured by flow cytometry. Flow cytometry revealed that Solanine induced apoptosis in a dose-dependent manner in Jurkat cells. Reverse transcription-quantitative polymerase chain reaction demonstrated that Solanine modulated the mRNA levels of B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). Additionally, Bcl-2 and Bax expression was measured using western blot analysis. Western blot analysis revealed a significant increase in the expression of Bax and decrease in the expression of Bcl-2. Solanine increased the chemosensitivity of Jurkat cells to Adriamycin. In summary, the present results indicated that the antitumor activity of Solanine was associated with inhibition of cell proliferation, induction of apoptosis and increasing cytotoxicity of Adriamycin. Therefore, Solanine may have potential as a novel agent for the treatment of acute lymphocytic leukemia.

  20. RhoA and RhoC are involved in stromal cell-derived factor-1-induced cell migration by regulating F-actin redistribution and assembly.

    Science.gov (United States)

    Luo, Jixian; Li, Dingyun; Wei, Dan; Wang, Xiaoguang; Wang, Lan; Zeng, Xianlu

    2017-12-01

    Stromal cell-derived factor-1 (SDF-1) signaling is important to the maintenance and progression of T-cell acute lymphoblastic leukemia by inducing chemotaxis migration. To identify the mechanism of SDF-1 signaling in the migration of T-ALL, Jurkat acute lymphoblastic leukemia cells were used. Results showed that SDF-1 induces Jurkat cell migration by F-actin redistribution and assembly, which is dependent on Rho activity. SDF-1 induced RhoA and RhoC activation, as well as reactive oxygen species (ROS) production, which was inhibited by Rho inhibitor. The Rho-dependent ROS production led to subsequent cytoskeleton redistribution and assembly in the process of migration. Additionally, RhoA and RhoC were involved in SDF-1-induced Jurkat cell migration. Taken together, we found a SDF-1/CXCR4-RhoA and RhoC-ROS-cytoskeleton pathway that regulates Jurkat cell migration in response to SDF-1. This work will contribute to a clearer insight into the migration mechanism of acute lymphoblastic leukemia.

  1. Structure relationship of cationic lipids on gene transfection mediated by cationic liposomes.

    Science.gov (United States)

    Paecharoenchai, Orapan; Niyomtham, Nattisa; Apirakaramwong, Auayporn; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Yingyongnarongkul, Boon-ek; Opanasopit, Praneet

    2012-12-01

    The aim of this study was to investigate the transfection efficiency of cationic liposomes formulated with phosphatidylcholine (PC) and novel synthesized diethanolamine-based cationic lipids at a molar ratio of 5:1 in comparison with Lipofectamine™ 2000. Factors affecting transfection efficiency and cell viability, including the chemical structure of the cationic lipids, such as different amine head group (diamine and polyamine; and non-spermine and spermine) and acyl chain lengths (C14, C16, and C18) and the weight ratio of liposomes to DNA were evaluated on a human cervical carcinoma cell line (HeLa cells) using the pDNA encoding green fluorescent protein (pEGFP-C2). Characterizations of these lipoplexes in terms of size and charge measurement and agarose gel electrophoresis were performed. The results from this study revealed that almost no transfection was observed in the liposome formulations composed of cationic lipids with a non-spermine head group. In addition, the transfection efficiency of these cationic liposomes was in the following order: spermine-C14 > spermine-C16 > spermine-C18. The highest transfection efficiency was observed in the formulation of spermine-C14 liposomes at a weight ratio of 25; furthermore, this formulation was safe for use in vitro. In conclusion, cationic liposomes containing spermine head groups demonstrated promising potential as gene carriers.

  2. Transfection of Chinese hamster ovary DHFR/sup -/ cells with the gene coding for heat shock protein 70 from drosophila melanogaster

    International Nuclear Information System (INIS)

    Duffy, J.J.; Carper, S.W.; Gerner, E.W.

    1987-01-01

    Chinese hamster ovary DHFR/sup -/ cells (CHO-DHFR/sup -/) were transfected with the plasmid pSV2-dhfr expressing the mouse gene coding for dhfr or with the same plasmid containing the gene coding for the Drosophila melanogaster heat shock protein 70 (hsp70), pSVd-hsp70. Three subcloned cell lines selected for expression of the dhfr gene were shown to contain either the vector sequence (G cells) or varying copies of pSVd-hsp70 (H cells). One line of H cells was shown to contain > 30 copies of the D. melanogaster hsp70 gene and to express the hsp70 RNA at significant levels. No difference between G and H cells was observed in the rate of growth, in the development of thermotolerance, or in the sensitivity of actin microfilament bundles to heat shock. However, H cells containing the transfected hsp70 gene had an altered morphology when compared to the G cells and the parental CHO-DHFR/sup -/ cells being more fibroblastic. The adhesion properties of the H cells was also decreased when compared to the G cells. These results show that insertion of the D. melanogaster gene into CHO cells does not effect growth rates or heat shock responses but may alter cell morphology and adhesion

  3. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    Science.gov (United States)

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-02-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity.

  4. A cell spot microarray method for production of high density siRNA transfection microarrays

    Directory of Open Access Journals (Sweden)

    Mpindi John-Patrick

    2011-03-01

    Full Text Available Abstract Background High-throughput RNAi screening is widely applied in biological research, but remains expensive, infrastructure-intensive and conversion of many assays to HTS applications in microplate format is not feasible. Results Here, we describe the optimization of a miniaturized cell spot microarray (CSMA method, which facilitates utilization of the transfection microarray technique for disparate RNAi analyses. To promote rapid adaptation of the method, the concept has been tested with a panel of 92 adherent cell types, including primary human cells. We demonstrate the method in the systematic screening of 492 GPCR coding genes for impact on growth and survival of cultured human prostate cancer cells. Conclusions The CSMA method facilitates reproducible preparation of highly parallel cell microarrays for large-scale gene knockdown analyses. This will be critical towards expanding the cell based functional genetic screens to include more RNAi constructs, allow combinatorial RNAi analyses, multi-parametric phenotypic readouts or comparative analysis of many different cell types.

  5. Enhancement of ultraviolet-DNA repair in denV gene transfectants and T4 endonuclease V-liposome recipients

    International Nuclear Information System (INIS)

    Kibitel, J.T.; Yee, V.; Yarosh, D.B.

    1991-01-01

    The phage T4 denV gene, coding for the pyrimidine-dimer specific T4 endonuclease V, was transfected into human repair-proficient fibroblasts, repair-deficient xeroderma pigmentosum fibroblasts, and wild type CHO hamster cells. Transfectants maintained denV DNA and expressed denV mRNA. Purified T4 endonuclease V encapsulated in liposomes was also used to treat repair-proficient and -deficient human cells. The denV transfected clones and liposome-treated cells showed increased unscheduled DNA synthesis and enhanced removal of pyrimidine dimers compared to controls. Both denV gene transfection and endonuclease V liposome treatment enhanced post-UV survival in xeroderma pigmentosum cells but had no effect on survival in repair-proficient human or hamster cells. The results demonstrate that an exogenous DNA repair enzyme can correct the DNA repair defect in xeroderma pigmentosum cells and enhance DNA repair in normal cells. (author)

  6. Differential polymer structure tunes mechanism of cellular uptake and transfection routes of poly(β-amino ester) polyplexes in human breast cancer cells.

    Science.gov (United States)

    Kim, Jayoung; Sunshine, Joel C; Green, Jordan J

    2014-01-15

    Successful gene delivery with nonviral particles has several barriers, including cellular uptake, endosomal escape, and nuclear transport. Understanding the mechanisms behind these steps is critical to enhancing the effectiveness of gene delivery. Polyplexes formed with poly(β-amino ester)s (PBAEs) have been shown to effectively transfer DNA to various cell types, but the mechanism of their cellular uptake has not been identified. This is the first study to evaluate the uptake mechanism of PBAE polyplexes and the dependence of cellular uptake on the end group and molecular weight of the polymer. We synthesized three different analogues of PBAEs with the same base polymer poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) (B4S4) but with small changes in the end group or molecular weight. We quantified the uptake and transfection efficiencies of the pDNA polyplexes formulated from these polymers in hard-to-transfect triple negative human breast cancer cells (MDA-MB 231). All polymers formed positively charged (10-17 mV) nanoparticles of ∼200 nm in size. Cellular internalization of all three formulations was inhibited the most (60-90% decrease in cellular uptake) by blocking caveolae-mediated endocytosis. Greater inhibition was shown with polymers that had a 1-(3-aminopropyl)-4-methylpiperazine end group (E7) than the others with a 2-(3-aminopropylamino)-ethanol end group (E6) or higher molecular weight. However, caveolae-mediated endocytosis was generally not as efficient as clathrin-mediated endocytosis in leading to transfection. These findings indicate that PBAE polyplexes can be used to transfect triple negative human breast cancer cells and that small changes to the same base polymer can modulate their cellular uptake and transfection routes.

  7. Involvement of the N-terminal part of cyclophilin B in the interaction with specific Jurkat T-cell binding sites.

    Science.gov (United States)

    Mariller, C; Haendler, B; Allain, F; Denys, A; Spik, G

    1996-07-15

    Cyclophilin B (CyPB) is secreted in biological fluids such as blood or milk and binds to a specific receptor present on the human lymphoblastic cell line Jurkat and on human peripheral blood lymphocytes. This study was intended to specify the areas of CyPB that are involved in the interaction with the receptor. A synthetic peptide corresponding to the first 24 N-terminal amino acid residues of CyPB was shown to specifically recognize the receptor. Moreover, modification of Arg18 of CyPB by p-hydroxyphenlglyoxal led to a dramatic loss of affinity for the receptor. However, when this residue was replaced by an alanine residue using site-directed mutagenesis, no modification of the binding properties was found, suggesting that Arg18 is not directly involved but is sufficiently close to the interaction site to interfere with the binding when modified. Competitive binding experiments using a chimaeric protein made up of the 24 N-terminal amino acid residues of CyPB fused to the cyclophilin A core sequence confirmed the involvement of this region of CyPB in receptor binding.

  8. Synthesis of a Tyr-Tyr Dipeptide Library and Evaluation Against Tumor Cells.

    Science.gov (United States)

    Vasconcelos, Stanley Ns; Sciani, Juliana M; Lisboa, Nicole Mambeli; Stefani, Helio A

    2018-03-09

    Structural component of proteins and peptides, amino acids have been used as building blocks in the synthesis of more complex molecules with antitumor activity against several types of cancer. The search for new anticancer compounds is ongoing, especially for cancers that are very aggressive and have poor prognoses, such as leukemia. Here, we report a method to synthesize Tyr-Tyr dipeptides via sonochemistry reactions followed by functionalization of these Tyr-Tyr dipeptides with Suzuki-Miyaura and Sonogashira cross-coupling reactions in good yields. Twelve different Tyr-Tyr dipeptides were investigated against three cell lines: HaCaT; Jurkat-E6; and A2058. Some of Tyr-Tyr dipeptides showed activity against Jurkat-E6 leukaemia cells at low concentration, decreasing their viability, but not against non-tumor HaCaT cells, suggesting a cytotoxicity specific to tumor cells. All dipeptides were able to decrease the viability of Jurkat cell line, however the A2058 cell line did not respond well to treatment with the peptides. Some of the modified Tyr-Tyr dipeptides presented selective activity on leukemic tumor cells. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Transfection of wild type ADVP53 gene into human brain tumor cell lines has a radiosensitizing effect independent of apoptosis

    International Nuclear Information System (INIS)

    Geng, L.; Walter, S; Vaughan, A.T.M.

    1997-01-01

    Purpose: Despite attempts with a variety of therapeutic approaches there has been little impact on the survival of patients with Glioblastoma multiforme, with median survivals reported of approximately 12 months. In this study a replication restricted adenovirus vector is used to transfer the wild type p53 gene into two cell lines derived from a human astrocytoma U87MG or glioblastoma T98G, to determine its ability to act as a radiosensitizer in conjunction with conventional radiotherapy. Methods: An adenovirus vector containing the human wild type p53 (Advp53) gene was used in addition to a control vector containing the β-galactosidase (Advγgal) reporter gene. To achieve cellular incorporation both vectors were incubated with cells for 30 minutes - washed and returned to culture. The successful incorporation of each vector was determined by either a p53 assay using either a western blotting or flow cytometry techniques, or specific staining for β-galactosidase activity. The presence of each vector was assayed until the constructs were eliminated from the cell. To determine the effects of these vectors on cell survival sufficient vector was added to produce a measurable reduction in clonogenic survival and this value was used in subsequent irradiation experiments. To determine the ability of wild type p53 to induce apoptosis the cells were examined from 1 to 5 days after irradiation by H and E staining for the characteristic morphology indicating an apoptotic process. Results: Both the Advp53 and Advβgal vectors were successfully incorporated into each cell line. Expression of each gene was reduced to approximately half by 5 days and virtually eliminated by 15 days after transfection in both lines. At the doses used the wild type Advp53 adenovirus was toxic to both cell lines giving surviving fractions between 39-74%. When this toxicity was taken into account the presence of the Advp53 gene had a radiosensitizing effect in each cell line. To determine the

  10. Micro-RNA 10a Is Increased in Feline T Regulatory Cells and Increases Foxp3 Protein Expression Following In Vitro Transfection

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-02-01

    Full Text Available CD4+CD25+Foxp3+ T regulatory (Treg cells are activated during the course of lentiviral infection and exhibit heightened suppressor function when compared to Treg cells from uninfected controls. Foxp3 is essential to Treg cell function and multiple studies have documented that lentivirus-activated Treg cells exhibit heightened Foxp3 expression when compared to Treg cells from uninfected controls. Our hypothesis was that lentivirus-induced micro-RNAs (miRNAs contribute to heightened Treg cell suppressor function by stabilizing Foxp3 expression. We demonstrated that CD4+CD25+ T cells from both feline immunodeficiency virus infected (FIV+ cats and uninfected control cats exhibit increased miRNA 10a and 21 levels compared to autologous CD4+CD25− T cells but there was no difference in the levels of these miRNAs when Treg cells from FIV+ cats were compared to Treg cells from uninfected controls. Further, there was no increase in Foxp3 mRNA following transfection of miRNA 10a or 21 into a feline cell line. However, transfection with miRNA 10a resulted in increased Foxp3 protein expression.

  11. Biodegradable charged polyester-based vectors (BCPVs) as an efficient non-viral transfection nanoagent for gene knockdown of the BCR-ABL hybrid oncogene in a human chronic myeloid leukemia cell line

    Science.gov (United States)

    Yang, Chengbin; Panwar, Nishtha; Wang, Yucheng; Zhang, Butian; Liu, Maixian; Toh, Huiting; Yoon, Ho Sup; Tjin, Swee Chuan; Chong, Peter Han Joo; Law, Wing-Cheung; Chen, Chih-Kuang; Yong, Ken-Tye

    2016-04-01

    First-line therapy of chronic myelogenous leukemia (CML) has always involved the use of BCR-ABL tyrosine-kinase inhibitors which is associated with an abnormal chromosome called Philadelphia chromosome. Although the overall survival rate has been improved by the current therapeutic regime, the presence of resistance has resulted in limited efficacy. In this study, an RNA interference (RNAi)-based therapeutic regime is proposed with the aim to knockdown the BCR-ABL hybrid oncogene using small interfering RNA (siRNA). The siRNA transfection rates have usually been limited due to the declining contact probability among polyplexes and the non-adherent nature of leukemic cells. Our work aims at addressing this limitation by using a biodegradable charged polyester-based vector (BCPV) as a nanocarrier for the delivery of BCR-ABL-specific siRNA to the suspension culture of a K562 CML cell line. BCR-ABL siRNAs were encapsulated in the BCPVs by electrostatic force. Cell internalization was facilitated by the BCPV and assessed by confocal microscopy and flow cytometry. The regulation of the BCR-ABL level in K562 cells as a result of RNAi was analyzed by real-time polymerase chain reaction (RT-PCR). We observed that BCPV was able to form stable nanoplexes with siRNA molecules, even in the presence of fetal bovine serum (FBS), and successfully assisted in vitro siRNA transfection in the non-adherent K562 cells. As a consequence of downregulation of BCR-ABL, BCPV-siRNA nanoplexes inhibited cell proliferation and promoted cell apoptosis. All results were compared with a commercial transfection reagent, Lipofectamine2000™, which served as a positive control. More importantly, this class of non-viral vector exhibits biodegradable features and negligible cytotoxicity, thus providing a versatile platform to deliver siRNA to non-adherent leukemia cells with high transfection efficiency by effectively overcoming extra- and intra-cellular barriers. Due to the excellent in vitro

  12. Proteasomal targeting and minigene repetition improve cell-surface presentation of a transfected, modified melanoma tumour antigen

    DEFF Research Database (Denmark)

    Rasmussen, A B; Zocca, M-B; Bonefeld, C M

    2004-01-01

    Melanoma antigen recognized by T cell 1 (MART-1) is regarded as a candidate peptide for vaccination against malignant melanoma, and it is of importance to develop strategies to improve the vaccine-elicited T-cell activation towards MART-1. T-cell activation is, among other determinants, dependent...... on the density of specific major histocompatibility complex-peptide complexes on the surface of the antigen-presenting cell. In this study, we explored the cell-surface presentation of a substituted MART-1 peptide encoded by transfected minigenes. We investigated the potential of proteasomal targeting compared...... to non-proteasomal targeting of the epitope to increase its cell-surface presentation. Furthermore, we explored the potential of incorporating multiple minigenes instead of one to increase cell-surface presentation. We show that both proteasomal targeting and repetition of the minigene increase cell...

  13. Multi-lipofection efficiently transfected genes into astrocytes in primary culture.

    Science.gov (United States)

    Wu, B Y; Liu, R Y; So, K L; Yu, A C

    2000-10-30

    This study demonstrated that liposome-mediated transfection - lipofection - is suitable for delivering genes into astrocytes. By repeatedly lipofecting the same astrocyte cultures, a process we call multi-lipofection, the transfection efficiency of the beta-galactosidase (beta-gal) gene was improved from 2.6+/-0.6 to 17. 4+/-1.1%. This is the highest efficiency ever reported in gene-transfer with Lipofectin(R) in a primary culture of mouse cerebral cortical astrocytes. Furthermore, multi-lipofection did not cause observable disturbance to astrocytes as indicated by insignificant changes in the glial fibrillary acidic protein content in the cultures. In order to demonstrate that the transfected gene achieved a physiologically relevant expression level, a plasmid containing the pEF-hsp70 protein gene was lipofected into astrocytes. This produced colonies of astrocytes showing an increased resistance to heat-induced cell death. A similar experiment was performed with the glial-derived neurotrophic factor (GDNF) gene. Control astrocytes had no detectable GDNF. In the transfected astrocytes, the GDNF protein could be identified intracellularly by immunocytochemistry. Western blot analysis revealed, as compared to astrocytes with one lipofection, a 2.9-fold increase of GDNF with four lipofections. GDNF remained detectable in astrocytes 2 weeks after four lipofections. Thus, multi-lipofection provides a mild and efficient means of delivering foreign genes into astrocytes in a primary culture, making astrocytes good candidate vehicle cells for gene/cell therapy in the CNS.

  14. Biological responses of T cells encapsulated with polyelectrolyte-coated gold nanorods and their cellular activities in a co-culture system

    Science.gov (United States)

    Wattanakull, Porntida; Killingsworth, Murray C.; Pissuwan, Dakrong

    2017-11-01

    Currently, human T cell therapy is of considerable scientific interest. In addition, cell encapsulation has become an attractive approach in biomedical applications. Here, we propose an innovative technique of single-cell encapsulation of human T cells using polyelectrolytes combined with gold nanorods. We have demonstrated encapsulation of human Jurkat T cells with poly(sodium 4-styrenesulfonate) (PSS)-coated gold nanorods (PSS-GNRs). Other forms of encapsulation, using polyelectrolytes without GNRs, were also performed. After Jurkat T cells were encapsulated with poly(allylamine hydrochloride) (PAH) and/or PSS-GNRs or PSS, most cells survived and could proliferate. Jurkat T cells encapsulated with a double layer of PSS-GNR/PAH (PSS-GNR/PAH@Jurkat) showed the highest rate of cell proliferation when compared to 24-h encapsulated cells. With the exception of IL-6, no significant induction of inflammatory cytokines (IL-2, IL-1β, and TNF-α) was observed. Interestingly, when encapsulated cells were co-cultured with THP-1 macrophages, co-cultures exhibited TNF-α production enhancement. However, the co-culture of THP-1 macrophage and PSS-GNR/PAH@Jurkat or PSS/PAH@Jurkat did not enhance TNF-α production. No significant inductions of IL-2, IL-1β, and IL-6 were detected. These data provide promising results, demonstrating the potential use of encapsulated PSS-GNR/PAH@Jurkat to provide a more inert T cell population for immunotherapy application and other biomedical applications.

  15. New Transfection Agents Based on Liposomes Containing Biosurfactant MEL-A

    Directory of Open Access Journals (Sweden)

    Tadahide Furuno

    2013-08-01

    Full Text Available Nano vectors are useful tools to deliver foreign DNAs, oligonucleotides, and small interfering double-stranded RNAs (siRNAs into mammalian cells with gene transfection and gene regulation. In such experiments we have found the liposomes with a biosurfacant mannosylerythriol lipid (MEL-A are useful because of their high transfer efficiency, and their unique mechanism to transfer genes to target cells with the lowest toxicity. In the present review we will describe our current work, which may contribute to the great advance of gene transfer to target cells and gene regulations. For more than two decades, the liposome technologies have changed dramatically and various methods have been proposed in the fields of biochemistry, cell biology, biotechnology, and so on. In addition, they were towards to pharmaceutics and clinical applications. The liposome technologies were expected to use gene therapy, however, they have not reached a requested goal as of yet. In the present paper we would like to present an approach using a biosurfactant, MEL-A, which is a surface-active compound produced by microorganisms growing on water-insoluble substrates and increases efficiency in gene transfection. The present work shows new transfection agents based on liposomes containing biosurfactant MEL-A.

  16. Dual acylation and lipid raft association of Src-family protein tyrosine kinases are required for SDF-1/CXCL12-mediated chemotaxis in the Jurkat human T cell lymphoma cell line.

    Science.gov (United States)

    Zaman, Sabiha N; Resek, Mary E; Robbins, Stephen M

    2008-10-01

    Chemokines play pivotal roles in regulating a wide variety of biological processes by modulating cell migration and recruitment. Deregulation of chemokine signaling can alter cell recruitment, contributing to the pathogenic states associated with autoimmune disease, inflammatory disorders, and sepsis. During chemotaxis, lipid rafts and their resident signaling molecules have been demonstrated to partition to different parts of the cell. Herein, we investigated the role of lipid raft resident Src-family kinases (SFK) in stromal cell-derived factor 1/CXCL12-mediated chemotaxis. We have shown that Lck-deficient J.CaM 1.6 cells are defective in CXCL12-mediated chemotaxis in contrast to their parental counterpart, Jurkat cells. Ectopic expression of the SFK hematopoietic cell kinase (Hck) in J.CaM 1.6 cells reconstituted CXCL12 responsiveness. The requirement of lipid raft association of SFK was assessed using both isoforms of Hck: the dually acylated p59(Hck) isoform that is targeted to lipid rafts and the monoacylated p61(Hck) isoform that is nonraft-associated. We have shown using several gain and loss of acylation alleles that dual acylation of Hck was required for CXCL12-mediated chemotaxis in J.CaM 1.6 cells. These results highlight the importance of the unique microenvironment provided by lipid rafts and their specific contribution in providing specificity to CXCL12 signaling.

  17. siRNA Transfection and EMSA Analyses on Freshly Isolated Human Villous Cytotrophoblasts.

    Science.gov (United States)

    Lokossou, Adjimon Gatien; Toufaily, Chirine; Vargas, Amandine; Barbeau, Benoit

    2016-09-20

    Human primary villous cytotrophoblasts are a very useful source of primary cells to study placental functions and regulatory mechanisms, and to comprehend diseases related to pregnancy. In this protocol, human primary villous cytotrophoblasts freshly isolated from placentas through a standard DNase/trypsin protocol are microporated with small interfering RNA (siRNA). This approach provided greater efficiency for siRNA transfection when compared to a lipofection-based method. Transfected cells can subsequently be analyzed by standard Western blot within a time frame of 3-4 days post-transfection. In addition, using cultured primary villous cytotrophoblasts, Electrophoretic Mobility Shift Assay (EMSA) analysis was optimized and performed on extracts from days 1 to 4. The use of these cultured primary cells and the protocol described allow for an evaluation of the implication of specific genes and transcription factors in the process of villous cytotrophoblast differentiation into a syncytiotrophoblast-like cell layer. However, the limited time span allowable in culture precludes the use of methods requiring more time, such as generation of a stable cell population. Therefore testing of this cell population requires highly optimized gene transfer protocols.

  18. Adipose-derived stem cells transfected with pEGFP-OSX enhance bone formation during distraction osteogenesis*

    OpenAIRE

    Lai, Qing-guo; Sun, Shao-long; Zhou, Xiao-hong; Zhang, Chen-ping; Yuan, Kui-feng; Yang, Zhong-jun; Luo, Sheng-lei; Tang, Xiao-peng; Ci, Jiang-bo

    2014-01-01

    This study was designed to investigate the effects of local delivery of adipose-derived stem cells (ADSCs) transfected with transcription factor osterix (OSX) on bone formation during distraction osteogenesis. New Zealand white rabbits (n=54) were randomly divided into three groups (18 rabbits per group). A directed cloning technique was used for the construction of recombinant plasmid pEGFP-OSX, where EGFP is the enhanced green fluorescence protein. After osteodistraction of the right mandib...

  19. Stabilizing in vitro ultrasound-mediated gene transfection by regulating cavitation.

    Science.gov (United States)

    Lo, Chia-Wen; Desjouy, Cyril; Chen, Shing-Ru; Lee, Jyun-Lin; Inserra, Claude; Béra, Jean-Christophe; Chen, Wen-Shiang

    2014-03-01

    It is well known that acoustic cavitation can facilitate the inward transport of genetic materials across cell membranes (sonoporation). However, partially due to the unstationary behavior of the initiation and leveling of cavitation, the sonoporation effect is usually unstable, especially in low intensity conditions. A system which is able to regulate the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop is implemented and its effect on in vitro gene transfection is tested. The regulated system provided better time stability and reproducibility of the cavitation levels than the unregulated conditions. Cultured hepatoma cells (BNL) mixed with 10 μg luciferase plasmids are exposed to 1-MHz pulsed ultrasound with or without cavitation regulation, and the gene transfection efficiency and cell viability are subsequently assessed. Experimental results show that for all exposure intensities (low, medium, and high), stable and intensity dependent, although not higher, gene expression could be achieved in the regulated cavitation system than the unregulated conditions. The cavitation regulation system provides a better control of cavitation and its bioeffect which are crucial important for clinical applications of ultrasound-mediated gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Protective Effects of Moringa oleifera on HBV Genotypes C and H Transiently Transfected Huh7 Cells

    Science.gov (United States)

    Feustel, Sina; Ayón-Pérez, Fabiola; Sandoval-Rodriguez, Ana; Rodríguez-Echevarría, Roberto; Contreras-Salinas, Homero

    2017-01-01

    Chronic hepatitis B infection treatment implicates a long-lasting treatment. M. oleifera extracts contain compounds with antiviral, antioxidant, and antifibrotic properties. In this study, the effect of M. oleifera was evaluated in Huh7 cells expressing either HBV genotypes C or H for the antiviral, antifibrotic, anti-inflammatory, and antioxidative responses. Huh7 cells were treated with an aqueous extract of M. oleifera (leaves) at doses of 0, 30, 45, or 60 μg/mL. The replicative virus and TGF-β1, CTGF, CAT, IFN-β1, and pgRNA expressions were measured by real time. HBsAg and IL-6 titers were determined by ELISA. CTGF, TGF-β1, IFN-β1, and pgRNA expressions decreased with M. oleifera treatment irrespective of the HBV genotype. HBsAg secretion in the supernatant of transfected Huh7 cells with both HBV genotypes was decreased regardless of the dose of M. oleifera. Similar effect was observed in proinflammatory cytokine IL-6, which had a tendency to decrease at 24 hours of treatment. Transfection with both HBV genotypes strongly decreased CAT expression, which is retrieved with M. oleifera treatment. M. oleifera treatment reduced fibrosis markers, IL-6, and HBsAg secretion in HBV genotypes C and H. However, at the level of replication, only HBV-DNA genotype C was slightly reduced with this treatment. PMID:29214184

  1. Accumulation of a soluble form of human nectin-2 is required for exerting the resistance against herpes simplex virus type 2 infection in transfected cells.

    Science.gov (United States)

    Fujimoto, Y; Ozaki, K; Iwamori, N; Takakuwa, H; Ono, E

    2016-03-01

    Cell entry of herpes simplex virus type 2 (HSV-2) requires the interaction of viral glycoprotein D (gD) with the receptor nectin-1 and herpesvirus entry mediator (HVEM). In addition, it is known that nectin-2 is also functional as a receptor for HSV-2, although the binding to the gD is weak. To examine an antiviral potential of a soluble form of human nectin-2 (hNectin-2Ig), transfected Vero cells expressing the entire ectodomain of nectin-2 fused to the Fc portion of human IgG were established. Specific binding of hNectin-2Ig to HSV-2 gD was confirmed by ELISA. Competitive ELISA demonstrated that accumulation of hNectin-2Ig in transfected cells increased significantly in a cell culture time dependent manner. Viral growth of several HSV-2 strains was significantly inhibited in the transfected cells that were cultured for 72 hr compared with control Vero cells, but not in cells that were cultured for 24 hr. These results indicate that accumulation of a soluble form of nectin-2 is required for exerting the resistance against HSV-2 infection.

  2. Ultrasonic destruction of albumin microbubbles enhances gene transfection and expression in cardiac myocytes.

    Science.gov (United States)

    Wang, Guo-zhong; Liu, Jing-hua; Lü, Shu-zheng; Lü, Yun; Guo, Cheng-jun; Zhao, Dong-hui; Fang, Dong-ping; He, Dong-fang; Zhou, Yuan; Ge, Chang-jiang

    2011-05-01

    It has been proven that ultrasonic destruction of microbubbles can enhance gene transfection efficiency into the noncardiac cells, but there are few reports about cardiac myocytes. Moreover, the exact mechanisms are not yet clear; whether the characteristic of microbubbles can affect the gene transfection efficiency or not is still controversial. This study was designed to investigate whether the ultrasound destruction of gene-loaded microbubbles could enhance the plasmids carried reporter gene transfection in primary cultured myocardial cell, and evaluate the effects of microbubbles characteristics on the transgene expression in cardiac myocytes. The β-galactosidase plasmids attached to the two types of microbubbles, air-contained sonicated dextrose albumin (ASDA) and perfluoropropane-exposed sonicated dextrose albumin (PESDA) were prepared. The gene transfection into cardiac myocytes was performed in vitro by naked plasmids, ultrasound exposure, ultrasonic destruction of gene-loaded microbubbles and calcium phosphate precipitation, and then the gene expression and cell viability were analyzed. The ultrasonic destruction of gene-loaded microbubbles enhanced gene expression in cardiac myocytes compared with naked plasmid transfection ((51.95 ± 2.41) U/g or (29.28 ± 3.65) U/g vs. (0.84 ± 0.21) U/g, P ASDA ((51.95 ± 2.41) U/g vs. (29.28 ± 3.65) U/g, P < 0.05). Ultrasonic destruction of microbubbles during calcium phosphate precipitation gene transfection enhanced β-galactosidase activity nearly 8-fold compared with calcium phosphate precipitation gene transfection alone ((111.35 ± 11.21) U/g protein vs. (14.13 ± 2.58) U/g protein, P < 0.01). Even 6 hours after calcium phosphate precipitation gene transfection, ultrasound-mediated microbubbles destruction resulted in more intense gene expression ((35.63 ± 7.65) U/g vs. (14.13 ± 2.58) U/g, P < 0.05). Ultrasonic destruction of microbubbles might be a promising method for the delivery of non-viral DNA into

  3. PHARMACOLOGICAL IN VITRO MODELS IN PRE-CLINICAL DRUG TESTING - EXAMPLE OF hSERT TRANSFECTED HUMAN EMBRYONIC KIDNEY CELLS

    Directory of Open Access Journals (Sweden)

    Mihajlo Jakovljević

    2012-06-01

    Full Text Available Preclinical drug testing should be considered an important stage during examinations of its efficiency and safety in any likely indication observed. Purpose of the process is acquisition of substantial amount of particular drug-related data before approaching clinical trials in humans. Historical preclinical testing relied on available testing in microbe cultures and animal models. During recent decades laboratory techniques of human cell lines cultivation have been developed and improved. These provide unique possibility of drug acting mechanism testing in a simplified environment lacking basic homeostatic mechanisms. Some examples of these are measuring drug impact to biochemical transport, signaling or anabolic processes. Humane cell lines of embrional kidney 293 are an example of easy-to-grow and disseminate and quite endurable cell line. This methodological article notices some of the details of HEK293 cells cultivation and breading. We took transfection as an example of in vitro model creation for drug testing. Transfection refers to gene introduction into HEK293 cellular genome in order to achieve membrane expression of coded protein. In our case it would be human serotonin transporter. Article contains description of one particular methodological approach in measuring human serotonin transporter expression. The role and importance of serotonin pump in affective disorders genesis was already widely recognized. Aim of the paper was to emphasize feasibility of cell cultivation and its advantages in comparison with alternative traditional methods.

  4. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas

    Directory of Open Access Journals (Sweden)

    Torres-Trejo Alejandro

    2007-12-01

    Full Text Available Abstract Background The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL-4 gene transfected fibroblasts. Methods In University of Pittsburgh Cancer Institute (UPCI protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM or anaplastic astrocytoma (AA received gross total resection (GTR of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging. Results and Discussion In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN-γ Enzyme-Linked Immuno-SPOT (ELISPOT assay in another human leukocyte antigen (HLA-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA epitope EphA2883–891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants

  5. Combined metabonomic and quantitative real-time PCR analyses reveal systems metabolic changes in Jurkat T-cells treated with HIV-1 Tat protein.

