WorldWideScience

Sample records for jurassic-lower cretaceous sincollisional

  1. Uppermost Jurassic-Lower Cretaceous carbonate deposits from Fara San Martino (Maiella, Italy: biostratigraphic remarks

    Directory of Open Access Journals (Sweden)

    Roberta Bruni

    2007-10-01

    Full Text Available The Uppermost Jurassic-Lower Cretaceous limestone succession in the Maiella region of Italy has been investigated in a profile covering more than 400 m stratigraphical thickness at Fara San Martino. The succession mainly consists of peritidal limestones, intertidal and supratidal sequences being dominant, together with subtidal lagoonal facies. As a consequence, the microfossil assemblages are generally poorly developed, Microfossils occur within the subtidal lagoonal facies of this suite of restricted sediments. This feature led us to recognise five informal biostratigraphic intervals, which are facies related – instead of biozones, each of the intervals being characterized by specific micropaleontological associations. The occurrence and/or disappearance of some marker microfossils were used as references for separating these intervals. Based on these markers, the Uppermost Jurassic-Lower Cretaceous carbonate deposits from Maiella region may be correlated with similar deposits from the Apennines and from other regions in the perimediterranean area.

  2. The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution.

    Science.gov (United States)

    Caldwell, Michael W; Nydam, Randall L; Palci, Alessandro; Apesteguía, Sebastián

    2015-01-27

    The previous oldest known fossil snakes date from ~100 million year old sediments (Upper Cretaceous) and are both morphologically and phylogenetically diverse, indicating that snakes underwent a much earlier origin and adaptive radiation. We report here on snake fossils that extend the record backwards in time by an additional ~70 million years (Middle Jurassic-Lower Cretaceous). These ancient snakes share features with fossil and modern snakes (for example, recurved teeth with labial and lingual carinae, long toothed suborbital ramus of maxillae) and with lizards (for example, pronounced subdental shelf/gutter). The paleobiogeography of these early snakes is diverse and complex, suggesting that snakes had undergone habitat differentiation and geographic radiation by the mid-Jurassic. Phylogenetic analysis of squamates recovers these early snakes in a basal polytomy with other fossil and modern snakes, where Najash rionegrina is sister to this clade. Ingroup analysis finds them in a basal position to all other snakes including Najash.

  3. MIDDLE JURASSIC-LOWER CRETACEOUS BIOSTRATIGRAPHY IN THE CENTRAL PONTIDES (TURKEY): REMARKS ON PALEOGEOGRAPHY AND TECTONIC EVOLUTION

    OpenAIRE

    BORA ROJAY; DEMIR ALTINER

    1998-01-01

    The deposition of Jurassic-Lower Cretaceous carbonates in the Pontides was controlled mainly by the evolution of an Atlantic-type continental margin in the Tethys. The study of several stratigraphic sections from allochthonous slices and blocks of the North Anatolian Ophiolitic Melange provided insight into the Middle Jurassic-Early Cretaceous paleogeographic evolution of the Central Pontide Belt. The Callovian-Aptian successions span the Globuligerina gr. oxfordiana, Clypeina jurassica (equi...

  4. Mesozoic (Upper Jurassic-Lower Cretaceous) deep gas reservoir play, central and eastern Gulf coastal plain

    Science.gov (United States)

    Mancini, E.A.; Li, P.; Goddard, D.A.; Ramirez, V.O.; Talukdar, S.C.

    2008-01-01

    The Mesozoic (Upper Jurassic-Lower Cretaceous) deeply buried gas reservoir play in the central and eastern Gulf coastal plain of the United States has high potential for significant gas resources. Sequence-stratigraphic study, petroleum system analysis, and resource assessment were used to characterize this developing play and to identify areas in the North Louisiana and Mississippi Interior salt basins with potential for deeply buried gas reservoirs. These reservoir facies accumulated in Upper Jurassic to Lower Cretaceous Norphlet, Haynesville, Cotton Valley, and Hosston continental, coastal, and marine siliciclastic environments and Smackover and Sligo nearshore marine shelf, ramp, and reef carbonate environments. These Mesozoic strata are associated with transgressive and regressive systems tracts. In the North Louisiana salt basin, the estimate of secondary, nonassociated thermogenic gas generated from thermal cracking of oil to gas in the Upper Jurassic Smackover source rocks from depths below 3658 m (12,000 ft) is 4800 tcf of gas as determined using software applications. Assuming a gas expulsion, migration, and trapping efficiency of 2-3%, 96-144 tcf of gas is potentially available in this basin. With some 29 tcf of gas being produced from the North Louisiana salt basin, 67-115 tcf of in-place gas remains. Assuming a gas recovery factor of 65%, 44-75 tcf of gas is potentially recoverable. The expelled thermogenic gas migrated laterally and vertically from the southern part of this basin to the updip northern part into shallower reservoirs to depths of up to 610 m (2000 ft). Copyright ?? 2008. The American Association of Petroleum Geologists. All rights reserved.

  5. An Upper Jurassic-Lower Cretaceous carbonate platform from the Vâlcan Mountains (Southern Carpathians, Romania): paleoenvironmental interpretation

    Science.gov (United States)

    Michetiuc, Mihai; Catincuţ, Camelia; Bucur, Ioan I.

    2012-02-01

    The results of a biostratigraphic and sedimentological study of the Upper Jurassic-Lower Cretaceous limestones cropping out in the southern sector of the Vâlcan Mountains in Romania are presented, including the definition of microfacies types, fossil assemblages and environmental interpretation. Six microfacies types (MFT 1-MFT 6) have been identified, each of them pointing to a specific depositional environment. The deposits are characteristic of a shallow carbonate platform. They contain normal marine or restricted marine facies deposited in low or high energy environments from the inner, middle and outer platform. The age attribution of these deposits (Late Jurassic to Berriasian-Valanginian-?Hauterivian, and Barremian) is based on foraminiferal and calcareous algae associations. The micropaleontological assemblage is exceptionally rich in the Vâlcan Mountains and brings new arguments for dating the Upper Jurassic-Lower Cretaceous limestones in this area.

  6. Sequence stratigraphy of the Kingak Shale (Jurassic-Lower Cretaceous), National Petroleum Reserve in Alaska

    Science.gov (United States)

    Houseknecht, D.W.; Bird, K.J.

    2004-01-01

    Beaufortian strata (Jurassic-Lower Cretaceous) in the National Petroleum Reserve in Alaska (NPRA) are a focus of exploration since the 1994 discovery of the nearby Alpine oil field (>400 MMBO). These strata include the Kingak Shale, a succession of depositional sequences influenced by rift opening of the Arctic Ocean Basin. Interpretation of sequence stratigraphy and depositional facies from a regional two-dimensional seismic grid and well data allows the definition of four sequence sets that each displays unique stratal geometries and thickness trends across NPRA. A Lower to Middle Jurassic sequence set includes numerous transgressive-regressive sequences that collectively built a clastic shelf in north-central NPRA. Along the south-facing, lobate shelf margin, condensed shales in transgressive systems tracts downlap and coalesce into a basinal condensed section that is likely an important hydrocarbon source rock. An Oxfordian-Kimmeridgian sequence set, deposited during pulses of uplift on the Barrow arch, includes multiple transgressive-regressive sequences that locally contain well-winnowed, shoreface sandstones at the base of transgressive systems tracts. These shoreface sandstones and overlying shales, deposited during maximum flooding, form stratigraphic traps that are the main objective of exploration in the Alpine play in NPRA. A Valanginian sequence set includes at least two transgressive-regressive sequences that display relatively distal characteristics, suggesting high relative sea level. An important exception is the presence of a basal transgressive systems tract that locally contains shoreface sandstones of reservoir quality. A Hauterivian sequence set includes two transgressive-regressive sequences that constitute a shelf-margin wedge developed as the result of tectonic uplift along the Barrow arch during rift opening of the Arctic Ocean Basin. This sequence set displays stratal geometries suggesting incision and synsedimentary collapse of the shelf

  7. MIDDLE JURASSIC-LOWER CRETACEOUS BIOSTRATIGRAPHY IN THE CENTRAL PONTIDES (TURKEY: REMARKS ON PALEOGEOGRAPHY AND TECTONIC EVOLUTION

    Directory of Open Access Journals (Sweden)

    BORA ROJAY

    1998-07-01

    Full Text Available The deposition of Jurassic-Lower Cretaceous carbonates in the Pontides was controlled mainly by the evolution of an Atlantic-type continental margin in the Tethys. The study of several stratigraphic sections from allochthonous slices and blocks of the North Anatolian Ophiolitic Melange provided insight into the Middle Jurassic-Early Cretaceous paleogeographic evolution of the Central Pontide Belt. The Callovian-Aptian successions span the Globuligerina gr. oxfordiana, Clypeina jurassica (equivalent of the Tubiphytes morronensis zone, Protopeneroplis ultragranulata (with the Haplophragmoides joukowskyi subzone, Montsalevia salevensis, Hedbergella delrioensis - Hedbergella planispira - Leupoldina - Globigerinelloides and Globigerinelloides algerianus biozones. Two major stratigraphic gaps corresponding to the pre-Callovian and Hauterivian-Early Aptian ages are recognised within the successions. Lithostratigraphic and biostratigraphic studies indicate strong similarities in the evolution of the successions in the Amasya region (Central Pontides and Biga-Bursa-Bilecik (BBB Platform (North-western Anatolia. 

  8. Vertebrate fossils and trace fossils in Upper Jurassic-Lower cretaceous red beds in the Atacama region, Chile

    Science.gov (United States)

    Bell, C. M.; Suárez, M.

    Pterosaur, dinosaur, and crocodile bones are recorded here for the first time in Upper Jurassic-Lower Cretaceous red beds in the Atacama region east of Copiapó, Chile. Trace fossils produced by vertebrate animals include the footprints of theropod dinosaurs and the depressions of sandstone laminae interpreted as burrows and foot impressions. The fossils occur in the 1500-meter-thick Quebrada Monardes Formation, which consists predominantly of the aeolian and alluvial deposits of a semi-arid terrestrial environment. Vertebrate fossils are very rare in Chile. Dinosaur bones and footprints have previously been recorded at only seven locations, and pterosaur remains at only one location. The newly discovered dinosaur bones are the oldest to be described in Chile.

  9. The Upper Jurassic-Lower Cretaceous of eastern Heilongjiang, Northeast China: stratigraphy and regional basin history

    Energy Technology Data Exchange (ETDEWEB)

    Sha, J.G.; Matsukawa, M.; Cai, H.W.; Jiang, B.Y.; Ito, M.; He, C.Q.; Gu, Z.W. [Academy of Sinica, Nanjing (China)

    2003-12-01

    In eastern Heilongjiang, the Upper Jurassic is marine and restricted to the Suibin and Dong'an areas, where it is characterized faunally by Callovian-Volgian (Tithonian) bivalves and florally by dinoflagellates. The Lower Cretaceous is widely distributed in eastern Heilongjiang, and characterized faunally by Berriasian-Valanginian bivalves, Barremian-Albian ammonites and Aucellina, and florally by dinoflagellates. To the west, the marine facies grade into non-marine beds. Thus, in the east, for example in the Dong'an and Dajiashan areas, near the northwestern Palaeo-Pacific, the Lower Cretaceous is marine; westward, in the Yunshan, Longzhaogou. Peide, and Zhushan areas, marine and non-marine deposits alternate, whereas further west still, e.g. in the Jixi Basin, non-marine facies are intercalated with marine beds. This regional distribution is indicative of a large, shallow embayment opening eastwards to the Palaeo-Pacific; during the Early Cretaceous successive transgressive-regressive events influenced the climate and biota of eastern Heilongjiang and northeastern China. Many of the Lower Cretaceous sections contain abundant coals, demonstrating that in this region the Early Cretaceous was an important coal-forming period.

  10. The upper Jurassic-lower cretaceous siliciclastic system in the Morocco offshore - Prevenance, transport and deposition

    NARCIS (Netherlands)

    Bertotti, G.; Arantegui, A.; Charton, R.; Luber, T.; Redfern, J.

    2015-01-01

    The Morocco segment of the Central Atlantic passive continental margin experienced km-scale exhumation during the early post-rift (late Jurassic-Early Cretaceous). In the Meseta and the High Atlas this led to the development of a N-S trending ridge sourcing terrigenous sediments which were brought t

  11. Completely preserved cockroaches of the family Mesoblattinidae from the Upper Jurassic-Lower Cretaceous Yixian Formation (Liaoning Province, NE China)

    Science.gov (United States)

    Wei, Dandan; Ren, Dong

    2013-08-01

    Although cockroaches were the dominant insects in various Paleozoic and Mesozoic insect assemblages, their general morphology was extremely conservative. One of the most common of them, the Jurassic-Cretaceous family Mesoblattinidae, is described here for the first time on the basis of completely preserved specimens. Ninety-two specimens of Perlucipecta aurea gen. et sp. n. reveal details of head, mandible, male tergal glands and terminal hook; cercal, leg and antennal sensilla. Its congener, P. vrsanskyi is described from the same sediments of the Yixian Formation (Upper Jurassic-Lower Cretaceous). The forewing venation variability of P. aurea, analysed for the first time in this family is nearly identical (CV = 6.23 %) with variability of two species of family Blattulidae that occur at the same locality (CV = 6.22 %; 5.72 %). The transitional nature of morphological characters represented by asymmetry between left and right wings (simple/branched forewing SC and hind wing M) in P. aurea documents the phylogenetic relation between the families Mesoblattinidae and Ectobiidae

  12. Uppermost Jurassic-lower cretaceous radiolarian chert from the Tanimbar Islands (Banda Arc), Indonesia

    Science.gov (United States)

    Jasin, Basir; Haile, Neville

    This paper describes and figures Mesozoic Radiolaria from cherts in Pulau Ungar, Tanimbar Islands, eastern Indonesia. Two assemblages of Radiolaria are recognised. The lower assemblage is indicative of upper Tithonian (uppermost Jurassic) to Berriasian (lowermost Cretaceous) and the upper assemblage is of upper Valanginian to Barremian age. These are the first precise ages obtained from the Ungar Formation, a unit including sandstones with apparently good petroleum reservoir characteristics.

  13. Dinosaur ichnofauna of the Upper Jurassic/Lower Cretaceous of the Paraná Basin (Brazil and Uruguay)

    Science.gov (United States)

    Francischini, H.; Dentzien–Dias, P. C.; Fernandes, M. A.; Schultz, C. L.

    2015-11-01

    Upper Jurassic and Lower Cretaceous sedimentary layers are represented in the Brazilian Paraná Basin by the fluvio-aeolian Guará Formation and the Botucatu Formation palaeoerg, respectively, overlapped by the volcanic Serra Geral Formation. In Uruguay, the corresponding sedimentary units are named Batoví and Rivera Members (both from the Tacuarembó Formation), and the lava flows constitute the Arapey Formation (also in Paraná Basin). Despite the lack of body fossils in the mentioned Brazilian formations, Guará/Batoví dinosaur fauna is composed of theropod, ornithopod and wide-gauge sauropod tracks and isolated footprints, as well as theropod teeth. In turn, the Botucatu/Rivera dinosaur fauna is represented by theropod and ornithopod ichnofossils smaller than those from the underlying units. The analysis of these dinosaur ichnological records and comparisons with other global Mesozoic ichnofauna indicates that there is a size reduction in dinosaur fauna in the more arid Botucatu/Rivera environment, which is dominated by aeolian dunes. The absence of sauropod trackways in the Botucatu Sandstone fits with the increasingly arid conditions because it is difficult for heavy animals to walk on sandy dunes, as well as to obtain the required amount of food resources. This comparison between the Upper Jurassic and Lower Cretaceous dinosaur fauna in south Brazil and Uruguay demonstrates the influence of aridization on the size of animals occupying each habitat.

  14. CARBONATE FACIES ZONATION OF THE UPPER JURASSIC-LOWER CRETACEOUS APULIA PLATFORM MARGIN (GARGANO PROMONTORY, SOUTHERN ITALY

    Directory of Open Access Journals (Sweden)

    MICHELE MORSILLI

    1997-07-01

    Full Text Available The Late Jurassic-Early Cretaceous Apulia platform margin and the transition to adjacent basinal deposits (inner platform to basin are well exposed in the Gargano Promontory. Detailed field work has allowed to recognize eight main facies associations which reflect various depositional environments, and which document a differentiated zonation, from the inner platform to the basin. A shallow lagoon existed in the internal part of the Gargano Promontory with a transition to tidal flat areas (F1. Oolitic shoals (F2 bordered this internal peritidal area passing seaward to a reef-flat with abundant corals (F3. A reef-front, associated with a coral rubble zone, has been found in some areas (F4. In the external margin zone, massive wackestones with Ellipsactinia occur (F5 and pass gradually to a rudstone facies on the proximal slope (F6. The base-of-slope facies association consists of pelagic sediments interbedded with gravity-displaced deposits (F7 and F8. The depositional profile of the Apulia Platform is typical of the Tethyan Jurassic-Early Cretaceous platforms, with slope declivities in the order of 25°-28°. The remarkable progradation of the platform in the northern tract of the Gargano (Lesina and Varano lakes area and its substantial stability east- and southwards (Mattinata area suggest a possible windward position of the margin in this latter portion and, in contrast, a leeward position of the northern portion.   

  15. Upper Jurassic - Lower Cretaceous turbidite sandstones in the Central Graben, North Sea; with special focus on the Danish Gertrud Graben

    Energy Technology Data Exchange (ETDEWEB)

    Johannessen, P.

    1998-10-01

    Thick Late Jurassic - Early cretaceous turbidite sandstone successions in the Central Graben are uncommon except from the Moray Firth and Viking Graven north of the Central Graben, where several important hydrocarbon producing turbidite sandstone fields are known. The only hydrocarbon producing turbidite reservoir sandstones in the Central Graben is the up to 55 m thick Ribble Sandstone Member located in the British South-west Central Graben, where it is lying above thick shoreface reservoir sandstones of the Fulmar Formation, separated by offshore claystones of the Kimmeridge Clay Formation. The turbidite sandstones of the Ribble Sandstone Member derived from the more proximal thick reservoir sandstones of the Fulmar Formation located near the Mid North Sea High. It has not yet been possible to correlate thick shoreface sandstones of the Norwegian Ula Formation or the Danish Heno Formation to more distal thick turbidite sandstones derived from the shoreface sandstones. (au) 60 fig., 85 refs.

  16. Encrusting micro-organisms from the Upper Jurassic - Lower Cretaceous Inalti Carbonates (Central Pontides, Turkey): Remarks on reefal / peri-reefal facies development

    Science.gov (United States)

    Yücel Kaya, Mustafa; Altıner, Demir

    2015-04-01

    A detailed taxonomical study was carried out for the identification of encrusting micro-organisms including Bacinella-type structures, Calcistella jachenhausenensis, Crescentiella morronensis, Iberopora bodeuri, Koskinobullina socialis, Labes atramentosa, Lithocodium aggregatum, Perturbatacrusta leini, Pseudorothpletzella schmidi, Radiomura cautica, Sarsteinia babai, Terebella lapilloides and Thaumatoporella parvovesiculifera. Among these microencrusters, Perturbatacrusta leini, Iberopora bodeuri, Calcistella Jachenhausenensis, Pseudorothpletzella schmidi have been taxonomically revealed for the first time in Turkey. Within the biostratigraphic frame of the İnalti carbonates consisting of Mesoendothyra izjumiana zone (Kimmeridgian), Calcistella jachenhausenensis zone (Lower Tithonian - Upper Tithonian) and Protopeneroplis ultragranulata zone (Upper Tithonian - Berriasian), carbonate sedimentation occured in 5 depositional environments comprising slope, fore-reef, reef, back-reef and lagoonal environments. Majority of the reefal deposits of the İnalti carbonates can be classified as coral-microbial-microencruster boundstones and frequently occur associated with back-reef and fore-reef deposits within Kimmeridgian - Berriasian interval. A shallowing and a subsequent deepening in the Berriasian have been revealed by the examination of stacking patterns and vertical evolution of the microfacies. Based on the observed microfacies and general features of micro-encrusting organisms it has been concluded that İnalti Limestones share many similarities with the reefal carbonate deposits of Intra-Tethyan domain in terms of microfacies types and microencruster content. These similarities manifest the extension of the European Upper Jurassic - Lower Cretaceous reef belts to the northern Turkey.

  17. Microbial structures and microencrusters in the Upper Jurassic - Lower Cretaceous deposits from Buila-Vânturariţa massif (South Carpathians

    Directory of Open Access Journals (Sweden)

    Andreea Ut̡a

    2003-09-01

    Full Text Available The Upper Jurassic – Lower Cretaceous limestones from Buila-Vânturariţa massif partly consisting of reef build-ups, are characterised by an important component of microbial organisms. This paper describes and illustrates some of the most important structures interpreted as having a microbial nature: “Tubiphytes” and Bacinella-type structures, cyanobacterial structures, micritic crusts, and peloidal structures. Most of these structures are related to different shallow-water environments, from intertidal, high-energy environment, to protected low energy subtidal environment.

  18. An integrated workflow to assess the remaining potential of mature hydrocarbon basins: a case study from Northwest Germany (Upper Jurassic/Lower Cretaceous, Lower Saxony Basin)

    Science.gov (United States)

    Seyfang, Björn; Aigner, Thomas; Munsterman, Dirk K.; Irmen, Anton

    2017-04-01

    Mature hydrocarbon provinces require a high level of geological understanding in order to extend the lives of producing fields, to replace reserves through smaller targets and to reduce the risks of exploring for more and more subtle hydrocarbon traps. Despite a large number of existing wells in the area studied in this paper, the depositional environments and the stratigraphic architecture were still poorly known. In order to improve the geological understanding, we propose a workflow to assess the remaining reservoir potential of mature hydrocarbon areas, integrating cores, cuttings, well-logs, biostratigraphy and seismic data. This workflow was developed for and is exemplified with the northwest of the Lower Saxony Basin (LSB), a mature hydrocarbon province in northwest Germany, but can be applied in a similar fashion to other areas. Systematic integration of lithofacies analysis, chrono- and sequence stratigraphy, combined with electrofacies analysis and modern digital methods like neural network-based lithology determination and 3D facies modelling provides a high-resolution understanding of the spatial facies and reservoir architecture in the study area. Despite widely correlatable litho-units in the Upper Jurassic and Lower Cretaceous in the LSB, complex heterogeneous sedimentary systems can be found in the basin's marginal parts. Two new play types were determined in the study area, showing a remaining potential for stratigraphic hydrocarbon traps. The results of this exploration scale study also provide the basis for re-evaluations on a field development scale. On a basin scale, this study may encourage further data acquisition and re-evaluations to discover previously unknown reservoirs.

  19. An integrated workflow to assess the remaining potential of mature hydrocarbon basins: a case study from Northwest Germany (Upper Jurassic/Lower Cretaceous, Lower Saxony Basin)

    Science.gov (United States)

    Seyfang, Björn; Aigner, Thomas; Munsterman, Dirk K.; Irmen, Anton

    2016-06-01

    Mature hydrocarbon provinces require a high level of geological understanding in order to extend the lives of producing fields, to replace reserves through smaller targets and to reduce the risks of exploring for more and more subtle hydrocarbon traps. Despite a large number of existing wells in the area studied in this paper, the depositional environments and the stratigraphic architecture were still poorly known. In order to improve the geological understanding, we propose a workflow to assess the remaining reservoir potential of mature hydrocarbon areas, integrating cores, cuttings, well-logs, biostratigraphy and seismic data. This workflow was developed for and is exemplified with the northwest of the Lower Saxony Basin (LSB), a mature hydrocarbon province in northwest Germany, but can be applied in a similar fashion to other areas. Systematic integration of lithofacies analysis, chrono- and sequence stratigraphy, combined with electrofacies analysis and modern digital methods like neural network-based lithology determination and 3D facies modelling provides a high-resolution understanding of the spatial facies and reservoir architecture in the study area. Despite widely correlatable litho-units in the Upper Jurassic and Lower Cretaceous in the LSB, complex heterogeneous sedimentary systems can be found in the basin's marginal parts. Two new play types were determined in the study area, showing a remaining potential for stratigraphic hydrocarbon traps. The results of this exploration scale study also provide the basis for re-evaluations on a field development scale. On a basin scale, this study may encourage further data acquisition and re-evaluations to discover previously unknown reservoirs.

  20. Composite biostratigraphy and microfacies analysis of the Upper Jurassic - Lower Cretaceous carbonate platform to slope successions in Sivrihisar (Eskişehir) region (NW Turkey, Pontides): Remarks on the palaeogeographic evolution of the Western Sakarya Zo

    Science.gov (United States)

    Atasoy, Serdar G.; Altıner, Demir; Okay, Aral I.

    2017-04-01

    Two stratigraphical sections were measured along the Upper Jurassic - Lower Cretaceous carbonate successions exposed in a tectonic klippe of the Sakarya Zone (Pontides), north of Sivrihisar. According to the biozonation and microfacies types, two coeval but dissimiliar rock successions, separated by a thrust fault, have been detected. These successions belong to different depositional belts of the Edremit-Bursa-Bilecik Carbonate Platform (EBBCP), western Sakarya Zone. The lower succession displays a slope to basin facies and consists of the Kimmeridgian - Berriasian Yosunlukbayırı Formation and the overlying Valanginian Soǧukçam Limestone. Within these deposits the following biozones were defined: Globuligerina oxfordiana - Mohlerina basiliensis Zone (Kimmeridgian), Saccocoma Zone (Lower Tithonian), Protopeneroplis ultragranulata Zone (Upper Tithonian), Crassicollaria (massutiana subzone) Zone (uppermost Tithonian), Calpionella (alpina, Remaniella, elliptica subzones) Zone (Lower Berriasian), Calpionellopsis (simplex, oblonga subzones) Zone (Upper Berriasian) and Calpionellites (darderi subzone) Zone (Lower Valanginian). This succession is overthrusted from north to south by another distinct succession characterized by the shallow marine carbonate facies of the Kimmeridgian Günören Formation. Within this unit Labyrinthina mirabilis - Protopeneroplis striata (Kimmeridgian) Zone is recognized. A facies model is proposed for the Sivrihisar transect of the EBBCP for Kimmeridgian - Valanginian interval, based on the distribution of microfacies types. The toe-of-slope facies are characterized by peloidal-bioclastic packstone, mudstone-wackestone and calpionellid/ radiolarian wackestone-packstone comprising pelagic taxa (calpionellids, radiolaria, Globochaete sp., Pithonella sp., Saccocoma sp., calcareous dinocysts, aptychi, very rare planktonic foraminifera and nannoconids) and rare fossil groups transported from the carbonate platform (benthic foraminifera

  1. Chapter 2. Assessment of undiscovered conventional oil and gas resources--Upper Jurassic-Lower Cretaceous Cotton Valley group, Jurassic Smackover interior salt basins total petroleum system, in the East Texas basin and Louisiana-Mississippi salt basins provinces.