    Science.gov (United States)

    Liao, Wenting; Tan, Guangguo; Zhu, Zhenyu; Chen, Qiuli; Lou, Ziyang; Dong, Xin; Zhang, Wei; Pan, Wei; Chai, Yifeng

    2012-11-02

    HIV-1 Tat protein is released by infected cells and can affect bystander uninfected T cells and induce numerous biological responses which contribute to its pathogenesis. To elucidate the complex pathogenic mechanism, we conducted a comprehensive investigation on Tat protein-related extracellular and intracellular metabolic changes in Jurkat T-cells using combined gas chromatography-mass spectrometry (GC-MS), reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) and a hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS)-based metabonomics approach. Quantitative real-time PCR (qRT-PCR) analyses were further employed to measure expressions of several relevant enzymes together with perturbed metabolic pathways. Combined metabonomic and qRT-PCR analyses revealed that HIV-1 Tat caused significant and comprehensive metabolic changes, as represented by significant changes of 37 metabolites and 10 relevant enzymes in HIV-1 Tat-treated cells. Using MetaboAnalyst 2.0, it was found that 11 pathways (Impact-value >0.10) among the regulated pathways were acutely perturbed, including sphingolipid metabolism, glycine, serine and threonine metabolism, pyruvate metabolism, inositol phosphate metabolism, arginine and proline metabolism, citrate cycle, phenylalanine metabolism, tryptophan metabolism, pentose phosphate pathway, glycerophospholipid metabolism, glycolysis or gluconeogenesis. These results provide metabolic evidence of the complex pathogenic mechanism of HIV-1 Tat protein as a "viral toxin", and would help obligate Tat protein as "an important target" for therapeutic intervention and vaccine development.

  6. The density of GM1-enriched lipid rafts correlates inversely with the efficiency of transfection mediated by cationic liposomes.

    Science.gov (United States)

    Kovács, Tamás; Kárász, Andrea; Szöllosi, János; Nagy, Peter

    2009-08-01

    Although cationic liposome-mediated transfection has become a standard procedure, the mechanistic details of the process are unknown. It has been suggested that endocytic uptake of lipoplexes is efficient, and transfectability is largely determined by later steps. In this article, we stained GM1-enriched membrane microdomains, a subclass of lipid rafts, with subunit B of cholera toxin and correlated transfection efficiency with their density by quantitatively evaluating microscopic images. We found a strong anticorrelation between the density of GM1-enriched membrane microdomains and the efficacy of transfection monitored by measuring the expression level of GFP in different cell lines transfected by lipofection using two different transfection agents. These findings imply that GM1-enriched membrane microdomains interfere with the process of lipofection. The blocked step must be endocytosis since the accumulation of fluorescently labeled plasmids was lower in cells with high content of GM1-enriched membrane microdomains. Such a correlation was not observed in cells transfected by electroporation. By comparing the efficiency of lipofection in several cell lines we found that those with a high density of GM1-enriched membrane microdomains were the most resistant to transfection. We conclude that the inhibition of lipofection by GM1-enriched membrane microdomains is a general rule, and that endocytosis of lipoplexes can be rate limiting in cells with high density of GM1-enriched membrane rafts. Copyright 2009 International Society for Advancement of Cytometry.

  7. Transmission of HCV to a chimpanzee using virus particles produced in an RNA-transfected HepG2 cell culture.

    Science.gov (United States)

    Dash, S; Kalkeri, G; McClure, H M; Garry, R F; Clejan, S; Thung, S N; Murthy, K K

    2001-10-01

    It was demonstrated previously that HepG2 cells produce negative strand RNA and virus-like particles after transfection with RNA transcribed from a full-length hepatitis C virus (HCV) cDNA clone [Dash et al. (1997) American Journal of Pathology, 151:363-373]. To determine in vivo infectivity of these in vitro synthesized viral particles, a chimpanzee was inoculated intravenously with HCV derived from HepG2 cells. The infected chimpanzee was examined serially for elevation of liver enzymes, for the presence of HCV RNA in the serum by reverse transcription nested polymerase chain reaction (RT-PCR), anti-HCV antibodies in the serum, and inflammation in the liver. The chimpanzee developed elevated levels of liver enzymes after the second week, but the levels fluctuated over a 10-week period. HCV RNA was detected in the serum of the chimpanzee at the second, seventh and ninth weeks after inoculation, and remained positive up to 25 weeks. Liver biopsies at Weeks 18 and 19 revealed of mild inflammation. Nucleotide sequence analysis of HCV recovered from the infected chimpanzee at the second and ninth weeks showed 100% sequence homology with the clone used for transfection studies. Serum anti-HCV antibodies were not detected by EIA during the 25 weeks follow-up period. These results suggest that intravenous administration of the virus-like particles derived from RNA-transfected HepG2 cells are infectious, and therefore, the pMO9.6-T7 clone is an infectious clone. These results provide new information that in vitro synthesized HCV particles produced from full-length HCV clone can cause infection in a chimpanzee. This study will facilitate the use of innovative approaches to the study of assembly of HCV particles and mechanisms of virus infectivity in cell culture. Copyright 2001 Wiley-Liss, Inc.

  8. DyNAvectors: dynamic constitutional vectors for adaptive DNA transfection.

    Science.gov (United States)

    Clima, Lilia; Peptanariu, Dragos; Pinteala, Mariana; Salic, Adrian; Barboiu, Mihail

    2015-12-25

    Dynamic constitutional frameworks, based on squalene, PEG and PEI components, reversibly connected to core centers, allow the efficient identification of adaptive vectors for good DNA transfection efficiency and are well tolerated by mammalian cells.

  9. The cathepsin B inhibitor z-FA-CMK induces cell death in leukemic T cells via oxidative stress.

    Science.gov (United States)

    Liow, K Y; Chow, Sek C

    2018-01-01

    The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that L-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active D-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.

  10. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes—A model

    Science.gov (United States)

    Kanani, S.; Pumir, A.; Krinsky, V.

    2008-01-01

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler Reuter model, as well as with the elaborate dynamic Luo Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I channels is low enough. At too high an expression level of I channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I channels observed in ventricular myocytes, both in the Beeler Reuter and in the dynamic Luo Rudy models are too high to allow to observe oscillations. With expression levels below ˜1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  11. Long-term in vitro, cell-type-specific genome-wide reprogramming of gene expression

    International Nuclear Information System (INIS)

    Hakelien, Anne-Mari; Gaustad, Kristine G.; Taranger, Christel K.; Skalhegg, Bjorn S.; Kuentziger, Thomas; Collas, Philippe

    2005-01-01

    We demonstrate a cell extract-based, genome-wide and heritable reprogramming of gene expression in vitro. Kidney epithelial 293T cells have previously been shown to take on T cell properties following a brief treatment with an extract of Jurkat T cells. We show here that 293T cells exposed for 1 h to a Jurkat cell extract undergo genome-wide, target cell-type-specific and long-lasting transcriptional changes. Microarray analyses indicate that on any given week after extract treatment, ∼2500 genes are upregulated >3-fold, of which ∼900 are also expressed in Jurkat cells. Concomitantly, ∼1500 genes are downregulated or repressed, of which ∼500 are also downregulated in Jurkat cells. Gene expression changes persist for over 30 passages (∼80 population doublings) in culture. Target cell-type specificity of these changes is shown by the lack of activation or repression of Jurkat-specific genes by extracts of 293T cells or carcinoma cells. Quantitative RT-PCR analysis confirms the long-term transcriptional activation of genes involved in key T cell functions. Additionally, growth of cells in suspended aggregates, expression of CD3 and CD28 T cell surface markers, and interleukin-2 secretion by 293T cells treated with extract of adult peripheral blood T cells illustrate a functional nuclear reprogramming. Therefore, target cell-type-specific and heritable changes in gene expression, and alterations in cell function, can be promoted by extracts derived from transformed cells as well as from adult primary cells

  12. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    International Nuclear Information System (INIS)

    Liu Hua; Luan Fang; Ju Ying; Shen Hongyu; Gao Lifen; Wang Xiaoyan; Liu Suxia; Zhang Lining; Sun Wensheng; Ma Chunhong

    2007-01-01

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation

  13. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Fang, Luan [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Ying, Ju [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Hongyu, Shen [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lifen, Gao [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Xiaoyan, Wang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Suxia, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lining, Zhang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Wensheng, Sun [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Chunhong, Ma [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Key Laboratory for Experimental Teratology, Ministry of Education (China)]. E-mail: machunhong@sdu.edu.cn

    2007-04-06

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation.

  14. Enhanced transfection by antioxidative polymeric gene carrier that reduces polyplex-mediated cellular oxidative stress.

    Science.gov (United States)

    Lee, Min Sang; Kim, Nak Won; Lee, Kyuri; Kim, Hongtae; Jeong, Ji Hoon

    2013-06-01

    To test the hypothesis in which polyplex-induced oxidative stress may affect overall transfection efficiency, an antioxidative transfection system minimizing cellular oxidative stress was designed for enhanced transfection. An amphiphilic copolymer (PEI-PLGA) was synthesized and used as a micelle-type gene carrier containing hydrophobic antioxidant, α-tocopherol. Cellular oxidative stress and the change of mitochondrial membrane potential after transfection was measured by using a fluorescent probe (H₂DCFDA) and lipophilic cationic probe (JC-1), respectively. Transfection efficiency was determined by measuring a reporter gene (luciferase) expression level. The initial transfection study with conventional PEI/plasmid DNA polyplex showed significant generation of reactive oxygen species (ROS). The PEI-PLGA copolymer successfully carried out the simultaneous delivery of α-tocopherol and plasmid DNA (PEI-PLGA/Toco/pDNA polyplex) into cells, resulting in a significant reduction in cellular ROS generation after transfection and helped to maintain the mitochondrial membrane potential (ΔΨ). In addition, the transfection efficiency was dramatically increased using the antioxidative transfection system. This work showed that oxidative stress would be one of the important factors that should be considered in designing non-viral gene carriers and suggested a possible way to reduce the carrier-mediated oxidative stress, which consequently leads to enhanced transfection.

  15. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Dolder, J. van den; Yang, F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2008-01-01

    Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and

  16. DNA repair in human fibroblasts, as reflected by host-cell reactivation of a transfected UV-irradiated luciferase gene, is not related to donor age

    International Nuclear Information System (INIS)

    Merkle, Thomas J.; O'Brien, Katherine; Brooks, Philip J.; Tarone, Robert E.; Robbins, Jay H.

    2004-01-01

    The effect of donor age on the ability of mammalian cells to repair ultraviolet (UV)-induced DNA damage has been studied using several approaches, most recently via assays that measure the host-cell reactivation (HCR) of UV-irradiated reporter gene-containing plasmid vectors following their transfection into cells. Plasmid HCR assays indirectly quantify a cell line's ability to perform nucleotide excision repair (NER) by measuring the enzyme activity of the repaired reporter gene, e.g., chloramphenical acetyltransferase (cat) or luciferase (luc), and are useful in studies investigating whether increasing age may be a risk factor for the deficient repair of potentially cancer-causing, sunlight-induced, DNA lesions in skin cells. In our study, we quantified the DNA repair ability of cultured, nontransformed, human skin fibroblast lines through their HCR of a transfected UV-C-irradiated plasmid containing luc. HCR was measured at various times after transfection in five lines from normal donors of ages 21-96 years, and from one donor who had xeroderma pigmentosum (XP). The normal lines displayed increasing HCR at successive post-transfection time points and showed no significant correlation between HCR and donor age. The XP-A line, known to be markedly deficient in NER of UV-induced DNA damage, showed minimal evidence of HCR compared to the normal lines. To further assess potential variation in HCR with donor age, fibroblast lines from five old donors, ages 84-94 years, were compared with lines from five young donors, ages 17-26 years. While significant differences in HCR were found between some lines, no significant difference was found between the young and old age groups (P=0.44). Our study provides no indication that the higher incidence of skin cancer observed with increasing age is due to an age-related decrease in the ability to repair UV-induced DNA damage

  17. DNA repair in human fibroblasts, as reflected by host-cell reactivation of a transfected UV-irradiated luciferase gene, is not related to donor age

    Energy Technology Data Exchange (ETDEWEB)

    Merkle, Thomas J.; O' Brien, Katherine; Brooks, Philip J.; Tarone, Robert E.; Robbins, Jay H

    2004-10-04

    The effect of donor age on the ability of mammalian cells to repair ultraviolet (UV)-induced DNA damage has been studied using several approaches, most recently via assays that measure the host-cell reactivation (HCR) of UV-irradiated reporter gene-containing plasmid vectors following their transfection into cells. Plasmid HCR assays indirectly quantify a cell line's ability to perform nucleotide excision repair (NER) by measuring the enzyme activity of the repaired reporter gene, e.g., chloramphenical acetyltransferase (cat) or luciferase (luc), and are useful in studies investigating whether increasing age may be a risk factor for the deficient repair of potentially cancer-causing, sunlight-induced, DNA lesions in skin cells. In our study, we quantified the DNA repair ability of cultured, nontransformed, human skin fibroblast lines through their HCR of a transfected UV-C-irradiated plasmid containing luc. HCR was measured at various times after transfection in five lines from normal donors of ages 21-96 years, and from one donor who had xeroderma pigmentosum (XP). The normal lines displayed increasing HCR at successive post-transfection time points and showed no significant correlation between HCR and donor age. The XP-A line, known to be markedly deficient in NER of UV-induced DNA damage, showed minimal evidence of HCR compared to the normal lines. To further assess potential variation in HCR with donor age, fibroblast lines from five old donors, ages 84-94 years, were compared with lines from five young donors, ages 17-26 years. While significant differences in HCR were found between some lines, no significant difference was found between the young and old age groups (P=0.44). Our study provides no indication that the higher incidence of skin cancer observed with increasing age is due to an age-related decrease in the ability to repair UV-induced DNA damage.

  18. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated ras oncogene and SV40 T-antigen.

    Science.gov (United States)

    Su, L N; Little, J B

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. Cells transfected with EJ ras alone showed no morphological alterations nor significant changes in radiosensitivity. Cell clones expressing ras and/or SV40 T-antigen showed a reduced requirement for serum supplements, an increase in aneuploidy and chromosomal aberrations, and enhanced growth in soft agar as an early cellular response to SV40 T-antigen expression. The sequential order of transfection with SV40 T-antigen and ras influenced radio-sensitivity but not the induction of morphological changes. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself.

  19. Protective Role of Hsp27 Protein Against Gamma Radiation-Induced Apoptosis and Radiosensitization Effects of Hsp27 Gene Silencing in Different Human Tumor Cells

    International Nuclear Information System (INIS)

    Aloy, Marie-Therese; Hadchity, Elie; Bionda, Clara; Diaz-Latoud, Chantal; Claude, Line; Rousson, Robert; Arrigo, Andre-Patrick; Rodriguez-Lafrasse, Claire

    2008-01-01

    Purpose: The ability of heat shock protein 27 (Hsp27) to protect cells from stressful stimuli and its increased levels in tumors resistant to anticancer therapeutics suggest that it may represent a target for sensitization to radiotherapy. In this study, we investigate the protective role of Hsp27 against radiation-induced apoptosis and the effect of its attenuation in highly expressing radioresistant cancer cell lines. Methods and Materials: We examined clonogenic death and the kinetics of apoptotic events in different tumor cell lines overexpressing or underexpressing Hsp27 protein irradiated with photons. The radiosensitive Jurkat cell line, which does not express Hsp27 constitutively or in response to γ-rays, was stably transfected with Hsp27 complementary DNA. Attenuation of Hsp27 expression was accomplished by antisense or RNAi (interfering RNA) strategies in SQ20B head-and-neck squamous carcinoma, PC3 prostate cancer, and U87 glioblastoma radioresistant cells. Results: We measured concentration-dependent protection against the cytotoxic effects of radiation in Jurkat-Hsp27 cells, which led to a 50% decrease in apoptotic cells at 48 hours in the highest expressing cells. Underlying mechanisms leading to radiation resistance involved a significant increase in glutathione levels associated with detoxification of reactive oxygen species, a delay in mitochondrial collapse, and caspase activation. Conversely, attenuation of Hsp27 in SQ20B cells, characterized by their resistance to apoptosis, sensitizes cells to irradiation. This was emphasized by increased apoptosis, decreased glutathione basal level, and clonogenic cell death. Sensitization to irradiation was confirmed in PC3 and U87 radioresistant cells. Conclusion: Hsp27 gene therapy offers a potential adjuvant to radiation-based therapy of resistant tumors

  20. Measurement of CD8+ and CD4+ T Cell Frequencies Specific for EBV LMP1 and LMP2a Using mRNA-Transfected DCs.

    Directory of Open Access Journals (Sweden)

    Dae-Hee Sohn

    Full Text Available An EBV-specific cellular immune response is associated with the control of EBV-associated malignancies and lymphoproliferative diseases, some of which have been successfully treated by adoptive T cell therapy. Therefore, many methods have been used to measure EBV-specific cellular immune responses. Previous studies have mainly used autologous EBV-transformed B-lymphoblastoid cell lines (B-LCLs, recombinant viral vectors transfected or peptide pulsed dendritic cells (DCs as stimulators of CD8(+ and CD4(+ T lymphocytes. In the present study, we used an interferon-γ (IFN-γ enzyme-linked immunospot (ELISPOT assay by using isolated CD8(+ and CD4(+ T cells stimulated with mRNA-transfected DCs. The frequency of latent membrane protein 1 (LMP1-specific IFN-γ producing CD4(+ T cells was significantly higher than that of LMP2a. The frequency of IFN-γ producing CD4(+ T cells was significantly correlated with that of CD8(+ T cells in LMP1-specific immune responses (r = 0.7187, Pc < 0.0001. To determine whether there were changes in LMP1- or LMP2a-specific immune responses, subsequent peripheral blood mononuclear cells (PBMCs samples were analyzed. Significant changes were observed in 5 of the 10 donors examined, and CD4(+ T cell responses showed more significant changes than CD8(+ T cell responses. CD8(+ and CD4(+ T cells from EBV-seropositive donors secreted only the Th1 cytokines IFN-γ, TNF-α, and IL-2, while Th2 (IL-4 and Th17 (IL-17a cytokines were not detected. CD4(+ T cells secreted significantly higher cytokine levels than did CD8(+ T cells. Analysis of EBV-specific T cell responses using autologous DCs transfected with mRNA might provide a comprehensive tool for monitoring EBV infection and new insights into the pathogenesis of EBV-associated diseases.

  1. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro

    NARCIS (Netherlands)

    Kneuer, C; Sameti, M; Bakowsky, U; Schiestel, T; Schirra, H

    2000-01-01

    Diverse polycationic polymers have been used as nonviral transfection agents. Here we report the ability of colloidal silica particles with covalently attached cationic surface modifications to transfect plasmid DNA in vitro and make an attempt to describe the structure of the resulting transfection

  2. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine.

    Science.gov (United States)

    Schomaker, Markus; Heinemann, Dag; Kalies, Stefan; Willenbrock, Saskia; Wagner, Siegfried; Nolte, Ingo; Ripken, Tammo; Murua Escobar, Hugo; Meyer, Heiko; Heisterkamp, Alexander

    2015-02-03

    In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells. The parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization. This methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.

  3. Epizone: Interlaboratory Ring Trial to Compare Dna Transfection Efficiencies

    DEFF Research Database (Denmark)

    Dory, Daniel; Albina, Emmanuel; Kwiatek, Olivier

    Chemical-based transfection of DNA into cultured cells is routinely used to study for example viral or cellular gene functions involved in virus replication, to analyse cellular defence mechanisms or develop specific strategies to interfere with virus replication. Other applications include rescu...

  4. In Vitro Cytotoxic Potential of Essential Oils of Eucalyptus benthamii and Its Related Terpenes on Tumor Cell Lines

    Directory of Open Access Journals (Sweden)

    Patrícia Mathias Döll-Boscardin

    2012-01-01

    Full Text Available Eucalyptus L. is traditionally used for many medicinal purposes. In particular, some Eucalyptus species have currently shown cytotoxic properties. Local Brazilian communities have used leaves of E. benthamii as a herbal remedy for various diseases, including cancer. Considering the lack of available data for supporting this cytotoxic effect, the goal of this paper was to study the in vitro cytotoxic potential of the essential oils from young and adult leaves of E. benthamii and some related terpenes (α-pinene, terpinen-4-ol, and γ-terpinene on Jurkat, J774A.1 and HeLa cells lines. Regarding the cytotoxic activity based on MTT assay, the essential oils showed improved results than α-pinene and γ-terpinene, particularly for Jurkat and HeLa cell lines. Terpinen-4-ol revealed a cytotoxic effect against Jurkat cells similar to that observed for volatile oils. The results of LDH activity indicated that cytotoxic activity of samples against Jurkat cells probably involved cell death by apoptosis. The decrease of cell DNA content was demonstrated due to inhibition of Jurkat cells proliferation by samples as a result of cytotoxicity. In general, the essential oils from young and adult leaves of E. benthamii presented cytotoxicity against the investigated tumor cell lines which confirms their antitumor potential.

  5. In Vitro Cytotoxic Potential of Essential Oils of Eucalyptus benthamii and Its Related Terpenes on Tumor Cell Lines

    Science.gov (United States)

    Döll-Boscardin, Patrícia Mathias; Sartoratto, Adilson; Sales Maia, Beatriz Helena Lameiro de Noronha; Padilha de Paula, Josiane; Nakashima, Tomoe; Farago, Paulo Vitor; Kanunfre, Carla Cristine

    2012-01-01

    Eucalyptus L. is traditionally used for many medicinal purposes. In particular, some Eucalyptus species have currently shown cytotoxic properties. Local Brazilian communities have used leaves of E. benthamii as a herbal remedy for various diseases, including cancer. Considering the lack of available data for supporting this cytotoxic effect, the goal of this paper was to study the in vitro cytotoxic potential of the essential oils from young and adult leaves of E. benthamii and some related terpenes (α-pinene, terpinen-4-ol, and γ-terpinene) on Jurkat, J774A.1 and HeLa cells lines. Regarding the cytotoxic activity based on MTT assay, the essential oils showed improved results than α-pinene and γ-terpinene, particularly for Jurkat and HeLa cell lines. Terpinen-4-ol revealed a cytotoxic effect against Jurkat cells similar to that observed for volatile oils. The results of LDH activity indicated that cytotoxic activity of samples against Jurkat cells probably involved cell death by apoptosis. The decrease of cell DNA content was demonstrated due to inhibition of Jurkat cells proliferation by samples as a result of cytotoxicity. In general, the essential oils from young and adult leaves of E. benthamii presented cytotoxicity against the investigated tumor cell lines which confirms their antitumor potential. PMID:22645627

  6. Transfection of genetically encoded photoswitchable probes for STORM imaging.

    Science.gov (United States)

    Bates, Mark; Jones, Sara A; Zhuang, Xiaowei

    2013-06-01

    Conventional fluorescence microscopy is limited by its spatial resolution, leaving many biological structures too small to be studied in detail. Stochastic optical reconstruction microscopy (STORM) is a method for superresolution fluorescence imaging based on the high accuracy localization of individual fluorophores. It uses optically switchable fluorophores: molecules that can be switched between a nonfluorescent and a fluorescent state by exposure to light. This protocol describes the transfection of genetically encoded photoswitchable probes for STORM imaging. It includes a discussion of how to choose a photoswitchable fluorescent protein; standard molecular biology techniques should be used to generate a plasmid containing the sequence of the photoswitchable protein linked to the gene of interest. Once the plasmid has been generated and has been verified, it can be introduced into cells via any standard means of gene delivery, such as lipofection or electroporation. Optimal conditions will vary considerably for different cell lines and plasmids. Here, we present an example protocol for the transfection of BS-C-1 cells with an mEos2-vimentin plasmid using the lipid-based reagent FuGENE6.

  7. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with SV40 T-antigen mutants defective in RB and P53 binding domains

    International Nuclear Information System (INIS)

    LingNah Su; Little, J.B.

    1992-01-01

    A series of human diploid fibroblast cell clones were developed by DNA transfection with either wild-type SV40 T-antigen (SV40T) or T-antigen mutants defective in its various functional domains. Cell clones expressing the wild-type SV40 T were significantly radioresistant as compared with clones transfected with the neo gene only (D o 192 ± 13 vs 127 ± 19). This radioresistance persisted in post-crisis, immortalized cell lines. A series of mutants with point or deletion mutations within each functionally active domain of SV40 T were also examined for their ability to alter radiosensitivity and induce morphological transformation. Cell clones transfected with T-antigen mutants defective in nuclear localization or origin binding showed increased radioresistance similar to clones transfected with wild-type T-antigen, and expressed morphological changes characteristic of SV40 T-transfected cells. (author)

  8. Simplified lentivirus vector production in protein-free media using polyethylenimine-mediated transfection.

    Science.gov (United States)

    Kuroda, Hitoshi; Kutner, Robert H; Bazan, Nicolas G; Reiser, Jakob

    2009-05-01

    During the past 12 years, lentiviral vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression. Despite significant progress, the production of high-titer high-quality lentiviral vectors is cumbersome and costly. The most commonly used method to produce lentiviral vectors involves transient transfection using calcium phosphate (CaP)-mediated precipitation of plasmid DNAs. However, inconsistencies in pH can cause significant batch-to-batch variations in lentiviral vector titers, making this method unreliable. This study describes optimized protocols for lentiviral vector production based on polyethylenimine (PEI)-mediated transfection, resulting in more consistent lentiviral vector stocks. To achieve this goal, simple production methods for high-titer lentiviral vector production involving transfection of HEK 293T cells immediately after plating were developed. Importantly, high titers were obtained with cell culture media lacking serum or other protein additives altogether. As a consequence, large-scale lentiviral vector stocks can now be generated with fewer batch-to-batch variations and at reduced costs and with less labor compared to the standard protocols.

  9. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes-A model

    Energy Technology Data Exchange (ETDEWEB)

    Kanani, S. [Institut Genomique Fonctionelle, 141 Rue de la Cardonille, 34396 Montpellier (France); Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Pumir, A. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Laboratoire J.A. Dieudonne, CNRS and Universite de Nice, Parc Valrose, 06108 Nice (France)], E-mail: alain.pumir@unice.fr; Krinsky, V. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France)

    2008-01-07

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler-Reuter model, as well as with the elaborate dynamic Luo-Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin-Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I{sub K1} channels is low enough. At too high an expression level of I{sub K1} channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I{sub K1} channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I{sub K1} channels observed in ventricular myocytes, both in the Beeler-Reuter and in the dynamic Luo-Rudy models are too high to allow to observe oscillations. With expression levels below {approx}1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I{sub K1} has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  10. Toward establishing model organisms for marine protists: Successful transfection protocols for Parabodo caudatus (Kinetoplastida: Excavata).

    Science.gov (United States)

    Gomaa, Fatma; Garcia, Paulo A; Delaney, Jennifer; Girguis, Peter R; Buie, Cullen R; Edgcomb, Virginia P

    2017-09-01

    We developed protocols for, and demonstrated successful transfection of, the free-living kinetoplastid flagellate Parabodo caudatus with three plasmids carrying a fluorescence reporter gene (pEF-GFP with the EF1 alpha promoter, pUB-GFP with Ubiquitin C promoter, and pEYFP-Mitotrap with CMV promoter). We evaluated three electroporation approaches: (1) a square-wave electroporator designed for eukaryotes, (2) a novel microfluidic transfection system employing hydrodynamically-controlled electric field waveforms, and (3) a traditional exponential decay electroporator. We found the microfluidic device provides a simple and efficient platform to quickly test a wide range of electric field parameters to find the optimal set of conditions for electroporation of target species. It also allows for processing large sample volumes (>10 ml) within minutes, increasing throughput 100 times over cuvettes. Fluorescence signal from the reporter gene was detected a few hours after transfection and persisted for 3 days in cells transfected by pEF-GFP and pUB-GFP plasmids and for at least 5 days post-transfection for cells transfected with pEYFP-Mitotrap. Expression of the reporter genes (GFP and YFP) was also confirmed using reverse transcription-PCR (RT-PCR). This work opens the door for further efforts with this taxon and close relatives toward establishing model systems for genome editing. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Detailed Analysis of Apoptosis and Delayed Luminescence of Human Leukemia Jurkat T Cells after Proton Irradiation and Treatments with Oxidant Agents and Flavonoids

    Directory of Open Access Journals (Sweden)

    Irina Baran

    2012-01-01

    Full Text Available Following previous work, we investigated in more detail the relationship between apoptosis and delayed luminescence (DL in human leukemia Jurkat T cells under a wide variety of treatments. We used menadione and hydrogen peroxide to induce oxidative stress and two flavonoids, quercetin, and epigallocatechin gallate, applied alone or in combination with menadione or H2O2. 62 MeV proton beams were used to irradiate cells under a uniform dose of 2 or 10 Gy, respectively. We assessed apoptosis, cell cycle distributions, and DL. Menadione, H2O2 and quercetin were potent inducers of apoptosis and DL inhibitors. Quercetin decreased clonogenic survival and the NAD(PH level in a dose-dependent manner. Proton irradiation with 2 Gy but not 10 Gy increased the apoptotic rate. However, both doses induced a substantial G2/M arrest. Quercetin reduced apoptosis and prolonged the G2/M arrest induced by radiation. DL spectroscopy indicated that proton irradiation disrupted the electron flow within Complex I of the mitochondrial respiratory chain, thus explaining the massive necrosis induced by 10 Gy of protons and also suggested an equivalent action of menadione and quercetin at the level of the Fe/S center N2, which may be mediated by their binding to a common site within Complex I, probably the rotenone-binding site.

  12. Pancreatic Cancer Cell Exosome-Mediated Macrophage Reprogramming and the Role of MicroRNAs 155 and 125b2 Transfection using Nanoparticle Delivery Systems

    Science.gov (United States)

    Su, Mei-Ju; Aldawsari, Hibah; Amiji, Mansoor

    2016-01-01

    Exosomes are nano-sized endosome-derived small intraluminal vesicles, which are important facilitators of intercellular communication by transporting contents, such as protein, mRNA, and microRNAs, between neighboring cells, such as in the tumor microenvironment. The purpose of this study was to understand the mechanisms of exosomes-mediated cellular communication between human pancreatic cancer (Panc-1) cells and macrophages (J771.A1) using a Transwell co-culture system. Following characterization of exosome-mediated cellular communication and pro-tumoral baseline M2 macrophage polarization, the Panc-1 cells were transfected with microRNA-155 (miR-155) and microRNA-125b-2 (miR-125b2) expressing plasmid DNA using hyaluronic acid-poly(ethylene imine)/hyaluronic acid-poly(ethylene glycol) (HA-PEI/HA-PEG) self-assembling nanoparticle-based non-viral vectors. Our results show that upon successful transfection of Panc-1 cells, the exosome content was altered leading to differential communication and reprogramming of the J774.A1 cells to an M1 phenotype. Based on these results, genetic therapies targeted towards selective manipulation of tumor cell-derived exosome content may be very promising for cancer therapy. PMID:27443190

  13. Freezing and post-thaw apoptotic behaviour of cells in the presence of palmitoyl nanogold particles

    International Nuclear Information System (INIS)

    Thirumala, Sreedhar; Forman, Julianne M; Monroe, W Todd; Devireddy, Ram V

    2007-01-01

    The aim of this study was to evaluate the freezing response of HeLa and Jurkat cells in the presence of commercially available nanoparticles, NPs (Palmitoyl Nanogold[reg], Nanoprobes). The cells were incubated with NPs for either 5 min or 3 h, and a calorimeter technique was then used to generate the volumetric shrinkage response during freezing at 20 deg. C min -1 . Concomitantly, we also examined the effect of a commonly used cryoprotectant, dimethylsulfoxide, DMSO (10% v/v ratio) on the freezing response of HeLa and Jurkat cells. By fitting a model of water transport to the experimentally determined volumetric shrinkage data, the reference hydraulic conductivity, L pg (μm/min-atm) and activation energy, E Lp (kcal mol -1 ) were obtained. For HeLa cells, the values of L pg ranged from 0.08 to 0.23 μm/min-atm, while E Lp ranged from 10.9 to 37.4 kcal mol -1 . For Jurkat cells these parameter values ranged from 0.05 to 0.16 μm/min-atm and 9.5 to 35.9 kcal mol -1 . A generic optimal cooling rate equation was then used to predict the optimal rates of freezing HeLa and Jurkat cells in the presence and absence of DMSO and NPs. The post-thaw viability and apoptotic response of HeLa and Jurkat cells was further investigated by cooling cells at three rates in the presence and absence of DMSO and NPs using a commercially available controlled rate freezer. Jurkat cells treated in this manner demonstrated an increase in their adhesive properties after 18 h incubation and adhered strongly to the bottom of the culture plate. This observation prevented further analysis of Jurkat apoptotic and necrotic post-thaw responses. There was no significant effect of NPs or DMSO alone on HeLa cell viability prior to freezing. The post-thaw results from HeLa cells show that the NPs increased the measured post-freeze apoptotic response when cooled at 1 deg. C min -1 , suggesting a possible therapeutic use of NPs in cryodestructive procedures

  14. Effect of CD34+ cord blood stem cell transfected by plasmid vector pIRES2-FL-IL-3 on the mice after irradiation

    International Nuclear Information System (INIS)

    Zhang Yong; Zhang Linsheng; Zhang Hongbing; Guo Chaohua; Tong Shiwu

    2008-01-01

    Objective: To observe the effect of CD34 cord blood stem cell transfected by plasmid vector plRES2-FL-IL-3 on the mouse after irradiation and to investigate its mechanisms. Methods: In the co-expressed group (12 mice), CD 34 + cord blood stem cells were transfected by plasmid vector pIRES2-FL-IL-3.5 x lO 5 cells were injected intravenously in the mouse. The hemogram changes in mice were detected 2, 4 and 6 weeks after radiation. At 6 weeks after irradiation, the expression of the CD 34 in spleen was detected by immumofluorescence method. The mRNA level and the activity of IL-3 and FL were detected by RT-PCR and Western blot. Other 3 groups were CD 34 + cell group (CD 34 group), pIRES2-IL-3 group(IL 3 group) and pIRES2-FL group(FL group), and there were 12 mice in each group. Results: The survival rate of CD 34 group, IL3 group and FL group at the 6th week were 25.0% (3/12), 50.0% (6/12) and 50.0% (6/12), respectively. It was 91.7% (11/12) in the co-expressed group, which was higher than those in the other groups. The expression of the CD 34 of spleen in the co-expressed group was higher than those of the other groups. The mRNA level and the activity of IL-3 and FL of spleen in the co-expressed group were higher than those in the other groups too. Conclusions: The CD 34 '+ cord blood stem cells transfected by plasmid vector pIRES2-FL-IL-3 have hemogenesis promotion effect on the mice after irradiation, which was related with the aggregation, proliferation of stem cells and the high expression of the interest proteins.. (authors)

  15. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines

    Directory of Open Access Journals (Sweden)

    Acharya Balakrishna

    2015-01-01

    Full Text Available Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562. All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 104 cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1, Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL. The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells, and blank (only medium. The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models.

  16. Bacteriophage Mediates Efficient Gene Transfer in Combination with Conventional Transfection Reagents.

    Science.gov (United States)

    Donnelly, Amanda; Yata, Teerapong; Bentayebi, Kaoutar; Suwan, Keittisak; Hajitou, Amin

    2015-12-08

    The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage)-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i) provides enhanced phage-mediated gene transfer; (ii) is applicable for laboratory transfection processes and (iii) shows promise within industry for large-scale gene transfer applications.

  17. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    Energy Technology Data Exchange (ETDEWEB)

    Su, L.-N.; Little, J.B. (Harvard School of Public Health, Boston, MA (United States))

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author).

  18. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated RAS oncogene and SV40 T-antigen

    International Nuclear Information System (INIS)

    Su, L.-N.; Little, J.B.

    1992-01-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself. (author)

  19. Rigid aromatic linking moiety in cationic lipids for enhanced gene transfection efficiency.

    Science.gov (United States)

    Wang, Bing; Zhao, Rui-Mo; Zhang, Ji; Liu, Yan-Hong; Huang, Zheng; Yu, Qing-Ying; Yu, Xiao-Qi

    2017-08-18

    Although numerous cationic lipids have been developed as non-viral gene vectors, the structure-activity relationship (SAR) of these materials remains unclear and needs further investigation. In this work, a series of lysine-derived cationic lipids containing linkages with different rigidity were designed and synthesized. SAR studies showed that lipids with rigid aromatic linkage could promote the formation of tight liposomes and enhance DNA condensation, which is essential for the gene delivery process. These lipids could give much higher transfection efficiency than those containing more flexible aliphatic linkage in various cell lines. Moreover, the rigid aromatic linkage also affords the material higher serum tolerance ability. Flow cytometry assay revealed that the target lipids have good cellular uptake, while confocal microscopy observation showed weaker endosome escape than Lipofectamine 2000. To solve such problem and further increase the transfection efficiency, some lysosomotropic reagents were used to improve the endosome escape of lipoplex. As expected, higher transfection efficiency than Lipofectamine 2000 could be obtained via this strategy. Cytotoxicity assay showed that these lipids have lower toxicity in various cell lines than Lipofectamine 2000, suggesting their potential for further application. This work demonstrates that a rigid aromatic linkage might distinctly improve the gene transfection abilities of cationic lipids and affords information to construct safe and efficient gene vector towards practical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. [Experimental study on human periodontal ligament cells transfected with human amelogenin gene].

    Science.gov (United States)

    Yu, Guang; Shu, Rong; Sun, Ying; Cheng, Lan; Song, Zhong-Chen; Zhang, Xiu-Li

    2008-02-01

    To construct the recombinant lentiviral vector of human amelogenin gene, infect human periodontal ligament cells with the recombinant lentivirus, and evaluate the feasibility of applying modified PDLCs as seeds for a further periodontal reconstruction. The mature peptide of hAm cDNA was cloned and linked into the vector plasmid, the recombinant plasmid FUAmW was confirmed by double enzyme digestion and sequence analysis. Recombinant lentivirus was prepared from 293T cells by polytheylenimine (PEI)-mediated transient cotransfection. The hPDLCs and 293T cells were infected with the generated lentivirus. The infection efficiency was analysed by detection of green fluorescence protein (GFP) with fluorescent microscope and flow cytometer 72 hours later. The expression of hAm gene was detected by reverse transcription polymerase chain reaction (RT-PCR). The sequence of inserted fragment in recombinant plasmid was identical to the hAm sequence reported in Genebank. Green fluorescence was visible under fluorescent microscope, FCM assay showed that positive percentage was 69.46% and 33.99% in 293T and hPDLCs, respectively. The targeted gene was obtained in the experimental groups by RT-PCR. The recombinan lentiviral vector of hAm gene is constructed successfully and it could be transfected into cultured hPDLCs. hAm gene and seed cells may be used for further study in the fields periodontal tissue engineering. Supported by National Natural Science Foundation of China (Grant No. 30672315).

  1. Pharmaceutical studies for gene therapy: expression of human Cu, Zn-superoxide dismutase gene transfected by lipofection in rat skin fibroblasts.

    Science.gov (United States)

    Nishiguchi, K; Ishida, K; Nakajima, M; Maeda, T; Komada, F; Iwakawa, S; Tanigawara, Y; Okumura, K

    1996-08-01

    To evaluate whether lipofection using Lipofectin is suitable for delivering foreign genes into skin fibroblasts as target cells, we performed experiments using human superoxide dismutase (hSOD) and neomycin-resistance (Neo) genes as models in rat skin fibroblasts (FR and primary cells) in vitro. The amounts of DNA used in the lipofection procedure significantly affected the transfection efficiencies, and the optimal amounts were determined for all cells used. However, the efficiencies in rat skin fibroblasts were about 20-fold higher than that in rat lung epithelial-like cells (L2 cells). The differences in plasmid vectors (pRc/RSV-SOD and pRc/CMV-SOD) hardly affected the transfection efficiencies. The amounts of Lipofectin significantly affected the transfection efficiencies, and the optimal amounts were determined for both types of skin fibroblasts. However, cytotoxic effects in both skin fibroblasts were observed with high doses of Lipofectin. On the other hand, with optimal amounts of DNA and Lipofectin, the reporter gene (NeoT) introduced into cells was mainly integrated into the host cell chromosome. Western blot analysis showed the continuous expression of hSOD protein for at least 45 d in skin fibroblasts transfected with the expression plasmid for hSOD by Lipofectin under the optimal conditions, and the cellular SOD activity fluctuated in parallel with the expression of hSOD protein. Differences in the type of cells also affected the expression of hSOD. These results indicate that it is necessary to set up optimal conditions for transfection using Lipofectin for each cell type, and that transfection with Lipofectin under optimal conditions may be an efficient method for introduction of foreign genes into skin fibroblasts for use as a clinical delivery system of therapeutic protein.

  2. Energy dissipation mapping of cancer cells.

    Science.gov (United States)

    Dutta, Diganta; Palmer, Xavier-Lewis; Kim, Jinhyun; Qian, Shizhi; Stacey, Michael

    2018-02-01

    The purpose of this study is to map the energy dissipation of Jurkat cells using a single 60 nanosecond pulse electric field (NsPEF), primarily through atomic force microscopy (AFM). The phase shift is generated by the sample elements that do not have a heterogeneous surface. Monitoring and manipulating the phase shift is a powerful way for determining the dissipated energy and plotting the topography. The dissipated energy is a relative value, so the silica wafer and cover slip are given a set reference while the transmission of energy between the tip of the cantilever and cell surfaces is measured. The most important finding is that the magnitude and the number of variations in the dissipated energy change with the strength of NsPEF applied. Utilizing a single low field strength NsPEF (15kV/cm), minor changes in dissipated energy were found. The application of a single high field strength NsPEF (60kV/cm) to Jurkat cells resulted in a higher dissipated energy change versus that of in the low field strength condition. Thus, the dissipated energy from the Jurkat cells changes with the strength of NsPEF. By analyzing the forces via investigation in the tapping mode of the AFM, the stabilization of the cytoskeleton and membrane of the cell are related to the strength of NsPEF applied. Furthermore, the strength of NsPEF indicates a meaningful relationship to the survival of the Jurkat cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    Science.gov (United States)

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  4. Experimental Model of Gene Transfection in Healthy Canine Myocardium: Perspectives of Gene Therapy for Ischemic Heart Disease

    Directory of Open Access Journals (Sweden)

    Renato A. K. Kalil

    2002-09-01

    Full Text Available OBJECTIVE: To assess the transfection of the gene that encodes green fluorescent protein (GFP through direct intramyocardial injection. METHODS: The pREGFP plasmid vector was used. The EGFP gene was inserted downstream from the constitutive promoter of the Rous sarcoma virus. Five male dogs were used (mean weight 13.5 kg, in which 0.5 mL of saline solution (n=1 or 0.5 mL of plasmid solution containing 0.5 µg of pREGFP/dog (n=4 were injected into the myocardium of the left ventricular lateral wall. The dogs were euthanized 1 week later, and cardiac biopsies were obtained. RESULTS: Fluorescence microscopy showed differences between the cells transfected and not transfected with pREGFP plasmid. Mild fluorescence was observed in the cardiac fibers that received saline solution; however, the myocardial cells transfected with pREGFP had overt EGFP expression. CONCLUSION: Transfection with the EGFP gene in healthy canine myocardium was effective. The reproduction of this efficacy using vascular endothelial growth factor (VEGF instead of EGFP aims at developing gene therapy for ischemic heart disease.

  5. Data-based mathematical modeling of vectorial transport across double-transfected polarized cells.

    Science.gov (United States)

    Bartholomé, Kilian; Rius, Maria; Letschert, Katrin; Keller, Daniela; Timmer, Jens; Keppler, Dietrich

    2007-09-01

    Vectorial transport of endogenous small molecules, toxins, and drugs across polarized epithelial cells contributes to their half-life in the organism and to detoxification. To study vectorial transport in a quantitative manner, an in vitro model was used that includes polarized MDCKII cells stably expressing the recombinant human uptake transporter OATP1B3 in their basolateral membrane and the recombinant ATP-driven efflux pump ABCC2 in their apical membrane. These double-transfected cells enabled mathematical modeling of the vectorial transport of the anionic prototype substance bromosulfophthalein (BSP) that has frequently been used to examine hepatobiliary transport. Time-dependent analyses of (3)H-labeled BSP in the basolateral, intracellular, and apical compartments of cells cultured on filter membranes and efflux experiments in cells preloaded with BSP were performed. A mathematical model was fitted to the experimental data. Data-based modeling was optimized by including endogenous transport processes in addition to the recombinant transport proteins. The predominant contributions to the overall vectorial transport of BSP were mediated by OATP1B3 (44%) and ABCC2 (28%). Model comparison predicted a previously unrecognized endogenous basolateral efflux process as a negative contribution to total vectorial transport, amounting to 19%, which is in line with the detection of the basolateral efflux pump Abcc4 in MDCKII cells. Rate-determining steps in the vectorial transport were identified by calculating control coefficients. Data-based mathematical modeling of vectorial transport of BSP as a model substance resulted in a quantitative description of this process and its components. The same systems biology approach may be applied to other cellular systems and to different substances.

  6. Specific inhibition of Wee1 kinase and Rad51 recombinase: A strategy to enhance the sensitivity of leukemic T-cells to ionizing radiation-induced DNA double-strand breaks

    International Nuclear Information System (INIS)

    Havelek, Radim; Cmielova, Jana; Kralovec, Karel; Bruckova, Lenka; Bilkova, Zuzana; Fousova, Ivana; Sinkorova, Zuzana; Vavrova, Jirina; Rezacova, Martina

    2014-01-01

    Highlights: • Pre-treatment with the inhibitors increased the sensitivity of Jurkat cells to irradiation. • Combining both inhibitors together resulted in a G2 cell cycle arrest abrogation in Jurkat. • Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. • Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction in MOLT-4 cells. • When dosed together, the combination decreased MOLT-4 cell survival. - Abstract: Present-day oncology sees at least two-thirds of cancer patients receiving radiation therapy as a part of their anticancer treatment. The objectives of the current study were to investigate the effects of the small molecule inhibitors of Wee1 kinase II (681641) and Rad51 (RI-1) on cell cycle progression, DNA double-strand breaks repair and apoptosis following ionizing radiation exposure in human leukemic T-cells Jurkat and MOLT-4. Pre-treatment with the Wee1 681641 or Rad51 RI-1 inhibitor alone increased the sensitivity of Jurkat cells to irradiation, however combining both inhibitors together resulted in a further enhancement of apoptosis. Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. MOLT-4 cells were less affected by inhibitors application prior to ionizing radiation exposure. Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction; however Wee1 681641 increased ionizing radiation-induced cell death in MOLT-4 cells

  7. Cationic Phospholipids Forming Cubic Phases: Lipoplex Structure and Transfection Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana; Wang, Li; MacDonald, Robert C. (NWU)

    2008-10-29

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl-sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl-sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  8. Cationic phospholipids forming cubic phases: lipoplex structure and transfection efficiency.

    Science.gov (United States)

    Koynova, Rumiana; Wang, Li; Macdonald, Robert C

    2008-01-01

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl- sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl- sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 degrees C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 degrees C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl- sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  9. Impacts of autophagy-inducing ingredient of areca nut on tumor cells.

    Directory of Open Access Journals (Sweden)

    Ching-Yu Yen

    Full Text Available Areca nut (AN is a popular carcinogen used by about 0.6-1.2 billion people worldwide. Although AN contains apoptosis-inducing ingredients, we previously demonstrated that both AN extract (ANE and its 30-100 kDa fraction (ANE 30-100K predominantly induce autophagic cell death in both normal and malignant cells. In this study, we further explored the action mechanism of ANE 30-100K-induced autophagy (AIA in Jurkat T lymphocytes and carcinoma cell lines including OECM-1 (mouth, CE81T/VGH (esophagus, SCC25 (tongue, and SCC-15 (tongue. The results showed that chemical- and small hairpin RNA (shRNA-mediated inhibition of AMP-activated protein kinase (AMPK resulted in the attenuation of AIA in Jurkat T but not in OECM-1 cells. Knockdown of Atg5 and Beclin 1 expressions ameliorated AIA in OECM-1/CE81T/VGH/Jurkat T and OECM-1/SCC25/SCC-15, respectively. Furthermore, ANE 30-100K could activate caspase-3 after inhibition of Beclin 1 expression in OECM-1/SCC25/SCC15 cells. Meanwhile, AMPK was demonstrated to be the upstream activator of the extracellular-regulated kinase (ERK in Jurkat T cells, and inhibition of MEK attenuated AIA in Jurkat T/OECM-1/CE81T/VGH cells. Finally, we also found that multiple myeloma RPMI8226, lymphoma U937, and SCC15 cells survived from long-term non-cytotoxic ANE 30-100K treatment exhibited stronger resistance against serum deprivation through upregulated autophagy. Collectively, our studies indicate that Beclin-1 and Atg5 but not AMPK are commonly required for AIA, and MEK/ERK pathway is involved in AIA. Meanwhile, it is also suggested that long-term AN usage might increase the resistance of survived tumor cells against serum-limited conditions.

  10. Prometaphase arrest-dependent phosphorylation of Bcl-2 family proteins and activation of mitochondrial apoptotic pathway are associated with 17α-estradiol-induced apoptosis in human Jurkat T cells.

    Science.gov (United States)

    Han, Cho Rong; Jun, Do Youn; Kim, Yoon Hee; Lee, Ji Young; Kim, Young Ho

    2013-10-01

    In Jurkat T cell clone (JT/Neo), G2/M arrest, apoptotic sub-G1 peak, mitochondrial membrane potential (Δψm) loss, and TUNEL-positive DNA fragmentation were induced following exposure to 17α-estradiol (17α-E2), whereas none of these events (except for G2/M arrest) were induced in Jurkat cells overexpressing Bcl-2 (JT/Bcl-2). Under these conditions, phosphorylation at Thr161 and dephosphorylation at Tyr15 of Cdk1, upregulation of cyclin B1 level, histone H1 phosphorylation, Cdc25C phosphorylation at Thr-48, Bcl-2 phosphorylation at Thr-56 and Ser-70, Mcl-1 phosphorylation, and Bim phosphorylation were detected in the presence of Bcl-2 overexpression. However, the 17α-E2-induced upregulation of Bak levels, activation of Bak, activation of caspase-3, and PARP degradation were abrogated by Bcl-2 overexpression. In the presence of the G1/S blocking agent hydroxyurea, 17α-E2 failed to induce G2/M arrest and all apoptotic events including Cdk1 activation and phosphorylation of Bcl-2, Mcl-1 and Bim. The 17α-E2-induced phosphorylation of Bcl-2 family proteins and mitochondrial apoptotic events were suppressed by a Cdk1 inhibitor but not by aurora A and aurora B kinase inhibitors. Immunofluorescence microscopic analysis showed that an aberrant bipolar microtubule array, incomplete chromosome congression at the metaphase plate, and prometaphase arrest, which was reversible, were the underlying factors for 17α-E2-induced mitotic arrest. The in vitro microtubule polymerization assay showed that 17α-E2 could directly inhibit microtubule formation. These results show that the apoptogenic activity of 17α-E2 was due to the impaired mitotic spindle assembly causing prometaphase arrest and prolonged Cdk1 activation, the phosphorylation of Bcl-2, Mcl-1 and Bim, and the activation of Bak and mitochondria-dependent caspase cascade. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Liow, K.Y.; Chow, S.C., E-mail: chow.sek.chuen@monash.edu

    2013-11-01

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose–response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. - Highlights: • z-FA-CMK is toxic and induce cell death in the human T cells. • z-FA-CMK toxicity requires the CMK group, alanine and the benzyloxycarbonyl group. • z-FA-CMK induced apoptosis at low concentration and necrosis at high concentration.

  12. The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes

    International Nuclear Information System (INIS)

    Liow, K.Y.; Chow, S.C.

    2013-01-01

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose–response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. - Highlights: • z-FA-CMK is toxic and induce cell death in the human T cells. • z-FA-CMK toxicity requires the CMK group, alanine and the benzyloxycarbonyl group. • z-FA-CMK induced apoptosis at low concentration and necrosis at high concentration

  13. Establishment, characterization, virus susceptibility and transfection of cell lines from cobia, Rachycentron canadum (L.), brain and fin.

    Science.gov (United States)

    Cheng, T-C; Lai, Y-S; Lin, I-Y; Wu, C-P; Chang, S-L; Chen, T-I; Su, M-S

    2010-02-01

    Establishment and characterization of two cobia, Rachycentron canadum, cell lines derived from cobia brain (CB) and cobia fin (CF) are described. Caudal fin and brain from juvenile cobia were dissociated for 30 and 10 min, respectively, in phosphate-buffered saline containing 0.25% trypsin at 25 degrees C. The optimal culture condition for both dissociated cells (primary cell culture) was at 28 degrees C in Leibovitz-15 medium containing 10% foetal bovine serum. The cells have been sub-cultured at a ratio of 1:2 for more than 160 passages over a period of 3 years. Origin of the cultured cells was verified by comparison of their sequences of mitochondrial cytochrome oxidase subunit I genes (cox I) with the cox 1 sequence from cobia muscle tissue. The cell lines showed polyploidy. No mycoplasma contamination was detected. Susceptibility to grouper iridovirus was observed for the CB cell line but not the CF cell line. Both cell lines expressed green fluorescent protein after being transfected with green fluorescent reporter gene driven by the cytomegalovirus promoter.

  14. Molecular studies of fibroblasts transfected with hepatitis B virus DNA

    International Nuclear Information System (INIS)

    Chen, M.L.; Hood, A.; Thung, S.N.; Gerber, M.A.

    1987-01-01

    Two subclones (D7 and F8) derived from an NIH 3T3 mouse fibroblast cell line after transfection with hepatitis B virus (HBV) genomes, secreted significantly different amounts of HBsAg and HBeAg. DNA extracted from the subclones revealed only integrated and no extrachromosomal HBV DNA sequences as determined by the Southern blot technique with a /sup 32/P-labeled full length HBV DNA probe. The amount and integration sites of HBV sequences were significantly different in the two subclones. HBV DNA sequences coding for HBsAg and HBcAg were detected by alkaline phosphatase-conjugated, single-stranded synthetic gene-specific oligonucleotide probes revealing a larger number of copies in D7 DNA than in F8 DNA. Using a biotinylated probe for in situ hybridization, HBV DNA was found in the nuclei of all D7 cells with predominant localization to a single chromsome, but only in 10-20% of F8 cells. These observations demonstrate different integration patterns of HBV and DNA in two subclones derived from a transfected cell line and suggest that the amount of integrated HBV DNA is proportional to the amount of HBV antigens produced

  15. Investigation of transfection efficacy with transcatheter arterial transporting transferring to enhance p53 gene

    International Nuclear Information System (INIS)

    Lu Qin; Niu Huanzhang; Zhu Guangyu; An Yanli; Qiu Dinghong; Teng Gaojun

    2007-01-01

    Objective: To investigate the function of transferrin-DNA complex, transported by transferrin(Tf) and trans-arterial injection via interventional approach be the duel-target-orientated delivery and the transferring into malignant cells to get more effective therapy. Methods: p53-LipofectAMINE ligand with different concentrations of Tf (0, 10, 25, 50, 100 μg)transfected the 4 strains including LM6,Hep3B,YY and L02 in vitro to evaluate the gene transfection efficiency through western blot. Then, after setting up the VX2 hepatocarcinoma models, we delivered the Tf-p53-LipofectAMlNE complex into the hepatic arteries via interventional techniques to analyse the transfection efficiency in vivo. Results: Tf, within the range of l0 100 μg, could increase gene transfection efficiency mediated by liposome, and the efficiency increases with the raise of Tf concentration. Combination with interventional technique to inject Tf-DNA complex into tumor arteries, gene transfection efficiency was enhanced in rabbit models. Conclusion: Tf can enhance gene-liposome transfection efficiency, furthermore with combination of interventional catheter technique, there would be a potential duel-target-orientated gene therapy method. (authors)

  16. Investigation of transfection efficacy with transcatheter arterial transporting transferring to enhance p53 gene

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Lu; Huanzhang, Niu; Guangyu, Zhu; Yanli, An; Dinghong, Qiu; Gaojun, Teng [Radiologic Department, Zhongda Hospital, Southeast Univ., Nanjing (China)

    2007-02-15

    Objective: To investigate the function of transferrin-DNA complex, transported by transferrin(Tf) and trans-arterial injection via interventional approach be the duel-target-orientated delivery and the transferring into malignant cells to get more effective therapy. Methods: p53-LipofectAMINE ligand with different concentrations of Tf (0, 10, 25, 50, 100 {mu}g)transfected the 4 strains including LM6,Hep3B,YY and L02 in vitro to evaluate the gene transfection efficiency through western blot. Then, after setting up the VX2 hepatocarcinoma models, we delivered the Tf-p53-LipofectAMlNE complex into the hepatic arteries via interventional techniques to analyse the transfection efficiency in vivo. Results: Tf, within the range of l0 100 {mu}g, could increase gene transfection efficiency mediated by liposome, and the efficiency increases with the raise of Tf concentration. Combination with interventional technique to inject Tf-DNA complex into tumor arteries, gene transfection efficiency was enhanced in rabbit models. Conclusion: Tf can enhance gene-liposome transfection efficiency, furthermore with combination of interventional catheter technique, there would be a potential duel-target-orientated gene therapy method. (authors)

  17. Effects of recombinant plasmid pEgr-p53 transfected stably in combination with X-irradiation on cell cycle progression and proliferation in human SKOV-3 tumor cells in vitro

    International Nuclear Information System (INIS)

    Dong Lihua; Liu Feng; Li Yanbo; Fu Shibo; Gong Shouliang

    2008-01-01

    Objective: To investigate the effect of recombinant plasmid pEgr-hp53 transfected stably in combination with X-ray irradiation on the cell cycle progression and the proliferation in human SKOV-3 tumor cells. Methods: pEgr-hp53 and pcDNA3.1 packaged with liposome were stably transfected into SKOV-3 cells in vitro. SKOV-3-hp53 and SKOV-3-vect were irradiated with 0, 0.5, 2.0 and 5.0 Gy X-rays, respectively, i.e. 8 experimental groups. The SKOV-3 cell proliferation and the cell cycle progression were measured with flow cytometry and cell growth curve, respectively. Results: Compared with 0 Gy group, the cell counts in SKOV-3- hp53 plus different doses of irradiation groups 2 d after irradiation decreased significantly (P 0 /G 1 cells increased significantly (P 2 /M cells decreased in varying degrees. The cell counts in SKOV-3-hp53 plus irradiation group were significantly lower than those in corresponding SKOV-3-vect plus irradiation group, the cell counts 4-8 d after irradiation with 0.5 Gy, 2 d after 2.0 Gy irradiation and 6 d after 5.0 Gy irradiation decreased significantly (P 0 /G 1 cells increased significantly (P 2 /M cells decreased significantly (P 1 arrest in SKOV-3 cells and inhibits the cell proliferation. Ionizing radiation can activate early growth response-1 (Egr-1) gene promoter and increase the expression of p53 gene, and enhance the inhibition of tumor cell growth. (authors)

  18. Enhancement of the response to purinergic agonists in P2Y1 transfected 1321N1 cells by antagonists suramin and PPADS.

    Science.gov (United States)

    Brown, C A; Charlton, S J; Boarder, M R

    1997-03-01

    1. We have previously shown that both suramin and pyridoxal-phosphate-6-azophenyl-2',4' disulphonic acid (PPADS) act as antagonists at transfected P2Y1 receptors. Here we show that under certain experimental conditions these two P2 antagonists can enhance the response to agonists acting at these receptors. 2. The expression of either P2Y1 or P2Y2 receptors in 1321N1 human astrocytoma cells results, on a change of medium, in an elevation of basal (no added agonist) accumulation of [3H]-inositol(poly)phosphates([3H]-InsPx) compared to cells not expressing these receptors. This elevation is much greater in P2Y1 transfectants than in P2Y, transfectants. 3. Both PPADS and suramin reduced this basal level of [3H]-InsPx accumulation in the P2Y1 expressing cells. 4. When a protocol was used which required changing the culture medium, antagonists were added at a concentration which reduced the basal accumulation by about 50%, there was a significant stimulation in response to increasing concentrations of 2-methylthioadenosine 5'-triphosphate (2MeSATP), in the absence of antagonists there was no significant effect of the agonist. 5. However, when 2MeSATP was added in the absence of a change of medium and with no antagonist present, there was a several fold increase in [3H]-InsPx accumulation. These results show that a release of endogenous agonist activity (possibly ATP/ADP) from the P2Y1 expressing cells can create conditions in which a response to an agonist such as 2MeSATP can only be seen in the presence of a competitive antagonist.

  19. Agonist/antagonist interactions with cloned human 5-HT(1A) receptors: Variations in intrinsic activity studied in transfected HeLa cells

    NARCIS (Netherlands)

    Boddeke, H.W.G.M.; Fargin, A.; Raymond, J.R.; Schoeffter, P.; Hoyer, D.

    1992-01-01

    The characteristics of 5-HT(1A)-recognition sites and receptor-mediated release of intracellular calcium were established in two transfected HeLa cell lines (HA 6 and HA 7) expressing different levels of human 5-HT(1A) receptors (about 3000 and 500 fmol/mg protein, Fargin et al. 1989; 1991; Raymond

  20. Functionally important amino acids in the TCR revealed by immunoselection of membrane TCR-negative T cells

    DEFF Research Database (Denmark)

    Caspar-Bauguil, S; Arnaud, J; Gouaillard, C

    1994-01-01

    A spontaneous TCR cell surface variant (3P11) of the Jurkat T cell line is described and characterized. 3P11 was selected by incubation of Jurkat cells with anti-TCR mAb followed by passage through Ig anti-Ig columns and cloning. 3P11 contained mRNA for both Ti alpha and Ti beta and CD3 gamma, de...

  1. Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors.

    Science.gov (United States)

    Piao, Yulan; Hung, Sandy Shen-Chi; Lim, Shiang Y; Wong, Raymond Ching-Bong; Ko, Minoru S H

    2014-07-01

    Keratinocytes represent an easily accessible cell source for derivation of human induced pluripotent stem (hiPS) cells, reportedly achieving higher reprogramming efficiency than fibroblasts. However, most studies utilized a retroviral or lentiviral method for reprogramming of keratinocytes, which introduces undesirable transgene integrations into the host genome. Moreover, current protocols of generating integration-free hiPS cells from keratinocytes are mostly inefficient. In this paper, we describe a more efficient, simple-to-use, and cost-effective method for generating integration-free hiPS cells from keratinocytes. Our improved method using lipid-mediated transfection achieved a reprogramming efficiency of ∼0.14% on average. Keratinocyte-derived hiPS cells showed no integration of episomal vectors, expressed stem cell-specific markers and possessed potentials to differentiate into all three germ layers by in vitro embryoid body formation as well as in vivo teratoma formation. To our knowledge, this represents the most efficient method to generate integration-free hiPS cells from keratinocytes. ©AlphaMed Press.

  2. Thermal response of rat fibroblasts stably transfected with the human 70-kDa heat shock protein-encoding gene

    International Nuclear Information System (INIS)

    Li, G.C.; Li, Ligeng; Liu, Yunkang; Mak, J.Y.; Chen, Lili; Lee, W.M.F.

    1991-01-01

    The major heat shock protein hsp70 is synthesized by cells of a wide variety of organisms in response to heat shock or other environmental stresses and is assumed to play an important role in protecting cells from thermal stress. The authors have tested this hypothesis directly by transfecting a constitutively expressed recombinant human hsp70-encoding gene into rat fibroblasts and examining the relationship between the levels of human hsp70 expressed and thermal resistance of the stably transfected rat cells. Successful transfection and expression of the gene for human hsp70 were characterized by RNA hybridization analysis, low-dimensional gel electrophoresis, and immunoblot analysis. When individual cloned cell lines were exposed to 45C and their thermal survivals were determined by colony-formation assay, they found that the expression of human hsp70 conferred heat resistance to the rat cells. These results reinforce the hypothesis that hsp70 has a protective function against thermal stress

  3. Design, synthesis, and in vitro transfection biology of novel tocopherol based monocationic lipids: a structure-activity investigation.

    Science.gov (United States)

    Kedika, Bhavani; Patri, Srilakshmi V

    2011-01-27

    Herein, we report on the design, synthesis, and in vitro gene delivery efficacies of five novel tocopherol based cationic lipids (1-5) in transfecting CHO, B16F10, A-549, and HepG2 cells. The in vitro gene transfer efficiencies of lipids (1-5) were evaluated by both β-galactosidase reporter gene expression and inverted fluorescent microscopic experiments. The results of the present structure-activity investigation convincingly demonstrate that the tocopherol based lipid with three hydroxyl groups in its headgroup region showed 4-fold better transfection efficiency than the commercial formulation. The results also demonstrate that these tocopherol based lipids may be targeted to liver. Transfection efficiency of all the relevant lipids was maintained even when the serum was present during the transfection conditions. The results indicated that the designed systems are quite capable of transferring the DNA into all four types of cells studied with low or no toxicity.

  4. Amino acid sequence and posttranslational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells

    International Nuclear Information System (INIS)

    Thim, L.; Bjoern, S.; Christensen, M.; Nicolaisen, E.M.; Lund-Hansen, T.; Pedersen, A.H.; Hedner, U.

    1988-01-01

    Blood coagulation factor VII is a vitamin K dependent glycoprotein which in its activated form, factor VII a , participates in the coagulation process by activating factor X and/or factor IX in the presence of Ca 2+ and tissue factor. Three types of potential posttranslational modifications exist in the human factor VII a molecule, namely, 10 γ-carboxylated, N-terminally located glutamic acid residues, 1 β-hydroxylated aspartic acid residue, and 2 N-glycosylated asparagine residues. In the present study, the amino acid sequence and posttranslational modifications of recombinant factor VII a as purified from the culture medium of a transfected baby hamster kidney cell line have been compared to human plasma factor VII a . By use of HPLC, amino acid analysis, peptide mapping, and automated Edman degradation, the protein backbone of recombinant factor VII a was found to be identical with human factor VII a . Asparagine residues 145 and 322 were found to be fully N-glycosylated in human plasma factor VII a . In the recombinant factor VII a , asparagine residue 322 was fully glycosylated whereas asparagine residue 145 was only partially (approximately 66%) glycosylated. Besides minor differences in the sialic acid and fucose contents, the overall carbohydrate compositions were nearly identical in recombinant factor VII a and human plasma factor VII a . These results show that factor VII a as produced in the transfected baby hamster kidney cells is very similar to human plasma factor VII a and that this cell line thus might represent an alternative source for human factor VII a

  5. Low toxic and high soluble camptothecin derivative 2–47 effectively induces apoptosis of tumor cells in vitro

    International Nuclear Information System (INIS)

    Zhou, Yao; Zhao, Hong-Ye; Jiang, Du; Wang, Lu-Yao; Xiang, Cen; Wen, Shao-Peng; Fan, Zhen-Chuan; Zhang, Yong-Min; Guo, Na; Teng, Yu-Ou; Yu, Peng

    2016-01-01

    The cytotoxic activity of camptothecin derivatives is so high that these compounds need to be further modified before their successful application as anti-cancer agents clinically. In this study, we reported the synthesis and biological evaluation of a novel camptothecin derivative called compound 2–47. The changes in structure did not reduce its activity to inhibit DNA topoisomerase I. Compound 2–47 induced apoptosis of many tumor cells including leukemia cells K562, Jurkat, HL-60, breast cancer cell BT-549, colon cancer cell HT-29 and liver cancer cell HepG2 with a half maximal inhibitory concentration (IC 50 ) of 2- to 3-fold lower than HCPT as a control. In particular, 2–47 inhibited the proliferation of Jurkat cells with an IC 50 of as low as 40 nM. By making use of Jurkat cell as a model, following treatment of Jurkat cells, compound 2–47 activated caspase-3 and PARP, resulting in a decreased Bcl-2/Bax ratio. These data showed that compound 2–47 induces Jurkat cell death through the mitochondrial apoptotic pathway. In addition, compound 2–47 showed a decreased cytotoxic activity against normal cells and an improved solubility in low-polar solvent. For example, compound 2–47 solutes in CHCl 3 130-fold higher than HCPT. Taken together, our data demonstrated that camptothecin derivative 2–47 notably inhibits the tumor cell proliferation through mitochondrial-mediated apoptosis in vitro. - Highlights: • Compound 2–47 showed a wide inhibitory effect on the tested tumor cell lines with an IC 50 of 3 times lower than that of HCPT in general. • Compound 2–47 inhibited the proliferation of the human leukemia cell Jurkat at an IC 50 of as low as 40 nM. • As compared to HCPT, compound 2–47 showed much reduced cytotoxicity on normal human cells. • As compared to others, compound 2–47 showed a hundreds-fold higher solubility in non-polar organic solution.

  6. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F. (Hagedorn Research Laboratory, Gentofte (Denmark))

    1988-09-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression.

  7. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    International Nuclear Information System (INIS)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F.

    1988-01-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression

  8. Optimization of in vitro culture and transfection condition of bovine ...

    African Journals Online (AJOL)

    The present study aimed to optimize the in vitro culture and transfection efficiency of bovine primary spermatogonial stem cells (SSCs). To this end, SSCs were obtained from newborn Holstein bull calves by two-step enzymatic digestion. After enrichment and culture, SSCs were characterized by using alkaline phosphatase ...

  9. Transfection of CXCR-4 using microbubble-mediated ultrasound irradiation and liposomes improves the migratory ability of bone marrow stromal cells.