    Science.gov (United States)

    Dyman, T.S.; Condon, S.M.

    2006-01-01

    The Jurassic Smackover Interior Salt Basins Total Petroleum System is defined for this assessment to include (1) Upper Jurassic Smackover Formation carbonates and calcareous shales and (2) Upper Jurassic and Lower Cretaceous Cotton Valley Group organic-rich shales. The Jurassic Smackover Interior Salt Basins Total Petroleum System includes four conventional Cotton Valley assessment units: Cotton Valley Blanket Sandstone Gas (AU 50490201), Cotton Valley Massive Sandstone Gas (AU 50490202), Cotton Valley Updip Oil and Gas (AU 50490203), and Cotton Valley Hypothetical Updip Oil (AU 50490204). Together, these four assessment units are estimated to contain a mean undiscovered conventional resource of 29.81 million barrels of oil, 605.03 billion cubic feet of gas, and 19.00 million barrels of natural gas liquids. The Cotton Valley Group represents the first major influx of clastic sediment into the ancestral Gulf of Mexico. Major depocenters were located in south-central Mississippi, along the Louisiana-Mississippi border, and in northeast Texas. Reservoir properties and production characteristics were used to identify two Cotton Valley Group sandstone trends across northern Louisiana and east Texas: a high-permeability blanket-sandstone trend and a downdip, low-permeability massive-sandstone trend. Pressure gradients throughout most of both trends are normal, which is characteristic of conventional rather than continuous basin-center gas accumulations. Indications that accumulations in this trend are conventional rather than continuous include (1) gas-water contacts in at least seven fields across the blanket-sandstone trend, (2) relatively high reservoir permeabilities, and (3) high gas-production rates without fracture stimulation. Permeability is sufficiently low in the massive-sandstone trend that gas-water transition zones are vertically extensive and gas-water contacts are poorly defined. The interpreted presence of gas-water contacts within the Cotton Valley

  2. 冀西北尚义上侏罗统—下白垩统后城组恐龙足迹新发现及生物古地理意义%New discovery of dinosaur footprints in the Upper Jurassic-Lower Cretaceous Houcheng Formation at Shangyi,northwestern Hebei Province and its biogeographical implications

    Institute of Scientific and Technical Information of China (English)

    柳永清; 旷红伟; 彭楠; 许欢; 陈军; 徐加林; 刘海; 章朋

    2012-01-01

    简要报道了新近首次在冀西北张家口尚义地区发现的恐龙足迹.野外地质调查发现,恐龙足迹赋存于尚义晚中生代盆地侏罗系—白垩系后城组顶部.恐龙行迹呈近东西向展布,由数十个足迹构成.初步研究表明,造迹者分别属于兽脚类和蜥脚类恐龙,由西向东行进.足迹中包括兽脚类足迹70余个,组成数个行迹;蜥脚类足迹15个,构成1列行迹.蜥脚类足迹特征显示其可能属于游泳状的行迹.华北北部土城子组/后城组发育于燕辽生物群—热河生物群更替演化时期(晚侏罗世—早白垩世早期),以往在该时期沉积物中罕见脊椎动物骨骼化石.近年来华北北部土城子组/后城组中频繁发现的恐龙足迹表明,燕辽生物群—热河生物群更替演化时期发育着以恐龙为代表的脊椎动物群.该发现将有助于进一步了解土城子组/后城组沉积时期恐龙属种的多样性及其生物古地理环境.晚侏罗世—早白垩世早期沉积古地理和古生态环境及其与恐龙动物群发育的研究有助于揭示陆地生物群更替演化和环境的关系.%A number of dinosaur footprints have been discovered recently from the Upper Jurassic-Lower Cretaceous Houcheng Formation in Shangyi, Zhangjiakou, northwestern Hebei Province. The trackways and footprints display a east-west trend on the rock surface of the top of the Houcheng Formation. The preliminary research indicates that these trackways comprise theropod and probably swimming sauropod footprints. One trackway consisted of fifteen sauropod footprints and the other footprints cluster including more than seventy theropod footprints were both recognized. The Tuchengzi/Houcheng Formation was deposited in the transitional period from the Yanliao Biota to the Jehol Biota, which was previously considered as poor palaeogeography and palaeoecology and rare dinosaur bone fossils have been found. Frequent discoveries of dinosaur footprints

  3. Review of the Upper Jurassic-Lower Cretaceous stratigraphy in Western Cameros basin, Northern Spain

    DEFF Research Database (Denmark)

    Vidal, Maria del Pilar Clemente

    2010-01-01

    which consists of fresh water lacustrine carbonates and Golmayo representing a fluvial dominated coastal plain with marly lakes. The Oliván Group encompasses three formations of fluvial deposits: La Gallega, Castrillo de la Reina and Cuerda del Pozo. The Salas Group consists of two formations Cabezón de......: Señora de Brezales and Magaña. The Oncala Group is represented by two formations of fluvial deposits, Jaramillo de la Fuente and Río del Salcedal and a third formation, Rupelo of lacustrine /coastal carbonates and evaporites. The Peñacoba Formation is an independent formation made of biogenic lacustrine...... of subsidence and terrigenous supply. The onlap of the syn-rift mega-sequence on the basin margins, the extra-basinal fluvial systems and shallow carbonate lakes together with its condensed character and the preservation of pre-rift mega-sequence at the basin margins point towards a basin with low...

  4. Early and late lithification of aragonitic bivalve beds in the Purbeck Formation (upper jurassic-lower cretaceous) of Southern England

    Science.gov (United States)

    El-Shahat, Adam; West, Ian

    1983-05-01

    Beds of euryhaline bivalves alternating with shales constitute much of the middle Purbeck Formation. They originated on "tidal" flats at the western margin of an extensive brackish lagoon. When these shell beds are thin and enclosed in shale they are often still preserved as aragonite and are associated with "beef", fibrous calcite formed during compaction. In most cases, however, the shell debris has been converted by diagenesis into calcitic biosparrudite limestones. A compacted type has been lithified at a late stage, after deep burial. In this, pyrite is abundant and most of the shell aragonite has been replaced neomorphically by ferroan pseudopleochroic calcite. A contrasting uncompacted type of biosparrudite is characterised by bivalve fragments with micrite envelopes. Shells and former pores are occupied by non-ferroan sparry calcite cement, and there is little pyrite. These limestones frequently contain dinosaur footprints and originated in "supratidal" environments where they were cemented early, mainly in meteoric water. Once lithified they were unaffected by compaction. This uncompacted type indicates phases of mild uplift or halts in subsidence. These shell-bed lithologies, and also intermediate types described here, will probably be recognised in other lagoonal formations.

  5. Block faulted turbidites: an Upper Jurassic-Lower Cretaceous subtle play-potential in the Central Graben

    Energy Technology Data Exchange (ETDEWEB)

    Gregersen, U.; Rasmussen, E.S.

    1998-10-01

    The Gertrud Graben, in the Danish Central Graben, was formed during Early Volgain by extensional block rotation, bounded by a series of NW-SE trending normal faults. The post-rift topography, formed after the Early Volgian rift pulse, controlled the depocenteres of Volgian-Ryazanian turbidites. The turbidites are interbedded in the Farsund Formation. Seismic correlation to basin marginal turbidite sand in the Jeppe-1 and Gwen-2 wells suggest, that high amplitude horizons and high acoustic impedance values in the depocenter of the turbidites probably reflect accumulation of sand-rich turbidites. The high amplitude and impedance values, calculated from seismic inversion, are locally concentrated in minor closures. A short flat impedance horizon within the turbidite depocenter and below a closure possible indicates hydrocarbon accumulation, adjacent to a well-known Jurassic source-rock (the `Hot Unit`) in the Central Graben area. The turbidites seem to have been transported mainly from the north, possibly from the Mandal High or Piggvar Terrace areas. Subsequent Late Ryazanian block faulting and local compressional tectonics caused erosional truncation of upper parts of the turbidites on footwall blocks, but preserved parts of the basin axial turbidites from erosion in the hanging wall positions. (au) 23 fig., 22 refs.

  6. A new troodontid theropod dinosaur from the lower Cretaceous of Utah.

    Directory of Open Access Journals (Sweden)

    Phil Senter

    Full Text Available BACKGROUND: The theropod dinosaur family Troodontidae is known from the Upper Jurassic, Lower Cretaceous, and Upper Cretaceous of Asia and from the Upper Jurassic and Upper Cretaceous of North America. Before now no undisputed troodontids from North America have been reported from the Early Cretaceous. METHODOLOGY/PRINCIPAL FINDINGS: Herein we describe a theropod maxilla from the Lower Cretaceous Cedar Mountain Formation of Utah and perform a phylogenetic analysis to determine its phylogenetic position. The specimen is distinctive enough to assign to a new genus and species, Geminiraptor suarezarum. Phylogenetic analysis places G. suarezarum within Troodontidae in an unresolved polytomy with Mei, Byronosaurus, Sinornithoides, Sinusonasus, and Troodon+(Saurornithoides+Zanabazar. Geminiraptor suarezarum uniquely exhibits extreme pneumatic inflation of the maxilla internal to the antorbital fossa such that the anterior maxilla has a triangular cross-section. Unlike troodontids more closely related to Troodon, G. suarezarum exhibits bony septa between the dental alveoli and a promaxillary foramen that is visible in lateral view. CONCLUSIONS/SIGNIFICANCE: This is the first report of a North American troodontid from the Lower Cretaceous. It therefore contributes to a fuller understanding of troodontid biogeography through time. It also adds to the known dinosaurian fauna of the Cedar Mountain Formation.

  7. Lower Cretaceous aquifers

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the Lower Cretaceous aquifers in the states of Montana, Wyoming, South Dakota, Kansas, Nebraska, Iowa, and Minnesota..

  8. New data on the Upper Jurassic–Lower Cretaceous limestones from Bihor Mountains: case study of Gârda Seacă-Hodobana region, Romania

    Directory of Open Access Journals (Sweden)

    Valentin Turi

    2011-04-01

    Full Text Available This study refers to some problems regarding the lithological succession, facies and carbonate microfacies, and to biostratigraphic markers of the Upper Jurassic-Lower Cretaceous carbonates from Bihor Mountains. Three types of facies (external marginal facies, subtidal and peritidal facies were separated for the Upper Jurassic, and two (coastal-peritidal and open shelf facies for the Lower Cretaceous carbonates. The micropaleontological assemblages identified contain species that allow the separation of the two formations of different age: Labyrinthina mirabilis, Kurnubia palastiniensis, Neokilianina rahonensis, Clypeina sulcata (Kimmeridgian-Lower Tithonian and Parakoskinolina? jourdanensis, Montseciella arabica, Palorbitolina lenticularis, Falsolikanella danilovae (Barremian – Lower Aptian. Field observations and data obtained from studies on thin sections and polished slabs indicate that a large part of the Triassic (Ladinian-Lower Carnian and Lower Cretaceous limestones from Gârda Seacă-Hodobana region, delimited on the geological maps 1:50 000 scale, sheets 56b (Poiana Horea and 56d (Avram Iancu (Bleahu et al., 1980; Dimitrescu et al., 1977, belong in fact to the Upper Jurassic carbonate succession.

  9. 滦平盆地西瓜园组(上侏罗统-下白垩统)暗色泥岩中恐龙脚印化石及其地质意义%Dinosaur footprint fossils in dark mudstones of the Xiguayuan Formation(Upper Jurassic-Lower Cretaceous) in Luanping Basin and their geological significance

    Institute of Scientific and Technical Information of China (English)

    纪友亮; 孙玉花; 贾爱林

    2008-01-01

    通过对滦平盆地西瓜园组(上侏罗统-下白垩统)暗色泥岩和油页岩的岩相特征及其中所发现的各种恐龙脚印化石的研究,分析了恐龙脚印化石形成的环境.认为在前扇三角洲或深湖-半深湖环境的暗色泥岩中出现恐龙脚印化石,说明湖平面变化频繁,在枯水期,湖平面下降,前扇三角洲或深湖-半深湖相暗色泥岩暴露出水面,一些恐龙经过此处到低洼处喝水,留下脚印.由此推断中国东部古近纪陆相断陷湖盆中的暗色泥岩所夹的砂砾岩和盐岩并不全是深水重力流成因,暗色泥岩所夹的盐岩也不一定是深水成因;并建立了暗色泥岩中所夹的砂砾岩和盐岩的成因沉积模式.

  10. A LONG-LIMBED LIZARD FROM THE UPPER JURASSIC/LOWER CRETACEOUS OF DAOHUGOU, NINGCHENG, NEI MONGOL, CHINA%记内蒙古宁城道虎沟上侏罗统/下白垩统一具有长肢的蜥蜴

    Institute of Scientific and Technical Information of China (English)

    苏珊·E·埃文斯; 王原

    2009-01-01

    道虎沟化石层分布于内蒙古宁城县道虎沟以及毗邻的河北北部和辽宁西部等地,已报道4种有尾类、1个无尾类蝌蚪、1个幼年蜥蜴、3种带原始羽毛的兽脚类恐龙、2种翼龙、3种哺乳动物以及双壳类、叶肢介、昆虫和植物等化石(有学者称之为"前热河生物群").该层位比热河群义县组低,但地层划分存在争议:中侏罗统九龙山组、上侏罗统道虎沟组和下白垩统热河群均有报道.本文研究的道虎沟蜥蜴是该地点发现的第2个蜥蜴化石,其身体细长,为一幼年个体;前颌骨、顶骨和额骨均成对;上颌骨的面突高;后额骨和后眶骨不愈合;后额骨较大,但可能未进入上颢孔;后眶骨具宽的后突;牙齿小而尖锐,结构简单且可能为侧生;头骨的眶前区较长;具27个荐前椎;虽然未成年但个体较大;未见真皮骨板;手掌和四肢较长.上述特征组合区别于所有现生蜥蜴类,四肢比例也与其他蜥蜴有较大区别.欧美中侏罗世-早白垩世的小盗蜥(Parviraptor)和蒙古早白垩世的一个幼年个体(可能属于壁虎犁类)与道虎沟标本比较相似.头骨特征和较大的荐前椎数目显示道虎沟标本可能属于硬舌蜥类(scleroglos-san).但因标本为幼年个体,本文暂将它归人有鳞类属种未定(squamata gen.et sp.indet.).测量数据显示,道虎沟标本的手掌和前肢相对较长;该特征常见于适应攀爬的蜥蜴种类,似可显示攀爬习性.但肢体比例可能会随身体增长而发生变化,所以此生活习性并非定论.%Lizards are now relatively well known from the Jehol Group of northeastern China, seven taxa having been named from the group or equivalent horizons. Here we describe a lizard specimen from a fossil horizon at Daohugou of Ningcheng, Nei Mongol, which predates the Yixian Formation of the Jehol Group. This is the second lizard from this locality. Comparisons with ontogenetic series of modern lizards show that the new Daohugou lizard is a juvenile. The specimen is notable in having a slender body and relatively long limbs and extremities. Even allowing for immaturity, its proportions differ markedly from those of previously described Jehol Biota lizards. Comparison with modern lizards suggests the new Daohugou lizard may have been at least partly scansorial. Its phylogenetic placement is problematic given its immaturity and preservation, but skull characters and vertebral number preclude attribution to Iguania and it may be a scleroglossan.

  11. Cretaceous Crocodyliforms from the Sahara

    Directory of Open Access Journals (Sweden)

    Paul Sereno

    2009-11-01

    Full Text Available Diverse crocodyliforms have been discovered in recent years in Cretaceous rocks on southern landmasses formerly composing Gondwana.  We report here on six species from the Sahara with an array of trophic adaptations that significantly deepen our current understanding of African crocodyliform diversity during the Cretaceous period.  We describe two of these species (Anatosuchus minor, Araripesuchus wegeneri from nearly complete skulls and partial articulated skeletons from the Lower Cretaceous Elrhaz Formation (Aptian-Albian of Niger. The remaining four species (Araripesuchus rattoides sp. n., Kaprosuchus saharicus gen. n. sp. n., Laganosuchus thaumastos gen. n. sp. n., Laganosuchus maghrebensis gen. n. sp. n. come from contemporaneous Upper Cretaceous formations (Cenomanian in Niger and Morocco.

  12. The Sahara from the Middle Jurassic to the Middle Cretaceous: Data on environments and climates based on outcrops in the Algerian Sahara

    Science.gov (United States)

    Busson, G.; Cornée, A.

    The period investigated, succeeded the Upper Triassic and Liassic-Lower Dogger arid sedimentation which was characterized by the development of large evaporitic deposits. The north-eastern part of the Algerian Sahara is specially interesting as it constitutes part of the few dated continental Jurassic outcrops in North Africa (except in the Maghreb). Continental Lower-Middle Cretaceous is also well developed in the same region. The grading of these continental series into marine series particularly in the north-eastern part of the Maghreb has been investigated from an adequate number of well spaced wells. The Middle-Upper Jurassic (Lower Taouratine) consists of an argillaceous-sandy-ferruginous series, often grey coloured and rich in filicean wood and vertebrate remains in some levels. The ferralitic alteration products denote a more humid climate than that which prevailed during the Liassic-Lower-Dogger times. These products alternate with sandy conglomeratic events confirming the influences of alternating important run-off and aeolian winnowing. The large continental Lower and Middle Cretaceous detrital nappes are discussed. They constitute the uppermost part of the series, south of the Tinrhert Hamada (Alba-Vraconian series with the more detrital lateral equivalent), west of Tademait (Gara Samani). Data on lithology and paleobiology (fishes, Dinosaurs, other vertebrates, pelecypods, gastropods, wood debris, palynoflora) permit the reconstruction of the palaeo-environment and the conditions of deposition. This is similar to the sub-desertic terrestrial sedimentation by violent and ephemeral hydrodynamism model based on the modern Darfour example. The desertic conditions which prevailed in these Saharan areas during the Cretaceous are reflected as well as their possible consequences on the sedimentation of nearby oceanic areas (Atlantic and Tethys). This detrital sedimentation is finally reviewed in the context of its tectonic origins and an attempt is made to

  13. The Cretaceous System in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper provides an outline of Cretaceous stratigraphy and paleogeography in China,which is based on rich data obtained from recent researches. Cretaceous deposits are widespread in China. Most strata are of nonmarine origin and marine sediments occur only in Tibet, western Tarim Basin of Xinjiang, Taiwan and limited localities of eastern Heilongjiang. All deposits are rich in fossils and well-constrained biostratigraphically. The stratigraphic successions of different regions are illustrated, and general stratigraphic division and correlation have been introduced. The marine deposits are described in the Tibetan Tethys, Kashi-Hotan Region of Xinjiang, eastern Heilongjiang,western Yunnan and Taiwan; the nonmarine deposits are outlined from northeast China, southeast China, southern interior China, southwest China, the Shaanxi-Gansu-Ningxia region, and northwestern China intermontane basins. The sedimentary facies and paleogeography are diversified.In Tibet the basin evolution is largely related to the subduction and collision of the Indian Plate against the Eurasian Continent, and shows a tectonic evolution in the Cretaceous. Foraminifera are a dominant biota in the Tibet Tethys. Nonmarine sediments include variegated and red beds, coal- or salt-bearing horizons, and volcanic rocks. These deposits contain diverse and abundant continental faunas and floras, as well as important coal and oil resources. The Cretaceous stratigraphy and paleogeography in China have presented a foundation for geological studies.

  14. Hints of the early Jehol Biota: important dinosaur footprint assemblages from the Jurassic-Cretaceous boundary Tuchengzi Formation in Beijing, China.

    Science.gov (United States)

    Xing, Lida; Zhang, Jianping; Lockley, Martin G; McCrea, Richard T; Klein, Hendrik; Alcalá, Luis; Buckley, Lisa G; Burns, Michael E; Kümmell, Susanna B; He, Qing

    2015-01-01

    New reports of dinosaur tracksites in the Tuchengzi Formation in the newly established Yanqing Global Geopark, Beijing, China, support previous inferences that the track assemblages from this formation are saurischian-dominated. More specifically, the assemblages appear theropod-dominated, with the majority of well-preserved tracks conforming to the Grallator type (sensus lato), thus representing relatively small trackmakers. Such ichnofaunas supplement the skeletal record from this unit that lacks theropods thus far, proving a larger diversity of dinosaur faunas in that region. Sauropods are represented by medium to large sized and narrow and wide-gauge groups, respectively. The latter correspond with earlier discoveries of titanosauriform skeletons in the same unit. Previous records of ornithischian tracks cannot be positively confirmed. Purported occurrences are re-evaluated here, the trackways and imprints, except of a single possible specimen, re-assigned to theropods. Palecologically the Tuchengzi ichnofauna is characteristic of semi-arid fluvio-lacustrine inland basins with Upper Jurassic-Lower Cretaceous deposits in northern China that all show assemblages with abundant theropod and sauropod tracks and minor components of ornithopod, pterosaur and bird tracks.

  15. Hints of the early Jehol Biota: important dinosaur footprint assemblages from the Jurassic-Cretaceous boundary Tuchengzi Formation in Beijing, China.

    Directory of Open Access Journals (Sweden)

    Lida Xing

    Full Text Available New reports of dinosaur tracksites in the Tuchengzi Formation in the newly established Yanqing Global Geopark, Beijing, China, support previous inferences that the track assemblages from this formation are saurischian-dominated. More specifically, the assemblages appear theropod-dominated, with the majority of well-preserved tracks conforming to the Grallator type (sensus lato, thus representing relatively small trackmakers. Such ichnofaunas supplement the skeletal record from this unit that lacks theropods thus far, proving a larger diversity of dinosaur faunas in that region. Sauropods are represented by medium to large sized and narrow and wide-gauge groups, respectively. The latter correspond with earlier discoveries of titanosauriform skeletons in the same unit. Previous records of ornithischian tracks cannot be positively confirmed. Purported occurrences are re-evaluated here, the trackways and imprints, except of a single possible specimen, re-assigned to theropods. Palecologically the Tuchengzi ichnofauna is characteristic of semi-arid fluvio-lacustrine inland basins with Upper Jurassic-Lower Cretaceous deposits in northern China that all show assemblages with abundant theropod and sauropod tracks and minor components of ornithopod, pterosaur and bird tracks.

  16. Volcanostratigraphy, petrography and petrochemistry of Late Cretaceous volcanic rocks from the Görele area (Giresun, NE Turkey)

    Science.gov (United States)

    Oguz, Simge; Aydin, Faruk; Baser, Rasim

    2015-04-01

    In this study, we have reported for lithological, petrographical and geochemical features of late Cretaceous volcanic rocks from the Çanakçı and the Karabörk areas in the south-eastern part of Görele (Giresun, NE Turkey) in order to investigate their origin and magmatic evolution. Based on the previous ages and recent volcano-stratigraphic studies, the late Cretaceous time in the study area is characterized by an intensive volcanic activity that occurred in two different periods. The first period of the late Cretaceous volcanism (Cenomanian-Santonian; 100-85 My), conformably overlain by Upper Jurassic-Lower Cretaceous massive carbonates (Berdiga Formation), is represented by bimodal units consisting of mainly mafic rock series (basaltic-andesitic lavas and hyaloclastites, dikes and sills) in the lower part (Çatak Formation), and felsic rock series (dacitic lavas and hyaloclastites, crystal- and pyrite-bearing tuffs) in the upper part (Kızılkaya Formation). The second period of the late Cretaceous volcanism (Santonian-Late Campanian; 85-75 Ma) is also represented by bimodal character and again begins with mafic rock suites (basaltic-basaltic andesitic lavas and hyaloclastites) in the lower part (Çağlayan Formation), and grades upward into felsic rock suites (biotite-bearing rhyolitic lavas, ignimbrites and hyaloclastites) through the upper part (Tirebolu Formation). These bimodal units are intercalated with volcanic conglomerates-sandstones, claystones, marl and red pelagic limestones throughout the volcanic sequence, and the felsic rock series have a special important due to hosting of volcanogenic massive sulfide deposits in the region. All volcano-sedimentary units are covered by Tonya Formation (Late Campanian-Paleocene) containing calciturbidites, biomicrites and clayey limestones. The mafic rocks in the two volcanic periods generally include basalt, basaltic andesite and minor andesite, whereas felsic volcanics of the first period mainly consists of

  17. 记河北赤城上侏罗统-下白垩统土城子组窄足龙-巨齿龙(兽脚类恐龙)足迹组合及其古生态学意义%THERANGOSPODUS AND MEGALOSA URIPUS TRACK ASSEMBLAGE FROM THE UPPER JURASSIC-LOWER CRETACEOUS TUCHENGZI FORMATION OF CHICHENG COUNTY, HEBEI PROVINCE, CHINA AND THEIR PALEOECOLOGICAL IMPLJCATIONS

    Institute of Scientific and Technical Information of China (English)

    邢立达; Jerald D. HARRIS; Gerard D; GIERLI(N)SKI

    2011-01-01

    记述了河北省赤城县落凤沟化石点163个窄足龙足迹(Therangrospodus isp.).当该地区洪水泛滥时,同样的造迹者留下了5个游泳迹.一个异常大的足迹和一道疑似尾迹被归入巨齿龙足迹(Megalosauripus isp.).土城子组7个主要足迹化石点表明,兽脚类的似鹬龙足迹型(Grallator morphotype)占据主导地位,这些足迹型的大小在各个足迹化石点都有着特定的范围.如果这些大小不同的足迹属于同一种造迹者,则暗示着同年龄的成员在特定年龄时会共同栖息在一起,在动物行为学上类似现生的一些蜥蜴和短吻鳄;如果这些足迹由不同的造迹者组成,则暗示着不同大小的种(主要表现在小型动物)可能拥有自己的领地,并特意避免与其他动物(特别是大型动物)相接触,在动物行为学上类似现生的肉食性哺乳动物.%One hundred sixty-three footprints that pertain to Therangospocus have been found in the Tuchengzi Formation at the Luofenggou track site in Chicheng County,Hebei Province,China.Five swim tracks were subsequently made by the same track makers after water submerged the region.In addition to the Therangospodus tracks,one exceptionally large theropod track and one possible trail trace are referred to Megalosauripus isp.Theropod tracks of the grallatorid morphotype predominate at this site and at six other known Tuchengzi Formation track sites ; grallatorid tracks at each of these sites are dominated by individual specimens in particular size ranges.If the tracks were made by the same species of track maker,the variation in dominant track size among sites suggests that cohabiting groups were composed mainly of members of a single age class,ethologically similar to some extant lizards and Alligator.If the tracks were instead made by different species,their size distribution (favoring smaller species) suggests that species of different sizes may have preferred discrete territories or specifically avoided close contact with other (particularly larger) species,ethologically similar to modern carnivorous mammals.