    Science.gov (United States)

    Wang, Gong; Zhuo, Zhongxiong; Zhang, Qian; Xu, Yali; Wu, Shengzheng; Li, Lu; Xia, Hongmei; Gao, Yunhua

    2015-01-01

    Bone marrow stromal cells (BMSCs) have proven useful for the treatment of various human diseases and injuries. However, their reparative capacity is limited by their poor migration and homing ability, which are primarily dependent on the SDF-1/CXCR4 axis. Most subcultured BMSCs lack CXCR4 receptor expression on the cell surface and exhibit impaired migratory capacity. To increase responsiveness to SDF-1 and promote cell migration and survival of cultured BMSCs, we used a combination of ultrasound-targeted microbubble destruction (UTMD) and liposomes to increase CXCR4 expression in vitro. We isolated and cultured rat BMSCs to their third passage and transduced them with recombinant plasmid pDsRed-CXCR4 using microbubble-mediated ultrasound irradiation and liposomes. Compared to some viral vectors, the method we employed here resulted in significantly better transfection efficiency, CXCR4 expression, and technical reproducibility. The benefits of this approach are likely due to the combination of "sonoporation" caused by shockwaves and microjet flow resulting from UTMD-generated cavitation. Following transfection, we performed a transwell migration assay and found that the migration ability of CXCR4-modified BMSCs was 9-fold higher than controls. The methods we describe here provide an effective, safe, non-viral means to achieve high levels of CXCR4 expression. This is associated with enhanced migration of subcultured BMSCs and may be useful for clinical application as well.

  10. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes

    Directory of Open Access Journals (Sweden)

    Samadikhah HR

    2011-10-01

    Full Text Available Hamid Reza Samadikhah1,*, Asia Majidi2,*, Maryam Nikkhah2, Saman Hosseinkhani11Department of Biochemistry, 2Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran *These authors contributed equally to this work Purpose: Cationic liposomes (CLs are composed of phospholipid bilayers. One of the most important applications of these particles is in drug and gene delivery. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs has some problems, including low transfection efficiency in vivo. The aim of this study was to develop novel CLs containing magnetite to overcome the deficiencies. Patients and methods: CLs and magnetic cationic liposomes (MCLs were prepared using the freeze-dried empty liposome method. Luciferase-harboring vectors (pGL3 were transferred into liposomes and the transfection efficiencies were determined by luciferase assay. Firefly luciferase is one of most popular reporter genes often used to measure the efficiency of gene transfer in vivo and in vitro. Different formulations of liposomes have been used for delivery of different kinds of gene reporters. Lipoplex (liposome–plasmid DNA complexes formation was monitored by gel retardation assay. Size and charge of lipoplexes were determined using particle size analysis. Chinese hamster ovary cells were transfected by lipoplexes (liposome-pGL3; transfection efficiency and gene expression level was evaluated by luciferase assay. Results: High transfection efficiency of plasmid by CLs and novel nanomagnetic CLs was achieved. Moreover, lipoplexes showed less cytotoxicity than polyethyleneimine and Lipofectamine™. Conclusion: Novel liposome compositions (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]/dioctadecyldimethylammonium bromide [DOAB] and DPPC/cholesterol/DOAB with high transfection efficiency can be useful in gene delivery in vitro. MCLs can also be used for targeted gene delivery, due to

  11. Transfection of normal human and Chinese hamster DNA corrects diepoxybutane-induced chromosomal hypersensitivity of Fanconi anemia fibroblasts

    International Nuclear Information System (INIS)

    Shaham, M.; Adler, B.; Ganguly, S.; Chaganti, R.S.K.

    1987-01-01

    Cultured cells from individuals affected with Fanconi anemia (FA) exhibit spontaneous chromosome breakage and hypersensitivity to the cell killing and clastogenic effects of the difunctional alkylating agent diepoxybutane (DEB). The authors report here the correction of both of these DEB-hypersensitivity phenotypes of FA cells achieved by cotransfection of normal placental of Chinese hamster lung cell DNA and the plasmid pSV2-neo-SVgpt. Transfectants were selected for clonogenic survival after treatment with DEB at a dose of 5 μgml. At this dose of DEB, the clonogenicity of normal fibroblasts was reduced to 50% and that of FA fibroblasts was reduced to zero. DEB-resistant (DEB/sup r/) colonies selected in this system exhibited a normal response to DEB-induced chromosome breakage and resistance to repeated DEB treatment. The neo and gpt sequences were detected by Southern blot analysis of DNA from one of four DEB/sup r/ colonies independently derived from transfection of human DNA and one of three DEB/sup r/ colonies independently derived from transfection of Chinese hamster DNA. The results demonstrate that DNA sequences that complement the two hallmark cellular phenotypes (cellular and chromosomal hypersensitivity to alkylating agents) of FA are present in human as well as Chinese hamster DNA. The cloning of these genes using transfection strategies can be expected to enable molecular characterization of FA

  12. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor β1 gene

    International Nuclear Information System (INIS)

    Guo Xiaodong; Zheng Qixin; Yang Shuhua; Shao Zengwu; Yuan Quan; Pan Zhengqi; Tang Shuo; Liu Kai; Quan Daping

    2006-01-01

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-β 1 ) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-β 1 that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-β 1 gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA 3 -TGF-β 1 gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA 3 gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of inflammatory and alloreactive immune responses. The

  13. Development of porcine transgenic nuclear-transferred embryos derived from fibroblast cells transfected by the novel technique of nucleofection or standard lipofection.

    Science.gov (United States)

    Skrzyszowska, M; Samiec, M; Słomski, R; Lipiński, D; Mały, E

    2008-07-15

    The aim of our study was to determine the in vitro developmental potential of porcine nuclear-transferred (NT) embryos that had been reconstructed with Tg(pWAPhGH-GFPBsd) transgene-expressing fibroblast cells. The gene construct was introduced into fibroblast cells by the novel method of nucleofection or standard lipofection. NT oocytes derived from foetal and adult dermal fibroblast cells were stimulated by either simultaneous fusion and electrical activation (Groups IA and IB) or sequential electrical and chemical activation (Groups IIA and IIB). The percentages of cloned embryos that reached the morula and blastocyst stages were 152/254 (59.8%) and 77/254 (30.3%) or 139/276 (50.4%) and 45/276 (16.3%) in Groups IA or IB, respectively. The rates of NT embryos that developed to the morula and blastocyst stages were 103/179 (57.5%) and 41/179 (22.9%) or 84/193 (43.5%) and 27/193 (14.0%) in Groups IIA and IIB, respectively. In conclusion, the in vitro developmental competences of porcine transgenic NT embryos that had been reconstructed with the Tg(pWAPhGH-GFPBsd) gene-transfected fibroblast cells were relatively high. Further, the nucleofection efficiency of all the porcine fibroblast cell lines as estimated by intra-vitam fluorescent evaluation based on the index of reporter eGFP transgene expression was nearly 100%. However, PCR analysis for transgene screening confirmed the absence of Tg(pWAPhGH-GFPBsd) fusion gene in some of the nucleofected cell lines. To our knowledge, the novel method of nucleofection is the first to transfect nuclear donor cells in the production of transgenic cloned embryos.

  14. Complementation of the UV-sensitive phenotype of a xeroderma pigmentosum human cell line by transfection with a cDNA clone library

    International Nuclear Information System (INIS)

    Teitz, T.; Naiman, T.; Avissar, S.S.; Bar, S.; Okayama, H.; Canaani, D.

    1987-01-01

    In previous work, a xeroderma pigmentosum cell line belonging to complementation group C was established by transformation with origin-defective simian virus 40. We now report the complementation of the UV sensitivity of this cell line by gene transfer. A human cDNA clone library constructed in a mammalian expression vector, and itself incorporated in a lambda phage vector, was introduced into the cells as a calcium phosphate precipitate. Following selection to G418 resistance, provided by the neo gene of the vector, transformants were selected for UV resistance. Twenty-one cell clones were obtained with UV-resistance levels typical of normal human fibroblasts. All transformants contained vector DNA sequences in their nuclei. Upon further propagation in the absence of selection for G418 resistance, about half of the primary transformants remained UV-resistant. Secondary transformants were generated by transfection with a partial digest of total chromosomal DNA from one of these stable transformants. This resulted in 15 G418-resistant clones, 2 of which exhibited a UV-resistant phenotype. The other primary clones lost UV resistance rapidly when subcultured in the absence of G418. Importantly, several retained UV resistance under G418 selection pressure. The acquisition of UV resistance by secondary transformants derived by transfection of DNA from a stable primary transformant, and the linkage between G418 and UV resistances in the unstable primary transformants, strongly suggests that the transformants acquired UV resistance through DNA-mediated gene transfer and not by reversion

  15. Transfection using hydroxyapatite nanoparticles in the inner ear via an intact round window membrane in chinchilla

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xuewen; Ding Dalian [Central South University, Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital (China); Jiang Haiyan [State University of New York at Buffalo, Center for Hearing and Deafness (United States); XingXiaowei [Central South University, Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital (China); Huang, Suping [Central South University, State Key Laboratory of Powder Metallurgy (China); Liu Hong [Central South University, Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital (China); Chen Zhedong [Central South University, State Key Laboratory of Powder Metallurgy (China); Sun Hong, E-mail: shjhaj@vip.163.com [Central South University, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital (China)

    2012-01-15

    Hydroxyapatite nanoparticles (nHAT) are known to have excellent biocompatibility, and have attracted increasing attention as new candidates of non-viral vectors for gene therapy. In our previous studies, nHAT carrying a therapeutic gene and a reporter gene were successfully transfected into the spiral ganglion neurons in the inner ear of guinea pigs in vivo as well as in the cultured cell lines, although the transfection efficiencies were never higher than 30%. In this study, the surface modification of nHAT with polyethylenimine (PEI) was made (PEI-nHAT, diameter = 73.09 {+-} 27.32 nm) and a recombinant plasmid carrying enhanced green fluorescent protein (EGFP) gene and neurotrophin-3 (NT-3) gene was constructed as pEGFPC2-NT3. The PEI modified nHAT and the recombinant plasmid was then connected to form the nHAT-based vector-gene complex (PEI-nHAT-pEGFPC2-NT3). This complex was then placed onto the intact round window membranes of the chinchillas for inner ear transfection. Auditory brainstem response (ABR) was tested to evaluate auditory function. Green fluorescence of EGFP was observed using confocal microscopy 48 h after administering vector-gene complexes. There was no significant threshold shift in tone burst-evoked ABR at any tested frequency. Abundant, condensed green fluorescence was found in dark cells on both sides of the crista and around the macula of the utricle. Scattered EGFP signals were also detected in vestibular hair cells, some Schwann cells in the cochlear spiral ganglion region, some outer pillar cells in the organ of Corti, and a few cells in the stria vascularis. The density of green fluorescence-marked cells was obviously higher in the vestibular dark cell area than in other areas of the inner ear, suggesting that vestibular dark cells may have the ability to actively engulf the nHAT-based vector-gene complexes. Considering the high transfection efficiency in the vestibular system, PEI-nHAT may be a potential vector for gene therapy of

  16. High-throughput screening of microscale pitted substrate topographies for enhanced nonviral transfection efficiency in primary human fibroblasts

    DEFF Research Database (Denmark)

    Adler, Andrew F; Speidel, Alessondra T; Christoforou, Nicolas

    2011-01-01

    of microscale topographies, we have demonstrated an improvement in nonviral transfection efficiency for cells cultured on dense micropit patterns compared to smooth substrates, as verified with flow cytometry. A 25% increase in GFP(+) cells was observed independent of proliferation rate, accompanied by SEM....... Emerging literature has highlighted the influence of cell-topography interactions on modulation of many cell phenotypes, including protein expression and cytoskeletal behaviors implicated in endocytosis. Using high-throughput screening of primary human dermal fibroblasts cultured on a combinatorial library...... and confocal microscopy characterization to help explain the phenomenon qualitatively. This finding encourages researchers to investigate substrate topography as a new design consideration for the optimization of nonviral transfection systems....

  17. Low toxic and high soluble camptothecin derivative 2–47 effectively induces apoptosis of tumor cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao; Zhao, Hong-Ye; Jiang, Du; Wang, Lu-Yao; Xiang, Cen; Wen, Shao-Peng [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China); Fan, Zhen-Chuan [Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, 300457 (China); Obesita & Algaegen LLC, College Station, TX 77845 (United States); Zhang, Yong-Min [Université Pierre et Marie Curie-Paris 6, Institut Parisien de Chimie Moléculaire UMR CNRS 8232, 4 place Jussieu, 75005, Paris (France); Guo, Na [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China); Teng, Yu-Ou, E-mail: tyo201485@tust.edu.cn [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China); Yu, Peng, E-mail: yupeng@tust.edu.cn [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2016-04-08

    The cytotoxic activity of camptothecin derivatives is so high that these compounds need to be further modified before their successful application as anti-cancer agents clinically. In this study, we reported the synthesis and biological evaluation of a novel camptothecin derivative called compound 2–47. The changes in structure did not reduce its activity to inhibit DNA topoisomerase I. Compound 2–47 induced apoptosis of many tumor cells including leukemia cells K562, Jurkat, HL-60, breast cancer cell BT-549, colon cancer cell HT-29 and liver cancer cell HepG2 with a half maximal inhibitory concentration (IC{sub 50}) of 2- to 3-fold lower than HCPT as a control. In particular, 2–47 inhibited the proliferation of Jurkat cells with an IC{sub 50} of as low as 40 nM. By making use of Jurkat cell as a model, following treatment of Jurkat cells, compound 2–47 activated caspase-3 and PARP, resulting in a decreased Bcl-2/Bax ratio. These data showed that compound 2–47 induces Jurkat cell death through the mitochondrial apoptotic pathway. In addition, compound 2–47 showed a decreased cytotoxic activity against normal cells and an improved solubility in low-polar solvent. For example, compound 2–47 solutes in CHCl{sub 3} 130-fold higher than HCPT. Taken together, our data demonstrated that camptothecin derivative 2–47 notably inhibits the tumor cell proliferation through mitochondrial-mediated apoptosis in vitro. - Highlights: • Compound 2–47 showed a wide inhibitory effect on the tested tumor cell lines with an IC{sub 50} of 3 times lower than that of HCPT in general. • Compound 2–47 inhibited the proliferation of the human leukemia cell Jurkat at an IC{sub 50} of as low as 40 nM. • As compared to HCPT, compound 2–47 showed much reduced cytotoxicity on normal human cells. • As compared to others, compound 2–47 showed a hundreds-fold higher solubility in non-polar organic solution.

  18. Intracellular Protein Delivery and Gene Transfection by Electroporation Using a Microneedle Electrode Array

    Science.gov (United States)

    Choi, Seong-O; Kim, Yeu-Chun; Lee, Jeong Woo; Park, Jung-Hwan

    2012-01-01

    The impact of many biopharmaceuticals, including protein- and gene-based therapies, has been limited by the need for better methods of delivery into cells within tissues. Here, we present intracellular delivery of molecules and transfection with plasmid DNA by electroporation using a novel microneedle electrode array designed for targeted treatment of skin and other tissue surfaces. The microneedle array is molded out of polylactic acid. Electrodes and circuitry required for electroporation are applied to the microneedle array surface by a new metal-transfer micromolding method. The microneedle array maintains mechanical integrity after insertion into pig cadaver skin and is able to electroporate human prostate cancer cells in vitro. Quantitative measurements show that increasing electroporation pulse voltage increases uptake efficiency of calcein and bovine serum albumin, whereas increasing pulse length has lesser effects over the range studied. Uptake of molecules by up to 50 % of cells and transfection of 12 % of cells with a gene for green fluorescent protein is demonstrated at high cell viability. We conclude that the microneedle electrode array is able to electroporate cells, resulting in intracellular uptake of molecules, and has potential applications to improve intracellular delivery of proteins, DNA and other biopharmaceuticals. PMID:22328093

  19. Gene delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly(l-lysine) as additives.

    Science.gov (United States)

    Khan, Mohammed A; Wu, Victoria M; Ghosh, Shreya; Uskoković, Vuk

    2016-06-01

    Despite the long history of nanoparticulate calcium phosphate (CaP) as a non-viral transfection agent, there has been limited success in attempts to optimize its properties for transfection comparable in efficiency to that of viral vectors. Here we focus on the optimization of: (a) CaP nanoparticle precipitation conditions, predominantly supersaturation and Ca/P molar ratios; (b) transfection conditions, mainly the concentrations of the carrier and plasmid DNA; (c) the presence of surface additives, including citrate anion and cationic poly(l-lysine) (PLL). CaP nanoparticles significantly improved transfection with plasmid DNA encoding enhanced green fluorescent protein (eGFP) in pre-osteoblastic MC3T3-E1 cells compared to a commercial non-viral carrier. At the same time they elicited significantly lesser cytotoxicity than the commercial carrier. Plasmid DNA acted as a nucleation promoter, decreasing the nucleation lag time of metastable CaP solutions and leading to a higher rate of nucleation and a lower size of the precipitated particles. The degree of supersaturation (DS) of 15 was found to be more optimal for transfection than that of 12.5 or 17.5 and higher. Because CaP particles precipitated at DS 15 were spherical, while DS 17.5 and 21 yielded acicular particles, it was concluded that spherical particle morphologies were more conducive to transfection than the anisotropic ones. Even though the yield at DS 15 was 10 and 100 times lower than that at DS 17.5 and 21, respectively, transfection rates were higher using CaP nanoparticle colloids prepared at DS 15 than using those made at higher or lower DS, indicating that the right particle morphology can outweigh the difference in the amount of the carrier, even when this difference is close to 100×. In contrast to the commercial carrier, the concentration of CaP-pDNA delivered to the cells was directly proportional to the transfection rate. Osteosarcoma K7M2 cells were four times more easily transfectable with

  20. The effect of 17-AAG on iodine uptake kinetics of NIS-transfected anaplastic thyroid cancer

    International Nuclear Information System (INIS)

    Wang Renfei; Tan Jian; Li Wei; Meng Zhaowei; Zheng Wei

    2012-01-01

    Objective: To investigate the effect of 17-allylamino-17-demethoxy geldanamycin (17-AAG) on iodine uptake kinetics of NIS-transfected anaplastic thyroid cancer (ATC) cells. Methods: Lipofection was used to transfect the recombinant plasmid, namely pcDNA3.1-NIS, into FRO cells (ATC cell line). A stable cell line NIS-FRO was obtained by G418 resistance selection. 125 I was added into the medium, and influx and efflux experiments were performed. Different time-radioactivity curves were drawn, and further analysis was performed between the non-transfected cells (the control group) and NIS-FRO cells treated with 1 μmol/L 17-AAG for 24 h. Student's t-test was used to analyze the data. Results: The iodine uptake ability of the NIS-FRO cells was significantly higher than that of the FRO cells (about 10.68 times, t=45.329, P<0.001). However, 125 I out-flowed rapidly when removed from the medium, and the retention rate of 125 I in the NIS-FRO cells was only 10.5% of the initial amount after 30 rin. After treatment with 1 μmol/L 17-AAG for 24 h, the 125 I uptake ability of NIS-FRO cells further increased. During the 20-60 min incubation with 125 I, the iodine uptake ability of 17-AAG treated NIS-FRO cells increased significantly with radioactive counts of 31771.8- 54815.5 per minute,which was much higher than that of the control group (24020.3-41293.8 per minute; t=3.096, 4.275, 3.055, 4.292 and 5.496, respectively, all P<0.05). The iodine uptake ability increased about 24.8%-35.5%. Furthermore, 5-30 min after removing the medium, the retention rates of 125 I in the 17-AAG treated NIS-FRO cells were significantly increased compared with those of the control group (32.7%-85.2% vs 10.5%-56.8%; t=22.801, 13.096, 19.631, 38.205, 43.519, 29.322, respectively, all P<0.01), and 125 I efflux was reduced. After 30 min, 125 I retention rate of the treatment group was 32.7%, which was 3.1 times higher than that of the control group. Conclusion: The iodine uptake ability can be

  1. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor {beta}{sub 1} gene

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yang Shuhua [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Shao Zengwu [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yuan Quan [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Pan Zhengqi [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Tang Shuo [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Liu Kai [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Quan Daping [Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2006-12-15

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-{beta}{sub 1}) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-{beta}{sub 1} that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-{beta}{sub 1} gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA{sub 3}-TGF-{beta}{sub 1} gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA{sub 3} gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of

  2. The protein pheromone Er-1 of the ciliate Euplotes raikovi stimulates human T-cell activity: Involvement of interleukin-2 system

    Energy Technology Data Exchange (ETDEWEB)

    Cervia, Davide, E-mail: d.cervia@unitus.it [Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo (Italy); Department of Biomedical and Clinical Sciences, “Luigi Sacco” University Hospital, University of Milan, Milano (Italy); Catalani, Elisabetta; Belardinelli, Maria Cristina [Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo (Italy); Perrotta, Cristiana [Department of Biomedical and Clinical Sciences, “Luigi Sacco” University Hospital, University of Milan, Milano (Italy); Picchietti, Simona [Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo (Italy); Alimenti, Claudio [Department of Environmental and Natural Sciences, University of Camerino, Camerino (Italy); Casini, Giovanni; Fausto, Anna Maria [Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo (Italy); Vallesi, Adriana [Department of Environmental and Natural Sciences, University of Camerino, Camerino (Italy)

    2013-02-01

    Water-soluble protein signals (pheromones) of the ciliate Euplotes have been supposed to be functional precursors of growth factors and cytokines that regulate cell–cell interaction in multi-cellular eukaryotes. This work provides evidence that native preparations of the Euplotes raikovi pheromone Er-1 (a helical protein of 40 amino acids) specifically increases viability, DNA synthesis, proliferation, and the production of interferon-γ, tumor necrosis factor-α, interleukin (IL)-1β, IL-2, and IL-13 in human Jurkat T-cells. Also, Er-1 significantly decreases the mRNA levels of the β and γ subunits of IL-2 receptor (IL-2R), while the mRNA levels of the α subunit appeared to be not affected. Jurkat T-cell treatments with Er-1 induced the down-regulation of the IL-2Rα subunit by a reversible and time-dependent endocytosis, and increased the levels of phosphorylation of the extracellular signal-regulated kinases (ERK). The cell-type specificity of these effects was supported by the finding that Er-1, although unable to directly influence the growth of human glioma U-373 cells, induced Jurkat cells to synthesize and release factors that, in turn, inhibited the U-373 cell proliferation. Overall, these findings imply that Er-1 coupling to IL-2R and ERK immuno-enhances T-cell activity, and that this effect likely translates to an inhibition of glioma cell growth. -- Highlights: ► Euplotes pheromone Er-1 increases the growth of human Jurkat T-cells. ► Er-1 increases the T-cell production of specific cytokines. ► Er-1 activates interleukin-2 receptor and extracellular signal-regulated kinases. ► The immuno-enhancing effect of Er-1 on Jurkat cells translates to an inhibition of human glioma cell growth.

  3. Transferrin-facilitated lipofection gene delivery strategy: characterization of the transfection complexes and intracellular trafficking.

    Science.gov (United States)

    Joshee, Nirmal; Bastola, Dhundy R; Cheng, Pi-Wan

    2002-11-01

    We previously showed that mixing transferrin with a cationic liposome prior to the addition of DNA, greatly enhanced the lipofection efficiency. Here, we report characterization of the transfection complexes in formulations prepared with transferrin, lipofectin, and DNA (pCMVlacZ) in various formulations. DNA in all the formulations that contain lipofectin was resistant to DNase I treatment. Transfection experiments performed in Panc 1 cells showed that the standard formulation, which was prepared by adding DNA to a mixture of transferrin and lipofectin, yielded highest transfection efficiency. There was no apparent difference in zeta potential among these formulations, but the most efficient formulation contained complexes with a mean diameter of three to four times that of liposome and the complexes in other gene delivery formulations. Transmission electron microscopic examination of the standard transfection complexes formulated using gold-labeled transferrin showed extended circular DNA decorated with transferrin as compared to extensively condensed DNA found in lipofectin-DNA complexes and heterogeneous structures in other formulations. By confocal microscopy, DNA and transferrin were found to colocalize at the perinuclear space and in the nucleus, suggesting cotransportation intracellularly, including nuclear transport. We propose that transferrin enhances the transfection efficiency of the standard lipofection formulation by preventing DNA condensation, and facilitating endocytosis and nuclear targeting.

  4. Transfection of the IHH gene into rabbit BMSCs in a simulated microgravity environment promotes chondrogenic differentiation and inhibits cartilage aging.

    Science.gov (United States)

    Liu, Peng-Cheng; Liu, Kuan; Liu, Jun-Feng; Xia, Kuo; Chen, Li-Yang; Wu, Xing

    2016-09-27

    The effect of overexpressing the Indian hedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (BMSCs) was investigated in a simulated microgravity environment. An adenovirus plasmid encoding the rabbit IHH gene was constructed in vitro and transfected into rabbit BMSCs. Two large groups were used: conventional cell culture and induction model group and simulated microgravity environment group. Each large group was further divided into blank control group, GFP transfection group, and IHH transfection group. During differentiation induction, the expression levels of cartilage-related and cartilage hypertrophy-related genes and proteins in each group were determined. In the conventional model, the IHH transfection group expressed high levels of cartilage-related factors (Coll2 and ANCN) at the early stage of differentiation induction and expressed high levels of cartilage hypertrophy-related factors (Coll10, annexin 5, and ALP) at the late stage. Under the simulated microgravity environment, the IHH transfection group expressed high levels of cartilage-related factors and low levels of cartilage hypertrophy-related factors at all stages of differentiation induction. Under the simulated microgravity environment, transfection of the IHH gene into BMSCs effectively promoted the generation of cartilage and inhibited cartilage aging and osteogenesis. Therefore, this technique is suitable for cartilage tissue engineering.

  5. Transfection of mouse cytotoxic T lymphocyte with an antisense granzyme A vector reduces lytic activity.

    Science.gov (United States)

    Talento, A; Nguyen, M; Law, S; Wu, J K; Poe, M; Blake, J T; Patel, M; Wu, T J; Manyak, C L; Silberklang, M

    1992-12-15

    Murine CTL have seven serine proteases, known as granzymes, in their lytic granules. Despite considerable effort, convincing evidence that these enzymes play an obligatory role in the lytic process has not been presented. To investigate the function of one of these proteases, granzyme A (GA), we utilized an antisense expression vector to lower the level of the enzyme in the cells. An expression vector containing antisense cDNA for GA and the gene for hygromycin B resistance was constructed and electroporated into the murine CTL line, AR1. Transfectants were selected based on resistance to hygromycin B, and a number of stable lines were developed. One of the antisense lines had greatly reduced levels of GA mRNA, when compared to the parental cells or to control lines transfected with the vector lacking the antisense DNA. The message levels for two other CTL granule proteins, granzyme B and perforin, were unaffected by the antisense vector. The amount of GA, as measured by enzymatic activity, was 3- to 10-fold lower in the transfectant. Most significantly, this line also consistently showed 50 to 70% lower ability to lyse nucleated target cells and to degrade their DNA. Furthermore, it exhibited 90 to 95% lower lytic activity to anti-CD3-coated SRBC. Conjugate formation with target cells, however, was normal. These data provide strong evidence that GA plays an important role in the cytolytic cycle, and that the quantity of enzyme is a limiting factor in these cytolytic cells.

  6. A novel 2,6-diisopropylphenyl-docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Altenburg, Jeffrey D.; Harvey, Kevin A.; McCray, Sharon; Xu, Zhidong [Cellular Biochemistry Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Siddiqui, Rafat A., E-mail: rsiddiqu@iuhealth.org [Cellular Biochemistry Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Biology, Indiana University-Purdue University, Indianapolis, IN (United States); Department of Medicine, Indiana University School of Medicine, Indianapolis, IN (United States)

    2011-07-29

    Highlights: {yields} 2,6-Diisopropylphenyl-docosahexaenoamide conjugates (DIP-DHA) inhibits the proliferation of T-cell leukemic cell lines. {yields} DIP-DHA resulted in increased activation of caspase-3, and caspase-7. {yields} DIP-DHA significantly downregulated CXCR4 surface expression. -- Abstract: We have previously characterized the effects of 2,6-diisopropylphenyl-docosahexaenoamide (DIP-DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP-DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP-DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP-DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP-DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP-DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP-DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.

  7. A novel 2,6-diisopropylphenyl-docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines

    International Nuclear Information System (INIS)

    Altenburg, Jeffrey D.; Harvey, Kevin A.; McCray, Sharon; Xu, Zhidong; Siddiqui, Rafat A.

    2011-01-01

    Highlights: → 2,6-Diisopropylphenyl-docosahexaenoamide conjugates (DIP-DHA) inhibits the proliferation of T-cell leukemic cell lines. → DIP-DHA resulted in increased activation of caspase-3, and caspase-7. → DIP-DHA significantly downregulated CXCR4 surface expression. -- Abstract: We have previously characterized the effects of 2,6-diisopropylphenyl-docosahexaenoamide (DIP-DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP-DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP-DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP-DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP-DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP-DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP-DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.

  8. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs

    DEFF Research Database (Denmark)

    Khan, Aly A; Betel, Doron; Miller, Martin L

    2009-01-01

    Transfection of small RNAs (such as small interfering RNAs (siRNAs) and microRNAs (miRNAs)) into cells typically lowers expression of many genes. Unexpectedly, increased expression of genes also occurs. We investigated whether this upregulation results from a saturation effect--that is, competiti...

  9. Comparative nucleic acid transfection efficacy in primary hepatocytes for gene silencing and functional studies

    Directory of Open Access Journals (Sweden)

    Morral Núria

    2011-01-01

    Full Text Available Abstract Background Primary hepatocytes are the best resource for in vitro studies directed at understanding hepatic processes at the cellular and molecular levels, necessary for novel drug development to treat highly prevalent diseases such as non-alcoholic steatohepatitis, cardiovascular disease and type 2 diabetes. There is a need to identify simple methods to genetically manipulate primary hepatocytes and conduct functional studies with plasmids, small interfering RNA (siRNA or microRNA (miRNA. New lipofection reagents are available that have the potential to yield higher levels of transfection with reduced toxicity. Findings We have tested several liposome-based transfection reagents used in molecular biology research. We show that transfection efficiency with one of the most recently developed formulations, Metafectene Pro, is high with plasmid DNA (>45% cells as well as double stranded RNA (>90% with siRNA or microRNA. In addition, negligible cytotoxicity was present with all of these nucleic acids, even if cells were incubated with the DNA:lipid complex for 16 hours. To provide the proof of concept that these conditions can be used not only for overexpression of a gene of interest, but also in RNA interference applications, we targeted two liver expressed genes, Sterol Regulatory Element-Binding Protein-1 and Fatty Acid Binding Protein 5 using plasmid-mediated short hairpin RNA expression. In addition, similar transfection conditions were used to optimally deliver siRNA and microRNA. Conclusions We have identified a lipid-based reagent for primary hepatocyte transfection of nucleic acids currently used in molecular biology laboratories. The conditions described here can be used to expedite a large variety of research applications, from gene function studies to microRNA target identification.

  10. Green fluorescent protein (GFP color reporter gene visualizes parvovirus B19 non-structural segment 1 (NS1 transfected endothelial modification.

    Directory of Open Access Journals (Sweden)

    Thomas Wurster

    Full Text Available BACKGROUND: Human Parvovirus B19 (PVB19 has been associated with myocarditis putative due to endothelial infection. Whether PVB19 infects endothelial cells and causes a modification of endothelial function and inflammation and, thus, disturbance of microcirculation has not been elucidated and could not be visualized so far. METHODS AND FINDINGS: To examine the PVB19-induced endothelial modification, we used green fluorescent protein (GFP color reporter gene in the non-structural segment 1 (NS1 of PVB19. NS1-GFP-PVB19 or GFP plasmid as control were transfected in an endothelial-like cell line (ECV304. The endothelial surface expression of intercellular-adhesion molecule-1 (CD54/ICAM-1 and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147 were evaluated by flow cytometry after NS-1-GFP or control-GFP transfection. To evaluate platelet adhesion on NS-1 transfected ECs, we performed a dynamic adhesion assay (flow chamber. NS-1 transfection causes endothelial activation and enhanced expression of ICAM-1 (CD54: mean ± standard deviation: NS1-GFP vs. control-GFP: 85.3 ± 11.2 vs. 61.6 ± 8.1; P<0.05 and induces endothelial expression of EMMPRIN/CD147 (CD147: mean ± SEM: NS1-GFP vs. control-GFP: 114 ± 15.3 vs. 80 ± 0.91; P<0.05 compared to control-GFP transfected cells. Dynamic adhesion assays showed that adhesion of platelets is significantly enhanced on NS1 transfected ECs when compared to control-GFP (P<0.05. The transfection of ECs was verified simultaneously through flow cytometry, immunofluorescence microscopy and polymerase chain reaction (PCR analysis. CONCLUSIONS: GFP color reporter gene shows transfection of ECs and may help to visualize NS1-PVB19 induced endothelial activation and platelet adhesion as well as an enhanced monocyte adhesion directly, providing in vitro evidence of possible microcirculatory dysfunction in PVB19-induced myocarditis and, thus, myocardial tissue damage.

  11. Immunoliposome-mediated delivery of neomycin phosphotransferase for the lineage-specific selection of differentiated/committed stem cell progenies: potential advantages over transfection with marker genes, fluorescence-activated and magnetic affinity cell-sorting.

    Science.gov (United States)

    Heng, Boon Chin; Cao, Tong

    2005-01-01

    A major challenge in the therapeutic application of stem cells in regenerative medicine is the lineage-specific selection of their committed/differentiated progenies for transplantation. This is necessary to avoid engraftment of undesired lineages at the transplantation site, i.e. fibroblastic scar tissue, as well as to enhance the efficacy of transplantation therapy. Commonly used techniques for lineage-specific selection of committed/differentiated stem cell progenies include marker gene transfection, fluorescence-activated (FACS) and magnetic-affinity (MACS) cell-sorting. Nevertheless, these have their disadvantages for therapeutic applications. Marker gene transfection invariably leads to permanent genetic modification of stem cells, which in turn limits their use in human clinical therapy due to overwhelming ethical and safety concerns. FACS requires expensive instrumentation and highly-skilled personnel, and is unsuited for handling bulk quantities of cells that would almost certainly be required for transplantation therapy. MACS is a cheaper alternative, but the level of purity attained is also reduced. A possible novel approach that has yet to be investigated is immunoliposome-mediated delivery of neomycin phosphotranferase (NPT) for lineage-specific selection of stem cell progenies. This would avoid permanent genetic modification to the cell, unlike recombinant NPT expression linked to activation of specific promoter sequences. Moreover, it could potentially provide a much more practical and cost-effective alternative for handling bulk quantities of cells that would be required for transplantation therapy, as compared to FACS or MACS. As such, this alternative approach needs to be rigorously investigated, in view of its potentially useful applications in stem cell therapeutics.

  12. Delayed expression of apoptosis in X-irradiated human leukemic MOLT-4 cells transfected with mutant p53

    International Nuclear Information System (INIS)

    Nakano, Hisako; Yonekawa, Hiromichi; Shinohara, Kunio

    2003-01-01

    The effects of X-rays on cell survival, apoptosis, and long-term response in the development of cell death as measured by the dye exclusion test were studied in human leukemic MOLT-4 cells (p53 wild-type) stably transfected with a mutant p53 cDNA expression vector. Cell survival, as determined from colony-forming ability, was increased in an expression level dependent manner, but the increase was partial even with the highest-expressing clone (B3). This contrasts with the prior observation that cell death and apoptosis in B3 are completely inhibited at 24 h after irradiation with 1.8 Gy of X-rays. The examination of B3 cells incubated for longer than 24 h after X-irradiation showed a delay in the induction of cell death and apoptosis. Western blot analysis revealed that the time required to reach the highest level of wild-type p53 protein in B3 was longer than the time in MOLT-4 and that the p53 may be stabilized by the phosphorylation at Ser-15. These results suggest that the introduction of mutant p53 into MOLT-4 merely delays the development of apoptosis, during which the cells could repair the damage induced by X-rays, and results in the partial increase in cell survival. (author)

  13. Photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    CSIR Research Space (South Africa)

    Thobakgale, Lebogang

    2017-01-01

    Full Text Available disease- iPS, dopaminergic neurons Transplantation • Autologous- bone marrow, tissue defects, leukemia • Haematopoietic- blood dieases, autoimmune disorders • Mesenchymal- neurological disorders Phototransfection • Transfection refers...

  14. Failure to synthesize the CD3-gamma chain. Consequences for T cell antigen receptor assembly, processing, and expression

    DEFF Research Database (Denmark)

    Geisler, C

    1992-01-01

    surface expression of the Ti/CD3 complex. Transfection of the wild-type CD3-gamma gene into JGN reconstituted expression of functional Ti/CD3 complexes, and analysis of T cell lines producing different amounts of CD3-gamma indicated that CD3-gamma and CD3-delta competed for the binding to CD3-epsilon.......The TCR consists of the Ti alpha beta heterodimer and the associated CD3 chains, CD3 gamma delta epsilon zeta 2 or zeta eta. The structural relationships between the subunits of the Ti/CD3 complex are still not fully understood. To explore the roles of the individual CD3 chains for the assembly......, intracellular processing, and expression of the TCR, mutants of the T cell line Jurkat were isolated. One variant, JGN, was found to produce all the Ti/CD3 components with the exception of CD3-gamma. The results indicate that: 1) the tetrameric form (Ti alpha beta-CD3 delta epsilon) of the Ti/CD3 complex...

  15. Transfection using hydroxyapatite nanoparticles in the inner ear via an intact round window membrane in chinchilla

    International Nuclear Information System (INIS)

    Wu Xuewen; Ding Dalian; Jiang Haiyan; XingXiaowei; Huang, Suping; Liu Hong; Chen Zhedong; Sun Hong

    2012-01-01

    Hydroxyapatite nanoparticles (nHAT) are known to have excellent biocompatibility, and have attracted increasing attention as new candidates of non-viral vectors for gene therapy. In our previous studies, nHAT carrying a therapeutic gene and a reporter gene were successfully transfected into the spiral ganglion neurons in the inner ear of guinea pigs in vivo as well as in the cultured cell lines, although the transfection efficiencies were never higher than 30%. In this study, the surface modification of nHAT with polyethylenimine (PEI) was made (PEI–nHAT, diameter = 73.09 ± 27.32 nm) and a recombinant plasmid carrying enhanced green fluorescent protein (EGFP) gene and neurotrophin-3 (NT-3) gene was constructed as pEGFPC2–NT3. The PEI modified nHAT and the recombinant plasmid was then connected to form the nHAT-based vector–gene complex (PEI–nHAT–pEGFPC2–NT3). This complex was then placed onto the intact round window membranes of the chinchillas for inner ear transfection. Auditory brainstem response (ABR) was tested to evaluate auditory function. Green fluorescence of EGFP was observed using confocal microscopy 48 h after administering vector–gene complexes. There was no significant threshold shift in tone burst-evoked ABR at any tested frequency. Abundant, condensed green fluorescence was found in dark cells on both sides of the crista and around the macula of the utricle. Scattered EGFP signals were also detected in vestibular hair cells, some Schwann cells in the cochlear spiral ganglion region, some outer pillar cells in the organ of Corti, and a few cells in the stria vascularis. The density of green fluorescence-marked cells was obviously higher in the vestibular dark cell area than in other areas of the inner ear, suggesting that vestibular dark cells may have the ability to actively engulf the nHAT-based vector–gene complexes. Considering the high transfection efficiency in the vestibular system, PEI–nHAT may be a potential vector for

  16. Effect of vibrational stress and spaceflight on regulation of heat shock proteins hsp70 and hsp27 in human lymphocytes (Jurkat)

    Science.gov (United States)

    Cubano, L. A.; Lewis, M. L.

    2001-01-01

    Heat shock protein levels are increased in cells as a result of exposure to stress. To determine whether heat shock protein regulation could be used to evaluate stress in cells during spaceflight, the response of Jurkat cells to spaceflight and simulated space shuttle launch vibration was investigated by evaluating hsp70 and hsp27 gene expression. Gene expression was assessed by reverse transcription-polymerase chain reaction using mRNA extracted from vibrated, nonvibrated, space-flown, and ground control cells. Results indicate that mechanical stresses of vibration and low gravity do not up-regulate the mRNA for hsp70, although the gene encoding hsp27 is up-regulated by spaceflight but not by vibration. In ground controls, the mRNA for hsp70 and hsp27 increased with time in culture. We conclude that hsp70 gene expression is a useful indicator of stress related to culture density but is not an indicator of the stresses of launch vibration or microgravity. Up-regulation of hsp27 gene expression in microgravity is a new finding.

  17. Calcium-microRNA Complexes Functionalized Nanotubular Implant Surface for Highly Efficient Transfection and Enhanced Osteogenesis of Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Song, Wen; Yang, Chuanxu; Svend Le, Dang Quang

    2018-01-01

    Controlling mesenchymal stem cells (MSCs) differentiation by RNA interference (RNAi) is a promising approach for next-generation regenerative medicine. However, efficient delivery of RNAi therapeutics is still a limiting factor. In this study, we have developed a simple, biocompatible and highly...... effective delivery method of small RNA therapeutics into hMSCs from an implant surface by calcium ions. First, we demonstrated that simple Ca/siGFP nanocomplexes were able to efficiently silence GFP in GFP-expressing hMSCs with adequate Ca2+ concentration (>5 mM). In addition, a single transfection could...

  18. Transfection and imaging of diamond nanocrystals as scattering optical labels

    International Nuclear Information System (INIS)

    Smith, Bradley R.; Niebert, Marcus; Plakhotnik, Taras; Zvyagin, Andrei V.

    2007-01-01

    We report on the first demonstration of nanodiamond (ND) as a scattering optical label in a biological environment. NDs were efficiently transfected into cells using cationic liposomes, and imaged using differential interference and Hoffman modulation 'space' contrast microscopy techniques. We have shown that 55 nm NDs are biologically inert and produce a bright signal compared to the cell background. ND as a scattering label presents the possibility for extended biological imaging with relatively little thermal or biochemical perturbations due to the optical transparency and biologically inert nature of diamond

  19. Two skin cell lines from wild-type and albino Japanese flounder (Paralichthys olivaceus): establishment, characterization, virus susceptibility, efficient transfection, and application to albinism study.

    Science.gov (United States)

    Wang, Ruoqing; Zhang, Nianwei; Wang, Renkai; Wang, Shengpeng; Wang, Na

    2017-12-01

    In order to provide an applicable cell platform to study fish pathology and skin pigmentation, two cell lines derived from skin tissues of wild-type and albino Japanese flounder were established and named JFSK_wt and JFSK_alb, respectively. These two cell lines were cultured for 45 passages within approximately 300 days. JFSK_wt and JFSK_alb cells were maintained in Dulbecco's Modified Eagle's Medium and Ham's F-12 Nutrient Mixture (DMEM/F12) supplemented with antibiotics, fetal bovine serum (FBS), 2-mercaptoethanol (2-Me), N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), and basic fibroblast growth factor (bFGF). The optimal growth temperature for JFSK_wt and JFSK_alb cells was 24 °C, and microscopically, the two cell lines were composed of fibroblast-like cells. Chromosomal analysis revealed that JFSK_wt and JFSK_alb cells had an identical diploid karyotype with 2n = 48t. Results of viral inoculation assays revealed that both cell lines shared similar patterns of viral susceptibility to nervous necrosis virus (NNV). High transfection efficiency was observed in JFSK_wt and JFSK_alb cells transfected with a pEGFP-N3 reporter plasmid and Cy3-siRNA. The detection of dermal marker Dermo-1 showed that these two cells were both derived from the dermis. Finally, three genes involved in the melanogenesis pathway, including adenylate cyclase type 5 (adcy5), microphthalmia-associated transcription factor (mitf), and endothelin B receptor (ednrb), were downregulated in JFSK_alb versus JFSK_wt cells. Thus, the two cell lines, sampled from skin tissue of wild-type and albino Japanese flounder will be not only helpful for fish pathogen research but also beneficial for albinism-related gene function studies.

  20. Zerumbone-loaded nanostructured lipid carrier induces G2/M cell cycle arrest and apoptosis via mitochondrial pathway in a human lymphoblastic leukemia cell line

    Directory of Open Access Journals (Sweden)

    Rahman HS

    2014-01-01

    Full Text Available Heshu Sulaiman Rahman,1–3 Abdullah Rasedee,1,2 Ahmad Bustamam Abdul,2,4 Nazariah Allaudin Zeenathul,1,2 Hemn Hassan Othman,1,3 Swee Keong Yeap,2 Chee Wun How,2 Wan Abd Ghani Wan Nor Hafiza4,51Faculty of Veterinary Medicine, 2Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; 3Faculty of Veterinary Medicine, University of Sulaimanyah, Sulaimanyah City, Kurdistan Region, Northern Iraq; 4Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, Malaysia; 5College of Medical Laboratory Technology, Institute for Medical Research, Kuala Lumpur, MalaysiaAbstract: This investigation evaluated the antileukemia properties of a zerumbone (ZER-loaded nanostructured lipid carrier (NLC prepared by hot high-pressure homogenization techniques in an acute human lymphoblastic leukemia (Jurkat cell line in vitro. The apoptogenic effect of the ZER-NLC on Jurkat cells was determined by fluorescent and electron microscopy, Annexin V-fluorescein isothiocyanate, Tdt-mediated dUTP nick-end labeling assay, cell cycle analysis, and caspase activity. An MTT (3-(4,5-dimethylthiazol-2-yl-2,5 diphenyltetrazolium bromide assay showed that ZER-NLC did not have adverse effects on normal human peripheral blood mononuclear cells. ZER-NLC arrested the Jurkat cells at G2/M phase with inactivation of cyclin B1 protein. The study also showed that the antiproliferative effect of ZER-NLC on Jurkat cells is through the intrinsic apoptotic pathway via activation of caspase-3 and caspase-9, release of cytochrome c from the mitochondria into the cytosol, and subsequent cleavage of poly (adenosine diphosphate-ribose polymerase (PARP. These findings show that the ZER-NLC is a potentially useful treatment for acute lymphoblastic leukemia in humans.Keywords: zerumbone-loaded nanostructured lipid carrier, cell cycle arrest, apoptosis, mitochondrial pathway

  1. Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles.

    Directory of Open Access Journals (Sweden)

    Juan Ramón Vanegas Sáenz

    Full Text Available Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP, the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8, which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220-580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC and human osteoblasts (hOB in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB.

  2. A protocol for preparation and transfection of rat entorhinal cortex organotypic cultures for electrophysiological whole-cell recordings

    Directory of Open Access Journals (Sweden)

    Nicholas I. Cilz

    2017-01-01

    Full Text Available Understanding how neuromodulators influence synaptic transmission and intrinsic excitability within the entorhinal cortex (EC is critical to furthering our understanding of the molecular and cellular aspects of this region. Organotypic cultures can provide a cost-effective means to employ selective molecular biological strategies in elucidating cellular mechanisms of neuromodulation in the EC. We therefore adapted our acute slice model for organotypic culture applications and optimized a protocol for the preparation and biolistic transfection of cultured horizontal EC slices. Here, we present our detailed protocol for culturing EC slices. Using an n-methyl-d-glucamine (NMDG-containing cutting solution, we obtain healthy EC slice cultures for electrophysiological recordings. We also present our protocol for the preparation of “bullets” carrying one or more constructs and demonstrate successful transfection of EC slices. We build upon previous methods and highlight specific aspects in our method that greatly improved the quality of our results. We validate our methods using immunohistochemical, imaging, and electrophysiological techniques. The novelty of this method is that it provides a description of culturing and transfection of EC neurons for specifically addressing their functionality. This method will enable researchers interested in entorhinal function to quickly adopt a similar slice culture transfection system for their own investigations.

  3. Cytotoxicity of diacetoxyscirpenol is associated with apoptosis by activation of caspase-8 and interruption of cell cycle progression by down-regulation of cdk4 and cyclin B1 in human Jurkat T cells

    International Nuclear Information System (INIS)

    Jun, Do Youn; Kim, Jun Seok; Park, Hae Sun; Song, Woo Sun; Bae, Young Seuk; Kim, Young Ho

    2007-01-01

    To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 μM) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins

  4. Structure-transfection activity relationships in a series of novel cationic lipids with heterocyclic head-groups.

    Science.gov (United States)

    Ivanova, Ekaterina A; Maslov, Mikhail A; Kabilova, Tatyana O; Puchkov, Pavel A; Alekseeva, Anna S; Boldyrev, Ivan A; Vlassov, Valentin V; Serebrennikova, Galina A; Morozova, Nina G; Zenkova, Marina A

    2013-11-07

    Cationic liposomes are promising candidates for the delivery of various therapeutic nucleic acids. Here, we report a convenient synthesis of carbamate-type cationic lipids with various hydrophobic domains (tetradecanol, dialkylglycerol, cholesterol) and positively charged head-groups (pyridinium, N-methylimidazolium, N-methylmorpholinium) and data on the structure-transfection activity relationships. It was found that single-chain lipids possess high surface activity, which correlates with high cytotoxicity due to their ability to disrupt the cellular membrane by combined hydrophobic and electrostatic interactions. Liposomes containing these lipids also display high cytotoxicity with respect to all cell lines. Irrespective of chemical structures, all cationic lipids form liposomes with similar sizes and surface potentials. The characteristics of complexes composed of cationic liposomes and nucleic acids depend mostly on the type of nucleic acid and P/N ratios. In the case of oligodeoxyribonucleotide delivery, the transfection activity depends on the type of cationic head-group regardless of the type of hydrophobic domain: all types of cationic liposomes mediate efficient oligonucleotide transfer into 80-90% of the eukaryotic cells, and liposomes based on lipids with N-methylmorpholinium cationic head-group display the highest transfection activity. In the case of plasmid DNA and siRNA, the type of hydrophobic domain determines the transfection activity: liposomes composed of cholesterol-based lipids were the most efficient in DNA transfer, while liposomes containing glycerol-based lipids exhibited reasonable activity in siRNA delivery under serum-free conditions.

  5. Development of a calcium phosphate co-precipitate/poly(lactide-co-glycolide) DNA delivery system: release kinetics and cellular transfection studies.

    Science.gov (United States)

    Kofron, Michelle D; Laurencin, Cato T

    2004-06-01

    One of the most common non-viral methods for the introduction of foreign deoxyribonucleic acid (DNA) into cultured cells is calcium phosphate co-precipitate transfection. This technique involves the encapsulation of DNA within a calcium phosphate co-precipitate, particulate addition to in vitro cell culture, endocytosis of the co-precipitate, and exogenous DNA expression by the transfected cell. In this study, we fabricated a novel non-viral gene transfer system by adsorbing DNA, encapsulated in calcium phosphate (DNA/Ca-P) co-precipitates, to biodegradable two- and three-dimensional poly(lactide-co-glycolide) matrices (2D-DNA/Ca-P/PLAGA, 3D-DNA/Ca-P/PLAGA). Co-precipitate release studies demonstrated an initial burst release over the first 48 h. By day 7, approximately 96% of the initially adsorbed DNA/Ca-P co-precipitate had been released. This was followed by low levels of co-precipitate release for 42 days. Polymerase chain reaction was used to demonstrate the ability of the released DNA containing co-precipitates to transfect SaOS-2 cells cultured in vitro on the 3D-DNA/Ca-P/PLAGA matrix and maintenance of the structural integrity of the exogenous DNA. In summary, a promising system for the incorporation and controlled delivery of exogenous genes encapsulated within a calcium phosphate co-precipitate from biodegradable polymeric matrices has been developed and may have applicability to the delivery of therapeutic genes and the transfection of other cell types.

  6. Histone H1 interphase phosphorylation becomes largely established in G1 or early S phase and differs in G1 between T-lymphoblastoid cells and normal T cells

    Directory of Open Access Journals (Sweden)

    Gréen Anna

    2011-08-01

    Full Text Available Abstract Background Histone H1 is an important constituent of chromatin, and is involved in regulation of its structure. During the cell cycle, chromatin becomes locally decondensed in S phase, highly condensed during metaphase, and again decondensed before re-entry into G1. This has been connected to increasing phosphorylation of H1 histones through the cell cycle. However, many of these experiments have been performed using cell-synchronization techniques and cell cycle-arresting drugs. In this study, we investigated the H1 subtype composition and phosphorylation pattern in the cell cycle of normal human activated T cells and Jurkat T-lymphoblastoid cells by capillary electrophoresis after sorting of exponentially growing cells into G1, S and G2/M populations. Results We found that the relative amount of H1.5 protein increased significantly after T-cell activation. Serine phosphorylation of H1 subtypes occurred to a large extent in late G1 or early S phase in both activated T cells and Jurkat cells. Furthermore, our data confirm that the H1 molecules newly synthesized during S phase achieve a similar phosphorylation pattern to the previous ones. Jurkat cells had more extended H1.5 phosphorylation in G1 compared with T cells, a difference that can be explained by faster cell growth and/or the presence of enhanced H1 kinase activity in G1 in Jurkat cells. Conclusion Our data are consistent with a model in which a major part of interphase H1 phosphorylation takes place in G1 or early S phase. This implies that H1 serine phosphorylation may be coupled to changes in chromatin structure necessary for DNA replication. In addition, the increased H1 phosphorylation of malignant cells in G1 may be affecting the G1/S transition control and enabling facilitated S-phase entry as a result of relaxed chromatin condensation. Furthermore, increased H1.5 expression may be coupled to the proliferative capacity of growth-stimulated T cells.

  7. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure.

    OpenAIRE

    Felgner, P L; Gadek, T R; Holm, M; Roman, R; Chan, H W; Wenz, M; Northrop, J P; Ringold, G M; Danielsen, M

    1987-01-01

    A DNA-transfection protocol has been developed that makes use of a synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA). Small unilamellar liposomes containing DOTMA interact spontaneously with DNA to form lipid-DNA complexes with 100% entrapment of the DNA, DOTMA facilitates fusion of the complex with the plasma membrane of tissue culture cells, resulting in both uptake and expression of the DNA. The technique is simple, highly reproducible, and eff...

  8. NanoSMGT: transgene transmission into bovine embryos using halloysite clay nanotubes or nanopolymer to improve transfection efficiency.

    Science.gov (United States)

    Campos, Vinicius Farias; de Leon, Priscila Marques Moura; Komninou, Eliza Rossi; Dellagostin, Odir Antônio; Deschamps, João Carlos; Seixas, Fabiana Kömmling; Collares, Tiago

    2011-11-01

    The objectives were to investigate whether: 1) nanotransfectants are more effective than other common transfection methods for SMGT; 2) NanoSMGT is able to transmit exogenous DNA molecules to bovine embryos; and 3) halloysite clay nanotubes (HCNs) can be used as a transfection reagent to improve transgene transmission. Four transfection systems were used: naked DNA (without transfectant), lipofection, nanopolymer, and halloysite clay nanotubes. Plasmid uptake by sperm and its transfer to embryos were quantified by conventional and real-time PCR, as well as EGFP expression by fluorescence microscopy. Furthermore, sperm motility and viability, and embryo development were investigated. Mean number of plasmids taken up was affected (P < 0.05) by transfection procedure, with the nanopolymer being the most effective transfectant (∼ 153 plasmids per spermatozoon). None of the treatments affected sperm motility or viability. The mean number of plasmids transmitted to four-cell stage embryos was higher (P < 0.05) in nanopolymer and HCNs than liposomes and naked DNA groups. The number of embryos carrying the transgene increased from 8-10% using naked DNA or liposomes to 40-45% using nanopolymer or HCN as transfectants (P < 0.05). There were no significant differences among transfection procedures regarding blastocyst formation rate of resulting embryos. However, no EGFP-expressing embryo was identified in any treatment. Therefore, nanotransfectants improved transgene transmission in bovine embryos without deleterious effects on embryo development. To our knowledge, this was the first time that bovine embryos carrying a transgene were produced by NanoSMGT. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. In Vitro Repair of UV-Irradiated Micrococcus luteus Bacteriophage N1 Transfecting DNA 1

    Science.gov (United States)

    Mahler, Inga; George, Jeanne; Grossman, Lawrence

    1974-01-01

    Calcium-treated UV-sensitive, host cell reactivation− strains of Micrococcus luteus are infected with UV-irradiated N1 DNA. In strains lacking UV endonuclease, in vitro treatment of the irradiated DNA results in transfection enhancement. PMID:4823319

  10. 13-methyltetradecanoic acid exhibits anti-tumor activity on T-cell lymphomas in vitro and in vivo by down-regulating p-AKT and activating caspase-3.

    Directory of Open Access Journals (Sweden)

    Qingqing Cai

    Full Text Available 13-Methyltetradecanoic acid (13-MTD, a saturated branched-chain fatty acid purified from soy fermentation products, induces apoptosis in human cancer cells. We investigated the inhibitory effects and mechanism of action of 13-MTD on T-cell non-Hodgkin's lymphoma (T-NHL cell lines both in vitro and in vivo. Growth inhibition in response to 13-MTD was evaluated by the cell counting kit-8 (CCK-8 assay in three T-NHL cell lines (Jurkat, Hut78, EL4 cells. Flow cytometry analyses were used to monitor the cell cycle and apoptosis. Proteins involved in 13-MTD-induced apoptosis were examined in Jurkat cells by western blotting. We found that 13-MTD inhibited proliferation and induced the apoptosis of T-NHL cell lines. 13-MTD treatment also induced a concentration-dependent arrest of Jurkat cells in the G1-phase. During 13-MTD-induced apoptosis in Jurkat cells, the cleavage of caspase-3 and poly ADP-ribose polymerase (PARP, a caspase enzymolysis product were detected after incubation for 2 h, and increased after extending the incubation time. However, there was no change in the expression of Bcl-2 or c-myc proteins. The appearance of apoptotic Jurkat cells was accompanied by the inhibition of AKT and nuclear factor-kappa B (NF-κB phosphorylation. In addition, 13-MTD could also effectively inhibit the growth of T-NHL tumors in vivo in a xenograft model. The tumor inhibition rate in the experimental group was 40%. These data indicate that 13-MTD inhibits proliferation and induces apoptosis through the down-regulation of AKT phosphorylation followed by caspase activation, which may provide a new approach for treating T-cell lymphomas.

  11. Conceptual and technical aspects of transfection and gene delivery.

    Science.gov (United States)

    Kaestner, Lars; Scholz, Anke; Lipp, Peter

    2015-03-15

    Genetically modified animals are state of the art in biomedical research as gene therapy is a promising perspective in the attempt to cure hereditary diseases. Both approaches have in common that modified or corrected genetic information must be transferred into cells in general or into particular cell types of an organism. Here we give an overview of established and emerging methods of transfection and gene delivery and provide conceptual and technical advantages and drawbacks of their particular use. Additionally, based on a flow chart, we compiled a rough guideline to choose a gene transfer method for a particular field of application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Transfection with extracellularly UV-damaged DNA induces human and rat cells to express a mutator phenotype towards parvovirus H-1

    International Nuclear Information System (INIS)

    Dinsart, C.; Cornelis, J.J.; Klein, B.; van der Eb, A.J.; Rommelaere, J.

    1984-01-01

    Human and rat cells transfected with UV-irradiated linear double-stranded DNA from calf thymus displayed a mutator activity. This phenotype was identified by growing a lytic thermosensitive single-stranded DNA virus (parvovirus H-1) in those cells and determining viral reversion frequencies. Likewise, exogenous UV-irradiated closed circular DNAs, either double-stranded (simian virus 40) or single-stranded (phi X174), enhanced the ability of recipient cells to mutate parvovirus H-1. The magnitude of mutator activity expression increased along with the number of UV lesions present in the inoculated DNA up to a saturation level. Unirradiated DNA displayed little inducing capacity, irrespective of whether it was single or double stranded. Deprivation of a functional replication origin did not impede UV-irradiated simian virus 40 DNA from providing rat and human cells with a mutator function. Our data suggest that in mammalian cells a trans-acting mutagenic signal might be generated from UV-irradiated DNA without the necessity for damaged DNA to replicate

  13. Suppression of postmitochondrial signaling and delayed response to UV-induced nuclear apoptosis in HeLa cells

    International Nuclear Information System (INIS)

    Sasai, Kaori; Yajima, Hirohiko; Suzuki, Fumio

    2002-01-01

    Activation of postmitochondrial pathways by UV irradiation was examined using mouse lymphoma 3SB and human leukemic Jurkat cells and two human carcinoma cell lines (HeLa and MCF-7). Exposure of 3SB and Jurkat cells resulted in large amounts of cytochrome c and apoptosis-inducing factor (AIF) being released into the cytosol, and a clear laddering pattern of DNA fragments was observed within 3 h of incubation after irradiation. Simultaneously, activation of caspase-9 and its downstream caspases was detected. HeLa and MCF-7 cells also showed extensive release of mitochondrial factors and caspase-9 activation at 4 to 6 h after exposure, but apoptotic nuclear changes appeared much later. Compared with 3SB and Jurkat cells, these carcinoma cell lines exhibited reduced activation of caspase-9-like proteolytic activity by UV radiation, and levels of caspase-3-like activity in HeLa cells were extremely low, similar to those in caspase-3-deficient MCF-7 cells. These results suggest that the delayed response to UV-induced nuclear apoptosis in HeLa cells is due to a reduced activation of the caspase cascade downstream of cytochrome c release and suppression of caspase-3 activity. (author)

  14. Prolongation of the survival of breast cancer-bearing mice immunized with GM-CSF-secreting syngeneic/allogeneic fibroblasts transfected with a cDNA expression library from breast cancer cells.

    Science.gov (United States)

    Kim, Tae S; Jung, Mi Y; Cho, Daeho; Cohen, Edward P

    2006-10-30

    Breast cancer cells, like other types of neoplastic cells, form weakly immunogenic tumor-associated antigens. The antigenic properties of the tumor-associated antigens can be enhanced if they are expressed by highly immunogenic cells. In this study, a cancer vaccine was prepared by transfer of a cDNA expression library from SB5b breast carcinoma into mouse fibroblast cells of C3H/He mouse origin (H-2(k)), that had been previously modified to secrete GM-CSF and to express allogeneic class I-determinants (H-2(b)). The transfected syngeneic/allogeneic fibroblasts secreting GM-CSF were used as a vaccine in C3H/He mice. Robust cell-mediated immunity toward the breast cancer cells was generated in mice immunized with the cDNA-based vaccine. The immunity, mediated predominantly by CD8(+) T lymphocytes, was directed toward the breast cancer cells, but not against either of two other non-cross-reactive neoplasms of C3H/He mice. The immunity was sufficient to prolong the survival of mice with established breast cancer. Among other advantages, preparation of the vaccine by cDNA-transfer into a fibroblast cell line enabled the recipient cells to be modified in advance of DNA-transfer to augment their immunogenic properties. As the transferred DNA is replicated as the transfected cells divide, the vaccine could be prepared from microgram quantities of tumor tissue.

  15. Mechanism of attenuation of a chimeric influenza A/B transfectant virus.

    Science.gov (United States)

    Luo, G; Bergmann, M; Garcia-Sastre, A; Palese, P

    1992-08-01

    The ribonucleoprotein transfection system for influenza virus allowed us to construct an influenza A virus containing a chimeric neuraminidase (NA) gene in which the noncoding sequence is derived from the NS gene of influenza B virus (T. Muster, E. K. Subbarao, M. Enami, B. P. Murphy, and P. Palese, Proc. Natl. Acad. Sci. USA 88:5177-5181, 1991). This transfectant virus is attenuated in mice and grows to lower titers in tissue culture than wild-type virus. Since such a virus has characteristics desirable for a live attenuated vaccine strain, attempts were made to characterize this virus at the molecular level. Our analysis suggests that the attenuation of the virus is due to changes in the cis signal sequences, which resulted in a reduction of transcription and replication of the chimeric NA gene. The major finding concerns a sixfold reduction in NA-specific viral RNA in the virion, causing a reduction in the ratio of infectious particles to physical particles compared with the ratio in wild-type virus. Although the NA-specific mRNA level is also reduced in transfectant virus-infected cells, it does not appear to contribute to the attenuation characteristics of the virus. The levels of the other RNAs and their expression appear to be unchanged for the transfectant virus. It is suggested that downregulation of the synthesis of one viral RNA segment leads to the generation of defective viruses during each replication cycle. We believe that this represents a general principle for attenuation which may be applied to other segmented viruses containing either single-stranded or double-stranded RNA.

  16. Microsphere-liposome complexes protect adenoviral vectors from neutralising antibody without losses in transfection efficiency, in-vitro.

    Science.gov (United States)

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Kalle, Wouter H J

    2004-11-01

    Adenoviral vectors have been commonly used in gene therapy protocols but the success of their use is often limited by the induction of host immunity to the vector. Following exposure to the adenoviral vector, adenoviral-specific neutralising antibodies are produced, which limits further administration. This study examines the effectiveness of a novel combination of microspheres and liposomes for the shielding of adenovirus from neutralising antibodies in an in-vitro setting. We show that liposomes are effective in the protection of adenovirus from neutralising antibody and that the conjugation of these complexes to microspheres augments the level of protection. This study further reveals that previously neutralised adenovirus may still be transported into the cell via liposome-cell interactions and is still capable of expressing its genes, making this vector an effective tool for circumvention of the humoral immune response. We also looked at possible side effects of using the complexes, namely increases in cytotoxicity and reductions in transfection efficiency. Our results showed that varying the liposome:adenovirus ratio can reduce the cytotoxicity of the vector as well as increase the transfection efficiency. In addition, in cell lines that are adenoviral competent, transfection efficiencies on par with uncomplexed adenoviral vectors were achievable with the combination vector.

  17. Cellular determinants involving mitochondrial dysfunction, oxidative stress and apoptosis correlate with the synergic cytotoxicity of epigallocatechin-3-gallate and menadione in human leukemia Jurkat T cells.

    Science.gov (United States)

    Tofolean, Ioana Teodora; Ganea, Constanta; Ionescu, Diana; Filippi, Alexandru; Garaiman, Alexandru; Goicea, Alexandru; Gaman, Mihnea-Alexandru; Dimancea, Alexandru; Baran, Irina

    2016-01-01

    We have investigated the growth-suppressive action of epigallocatechin-3-gallate (EGCG) on human leukemia Jurkat T cells. Results show a strong correlation between the dose-dependent reduction of clonogenic survival following acute EGCG treatments and the EGCG-induced decline of the mitochondrial level of Ca(2+). The cell killing ability of EGCG was synergistically enhanced by menadione. In addition, the cytotoxic effect of EGCG applied alone or in combination with menadione was accompanied by apoptosis induction. We also observed that in acute treatments EGCG displays strong antioxidant properties in the intracellular milieu, but concurrently triggers some oxidative stress generating mechanisms that can fully develop on a longer timescale. In parallel, EGCG dose-dependently induced mitochondrial depolarization during exposure, but this condition was subsequently reversed to a persistent hyperpolarized mitochondrial state that was dependent on the activity of respiratory Complex I. Fluorimetric measurements suggest that EGCG is a mitochondrial Complex III inhibitor and indicate that EGCG evokes a specific cellular fluorescence with emission at 400nm and two main excitation bands (at 330nm and 350nm) that may originate from a mitochondrial supercomplex containing dimeric Complex III and dimeric ATP-synthase, and therefore could provide a valuable means to characterize the functional properties of the respiratory chain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Use of a transfected and amplified Drosophila heat shock promoter construction for inducible production of toxic mouse c-myc proteins in CHO cells

    International Nuclear Information System (INIS)

    Wurm, F.M.; Gwinn, K.A.; Papoulas, O.; Pallavicini, M.; Kingston, R.E.

    1987-01-01

    After transfection and selection with methotrexate, CHO cell lines were established which contained up to 2000 copies of an expression vector for c-myc protein. The vector contained the Drosophila heat shock protein 70 (hsp70) promoter fused with the coding region of the mouse c-myc gene. Incubation of cells for up to 3 hours at 43 0 C resulted in at least a 100-fold induction of recombinant c-myc mRNA. When cells were shifted back to 37 0 C, within 1 to 4 hours, this RNA was translated into protein to yield about 250 μg per 10 9 cells. Cells died a few hours later, suggesting that high concentrations of intracellular c-myc are cytotoxic. 47 refs., 5 figs

  19. Nitric oxide and bcl-2 mediated the apoptosis induced by nickel(II) in human T hybridoma cells

    International Nuclear Information System (INIS)

    Guan Fuqin; Zhang Dongmei; Wang Xinchang; Chen Junhui

    2007-01-01

    Although effects of nickel(II) on the immune system have long been recognized, little is known about the effects of nickel(II) on the induction of apoptosis and related signaling events in T cells. In the present study, we investigated the roles and signaling pathways of nickel(II) in the induction of apoptosis in a human T cell line jurkat. The results showed that the cytotoxic effects of Ni involved significant morphological changes and chromosomal condensation (Hoechst 33258 staining). Analyses of hypodiploid cells and FITC-Annexin V and PI double staining showed significant increase of apoptosis in jurkat cells 6, 12 and 24 h after nickel(II) treatment. Flow cytometry analysis also revealed that the loss of mitochondrial membrane potential (MMP) occurred concomitantly with the onset of NiCl 2 -induced apoptosis. Induction of apoptotic cell death by nickel was mediated by reduction of bcl-2 expression. Furthermore, nickel stimulated the generation of nitric oxide (NO). These results suggest that nickel(II) chloride induces jurkat cells apoptosis via nitric oxide generation, mitochondrial depolarization and bcl-2 suppression

  20. A baculovirus (Bombyx mori nuclear polyhedrosis virus) repeat element functions as a powerful constitutive enhancer in transfected insect cells.