  18. Cretaceous Onlap, Gulf of Mexico Basin [cretonlapg

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The maximum extent of Cretaceous onlap is generalized from Plate 3, Structure at the base and subcrop below Mesozoic marine section, Gulf of Mexico Basin (compiled...

  19. Early Cretaceous angiosperms and beetle evolution

    OpenAIRE

    Bo eWang; Haichun eZhang; Edmund eJarzembowski

    2013-01-01

    The Coleoptera (beetles) constitute almost one–fourth of all known life-forms on earth. They are also among the most important pollinators of flowering plants, especially basal angiosperms. Beetle fossils are abundant, almost spanning the entire Early Cretaceous, and thus provide important clues to explore the co-evolutionary processes between beetles and angiosperms. We review the fossil record of some Early Cretaceous polyphagan beetles including Tenebrionoidea, Scarabaeoidea, Curculionoide...

  20. Late Cretaceous- Cenozoic history of deciduousness and the terminal Cretaceous event.

    Science.gov (United States)

    Wolfe, J.A.

    1987-01-01

    Deciduousness in mesic, broad-leaved plants occurred in disturbed, middle-latitude environments during the Late Cretaceous. Only in polar environments in the Late Cretaceous was the deciduous element dominant, although of low diversity. The terminal Cretaceous event resulted in wide-spread selection for plants of deciduous habit and diversification of deciduous taxa, thus leaving a lasting imprint on Northern Hemisphere vegetation. Various environmental factors have played important roles in subsequent diversification of mesic, broad-leaved deciduous taxa and in origination and decline of broad-leaved deciduous forests. Low diversity and rarity of mesic deciduous plants in the post-Cretaceous of the Southern Hemisphere indicate that the inferred 'impact winter' of the terminal Cretaceous event had little effect on Southern Hemisphere vegetation and climate. -Author

  1. Lower Cretaceous Dinosaur Tracks from Puebla, Mexico

    Directory of Open Access Journals (Sweden)

    Rubén A. Rodríguez-de la Rosa

    2012-01-01

    Full Text Available Dinosaur tracks have been identified near San Martín Atexcal, southern Puebla, Mexico, within the sedimentary sequence of the San Juan Raya Formation of Lower Cretaceous (Albian age. The tracksite, located in the bed of the Magdalena River, reveals six different ichnofossiliferous levels identified within a 9 m thick sedimentary sequence. The inferred environment is that of a tidal (marginal marine mudflat (Level I. Level I preserves three theropods trackways (?Allosauroidea, additionally, isolated tracks belonging to iguanodontids (Ornithopoda. Level II preserves faint iguanodontid tracks. Levels III to V preserve sauropod tracks. Younger level VI preserves, although morphologically different, a track belonging to Ornithopoda. The dinosaur tracks from San Martín Atexcal support the existence of continental facies within the San Juan Raya Formation; they represent the second record of dinosaur tracks from the Lower Cretaceous of Mexico and are part of an important but little documented record of Lower Cretaceous dinosaurs in Mexico.

  2. Late Cretaceous vicariance in Gondwanan amphibians.

    Directory of Open Access Journals (Sweden)

    Ines Van Bocxlaer

    Full Text Available Overseas dispersals are often invoked when Southern Hemisphere terrestrial and freshwater organism phylogenies do not fit the sequence or timing of Gondwana fragmentation. We used dispersal-vicariance analyses and molecular timetrees to show that two species-rich frog groups, Microhylidae and Natatanura, display congruent patterns of spatial and temporal diversification among Gondwanan plates in the Late Cretaceous, long after the presumed major tectonic break-up events. Because amphibians are notoriously salt-intolerant, these analogies are best explained by simultaneous vicariance, rather than by oceanic dispersal. Hence our results imply Late Cretaceous connections between most adjacent Gondwanan landmasses, an essential concept for biogeographic and palaeomap reconstructions.

  3. Astronomical calibration of the Maastrichtian (Late Cretaceous)

    DEFF Research Database (Denmark)

    Husson, Dorothée; Galbrun, Bruno; Laskar, Jacques;

    2011-01-01

    Recent improvements to astronomical modeling of the Solar System have contributed to important refinements of the Cenozoic time scale through astronomical calibration of sedimentary series. We extend this astronomical calibration into the Cretaceous, on the base of the 405 ka orbital eccentricity......, with the presence of cycles corresponding to forcing by precession, obliquity and orbital eccentricity variations. Identification of these cycles leads to the definition of a detailed cyclostratigraphic frame covering nearly 8 Ma, from the upper Campanian to the Cretaceous/Paleogene (K/Pg) boundary. Durations...

  4. Cretaceous desert cycles, wind direction and hydrologic cycle variations in Ordos Basin:Evidence for Cretaceous climatic unequability

    Institute of Scientific and Technical Information of China (English)

    JIANG Xinsheng; PAN Zhongxi; XIE Yuan; LI Minghui

    2004-01-01

    Climatic state under greenhouse effect is a currently hot point. Whether greenhouse climate in geological history, especially in Cretaceous, was equable or not has aroused extensive discussion. By analysis on depositional cyclcity, wind direction change and hydrologic cycle variation of Cretaceous desert in the Ordos Basin of China, the unequability of Cretaceous climate is dealt. It is shown that Cretaceous climate was extremely cyclic, not only having long and mid term but also having strong seasonal even instantaneous changes. Therefore, it is suggested that Cretaceous climate was not equable.

  5. Cretaceous desert cycles, wind direction and hydrologic cycle variations in Ordos Basin: Evidence for Cretaceous climatic unequability

    Institute of Scientific and Technical Information of China (English)

    JIANG; Xinsheng; PAN; Zhongxi; XIE; Yuan; LI; Minghui

    2004-01-01

    Climatic state under greenhouse effect is a currently hot point. Whether greenhouse climate in geological history, especially in Cretaceous, was equable or not has aroused extensive discussion. By analysis on depositional cyclcity, wind direction change and hydrologic cycle variation of Cretaceous desert in the Ordos Basin of China, the unequability of Cretaceous climate is dealt. It is shown that Cretaceous climate was extremely cyclic, not only having long and mid term but also having strong seasonal even instantaneous changes. Therefore, it is suggested that Cretaceous climate was not equable.

  6. Malformations of calpionellid loricas recorded in Upper Jurassic and Lower Cretaceous pelagic carbonates of the Western Carpathians, Western Balcan, Mexico and Cuba - a tool for paleoenvironmental interpretation

    Science.gov (United States)

    Reháková, Daniela; Michalík, Jozef; Lakova, Iskra; Petrova, Silviya; López-Martínez, Rafael

    2017-04-01

    Characteristic morphology and assemblage composition of of ancient planktonic ciliate protozoan loricas made of them a favourable tool for interregional correlation. They are playing a key role in the biostratigraphy of Upper Jurassic/Lower Cretaceous sequences not only in areas lacking in ammonites. Detailed comparative analysis of calpionellid associations along all the Tethys shows variations in relative species abundance, variability, diversity changes and also in variability of their lorica structure. As oligotrophic organisms, they were sensitive to environmental perturbations such a change of the water temperature, chemistry, salinity and the nutrient supply. Mass occurrence of these microfossils was associated with shallow basins and with intrashelf elevations. These enviroments were characterized by a permanent current regime positively influencing the nutrient input. It is worth to mention, that the abundance and size of calpionellid loricas decrease towards the open sea - they are less frequent in deep basins, being very rare or seldom in reefal and lagoonal settings or in proximal settings with permanent river-influenced elevated nutrient level and with changes in surface water chemistry. Two diversity maxima were recorded within the Intermedia and the Oblonga subzones and two crisis were observed at the end of the Colomi Subzone and at the beginning of the Murgeanui Subzone. During the last mentioned events, deformations (aberrant morphology) were documented in Crassicollaria, Tintinnopsella and Praecalpionellites loricas (Reháková, 2000; Lakova and Petrova, 2013; López-Martínez et al., 2015). Teratological (malformed) tests may coincide either with metal poisoning or with salinity changes. Global climate changes could have been evoked by active volcanoes noted at this time (Casellato and Erba, 2015). Oxygen isotope data signalized late Tithonian cooling followed by a warming at the beginning of the Berriasian (Weissert and Erba, 2004). Huge

  7. Lower Cretaceous Dinosaur Tracks from Puebla, Mexico

    OpenAIRE

    2012-01-01

    Dinosaur tracks have been identified near San Martín Atexcal, southern Puebla, Mexico, within the sedimentary sequence of the San Juan Raya Formation of Lower Cretaceous (Albian) age. The tracksite, located in the bed of the Magdalena River, reveals six different ichnofossiliferous levels identified within a 9 m thick sedimentary sequence. The inferred environment is that of a tidal (marginal marine) mudflat (Level I). Level I preserves three theropods trackways (?Allosauroidea), additionally...

  8. Early Cretaceous Tectonism and Diatoms in Korea

    Institute of Scientific and Technical Information of China (English)

    Ki-Hong CHANG; Sun-Ok PARK

    2008-01-01

    The Early Cretaceous Sindong Group, a non-marine molasse, unconformably overlies the folded earliest Cretaceous Myogok Formation. The tectonism that folded the Jaseong Synthem including the Myogok and other formations is here called the Nakdong-Jaeryeonggang (N-J) tectonism. The Oknyeobong and Dabokni Formations are discussed to show that they belong to the Jaseong Synthem. The Dabokni Formation yielded fossil diatoms whose age has been referred as the "earliest Cretaceous" based on the geologically constrained age of the fossil-bearing deposit. The age of the N-J tectonism appears Barremian as it is between the Hauterivian Myogok Formation and the Aptian Sindong Group with the TPN (Trigonioides-Plicatounio-Nippononaia) fauna. The N-J tectonism, an orogeny, quite deformed pre-Aptian strata in Korea, but can hardly find its reported equivalent in NE China. A revised correlation table shows that the Jaseong- Sindong sequence corresponds to the Jehol Group of China. The Sindong-Hayang transition was characterized by basin migration and dextral rotation probably caused by the Tan-Lu fault system in a broad sense.

  9. Cretaceous gastropods: contrasts between tethys and the temperate provinces.

    Science.gov (United States)

    Sohl, N.F.

    1987-01-01

    During the Cretaceous Period, gastropod faunas show considerable differences in their evolution between the Tethyan Realm (tropical) and the Temperate Realms to the north and south. Like Holocene faunas, prosobranch, gastropods constitute the dominant part of Cretaceous marine snail faunas. Entomotaeneata and opisthobranchs usually form all of the remainder. In Tethyan faunas the Archaeogastropoda form a consistent high proportion of total taxa but less than the Mesogastropoda throughout the period. In contrast, the Temperate faunas beginning in Albian times show a decline in percentages of archaeogastropod taxa and a significant increase in the Neogastropoda, until they constitute over 50 percent of the taxa in some faunas. The neogastropods never attain high diversity in the Cretaceous of the Tethyan Realm and are judged to be of Temperate Realm origin. Cretaceous Tethyan gastropod faunas are closely allied to those of the 'corallien facies' of the Jurassic and begin the period evolutionarily mature and well diversified. Three categories of Tethyan gastropods are analyzed. The first group consists of those of Jurassic ancestry. The second group orginates mainly during the Barremian and Aptian, reaches a climax in diversification during middle Cretaceous time, and usually declines during the latest Cretaceous. The third group originates late in the Cretaceous and consists of taxa that manage to either survive the Cretaceous-Tertiary crisis or give rise to forms of prominence among Tertiary warm water faunas. Temperate Realm gastropod faunas are less diverse than those of Tethys during the Early Cretaceous. They show a steady increase in diversity, primarily among the Mesogastropoda and Neogastropoda. This trend culminates in latest Cretaceous times when the gastropod assemblages of the clastic provinces of the inner shelf contain an abundance of taxa outstripping that of any other part of the Cretaceous of either realm. Extinction at the Cretaceous

  10. From Back-arc Drifting to Arc Accretion: the Late Jurassic-Early Cretaceous Evolution of the Guerrero Terrane Recorded by a Major Provenance Change in Sandstones from the Sierra de los Cuarzos, Central Mexico

    Science.gov (United States)

    Palacios Garcia, N. B.; Martini, M.

    2014-12-01

    The Guerrero terrane composed of Middle Jurassic-Early Cretaceous arc assemblages, were drifted from the North American continental mainland during lower Early Cretaceous spreading in the Arperos back arc basin, and subsequently accreted back to the continental margin in the late Aptian. Although the accretion of the Guerrero terrane represents one of the major tectonic processes that shaped the southern North American Pacific margin, the stratigraphic record related to such a regional event was not yet recognized in central Mexico. Due to the Sierra de los Cuarzos is located just 50 km east of the Guerrero terrane suture belt, its stratigraphic record should be highly sensitive to first order tectonic changes and would record a syn-tectonic deposits related to this major event. In that study area, were identified two main Upper Jurassic-Lower Cretaceous clastic units. The Sierra de los Cuarzos formation represents the lowermost exposed stratigraphic record. Sedimentary structures, sandstones composition, and U-Pb detrital zircon ages document that the Sierra de los Cuarzos formation reflects a vigorous mass wasting along the margin of the North American continental mainland, representing the eastern side of the Arperos back arc basin. Sandstones of the Sierra de los Cuarzos formation are free from detrital contributions related to the Guerrero terrane juvenile sources, indicating that the Arperos Basin acted like an efficient sedimentological barrier that inhibited the influence of the arc massifs on the continental mainland deposits. The Sierra de los Cuarzos formation is overlain by submarine slope deposits of the Pelones formation, which mark a sudden change in the depositional conditions. Provenance analysis documents that sandstones from the Pelones formation were fed by the mafic to intermediate arc assemblages of the Guerrero terrane, as well as by quartz-rich sources of the continental mainland, suggesting that, by the time of deposition of the Pelones

  11. Mesozoic units in SE Rhodope (Bulgaria): new structural and petrologic data and geodynamic implications for the Early Jurassic to Mid-Cretaceous evolution of the Vardar ocean basin

    Science.gov (United States)

    Bonev, N.; Stampfli, G.

    2003-04-01

    In the southeastern Rhodope, both in southern Bulgaria and northern Greece, Mesozoic low-grade to non-metamorphic units, together with similar units in the eastern Vardar zone, were designated as the Circum-Rhodope Belt (CRB) that fringes the Rhodope high-grade metamorphic complex. In the Bulgarian southeastern Rhodope, Mesozoic units show a complicated tectono-stratigraphy underlaid by amphibolite-facies basement units. The basement sequence includes a lower orthogneiss unit with eclogite and meta-ophiolite lenses overlain by an upper marble-schist unit, presumably along a SSW-directed detachment fault as indicated by shear sense indicators. The Mesozoic sequence starts with greenschist units at the base, overlaying the basement along the tectonic contact. Mineral assemblages such as actinolite-chlorite-white mica ± garnet in schists and phyllites indicate medium greenschist facies metamorphism. Kinematic indicators in the same unit demonstrate a top-to-the NNW and NNE shear deformation coeval with metamorphism, subparallel to NW-SE to NE-SW trending mineral elongation lineation and axis of NW vergent small-scale folds. The greenschist unit is overlain by tectonic or depositional contact of melange-like unit that consists of diabases with Lower Jurassic radiolarian chert interlayers, Upper Permian siliciclastics and Middle-Upper Triassic limestones found as blocks in olistostromic member, embedded in Jurassic-Lower Cretaceous turbiditic matrix. The uppermost sedimentary-volcanogenic unit is represented by andesito-basalt lavas and gabbro-diorites, interbedded with terrigeneous-marl and tufaceous sediments that yield Upper Cretaceous (Campanian) fossils, related to the Late Cretaceous back-arc magmatic activity to the north in Sredna Gora zone. Petrologic and geochemical data indicates sub-alkaline and tholeiitic character of the greenschists and ophiolitic basaltic lavas, and the latter are classified as low-K and very low-Ti basalts with some boninitic affinity

  12. Paleogeography of the mid-Cretaceous period

    Energy Technology Data Exchange (ETDEWEB)

    Zharkov, M.A.; Murdmaa, I.O.; Filatova, N.I. [Russian Academy of Sciences, Moscow (Russian Federation)

    1995-05-01

    Global lithologic-paleogeographic maps for the Aptian, Albian, Cenomanian, and Turonian stages of the Cretaceous were compiled for the first time using common methods and taking into consideration the paleogeographic environment of continents and oceans. Particular features of the global distribution of arid and humid environments on continents were analyzed to distinguish belts and zones of evaporite and red-bed sedimentation, coal accumulation, and bauxite and kaolin formation. It is shown that climatic zonality and the location of arid and humid environments on continents were dependent on the arrangement of continents and oceans on the surface of the Earth.

  13. NEW ABELISAURID MATERIAL FROM THE UPPER CRETACEOUS (CENOMANIAN OF MOROCCO

    Directory of Open Access Journals (Sweden)

    SIMONE D'ORAZI PORCHETTI

    2011-11-01

    Full Text Available Fragmentary cranial bones of dinosaur origin have been recently recovered from the Kem Kem beds (Upper Cretaceous, Cenomanian of Morocco. They include two incompletely preserved maxillary bones evidencing diagnostic features of abelisaurid theropods. These new finds provide further evidence of Abelisauridae in the Late Cretaceous of Morocco. 

  14. Cretaceous-Palaeogene experiments in Biogeochemical Resilience

    Science.gov (United States)

    Penman, D. E.; Henehan, M. J.; Hull, P. M.; Planavsky, N.; Schmidt, D. N.; Rae, J. W. B.; Thomas, E.; Huber, B. T.

    2015-12-01

    Human activity is altering biogeochemical cycles in the ocean. While ultimately anthropogenic forcings may be brought under control, it is still unclear whether tipping points may exist beyond which human-induced changes to biogeochemical cycles become irreversible. We use the Late Cretaceous and the Cretaceous-Palaeogene (K-Pg) boundary interval as an informative case study. Over this interval, two carbon cycle perturbations (gradual flood basalt volcanism and abrupt bolide impact) occurred within a short time window, allowing us to investigate the resilience of biogeochemical cycles to different pressures applied to the same initial boundary conditions on very different time scales. We demonstrate that relatively gradual emission of CO2 from the Deccan large igneous province was efficiently mitigated within the limits of existing biogeochemical processes. However, the rapid extinction of pelagic calcifying organisms at the K-Pg boundary due to the Chicxulub bolide impact had more profound effects, and caused lasting (> 1 million years) changes to biogeochemical cycles. By combining sedimentological observations with boron isotope-based pH reconstructions over these events, we document two potentially useful partial analogues for best and worst case scenarios for anthropogenic global change. We suggest that if current ocean acidification results in the mass extinction of marine pelagic calcifiers, we may cause profound changes to the Earth system that will persist for 100,000s to millions of years.

  15. Scientific Drilling of the Terrestrial Cretaceous Songliao Basin

    Directory of Open Access Journals (Sweden)

    Terrestrial Scientific Drilling of the Cretaceous Songliao Basin Science Team

    2008-07-01

    Full Text Available Investigations of critical climate changes during the Cretaceous have the potential to enhance our understanding of modern global warming because the extreme variances are the best-known and most recent example of a greenhouse Earth (Bice et al., 2006. Marine Cretaceous climate archives are relatively well explored by scientific ocean drilling programs such as the Integrated Ocean Drilling Program (IODP and its predecessors. However, Cretaceous terrestrial climate records are at best fragmentary (Heimhofer et al., 2005. The long-lived Cretaceous Songliao Basin of NE China is an excellent candidate to fill this gap and provide important ocean-continent linkages in relation to environmental change (Fig. 1. This basin, located within one of the largest Cretaceous landmasses (Scotese, 1988, acted for about 100 million years as an intra-continental sediment trap; the present-day area of the basin is about 260,000 km2. It provides an almost complete terrestrial sedimentary recordfrom the Upper Jurassic to the Paleocene (Chen and Chang, 1994. Large-scale geological and geophysical investigations of lacustrine sediments and basin structures demonstrate that a rich archive of Cretaceous paleoclimate proxies exists. For example, the basin includes the Jehol Biota, a terrestrial response to the Cretaceous oceanic anoxic events (OAEs, and a potential K/T boundary (Qiang et al., 1998. An ongoing drilling program is supported by the Ministry of Science and Technology of China and by the Daqing Oilfield. It allowed for recovering of nearly complete cores from Upper Albian to the Uppermost Cretaceous in two boreholes (SK-I, SK II; commenced in 2006, Fig. 1. However, the older Cretaceous sedimentary record of Songliao Basin has not yet been cored. For that reason, a scientific drilling program has been proposed to the International Continental Scientific Drilling Program (ICDP to sample the deeper sedimentaryrecord of the Songliao Basin through a new drill hole

  16. Hydrocarbon accumulation model of the Cretaceous in southern China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Cretaceous in southern China is mainly a set of red and mauve clastic rock,with evaporation layers. For lack of source rock,it has been paid little attention to in the exploration process. With the development of research on hydrocarbon exploration,the masses of Cretaceous reservoirs and shows have been found in recent years. This means that the Cretaceous has great exploration potential. According to the research,authors find that the high-quality reservoir and efficient cap rocks develop in the Cretaceous. At the same time,the Cretaceous and underlying Paleozoic-Early Mesozoic marine strata and overlying Cenozoic nonmarine strata constitute a superimposed basin. Moreover,high-quality source rocks developed in the above-mentioned two sets of strata. In the south,especially in the middle and lower Yangtze region since the Himalayan strong rift was associated with a large number of faults,These faults connect the Cretaceous reservoir and its overlying and underlying source rocks,forming the fault-based and unconformity-based discontinuous source-reservoir-cap accumulation assemblages. Because the Cretaceous has the abundant oil and gas from Paleogene source rocks or Mesozoic–Paleozoic source rocks with secondary hydrocarbon generation ability,three types of reservoirs develop in the Cretaceous:"new-generating and old-reservoiring" reservoirs,"old-generating andnew-reservoiring" reservoirs,and few "self-generating andself-reservoiring" reservoirs. The hydrocarbon enrichment depends on two key factors. Firstly,Cretaceous reservoirs are near to the source kitchens,so its oil and gas source is ample. Secondly,the fault system is well developed,which provides the necessary conducting systems for hydrocarbon accumulation.

  17. Chemotaxonomical aspects of lower Cretaceous amber from Reconcavo Basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ricardo; Azevedo, Debora A., E-mail: ricardopereira@iq.ufrj.b, E-mail: debora@iq.ufrj.b [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica; Carvalho, Ismar S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Geociencias; Fernandes, Antonio Carlos S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Museu Nacional. Dept. de Geologia e Paleontologia

    2011-07-01

    The chemical composition of Lower Cretaceous amber samples from Reconcavo Basin (Salvador, Bahia) was performed by GC-MS to characterize possible botanical sources. The compounds identified were hydrocarbonic and polar diterpenoids, such as abietane, dehydroabietane, tetrahydroretene, dehydroabietol, dehydroabietic acid, ferruginol and sugiol. Other diterpenoid classes were not detected as well as triterpenoids. The composition of the extracts and chemosystematic data allows relating the samples to conifers of Podocarpaceae or Cheirolepidiaceae families due to detection of ferruginol, a specific biomarker to these families. The data concerning Cretaceous amber in the Reconcavo Basin provided information concerning the presence of a resinous flora in the Maracangalha Formation sediments during the Lower Cretaceous. (author)

  18. Late Cretaceous Aquatic Angiosperms from Jiayin, Heilongjiang,Northeast China

    Institute of Scientific and Technical Information of China (English)

    QUAN Cheng; SUN Ge

    2008-01-01

    Three taxa of Late Cretaceous aquatic angiosperms, Queruexia angulata (Lesq.) Krysht., Cobbania corrugate. (Lesq.) Stockey et al. and Nelumbites cf. extenuinervis Upchurch et al. from Jiayin of Heilongjiang, NE China, are described in detail. Among them, Cobbania and Nelumbites from the Upper Cretaceous in China are reported for the first time. The aquatic angiosperm assemblage of Queruexia-Cobbania-Nelumbites appears to imply a seasonal, warm and moist environment in the Jiayin area during the Santonian-Campanian time.