    Science.gov (United States)

    Lu, M; Farrell, P J; Johnson, R; Iatrou, K

    1997-12-05

    It has been previously reported that baculovirus homologous regions, the regions of baculovirus genomes that contain the origins of DNA replication, can augment the expression of a small number of baculovirus genes in vitro. We are now reporting that a region of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) containing the homologous region 3 (HR3) acts as an enhancer for the promoter of a nonviral gene, the cytoplasmic actin gene of the silkmoth B. mori. Incorporation of the HR3 sequences of BmNPV into an actin promoter-based expression cassette results in an augmentation of transgene expression in transfected cells by two orders of magnitude relative to the control recombinant expression cassette. This increase is due to a corresponding increase in the rate of transcription from the actin promoter and not to replication of the expression cassette and occurs only when the HR3 element is linked to the expression cassette in cis. A comparable degree of enhancement in the activity of the silkworm actin promoter occurs also in heterologous lepidopteran cells. Concomitant supplementation of transfected cells with the BmIE1 trans-activator, which was previously shown to be capable of functioning in vitro as a transcriptional co-activator of the cytoplasmic actin gene promoter, results in more than a 1,000-fold increase in the level of expression of recombinant proteins placed under the control of the actin gene promoter. These findings provide the foundation for the development of a nonlytic insect cell expression system for continuous high-level expression of recombinant proteins. Such a system should provide levels of expression of recombinant proteins comparable to those obtained from baculovirus expression systems and should also have the additional advantage of continuous production in a cellular environment that, in contrast to that generated by a baculovirus infection, supports continuously proper posttranslational modifications of recombinant

  1. Lipophosphoramidate-based bipolar amphiphiles: their syntheses and transfection properties.

    Science.gov (United States)

    Berchel, Mathieu; Le Gall, Tony; Lozach, Olivier; Haelters, Jean-Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2016-03-14

    Six new cationic bolaamphiphiles (also called bipolar amphiphiles, bolaform amphiphiles, or bolalipids) were readily prepared by a thiol-ene click reaction that engaged a mercapto-alcohol (mercapto-ethanol or mercapto-hexanol) and a cationic based lipophosphoramidate. The cationic lipophosphoramidates contain two lipid chains that end in an alkene group and a selected cationic polar head group (trimethylammonium, dimethyl hydroxyethyl ammonium, or methylimidazolium). These compounds were formulated in water (with or without DOPE as a colipid) to produce supramolecular aggregates. These aggregates, before (i.e. bolasomes) and after (i.e. bolaplexes) mixing with plasmid DNA (pDNA) at various charge ratios, were characterized with regard to their sizes and zeta potentials. In the case of bolasomes, the suspensions were unstable since precipitation occurred after only a few hours at room temperature. On the other hand, bolaplex formulations exhibited clearly a better colloidal stability. Then, the gene delivery properties of the cationic bolasomes were investigated using two human-derived epithelial cell lines (A549 and 16HBE). Compared to the commercially available lipofection reagent (Lipofectamine), most of the cationic bolaamphiphiles were able to efficiently transfect these cells when they were formulated with DOPE in a 1 : 1 molar ratio. We report herein that bolaamphiphiles possessing a trimethylammonium or a dimethyl hydroxyethyl ammonium head group were the most efficient in terms of transfection efficiency while exhibiting no significant cytotoxicity.

  2. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaolong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Wang, Gangmin [Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040 (China); Shi, Ting [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Shao, Zhihong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Zhao, Peng; Shi, Donglu [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Ren, Jie [Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804 (China); Lin, Chao, E-mail: chaolin@tongji.edu.cn [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Wang, Peijun, E-mail: tjpjwang@sina.com [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China)

    2016-08-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T{sub 1}-weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2′-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25 kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T{sub 1}-weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. - Highlights: • Novel cationic gadolinium-chelated poly(urethane amide)s (GdCPUAs) are prepared. • GdCPUAs can induce a high transfection efficacy in different cancer cells. • GdCPUAs reveal good cyto-compatibility against cancer cells. • GdCPUAs may be applied as T{sub 1}-contrast agents for magnetic resonance imaging. • GdCPUAs hold high potential for cancer theranostics.

  3. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gao, Xiaolong; Wang, Gangmin; Shi, Ting; Shao, Zhihong; Zhao, Peng; Shi, Donglu; Ren, Jie; Lin, Chao; Wang, Peijun

    2016-01-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T 1 -weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2′-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25 kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T 1 -weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. - Highlights: • Novel cationic gadolinium-chelated poly(urethane amide)s (GdCPUAs) are prepared. • GdCPUAs can induce a high transfection efficacy in different cancer cells. • GdCPUAs reveal good cyto-compatibility against cancer cells. • GdCPUAs may be applied as T 1 -contrast agents for magnetic resonance imaging. • GdCPUAs hold high potential for cancer theranostics.

  4. Transfection of Platyhelminthes

    Directory of Open Access Journals (Sweden)

    Bárbara Moguel

    2015-01-01

    Full Text Available Flatworms are one of the most diverse groups within Lophotrochozoa with more than 20,000 known species, distributed worldwide in different ecosystems, from the free-living organisms in the seas and lakes to highly specialized parasites living in a variety of hosts, including humans. Several infections caused by flatworms are considered major neglected diseases affecting countries in the Americas, Asia, and Africa. For several decades, a particular interest on free-living flatworms was due to their ability to regenerate considerable portions of the body, implying the presence of germ cells that could be important for medicine. The relevance of reverse genetics for this group is clear; understanding the phenotypic characteristics of specific genes will shed light on developmental traits of free-living and parasite worms. The genetic manipulation of flatworms will allow learning more about the mechanisms for tissue regeneration, designing new and more effective anthelmintic drugs, and explaining the host-parasite molecular crosstalk so far partially inaccessible for experimentation. In this review, availability of transfection techniques is analyzed across flatworms, from the initial transient achievements to the stable manipulations now developed for free-living and parasite species.

  5. The role of heat shock protein 90 in the regulation of tumor cell apoptosis.

    Science.gov (United States)

    Kaigorodova, E V; Ryazantseva, N V; Novitskii, V V; Belkina, M V; Maroshkina, A N

    2011-02-01

    Programmed death of Jurkat tumor cells was studied under conditions of culturing with 17-AAG selective inhibitor of heat shock protein with a molecular weight of 90 kDa and etoposide. Apoptosis realization was evaluated by fluorescent microscopy with FITC-labeled annexin V and propidium iodide. Activity of caspase-3 was evaluated spectrophotometrically. Inhibition of heat shock protein with a molecular weight of 90 kDa activated the apoptotic program in Jurkat tumor cells and etoposide-induced apoptosis. The heat shock protein with a molecular weight of 90 kDa acted as apoptosis inhibitor in tumor cells.

  6. N-acetylphytosphingosine enhances the radiosensitivity of tumor cells by increasing apoptosis

    International Nuclear Information System (INIS)

    Han, Y.; Kim, Y.; Yun, Y.; Jeon, S.; Kim, K.; Song, J.; Hong, S.H.; Park, C.

    2005-01-01

    Ceramides are well-known second messengers which mediate apoptosis, proliferation, differentiation in mammalian cells, but the physiological roles of phytosphingosines are poorly understood. We hypothesized that one of the phytosphingosine derivatives, N-acetylphytosphingosine (NAPS) can induce apoptosis in human leukemia Jurkat cell line and increase apoptosis in irradiated MDA-MB-231 cells. We first examined the effect of NAPS on apoptosis of Jurkat cells. NAPS had a more rapid and stronger apoptotic effect than C 2 -ceramide in Jurkat cells and significant increase of apoptosis was observed at 3 h after treatment. In contrast, the apoptosis induced by C2-ceramide was observed only after 16 h of treatment. NAPS induced apoptosis was mediated by caspase 3 and 8 activation and inhibited by z-VAD-fmk. Ceramide plays a pivotal role in radiation induced apoptosis. We postulated that exogenous treatment of NAPS sensitizes tumor cells to ionizing radiation, since NAPS might be used as a more effective alternative to C2-ceramide. As expected, NAPS decreased clonogenic survival of irradiated MDA-MB-231 cells dose dependently, and apoptosis of irradiated cells in the presence of NAPS was increased through the caspase activation. Taken together, NAPS is an effective apoptosis-inducing agent, which can be readily synthesized from yeast sources, and is a potent alternative to ceramide for the further study of ceramide associated signaling and the development of radiosensitizing agent. (orig.)

  7. Cationic lipids: molecular structure/ transfection activity relationships and interactions with biomembranes.

    Science.gov (United States)

    Koynova, Rumiana; Tenchov, Boris

    2010-01-01

    Abstract Synthetic cationic lipids, which form complexes (lipoplexes) with polyanionic DNA, are presently the most widely used constituents of nonviral gene carriers. A large number of cationic amphiphiles have been synthesized and tested in transfection studies. However, due to the complexity of the transfection pathway, no general schemes have emerged for correlating the cationic lipid chemistry with their transfection efficacy and the approaches for optimizing their molecular structures are still largely empirical. Here we summarize data on the relationships between transfection activity and cationic lipid molecular structure and demonstrate that the transfection activity depends in a systematic way on the lipid hydrocarbon chain structure. A number of examples, including a large series of cationic phosphatidylcholine derivatives, show that optimum transfection is displayed by lipids with chain length of approximately 14 carbon atoms and that the transfection efficiency strongly increases with increase of chain unsaturation, specifically upon replacement of saturated with monounsaturated chains.

  8. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Morotomi-Yano, Keiko; Akiyama, Hidenori [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Yano, Ken-ichi, E-mail: yanoken@kumamoto-u.ac.jp [Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555 (Japan)

    2013-08-30

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.

  9. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    International Nuclear Information System (INIS)

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-01-01

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs

  10. Caspase-10 Is the Key Initiator Caspase Involved in Tributyltin-Mediated Apoptosis in Human Immune Cells

    Directory of Open Access Journals (Sweden)

    Harald F. Krug

    2012-01-01

    Full Text Available Tributyltin (TBT is one of the most toxic compounds produced by man and distributed in the environment. A multitude of toxic activities have been described, for example, immunotoxic, neurotoxic, and endocrine disruptive effects. Moreover, it has been shown for many cell types that they undergo apoptosis after treatment with TBT and the cell death of immune cells could be the molecular background of its immunotoxic effect. As low as 200 nM up to 1 μM of TBT induces all signs of apoptosis in Jurkat T cells within 1 to 24 hrs of treatment. When compared to Fas-ligand control stimulation, the same sequence of events occurs: membrane blebbing, phosphatidylserine externalisation, the activation of the “death-inducing signalling complex,” and the following sequence of cleavage processes. In genetically modified caspase-8-deficient Jurkat cells, the apoptotic effects are only slightly reduced, whereas, in FADD-negative Jurkat cells, the TBT effect is significantly diminished. We could show that caspase-10 is recruited by the TRAIL-R2 receptor and apoptosis is totally prevented when caspase-10 is specifically inhibited in all three cell lines.

  11. A role for protein kinase C in the regulation of membrane fluidity and Ca²(+) flux at the endoplasmic reticulum and plasma membranes of HEK293 and Jurkat cells.

    Science.gov (United States)

    Chen, Lihong; Meng, Qingli; Jing, Xian; Xu, Pingxiang; Luo, Dali

    2011-02-01

    Protein kinase C (PKC) plays a prominent role in the regulation of a variety of cellular functions, including Ca²(+) signalling. In HEK293 and Jurkat cells, the Ca²(+) release and Ca²(+) uptake stimulated by several different activators were attenuated by activation of PKC with phorbol myristate acetate (PMA) or 1-oleoyl-2-acetyl-sn-glycerol (OAG) and potentiated by PKC inhibition with Gö6983 or knockdown of PKCα or PKCβ using shRNA. Immunostaining and Western blotting analyses revealed that PKCα and PKCβII accumulated at the plasma membrane (PM) and that these isoforms, along with PKCβI, also translocated to the endoplasmic reticulum (ER) upon activation with PMA. Measurements of membrane fluidity showed that, like the cell membrane stabilizers bovine serum albumin (BSA) and ursodeoxycholate (UDCA), PMA and OAG significantly reduced the fluidity of both the PM and ER membranes; these effects were blocked in PKC-knockdown cells. Interestingly, both BSA and UDCA inhibited the Ca²(+) responses to agonists to the same extent as PMA, whereas Tween 20, which increases membrane fluidity, raised the internal Ca²(+) concentration. Thus, activation of PKC induces both translocation of PKC to the PM and ER membranes and downregulation of membrane fluidity, thereby negatively modulating Ca²(+) flux. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Kefir induces cell-cycle arrest and apoptosis in HTLV-1-negative malignant T-lymphocytes

    Directory of Open Access Journals (Sweden)

    Katia Maalouf

    2011-02-01

    Full Text Available Katia Maalouf1, Elias Baydoun2, Sandra Rizk11Department of Natural Sciences, Lebanese American University, Beirut, Lebanon; 2Department of Biology, American University of Beirut, Beirut, LebanonBackground: Adult lymphoblastic leukemia (ALL is a malignancy that occurs in white blood cells. The overall cure rate in children is 85%, whereas it is only 40% in adults. Kefir is an important probiotic that contains many bioactive ingredients, which give it unique health benefits. It has been shown to control several cellular types of cancer.Purpose: The present study investigates the effect of a cell-free fraction of kefir on CEM and Jurkat cells, which are human T-lymphotropic virus type I (HTLV-1-negative malignant T-lymphocytes.Methods: Cells were incubated with different kefir concentrations. The cytotoxicity of the compound was evaluated by determining the percentage viability of cells. The effect of all the noncytotoxic concentrations of kefir on the proliferation of CEM and Jurkat cells was then assessed. The levels of transforming growth factor-alpha (TGF-α, transforming growth factor- beta1 (TGF-β1, matrix metalloproteinase-2 (MMP-2, and MMP-9 mRNA upon kefir treatment were then analyzed using reverse transcriptase polymerase chain reaction (RT-PCR. Finally, the growth inhibitory effects of kefir on cell-cycle progression/apoptosis were assessed by Cell Death Detection (ELISA and flow cytometry.Results: The maximum cytotoxicity recorded after 48-hours treatment with 80 µg/µL kefir was only 42% and 39% in CEM and Jurkat cells, respectively. The percent reduction in proliferation was very significant, and was dose-, and time-dependent. In both cell lines, kefir exhibited its antiproliferative effect by downregulating TGF-α and upregulating TGF- β1 mRNA expression. Upon kefir treatment, a marked increase in cell-cycle distribution was noted in the preG1 phase of CEM and Jurkat cells, indicating the proapoptotic effect of kefir, which was

  13. Liposome-based vascular endothelial growth factor-165 transfection with skeletal myoblast for treatment of ischaemic limb disease.

    Science.gov (United States)

    Ye, Lei; Haider, Husnain Kh; Esa, Wahidah Bte; Su, Liping; Law, Peter K; Zhang, Wei; Lim, Yeanteng; Poh, Kian Keong; Sim, Eugene K W

    2010-01-01

    The study aims to use cholesterol (Chol) + DOTAP liposome (CD liposome) based human vascular endothelial growth factor-165 (VEGF(165)) gene transfer into skeletal myoblasts (SkMs) for treatment of acute hind limb ischaemia in a rabbit model. The feasibility and efficacy of CD liposome mediated gene transfer with rabbit SkMs were characterized using plasmid carrying enhanced green fluorescent protein (pEGFP) and assessed by flow cytometry. After optimization, SkMs were transfected with CD lipoplexes carrying plasmid-VEGF(165) (CD-pVEGF(165)) and transplanted into rabbit ischaemic limb. Animals were randomized to receive intramuscular injection of Medium199 (M199; group 1), non-transfected SkM (group 2) or CD-pVEGF(165) transfected SkM (group 3). Flow cytometry revealed that up to 16% rabbit SkMs were successfully transfected with pEGFP. Based on the optimized transfection condition, transfected rabbit SkM expressed VEGF(165) up to day 18 with peak at day 2. SkMs were observed in all cell-transplanted groups, as visualized with 6-diamidino-2-phenylindole and bromodeoxyuridine. Angiographic blood vessel score revealed increased collateral vessel development in group 3 (39.7 +/- 2.0) compared with group 2 (21.6 +/- 1.1%, P limb and may serve as a safe and new therapeutic modality for the repair of acute ischaemic limb disease.

  14. Expression and purification of soluble and stable ectodomain of natural killer cell receptor LLT1 through high-density transfection of suspension adapted HEK293S GnTI(-) cells

    Czech Academy of Sciences Publication Activity Database

    Bláha, J.; Pachl, Petr; Novák, Petr; Vaněk, O.

    2015-01-01

    Roč. 109, May (2015), s. 7-13 ISSN 1046-5928 R&D Projects: GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPK(CZ) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388963 ; RVO:61388971 Keywords : LLT1 * HEK293S GnTI(-) * C-type lectin-like * NK cell * glycosylation * transfection Subject RIV: CE - Biochemistry Impact factor: 1.407, year: 2015

  15. Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and ... The morphology of the HepG2 cell nucleus was investigated by Hoechst 33342, ..... Gong F, Liang Y, Xie P, Chau F. Information theory.

  16. Transfection of embryonated Muscovy duck eggs with a recombinant plasmid is suitable for rescue of infectious Muscovy duck parvovirus.

    Science.gov (United States)

    Wang, Jianye; Huang, Yu; Ling, Jueyi; Wang, Zhixiang; Zhu, Guoqiang

    2017-12-01

    For members of the family Parvoviridae, rescue of infectious virus from recombinant plasmid is usually done in cultured cells. In this study, the whole genome of the pathogenic Muscovy duck parvovirus (MDPV) strain YY was cloned into the pBluescript II (SK) vector, generating recombinant plasmid pYY. With the aid of a transfection reagent, pYY plasmid was inoculated into 11-day-old embryonated Muscovy duck eggs via the chorioallantoic membrane route, resulting in the successful rescue of infectious virus and death of the embryos. The rescued virus exhibited pathogenicity in Muscovy ducklings similar to that of its parental strain, as evaluated based on the mortality rate. The results demonstrate that plasmid transfection in embryonated Muscovy duck eggs is a convenient and efficacious method for rescue of infectious MDPV in comparison to transfection of primary cells, which is somewhat time-consuming and laborious.

  17. Targeted Lymphoma Cell Death by Novel Signal Transduction Modifications

    Science.gov (United States)

    2011-07-01

    60 80 100 120 Jurkat R am os R aji M C 116 D O H H 2 W S U -W M W S U -C LL K arpas 519 C ell Lines A s C o n tr o l ( % ) Figure 6...Lym phom a cell Lines 0 20 40 60 80 100 120 Jurkat R am os R aji M C 116 D O H H 2 W S U -W M W S U -C LL K arpas 519 C ell Lines A s C o n tr o l...plemented with 10% FCS and incubated with AET- activated sheep red blood cells (SRBC) for 1 h. B-cells were collected at the interface after centrifugation

  18. Efecto de extractos de la esponja calcarea Leucetta aff. floridana sobre el ciclo de líneas celulares leucemoides Effect of extracts from the calcareous sponge Leucetta aff. floridana on the cell cycle of leukemoid cell lines

    Directory of Open Access Journals (Sweden)

    Diana Margarita Márquez Fernández

    2012-12-01

    .Introduction: Leucetta aff. floridana sponge produces compounds with differential antiproliferative activity on lung and breast cancer. Nevertheless, this activity in other tumour cell lines has not yet been tested and it remains unknown whether its antiproliferative potential is correlated with the cell progression through cell cycle or not. Objective: To evaluate the antiproliferative and anticlonogenic potential and the effect of methanolic and hexanic extracts of sponge L. aff. floridana from the Colombian Caribbean region on the cell cycle of Jurkat and K562 leukemoid cell lines. Methods: The viability and antiproliferative effect were determined using trypan blue assay at 0, 24, 48, 72 and 96 hours. Clongenicity and effect on cell cycle were assayed at 10 and 100 µg/mL Data obtained were analyzed using multifactorial ANOVA and Tukey's test. Results: The hexanic extract presented antiproliferative activity in both Jurkat and K652 cell lines; Jurkat being more sensitive than K652. These results were confirmed by clongenicity assays. The hexanic extract also showed its effect on the dose-dependent accumulation of Sub-G1 cells, although it was different in the two cell lines. The duration of the treatment with the hexanic extract was not significant for K562 cell line, but it was for Jurkat cells. Additionally, the percentage of cell accumulation in Sub-G1 was higher in K562 than in Jurkat cells. The methanolic extract showed antiproliferative effect similar to that of the hexanic extract, but more potent at the lowest concentration (10 µg/mL in K652 cell line clonegenicity. The effect on cell cycle was also similar to that of the hexanic extract, but in this case the duration of treatment was not significant in the cell accumulation in Sub-G1. Conclusions: Altogether these results show the differential potential of the extracts on the cell cycle of the evaluated leukemoid cell lines.

  19. Development of Anti-Human Mesothelin-Targeted Chimeric Antigen Receptor Messenger RNA-transfected Peripheral Blood Lymphocytes for Ovarian Cancer Therapy.

    Science.gov (United States)

    Hung, Chien-Fu; Xu, Xuequn; Li, Linhong; Ma, Ying; Jin, Qiu; Viley, Angelia; Allen, Cornell; Natarajan, Pachai; Shivakumar, Rama; Peshwa, Madhusudan V; Emens, Leisha A

    2018-04-02

    CD19-targeted chimeric antigen receptor (CAR) engineered T/natural killer (NK)-cell therapies can result in durable clinical responses in B-cell malignancies. However, CAR-based immunotherapies have been much less successful in solid cancers, in part due to "on-target off-tumor" toxicity related to expression of target tumor antigens on normal tissue. Based on preliminary observations of safety and clinical activity in proof-of-concept clinical trials, tumor antigen-specific messenger RNA (mRNA) CAR transfection into selected, activated, and expanded T/NK cells may permit prospective control of "on-target off-tumor" toxicity. To develop a commercial product for solid tumors, mesothelin was selected as an antigen target based on its association with poor prognosis and overexpression in multiple solid cancers. It was hypothesized that selecting, activating, and expanding cells ex vivo prior to mRNA CAR transfection would not be necessary, thus simplifying the complexity and cost of manufacturing. Now, the development of anti-human mesothelin mRNA CAR transfected peripheral blood lymphocytes (CARMA-hMeso) is reported, demonstrating the manufacture and cryopreservation of multiple cell aliquots for repeat administrations from a single human leukapheresis. A rapid, automated, closed system for cGMP-compliant transfection of mRNA CAR in up to 20 × 10 9 peripheral blood lymphocytes was developed. Here we show that CARMA-hMeso cells recognize and lyse tumor cells in a mesothelin-specific manner. Expression of CAR was detectable over approximately 7 days in vitro, with a progressive decline of CAR expression that appears to correlate with in vitro cell expansion. In a murine ovarian cancer model, a single intraperitoneal injection of CARMA-hMeso resulted in the dose-dependent inhibition of tumor growth and improved survival of mice. Furthermore, repeat weekly intraperitoneal administrations of the optimal CARMA-hMeso dose further prolonged disease control and survival

  20. Octaarginine-modified chitosan as a nonviral gene delivery vector: properties and in vitro transfection efficiency

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Li Zhaoyang; Liu Wenguang; Lam, Wingmoon; Sun Peng; Kao, Richard Y. T.; Luk, Keith D. K.; Lu, William W.

    2011-01-01

    Protein transduction domains (PTD) have been identified to have the capacity to facilitate molecular cargo to translocate through cell membrane. This study aims to utilize the cell membrane penetrating ability of octaarginine oligopeptide, a simplified prototype of the PTD, to enhance the transfection efficiency of chitosan. Octaarginine-modified chitosan (R 8 -CS) was synthesized as a gene transfer carrier by carbodiimide chemistry. The structure and composition of R 8 -CSs were characterized using FTIR and 1 H NMR. Agarose gel electrophoresis assay showed that R 8 -CS could efficiently condense the DNA. The particle size of R 8 -CS/DNA complexes were determined to be around 100–200 nm. The nanoparticle complexes exhibited a spherical and compact morphology. R 8 -CS demonstrated higher transfection activity and lower cytotoxicity as compared to the unmodified chitosan and also showed good serum resistance.

  1. Peptide Dendrimer/Lipid Hybrid Systems Are Efficient DNA Transfection Reagents: Structure–Activity Relationships Highlight the Role of Charge Distribution Across Dendrimer Generations

    Science.gov (United States)

    2013-01-01

    Efficient DNA delivery into cells is the prerequisite of the genetic manipulation of organisms in molecular and cellular biology as well as, ultimately, in nonviral gene therapy. Current reagents, however, are relatively inefficient, and structure–activity relationships to guide their improvement are hard to come by. We now explore peptide dendrimers as a new type of transfection reagent and provide a quantitative framework for their evaluation. A collection of dendrimers with cationic and hydrophobic amino acid motifs (such as KK, KA, KH, KL, and LL) distributed across three dendrimer generations was synthesized by a solid-phase protocol that provides ready access to dendrimers in milligram quantities. In conjunction with a lipid component (DOTMA/DOPE), the best reagent, G1,2,3-KL ((LysLeu)8(LysLysLeu)4(LysLysLeu)2LysGlySerCys-NH2), improves transfection by 6–10-fold over commercial reagents under their respective optimal conditions. Emerging structure–activity relationships show that dendrimers with cationic and hydrophobic residues distributed in each generation are transfecting most efficiently. The trigenerational dendritic structure has an advantage over a linear analogue worth up to an order of magnitude. The success of placing the decisive cationic charge patterns in inner shells rather than previously on the surface of macromolecules suggests that this class of dendrimers significantly differs from existing transfection reagents. In the future, this platform may be tuned further and coupled to cell-targeting moieties to enhance transfection and cell specificity. PMID:23682947

  2. Activation of JNK and c-Jun is involved in glucose oxidase-mediated cell death of human lymphoma cells.

    Science.gov (United States)

    Son, Young-Ok; Jang, Yong-Suk; Shi, Xianglin; Lee, Jeong-Chae

    2009-12-31

    Mitogen-activated protein kinases (MAPK) affect the activation of activator protein-1 (AP-1), which plays an important role in regulating a range of cellular processes. However, the roles of these signaling factors on hydrogen peroxide (H(2)O(2))-induced cell death are unclear. This study examined the effects of H(2)O(2) on the activation of MAPK and AP-1 by exposing the cells to H(2)O(2) generated by either glucose oxidase or a bolus addition. Exposing BJAB or Jurkat cells to H(2)O(2) affected the activities of MAPK differently according to the method of H(2)O(2) exposure. H(2)O(2) increased the AP-1-DNA binding activity in these cells, where continuously generated H(2)O(2) led to an increase in mainly the c-Fos, FosB and c-Jun proteins. The c-Jun-NH(2)-terminal kinase (JNK)-mediated activation of c-Jun was shown to be related to the H(2)O(2)-induced cell death. However, the suppression of H(2)O(2)-induced oxidative stress by either JNK inhibitor or c-Jun specific antisense transfection was temporary in the cells exposed to glucose oxidase but not to a bolus H(2)O(2). This was associated with the disruption of death signaling according to the severe and prolonged depletion of reduced glutathione. Overall, these results suggest that H(2)O(2) may decide differently the mode of cell death by affecting the intracellular redox state of thiol-containing antioxidants, and this depends more closely on the duration exposed to H(2)O(2) than the concentration of this agent.

  3. Kefir induces cell-cycle arrest and apoptosis in HTLV-1-negative malignant T-lymphocytes

    Science.gov (United States)

    Maalouf, Katia; Baydoun, Elias; Rizk, Sandra

    2011-01-01

    Background: Adult lymphoblastic leukemia (ALL) is a malignancy that occurs in white blood cells. The overall cure rate in children is 85%, whereas it is only 40% in adults. Kefir is an important probiotic that contains many bioactive ingredients, which give it unique health benefits. It has been shown to control several cellular types of cancer. Purpose: The present study investigates the effect of a cell-free fraction of kefir on CEM and Jurkat cells, which are human T-lymphotropic virus type I (HTLV-1)-negative malignant T-lymphocytes. Methods: Cells were incubated with different kefir concentrations. The cytotoxicity of the compound was evaluated by determining the percentage viability of cells. The effect of all the noncytotoxic concentrations of kefir on the proliferation of CEM and Jurkat cells was then assessed. The levels of transforming growth factor-alpha (TGF-α), transforming growth factor- beta1 (TGF-β1), matrix metalloproteinase-2 (MMP-2), and MMP-9 mRNA upon kefir treatment were then analyzed using reverse transcriptase polymerase chain reaction (RT-PCR). Finally, the growth inhibitory effects of kefir on cell-cycle progression/apoptosis were assessed by Cell Death Detection (ELISA) and flow cytometry. Results: The maximum cytotoxicity recorded after 48-hours treatment with 80 μg/μL kefir was only 42% and 39% in CEM and Jurkat cells, respectively. The percent reduction in proliferation was very significant, and was dose-, and time-dependent. In both cell lines, kefir exhibited its antiproliferative effect by downregulating TGF-α and upregulating TGF-β1 mRNA expression. Upon kefir treatment, a marked increase in cell-cycle distribution was noted in the preG1 phase of CEM and Jurkat cells, indicating the proapoptotic effect of kefir, which was further confirmed by Cell Death Detection ELISA. However, kefir did not affect the mRNA expression of metalloproteinases needed for the invasion of leukemic cell lines. Conclusion: In conclusion, kefir is

  4. Kefir induces cell-cycle arrest and apoptosis in HTLV-1-negative malignant T-lymphocytes

    International Nuclear Information System (INIS)

    Maalouf, Katia; Baydoun, Elias; Rizk, Sandra

    2011-01-01

    Adult lymphoblastic leukemia (ALL) is a malignancy that occurs in white blood cells. The overall cure rate in children is 85%, whereas it is only 40% in adults. Kefir is an important probiotic that contains many bioactive ingredients, which give it unique health benefits. It has been shown to control several cellular types of cancer. The present study investigates the effect of a cell-free fraction of kefir on CEM and Jurkat cells, which are human T-lymphotropic virus type I (HTLV-1)-negative malignant T-lymphocytes. Cells were incubated with different kefir concentrations. The cytotoxicity of the compound was evaluated by determining the percentage viability of cells. The effect of all the noncytotoxic concentrations of kefir on the proliferation of CEM and Jurkat cells was then assessed. The levels of transforming growth factor-alpha (TGF-α), transforming growth factor- beta1 (TGF-β1), matrix metalloproteinase-2 (MMP-2), and MMP-9 mRNA upon kefir treatment were then analyzed using reverse transcriptase polymerase chain reaction (RT-PCR). Finally, the growth inhibitory effects of kefir on cell-cycle progression/apoptosis were assessed by Cell Death Detection (ELISA) and flow cytometry. The maximum cytotoxicity recorded after 48-hours treatment with 80 μg/μL kefir was only 42% and 39% in CEM and Jurkat cells, respectively. The percent reduction in proliferation was very significant, and was dose-, and time-dependent. In both cell lines, kefir exhibited its antiproliferative effect by downregulating TGF-α and upregulating TGF-β1 mRNA expression. Upon kefir treatment, a marked increase in cell-cycle distribution was noted in the preG 1 phase of CEM and Jurkat cells, indicating the proapoptotic effect of kefir, which was further confirmed by Cell Death Detection ELISA. However, kefir did not affect the mRNA expression of metalloproteinases needed for the invasion of leukemic cell lines. In conclusion, kefir is effective in inhibiting proliferation and inducing

  5. Differences in Env and Gag protein expression patterns and epitope availability in feline immunodeficiency virus infected PBMC compared to infected and transfected feline model cell lines.

    Science.gov (United States)

    Roukaerts, Inge D M; Grant, Chris K; Theuns, Sebastiaan; Christiaens, Isaura; Acar, Delphine D; Van Bockstael, Sebastiaan; Desmarets, Lowiese M B; Nauwynck, Hans J

    2017-01-02

    Env and Gag are key components of the FIV virion that are targeted to the plasma membrane for virion assembly. They are both important stimulators and targets of anti-FIV immunity. To investigate and compare the expression pattern and antigenic changes of Gag and Env in various research models, infected PBMC (the natural FIV host cells) and GFox, and transfected CrFK were stained over time with various Env and Gag specific MAbs. In FIV infected GFox and PBMC, Env showed changes in epitope availability for antibody binding during processing and trafficking, which was not seen in transfected CrFK. Interestingly, epitopes exposed on intracellular Env and Env present on the plasma membrane of CrFK and GFox seem to be hidden on plasma membrane expressed Env of FIV infected PBMC. A kinetic follow up of Gag and Env expression showed a polarization of both Gag and Env expression to specific sites at the plasma membrane of PBMC, but not in other cell lines. In conclusion, mature trimeric cell surface expressed Env might be antigenically distinct from intracellular monomeric Env in PBMC and might possibly be unrecognizable by feline humoral immunity. In addition, Env expression is restricted to a small area on the plasma membrane and co-localizes with a large moiety of Gag, which may represent a preferred FIV budding site, or initiation of virological synapses with direct cell-to-cell virus transmission. Copyright © 2016. Published by Elsevier B.V.

  6. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.