  19. Late Cretaceous Volcaniclastics in NW Turkey

    Science.gov (United States)

    Boehm, Katharina; Wolfgring, Erik; Omer Yilmaz, Ismail; Tüysüz, Okan; Wagreich, Michael

    2015-04-01

    On the southwestern coast of the Black Sea, in the western Pontides Upper Cretaceous tuff layers are present. The tuffs are intercalated with limestones, marls and turbidites and were investigated with focus on their geochemistry, to get new insights to the arrangement of terranes and ocean basins at this time. In the region two Upper Cretaceous volcanic units can be distinguished, separated by distinct red pelagic limestone successions, belonging to the Unaz Formation. The lower volcanic unit is named Dereköy Formation and is Turonian to Santonian in age. It is thought to be deposited within extension structures, contemporaneously with rifting in the western Black Sea basin. The upper volcanic unit is called Cambu Formation. According to biostratigraphic data it is deposited throughout Campanian, when spreading in the western Black Sea basin started. Interpreted as submarine deposits, element mobility has to be taken into account when interpreting geochemical ICP-MS data of the volcaniclastics. Multiple discrimination diagrams with suitable proxies elucidate the type of volcanism and contribute to reconstruction of the tectonic setting. The classified rock types range from basaltic to rhyodacitic in both volcanic formations. Basically degree of differentiation and alkalinity are the parameters looked at, when determining rock types of the volcanic eruption. Further volcanic series are specified as calc-alkaline to shoshonitic. Moreover, a volcanic arc setting seems to be the most likely case, following several discrimination diagrams, as well as normalized multi-element plots. This tectonic setting can be discussed in connection with paleo-tectonic reconstructions. Most cited in literature nowadays are models favoring a northward subduction of the northern branch of Neotethys, creating an extensional setting north of the Pontides. This kind of back arc extension is interpreted as the reason of a southward drift of the Istanbul continental fragment from Eurasia

  20. Microspectroscopic evidence of cretaceous bone proteins.

    Directory of Open Access Journals (Sweden)

    Johan Lindgren

    Full Text Available Low concentrations of the structural protein collagen have recently been reported in dinosaur fossils based primarily on mass spectrometric analyses of whole bone extracts. However, direct spectroscopic characterization of isolated fibrous bone tissues, a crucial test of hypotheses of biomolecular preservation over deep time, has not been performed. Here, we demonstrate that endogenous proteinaceous molecules are retained in a humerus from a Late Cretaceous mosasaur (an extinct giant marine lizard. In situ immunofluorescence of demineralized bone extracts shows reactivity to antibodies raised against type I collagen, and amino acid analyses of soluble proteins extracted from the bone exhibit a composition indicative of structural proteins or their breakdown products. These data are corroborated by synchrotron radiation-based infrared microspectroscopic studies demonstrating that amino acid containing matter is located in bone matrix fibrils that express imprints of the characteristic 67 nm D-periodicity typical of collagen. Moreover, the fibrils differ significantly in spectral signature from those of potential modern bacterial contaminants, such as biofilms and collagen-like proteins. Thus, the preservation of primary soft tissues and biomolecules is not limited to large-sized bones buried in fluvial sandstone environments, but also occurs in relatively small-sized skeletal elements deposited in marine sediments.

  1. Paleointensity of the geomagnetic field in the Cretaceous (from Cretaceous rocks of Mongolia)

    Science.gov (United States)

    Shcherbakova, V. V.; Kovalenko, D. V.; Shcherbakov, V. P.; Zhidkov, G. V.

    2011-09-01

    A representative collection of Cretaceous rocks of Mongolia is used for the study of the magnetic properties of the rocks and for determination of the paleodirections and paleointensities H anc of the geomagnetic field. The characteristic NRM component in the samples is recognized in the temperature interval from 200 to 620-660°C. The values of H anc are determined by the Thellier-Coe method with observance of all present-day requirements regarding the reliability of such kind of results. Comparison of data in the literature on paleointensity in the Cretaceous superchron and in the Miocene supports the hypothesis of the inverse correlation between the average intensity of the paleofield and the frequency of geomagnetic reversals. The increase in the average intensities is accompanied by an appreciable increase in the variance of the virtual dipole moment (VDM). We suggest that the visible increase in the average VDM value in the superchron is due to the greater variability of VDM in this period compared to the Miocene.

  2. Rates of morphological evolution are heterogeneous in Early Cretaceous birds.

    Science.gov (United States)

    Wang, Min; Lloyd, Graeme T

    2016-04-13

    The Early Cretaceous is a critical interval in the early history of birds. Exceptional fossils indicate that important evolutionary novelties such as a pygostyle and a keeled sternum had already arisen in Early Cretaceous taxa, bridging much of the morphological gap between Archaeopteryx and crown birds. However, detailed features of basal bird evolution remain obscure because of both the small sample of fossil taxa previously considered and a lack of quantitative studies assessing rates of morphological evolution. Here we apply a recently available phylogenetic method and associated sensitivity tests to a large data matrix of morphological characters to quantify rates of morphological evolution in Early Cretaceous birds. Our results reveal that although rates were highly heterogeneous between different Early Cretaceous avian lineages, consistent patterns of significantly high or low rates were harder to pinpoint. Nevertheless, evidence for accelerated evolutionary rates is strongest at the point when Ornithuromorpha (the clade comprises all extant birds and descendants from their most recent common ancestors) split from Enantiornithes (a diverse clade that went extinct at the end-Cretaceous), consistent with the hypothesis that this key split opened up new niches and ultimately led to greater diversity for these two dominant clades of Mesozoic birds.

  3. Hydrocarbon Seepage during the Boreal Base Cretaceous Hot Shale Event

    Science.gov (United States)

    Hammer, Ø.; Hryniewicz, K.; Nakrem, H. A.; Little, C.

    2014-12-01

    We have identified a number of carbonate bodies interpreted as seep-related from near the Jurassic-Cretaceous boundary in Svalbard, arctic Norway. The paleoseeps discovered so far occur over 50 km along strike, representing a seepage field of considerable extent. Ammonites indicate a base Cretaceous (Late Volgian to Late Ryazanian) age. The carbonate bodies are highly fossiliferous, with a very diverse fauna consisting mainly of normal-marine species but also seep-restricted taxa. Carbonate d13C isotopes reach -46‰, which, considering mixture with seawater-derived carbon, is interpreted as indicating a biogenic methane source. It is of interest to note the correlation of this paleoseepage with an episode of extremely high burial of organic matter near the Jurassic-Cretaceous boundary, noted both in Svalbard (top Slottsmøya Member of the Agardhfjellet Formation), in the Barents Sea (Hekkingen Formation) and in the North Sea (Mandal Formation), possibly providing a shallow source for biogenic gas. Together with near contemporaneous events in the Boreal Realm such as ongoing rifting, the base Cretaceous unconformity, the Mjølnir meteorite impact and a possible minor extinction event, these finds contribute to the impression of the Jurassic-Cretaceous boundary as a highly dynamic and interesting time in the North Atlantic area.

  4. Structural extremes in a cretaceous dinosaur.

    Science.gov (United States)

    Sereno, Paul C; Wilson, Jeffrey A; Witmer, Lawrence M; Whitlock, John A; Maga, Abdoulaye; Ide, Oumarou; Rowe, Timothy A

    2007-11-21

    Fossils of the Early Cretaceous dinosaur, Nigersaurus taqueti, document for the first time the cranial anatomy of a rebbachisaurid sauropod. Its extreme adaptations for herbivory at ground-level challenge current hypotheses regarding feeding function and feeding strategy among diplodocoids, the larger clade of sauropods that includes Nigersaurus. We used high resolution computed tomography, stereolithography, and standard molding and casting techniques to reassemble the extremely fragile skull. Computed tomography also allowed us to render the first endocast for a sauropod preserving portions of the olfactory bulbs, cerebrum and inner ear, the latter permitting us to establish habitual head posture. To elucidate evidence of tooth wear and tooth replacement rate, we used photographic-casting techniques and crown thin sections, respectively. To reconstruct its 9-meter postcranial skeleton, we combined and size-adjusted multiple partial skeletons. Finally, we used maximum parsimony algorithms on character data to obtain the best estimate of phylogenetic relationships among diplodocoid sauropods. Nigersaurus taqueti shows extreme adaptations for a dinosaurian herbivore including a skull of extremely light construction, tooth batteries located at the distal end of the jaws, tooth replacement as fast as one per month, an expanded muzzle that faces directly toward the ground, and hollow presacral vertebral centra with more air sac space than bone by volume. A cranial endocast provides the first reasonably complete view of a sauropod brain including its small olfactory bulbs and cerebrum. Skeletal and dental evidence suggests that Nigersaurus was a ground-level herbivore that gathered and sliced relatively soft vegetation, the culmination of a low-browsing feeding strategy first established among diplodocoids during the Jurassic.

  5. Structural extremes in a cretaceous dinosaur.

    Directory of Open Access Journals (Sweden)

    Paul C Sereno

    Full Text Available Fossils of the Early Cretaceous dinosaur, Nigersaurus taqueti, document for the first time the cranial anatomy of a rebbachisaurid sauropod. Its extreme adaptations for herbivory at ground-level challenge current hypotheses regarding feeding function and feeding strategy among diplodocoids, the larger clade of sauropods that includes Nigersaurus. We used high resolution computed tomography, stereolithography, and standard molding and casting techniques to reassemble the extremely fragile skull. Computed tomography also allowed us to render the first endocast for a sauropod preserving portions of the olfactory bulbs, cerebrum and inner ear, the latter permitting us to establish habitual head posture. To elucidate evidence of tooth wear and tooth replacement rate, we used photographic-casting techniques and crown thin sections, respectively. To reconstruct its 9-meter postcranial skeleton, we combined and size-adjusted multiple partial skeletons. Finally, we used maximum parsimony algorithms on character data to obtain the best estimate of phylogenetic relationships among diplodocoid sauropods. Nigersaurus taqueti shows extreme adaptations for a dinosaurian herbivore including a skull of extremely light construction, tooth batteries located at the distal end of the jaws, tooth replacement as fast as one per month, an expanded muzzle that faces directly toward the ground, and hollow presacral vertebral centra with more air sac space than bone by volume. A cranial endocast provides the first reasonably complete view of a sauropod brain including its small olfactory bulbs and cerebrum. Skeletal and dental evidence suggests that Nigersaurus was a ground-level herbivore that gathered and sliced relatively soft vegetation, the culmination of a low-browsing feeding strategy first established among diplodocoids during the Jurassic.

  6. Pre-, syn-, and postcollisional stratigraphic framework and provenance of upper triassic-upper cretaceous strata in the northwestern talkeetna mountains, alaska

    Science.gov (United States)

    Hampton, B.A.; Ridgway, K.D.; O'Neill, J. M.; Gehrels, G.E.; Schmidt, J.; Blodgett, R.B.

    2007-01-01

    Mesozoic strata of the northwestern Talkeetna Mountains are located in a regional suture zone between the allochthonous Wrangellia composite terrane and the former Mesozoic continental margin of North America (i.e., the Yukon-Tanana terrane). New geologic mapping, measured stratigraphic sections, and provenance data define a distinct three-part stratigraphy for these strata. The lowermost unit is greater than 290 m thick and consists of Upper Triassic-Lower Jurassic mafic lavas, fossiliferous limestone, and a volcaniclastic unit that collectively we informally refer to as the Honolulu Pass formation. The uppermost 75 m of the Honolulu Pass formation represent a condensed stratigraphic interval that records limited sedimentation over a period of up to ca. 25 m.y. during Early Jurassic time. The contact between the Honolulu Pass formation and the overlying Upper Jurassic-Lower Cretaceous clastic marine strata of the Kahiltna assemblage represents a ca. 20 m.y. depositional hiatus that spans the Middle Jurassic and part of Late Jurassic time. The Kahiltna assemblage may to be up to 3000 m thick and contains detrital zircons that have a robust U-Pb peak probability age of 119.2 Ma (i.e., minimum crystallization age/maximum depositional age). These data suggest that the upper age of the Kahiltna assemblage may be a minimum of 10-15 m.y. younger than the previously reported upper age of Valanginian. Sandstone composition (Q-43% F-30% L-27%-Lv-71% Lm-18% Ls-11%) and U-Pb detrital zircon ages suggest that the Kahiltna assemblage received igneous detritus mainly from the active Chisana arc, remnant Chitina and Talkeetna arcs, and Permian-Triassic plutons (Alexander terrane) of the Wrangellia composite terrane. Other sources of detritus for the Kahiltna assemblage were Upper Triassic-Lower Jurassic plutons of the Taylor Mountains batholith and Devonian-Mississippian plutons; both of these source areas are part of the Yukon-Tanana terrane. The Kahiltna assemblage is overlain

  7. The late Cretaceous Arman flora of Magadan oblast, Northeastern Russia

    Science.gov (United States)

    Herman, A. B.; Golovneva, L. B.; Shczepetov, S. V.; Grabovsky, A. A.

    2016-12-01

    The Arman flora from the volcanogenic-sedimentary beds of the Arman Formation is systematically studied using materials from the Arman River basin and the Nelkandya-Khasyn interfluve (Magadan oblast, Northeastern Russia). Seventy-three species of fossil plants belonging to 49 genera are described. They consist of liverworts, horsetails, ferns, seed ferns, cycadaleans, bennettitaleans, ginkgoaleans, czekanowskialeans, conifers, gymnosperms of uncertain systematic affinity, and angiosperms. The Arman flora shows a unique combination, with relatively ancient Early Cretaceous ferns and gymnosperms occurring alongside younger Late Cretaceous plants, primarily angiosperms. The similarity of the Arman flora to the Penzhina and Kaivayam floras of northwestern Kamchatka and the Tylpegyrgynai flora of the Pekul'nei Ridge allows the Arman flora to be dated as Turonian and Coniacian (Late Cretaceous), which is corroborated by isotopic (U-Pb and 40Ar/39Ar) age determination for the plant-bearing layers.

  8. Palaeophytochemical Constituents of Cretaceous Ginkgo coriacea Florin Leaves

    Institute of Scientific and Technical Information of China (English)

    You-Xing Zhao; Cheng-Sen Li; Xiao-Dong Luo; Yu-Fei Wang; Jun Zhou

    2006-01-01

    Chemical investigation of the organic solvent extract of Cretaceous Ginkgo coriacea Florin leaves by liquid chromatography-mass spectroscopy (LC-MS) and gas chromatography-mass spectrometry (GC-MS), analogous to those from extant leaves of Ginkgo biloba L., led to the detection of a group of natural flavonoids and other volatiles. The similarity of the chemical constituents in these two species of Ginkgo suggest that the secondary metabolism of extant G. biloba is close to that of the Cretaceous species. The remaining natural products may be one explanation why the leaves of the Cretaceous G. coriacea have been preserved morphologically in fossilization. The detection of flavonoids suggests that the leaves of G. coriacea experienced a mild post-depositional environment during their fossilization. This appears to be the oldest occurrence of flavonoids in plant fossils.

  9. A Basal Titanosauriform from the Early Cretaceous of Guangxi, China

    Institute of Scientific and Technical Information of China (English)

    MO Jinyou; WANG Wei; HUANG Zhitao; HUANG Xin; XU Xing

    2006-01-01

    Based on a partial postcranial skeleton collected from the Lower Cretaceous Napai Formation of Guangxi, China, we erect a new sauropod taxon, Fusuisaurus zhaoi gen. et sp. nov. The holotype specimen consists of the left ilium, left pubis, anterior caudals, most of the dorsal ribs and distal end of the left femur. Fusuisaurus zhaoi is diagnosed by a unique combination of character states among the known sauropods. It displays several synapomorphies of Titanosauriformes but lacks many derived features seen in other titanosauriforms, suggesting that the new taxon represents the basalmost known titanosauriform and providing new evidence that Titanosauriformes originated from Asia. A size comparison suggests that Fusuisaurus zhaoi is among the largest Early Cretaceous sauropods,providing an important addition to the Early Cretaceous Chinese sauropod diversity.

  10. Molecular fossils in Cretaceous condensate from western India

    Indian Academy of Sciences (India)

    Sharmila Bhattacharya; Suryendu Dutta; Ratul Dutta

    2014-07-01

    The present study reports the biomarker distribution of condensate belonging to the early Cretaceous time frame using gas chromatography-mass spectrometry (GC–MS). The early Cretaceous palaeoenvironment was inscribed into these molecular fossils which reflected the source and conditions of deposition of the condensate. The saturate fraction of the condensate is characterized by normal alkanes ranging from -C9 to -C29} (CPI-1.13), cycloalkanes and C14 and C15 sesquiterpanes. The aromatic fraction comprises of naphthalene, phenanthrene, their methylated derivatives and cyclohexylbenzenes. Isohexylalkylnaphthalenes, a product of rearrangement process of terpenoids, is detected in the condensate. Several aromatic sesquiterpenoids and diterpenoids have been recorded. Dihydro-ar-curcumene, cadalene and ionene form the assemblage of sesquiterpenoids which are indicative of higher plant input. Aromatic diterpenoid fraction comprises of simonellite and retene. These compounds are also indicative of higher plants, particularly conifer source which had been a predominant flora during the Cretaceous time.

  11. Arctic black shale formation during Cretaceous Oceanic Anoxic Event 2

    DEFF Research Database (Denmark)

    Lenniger, Marc; Nøhr-Hansen, Henrik; Hills, Len V.

    2014-01-01

    The Late Cretaceous Oceanic Anoxic Event 2 (OAE2) represents a major perturbation of the global carbon cycle caused by the widespread deposition of organic-rich black shales. Although the paleoceanographic response and the spatial extent of bottom-water anoxia in low and mid-paleolatitudes are re......The Late Cretaceous Oceanic Anoxic Event 2 (OAE2) represents a major perturbation of the global carbon cycle caused by the widespread deposition of organic-rich black shales. Although the paleoceanographic response and the spatial extent of bottom-water anoxia in low and mid...

  12. Plant macrofossils of the upper Cretaceous Kaitangata coalfield, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Pole, M.; Douglas, B. [University of Queensland, Brisbane, Qld. (Australia). Dept. of Botany

    1999-08-15

    Uppermost Cretaceous sediments from the Cretaceous Kaitangata Coal Mine and the Wangaloa coast (south of Dunedin, New Zealand) were investigated for dispersed plant macrofossils. The gymnosperms include two cycads (Macrozamia sp. and Pterostoma sp.), Ginkgo sp., three further possible ginkgophyte taxa, and ten conifer taxa. The conifers include two new conifer genera and species, Maikuku stephaniae and Ware riderensis, which are placed in the Taxodiaceae s.l. There are also 13 types of angiosperm cuticle. Sample heterogeneity as regards taxa present and their abundance suggests taxonomic heterogeneity in the original vegetation.

  13. Arctic Late Cretaceous and Paleocene Plant Community Succession

    Science.gov (United States)

    Herman, Alexei; Spicer, Robert; Daly, Robert; Jolley, David; Ahlberg, Anders; Moiseeva, Maria

    2010-05-01

    The Arctic abounds with Late Cretaceous and Paleocene plant fossils attesting to a thriving, diverse, but now extinct polar ecosystem that sequestered vast amounts of carbon. Through detailed examination of plant remains and their distributions in time and space with respect to their entombing sedimentary facies, it has been possible to reconstruct changes in Arctic vegetation composition and dynamics through the Late Cretaceous and into the Paleocene. Based on over 10,000 leaf remains, fossil wood and palynomorph assemblages from northeastern Russia and northern Alaska and palynological data from elsewhere in the Arctic we identify a number of successional plant communities (SPCs) representing seral development from early (pioneer), through middle to late SPCs and climax vegetation. We recognise that (1) Equisetites and some ferns (typically Birisia, but after the beginning of the Maastrichtian, Onoclea) were obligatory components of the early SPCs; (2) first rare angiosperms (e.g. the dicot Vitiphyllum multifidum) appeared in the middle SPCs of the Arctic in the Early - Middle Albian; (3) from late Albian times onwards angiosperms became abundant in the middle SPCs of the Arctic, but were still rare in the earlier and later SPCs; (4) monocots appeared in the Maastrichtian early SPCs; (5) all Arctic Cretaceous late SPCs (and climax vegetation) were dominated by conifers; (6) Arctic SPCs were more numerous and diverse under warm climates than cold; (7) during the Albian and late Cretaceous, advanced (Cenophytic, angiosperm-dominated) plant communities coexisted with those of a more relictual (Mesophytic, dominated by ferns and gymnosperms) aspect, and plants composing these communities did not mix; (8) coal-forming environments (mires) remained conifer, fern and bryophyte dominated throughout the late Cretaceous and Paleocene with little penetration of woody angiosperm components and thus are conservative and predominantly Mesophytic in character; (9) bryophytes

  14. Marine reptiles from the Late Cretaceous of northern Patagonia

    Science.gov (United States)

    Gasparini, Z.; Casadio, S.; Fernández, M.; Salgado, L.

    2001-04-01

    During the Campanian-Maastrichtian, Patagonia was flooded by the Atlantic and reduced to an archipelago. Several localities of northern Patagonia have yielded marine reptiles. Analysis of several assemblages suggests that the diversity and abundance of pelagic marine reptiles in northern Patagonia was higher by the end of the Cretaceous than previously thought. Several plesiosaurids, including Aristonectes parvidens and the polycotylid Sulcusuchus, and the first remains of mosasaurinae have been found. The Cretaceous marine reptile record from South America is scanty. Nevertheless, materials described here suggest that Tethyan and Weddelian forms converged in northern Patagonia, as seen with invertebrates.

  15. Cretaceous Oceanic Redbeds:Implications for Paleoclimatology and Paleoceanography

    Institute of Scientific and Technical Information of China (English)

    WANG Chengshan; HUANG Yongjian; HU Xiumian; LI Xianghui

    2004-01-01

    The Cretaceous is among the most unusual eras in the geological past. Geoscience communities have been having great concerns with geological phenomena within this period, for example carbonate platforms and black shales in the Early and Middle Cretaceous respectively, during the last decades. But few people have paid any attention to the set of pelagic redbeds lying on the black shales, not to mention the applications to paleoclimatology and paleoceanography. It is shown by the sedimentary records of redbeds, that they were deposited around the CCD, with both a higher content of iron and much lower concentrations of organic carbon, which implies conditions with a relatively high content of oxygen. Such redbeds occurred in the global oceans, mainly in the Tethyan realm, with different durations of deposition and a climax from the late Santonian to early Campanian. Global cooling and dramatic changes in ocean currents might help to increase the oxygen flux between the atmosphere and ocean, after the large scale organic carbon burial during the Middle Cretaceous, and therefore lead to the oxygenation of deep ocean and so the occurrence of late Cretaceous oceanic redbeds.

  16. The end-Cretaceous in the southwestern Tethys (Elles, Tunisia)

    DEFF Research Database (Denmark)

    Thibault, Nicolas Rudolph; Galbrun, Bruno; Gardin, Silvia

    2016-01-01

    An integrated study of magnetic mass susceptibility (MS), bulk stable isotopes and calcareous nannofossil paleoecological changes is undertaken on the late Maastrichtian of the Elles section, Tunisia, spanning the last ca. 1 Myr of the Cretaceous. A cyclostratigraphic analysis reveals the presenc...

  17. High paleotemperatures in the Late Cretaceous Arctic ocean

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Jenkyns, H.; Forster, A.; Schouten, S.

    2004-01-01

    To understand the climate dynamics of the warm, equable greenhouse world of the Late Cretaceous period, it is important to determine polar palaeotemperatures. The early palaeoceanographic history of the Arctic Ocean has, however, remained largely unknown, because the sea floor and underlying deposit

  18. Arctic black shale formation during Cretaceous Oceanic Anoxic Event 2

    DEFF Research Database (Denmark)

    Lenniger, Marc; Nøhr-Hansen, Henrik; Hills, Len V.

    2014-01-01

    The Late Cretaceous Oceanic Anoxic Event 2 (OAE2) represents a major perturbation of the global carbon cycle caused by the widespread deposition of organic-rich black shales. Although the paleoceanographic response and the spatial extent of bottom-water anoxia in low and mid-paleolatitudes are re...

  19. A sequence of events across the Cretaceous-Tertiary boundary

    NARCIS (Netherlands)

    Smit, J.; Romein, A.J.T.

    1985-01-01

    The lithological and biological sequence of events across the Cretaceous-Tertiary (K/T), as developed in thick and complete landbased sections and termed the standard K/T event sequence, is also found in many DSDP cores from all over the globe. Microtektite-like spherules have been found in almost

  20. Late Cretaceous seasonal ocean variability from the Arctic.

    Science.gov (United States)

    Davies, Andrew; Kemp, Alan E S; Pike, Jennifer

    2009-07-09

    The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre, or those indicated for the Mediterranean sapropels. With increased CO(2) levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 degrees C mean annual temperature at this time.

  1. High paleotemperatures in the Late Cretaceous Arctic ocean

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Jenkyns, H.; Forster, A.; Schouten, S.

    2004-01-01

    To understand the climate dynamics of the warm, equable greenhouse world of the Late Cretaceous period, it is important to determine polar palaeotemperatures. The early palaeoceanographic history of the Arctic Ocean has, however, remained largely unknown, because the sea floor and underlying deposit

  2. Molybdenum drawdown during Cretaceous Oceanic Anoxic Event 2

    NARCIS (Netherlands)

    Goldberg, T.; Poulton, S.W.; Wagner, T.; Kolonic, S.F.; Rehkämper, M.

    2016-01-01

    During the Cretaceous greenhouse, episodes of widespread ocean deoxygenation were associated with globally occurring events of black shale deposition. Possibly the most pronounced of these oceanic anoxic events (OAE's) was the Cenomanian-Turonian OAE2 (~94 Ma). However, although certain redox sensit

  3. Vertebrate extinctions and survival across the Cretaceous-Tertiary boundary

    Science.gov (United States)

    Buffetaut, Eric

    1990-01-01

    A critical analysis of the fossil vertebrate record across the Cretaceous-Tertiary boundary shows that the available evidence is far less accurate than that concerning invertebrates and microfossils. Far-reaching conclusions have been drawn from generalisations about vertebrate extinctions in the continental realm based on the local record from western North America, but little is known about patterns of terminal Cretaceous vertebrate extinctions in other parts of the world, and even the western North American record is ambiguous. Despite this unsatisfactory record, it clearly appears that terminal Cretaceous vertebrate extinctions were highly selective, with some groups (e.g. dinosaurs) becoming completely extinct, whereas others seem to be virtually unaffected. This argues against devastating catastrophes of the kind postulated by some recent impact scenarios. However, the survival of groups known to be sensitive to climatic deterioration (such as crocodilians and other non-dinosaurian reptiles) indicates that alternative hypotheses involving gradual but fairly important climatic changes on a world-wide scale are not convincing either. The pattern of extinction and survival among vertebrates across the Cretaceous-Tertiary boundary may be explained as a consequence of the disruption of some food chains following a crisis in the plant kingdom, which itself may have been the result of the atmospheric consequences of unusual extraterrestrial or internal events.