    Science.gov (United States)

    Guo, Xiaodong; Zheng, Qixin; Kulbatski, Iris; Yuan, Quan; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiao, Baojun; Pan, Zhengqi; Tang, Shuo

    2006-09-01

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous beta tricalcium phosphate (beta-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new b

  7. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous {beta}-TCP ceramic scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Kulbatski, Iris [Division of Cellular and Molecular Biology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario M5T 2S8 (Canada); Yuan Quan [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Yang Shuhua [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Shao Zengwu [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Wang Hong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Xiao Baojun [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Pan Zhengqi [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China); Tang Shuo [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022 (China)

    2006-09-15

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous {beta} tricalcium phosphate ({beta}-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new

  8. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous β-TCP ceramic scaffolds

    International Nuclear Information System (INIS)

    Guo Xiaodong; Zheng Qixin; Kulbatski, Iris; Yuan Quan; Yang Shuhua; Shao Zengwu; Wang Hong; Xiao Baojun; Pan Zhengqi; Tang Shuo

    2006-01-01

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous β tricalcium phosphate (β-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new b

  9. A convenient method of preparing gene vector for real time monitoring transfection process based on the quantum dots

    International Nuclear Information System (INIS)

    Zhang, Hai-Li; Zhang, Ming-Zhen; Li, Xiang-Yong; Wan, Min; Li, Yong-Qiang; Zhang, Rong-Ying; Zhao, Yuan-Di

    2012-01-01

    Highlights: ► An easy and direct way to prepare QDs–DNA complexes was developed. ► Surface charge of QDs was tuned with different ratio of amino and glycolate. ► Transfection efficiency was dependent on the surface zeta potentials of QDs. ► Cellular toxicity of this gene vectors is much lower than commercial liposome. ► Whole intracellular behavior of QDs–DNA complexes can be monitored in real time. -- Abstract: Nanoparticle carrier has been developed by combining water-soluble quantum dots and plasmid DNA expressed enhanced green fluorescent protein (EGFP) in a convenient and direct way. First the QDs with different surface charges were obtained by coating with amino and carboxyl terminals at different ratios. Then plasmid DNA was conjugated to QDs via electrostatic interaction. The resultant QDs–DNA complexes showed enhanced resistance to DNase I digestion. The following transfection experiments demonstrated that the transfection efficiency was dependent on the surface charges on QDs. The real time imaging of the transfection process showed that the nanoparticles experienced binding, penetrating the cell membrane and entering cytoplasm in the first 6 h of transfection. The green fluorescence of EGFP began to appear after 18 h transfection and plasmid DNA was fully expressed in the following 6 h. This new QDs–DNA platform showed great potential as new gene delivery carrier.

  10. A convenient method of preparing gene vector for real time monitoring transfection process based on the quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Li; Zhang, Ming-Zhen; Li, Xiang-Yong [Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Wan, Min [Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Li, Yong-Qiang [Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Zhang, Rong-Ying [Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Zhao, Yuan-Di, E-mail: zydi@mail.hust.edu.cn [Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China); Key Laboratory of Biomedical Photonics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Department of Biomedical Engineering, Wuhan 430074 (China)

    2012-11-15

    Highlights: ► An easy and direct way to prepare QDs–DNA complexes was developed. ► Surface charge of QDs was tuned with different ratio of amino and glycolate. ► Transfection efficiency was dependent on the surface zeta potentials of QDs. ► Cellular toxicity of this gene vectors is much lower than commercial liposome. ► Whole intracellular behavior of QDs–DNA complexes can be monitored in real time. -- Abstract: Nanoparticle carrier has been developed by combining water-soluble quantum dots and plasmid DNA expressed enhanced green fluorescent protein (EGFP) in a convenient and direct way. First the QDs with different surface charges were obtained by coating with amino and carboxyl terminals at different ratios. Then plasmid DNA was conjugated to QDs via electrostatic interaction. The resultant QDs–DNA complexes showed enhanced resistance to DNase I digestion. The following transfection experiments demonstrated that the transfection efficiency was dependent on the surface charges on QDs. The real time imaging of the transfection process showed that the nanoparticles experienced binding, penetrating the cell membrane and entering cytoplasm in the first 6 h of transfection. The green fluorescence of EGFP began to appear after 18 h transfection and plasmid DNA was fully expressed in the following 6 h. This new QDs–DNA platform showed great potential as new gene delivery carrier.

  11. A chimeric antigen receptor for TRAIL-receptor 1 induces apoptosis in various types of tumor cells.

    Science.gov (United States)

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Hamana, Hiroshi; Nakagawa, Hidetoshi; Jin, Aishun; Lin, Zhezhu; Muraguchi, Atsushi

    2014-10-31

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its associated receptors (TRAIL-R/TR) are attractive targets for cancer therapy because TRAIL induces apoptosis in tumor cells through TR while having little cytotoxicity on normal cells. Therefore, many agonistic monoclonal antibodies (mAbs) specific for TR have been produced, and these induce apoptosis in multiple tumor cell types. However, some TR-expressing tumor cells are resistant to TR-specific mAb-induced apoptosis. In this study, we constructed a chimeric antigen receptor (CAR) of a TRAIL-receptor 1 (TR1)-specific single chain variable fragment (scFv) antibody (TR1-scFv-CAR) and expressed it on a Jurkat T cell line, the KHYG-1 NK cell line, and human peripheral blood lymphocytes (PBLs). We found that the TR1-scFv-CAR-expressing Jurkat cells killed target cells via TR1-mediated apoptosis, whereas TR1-scFv-CAR-expressing KHYG-1 cells and PBLs killed target cells not only via TR1-mediated apoptosis but also via CAR signal-induced cytolysis, resulting in cytotoxicity on a broader range if target cells than with TR1-scFv-CAR-expressing Jurkat cells. The results suggest that TR1-scFv-CAR could be a new candidate for cancer gene therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A versatile transfection assay system to evaluate the biological effects of diverse industrial chemicals.

    Science.gov (United States)

    Koizumi, Shinji; Ohno, Shotaro; Otsuka, Fuminori

    2012-01-01

    Gene expression processes are now recognized as important targets of the toxic effects exerted by industrial chemicals. The transient transfection assay is a powerful tool to evaluate such effects. Thus, we developed a versatile assay system by constructing a basic reporter plasmid in which the regulatory DNA sequence to be studied can easily be substituted. To verify the performance of this system, reporter plasmids carrying any of the three distinct regulatory sequences, estrogen responsive element (ERE), glucocorticoid responsive element (GRE) and xenobiotic responsive element (XRE) were constructed. After transfection of human cells, these plasmids successfully expressed the relevant reporter genes in response to specific inducers, β-estradiol, dexamethasone and 3-methylcholanthrene, respectively. Several industrial chemicals were assayed using these reporter plasmids, and the ability of p-dimethylaminoazobenzene to elevate GRE- and XRE-mediated transcription was detected. α-Naphthylamine and o-tolidine were also observed to increase the XRE-mediated response. The transfection assay system established here will be useful to evaluate the effects of a wide variety of industrial chemicals.

  13. MicroRNA181a Is Overexpressed in T-Cell Leukemia/Lymphoma and Related to Chemoresistance

    Directory of Open Access Journals (Sweden)

    Zi-Xun Yan

    2015-01-01

    Full Text Available MicroRNAs (miRs play an important role in tumorogenesis and chemoresistance in lymphoid malignancies. Comparing with reactive hyperplasia, miR181a was overexpressed in 130 patients with T-cell leukemia/lymphoma, including acute T-cell lymphoblastic leukemia (n=32, T-cell lymphoblastic lymphoma (n=16, peripheral T-cell lymphoma, not otherwise specified (n=45, anaplastic large cell lymphoma (n=15, and angioimmunoblastic T-cell lymphoma (n=22. Irrespective to histological subtypes, miR181a overexpression was associated with increased AKT phosphorylation. In vitro, ectopic expression of miR181a in HEK-293T cells significantly enhanced cell proliferation, activated AKT, and conferred cell resistance to doxorubicin. Meanwhile, miR181a expression was upregulated in Jurkat cells, along with AKT activation, during exposure to chemotherapeutic agents regularly applied to T-cell leukemia/lymphoma treatment, such as doxorubicin, cyclophosphamide, cytarabine, and cisplatin. Isogenic doxorubicin-resistant Jurkat and H9 cells were subsequently developed, which also presented with miR181a overexpression and cross-resistance to cyclophosphamide and cisplatin. Meanwhile, specific inhibition of miR181a enhanced Jurkat and H9 cell sensitivity to chemotherapeutic agents, further indicating that miR181a was involved in acquired chemoresistance. Collectively, miR181a functioned as a biomarker of T-cell leukemia/lymphoma through modulation of AKT pathway. Related to tumor cell chemoresistance, miR181a could be a potential therapeutic target in treating T-cell malignancies.

  14. Size effect on transfection and cytotoxicity of nanoscale plasmid DNA/polyethyleneimine complexes for aerosol gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Hoon Byeon, Jeong, E-mail: jbyeon@purdue.edu [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Kim, Jang-Woo, E-mail: jwkim@hoseo.edu [Department of Digital Display Engineering, Hoseo University, Asan 336-795 (Korea, Republic of)

    2014-02-03

    Nanoscale plasmid DNA (pDNA)/polyethyleneimine (PEI) complexes were fabricated in the aerosol state using a nebulization system consisting of a collison atomizer and a cool-walled diffusion dryer. The aerosol fabricated nanoscale complexes were collected and employed to determine fundamental properties of the complexes, such as size, structure, surface charge, and in vitro gene transfection efficiency and cytotoxicity. The results showed that mass ratio between pDNA and PEI should be optimized to enhance gene transfection efficiency without a significant loss of cell viability. These findings may support practical advancements in the field of nonviral gene delivery.

  15. RNA processing and ribonucleoprotein assembly studied in vivo by RNA transfection

    International Nuclear Information System (INIS)

    Kleinschmidt, A.M.; Pederson, T.

    1990-01-01

    The authors present a method for studying RNA processing and ribonucleoprotein assembly in vivo, by using RNA synthesized in vitro. SP6-transcribed 32 P-labeled U2 small nuclear RNA precursor molecules were introduced into cultured human 293 cells by calcium phosphate-mediated uptake, as in standard DNA transfection experiments. RNase protection mapping demonstrated that the introduced pre-U2 RNA underwent accurate 3' end processing. The introduced U2 RNA was assembled into ribonucleoprotein particles that reacted with an antibody specific for proteins known to be associated with the U2 small nuclear ribonucleoprotein particle. The 3' end-processed, ribonucleoprotein-assembled U2 RNA accumulated in the nuclear fraction. When pre-U2 RNA with a 7-methylguanosine group at the 5' end was introduced into cells, it underwent conversion to a 2,2,7-trimethylguanosine cap structure, a characteristic feature of the U-small nuclear RNAs. Pre-U2 RNA introduced with an adenosine cap (Ap-ppG) also underwent processing, small nuclear ribonucleoprotein assembly, and nuclear accumulation, establishing that a methylated guanosine cap structure is not required for these steps in U2 small nuclear ribonucleprotein biosynthesis. Beyond its demonstrated usefulness in the study of small nuclear ribonucleoprotein biosynthesis, RNA transfection may be of general applicability to the investigation of eukaryotic RNA processing in vivo and may also offer opportunities for introducing therapeutically targeted RNAs (ribozymes or antisense RNA) into cells

  16. Modulation of ceramide metabolism in T-leukemia cell lines potentiates apoptosis induced by the cationic antimicrobial peptide bovine lactoferricin.

    Science.gov (United States)

    Furlong, Suzanne J; Ridgway, Neale D; Hoskin, David W

    2008-03-01

    Bovine lactoferricin (LfcinB) is a cationic antimicrobial peptide that selectively induces apoptosis in several different types of human cancer cells. However, the potential use of LfcinB as an anticancer agent is presently limited by the need for relatively high concentrations of the peptide to trigger apoptosis. Ceramide is a membrane sphingolipid that is believed to function as a second messenger during apoptosis. In this study, we investigated the role of ceramide in LfcinB-induced apoptosis in CCRF-CEM and Jurkat T-leukemia cell lines. Exposure to LfcinB caused nuclear condensation and fragmentation, poly(ADP-ribose) polymerase (PARP) cleavage, and DNA fragmentation in CCRF-CEM and Jurkat T-cell acute lymphoblastic leukemia cell lines. Treatment with C6 ceramide, a cell-permeable, short-chain ceramide analog, also induced apoptotic nuclear morphology, PARP cleavage, and DNA fragmentation in T-leukemia cells. Although LfcinB treatment did not cause ceramide to accumulate in CCRF-CEM or Jurkat cells, the addition of C6 ceramide to LfcinB-treated T-leukemia cells resulted in increased DNA fragmentation. Furthermore, modulation of cellular ceramide metabolism either by inhibiting ceramidases with D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol or N-oleoylethanolamine, or by blocking glucosylceramide synthase activity with 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, enhanced the ability of LfcinB to trigger apoptosis in both Jurkat and CCRF-CEM cells. In addition, LfcinB-induced apoptosis of T-leukemia cells was enhanced in the presence of the antiestrogen tamoxifen, which has multiple effects on cancer cells, including inhibition of glucosylceramide synthase activity. We conclude that manipulation of cellular ceramide levels in combination with LfcinB therapy warrants further investigation as a novel strategy for the treatment of T cell-derived leukemias.

  17. Antitumor effect of triptolide in T-cell lymphoblastic lymphoma by inhibiting cell viability, invasion, and epithelial–mesenchymal transition via regulating the PI3K/AKT/mTOR pathway

    Directory of Open Access Journals (Sweden)

    Huang Y

    2018-02-01

    Full Text Available Yan Huang, Sun Wu, Yuan Zhang, Lihua Wang, Yan Guo Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China Introduction: T-cell lymphoblastic lymphoma (T-LBL is a widely disseminated disease worldwide. Triptolide (TPL is purified from Chinese herb and displays anti-inflammatory, anti-fertility, anti-tumor and immunosuppressive effects. Materials and methods: Here, in vitro and in vivo experiments were conducted to investigate the anti-tumor effect of TPL treatment in T-LBL and the potential mechanism in T-LBL progression. Results: TPL inhibited cell proliferation of T-LBL cells (Jurkat cells and Molt-3 cells in a dose-dependent manner. Flow cytometry analysis showed that cell apoptosis rate was increased by TPL treatment. TPL also up-regulated the expression of Caspase-3, Bax and down-regulated the expression of Bcl-2, indicating that TPL promoted apoptosis in Jurkat cells. Moreover, TPL inhibited invasion ability of Jurkat cells and down-regulated the expression of MMP-3 and MMP-9 in a dose-dependent manner. The expression of Snail, Slug, Twist and Integrin αVβ6 was decreased and the expression of E-cadherin was increased by TPL treatment, indicating that TPL inhibited EMT of Jurkat cells. Apart from that, TPL treatment attenuated the phoslevels of PI3K, Akt and mTOR and suppressed AKT activation compared with control group, suggesting that TPL inhibited PI3K/Akt/mTOR signal pathway in T-LBL. In vivo experiments showed that TPL inhibited tumor growth of T-LBL and promoted apoptosis of tumor cells. The expression of PCNA, Bcl-2, Snail, p-PI3K, p-Akt and mTOR was suppressed by TPL in a dose-dependent manner, suggesting that TPL suppressed tumor growth and promoted apoptosis of tumor cells by inhibiting PI3K/Akt/mTOR signal pathway in T-LBL. Conclusion: In conclusion, TPL exerted anti-tumor effect in T-LBL by inhibiting cell viability, invasion and EMT via regulating the PI3K

  18. Immature transformed rat islet beta-cells differentially express C-peptides derived from the genes coding for insulin I and II as well as a transfected human insulin gene

    DEFF Research Database (Denmark)

    Blume, N; Petersen, J S; Andersen, L C

    1992-01-01

    is induced in the transformed heterogeneous rat islet cell clone, NHI-6F, by transient in vivo passage. During this process a transfected human insulin gene is coactivated with the endogenous nonallelic rat insulin I and II genes. Newly established cultures from NHI-6F insulinomas having a high frequency...

  19. Cationic nanoparticles with quaternary ammonium-functionalized PLGA–PEG-based copolymers for potent gene transfection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Hsung [Kaohsiung Medical University, School of Dentistry, College of Dental Medicine (China); Fu, Yin-Chih [Kaohsiung Medical University, Graduate Institute of Medicine, College of Medicine (China); Chiu, Hui-Chi [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Wang, Chau-Zen [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Lo, Shao-Ping [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Ho, Mei-Ling [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Liu, Po-Len [Kaohsiung Medical University, Department of Respiratory Therapy, College of Medicine (China); Wang, Chih-Kuang, E-mail: ckwang@kmu.edu.tw [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China)

    2013-11-15

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA-phe-PEG-qDETA (PPD), phe-PEG-qDETA-PLGA (PDP), and PLGA-phe-PEG-qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH{sub 2}), phenylalanine (phe), and poly(lactic-co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of ∼217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle.

  20. Human T-lymphotropic virus type I tax regulates the expression of the human lymphotoxin gene.

    Science.gov (United States)

    Tschachler, E; Böhnlein, E; Felzmann, S; Reitz, M S

    1993-01-01

    Human T-lymphotropic virus type-I (HTLV-I)-infected T-cell lines constitutively produce high levels of lymphotoxin (LT). To analyze the mechanisms that lead to the expression of LT in HTLV-I-infected cell lines, we studied regulatory regions of the human LT promoter involved in the activation of the human LT gene. As determined by deletional analysis, sequences between +137 and -116 (relative to the transcription initiation site) are sufficient to direct expression of a reporter gene in the HTLV-I-infected cell line MT-2. Site-directed mutation of a of the single kappa B-like motif present in the LT promoter region (positions -99 to -89) completely abrogated LT promoter activity in MT-2 cells, suggesting that this site plays a critical role in the activation of the human LT gene. Transfection of LT constructs into HTLV-I-uninfected and -unstimulated Jurkat and U937 cell lines showed little to no activity of the LT promoter. Cotransfection of the same constructs with a tax expression plasmid into Jurkat cells led to detectable promoter activity, which could be significantly increased by stimulation of the cells with phorbol myristate acetate (PMA). Similarly, cotransfection of the LT promoter constructs and the tax expression plasmid into U937 cells led to significant promoter activity upon stimulation with PMA. These data suggest that HTLV-I tax is involved in the upregulation of LT gene expression in HTLV-I-infected cells.

  1. Eurycomanone and Eurycomanol from Eurycoma longifolia Jack as Regulators of Signaling Pathways Involved in Proliferation, Cell Death and Inflammation

    Directory of Open Access Journals (Sweden)

    Shéhérazade Hajjouli

    2014-09-01

    Full Text Available Eurycomanone and eurycomanol are two quassinoids from the roots of Eurycoma longifolia Jack. The aim of this study was to assess the bioactivity of these compounds in Jurkat and K562 human leukemia cell models compared to peripheral blood mononuclear cells from healthy donors. Both eurycomanone and eurycomanol inhibited Jurkat and K562 cell viability and proliferation without affecting healthy cells. Interestingly, eurycomanone inhibited NF-κB signaling through inhibition of IκBα phosphorylation and upstream mitogen activated protein kinase (MAPK signaling, but not eurycomanol. In conclusion, both quassinoids present differential toxicity towards leukemia cells, and the presence of the α,β-unsaturated ketone in eurycomanone could be prerequisite for the NF-κB inhibition.

  2. DNA-barcode directed capture and electrochemical metabolic analysis of single mammalian cells on a microelectrode array.

    Science.gov (United States)

    Douglas, Erik S; Hsiao, Sonny C; Onoe, Hiroaki; Bertozzi, Carolyn R; Francis, Matthew B; Mathies, Richard A

    2009-07-21

    A microdevice is developed for DNA-barcode directed capture of single cells on an array of pH-sensitive microelectrodes for metabolic analysis. Cells are modified with membrane-bound single-stranded DNA, and specific single-cell capture is directed by the complementary strand bound in the sensor area of the iridium oxide pH microelectrodes within a microfluidic channel. This bifunctional microelectrode array is demonstrated for the pH monitoring and differentiation of primary T cells and Jurkat T lymphoma cells. Single Jurkat cells exhibited an extracellular acidification rate of 11 milli-pH min(-1), while primary T cells exhibited only 2 milli-pH min(-1). This system can be used to capture non-adherent cells specifically and to discriminate between visually similar healthy and cancerous cells in a heterogeneous ensemble based on their altered metabolic properties.

  3. Effects of alpha fetoprotein on escape of Bel 7402 cells from attack of lymphocytes

    International Nuclear Information System (INIS)

    Li, Mengsen; Liu, Xinhua; Zhou, Sheng; Li, Pingfeng; Li, Gang

    2005-01-01

    Involvement of AFP against apoptosis of tumor cell has been implicated in its evasion of immune surveillance. However, the molecular events of immune escape mechanisms are still unknown. The major observations reported here relate to a possible mechanism by which heptoloma Bel 7402 cells escape immune surveillance in vitro. Western blotting and a well-characterized cofocal scanning image were performed to analyze the expression of Fas/FasL and caspase-3 in co-cultured Bel 7402 and Jurkat cells. After co-culture with Jurkat cells, up-regulated Fas and reduced FasL expression could be observed. Treatment with AFP could remarkably inhibit the elevated Fas and, whereas, induce the FasL expression in co-cultured Bel 7402 cells. Cells co-culture could induce the expression of caspase-3 in both cells line. The elevated caspase-3 in Bel 7402 cells was abolished following the treatment of AFP. The expression of caspase-3 was elevated in co-cultured Jurkat cells treated with AFP. No detectable change on the expression of survivin was examined in both cells line. Monoclonal antibody against AFP treatment alone did not obviously influence the growth of cells, as well as the expression of Fas/FasL and caspase-3. However, the effect of AFP could be blocked by antibody. our results provide evidence that AFP could promote the escape of liver cancer cells from immune surveillance through blocking the caspase signal pathway of tumor cells and triggering the Fas/FasL interaction between tumor cells and lymphocytes

  4. 5-Lipoxygenase contributes to PPARγ activation in macrophages in response to apoptotic cells.

    Science.gov (United States)

    von Knethen, Andreas; Sha, Lisa K; Kuchler, Laura; Heeg, Annika K; Fuhrmann, Dominik; Heide, Heinrich; Wittig, Ilka; Maier, Thorsten J; Steinhilber, Dieter; Brüne, Bernhard

    2013-12-01

    Macrophage polarization to an anti-inflammatory phenotype upon contact with apoptotic cells is a contributing hallmark to immune suppression during the late phase of sepsis. Although the peroxisome proliferator-activated receptor γ (PPARγ) supports this macrophage phenotype switch, it remains elusive how apoptotic cells activate PPARγ. Assuming that a molecule causing PPARγ activation in macrophages originates in the cell membrane of apoptotic cells we analyzed lipid rafts from apoptotic, necrotic, and living human Jurkat T cells which showed the presence of 5-lipoxygenase (5-LO) in lipid rafts of apoptotic cells only. Incubating macrophages with lipid rafts of apoptotic, but not necrotic or living cells, induced PPAR responsive element (PPRE)-driven mRuby reporter gene expression in RAW 264.7 macrophages stably transduced with a 4xPPRE containing vector. Experiments with lipid rafts of apoptotic murine EL4 T cells revealed similar results. To verify the involvement of 5-LO in activating PPARγ in macrophages, Jurkat T cells were incubated with the 5-LO inhibitor MK-866 prior to induction of apoptosis, which failed to induce mRuby expression. Similar results were obtained with lipid rafts of apoptotic EL4 T cells preexposed to the 5-LO inhibitors zileuton and CJ-13610. Interestingly, Jurkat T cells overexpressing 5-LO failed to activate PPARγ in macrophages, while their 5-LO overexpressing apoptotic counterparts did. Our results suggest that during apoptosis 5-LO gets associated with lipid rafts and synthesizes ligands that in turn stimulate PPARγ in macrophages. © 2013.

  5. Specific transfection of inflamed brain by macrophages: a new therapeutic strategy for neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    Matthew J Haney

    Full Text Available The ability to precisely upregulate genes in inflamed brain holds great therapeutic promise. Here we report a novel class of vectors, genetically modified macrophages that carry reporter and therapeutic genes to neural cells. Systemic administration of macrophages transfected ex vivo with a plasmid DNA (pDNA encoding a potent antioxidant enzyme, catalase, produced month-long expression levels of catalase in the brain resulting in three-fold reductions in inflammation and complete neuroprotection in mouse models of Parkinson's disease (PD. This resulted in significant improvements in motor functions in PD mice. Mechanistic studies revealed that transfected macrophages secreted extracellular vesicles, exosomes, packed with catalase genetic material, pDNA and mRNA, active catalase, and NF-κb, a transcription factor involved in the encoded gene expression. Exosomes efficiently transfer their contents to contiguous neurons resulting in de novo protein synthesis in target cells. Thus, genetically modified macrophages serve as a highly efficient system for reproduction, packaging, and targeted gene and drug delivery to treat inflammatory and neurodegenerative disorders.

  6. Curcumin induces apoptotic cell death of activated human CD4+ T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction.

    Science.gov (United States)

    Zheng, Min; Zhang, Qinggao; Joe, Yeonsoo; Lee, Bong Hee; Ryu, Do Gon; Kwon, Kang Beom; Ryter, Stefan W; Chung, Hun Taeg

    2013-03-01

    Curcumin, a natural polyphenolic antioxidant compound, exerts well-known anti-inflammatory and immunomodulatory effects, the latter which can influence the activation of immune cells including T cells. Furthermore, curcumin can inhibit the expression of pro-inflammatory cytokines and chemokines, through suppression of the NF-κB signaling pathway. The beneficial effects of curcumin in diseases such as arthritis, allergy, asthma, atherosclerosis, diabetes and cancer may be due to its immunomodulatory properties. We studied the potential of curcumin to modulate CD4+ T cells-mediated autoimmune disease, by examining the effects of this compound on human CD4+ lymphocyte activation. Stimulation of human T cells with PHA or CD3/CD28 induced IL-2 mRNA expression and activated the endoplasmic reticulum (ER) stress response. The treatment of T cells with curcumin induced the unfolded protein response (UPR) signaling pathway, initiated by the phosphorylation of PERK and IRE1. Furthermore, curcumin increased the expression of the ER stress associated transcriptional factors XBP-1, cleaved p50ATF6α and C/EBP homologous protein (CHOP) in human CD4+ and Jurkat T cells. In PHA-activated T cells, curcumin further enhanced PHA-induced CHOP expression and reduced the expression of the anti-apoptotic protein Bcl-2. Finally, curcumin treatment induced apoptotic cell death in activated T cells via eliciting an excessive ER stress response, which was reversed by the ER-stress inhibitor 4-phenylbutyric acid or transfection with CHOP-specific siRNA. These results suggest that curcumin can impact both ER stress and mitochondria functional pathways, and thereby could be used as a promising therapy in the context of Th1-mediated autoimmune diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides

    Science.gov (United States)

    Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.

    2011-01-01

    Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659

  8. Transfer of mRNA Encoding Invariant NKT Cell Receptors Imparts Glycolipid Specific Responses to T Cells and γδT Cells.

    Science.gov (United States)

    Shimizu, Kanako; Shinga, Jun; Yamasaki, Satoru; Kawamura, Masami; Dörrie, Jan; Schaft, Niels; Sato, Yusuke; Iyoda, Tomonori; Fujii, Shin-Ichiro

    2015-01-01

    Cell-based therapies using genetically engineered lymphocytes expressing antigen-specific T cell receptors (TCRs) hold promise for the treatment of several types of cancers. Almost all studies using this modality have focused on transfer of TCR from CD8 cytotoxic T lymphocytes (CTLs). The transfer of TCR from innate lymphocytes to other lymphocytes has not been studied. In the current study, innate and adaptive lymphocytes were transfected with the human NKT cell-derived TCRα and β chain mRNA (the Vα24 and Vβ11 TCR chains). When primary T cells transfected with NKT cell-derived TCR were subsequently stimulated with the NKT ligand, α-galactosylceramide (α-GalCer), they secreted IFN-γ in a ligand-specific manner. Furthermore when γδT cells were transfected with NKT cell-derived TCR mRNA, they demonstrated enhanced proliferation, IFN-γ production and antitumor effects after α-GalCer stimulation as compared to parental γδT cells. Importantly, NKT cell TCR-transfected γδT cells responded to both NKT cell and γδT cell ligands, rendering them bi-potential innate lymphocytes. Because NKT cell receptors are unique and universal invariant receptors in humans, the TCR chains do not yield mispaired receptors with endogenous TCR α and β chains after the transfection. The transfection of NKT cell TCR has the potential to be a new approach to tumor immunotherapy in patients with various types of cancer.

  9. Recombinant carcinoembryonic antigen as a reporter gene for molecular imaging

    International Nuclear Information System (INIS)

    Kenanova, Vania; Barat, Bhaswati; Olafsen, Tove; Chatziioannou, Arion; Herschman, Harvey R.; Wu, Anna M.; Braun, Jonathan

    2009-01-01

    Reporter genes can provide a way of noninvasively assessing gene activity in vivo. However, current reporter gene strategies may be limited by the immunogenicity of foreign reporter proteins, endogenous expression, or unwanted biological activity. We have developed a reporter gene based on carcinoembryonic antigen (CEA), a human protein with limited normal tissue expression. To construct a CEA reporter gene for PET, a CEA minigene (N-A3) was fused to the extracellular and transmembrane domains of the human FcγRIIb receptor. The NA3-FcγRIIb recombinant gene, driven by a CMV promoter, was transfected in Jurkat (human T cell leukemia) cells. Expression was analyzed by flow cytometry, immunohistochemistry (IHC), and microPET imaging. Flow cytometry identified Jurkat clones stably expressing NA3-FcγRIIb at low, medium, and high levels. High and medium NA3-FcγRIIb expression could also be detected by Western blot. Reporter gene positive and negative Jurkat cells were used to establish xenografts in athymic mice. IHC showed staining of the tumor with high reporter gene expression; medium and low N-A3 expression was not detected. MicroPET imaging, using an anti-CEA 124 I-labeled single-chain Fv-Fc antibody fragment, demonstrated that only high N-A3 expression could be detected. Specific accumulation of activity was visualized at the N-A3 positive tumor as early as 4 h. MicroPET image quantitation showed tumor activity of 1.8 ± 0.2, 15.2 ± 1.3, and 4.6 ± 1.2 percent injected dose per gram (%ID/g) at 4, 20, and 48 h, respectively. Biodistribution at 48 h demonstrated tumor uptake of 4.8 ± 0.8%ID/g. The CEA N-A3 minigene has the potential to be used as a reporter gene for imaging cells in vivo. (orig.)

  10. Accelerated repair and reduced mutagenicity of DNA damage induced by cigarette smoke in human bronchial cells transfected with E.coli formamidopyrimidine DNA glycosylase.

    Directory of Open Access Journals (Sweden)

    Mara Foresta

    Full Text Available Cigarette smoke (CS is associated to a number of pathologies including lung cancer. Its mutagenic and carcinogenic effects are partially linked to the presence of reactive oxygen species and polycyclic aromatic hydrocarbons (PAH inducing DNA damage. The bacterial DNA repair enzyme formamidopyrimidine DNA glycosylase (FPG repairs both oxidized bases and different types of bulky DNA adducts. We investigated in vitro whether FPG expression may enhance DNA repair of CS-damaged DNA and counteract the mutagenic effects of CS in human lung cells. NCI-H727 non small cell lung carcinoma cells were transfected with a plasmid vector expressing FPG fused to the Enhanced Green Fluorescent Protein (EGFP. Cells expressing the fusion protein EGFP-FPG displayed accelerated repair of adducts and DNA breaks induced by CS condensate. The mutant frequencies induced by low concentrations of CS condensate to the Na(+K(+-ATPase locus (oua(r were significantly reduced in cells expressing EGFP-FPG. Hence, expression of the bacterial DNA repair protein FPG stably protects human lung cells from the mutagenic effects of CS by improving cells' capacity to repair damaged DNA.

  11. Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis

    International Nuclear Information System (INIS)

    Graaf, Aniek O. de; Heuvel, Lambert P. van den; Dijkman, Henry B.P.M.; Abreu, Ronney A. de; Birkenkamp, Kim U.; Witte, Theo de; Reijden, Bert A. van der; Smeitink, Jan A.M.; Jansen, Joop H.

    2004-01-01

    Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity

  12. Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis.

    Science.gov (United States)

    de Graaf, Aniek O; van den Heuvel, Lambert P; Dijkman, Henry B P M; de Abreu, Ronney A; Birkenkamp, Kim U; de Witte, Theo; van der Reijden, Bert A; Smeitink, Jan A M; Jansen, Joop H

    2004-10-01

    Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity.

  13. Synthesis of Scutellarein Derivatives with a Long Aliphatic Chain and Their Biological Evaluation against Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Guanghui Ni

    2018-02-01

    Full Text Available Scutellarin is the major active flavonoid extracted from the traditional Chinese herbal medicine Erigeron breviscapus (Vant. Hand-Mazz., which is widely used in China. Recently, accumulating evidence has highlighted the potential role of scutellarin and its main metabolite scutellarein in the treatment of cancer. To explore novel anticancer agents with high efficiency, a series of new scutellarein derivatives with a long aliphatic chain were synthesized, and the antiproliferative activities against Jurkat, HCT-116 and MDA-MB-231 cancer cell lines were assessed. Among them, compound 6a exhibited the strongest antiproliferative effects on Jurkat (IC50 = 1.80 μM, HCT-116 (IC50 = 11.50 μM and MDA-MB-231 (IC50 = 53.91 μM. In particular, 6a even showed stronger antiproliferative effects than the positive control NaAsO2 on Jurkat and HCT-116 cell lines. The results showed that a proper long aliphatic chain enhanced the antiproliferative activity of scutellarein.

  14. Synthesis of Scutellarein Derivatives with a Long Aliphatic Chain and Their Biological Evaluation against Human Cancer Cells.

    Science.gov (United States)

    Ni, Guanghui; Tang, Yanling; Li, Minxin; He, Yuefeng; Rao, Gaoxiong

    2018-02-01

    Scutellarin is the major active flavonoid extracted from the traditional Chinese herbal medicine Erigeron breviscapus (Vant.) Hand-Mazz., which is widely used in China. Recently, accumulating evidence has highlighted the potential role of scutellarin and its main metabolite scutellarein in the treatment of cancer. To explore novel anticancer agents with high efficiency, a series of new scutellarein derivatives with a long aliphatic chain were synthesized, and the antiproliferative activities against Jurkat, HCT-116 and MDA-MB-231 cancer cell lines were assessed. Among them, compound 6a exhibited the strongest antiproliferative effects on Jurkat (IC 50 = 1.80 μM), HCT-116 (IC 50 = 11.50 μM) and MDA-MB-231 (IC 50 = 53.91 μM). In particular, 6a even showed stronger antiproliferative effects than the positive control NaAsO₂ on Jurkat and HCT-116 cell lines. The results showed that a proper long aliphatic chain enhanced the antiproliferative activity of scutellarein.

  15. Transfection of Eimeria mitis with yellow fluorescent protein as reporter and the endogenous development of the transgenic parasite.

    Directory of Open Access Journals (Sweden)

    Mei Qin

    Full Text Available BACKGROUND: Advancements have been made in the genetic manipulation of apicomplexan parasites. Both the in vitro transient and in vivo stable transfection of Eimeria tenella have been developed successfully. Herein, we report the transient and stable transfection of Eimeria mitis. METHODS AND FINDINGS: Sporozoites of E. mitis transfected with enhanced yellow fluorescent protein (EYFP expression plasmid were inoculated into chickens via the cloacal route. The recovered fluorescent oocysts were sorted by fluorescence activated cell sorting (FACS and then passaged 6 generations successively in chickens. The resulting population was analyzed by genome walking and Western blot. The endogenous development of the transgenic E. mitis was observed and its reproduction potential was tested. The stable transfection of E. mitis was developed. Genome walking confirmed the random integration of plasmid DNA into the genome; while Western blot analysis demonstrated the expression of foreign proteins. Constitutive expression of EYFP was observed in all stages of merogony, gametogony and sporogony. The peak of the transgenic oocyst output was delayed by 24 h and the total oocyst reproduction was reduced by 7-fold when compared to the parental strain. CONCLUSION: Stable transfection of E. mitis was successfully developed. The expression of foreign antigens in the transgenic parasites will facilitate the development of transgenic E. mitis as a vaccine vector.

  16. Guanidinylated polyethyleneimine-polyoxypropylene-polyoxyethylene conjugates as gene transfection agents.

    Science.gov (United States)

    Bromberg, Lev; Raduyk, Svetlana; Hatton, T Alan; Concheiro, Angel; Rodriguez-Valencia, Cosme; Silva, Maite; Alvarez-Lorenzo, Carmen

    2009-05-20

    Conjugates of linear and branched polyethyleneimine (PEI) and monoamine polyether Jeffamine M-2070 (PO/EO mol ratio 10/31, 2000 Da) were synthesized through polyether activation by cyanuric chloride followed by attachment to PEI and guanidinylation by 1H-pyrazole-carboxamidine hydrochloride. The resulting guanidinylated PEI-polyether conjugates (termed gPEI-Jeffamine) efficiently complexed plasmid DNA, and their polyplexes possessed enhanced colloidal stability in the presence of serum proteins. In vitro studies with mammalian CHO-1, 3T3, and Cos-7 cell lines demonstrated improved transfection efficiency of the pCMVbeta-gal plasmid/gPEI-Jeffamine polyplexes. The guanidinylation of the amino groups of PEI and the conjugation of PEI with the Jeffamine polyether enhanced the conjugates' interaction with genetic material and reduced the cytotoxicity of the polyplexes in experiments with the L929 cell line.

  17. HTLV-1 Tax mediated downregulation of miRNAs associated with chromatin remodeling factors in T cells with stably integrated viral promoter.

    Directory of Open Access Journals (Sweden)

    Saifur Rahman

    Full Text Available RNA interference (RNAi is a natural cellular mechanism to silence gene expression and is predominantly mediated by microRNAs (miRNAs that target messenger RNA. Viruses can manipulate the cellular processes necessary for their replication by targeting the host RNAi machinery. This study explores the effect of human T-cell leukemia virus type 1 (HTLV-1 transactivating protein Tax on the RNAi pathway in the context of a chromosomally integrated viral long terminal repeat (LTR using a CD4(+ T-cell line, Jurkat. Transcription factor profiling of the HTLV-1 LTR stably integrated T-cell clone transfected with Tax demonstrates increased activation of substrates and factors associated with chromatin remodeling complexes. Using a miRNA microarray and bioinformatics experimental approach, Tax was also shown to downregulate the expression of miRNAs associated with the translational regulation of factors required for chromatin remodeling. These observations were validated with selected miRNAs and an HTLV-1 infected T cells line, MT-2. miR-149 and miR-873 were found to be capable of directly targeting p300 and p/CAF, chromatin remodeling factors known to play critical role in HTLV-1 pathogenesis. Overall, these results are first in line establishing HTLV-1/Tax-miRNA-chromatin concept and open new avenues toward understanding retroviral latency and/or replication in a given cell type.

  18. Malignant transformation of diploid human fibroblasts by transfection of oncogenes: Progress report, July 1986--June 1989

    International Nuclear Information System (INIS)

    McCormick, J.J.; Maher, V.M.

    1989-01-01

    Although there is good evidence that carcinogen exposure is a major cause of human cancer, it has proven impossible to transform normal human fibroblasts or epithelial cells in culture into malignant cells by treating them with carcinogens. This failure may reflect an inability to identify and isolate cells containing one or more premalignant changes so that these can be expanded and exposed to carcinogens a second time to induce additional required changes. A second serious roadblock to the sequential introduction of changes and expansion of clonally-derived cells containing such premalignant changes in the finite life span of human cells in culture. Using transfection of specific human oncogenes in a series of specially-selected vectors, we have overcome these obstacles and have recently succeeded in generating an infinite life span diploid human cell strain MSU-1.0, which appears to be normal in all other characteristics. From that cell a second cell strain, MSU-1.1, was generated which we have been able to transform into a malignant state not only by transfecting the cells with oncogenes but also by treating them with chemical carcinogens. We now have evidence that there is not just a single linear process which results in malignant transformation. Rather, cells appear to progress to malignancy on a series of parallel, sometimes overlapping tracks. We now propose to carry out detailed studies of the specific mechanisms of malignant cell transformation using the cell strains available in this laboratory to achieve the goal of building relevant quantitative models of carcinogenesis. 29 refs

  19. Ligation of major histocompatibility complex class I antigens (MHC-I) prevents apoptosis induced by Fas or SAPK/JNK activation in T-lymphoma cells

    DEFF Research Database (Denmark)

    Lamberth, K; Claesson, M H

    2001-01-01

    Early apoptosis in Jurkat T-lymphoma cells was induced by agonistic anti-Fas Ab or by anisomycin which activates the stress kinases SAPK/JNK. Apoptosis was inhibited by ligation of major histocompatibility complex class I antigens (MHC-I). MHC-I ligation induced upregulation of the anti-apoptotic......Early apoptosis in Jurkat T-lymphoma cells was induced by agonistic anti-Fas Ab or by anisomycin which activates the stress kinases SAPK/JNK. Apoptosis was inhibited by ligation of major histocompatibility complex class I antigens (MHC-I). MHC-I ligation induced upregulation of the anti......-apoptotic Bcl-2 protein and stabilized the mitochondrial membrane potential (Deltapsim). MHC-I ligation also prevented downregulation of Bcl-2 and destabilization of Deltapsim induced by anti-Fas Ab treatment or anisomycin exposure. Studies on three different Jurkat cell mutants deficient for src p56(lck), ZAP......-70 kinase, or TCR/CD3 gamma-chain showed that the cells undergo apoptosis after Fas ligation. Anisomycin exposure induced apoptosis in the src p56(lck)-deficient cell line but not in the two other mutant cell lines. Simultaneous cross-linking of MHC-I and Fas ligation inhibited apoptosis in the ZAP...

  20. The influence of physicochemical parameters on the efficacy of non-viral DNA transfection complexes : A comparative study

    NARCIS (Netherlands)

    Kneuer, Carsten; Ehrhardt, Carsten; Bakowsky, Heike; Kumar, M. N. V. Ravi; Oberle, Volker; Lehr, Claus M.; Hoekstra, Dick; Bakowsky, Udo

    2006-01-01

    Various polycationic vehicles have been developed to facilitate the transfer of foreign DNA into mammalian cells. Structure-activity studies suggested that biophysical properties, such as size, charge, and morphology of the resulting DNA complexes determine transfection efficiency within one class

  1. Induction of CD69 expression by cagPAI-positive Helicobacter pylori infection

    Institute of Scientific and Technical Information of China (English)

    Naoki Mori; Chie Ishikawa; Masachika Senba

    2011-01-01

    AIM: To investigate and elucidate the molecular mech-anism that regulates inducible expression of CD69 by Helicobacter pylori (H. pylori ) infection.METHODS: The expression levels of CD69 in a T-cell line, Jurkat, primary human peripheral blood mononu-clear cells (PBMCs), and CD4+T cells, were assessed by immunohistochemistry, reverse transcription polymerase chain reaction, and flow cytometry. Activation of CD69 promoter was detected by reporter gene. Nuclear factor (NF)-κB activation in Jurkat cells infected with H. pylori was evaluated by electrophoretic mobility shift assay. The role of NF-κB signaling in H. pylori -induced CD69 expression was analyzed using inhibitors of NF-κB and dominant-negative mutants. The isogenic mutants with disrupted cag pathogenicity island ( cagPAI) and virD4 were used to elucidate the role of cagPAI-encoding type Ⅳ secretion system and CagA in CD69 expression.RESULTS: CD69 staining was detected in mucosal lymphocytes and macrophages in specimens of pa-tients with H. pylori -positive gastritis. Although cagPAI-positive H. pylori and an isogenic mutant of virD4 induced CD69 expression, an isogenic mutant of cag-PAI failed to induce this in Jurkat cells. H. pylori also induced CD69 expression in PBMCs and CD4+T cells. The activation of the CD69 promoter by H. pylori was mediated through NF-κB. Transfection of dominant-negative mutants of IκBs, IκB kinases, and NF-κB-inducing kinase inhibited H. pylori -induced CD69 activation. Inhibitors of NF-κB suppressed H. pylori -induced CD69 mRNA expression.CONCLUSION: The results suggest that H. pylori in-duces CD69 expression through the activation of NF-κB. cagPAI might be relevant in the induction of CD69 expression in T cells. CD69 in T cells may play a role in H. pylori -induced gastritis.

  2. Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection.

    Science.gov (United States)

    Pfeifer, Blaine A; Burdick, Jason A; Little, Steve R; Langer, Robert

    2005-11-04

    Poly(ester-anhydride) delivery devices allow flexibility regarding carrier dimensions (micro- versus nanospheres), degradation rate (anhydride versus ester hydrolysis), and surface labeling (through the anhydride functional unit), and were therefore tested for DNA encapsulation and transfection of a macrophage P388D1 cell line. Poly(l-lactic acid-co-sebacic anhydride) and poly(l-lactic acid-co-adipic anhydride) were synthesized through melt condensation, mixed with 25 wt.% poly(beta-amino ester), and formulated with plasmid DNA (encoding firefly luciferase) into micro- and nanospheres using a double emulsion/solvent evaporation technique. The micro- and nanospheres were then characterized (size, morphology, zeta potential, DNA release) and assayed for DNA encapsulation and cellular transfection over a range of poly(ester-anhydride) copolymer ratios. Poly(ester-anhydride):poly(beta-amino ester) composite microspheres (6-12 microm) and nanospheres (449-1031 nm), generated with copolymers containing between 0 and 25% total polyanhydride content, encapsulated plasmid DNA (>or=20% encapsulation efficiency). Within this polyanhydride range, poly(adipic anhydride) copolymers provided DNA encapsulation at an increased anhydride content (10%, microspheres; 10-25%, nanospheres) compared to poly(sebacic anhydride) copolymers (1%, microspheres and nanospheres) with cellular transfection correlating with the observed DNA encapsulation.

  3. Stable radioresistance in ataxia-telangiectasia cells containing DNA from normal human cells

    International Nuclear Information System (INIS)

    Kapp, L.N.; Painter, R.B.

    1989-01-01

    SV40-transformed ataxia-telangiectasia (AT) cells were transfected with a cosmid containing a normal human DNA library and selectable marker, the neo gene, which endows successfully transformed mammalian cells with resistance to the antibiotic G418. Cells from this line were irradiated with 50 Gy of X-rays and fused with non-transfected AT cells. Among the G418-resistant colonies recovered was one stably resistant to radiation. Resistance to ionizing radiation of both primary transfectant line and its fusion derivative was intermediate between that of AT cells and normal cells, as assayed by colony-forming ability and measurement of radiation-induced G 2 chromatic aberrations; both cell lines retained AT-like radioresistant DNA synthesis. Results suggest that, because radioresistance in transfected cells was not as great as in normal human cells, two hallmarks of AT, radiosensitivity and radioresistant DNA synthesis, may still be the result of a single defective AT gene. (author)

  4. Lipoplex morphologies and their influences on transfection efficiency in gene delivery.

    Science.gov (United States)

    Ma, Baichao; Zhang, Shubiao; Jiang, Huiming; Zhao, Budiao; Lv, Hongtao

    2007-11-20

    Cationic lipid-mediated gene transfer is widely used for their advantages over viral gene transfer because it is non-immunogenic, easy to produce and not oncogenic. The main drawback of the application of cationic lipids is their low transfection efficiency. Many reports about transfection efficiency of cationic lipids have been published in recent years. In this review, the current status and prospects for transfection efficiency of different morphologies of lipoplexes are discussed. High transfection activity will be acquired for H(C)(II) structure when membrane fusion is dominant, but when serum is present L(C)(alpha) lipoplexes show great superiority for their inhibition dissociation by serum during lipoplexes transporting. Increasing DOPE often gains high activity for the H(C)(II) structure promoted by DOPE. High lipofection will be gained from large lipoplexes when endocytosis is dominant, because large particles facilitate membrane contact and fusion. We suggest morphologies of lipoplex should be characterized at two levels, lipoplex size and self-assemble structures of lipoplexes, and understanding these would be very important for scientists to prepare novel cationic lipids and design novel formulations with high transfection efficiency.

  5. Effective clinical-scale production of dendritic cell vaccines by monocyte elutriation directly in medium, subsequent culture in bags and final antigen loading using peptides or RNA transfection.

    Science.gov (United States)

    Erdmann, Michael; Dörrie, Jan; Schaft, Niels; Strasser, Erwin; Hendelmeier, Martin; Kämpgen, Eckhart; Schuler, Gerold; Schuler-Thurner, Beatrice

    2007-09-01

    Dendritic cell (DC) vaccination approaches are advancing fast into the clinic. The major obstacle for further improvement is the current lack of a simple functionally "closed" system to generate standardized monocyte-derived (mo) DC vaccines. Here, we significantly optimized the use of the Elutra counterflow elutriation system to enrich monocytic DC precursors by (1) developing an algorithm to avoid red blood cell debulking and associated monocyte loss before elutriation, and (2) by elutriation directly in culture medium rather than phosphate-buffered saline. Upon elutriation the bags containing the collected monocytes are simply transferred into the incubator to generate DC progeny as the final "open" washing step is no longer required. Elutriation resulted in significantly more (> or = 2-fold) and purer DC than the standard gradient centrifugation/adherence-based monocyte enrichment, whereas morphology, maturation markers, viability, migratory capacity, and T cell stimulatory capacity were identical. Subsequently, we compared RNA transfection, as this is an increasingly used approach to load DC with antigen. Elutra-derived and adherence-derived DC could be electroporated with similar, high efficiency (on average >85% green fluorescence protein positive), and appeared also equal in antigen expression kinetics. Both Elutra-derived and adherence-derived DC, when loaded with the MelanA peptide or electroporated with MelanA RNA, showed a high T cell stimulation capacity, that is, priming of MelanA-specific CD8+ T cells. Our optimized Elutra-based procedure is straightforward, clearly superior to the standard gradient centrifugation/plastic adherence protocol, and now allows the generation of large numbers of peptide-loaded or RNA-transfected DC in a functionally closed system.

  6. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells.

    Science.gov (United States)

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-08-30

    Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. High level of Bcl-2 counteracts apoptosis mediated by a live rabies virus vaccine strain and induces long-term infection

    International Nuclear Information System (INIS)

    Thoulouze, Maria-Isabel; Lafage, Mireille; Yuste, Victor J.; Baloul, Leiela; Edelman, Lena; Kroemer, Guido; Israel, Nicole; Susin, Santos A.; Lafon, Monique

    2003-01-01

    We report here that rabies virus strains, currently used to immunize wildlife against rabies, induce not only caspase-dependent apoptosis in the human lymphoblastoid Jurkat T cell line (Jurkat-vect), but also a caspase-independent pathway involving the apoptosis-inducing factor (AIF). In contrast, a strain of neurotropic RV that does not induce apoptosis did not activate caspases or induce AIF translocation. Bcl-2 overproduction in Jurkat T cells (Jurkat-Bcl-2) abolished both pathways. ERA infection and production were similar in Jurkat-vect and Jurkat-Bcl-2 cells, indicating Bcl-2 has no direct antiviral effects. Bcl-2 production is naturally upregulated by day 3 in ERA-infected Jurkat-vect cultures. The increase in Bcl-2 levels seems to be controlled by the virus infection itself and results in the establishment of long-term, persistently infected cultures that continue to produce virus. Thus, in infections with live RV vaccine strains, infected cells may be productive reservoirs of virus in the long term. This may account for the high efficacy of live rabies vaccines

  8. MicroRNA-101 regulates T-cell acute lymphoblastic leukemia progression and chemotherapeutic sensitivity by targeting Notch1.

    Science.gov (United States)

    Qian, Lu; Zhang, Wanggang; Lei, Bo; He, Aili; Ye, Lianhong; Li, Xingzhou; Dong, Xin

    2016-11-01

    The present study aimed to investigate the role of microRNA (miR)-101 in acute lymphoblastic leukemia progression and chemoresistance. Furthermore, a novel target gene of miR-101 was identified. Here, we confirmed that miR-101 was significantly downregulated in the blood samples of patients with T-cell acute lymphoblastic leukemia (T-ALL) compared with the healthy controls, as determined by reverse transcription quantitative polymerase chain reaction (RTqPCR) analysis. The in vitro experiments demonstrated that miR-101 significantly repressed the proliferation and invasion, and induced potent apoptosis in Jurkat cells, as determined by CCK-8, flow cytometer and cell invasion assays. Luciferase assay confirmed that Notch1 was a target gene of miR-101, and western blotting showed that miR-101 suppressed the expression of Notch1 at the protein level. Moreover, functional restoration assays revealed that Notch1 mediates the effects of miR-101 on Jurkat cell proliferation, apoptosis and invasion. miR-101 enhanced the sensitivity of Jurkat cells to the chemotherapeutic agent adriamycin. Taken together, our results show for the first time that miR-101 acts as a tumor suppressor in T-cell acute lymphoblastic leukaemia and it could enhance chemotherapeutic sensitivity. Furthermore, Notch1 was identified to be a novel target of miR-101. This study indicates that miR-101 may represent a potential therapeutic target for T-cell acute lymphoblastic leukemia intervention.

  9. Caspase Activation and Aberrant Cell Growth in a p53+/+ Cell Line from a Li-Fraumeni Syndrome Family

    Directory of Open Access Journals (Sweden)

    Zaki A. Sherif

    2015-01-01

    Full Text Available Wild-type p53 is well known to induce cell cycle arrest and apoptosis to block aberrant cell growth. However, p53’s unique role in apoptosis and cell proliferation in Li-Fraumeni Syndrome (LFS has not been well elucidated. The aim of this study is to characterize the activity of wild-type p53 protein in LFS family dominated by a germline negative mutant p53. As expected, etoposide-treated wild-type p53-containing cell lines, LFS 2852 and control Jurkat, showed a greater rate of caspase- and annexin V-induced apoptotic cell death compared to the p53-mutant LFS 2673 cell line although mitochondrial and nuclear assays could not detect apoptosis in these organelles. The most intriguing part of the observation was the abnormal proliferation rate of the wild-type p53-containing cell line, which grew twice as fast as 2673 and Jurkat cells. This is important because apoptosis inducers acting through the mitochondrial death pathway are emerging as promising drugs against tumors where the role of p53 is not only to target gene regulation but also to block cell proliferation. This study casts a long shadow on the possible dysregulation of p53 mediators that enable cell proliferation. The deregulation of proliferation pathways represents an important anticancer therapeutic strategy for patients with the LFS phenotype.

  10. Differential transfection efficiency rates of the GM-CSF gene into human renal cell carcinoma lines by lipofection.

    Science.gov (United States)

    Hernández, A; Zöller, K; Enczmann, J; Ebert, T; Schmitz-Draeger, B; Ackermann, R; Wernet, P

    1997-01-01

    One of the major questions in any gene therapy approach is the selection of the appropriate vector system. Here, the optimization of a gene transfer protocol for renal cell carcinoma using lipofection as a nonviral gene transduction system was evaluated. To select the promoter which gives the highest expression, different plasmids which are able to express Escherichia coli beta-galactosidase gene as a reporter gene under the control of different promoters were tested: human cytomegalovirus promoter (pCMVbeta), simian virus 40 promoter (pSVbeta), adenovirus promoter (ADbeta), and herpes simplex virus thymidine kinase promoter (TKbeta). The pCMVbeta revealed the highest expression of the beta-gal gene in the renal cell carcinoma (RCC) lines. Thus this CMV promoter was selected for the expression of the granulocyte-macrophage colony stimulator factor (GM-CSF) gene. Three different lipids (LipofectAmine, LipofectAce, and Lipofectin) were compared for their transduction efficiency, and the optimal conditions for quantitatively high lipofection rates were established. The consistently best results regarding gene expression as well as viability of the RCC lines were obtained when Lipofectin was used. Gene expression was monitored by a specific enzyme-linked immunosorbent assay and functionally validated by a cell proliferation test. The GM-CSF expression profile showed a peak at 48 hours after transfection and was still detectable after 5 days. Here the feasibility of efficient lipofection of the GM-CSF gene into RCC lines is demonstrated. Most importantly, considerable differences in the relative quantity of GM-CSF gene transfer into the different RCC lines was observed here. This may be of critical relevance for the design of any clinical gene transduction protocol in tumor cell vaccination attempts.

  11. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    International Nuclear Information System (INIS)

    Zhou Hongsheng; Zhang Donghua; Wang Yaya; Dai Ming; Zhang Lu; Liu Wenli; Liu Dan; Tan Huo; Huang Zhenqian

    2006-01-01

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs

  12. Mitofusin 2 Promotes Apoptosis of CD4+ T Cells by Inhibiting Autophagy in Sepsis

    Directory of Open Access Journals (Sweden)

    Lan Ying

    2017-01-01

    Full Text Available Apoptosis of CD4+ T cells is a primary pathophysiological mechanism of immune dysfunction in the pathogenesis of sepsis. Mitofusin 2 (Mfn2, an integral mitochondrial outer membrane protein, has been confirmed to be associated with cellular metabolism, proliferation, and apoptosis. The function of Mfn2 in CD4+ T cell apoptosis in sepsis is poorly understood. Here, we discovered increased in vivo Mfn2 expression, autophagy deficiency, and elevated cell apoptosis in murine splenic CD4+ T cells after cecal ligation and puncture (CLP. We also observed almost identical results in splenic CD4+ T cells upon lipopolysaccharide (LPS stimulation in vitro. Furthermore, overexpression of Mfn2 resulted in impaired autophagy and increased apoptosis in Jurkat cells. Pharmacological inhibition of autophagy with 3-methyladenine enhanced Mfn2 overexpression-induced cell apoptosis. In addition, overexpression of Mfn2 downregulated phorbol myristate acetate (PMA/ionomycin-, rapamycin- and starvation-induced autophagy in Jurkat T cells. Taken together, these data indicate a critical role of Mfn2 in CD4+ T cell apoptosis in sepsis and the underlying mechanism of autophagy deficiency.

  13. Ultrasound-mediated structural changes in cells revealed by FTIR spectroscopy: A contribution to the optimization of gene and drug delivery

    Science.gov (United States)

    Grimaldi, Paola; Di Giambattista, Lucia; Giordani, Serena; Udroiu, Ion; Pozzi, Deleana; Gaudenzi, Silvia; Bedini, Angelico; Giliberti, Claudia; Palomba, Raffaele; Congiu Castellano, Agostina

    2011-12-01

    Ultrasound effects on biological samples are gaining a growing interest concerning in particular, the intracellular delivery of drugs and genes in a safe and in a efficient way. Future progress in this field will require a better understanding of how ultrasound and acoustic cavitation affect the biological system properties. The morphological changes of cells due to ultrasound (US) exposure have been extensively studied, while little attention has been given to the cells structural changes. We have exposed two different cell lines to 1 MHz frequency ultrasound currently used in therapy, Jurkat T-lymphocytes and NIH-3T3 fibroblasts, both employed as models respectively in the apoptosis and in the gene therapy studies. The Fourier Transform Infrared (FTIR) Spectroscopy was used as probe to reveal the structural changes in particular molecular groups belonging to the main biological systems. The genotoxic damage of cells exposed to ultrasound was ascertained by the Cytokinesis-Block Micronucleus (CBMN) assay. The FTIR spectroscopy results, combined with multivariate statistical analysis, regarding all cellular components (lipids, proteins, nucleic acids) of the two cell lines, show that Jurkat cells are more sensitive to therapeutic ultrasound in the lipid and protein regions, whereas the NIH-3T3 cells are more sensitive in the nucleic acids region; a meaningful genotoxic effect is present in both cell lines only for long sonication times while in the Jurkat cells also a significant cytotoxic effect is revealed for long times of exposure to ultrasound.

  14. Femtosecond-laser assisted cell reprogramming

    Science.gov (United States)

    Breunig, Hans Georg; Uchugonova, Aisada; Batista, Ana; König, Karsten

    2017-02-01

    Femtosecond-laser pulses can assist to transfect cells by creating transient holes in the cell membrane, thus making them temporarily permeable for extraneous genetic material. This procedure offers the advantage of being completely "virus free" since no viruses are used for the delivery and integration of gene factors into the host genome and, thereby, avoiding serious side effects which so far prevent clinical application. Unfortunately, focusing of the laser radiation onto individual cell membranes is quite elaborate and time consuming. Regarding these obstacles, we briefly review two optical setups for fast, efficient and high throughput laser-assisted cell transfection based on femtosecond laser pulse excitation. The first setup aims at assisting the transfection of adherent cells. It comprises of a modified laser-scanning microscope with beamshaping optics as well as home-made software to automate the detection, targeting and laser-irradiation process. The second setup aims at laser-assisted transfection of non-adherent cells in suspension which move in a continuous flow through the laser focus region. The setup allows to address a large number of cells, however, with much lower transfection efficiency than the individual-cell targeting approach.

  15. Suppression of the cell proliferation in stomach cancer cells by the ZNRD1 gene

    International Nuclear Information System (INIS)

    Hong Liu; Zhang Yumei; Liu Na; Liu Changjiang; Zhi Min; Pan Yanglin; Lan Mei; Sun Li; Fan Daiming

    2004-01-01

    Zinc ribbon domain-containing 1 (ZNRD1), a transcription-associated gene, was recently found to be downregulated in human gastric cancer tissues as compared to the matched adjacent nonneoplastic tissues. In this study, we constructed the siRNA eukaryotic expression vectors of ZNRD1 and transfected them into normal gastric epithelial cells (GES-1). We also introduced the ZNRD1 gene into gastric cancer cells that do (SGC7901) and do not (AGS) express ZNRD1 endogenously. GES-1 cells stably transfected with the ZNRD1-RNAi were found to exhibit significantly quicker proliferation than empty vector transfectants. AGS cells stably transfected with the ZNRD1 cDNA exhibited significantly decreased growth rate as compared to control vector transfectants, whereas SGC7901 cells did not. Furthermore, ZNRD1 suppresses growth of AGS cells in soft agar and tumor formation in athymic nude mice. This study clearly demonstrates that ZNRD1 may play an important role in the control of human gastric cancer development by regulating cell proliferation. These results provide new insights into the function of ZNRD1 and further validate ZNRD1 as a potential therapeutic target in gastric cancer

  16. Transformation of UV-hypersensitive Chinese hamster ovary cell mutants with UV-irradiated plasmids

    International Nuclear Information System (INIS)

    Nairn, R.S.; Humphrey, R.M.; Adair, G.M.

    1988-01-01

    Transfection of UV-hypersensitive, DNA repair-deficient Chinese hamster ovary (CHO) cell lines and parental, repair-proficient CHO cells with UV-irradiated pHaprt-1 or pSV2gpt plasmids resulted in different responses by recipient cell lines to UV damage in transfected DNA. Unlike results reported for human cells, UV irradiation of transfecting DNA did not stimulate genetic transformation of CHO recipient cells. In repair-deficient CHO cells, proportionally fewer transformants were produced with increasing UV damage than in repair-proficient cells in transfections with UV-irradiated hamster adenine phosphoribosyltransferase (APRT) gene contained in plasmid pHaprt-1. Transfection of CHO cells with UV-irradiated pSV2gpt resulted in neither decline in transformation frequencies in repair-deficient cell lines relative to repair-proficient cells nor stimulation of genetic transformation by UV damage in the plasmid. Blot hybridization analysis of DNA samples isolated from transformed cells showed no dramatic changes in copy number or arrangement of transfected plasmid DNA with increasing UV dose. The authors conclude responses of recipient cells to UV-damaged transfecting plasmids depend on type of recipient cell and characteristics of the genetic sequence used for transfection. (author)

  17. An Evaluation on Transfection Efficiency of pHRE-Egr1-EGFP in Hepatocellular Carcinoma Cells Bel-7402 Mediated by PEI-MZF-NPs

    Directory of Open Access Journals (Sweden)

    Mei Lin

    2011-01-01

    Full Text Available To improve transfection and expression efficiency of target gene, especially under cancer anoxic microenvironment, we have developed pHRE-Egr1-EGFP/PEI-MZF-NPs nanosystem, in which pHRE-Egr1-EGFP, eukaryotic gene expression plasmid, is constructed by combining radiation promoter Egr1 with anoxia induction components (HRE, forming anoxic radiation double sensitive HRE/Egr1 promoter to activate reporter gene EGFP expression. MZF-NPs (Mn0.5 Zn0.5 Fe2O4 magnetic nanoparticles, obtained by coprecipitation method, are coated with cation poly(ethylenimine (PEI. We transferred pHRE-Egr1-EGFP into hepatocellular carcinoma Bel-7402 cells, using PEI-MZF-NPs as the carrier and tested some relevant efficacy. The results show that PEI-MZF-NPs have good DNA-binding ability, protection ability, release ability, little toxicity, and high transfection efficiency, obviously superior to those of the liposome method and electricity perforation method. Moreover, the expression level of EGFP gene induced by anoxia and radiation was significantly higher than that of single radiation activation. It is therefore concluded that HRE/Egr1 can induce and improve target gene expression efficiency in cancer anoxic microenvironment, and that PEI-MZF-NPs can be used as a novel nonviral gene vector which offers a viable approach to the mediated radiation gene therapy of cancer.

  18. Light-induced mutagenicity in Salmonella TA102 and genotoxicity/cytotoxicity in human T-cells by 3,3'-dichlorobenzidine: a chemical used in the manufacture of dyes and pigments and in tattoo inks

    International Nuclear Information System (INIS)

    Wang Lei; Yan Jian; Hardy, William; Mosley, Charity; Wang Shuguang; Yu Hongtao

    2005-01-01

    DCB, 3,3'-dichlorobenzidine, is used primarily as an intermediate in the manufacture of diarylide yellow or azo red pigments for printing ink, textile, paint, and plastics. It is also used in tattoo inks. In this article, we investigate light-induced toxicity of DCB in both bacteria and human Jurkat T-cells. DCB itself is not toxic or mutagenic to Salmonella typhimurium TA102, but is photomutagenic at concentrations as low as 2 μM and phototoxic at concentrations >100 μM when bacteria are exposed to DCB and light at the same time (1.2 J/cm 2 of UVA and 2.1 J/cm 2 of visible light). Furthermore, DCB is both photocytotoxic and photogenotoxic to human Jurkat T-cells. Under a light irradiation dose of 2.3 J/cm 2 of UVA and 4.2 J/cm 2 of visible light, it causes the Jurkat T-cells to become nonviable in a DCB dose-dependent manner and the nonviable cells reaches 60% at DCB concentrations higher than 50 μM. At the same time, DNA fragmentation is observed for cells exposed to both DCB and light, determined by single cell gel electrophoresis (alkaline comet assay). As much as 5% (average) DNA fragmentation was observed when exposed to 200 μM DCB and light irradiation. This suggests that DCB can penetrate the cell membrane and enter the cell. Upon light activation, DCB in the cells can cause various cellular damages, leading to nonviable Jurkat T-cells. It appears, the nonviable cells are not caused solely by fragmentation of cellular DNA, but by other damages such as to proteins and cell membranes, or DNA alkylation. Therefore, persons exposed to DCB through environmental contamination or through tattoo piercing using DCB-containing inks must not only concern about its toxicity without exposing to light, but also its phototoxicity

  19. Establishment of ultra long-lived cell lines by transfection of TERT into normal human fibroblast TIG-1 and their characterization.

    Science.gov (United States)

    Kamada, Mizuna; Kumazaki, Tsutomu; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2012-06-01

    To establish useful human normal cell lines, TERT (telomerase reverse transcriptase) cDNA was transfected into normal female lung fibroblast, TIG-1. After long-term-sub-cultivation of 74 individual clones selected for resistance to G418, we obtained 55 cultures with normal range of life span [75 PDL (population doubling level)], 16 cultures with extended life span (75-140 PDL). In addition, 3 immortal cell strains and unexpectedly, one ultra long-lived cell line (ULT-1) with life span of 166 PDL were established. IMT-1, one of the immortal cell strains was confirmed to maintain long telomere length, high telomerase activity and an extremely low level of p16INK4A. They also showed moderate p53 and p21CIP1 expression, keeping vigorous growth rate even at 450 PDL. High level of fibronectin and collagen 1α expression confirmed IMT-1 as normal fibroblasts, although one X chromosome had been lost. ULT-1, however, kept a near normal karyotypes and had shortening of telomere length, high expression of p16INK4A, moderate levels of senescence associated-β-galactosidase positive cells and decreased growth rate only after 150 PDs (population doublings), and finally reached senescence at 166 PDL with morphology of normal senescent fibroblasts. As resources of standard normal human cell, abundant vials of early and middle passages of ULT-1 have been stocked. The use of the cell line is discussed, focusing on isograft of artificial skin and screening of anti-aging or safe chemical agents.

  20. Direct and efficient transfection of mouse neural stem cells and mature neurons by in vivo mRNA electroporation.

    Science.gov (United States)

    Bugeon, Stéphane; de Chevigny, Antoine; Boutin, Camille; Coré, Nathalie; Wild, Stefan; Bosio, Andreas; Cremer, Harold; Beclin, Christophe

    2017-11-01

    In vivo brain electroporation of DNA expression vectors is a widely used method for lineage and gene function studies in the developing and postnatal brain. However, transfection efficiency of DNA is limited and adult brain tissue is refractory to electroporation. Here, we present a systematic study of mRNA as a vector for acute genetic manipulation in the developing and adult brain. We demonstrate that mRNA electroporation is far more efficient than DNA electroporation, and leads to faster and more homogeneous protein expression in vivo Importantly, mRNA electroporation allows the manipulation of neural stem cells and postmitotic neurons in the adult brain using minimally invasive procedures. Finally, we show that this approach can be efficiently used for functional studies, as exemplified by transient overexpression of the neurogenic factor Myt1l and by stably inactivating Dicer nuclease in vivo in adult born olfactory bulb interneurons and in fully integrated cortical projection neurons. © 2017. Published by The Company of Biologists Ltd.