  4. North American nonmarine climates and vegetation during the Late Cretaceous

    Science.gov (United States)

    Wolfe, J.A.; Upchurch, G.R.

    1987-01-01

    Analyses of physiognomy of Late Cretaceous leaf assemblages and of structural adaptations of Late Cretaceous dicotyledonous woods indicate that megathermal vegetation was an open-canopy, broad-leaved evergreen woodland that existed under low to moderate amounts of rainfall evenly distributed through the year, with a moderate increase at about 40-45??N. Many dicotyledons were probably large, massive trees, but the tallest trees were evergreen conifers. Megathermal climate extended up to paleolatitude 45-50??N. Mesothermal vegetation was at least partially an open, broad-leaved evergreen woodland (perhaps a mosaic of woodland and forest), but the evapotranspirational stress was less than in megathermal climate. Some dicotyledons were large trees, but most were shrubs or small trees; evergreen conifers were the major tree element. Some mild seasonality is evidenced in mesothermal woods; precipitational levels probably varied markedly from year to year. Northward of approximately paleolatitude 65??N, evergreen vegetation was replaced by predominantly deciduous vegetation. This replacement is presumably related primarily to seasonality of light. The southern part of the deciduous vegetation probably existed under mesothermal climate. Comparisons to leaf and wood assemblages from other continents are generally consistent with the vegetational-climatic patterns suggested from North American data. Limited data from equatorial regions suggest low rainfall. Late Cretaceous climates, except probably those of the Cenomanian, had only moderate change through time. Temperatures generally appear to have warmed into the Santonian, cooled slightly into the Campanian and more markedly into the Maastrichtian, and then returned to Santonian values by the late Maastrichtian. The early Eocene was probably warmer than any period of the Late Cretaceous. Latitudinal temperature gradients were lower than at present. For the Campanian and Maastrichtian, a gradient of about 0.3??C/1

  5. Latest Jurassic-early Cretaceous regressive facies, northeast Africa craton

    Energy Technology Data Exchange (ETDEWEB)

    van Houten, F.B.

    1980-06-01

    Nonmarine to paralic detrital deposits accumulated in six large basins between Algeria and the Arabo-Nubian shield during major regression in latest Jurassic and Early Cretaceous time. The Ghadames Sirte (north-central Libya), and Northern (Egypt) basins lay along the cratonic margin of northeastern Africa. The Murzuk, Kufra, and Southern (Egypt) basins lay in the south within the craton. Data for reconstructing distribution, facies, and thickness of relevant sequences are adequate for the three northern basins only. High detrital influx near the end of Jurassic time and in mid-Cretaceous time produced regressive nubian facies composed largely of low-sinuosity stream and fahdelta deposits. In the west and southwest the Ghadames, Murzuk, and Kufra basins were filled with a few hundred meters of detritus after long-continued earlier Mesozoic aggradation. In northern Egypt the regressive sequence succeeded earlier Mesozoic marine sedimentation; in the Sirte and Southern basins correlative deposits accumulated on Precambrian and Variscan terranes after earlier Mesozoic uplift and erosion. Waning of detrital influx into southern Tunisia and adjacent Libya in the west and into Israel in the east initiated an Albian to early Cenomanian transgression of Tethys. By late Cenomanian time it had flooded the entire cratonic margin, and spread southward into the Murzuk and Southern basins, as well as onto the Arabo-Nubian shield. Latest Jurassic-earliest Cretaceous, mid-Cretaceous, and Late Cretaceous transgressions across northeastern Africa recorded in these sequences may reflect worldwide eustatic sea-level rises. In contrast, renewed large supply of detritus during each regression and a comparable subsidence history of intracratonic and marginal basins imply regional tectonic control. 6 figures.

  6. Late Cretaceous-Early Palaeogene tectonic development of SE Asia

    Science.gov (United States)

    Morley, C. K.

    2012-10-01

    The Late Cretaceous-Early Palaeogene history of the continental core of SE Asia (Sundaland) marks the time prior to collision of India with Asia when SE Asia, from the Tethys in the west to the Palaeo-Pacific in the east, lay in the upper plate of subduction zones. In Myanmar and Sumatra, subduction was interrupted in the Aptian-Albian by a phase of arc accretion (Woyla and Mawgyi arcs) and in Java, eastern Borneo and Western Sulawesi by collision of continental fragments rifted from northern Australia. Subsequent resumption of subduction in the Myanmar-Thailand sector explains: 1) early creation of oceanic crust in the Andaman Sea in a supra-subduction zone setting ~ 95 Ma, 2) the belt of granite plutons of Late Cretaceous-Early Palaeogene age (starting ~ 88 Ma) in western Thailand and central Myanmar, and 3) amphibolite grade metamorphism between 70 and 80 Ma seen in gneissic outcrops in western and central Thailand, and 4) accretionary prism development in the Western Belt of Myanmar, until glancing collision with the NE corner of Greater India promoted ophiolite obduction, deformation and exhumation of marine sediments in the early Palaeogene. The Ranong strike-slip fault and other less well documented faults, were episodically active during the Late Cretaceous-Palaeogene time. N to NW directed subduction of the Palaeo-Pacific ocean below Southern China, Vietnam and Borneo created a major magmatic arc, associated with rift basins, metamorphic core complexes and strike-slip deformation which continued into the Late Cretaceous. The origin and timing of termination of subduction has recently been explained by collision of a large Luconia continental fragment either during the Late Cretaceous or Palaeogene. Evidence for such a collision is absent from the South China Sea well and seismic reflection record and here collision is discounted. Instead relocation of the subducting margin further west, possibly in response of back-arc extension (which created the Proto

  7. A gigantic feathered dinosaur from the lower cretaceous of China.

    Science.gov (United States)

    Xu, Xing; Wang, Kebai; Zhang, Ke; Ma, Qingyu; Xing, Lida; Sullivan, Corwin; Hu, Dongyu; Cheng, Shuqing; Wang, Shuo

    2012-04-04

    Numerous feathered dinosaur specimens have recently been recovered from the Middle-Upper Jurassic and Lower Cretaceous deposits of northeastern China, but most of them represent small animals. Here we report the discovery of a gigantic new basal tyrannosauroid, Yutyrannus huali gen. et sp. nov., based on three nearly complete skeletons representing two distinct ontogenetic stages from the Lower Cretaceous Yixian Formation of Liaoning Province, China. Y. huali shares some features, particularly of the cranium, with derived tyrannosauroids, but is similar to other basal tyrannosauroids in possessing a three-fingered manus and a typical theropod pes. Morphometric analysis suggests that Y. huali differed from tyrannosaurids in its growth strategy. Most significantly, Y. huali bears long filamentous feathers, thus providing direct evidence for the presence of extensively feathered gigantic dinosaurs and offering new insights into early feather evolution.

  8. Evidence for global cooling in the Late Cretaceous.

    Science.gov (United States)

    Linnert, Christian; Robinson, Stuart A; Lees, Jackie A; Bown, Paul R; Pérez-Rodríguez, Irene; Petrizzo, Maria Rose; Falzoni, Francesca; Littler, Kate; Arz, José Antonio; Russell, Ernest E

    2014-06-17

    The Late Cretaceous 'greenhouse' world witnessed a transition from one of the warmest climates of the past 140 million years to cooler conditions, yet still without significant continental ice. Low-latitude sea surface temperature (SST) records are a vital piece of evidence required to unravel the cause of Late Cretaceous cooling, but high-quality data remain illusive. Here, using an organic geochemical palaeothermometer (TEX86), we present a record of SSTs for the Campanian-Maastrichtian interval (~83-66 Ma) from hemipelagic sediments deposited on the western North Atlantic shelf. Our record reveals that the North Atlantic at 35 °N was relatively warm in the earliest Campanian, with maximum SSTs of ~35 °C, but experienced significant cooling (~7 °C) after this to cooling pattern was global rather than regional and, therefore, driven predominantly by declining atmospheric pCO2 levels.

  9. New angiosperm genera from cretaceous sections of northern Asia

    Science.gov (United States)

    Alekseev, P. I.; Herman, A. B.; Shchepetov, S. V.

    2014-11-01

    The Cretaceous floras of northern Asia represented by the Antibes flora of the Chulym-Yenisei area of West Siberia, Kaivayam flora of northwestern Kamchatka, and Grebenka flora of the Anadyr River basin in Chukotka are reviewed. These floras characterize the Late Cretaceous Siberian-Canadian Paleofloristic Region, where they developed in humid warm temperate climatic environments. Two new angiosperm genera are described: genus Chachlovia P. Alekseev et Herman with species C. kiyensis P. Alekseev, sp. nov. and C. dombeyopsoida (Herman) Herman, comb. nov. and genus Soninia Herman et Shczepetov with species S. asiatica P. Alekseev, sp. nov. and S. integerrima Herman et Shczepetov, sp. nov. The species Chachlovia kiyensis and Soninia asiatica were characteristic components of the Antibes flora. Chachlovia dombeyopsoida and Soninia integerrima were constituents of the Kaivayam and Grebenka floras, respectively.

  10. Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse

    Science.gov (United States)

    Ladant, Jean-Baptiste; Donnadieu, Yannick

    2016-09-01

    The historical view of a uniformly warm Cretaceous is being increasingly challenged by the accumulation of new data hinting at the possibility of glacial events, even during the Cenomanian-Turonian (~95 Myr ago), the warmest interval of the Cretaceous. Here we show that the palaeogeography typifying the Cenomanian-Turonian renders the Earth System resilient to glaciation with no perennial ice accumulation occurring under prescribed CO2 levels as low as 420 p.p.m. Conversely, late Aptian (~115 Myr ago) and Maastrichtian (~70 Myr ago) continental configurations set the stage for cooler climatic conditions, favouring possible inception of Antarctic ice sheets under CO2 concentrations, respectively, about 400 and 300 p.p.m. higher than for the Cenomanian-Turonian. Our simulations notably emphasize that palaeogeography can crucially impact global climate by modulating the CO2 threshold for ice sheet inception and make the possibility of glacial events during the Cenomanian-Turonian unlikely.

  11. A long tailed bird from the Late Cretaceous of Zhejiang

    Institute of Scientific and Technical Information of China (English)

    蔡正全; 赵丽君

    1999-01-01

    A new fossil bird was discovered from the lower part of Upper Cretaceous of Linhai, Zhejiang. With a long tail comprising more than 20 caudal vertebrae, this new brid is morphologically similar to that of Archaeopteryx. Meanwhile, it is similar to Confuciusornis in lacking in teeth. The bird shows the following plesiomorphies besides a long tail: elements of the forelimbs are simple in structure; bones of the manus are separate from one another and two digits are free; abdominal ribs are present. And the new bird shows some apomorphies: The skull bones are lightly built with no teeth; the hindlimbs are better developed than the forelimbs, the articular condyle of the femur is pronouced; the sternum is broad and long; the phalanges and unguals are small, showing its ground-dwelling habit. The fossil bird, coming from the rock of the Late Cretaceous in shouthem China, is very significant to the study of the evolution and relationships of birds.

  12. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures.

    Science.gov (United States)

    Zheng, Xiao-Ting; You, Hai-Lu; Xu, Xing; Dong, Zhi-Ming

    2009-03-19

    Ornithischia is one of the two major groups of dinosaurs, with heterodontosauridae as one of its major clades. Heterodontosauridae is characterized by small, gracile bodies and a problematic phylogenetic position. Recent phylogenetic work indicates that it represents the most basal group of all well-known ornithischians. Previous heterodontosaurid records are mainly from the Early Jurassic period (205-190 million years ago) of Africa. Here we report a new heterodontosaurid, Tianyulong confuciusi gen. et sp. nov., from the Early Cretaceous period (144-99 million years ago) of western Liaoning Province, China. Tianyulong extends the geographical distribution of heterodontosaurids to Asia and confirms the clade's previously questionable temporal range extension into the Early Cretaceous period. More surprisingly, Tianyulong bears long, singular and unbranched filamentous integumentary (outer skin) structures. This represents the first confirmed report, to our knowledge, of filamentous integumentary structures in an ornithischian dinosaur.

  13. Geology along southwest coast of Mexico - implications for Cretaceous Paleogeography

    Energy Technology Data Exchange (ETDEWEB)

    Campa, U.M.F.

    1986-04-01

    The coast of Mexico between Puerto Vallarta (lat. 21/sup 0/N) and the Bay of Tehuantepec (long. 94/sup 0/) rises steeply from the Middle America Trench to expose deeply eroded terranes of metamorphosed ophiolitic, basinal to terrigenous sedimentary, and arc volcanic rocks of Pennsylvanian to middle Cretaceous age, in part lying on older Paleozoic and Proterozoic rocks. Granitic intrusios are of Late Cretaceous to early Cenozoic age. The terranes are overlapped by volcanic rocks of middle Cenozoic age and locally, along the coast, by marine Miocene strata. It is particularly significant to paleogeographic reconstructions that there are no known marine coastal deposits of Late Cretaceous or early Cenozoic age. Eight tectono-stratigraphic units are currently recognized. The Colima terrane is a complete sequence of red colvaniclastic beds and limestones from Neocomian to Aptian (ammonites, rudistids). The Tumbiscatio terrane is comprised of lavas and radiolarian cherts, at least in part Triassic. The Huetamo terrane is formed of turbiditic, volcaniclastic, and calcareous sequences of Late Jurassic and Early Cretaceous age (ammonites), locally containing fragments of ophiolite. The fourth unit is comprised of ophiolite terranes. Guerrero terranes are gently metamorphosed lavas, tuffs, and sediments of Late Jurassic to Aptian-Albian age. The Mixteca terrane is comprised of terrigenous calcareous sequences of Pennsylvanian and Early Jurassic ages lying on early Paleozoic basement. The Oaxaca terrane is a Paleozoic sedimentary sequence overlying metamorphic precambrian basement, and the Xalapa terrane is formed of migmatitic, gneissic rocks of Jurassic(.) age. However, this preliminary breakdown does not convey the chaotic complexity of the region.

  14. Source rock evaluation of Cretaceous and Tertiary series in Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Oudin, J. (TOTAL-CFP, Pessac (France))

    1988-08-01

    Tunisia represents a mature hydrocarbon province with a long exploration history. In the Sfax-Kerkennah and Gabes Gulf areas, the hydrocarbon accumulations are located in series of Cretaceous and Tertiary age. To estimate the petroleum potential of this region, an evaluation of the source rock quality of the Cretaceous and Tertiary series was undertaken. In the Sfax-Kerkennak area, most of the wells studied indicate that, in the Tertiary, Ypresian and lower Lutetian show good organic content but, taking into account the potential productivity, only the Ypresian can be considered as a potential source rock. In the Cretaceous, mainly studies in the offshore area of the Gabes Gulf, the amount of organic matter is fair and it is chiefly located in Albian and Cenomanian. The Vraconian with its quite good potential is a valuable source rock. Due to the difference in the environment of deposition for these two possible source rocks - the Ypresian with its lagoon facies being carbonate and the Vraconian shaly - variations in the type of organic matter can be noted, although both are of marine origin. The hydrocarbons generated from these source rocks reflect these variations and permit them to correlate the different crude oils found in this area with their original source beds.

  15. Fossil record of Ephedra in the Lower Cretaceous (Aptian), Argentina.

    Science.gov (United States)

    Puebla, Gabriela G; Iglesias, Ari; Gómez, María A; Prámparo, Mercedes B

    2017-05-20

    Fossil plants from the Lower Cretaceous (upper Aptian) of the La Cantera Formation, Argentina, are described. The fossils studied represent a leafy shooting system with several orders of articulated and striated axes and attached leaves with unequivocal ephedroid affinity. We also found associated remains of ovulate cones with four whorls of sterile bracts, which contain two female reproductive units (FRU). Ovulate cone characters fit well within the genus Ephedra. Special characters in the ovulate cones including an outer seed envelope with two types of trichomes, allowed us to consider our remains as a new Ephedra species. Abundant dispersed ephedroid pollen obtained from the macrofossil-bearing strata also confirms the abundance of Ephedraceae in the basin. The co-occurrence of abundant fossil of Ephedra (adapted to dry habitats) associated with thermophilic cheirolepideacean conifer pollen (Classopollis) in the unit would suggest marked seasonality at the locality during the Early Cretaceous. Furthermore, the floristic association is linked to dry sensitive rocks in the entire section. The macro- and microflora from San Luis Basin are similar in composition to several Early Cretaceous floras from the Northern Gondwana floristic province, but it may represent one of the southernmost records of an arid biome in South America.

  16. Cretaceous shallow drilling, US Western Interior: Core research

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, M.A.

    1993-02-17

    This project is a continuing multidisciplinary study of middle to Upper Cretaceous marine carbonate and clastic rocks in the Utah-Colorado-Kansas corridor of the old Cretaceous seaway that extended from the Gulf Coast to the Arctic during maximum Cretaceous transgressions. It is collaborative between in the US Geological Survey (W.E. Dean, P.I.) and University researchers led by The Pennsylvania State University(M.A. Arthur, P.I.) and funded by DOE and the USGS, in part. Research focusses on the Greenhom, Niobrara and lower Pierre Shale units and their equivalents, combining biostratigraphic/paleoecologic studies, inorganic, organic and stable isotopic geochemical studies, mineralogical investigations and high-resolution geophysical logging. This research requires unweathered samples and continuous smooth exposures'' in the form of cores from at least 4 relatively shallow reference holes (i.e. < 1000m) in transect from east to west across the basin. The major initial effort was recovery in Year 1 of the project of continuous cores from each site in the transect. This drilling provided samples and logs of strata ranging from pelagic sequences that contain organic-carbon-rich marine source rocks to nearshore coal-bearing units. This transect also will provide information on the extent of thermal maturation and migration of hydrocarbons in organic-carbon-rich strata along a burial gradient.

  17. Upper cretaceous magmatic suites of the Timok magmatic complex

    Directory of Open Access Journals (Sweden)

    Banješević Miodrag

    2010-01-01

    Full Text Available The Upper Cretaceous Timok Magmatic Complex (TMC developed on a continental crust composed of different types of Proterozoic to Lower Cretaceous rocks. The TMC consists of the magmatic suites: Timok andesite (AT - Turonian-Santonian, Metovnica epiclastite (EM - Coniacian-Campanian, Osnić basaltic andesite (AO and Ježevica andesite (AJ - Santonian-Campanian, Valja Strž plutonite (PVS - Campanian and Boljevac latite (LB. The sedimentary processes and volcanic activity of the TMC lasted nearly continuously throughout nearly the whole Late Cretaceous. The sedimentation lasted from the Albian to the Maastrichtian and the magmatism lasted for 10 million years, from the Upper Turonian to the Upper Campanian. The volcanic front migrated from East to West. The volcanic processes were characterized by the domination of extrusive volcanic facies, a great amount of volcanic material, a change in the depositional environment during the volcanic cycle, sharp facial transitions and a huge deposition of syn- and post-eruptive resedimented volcaniclastics.

  18. Late Cretaceous (Maestrichtian) Calcareous Nannoplankton Biogeography with Emphasis on Events Immediately Preceding the Cretaceous/Paleocene Boundary

    Science.gov (United States)

    1993-02-01

    Yucatan Peninsula ( Mexico ) was proposed as the site of the K/P boundary impact (Hildebrand et al., 1991). In contrast to extraterrestrial causes of...Paleotemperatures. Spoleto, July 26-27, 1965. Consiglio Nazionale delle Richerche, Laboratorio di Geologia Nucleare, Pisa, 1-22. 3 Crux, J. A., 1991...Jacobsen, S. B., and Boynton, W. V., 1991. Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatin Peninsula, Mexico . lgl.Lvg

  19. Stratigraphy and palaeoclimate of Spitsbergen, Svalbard, during the Early Cretaceous

    Science.gov (United States)

    Vickers, Madeleine; Price, Gregory; Watkinson, Matthew; FitzPatrick, Meriel; Jerrett, Rhodri

    2016-04-01

    During the Early Cretaceous, Spitsbergen was located at a palaeolatitude of ~60°N. Abundant fossil wood derived from conifer forests, dinosaur trackways, enigmatic deposits such as glendonites, and stable isotope data from the Early Cretaceous formations of Spitsbergen suggest that the climate at that time was much more dynamic than the traditional view of "invariant greenhouse" conditions on Earth. The Early Cretaceous succession in central Spitsbergen comprises a regressive-transgressive mega-cycle. This is made up of the deep water to wave-dominated, Berriasian-Hauterivian Rurikfjellet Formation; the deltaic, Barremian Helvetiafjellet Formation; and the coastal to deep water, Aptian-Albian Carolinefjellet Formation. An erosion surface marks the base of the Helvetiafjellet Formation. Two regions with excellently exposed Early Cretaceous strata were chosen for study in this project: the Festningen section, on the north-western side of Isfjorden; and outcrops found along Adventdalen, near Longyearbyen, ~40km northeast of Festningen. We present the data collected in July 2015 from the Adventdalen area, and compare and correlate it with sedimentological and geochemical data collected from the Festningen succession in 2014. The Festningen section records a full sequence from the Berriasian to the Aptian, whereas the Longyearbyen sections record Aptian-Albian deposition. We use carbon isotope stratigraphy to constrain the Barremian-Aptian boundary in the previously only indirectly-dated Helvetiafjellet Formation, and to identify other major global climatic and carbon cycle perturbations in the Early Cretaceous. We are thus able to correlate this succession with other successions globally. We combine this δ13C(terrestrial) data with sedimentological and petrological data to elucidate the origins of enigmatic glendonites found in both regions. Glendonites are thought to be associated with cold-water (and therefore also cold-climate) conditions, although their mode of

  20. Island life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago

    Directory of Open Access Journals (Sweden)

    Zoltan Csiki-Sava

    2015-01-01

    Full Text Available The Late Cretaceous was a time of tremendous global change, as the final stages of the Age of Dinosaurs were shaped by climate and sea level fluctuations and witness to marked paleogeographic and faunal changes, before the end-Cretaceous bolide impact. The terrestrial fossil record of Late Cretaceous Europe is becoming increasingly better understood, based largely on intensive fieldwork over the past two decades, promising new insights into latest Cretaceous faunal evolution. We review the terrestrial Late Cretaceous record from Europe and discuss its importance for understanding the paleogeography, ecology, evolution, and extinction of land-dwelling vertebrates. We review the major Late Cretaceous faunas from Austria, Hungary, France, Spain, Portugal, and Romania, as well as more fragmentary records from elsewhere in Europe. We discuss the paleogeographic background and history of assembly of these faunas, and argue that they are comprised of an endemic ‘core’ supplemented with various immigration waves. These faunas lived on an island archipelago, and we describe how this insular setting led to ecological peculiarities such as low diversity, a preponderance of primitive taxa, and marked changes in morphology (particularly body size dwarfing. We conclude by discussing the importance of the European record in understanding the end-Cretaceous extinction and show that there is no clear evidence that dinosaurs or other groups were undergoing long-term declines in Europe prior to the bolide impact.

  1. The origin and early evolution of metatherian mammals: the Cretaceous record

    Directory of Open Access Journals (Sweden)

    Thomas E. Williamson

    2014-12-01

    Full Text Available Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

  2. The origin and evolution of the Cretaceous Benue Trough (Nigeria)

    Science.gov (United States)

    Benkhelil, J.

    The intracontinental Benue Trough was initiated during the Lower Cretaceous in relation with the Atlantic Ocean opening. The first stage of its evolution started in the Aptian, forming isolated basins with continental sedimentation. In the Albian times, a great delta developed in the Upper Benue Trough, while the first marine transgression coming from the opening Gulf of Guinea occurred in the south and reached the Middle Benue. The widespread Turonian transgression made the Atlantic and Tethys waters communicate through the Sahara, Niger basins and the Benue Trough. The tectonic evolution of the Benue Trough was closely controlled by transcurrent faulting through an axial fault system, developing local compressional and tensional regimes and resulting in basins and basement horsts along releasing and restraining bends of the faults. Two major compressional phases occurred: in the Abakaliki area (southern Benue) during the Santonian; and at the end of the Cretaceous in the Upper Benue Trough. In Abakaliki, the sedimentary infilling was severely deformed through folding and flattening, and moderate folding and fracturing occurred in the northeast. The Cretaceous magmatism was restricted to main fault zones in most of the trough but was particularly active in the Abakaliki Trough, where it has alkaline affinities. From Albian to Santonian, the magmatism was accompanied in part of the Abakaliki Trough by a low-grade metamorphism. Geophysical data indicate a crustal thinning beneath the Benue Trough and, at a superficial level, an axial basement high flanked by two elongated deep basins including isolated sub-basins. The model of the tectonic evolution of the trough is based upon a general sinistral wrenching along the trough responsible for the structural arrangement and the geometry of the sub-basins. During the early stages of the Gulf of Guinea opening the Benue Trough was probably the expression on land of the Equatorial Fracture Zones.

  3. Rise to dominance of angiosperm pioneers in European Cretaceous environments.

    Science.gov (United States)

    Coiffard, Clément; Gomez, Bernard; Daviero-Gomez, Véronique; Dilcher, David L

    2012-12-18

    The majority of environments are dominated by flowering plants today, but it is uncertain how this dominance originated. This increase in angiosperm diversity happened during the Cretaceous period (ca. 145-65 Ma) and led to replacement and often extinction of gymnosperms and ferns. We propose a scenario for the rise to dominance of the angiosperms from the Barremian (ca. 130 Ma) to the Campanian (ca. 84 Ma) based on the European megafossil plant record. These megafossil data demonstrate that angiosperms migrated into new environments in three phases: (i) Barremian (ca. 130-125 Ma) freshwater lake-related wetlands; (ii) Aptian-Albian (ca. 125-100 Ma) understory floodplains (excluding levees and back swamps); and (iii) Cenomanian-Campanian (ca. 100-84 Ma) natural levees, back swamps, and coastal swamps. This scenario allows for the measured evolution of angiosperms in time and space synthesizing changes in the physical environment with concomitant changes in the biological environment. This view of angiosperm radiation in three phases reconciles previous scenarios based on the North American record. The Cretaceous plant record that can be observed in Europe is exceptional in many ways. (i) Angiosperms are well preserved from the Barremian to the Maastrichtian (ca. 65 Ma). (ii) Deposits are well constrained and dated stratigraphically. (iii) They encompass a full range of environments. (iv) European paleobotany provides many detailed studies of Cretaceous floras for analysis. These factors make a robust dataset for the study of angiosperm evolution from the Barremian to the Campanian that can be traced through various ecosystems and related to other plant groups occupying the same niches.

  4. Evidence For Volcanic Initiation Of Cretaceous Ocean Anoxic Events (Invited)

    Science.gov (United States)

    Sageman, B. B.; Hurtgen, M. T.; McElwain, J.; Adams, D.; Barclay, R. S.; Joo, Y.

    2010-12-01

    Increasing evidence from studies of Cretaceous ocean anoxic events (OAE’s) has suggested that major changes in volcanic activity may have played a significant role in their genesis. Numerous specific mechanisms of have been proposed, including increases in atmospheric CO2 and surface temperature, leading to enhanced chemical weathering and terrestrial nutrient release, or increases in reduced trace metal fluxes, leading to oxygen depletion and possibly providing micronutrients for enhanced primary production. An additional pathway by which the byproducts of enhanced volcanic activity may have contributed to OAE genesis involves relationships between the biogeochemical cycles sulfur, iron, and phosphorus. Recent analysis of S-isotope data from carbonate-associated sulfate and pyrite collected across the Cenomanian-Turonian OAE2 in the Western Interior basin suggest that increases in sulfate to an initially sulfate-depleted ocean preceded onset of the event. Modern lake data support the idea that increases in sulfate concentration drive microbial sulfate reduction, leading to more efficient regeneration of P from sedimentary organic matter. If the early Cretaceous opening of the South Atlantic was accompanied by evaporite deposition sufficient to draw down global marine sulfate levels, and widespread anoxia leading to elevated pyrite burial helped maintain these low levels for the succeeding 30 myr, during which most Cretaceous OAE’s are found, perhaps pulses of volcanism that rapidly introduced large volumes of sulfate may have played a key role in OAE initiation. The eventually burial of S in the form of pyrite may have returned sulfate levels to a low background, thus providing a mechanism to terminate the anoxic events. This talk will review the evidence for volcanic initiation of OAE’s in the context of the sulfate-phosphorus regeneration model.

  5. Late Cretaceous tectonic framework of the Tibetan Plateau

    Science.gov (United States)

    Wu, Zhenhan; Barosh, Patrick J.; Ye, Peisheng; Hu, Daogong

    2015-12-01

    New research, coupled with previous data, reveals the Late Cretaceous paleo-geography, and related paleo-tectonic movement of the Tibetan Plateau. A vast ocean, the Neo-Tethys Ocean, perhaps as wide as ∼7000 km, existed between the Indian and Eurasian Continental Plates in the early Late Cretaceous. In addition, a Himalaya Marginal Sea lay along the border of the Indian Plate and other marginal seas were present to the north in both the southern Lhasa and southwestern Tarim Blocks. Northward subduction of the Neo-Tethys Oceanic Plate along the Yalung-Zangbu Suture closed most of the ocean and led to intensive thrusting, tight folding, magmatic plutonism and volcanic eruptions in the central plateau to the north. A magmatic arc up to 500 km wide formed across the southern margin of the continental plate in central Tibet and its varying granitic composition appears to reflect the depth to the subducted plate and define its geometry. A series of large, chiefly north-dipping thrust systems also developed across central Tibet. These include thrusts along the Yalung-Zangbu and Bangong-Nujiang Sutures, the North Gangdese and North Lhasa Thrusts in the Lhasa Block, the Qiangtang and North Tangula Thrusts in the Qiangtang block, the Hoh-Xil and Bayan Har Thrusts in the Hoh-Xil Block, as well as the sinistral-slip South Kunlun and Altyn Tagh Faults in northern Tibet. Uplifts formed above the hanging walls of the major thrusts and their eroded debris formed thick red-beds in basins below them. The central Tibetan Plateau maintained a low elevation and coastal vegetation was dominant during the Late Cretaceous.

  6. Rise to dominance of angiosperm pioneers in European Cretaceous environments

    Science.gov (United States)

    Coiffard, Clément; Gomez, Bernard; Daviero-Gomez, Véronique; Dilcher, David L.

    2012-01-01

    The majority of environments are dominated by flowering plants today, but it is uncertain how this dominance originated. This increase in angiosperm diversity happened during the Cretaceous period (ca. 145–65 Ma) and led to replacement and often extinction of gymnosperms and ferns. We propose a scenario for the rise to dominance of the angiosperms from the Barremian (ca. 130 Ma) to the Campanian (ca. 84 Ma) based on the European megafossil plant record. These megafossil data demonstrate that angiosperms migrated into new environments in three phases: (i) Barremian (ca. 130–125 Ma) freshwater lake-related wetlands; (ii) Aptian–Albian (ca. 125–100 Ma) understory floodplains (excluding levees and back swamps); and (iii) Cenomanian–Campanian (ca. 100–84 Ma) natural levees, back swamps, and coastal swamps. This scenario allows for the measured evolution of angiosperms in time and space synthesizing changes in the physical environment with concomitant changes in the biological environment. This view of angiosperm radiation in three phases reconciles previous scenarios based on the North American record. The Cretaceous plant record that can be observed in Europe is exceptional in many ways. (i) Angiosperms are well preserved from the Barremian to the Maastrichtian (ca. 65 Ma). (ii) Deposits are well constrained and dated stratigraphically. (iii) They encompass a full range of environments. (iv) European paleobotany provides many detailed studies of Cretaceous floras for analysis. These factors make a robust dataset for the study of angiosperm evolution from the Barremian to the Campanian that can be traced through various ecosystems and related to other plant groups occupying the same niches. PMID:23213256

  7. Cretaceous stratigraphy and biostratigraphy, Sierra Blanca basin, southeastern New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, S.G. (New Mexico Museum of Natural History, Albuquerque, NM (United States)); Anderson, O.R. (New Mexico Bureau of Mines Mineral Resources, Socorro, NM (United States))

    1994-03-01

    The Sierra Blanca basin of Otero and Lincoln counties, New Mexico contains a Lower (upper Albian)-Upper (Santonian) Cretaceous section of marine and nonmarine strata as much as 700 m thick which represent the upper part of a regressive cycle followed by two transgressive-regressive deposition cycles. The lower 55 m of the Cretaceous section are the same tripartite Dakota Group units recognized in Guadalupe and San Miguel counties: basal Mesa Rica Sandstone (late Albian), medial Pajarito formation (late Albian) and upper Romeroville sandstone (earliest Cenomanian). The Mesa Rica and Pajarito represent a regression and are overlain disconformably by the transgressive Romeroville sandstone. Overlying transgressive marine clastics and minor carbonates of the Mancos Shale are as much as 73 m thick and include the early Turonian Greenhorn Limestone. The overlying Tres Hermanos formation (up to 91 m thick) consists of the (ascending order) Atarque sandstone and the Carthage and Fite Ranch sandstone members. These strata represent a mid-Turonian regression in response to regional tectonism (Atarque and Carthage), followed by a transgression (Fite Ranch sandstone) that ended in the deposition of the D-Cross Tongue of the Mancos Shale and Fort Hays Member of the Niobrara Formation during the late Turonian. The subsequent regression began with the Coniacian Gallup Sandstone (55 m) followed by coal-bearing Crevasse Canyon Formation (up to 244 m thick). The Coniacian-Santonian Crevasse Canyon Formation, the youngest Cretaceous unit in the basin, is disconformably overlain by middle Eocene conglomerates and red-bed siliciclastics of the Cub Mountain formation. Dakota Group age determinations in the Sierra Blanca basin are those of well-dated sections to the north, but ammonites and inoceramid bivalves from the Sierra Blanca basin provide precise age control for Cenomanian-Santonian marine and marginal marine strata and palynology and megafossil plants for nonmarine strata.

  8. Fossil woods from the Late Cretaceous Aachen Formation.

    Science.gov (United States)

    Meijer

    2000-11-01

    Silicified fossil woods from the Late Cretaceous (Santonian) Aachen Formation of northeast Belgium, southernmost Netherlands and adjacent Germany were investigated. Gymnosperms dominate this assemblage: Taxodioxylon gypsaceum, T. cf. gypsaceum, T. cf. albertense (all Taxodiaceae), Dammaroxylon aachenense sp. nov. (Araucariaceae), Pinuxylon sp. (Pinaceae), and Scalaroxylon sp. (Cycad or Cycadeoid). Angiosperms are minor constituents: Nyssoxylon sp. (Nyssaceae?, Cornaceae?), Mastixioxylon symplocoides sp. nov. (Mastixiaceae?, Symplocaceae?), Plataninium decipiens (Platanaceae) and Paraphyllanthoxylon cf. marylandense (Anacardiaceae?, Burseraceae?, Lauraceae?).The composition of this assemblage and the anatomy of the woods indicate a seasonal and humid warm-temperate to subtropical climate.

  9. BAURU GROUP (LATE CRETACEOUS VERTEBRATES FROM TRIÂNGULO MINEIRO

    Directory of Open Access Journals (Sweden)

    Carlos Roberto dos Anjos Candeiro

    2005-06-01

    Full Text Available The Triângulo Mineiro (Minas Gerais State and western São Paulo State have a rich and diversefauna of Late Cretaceous vertebrates from Adamantina, Uberaba and Marília formations (BauruGroup. This paper attempts to list the vertebrate fauna known from each formation within theTriângulo Mineiro region and western São Paulo using the most recent and accepted definition foreach formation or higher taxonomical group. The faunal list produced now gives us a clearerunderstanding of the stratigraphical distribution of the Bauru Group vertebrates.

  10. The Early Cretaceous Hemeroscopid larva fossils from Beijing, China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    More than 100 Hemeroscopid larva fossils were discovered from the Lower Cretaceous in Southwest Beijing,which effectively ends the discussion of morphology and makes it more complete. It is assigned within the LibelluIoidea, and shows close evolutionary correlations with modern Libellulidae. Although the wing characters of adult Hemeroscopus from the same formation indicates the close relationship to Aeschnoidea, we suggest that the larvae and the adults were the same species. Therefore, it probably shows the evolutionary ancestors of Libellulidae. Being the fundamental species discriminating Jehol Entomofauna and Lushangfen Entomofauna, Hemeroscopus bears great significance in the study of stratigraphy.``

  11. The elasmobranch Cretolamna appendiculata in the Upper Cretaceous – Gosau beds near Stranice, Eastern Slovenia

    Directory of Open Access Journals (Sweden)

    Vasja Mikuž

    2003-06-01

    Full Text Available A tooth of chodrostean fish, found in Upper Cretaceous Gosau facies in the quarry near Stranice, is described. In the rocks occurs an abundance of various fossil remains, from the predominanting avertebrates to rare vertebrates. Morphology and size of tooth indicate it belong to the very frequent Cretaceous – Paleogene species Cretolamna appendiculata (Agassiz, 1843.

  12. A New Thorny Lacewing (Insecta:Neuroptera:Rhachiberothidae) from the Early Cretaceous Amber of Lebanon

    Institute of Scientific and Technical Information of China (English)

    Julian F.PETRULEVI(C)IUS; Dany AZAR; André NEL

    2010-01-01

    A new genus and species of Rhachiberothidae,Raptorapax terribilissima gen.et sp.nov.from the Cretaceous amber of Lebanon is described.The new genus is assigned to the subfamily Paraberothinae.The new material confirms the great diversity of the group in the Cretaceous age and its decrease in diversity in recent times.

  13. Ginkgo from Lower Cretaceous Changcai Formation in Helong of Jilin, NE China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on gross morphological and cuticular study, two species of Ginkgo From the Lower Cretaceous Changcai Formation in Helong of Jilin. were identified from this area for the first time, including Ginkgo coriacea Florin and G.sibiricaHeer. The study is significant for better understanding the paleophytogeographic, paleoecologicandstratigraphic characters of the Early Cretaceous Changcai flora.

  14. REVISION OF THE SCLERACTINIAN CORAL GENUS DIPLOCOENIA AND RE-DESCRIPTION OF THE CRETACEOUS SPECIES

    Directory of Open Access Journals (Sweden)

    HANNES LÖSER

    2009-03-01

    Full Text Available The Cretaceous species of the coral genus Diplocoenia are revised, mainly on the basis of sample material. This genus is characterised by polygonal calices in a cerioid arrangement, compact septa in a regular symmetry and a dissepimental ring with the appearance of a second inner wall. Of the 18 Cretaceous species reported in the literature, five are confirmed, four are synonyms and nine do not belong to this genus. The species with the widest geographic and stratigraphic distribution is Diplocoenia dollfusi Prever, 1909, originally described from the Monti d’Ocre complex in the Abruzzi region. The genus occurs in the Cretaceous only in the central Tethys and in the Boreal, and ranges from the Middle Jurassic to the Aptian (?early Albian. Only about 50 samples from the Cretaceous exist or are known from the literature, making Diplocoenia rather rare in the Cretaceous

  15. Cretaceous Environments of Afghanistan:A Synthesis Based on Selected Sections

    Institute of Scientific and Technical Information of China (English)

    Abdul Rahman Ashraf; Ashok Sahni

    2003-01-01

    The Cretaceous of Afghanistan is marked by great facies diversity. The evolution of Cretaceous basins is part of a complex accretionary history involving three distinct tectonic units namely the Asian (Russian) Block separated from the Indian plate by a rather well defined transcurrent fault (Chaman-Nuski). The southwestern component is representedby the Iran-Afghanistan plate. The Lower Cretaceous of the Asian Block is represented by the Red-Grit Series which isconformable to the underlying Upper Jurassic sequences. The transition is marked by evaporitic facies dominated by salt,gypsum and marl deposits. In south Afghanistan volcanic rocks occur at Farah, with the emplacement of plutonics inwest-central Afghanistan. The Upper Cretaceous of north Afghanistan is marked by richly fossiliferous, lime stone-dominated sequences. The Upper Cretaceous of southern Afghanistan is marked by strong ophiolitic magrmatism.

  16. Depositional environments of the subsurface Cretaceous deposits of southeastern North Carolina

    Science.gov (United States)

    Custer, E. S., Jr.

    1981-02-01

    The subsurface Cretaceous deposits of southeastern North Carolina were analyzed. Six lithologic units were recognized. These are, in ascending stratigraphic order: an unnamed Lower Cretaceous unit, Cape Fear Formation, unnamed Upper Cretaceous unit, Middendorf Formation, Black Creek Formation, and Peedee Formation. The unnamed Lower Cretaceous unit contains interbedded fine to medium grained sands, calcareous sandstones, sandy limestones and clays which were deposited in environments ranging from nearshore to fluvial. The Cape Fear Formation consists of very fine to coarse tan sands interbedded with brown and reddish clays. The Upper Cretaceous unnamed unit is composed of tan and yellow medium to coarse sands interbedded with tan and red clays deposited in braided fluvial environments. The Black Creek Formation consists of lignitic dark clays and coarse to very fine sands. Formation is composed of dark green to greenish-gray, micaceous, glauconitic clays and sands interbedded with calcareous sandstones or sandy limestones.

  17. New ophthalmosaurid ichthyosaurs from the European Lower Cretaceous demonstrate extensive ichthyosaur survival across the Jurassic-Cretaceous boundary.

    Directory of Open Access Journals (Sweden)

    Valentin Fischer

    Full Text Available BACKGROUND: Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic-Cretaceous boundary (JCB, and one (resulting in total extinction at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian-Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian-Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian-Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian-Barremian interval and the JCB records one of the highest survival rates of the interval. CONCLUSIONS/SIGNIFICANCE: There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle

  18. Spherules associated with the cretaceous-paleogene boundary in Poland

    Science.gov (United States)

    Brachaniec, Tomasz; Karwowski, Łukasz; Szopa, Krzysztof

    2014-03-01

    The succession of the Lechówka section near Chełm in south-eastern Poland presents the first complete record of the Cretaceous-Paleogene (K-Pg) boundary in Poland. Samples of the boundary clay were examined for microtektites and shocked minerals to confirm the impact origin of the sediment. The spheroidal fraction reveals morphological and mineralogical features, e.g., spherules, similar to material from the K-Pg boundary as described from elsewhere. The impact genesis of the spherules is confirmed by the presence of nickel-rich spinel grains on their surfaces. The spinels are considered to be primary microlites and, thus, the spherules at Lechówka can be classified as microkrystites. No shocked minerals were noted. The deposits with spherules comprise Aland Mg-rich smectite (Cheto smectite). This almost pure Mg-rich smectite, forming up to 100% of the clay fraction, derived from the weathering of the impact glass. It is proposed that the spherules isolated from the Cretaceous- Paleogene boundary clay at Lechówka come from the Chicxulub crater in Mexico.

  19. New fossil ants in French Cretaceous amber (Hymenoptera: Formicidae)

    Science.gov (United States)

    Perrichot, Vincent; Nel, André; Néraudeau, Didier; Lacau, Sébastien; Guyot, Thierry

    2008-02-01

    Recent studies on the ant phylogeny are mainly based on the molecular analyses of extant subfamilies and do not include the extinct, only Cretaceous subfamily Sphecomyrminae. However, the latter is of major importance for ant relationships, as it is considered the most basal subfamily. Therefore, each new discovery of a Mesozoic ant is of high interest for improving our understanding of their early history and basal relationships. In this paper, a new sphecomyrmine ant, allied to the Burmese amber genus Haidomyrmex, is described from mid-Cretaceous amber of France as Haidomyrmodes mammuthus gen. and sp. n. The diagnosis of the tribe Haidomyrmecini is emended based on the new type material, which includes a gyne (alate female) and two incomplete workers. The genus Sphecomyrmodes, hitherto known by a single species from Burmese amber, is also reported and a new species described as S. occidentalis sp. n. after two workers remarkably preserved in a single piece of Early Cenomanian French amber. The new fossils provide additional information on early ant diversity and relationships and demonstrate that the monophyly of the Sphecomyrminae, as currently defined, is still weakly supported.

  20. Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber

    Science.gov (United States)

    Martín-González, Ana; Wierzchos, Jacek; Gutiérrez, Juan C.; Alonso, Jesús; Ascaso, Carmen

    2009-05-01

    Microorganisms are the most ancient cells on this planet and they include key phyla for understanding cell evolution and Earth history, but, unfortunately, their microbial records are scarce. Here, we present a critical review of fossilized prokaryotic and eukaryotic microorganisms entrapped in Cretaceous ambers (but not exclusively from this geological period) obtained from deposits worldwide. Microbiota in ambers are rather diverse and include bacteria, fungi, and protists. We comment on the most important microbial records from the last 25 years, although it is not an exhaustive bibliographic compilation. The most frequently reported eukaryotic microfossils are shells of amoebae and protists with a cell wall or a complex cortex. Likewise, diverse dormant stages (palmeloid forms, resting cysts, spores, etc.) are abundant in ambers. Besides, viral and protist pathogens have been identified inside insects entrapped in amber. The situation regarding filamentous bacteria and fungi is quite confusing because in some cases, the same record was identified consecutively as a member of these phylogenetically distant groups. To avoid these identification errors in the future, we propose to apply a more resolute microscopic and analytical method in amber studies. Also, we discuss the most recent findings about ancient DNA repair and bacterial survival in remote substrates, which support the real possibility of ancient DNA amplification and bacterial resuscitation from Cretaceous resins.

  1. Late cretaceous aquatic plant world in Patagonia, Argentina.

    Directory of Open Access Journals (Sweden)

    N Rubén Cúneo

    Full Text Available In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla and a monocot (Araceae. Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae. Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form and the eudicot angiosperm Nelumbo (Nelumbonaceae are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae, ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America.

  2. New and revised maimetshid wasps from Cretaceous ambers (Hymenoptera, Maimetshidae

    Directory of Open Access Journals (Sweden)

    Vincent Perrichot

    2011-09-01

    Full Text Available New material of the wasp family Maimetshidae (Apocrita is presented from four Cretaceous amber deposits – the Neocomian of Lebanon, the Early Albian of Spain, the latest Albian/earliest Cenomanian of France, and the Campanian of Canada. The new record from Canadian Cretaceous amber extends the temporal and paleogeographical range of the family. New material from France is assignable to Guyotemaimetsha enigmatica Perrichot et al. including the first females for the species, while a series of males and females from Spain are described and figured as Iberomaimetsha Ortega-Blanco, Perrichot, and Engel gen. n., with the two new species Iberomaimetsha rasnitsyni Ortega-Blanco, Perrichot, and Engel sp. n. and I. nihtmara Ortega-Blanco, Delclòs, and Engel sp. n.; a single female from Lebanon is described and figured as Ahiromaimetsha najlae Perrichot, Azar, Nel, and Engel gen. et sp. n., and a single male from Canada is described and figured as Ahstemiam cellula McKellar and Engel gen. et sp. n. The taxa are compared with other maimetshids, a key to genera and species is given, and brief comments made on the family.

  3. Debris-carrying camouflage among diverse lineages of Cretaceous insects

    Science.gov (United States)

    Wang, Bo; Xia, Fangyuan; Engel, Michael S.; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A.; Wappler, Torsten; Rust, Jes

    2016-01-01

    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects. PMID:27386568

  4. Late Cretaceous Aquatic Plant World in Patagonia, Argentina

    Science.gov (United States)

    Cúneo, N. Rubén; Gandolfo, María A.; Zamaloa, María C.; Hermsen, Elizabeth

    2014-01-01

    In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America. PMID:25148081

  5. Late cretaceous aquatic plant world in Patagonia, Argentina.

    Science.gov (United States)

    Cúneo, N Rubén; Gandolfo, María A; Zamaloa, María C; Hermsen, Elizabeth

    2014-01-01

    In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America.

  6. Mountain building triggered late cretaceous North American megaherbivore dinosaur radiation.

    Directory of Open Access Journals (Sweden)

    Terry A Gates

    Full Text Available Prior studies of Mesozoic biodiversity document a diversity peak for dinosaur species in the Campanian stage of the Late Cretaceous, yet have failed to provide explicit causal mechanisms. We provide evidence that a marked increase in North American dinosaur biodiversity can be attributed to dynamic orogenic episodes within the Western Interior Basin (WIB. Detailed fossil occurrences document an association between the shift from Sevier-style, latitudinally arrayed basins to smaller Laramide-style, longitudinally arrayed basins and a well substantiated decreased geographic range/increased taxonomic diversity of megaherbivorous dinosaur species. Dispersal-vicariance analysis demonstrates that the nearly identical biogeographic histories of the megaherbivorous dinosaur clades Ceratopsidae and Hadrosauridae are attributable to rapid diversification events within restricted basins and that isolation events are contemporaneous with known tectonic activity in the region. SymmeTREE analysis indicates that megaherbivorous dinosaur clades exhibited significant variation in diversification rates throughout the Late Cretaceous. Phylogenetic divergence estimates of fossil clades offer a new lower boundary on Laramide surficial deformation that precedes estimates based on sedimentological data alone.

  7. Formation of the Upper Cretaceous cherts in northeastern Sinai, Egypt

    Science.gov (United States)

    Genedi, Adel

    1998-02-01

    The Upper Cretaceous cherts in northeast Sinai, Egypt are found as nodules, tabular sheets and continuous beds within the carbonate dominated successions. They occur in the Halal, Wata and Matulla Formations and become a very conspicuous constituent in the Sudr Chalk. The chert framework is typical of all interstratal structures and is of two types: spotted and brecciated forms. The chert is classified into a fossiliferous and nonfossiliferous variety. The first is likely either to form packstone-grainstone fabrics or to form wackestone fabrics. The packstone-grainstone fabric is interpreted as replacing platform carbonate deposits at relatively lower energy but in an oxygenated environment while the wackestone fabric chert replaces low energy deep water carbonates. This Upper Cretaceous silica cycle was dominated by inorganic reactions involving dissolved silica, and there is much evidence of secondary diagenetic silicification. This process would have started in early diagenesis as opal-A, opal-C and opal-CT precipitated from interstitial waters. Quartz represents the end product of recrystallisation. This transformation from metastable to stable silica phases is explained as a solid-solid diagenetic reaction as emphasised by δ18O. The nodular cherts have formed in coastal mixing zones with opal-CT and quartz supersaturation and calcite undersaturation. The source of silica of the deep water cherts cannot be explained by this mixing zone model and needs further study. On the other hand, there is no evidence of deposition of layered amorphous silica in either shallow or deep environments.

  8. The first Late Cretaceous (Maastrichtian dinosaur footprints from Transylvania (Romania

    Directory of Open Access Journals (Sweden)

    Matei Vremir

    2002-09-01

    Full Text Available An Uppermost Cretaceous (Maastrichtian site exposing dinosaur footprints is reported from the Sebes̡ area (Transylvanian Depression. This is the first dinoturbated layer discovered in our country, containing also numerous bones belonging to various dinosaurs. The track-site is located near Lancrăm village and provides only two quite well preserved footprints (one track. The medium sized (FL = 23,3 cm; FW = 17,8 cm; pace = 103 cm; ST = 200 cm plantigrad-tridactyle footprints belong to Ornithopedoidei, according to their morphology. An assignment to the Iguanodontichnus CASAMIQUELA & FASOLA, 1968 group seems to be appropriate (tentatively, associated to the “Rhabdodon” iguanodontian dinosaur. The importance of this discovery lies in the stratigraphical significance, confirming the Uppermost Cretaceous age of these dinosaur-bearing continental deposits exposed between Sebes̡ and Alba-Iulia (as well as the autochthon/ paraautochon status of some vertebrate assemblages identified there, which previously were considered Oligocene or even Miocene. Additional data regarding size, speed and locomotion of the Transylvanian Iguanodontian ”Rhabdodon” dinosaurs are added.

  9. Cretaceous origin and repeated tertiary diversification of the redefined butterflies.

    Science.gov (United States)

    Heikkilä, Maria; Kaila, Lauri; Mutanen, Marko; Peña, Carlos; Wahlberg, Niklas

    2012-03-22

    Although the taxonomy of the ca 18 000 species of butterflies and skippers is well known, the family-level relationships are still debated. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the superfamilies Papilionoidea, Hesperioidea and Hedyloidea to date based on morphological and molecular data. We reconstructed their phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification along lineages in order to reconstruct their evolutionary history. Our results suggest that the butterflies, as traditionally understood, are paraphyletic, with Papilionidae being the sister-group to Hesperioidea, Hedyloidea and all other butterflies. Hence, the families in the current three superfamilies should be placed in a single superfamily Papilionoidea. In addition, we find that Hedylidae is sister to Hesperiidae, and this novel relationship is supported by two morphological characters. The families diverged in the Early Cretaceous but diversified after the Cretaceous-Palaeogene event. The diversification of butterflies is characterized by a slow speciation rate in the lineage leading to Baronia brevicornis, a period of stasis by the skippers after divergence and a burst of diversification in the lineages leading to Nymphalidae, Riodinidae and Lycaenidae.

  10. Evolutionary transition of dental formula in Late Cretaceous eutherian mammals

    Science.gov (United States)

    Averianov, Alexander O.; Archibald, J. David

    2015-10-01

    Kulbeckia kulbecke, stem placental mammal from the Late Cretaceous of Uzbekistan, shows a transitional stage of evolution in the dental formula from five to four premolars. A non-replaced dP3/dp3 may occur as individual variation. In other specimens, the lower premolars are crowded with no space for development of dp3. As is evident from the CT scanning of one juvenile specimen, the development of dp3 started in a late ontogenetic stage and was confined to the pulp cavity of the developing p2. This dp3 would have been resorbed in a later ontogenetic stage, as the roots of p2 formed. The initial stage of reduction of the third premolar can be traced to stem therians ( Juramaia and Eomaia), which have both dP3 and P3 present in the adult dentition. Further delay in the development of dP3/dp3 led to the loss of the permanent P3/p3 (a possible synapomorphy for Eutheria). The dP3/dp3 was present during most of the adult stages in the Late Cretaceous stem placentals Zhelestidae and Gypsonictops. This tooth is totally absent in basal taxa of Placentalia, which normally have at most four premolars.

  11. Osmium Isotopic Composition of the Sumbar Cretaceous- Tertiary Boundary, Turkmenia

    Science.gov (United States)

    Meisel, T.; Krahenbuhl, U.; Nazarov, M. A.

    1992-07-01

    ., Barsukova L. D., Koselov G. M., Nizhegorodova I. V. and Amanniyazov K. N. (1988) The Cretaceous- Paleogene boundary in southern Turkmenia and its geochemical characteristics. Int. Geol. Rev. 30, 121-135. Esser B. K. and Turekian K. K. (1989) Osmium isotopic composition of the Raton Basin Cretaceous-Tertiary boundary interval. 70, 717. Kraehenbuehl U., Geissbuehler M., Buehler F. and Eberhardt P. (1988) The measurement of osmium isotopes in samples from a Cretaceous/Tertiary (K/T) section of the Raton Basin, USA. Meteoritics 23, 282. Lichte F. E., Wilson S. M., Brooks R. R., Reeves R. D., Holzbecher J. and Ryan D. E. (1986) New method for the measurement of osmium isotopes applied to a New Zealand Cretaceous/Tertiary boundary shale. Nature 322, 816-817. Luck J. M. and Turekian K. K. (1983) Osmium-^187/Osmium-^186 in manganese nodules and the Cretaceous-Tertiary boundary. Science 222, 613- 615. Turekian K. K. (1982) Potential of ^187Os/^186Os as a cosmic versus terrestrial indicator in high iridium layers of sedimentary strata. Geol. Bull. Am. Spec. Pap. 190, 243-249.

  12. Cretaceous Arctic magmatism: Slab vs. plume? Or slab and plume?

    Science.gov (United States)

    Gottlieb, E. S.; Miller, E. L.; Andronikov, A. V.; Brumley, K.; Mayer, L. A.; Mukasa, S. B.

    2010-12-01

    Tectonic models for the Cretaceous paleogeographic evolution of the Arctic Ocean and its adjacent landmasses propose that rifting in the Amerasia Basin (AB) began in Jura-Cretaceous time, accompanied by the development of the High Arctic Large Igneous Province (HALIP). During the same timespan, deformation and slab-related magmatism, followed by intra-arc rifting, took place along the Pacific side of what was to become the Arctic Ocean. A compilation and comparison of the ages, characteristics and space-time variation of circum-Arctic magmatism allows for a better understanding of the role of Pacific margin versus Arctic-Atlantic plate tectonics and the role of plume-related magmatism in the origin of the Arctic Ocean. In Jura-Cretaceous time, an arc built upon older terranes overthrust the Arctic continental margins of North America and Eurasia, shedding debris into foreland basins in the Brooks Range, Alaska, across Chukotka, Russia, to the Lena Delta and New Siberian Islands region of the Russian Arctic. These syn-tectonic sediments have some common sources (e.g., ~250-300 Ma magmatic rocks) as determined by U-Pb detrital zircon geochronology. They are as young as Valanginian-Berriasian (~136 Ma, Gradstein et al., 2004) and place a lower limit on the age of formation of the AB. Subsequent intrusions of granitoid plutons, inferred to be ultimately slab-retreat related, form a belt along the far eastern Russian Arctic continental margin onto Seward Peninsula and have yielded a continuous succession of zircon U-Pb ages from ~137-95 Ma (n=28) and a younger suite ~91-82 Ma (n=16). All plutons dated were intruded in an extensional tectonic setting based on their relations to wall-rock deformation. Regional distribution of ages shows a southward migration of the locus of magmatism during Cretaceous time. Basaltic lavas as old as 130 Ma and as young as 80 Ma (40Ar/39Ar)) erupted across the Canadian Arctic Islands, Svalbard and Franz Josef Land and are associated with

  13. Cretaceous to Recent extension in the Bering Strait region, Alaska

    Science.gov (United States)

    Dumitru, Trevor A.; Miller, Elizabeth L.; O'Sullivan, Paul B.; Amato, Jeffrey M.; Hannula, Kimberly A.; Calvert, Andrew T.; Gans, Phillip B.

    1995-06-01

    A key issue presented by the geology of northern Alaska concerns the demise of the Brooks Range going west toward the Bering Strait region. The main Brookian tectonic and stratigraphic elements continue into the Russian Far East, but the thick crustal root and high elevations that define the modern physiographic Brooks Range die out approaching the Bering and Chukchi shelves, which form an unusually broad area of submerged continental crust. Structural, geochronologic, and apatite fission-track data indicate that at least three episodes of extension may have affected the crust beneath the Bering Strait region, in the middle to Late Cretaceous, Eocene-early Oligocene, and Pliocene(?)-Recent. This extension may explain the present thinner crust of the region, the formation of extensive continental shelves, and the dismemberment and southward translation of tectonic elements as they are traced from the Brooks Range toward Russia. Evidence for these events is recorded within a gently tilted 10- to 15-km thick crustal section exposed on the western Seward Peninsula. The earliest episode is documented at high structural levels by the postcollision exhumation history of blueschists. Structural data indicate exhumation was accomplished in part by thinning of the crust during north-south extension bracketed between 120 and 90 Ma by 40Ar/39Ar and U-Pb ages. The Kigluaik Mountains gneiss dome rose through the crust during the later stages of this extension at 91 Ma. Similar gneiss domes occur within a broad, discontinuous belt of Cretaceous magmatism linking interior Alaska with northeast Russia; mantle-derived melts within this belt likely heated the crust and facilitated extension. Apatite fission-track ages indicate cooling below ≈120-85°C occurred sometime between 100 and 70 Ma, and the area subsequently resided at shallow crustal depths (<3-4 km) until the present. This suggests that denudation of deep levels of the crust by erosion and/or tectonism was mostly

  14. Milankovitch rhythms in the Cretaceous: A GCM modelling study

    Science.gov (United States)

    Park, Jeffrey; Oglesby, Robert J.

    1991-10-01

    A major feature of the Cretaceous sedimentary record is the presence of cyclical bedding in carbonate sequences, many of which have periodicities similar to those of the Milankovitch rhythms of the earth-sun orbit. We used an atmospheric general circulation model, the NCAR CCM1, to investigate changes in the modeled Cretaceous atmospheric climate resulting from imposed Milankovitch orbital insolation changes. We extend a previous study using a 100 Ma mid-Cretaceous reconstruction to include perpetual-season (January and July) effects due to changes in obliquity as well as changes in precession. A total of eighteen pairs of insolation states have been examined. We perform a regression for linear sensitivity coefficients appropriate to precession and obliquity insolation changes, as well as compute a jackknife estimate of the coefficient uncertainty. Comparison of the regression residual to inherent model variability allows an estimate of any systematic but nonlinear model response to orbital insolation changes. Of particular importance is the response of the atmospheric hydrologic cycle. Changes in this cycle are consistent with at least three examples of Cretaceous bedding cycles: (1) The South Atlantic, where cyclical changes in the E- P balance with precession and, to a lesser extent, obliquity may account for regional oxic versus anoxic cycles observed in Cretaceous marine sediments cored from this region. (2) Regional changes in E- P over the east Tethys and adjacent continents with changes in insolation, which could induce changes in the production of oceanic deep water, possibly accounting for global occurrences of cyclic anoxic conditions. (3) Our simulations show a significant response of the hydrologic cycle to obliquity in July over western North America. This response, however, is smaller and more localized than those observed in low-latitude regions, and may not be robust to small changes in model boundary conditions. For most regions and modeled

  15. Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary.

    Science.gov (United States)

    Longrich, Nicholas R; Tokaryk, Tim; Field, Daniel J

    2011-09-13

    The effect of the Cretaceous-Paleogene (K-Pg) (formerly Cretaceous-Tertiary, K-T) mass extinction on avian evolution is debated, primarily because of the poor fossil record of Late Cretaceous birds. In particular, it remains unclear whether archaic birds became extinct gradually over the course of the Cretaceous or whether they remained diverse up to the end of the Cretaceous and perished in the K-Pg mass extinction. Here, we describe a diverse avifauna from the latest Maastrichtian of western North America, which provides definitive evidence for the persistence of a range of archaic birds to within 300,000 y of the K-Pg boundary. A total of 17 species are identified, including 7 species of archaic bird, representing Enantiornithes, Ichthyornithes, Hesperornithes, and an Apsaravis-like bird. None of these groups are known to survive into the Paleogene, and their persistence into the latest Maastrichtian therefore provides strong evidence for a mass extinction of archaic birds coinciding with the Chicxulub asteroid impact. Most of the birds described here represent advanced ornithurines, showing that a major radiation of Ornithurae preceded the end of the Cretaceous, but none can be definitively referred to the Neornithes. This avifauna is the most diverse known from the Late Cretaceous, and although size disparity is lower than in modern birds, the assemblage includes both smaller forms and some of the largest volant birds known from the Mesozoic, emphasizing the degree to which avian diversification had proceeded by the end of the age of dinosaurs.

  16. A Ceratopsian Dinosaur from the Lower Cretaceous of Western North America, and the Biogeography of Neoceratopsia.

    Directory of Open Access Journals (Sweden)

    Andrew A Farke

    Full Text Available The fossil record for neoceratopsian (horned dinosaurs in the Lower Cretaceous of North America primarily comprises isolated teeth and postcrania of limited taxonomic resolution, hampering previous efforts to reconstruct the early evolution of this group in North America. An associated cranium and lower jaw from the Cloverly Formation (?middle-late Albian, between 104 and 109 million years old of southern Montana is designated as the holotype for Aquilops americanus gen. et sp. nov. Aquilops americanus is distinguished by several autapomorphies, including a strongly hooked rostral bone with a midline boss and an elongate and sharply pointed antorbital fossa. The skull in the only known specimen is comparatively small, measuring 84 mm between the tips of the rostral and jugal. The taxon is interpreted as a basal neoceratopsian closely related to Early Cretaceous Asian taxa, such as Liaoceratops and Auroraceratops. Biogeographically, A. americanus probably originated via a dispersal from Asia into North America; the exact route of this dispersal is ambiguous, although a Beringian rather than European route seems more likely in light of the absence of ceratopsians in the Early Cretaceous of Europe. Other amniote clades show similar biogeographic patterns, supporting an intercontinental migratory event between Asia and North America during the late Early Cretaceous. The temporal and geographic distribution of Upper Cretaceous neoceratopsians (leptoceratopsids and ceratopsoids suggests at least intermittent connections between North America and Asia through the early Late Cretaceous, likely followed by an interval of isolation and finally reconnection during the latest Cretaceous.

  17. Evolution and palaeoenvironment of the Bauru Basin (Upper Cretaceous, Brazil)

    Science.gov (United States)

    Fernandes, Luiz Alberto; Magalhães Ribeiro, Claudia Maria

    2015-08-01

    The Bauru Basin was one of the great Cretaceous desert basins of the world, evolved in arid zone called Southern Hot Arid Belt. Its paleobiological record consists mainly of dinosaurs, crocodiles and turtles. The Bauru Basin is an extensive region of the South American continent that includes parts of the southeast and south of Brazil, covering an area of 370,000 km2. It is an interior continental basin that developed as a result of subsidence of the central-southern part of the South-American Platform during the Late Cretaceous (Coniacian-Maastrichtian). This sag basin is filled by a sandy siliciclastic sequence with a preserved maximum thickness of 480 m, deposited in semiarid to desert conditions. Its basement consists of volcanic rocks (mainly basalts) of the Lower Cretaceous (Hauterivian) Serra Geral basalt flows, of the Paraná-Etendeka Continental Flood Basalt Province. The sag basin was filled by an essentially siliciclastic psammitic sequence. In lithostratigraphic terms the sequence consists of the Caiuá and Bauru groups. The northern and northeastern edges of the basin provide a record of more proximal original deposits, such as associations of conglomeratic sand facies from alluvial fans, lakes, and intertwined distributary river systems. The progressive basin filling led to the burial of the basaltic substrate by extensive blanket sand sheets, associated with deposits of small dunes and small shallow lakes that retained mud (such as loess). Also in this intermediate context between the edges (more humid) and the interior (dry), wide sand sheet areas crossed by unconfined desert rivers (wadis) occurred. In the central axis of the elliptical basin a regional drainage system formed, flowing from northeast to southwest between the edges of the basin and the hot and dry inner periphery of the Caiuá desert (southwest). Life in the Bauru Basin flourished most in the areas with the greatest water availability, in which dinosaurs, crocodiles, turtles, fish

  18. New crocodiles (Eusuchia: Alligatoroidea) from the Upper Cretaceous of southern Europe

    Science.gov (United States)

    Buscalioni, Angela D.; Ortega, Francisco; Vasse, Denis

    1997-10-01

    The Upper Cretaceous sites of Laño and Quintanilla del Coco in northern Spain have yielded significant crocodilian remains, allowing a more precise interpretation of the fragmentary record of southwestern Europe. Two new genera, Musturzabalsuchus and Acynodon, have been recognized. Both taxa were extinct at the end of the Cretaceous. Their relationships with the alligatoroidean Eusuchia suggest a close relationship with Paleolaurasian groups. Musturzabalsuchus might be regarded as an endemic european taxa, the oldest known member of the basal Alligatoroidea. Acynodon is the only non-North American taxon that is related to the short snouted Upper Cretaceous alligatorids.

  19. Stishovite at the cretaceous-tertiary boundary, raton, new Mexico.

    Science.gov (United States)

    McHone, J F; Nieman, R A; Lewis, C F; Yates, A M

    1989-03-03

    Stishovite, a dense phase of silica, has become widely accepted as an indicator of terrestrial impact events. Stishovite occurs at several impact structures but has not been found at volcanic sites. Solid-state silicon-29 magic-angle spinning nuclear magnetic resonance (silicon-29 MAS NMR) and X-ray diffraction of samples from the Cretaceous-Tertiary boundary layer at Raton, New Mexico, indicate that stishovite occurs in crystalline mineral grains. Stishovite was indicated by a single, sharp resonance with a chemical shift value of -191.3 ppm, characteristic of silicon in octahedral coordination, that disappeared after heating the sample at 850 degrees Celsius for 30 minutes. An X-ray diffraction pattern of HF residuals from the unheated sample displayed more than 120 peaks, most of which correspond to quartz, zircon, rutile, and anatase. Eight unambiguous weak to moderate reflections could be ascribed to d-spacings characteristic of stishovite.

  20. Lower Cretaceous calcareous nannofossils from the Southern Apuseni Mountains, Romania

    Directory of Open Access Journals (Sweden)

    Ana-Maria Vulc

    2008-10-01

    Full Text Available We investigated Lower Cretaceous calcareous nannofossils from Southern Apuseni Mts. The studied section from Bucium Cerbu quarry is characterized by flysch deposits (rhythmical interbedded marls and sandstones, which were assigned to the Căbeşti Formation. The studied nannofossil assemblages yielded a high diversity. The Early Aptian age of the studied deposits was assigned based on both the Tethyan and Boreal calcareous nannofossil zonations. Several reworked Valanginian nannofossils were also observed in the Early Aptian in situ nannofloras. The nannofloras are dominated by tethyan and cosmopolitan species. Besides Boreal species are also present. The presence of boreal taxa (e.g. Kokia borealis, K. stelatta in the Tethyan Realm reflects the palaeobiogeographical distribution and the biotic changes between Tethys and Boreal Realms in the Southern Apuseni Mts. In the studied assemblages, the dominant species are Diazomatolithus lehmanii and Watznaueria barnesiae, which can reflect a high fertility in the surface water masses.

  1. The Cretaceous superchron geodynamo: observations near the tangent cylinder.

    Science.gov (United States)

    Tarduno, John A; Cottrell, Rory D; Smirnov, Alexei V

    2002-10-29

    If relationships exist between the frequency of geomagnetic reversals and the morphology, secular variation, and intensity of Earth's magnetic field, they should be best expressed during superchrons, intervals tens of millions of years long lacking reversals. Here we report paleomagnetic and paleointensity data from lavas of the Cretaceous Normal Polarity Superchron that formed at high latitudes near the tangent cylinder that surrounds the solid inner core. The time-averaged field recorded by these lavas is remarkably strong and stable. When combined with global results available from lower latitudes, these data define a time-averaged field that is overwhelmingly dominated by the axial dipole (octupole components are insignificant). These observations suggest that the basic features of the geomagnetic field are intrinsically related. Superchrons may reflect times when the nature of core-mantle boundary heat flux allows the geodynamo to operate at peak efficiency.

  2. Plant ecological strategies shift across the Cretaceous-Paleogene boundary.

    Science.gov (United States)

    Blonder, Benjamin; Royer, Dana L; Johnson, Kirk R; Miller, Ian; Enquist, Brian J

    2014-09-01

    The Chicxulub bolide impact caused the end-Cretaceous mass extinction of plants, but the associated selectivity and ecological effects are poorly known. Using a unique set of North Dakota leaf fossil assemblages spanning 2.2 Myr across the event, we show among angiosperms a reduction of ecological strategies and selection for fast-growth strategies consistent with a hypothesized recovery from an impact winter. Leaf mass per area (carbon investment) decreased in both mean and variance, while vein density (carbon assimilation rate) increased in mean, consistent with a shift towards "fast" growth strategies. Plant extinction from the bolide impact resulted in a shift in functional trait space that likely had broad consequences for ecosystem functioning.

  3. Plant ecological strategies shift across the Cretaceous-Paleogene boundary.

    Directory of Open Access Journals (Sweden)

    Benjamin Blonder

    2014-09-01

    Full Text Available The Chicxulub bolide impact caused the end-Cretaceous mass extinction of plants, but the associated selectivity and ecological effects are poorly known. Using a unique set of North Dakota leaf fossil assemblages spanning 2.2 Myr across the event, we show among angiosperms a reduction of ecological strategies and selection for fast-growth strategies consistent with a hypothesized recovery from an impact winter. Leaf mass per area (carbon investment decreased in both mean and variance, while vein density (carbon assimilation rate increased in mean, consistent with a shift towards "fast" growth strategies. Plant extinction from the bolide impact resulted in a shift in functional trait space that likely had broad consequences for ecosystem functioning.

  4. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence.

    Science.gov (United States)

    Ma, Chao; Meyers, Stephen R; Sageman, Bradley B

    2017-02-22

    Variations in the Earth's orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.

  5. Cretaceous stem chondrichthyans survived the end-Permian mass extinction.

    Science.gov (United States)

    Guinot, Guillaume; Adnet, Sylvain; Cavin, Lionel; Cappetta, Henri

    2013-01-01

    Cladodontomorph sharks are Palaeozoic stem chondrichthyans thought to go extinct at the end-Permian mass extinction. This extinction preceded the diversification of euselachians, including modern sharks. Here we describe an outer-platform cladodontomorph shark tooth assemblage from the Early Cretaceous of southern France, increasing the fossil record of this group by circa 120 million years. Identification of this material rests on new histological observations and morphological evidence. Our finding shows that this lineage survived mass extinctions most likely by habitat contraction, using deep-sea refuge environments during catastrophic events. The recorded gap in the cladodontomorph lineage represents the longest gap in the fossil record for an extinct marine vertebrate group. This discovery demonstrates that the deep-sea marine diversity, poorly known during most of the fish evolutionary history, contains essential data for a complete understanding of the long-term evolution of marine fish paleobiodiversity.

  6. Microlens arrays in the complex visual system of Cretaceous echinoderms.

    Science.gov (United States)

    Gorzelak, Przemysław; Salamon, Mariusz A; Lach, Rafał; Loba, Michał; Ferré, Bruno

    2014-04-01

    It has long been assumed that photosensitivity in echinoderms is mainly related to diffuse photoreception mediated by photosensitive regions embedded within the dermis. Recent studies, however, have shown that some extant echinoderms may also display modified ossicles with microlenses acting as sophisticated photosensory organs. Thanks to their remarkable properties, these calcitic microlenses serve as an inspiration for scientists across various disciplines among which bio-inspired engineering. However, the evolutionary origins of these microlenses remain obscure. Here we provide microstructural evidence showing that analogous spherical calcitic lenses had been acquired in some brittle stars and starfish of Poland by the Late Cretaceous (Campanian, ~79 Ma). Specimens from Poland described here had a highly developed visual system similar to that of modern forms. We suggest that such an optimization of echinoderm skeletons for both mechanical and optical purposes reflects escalation-related adaptation to increased predation pressure during the so-called Mesozoic Marine Revolution.

  7. Geodynamic investigation of a Cretaceous superplume in the Pacific ocean

    Science.gov (United States)

    Xue, Jing; King, Scott D.

    2016-08-01

    The similarity in both age and geochemistry of the Ontong-Java, Hikurangi, and Manihiki plateaus suggests that they formed as a single superplateau from a unique mantle source. We investigate the necessity of a thermal superplume to form the Great Ontong-Java plateau at about 120 Ma using 3D spherical models of convection with imposed plate reconstruction models. The numerical simulations show that the giant plateau which formed as a result of melting due to the interaction of a plume head and the lithosphere would have been divided into smaller plateaus by spreading ridges, and end up at the present locations of Ontong-Java, Manihiki, and Hikurangi plateaus as well as a fragment in the western Caribbean. By comparing temperature and melt fraction between models with and without an initial thermal superplume, we propose that a Cretaceous superplume in Pacific at 120 Ma is required to form large igneous plateaus.

  8. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence

    Science.gov (United States)

    Ma, Chao; Meyers, Stephen R.; Sageman, Bradley B.

    2017-02-01

    Variations in the Earth’s orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.

  9. A new Cretaceous Metatherian mammal from Henan, China

    Directory of Open Access Journals (Sweden)

    Shundong Bi

    2015-04-01

    Full Text Available We report a new deltatheroidan mammal from the Upper Cretaceous of Henna, China. The new taxon, Lotheridium mengi, is based on a nearly complete skull and associated lower jaws with full adult dentition. Deltatheroidans are known mostly from fragmentary specimens from Asia and North America. Previous views on deltatheroidan relationships were diverse, but recent studies favored their metatherian affinity. The new specimen represents the most complete skull known for deltatheroidans and provides additional evidence that deltatheroidans already had the distinctive metatherian dental formula and replacement pattern and several other derived metatherian features, supporting the metatherian status for this clade. The new species also indicates that deltatheroidan mammals were more diverse and had broader geographical distributions than previously thought.

  10. Alisitos Formation, calcareous facies: Early Cretaceous episode of tectonic calm

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Vidal, F.

    1986-07-01

    The Alisitos Formation (Aptian-Albian), shaped as a marine volcanic arc, crops out along the western side of the peninsula of Baja California bounding the Peninsular Range batholith. Lithologically, this formation is formed by volcanic-breccias, porphyritic flows, biohermal limestones, and tuffaceous and pyroclastic sediments. The distribution of the different facies depends on the nature of volcanism and the distance from a volcanic center, although the presence of massive biohermal limestone indicates that in the Early Cretaceous (during the tectonic episodes), the volcanic activity decreased to the level that the environmental conditions were favorable for the development of an organic reef barrier, behind an island arc. Such conditions existed south of the Agua Blanca fault and extended to El Arco, Baja California. Based upon field observations and petrological analysis of the Alisitos limestone, an attempt is made to recreate the environmental condition in the Punta China and San Fernando, Baja California, sites.

  11. Porphyrin geochemistry of Atlantic Jurassic-Cretaceous black shales

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.W.; Louda, J.W.

    1986-01-01

    Late Jurassic-early Cretaceous black shales and an overlying sequence of Albian-Campanian zeolitic claystones from the Falkland Plateau (DSDP/IPOD Leg 71, Site 511) were analyzed for tetrapyrrole pigment type and abundance. The black shale sequence was found to be rich in DPEP-series dominated free-base, nickel (Ni) and, to a lesser extent, vanadyl (V = 0) porphyrins. A low level of organic maturity (i.e. precatagenesis) is indicated for these strata as nickel chelation by free-base porphyrins is only 50-75% complete, proceeding down-hole to 627 meters sub-bottom. Electronic and mass spectral data reveal that the proposed benzo-DPEP (BD) and tetrahydrobenzo-DPEP (THBD) series are present in the free-base and Ni species, as well as the more usual occurrence in V = 0 porphyrin arrays. Highly reducing conditions are suggested by an abundance of the PAH perylene, substantial amounts of the THBD/BD series and a redox equilibrium between free-base DPEP and 7,8-dihydro-DPEP series, which exist in a 7:1 molar ratio. The Albian-Campanian claystone strata were found to be tetrapyrrole poor, and those pigments present were typed as Cu/Ni highly dealkylated (C/sub 26/ max.) etioporphyrins, thought to be derived via redeposition and oxidation of terrestrial organic matter (OM). Results from the present study are correlated to their past analyses of Jurassic-Cretaceous sediments from Atlantic margins in an effort to relate tetrapyrrole quality and quantity to basin evolution and OM sources in the proto-Atlantic.

  12. Proxy Constraints on a Warm, Fresh Late Cretaceous Arctic Ocean

    Science.gov (United States)

    Super, J. R.; Li, H.; Pagani, M.; Chin, K.

    2015-12-01

    The warm Late Cretaceous is thought to have been characterized by open Arctic Ocean temperatures upwards of 15°C (Jenkyns et al., 2004). The high temperatures and low equator-to-pole temperature gradient have proven difficult to reproduce in paleoclimate models, with the role of the atmospheric hydrologic cycle in heat transport being particularly uncertain. Here, sediments, coprolites and fish teeth of Santonian-Campanian age from two high-latitude mixed terrestrial and marine sections on Devon Island in the Canadian High Arctic (Chin et al., 2008) were analyzed using a suite of organic and inorganic proxies to evaluate the temperature and salinity of Arctic seawater. Surface temperature estimates were derived from TEX86 estimates of near-shore, shallow (~100 meters depth) marine sediments (Witkowski et al., 2011) and MBT-CBT estimates from terrestrial intervals and both suggest mean annual temperatures of ~20°C, consistent with previous estimates considering the more southerly location of Devon Island. The oxygen isotope composition of non-diagenetic phosphate from vertebrate coprolites and bony fish teeth were then measured, giving values ranging from +13‰ to +19‰. Assuming the TEX86 temperatures are valid and using the temperature calibration of Puceat 2010, the δ18O values of coprolites imply Arctic Ocean seawater δ18O values between -4‰ and -10‰, implying very fresh conditions. Lastly, the δD of precipitation will be estimated from the hydrogen isotope composition of higher plant leaf waxes (C-25, C-27, C-29 and C-31 n-alkanes) from both terrestrial and marine intervals. Data are used to model the salinity of seawater and the meteoric relationship between δD and δ18O, thereby helping to evaluate the northern high-latitude meteoric water line of the Late Cretaceous.

  13. Fire-adapted Gondwanan Angiosperm floras evolved in the Cretaceous

    Directory of Open Access Journals (Sweden)

    Lamont Byron B

    2012-11-01

    Full Text Available Abstract Background Fires have been widespread over the last 250 million years, peaking 60−125 million years ago (Ma, and might therefore have played a key role in the evolution of Angiosperms. Yet it is commonly believed that fireprone communities existed only after the global climate became more arid and seasonal 15 Ma. Recent molecular-based studies point to much earlier origins of fireprone Angiosperm floras in Australia and South Africa (to 60 Ma, Paleocene but even these were constrained by the ages of the clades examined. Results Using a molecular-dated phylogeny for the great Gondwanan family Proteaceae, with a 113-million-year evolutionary history, we show that the ancestors of many of its characteristic sclerophyll genera, such as Protea, Conospermum, Leucadendron, Petrophile, Adenanthos and Leucospermum (all subfamily Proteoideae, occurred in fireprone habitats from 88 Ma (83−94, 95% HPD, Mid-Upper Cretaceous. This coincided with the highest atmospheric oxygen (combustibility levels experienced over the past 150 million years. Migration from non-fireprone (essentially rainforest-climate-type environments was accompanied by the evolution of highly speciose clades with a range of seed storage traits and fire-cued seed release or germination mechanisms that was diagnostic for each clade by 71 Ma, though the ant-dispersed lineage (as a soil seed-storage subclade was delayed until 45 Ma. Conclusions Focusing on the widespread 113-million-year-old family Proteaceae, fireproneness among Gondwanan Angiosperm floras can now be traced back almost 90 million years into the fiery Cretaceous. The associated evolution of on-plant (serotiny and soil seed storage, and later ant dispersal, affirms them as ancient adaptations to fire among flowering plants.

  14. Undivided Upper Cretaceous deposits in the Kaiparowits Plateau, southern Utah (kaibkd*g)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a polygon coverage and shapefile that contains undivided Upper Cretaceous rocks that include (in descending order) the Smoky Hollow and Tibbet Canyon Mbs. of...

  15. A Diplodocid Sauropod Survivor from the Early Cretaceous of South America: e97128

    National Research Council Canada - National Science Library

    Pablo A Gallina; Sebastián Apesteguía; Alejandro Haluza; Juan I Canale

    2014-01-01

      Diplodocids are by far the most emblematic sauropod dinosaurs. They are part of Diplodocoidea, a vast clade whose other members are well-known from Jurassic and Cretaceous strata in Africa, Europe, North and South America...

  16. A new basal ankylosaurid (Dinosauria: Ornithischia) from the Lower Cretaceous Jiufotang Formation of Liaoning Province, China

    National Research Council Canada - National Science Library

    Han, Fenglu; Zheng, Wenjie; Hu, Dongyu; Xu, Xing; Barrett, Paul M

    2014-01-01

    A new ankylosaurid, Chuanqilong chaoyangensis gen. et sp. nov., is described here based on a nearly complete skeleton from the Lower Cretaceous Jiufotang Formation of Baishizui Village, Lingyuan City, Liaoning Province, China...

  17. Tyrant dinosaur evolution tracks the rise and fall of Late Cretaceous oceans.

    Science.gov (United States)

    Loewen, Mark A; Irmis, Randall B; Sertich, Joseph J W; Currie, Philip J; Sampson, Scott D

    2013-01-01

    The Late Cretaceous (∼95-66 million years ago) western North American landmass of Laramidia displayed heightened non-marine vertebrate diversity and intracontinental regionalism relative to other latest Cretaceous Laurasian ecosystems. Processes generating these patterns during this interval remain poorly understood despite their presumed role in the diversification of many clades. Tyrannosauridae, a clade of large-bodied theropod dinosaurs restricted to the Late Cretaceous of Laramidia and Asia, represents an ideal group for investigating Laramidian patterns of evolution. We use new tyrannosaurid discoveries from Utah--including a new taxon which represents the geologically oldest member of the clade--to investigate the evolution and biogeography of Tyrannosauridae. These data suggest a Laramidian origin for Tyrannosauridae, and implicate sea-level related controls in the isolation, diversification, and dispersal of this and many other Late Cretaceous vertebrate clades.

  18. Maps showing distribution of the Middle Cretaceous unconformity in the eastern Gulf of Mexico

    Science.gov (United States)

    Massingill, L.M.; Wells, R.H.

    1987-01-01

    Several theories on the origin of the Gulf of Mexico basin have been introduced by various researchers (Beloussov, 1970; Freeland and Dietz, 1971; Malfait and Dinkelman, 1972; Wood and Walper, 1974; Pilger, 1978; Buffler and others, 1980; Dickinson and Coney, 1980; Gose and others, 1980; Schmidt-Effing, 1980; Walper, 1980; Schlager and others, 1984). Although no final agreement has been reached, one prominent geologic feature is generally recognized. The early evolution of the basin ended with a major middle Cretaceous event resulting in a Gulf-wide unconformity referred to as the middle Cretaceous unconformity (MCU). This event represents a major shift from Early Cretaceous shallow-water bank sedimentation to Late Cretaceous deeper water carbonates (Worzel and others, 1973; Mitchum, 1978).

  19. The Dakoticancridae (Decapoda, Brachyura) from the Late Cretaceous of North America and Mexico

    NARCIS (Netherlands)

    Bishop, G.A.; Feldmann, R.M.; Vega, F.

    1998-01-01

    The podotrematous crab family Dakoticancridae includes four genera: Dakoticancer Rathbun, Tetracarcinus Weller, Avitelmessus Rathbun, and Seorsus Bishop, all known solely from the Late Cretaceous of North America. Lathelicocarcinus Bishop, originally referred to the family, must be reassigned. Fine

  20. Alkylthiophenes as sensitive indicators of palaeoenvironmental changes : a study of a Cretaceous oil shale from Jordan

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kohnen, M.E.L.; Rijpstra, W.I.C.; Leeuw, J.W. de

    1990-01-01

    Thirteen samples of the immature, Cretaceous Jurf ed Darawish oil shade (Jordan) were analysed quantitatively for aliphatic hydrocarbons and alkylthiophenes in the bitumens by gas chromatography-mass spectrometry after isolation of appropriate fractions.

  1. Tyrant dinosaur evolution tracks the rise and fall of Late Cretaceous oceans.

    Directory of Open Access Journals (Sweden)

    Mark A Loewen

    Full Text Available The Late Cretaceous (∼95-66 million years ago western North American landmass of Laramidia displayed heightened non-marine vertebrate diversity and intracontinental regionalism relative to other latest Cretaceous Laurasian ecosystems. Processes generating these patterns during this interval remain poorly understood despite their presumed role in the diversification of many clades. Tyrannosauridae, a clade of large-bodied theropod dinosaurs restricted to the Late Cretaceous of Laramidia and Asia, represents an ideal group for investigating Laramidian patterns of evolution. We use new tyrannosaurid discoveries from Utah--including a new taxon which represents the geologically oldest member of the clade--to investigate the evolution and biogeography of Tyrannosauridae. These data suggest a Laramidian origin for Tyrannosauridae, and implicate sea-level related controls in the isolation, diversification, and dispersal of this and many other Late Cretaceous vertebrate clades.

  2. Early Cretaceous mammal from North America and the evolution of marsupial dental characters.

    OpenAIRE

    1993-01-01

    A mammal from the Early Cretaceous of the western United States, represented by a lower jaw exceptional in its completeness, presents unambiguous evidence of postcanine dental formula in an Early Cretaceous marsupial-like mammal, and prompts a reconsideration of the early evolution of marsupial dental characters. A marsupial postcanine dental formula (three premolars and four molars) and several marsupial-like features of the lower molars are present in the new taxon, but a hallmark specializ...

  3. Paleomagnetic results of the Cretaceous marine sediments in Tongyouluke, southwest Tarim

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhongyue; CHEN Hanlin; FANG Dajun; DING Jinghai; ZHANG Shiben; HUANG Zhibin; LI Meng

    2005-01-01

    Paleomagnetic and rock magnetic studies on samples of 18 sites from the Cretaceous marine sedimentary rocks in the Tongyouluke section, Akto County, southwest Tarim,China show that the magnetic carriers of the Lower Cretaceous are dominated by hematite with some magnetite, while the magnetic carriers of the Upper Cretaceous are characterized by a combination of magnetite and titanomagnetite as well as hematite and goethite. Stepwise thermal demagnetization is performed and vector analysis is used to isolate magnetic components, which illustrates a single magnetic component or double magnetic components. The high temperature stable components are dual polarities and pass polarity test, reversal test and consistency test.The overall mean direction of the Lower Cretaceous is D = 27.0° , I = 42.0°, α95=6.5° with pole position at φ = 190.3° , λ=63.1 °, dp=4.9° , dm=8.0° . The overall mean direction of the Upper Cretaceous is D = 29.1 °, I = 39.4° , α95=11.2° with pole position at φ =190.9° , λ=60.3° , dp=8.0° , dm=13.4° . Compared with the inclination of the Early Cretaceous from red beds of north Tarim, the contemporary inclination of southwest Tarim is 10.0°±7.8° sharper, but it is still 8.1 °±8.9°, shallower than that of Early Cretaceous basalts in southwest Tarim. Although these paleomagnetic data show slightly larger confidence limit, the paleolatitude of the marine Cretaceous tends to lie between that of terrestrial red beds and volcanic rocks.

  4. First Psocodean (Psocodea,Empheriidae) from the Cretaceous Amber of New Jersey

    Institute of Scientific and Technical Information of China (English)

    Dany AZAR; André NEL; Julian F.PETRULEVI(C)IUS

    2010-01-01

    Representatives of the extinct psocid family Empheriidae are known from Eocene Baltic amber,Lowermost Eocene French amber (Oise),and Lower Cretaceous Spanish amber (Alava).We report herein the first discovery of an empheriid psocid from the Cretaceous amber of New Jersey as Jerseyempheria grimaldii gen.et sp.nov.The fossil is figured and described.The new species is distinguished from related taxa.A discussion and checklist of Empheriidae are provided.

  5. Cretaceous anuran and dinosaur footprints from the Patuxent Formation of Virginia

    Science.gov (United States)

    Weems, R.E.; Bachman, J.M.

    1997-01-01

    Footprints of an anuran (gen. et sp. indet.), a theropod dinosaur (Megalosauropus sp.), and an ornithopod dinosaur (Amblydactylus sp.) have been recovered from the Lower Cretaceous Patuxent Formation in Stafford County, Virginia. These footprints are the first record of terrestrial vertebrates from Cretaceous strata in Virginia, and their discovery suggests that the scarcity of bones and teeth in the Patuxent probably is an artifact of preservation. The anuran trackway provides the oldest known direct evidence for hopping locomotion among these amphibians.

  6. New turtle egg fossil from the Upper Cretaceous of the Laiyang Basin, Shandong Province, China

    Directory of Open Access Journals (Sweden)

    QIANG WANG

    2013-03-01

    Full Text Available A new type of turtle egg fossil was established: Emydoolithus laiyangensis oogen. et oosp. nov.. Based on its elliptical morphological shape, rigid eggshells, and eggshell characteristics, it is different from other types of round chelonian egg fossils. It is the second chelonian egg fossil found in Cretaceous in China. This discovery shows the Laiyang ecosystem in Late Cretaceous is more diversified than previously thought.

  7. Palynological evidence of effects of the terminal Cretaceous event on terrestrial floras in western North America

    Science.gov (United States)

    Nichols, Douglas J.; Farley Fleming, R.; Frederiksen, Norman O.

    New and previously published palynomorph distribution data on 225 taxa from uppermost Cretaceous (K) and lowermost Tertiary (T) nonmarine strata from New Mexico to Arctic Canada and Alaska were used to evaluate the effects of the terminal Cretaceous event (TCE) on terrestrial plant life. Analyses considered presence/absence, relative abundance, species diversity, and endemism, and employed Q-mode cluster analysis. The latest Cretaceous palynoflora showed gradual, continuous variation in composition from paleolatitudes (pl) 45° to 85° N. Palynofloristic subprovinces are not easily distinguished empirically, but three are recognizable quantitatively. Abrupt disappearance of many distinctive species marked the K-T boundary, and the earliest Tertiary palynoflora was considerably reduced in diversity. However, most regionally distributed taxa, and many endemic taxa of the polar and midlatitude subprovinces, survived the TCE and three subprovinces are recognizable in the same geographic positions as in the latest Cretaceous. Relative abundances of pteridophytes and gymnosperms were slightly greater in the early Tertiary than in the latest Cretaceous, probably due in part to change in sedimentary regime, but thermophilic angiosperm taxa persisted at least as far north as pl 60° N. These data support the hypothesis that a short-lived but profound ecological crisis at the end of the Cretaceous resulted in major reorganization of the flora. The data are inconsistent with gradual climatic deterioration. Extinction was greater among angiosperms than among gymnosperms or pteridophytes, but whether or not the entire flora suffered a mass extinction remains debatable.

  8. Petrogenesis of Early Cretaceous basaltic lavas from the North China Craton: Implications for cratonic destruction

    Science.gov (United States)

    Qian, Sheng-Ping; Ren, Zhong-Yuan; Richard, Wysoczanski; Zhang, Le; Zhang, Yin-Hui; Hong, Lu-Bing; Ding, Xiang-Li; Wu, Ya-Dong

    2017-03-01

    The North China Craton (NCC) is believed to be the best example of cratonic destruction. However, the processes leading to cratonic destruction remain unclear, largely due to a lack of knowledge of the nature of the Mesozoic NCC lithospheric mantle. Here we report new petrological and geochemical data for Early Cretaceous NCC basalts, which provide insights into the nature of the underlying lithospheric mantle. The Early Cretaceous basalts (all tholeiites) show a limited variation in geochemical composition. In contrast, olivine-hosted melt inclusions from these basalts display a wide range in compositional variation and include both alkalic and tholeiitic basaltic compositions. This result provides the direct evidence of the contribution of silica-undersaturated alkali basaltic melts in the petrogenesis of the Early Cretaceous NCC basalts. In addition, the compositions of olivine phenocrysts and reconstructed primary melts indicate that the Early Cretaceous basalts are derived from a mixed peridotite and refertilized peridotite source. The Pb isotopic compositions of melt inclusions in high fugacity of oxygen (fo) olivines combined with trace element characteristics of these basalts reveal that heterogeneous lithospheric mantle sources for Early Cretaceous basalts were metasomatized by carbonate-bearing eclogite-derived melts. The Pb isotopic variations of the melt inclusions and clinopyroxene and plagioclase phenocrysts demonstrate that the mantle-derived magmas were variably contaminated by lower continental crust. We propose that multiple subduction events during the Phanerozoic, combined with mantle-plume activity, likely play a vital role in the generation of the Early Cretaceous voluminous magmatism and cratonic destruction.

  9. Iridium anomaly in the Cretaceous section of the Eastern Kamchatka

    Science.gov (United States)

    Savelyev, Dmitry; Savelyeva, Olga

    2010-05-01

    The origin of iridium anomalies is widely discussed with regard to massive fauna and flora extinction at several geologic boundaries. Two hypotheses are most popular, cosmogenic and volcanogenic. Anomalies of iridium are known at many stratigraphic levels, both at the geologic series borders and within geologic series. Our studies revealed increased content of iridium in a section of Cretaceous oceanic deposits on the Kamchatsky Mys Peninsula (Eastern Kamchatka, Russia). The investigated section (56°03.353´N, 163°00.376´E) includes interbedded jaspers and siliceous limestones overlaying pillow-basalts. These deposits belong to the Smagin Formation of the Albian-Cenomanian age. In the middle and upper parts of the section two beds of black carbonaceous rocks with sapropelic organic matter were observed. Their formation marked likely episodes of oxygen depletion of oceanic intermediate water (oceanic anoxic events). Our geochemical studies revealed an enrichment of the carbonaceous beds in a number of major and trace elements (Al2O3, TiO2, FeO, MgO, K2O, P2O5, Cu, Zn, Ni, Cr, V, Mo, Ba, Y, Zr, Nb, REE, U, Au, Pt etc.) in comparison with associating jaspers and limestones. There are likely different sources which contributed to the enrichment. It is possible however to correlate the excess of Al, Ti, Zr, Nb with volcanogenic admixture, which is absent in limestones and jaspers. A possible source of the volcanogenic material was local volcanism as suggested by the close association of the investigated section with volcanic rocks (basaltic lavas and hyaloclastites). The basalts of the Smagin Formation were previously proposed to originate during Cretaceous activity of the Hawaiian mantle plume (Portnyagin et al., Geology, 2008). Neutron activation analysis indicated increased up to 9 ppb concentration of Ir at the bottom of the lower carbonaceous bed (inorganic part of the sample was analyzed comprising 46% of the bulk rock). In other samples Ir content was below

  10. Cretaceous choristoderan reptiles gave birth to live young

    Science.gov (United States)

    Ji, Qiang; Wu, Xiao-Chun; Cheng, Yen-Nien

    2010-04-01

    Viviparity (giving birth to live young) in fossil reptiles has been known only in a few marine groups: ichthyosaurs, pachypleurosaurs, and mosasaurs. Here, we report a pregnant specimen of the Early Cretaceous Hyphalosaurus baitaigouensis, a species of Choristodera, a diapsid group known from unequivocal fossil remains from the Middle Jurassic to the early Miocene (about 165 to 20 million years ago). This specimen provides the first evidence of viviparity in choristoderan reptiles and is also the sole record of viviparity in fossil reptiles which lived in freshwater ecosystems. This exquisitely preserved specimen contains up to 18 embryos arranged in pairs. Size comparison with small free-living individuals and the straight posture of the posterior-most pair suggest that those embryos were at term and had probably reached parturition. The posterior-most embryo on the left side has the head positioned toward the rear, contrary to normal position, suggesting a complication that may have contributed to the mother’s death. Viviparity would certainly have freed species of Hyphalosaurus from the need to return to land to deposit eggs; taking this advantage, they would have avoided intense competition with contemporaneous terrestrial carnivores such as dinosaurs.

  11. The debate over the Cretaceous-Tertiary boundary

    Science.gov (United States)

    Alvarez, W.; Asaro, F.; Alvarez, L. W.; Michel, H. V.

    1988-01-01

    Large-body impact on the Earth is a rare but indisputable geologic process. The impact rate is approximately known from objects discovered in Earth-crossing orbits and from the statistics of craters on the Earth's surface. Tektite and microtektite strewn fields constitute unmistakable ejecta deposits that can be due only to large-body impacts. The Cretaceous-Tertiary (K-T) boundary coincides with an unusually severe biological trauma, and this stratigraphic horizon is marked on a worldwide basis by anomalous concentrations of noble metals in chondritic proportions, mineral spherules with relict quench-crystallization textures, and mineral and rock grains showing shock deformation. These features are precisely compatible with an impact origin. Although only impact explains all the types of K-T boundary evidence, the story may not be as simple as once thought. The original hypothesis envisioned one large impact, triggering one great extinction. Newer evidence hints at various complications. Different challenges are faced by the occupants of each apex of a three-cornered argument over the K-T event. Proponents of a non-impact explanation must show that the evidence fits their preferred model better than it fits the impact scenario. Proponents of the single impact-single extinction view must explain away the complications. Proponents of a more complex impact crisis must develop a reasonable scenario which honors the new evidence.

  12. Iridium profiles and delivery across the Cretaceous/Paleogene boundary

    Science.gov (United States)

    Esmeray-Senlet, Selen; Miller, Kenneth G.; Sherrell, Robert M.; Senlet, Turgay; Vellekoop, Johan; Brinkhuis, Henk

    2017-01-01

    We examined iridium (Ir) anomalies at the Cretaceous/Paleogene (K/Pg) boundary in siliciclastic shallow marine cores of the New Jersey Coastal Plain, USA, that were deposited at an intermediate distance (∼2500 km) from the Chicxulub, Mexico crater. Although closely spaced and generally biostratigraphically complete, the cores show heterogeneity in terms of preservation of the ejecta layers, maximum concentration of Ir measured (∼0.1-2.4 ppb), and total thickness of the Ir-enriched interval (11-119 cm). We analyzed the shape of the Ir profiles with a Lagrangian particle-tracking model of sediment mixing. Fits between the mixing model and measured Ir profiles, as well as visible burrows in the cores, show that the shape of the Ir profiles was determined primarily by sediment mixing via bioturbation. In contrast, Tighe Park 1 and Bass River cores show post-depositional remobilization of Ir by geochemical processes. There is a strong inverse relationship between the maximum concentration of Ir measured and the thickness of the sediments over which Ir is spread. We show that the depth-integrated Ir inventory is similar in the majority of the cores, indicating that the total Ir delivery at time of the K/Pg event was spatially homogeneous over this region. Though delivered through a near-instantaneous source, stratospheric dispersal, and settling, our study shows that non-uniform Ir profiles develop due to changes in the regional delivery and post-depositional modification by bioturbation and geochemical processes.

  13. Long-Proboscid Flies as Pollinators of Cretaceous Gymnosperms.

    Science.gov (United States)

    Peñalver, Enrique; Arillo, Antonio; Pérez-de la Fuente, Ricardo; Riccio, Mark L; Delclòs, Xavier; Barrón, Eduardo; Grimaldi, David A

    2015-07-20

    The great evolutionary success of angiosperms has traditionally been explained, in part, by the partnership of these plants with insect pollinators. The main approach to understanding the origins of this pervasive relationship has been study of the pollinators of living cycads, gnetaleans, and basal angiosperms. Among the most morphologically specialized living pollinators are diverse, long-proboscid flies. Early such flies include the brachyceran family Zhangsolvidae, previously known only as compression fossils from the Early Cretaceous of China and Brazil. It belongs to the infraorder Stratiomyomorpha, a group that includes the flower-visiting families Xylomyidae and Stratiomyidae. New zhangsolvid specimens in amber from Spain (ca. 105 mega-annum [Ma]) and Myanmar (100 Ma) reveal a detailed proboscis structure adapted to nectivory. Pollen clumped on a specimen from Spain is Exesipollenites, attributed to a Mesozoic gymnosperm, most likely the Bennettitales. Late Mesozoic scorpionflies with a long proboscis have been proposed as specialized pollinators of various extinct gymnosperms, but pollen has never been observed on or in their bodies. The new discovery is a very rare co-occurrence of pollen with its insect vector and provides substantiating evidence that other long-proboscid Mesozoic insects were gymnosperm pollinators. Evidence is thus now gathering that visitors and probable pollinators of early anthophytes, or seed plants, involved some insects with highly specialized morphological adaptations, which has consequences for interpreting the reproductive modes of Mesozoic gymnosperms and the significance of insect pollination in angiosperm success.

  14. Geochemical characteristics of Early Cretaceous source rocks in Boli Basin

    Institute of Scientific and Technical Information of China (English)

    Hongmei Gao; Fuhong Gao; Fu Fan; Yueqiao Zhang

    2006-01-01

    The Early Cretaceous deposits are composed of important source rocks in Boli Basin. The types of the source rocks include black mudstones and coal (with carbonaceous mudstone). By the organic geochemical analysis methods, the authors discussed the organic petrological characters, abundance of organic matter, degree of maturity and the type of source rocks. The main micro-component of black mudstone is exinite or vitrinite, and the content of vitrinite is high in coal. The weathering of the outcrop is very serious. The abundance of organic matter in source rock reaches the poor to better rank. The major kerogens in mudstone are type-Ⅲ, type-Ⅱ2 and some type-Ⅱ1; the organic type of coal is type-Ⅲ. The thermal evolution of the source rocks in every structural unit is very different, from low-maturity to over-maturity. The depositional environment is reductive, which is good for the preservation of organic matter. The organic matter in source rocks is mainly from aquatic organisms and terrigenous input.

  15. Phosphogenesis at a Cretaceous methane seep from New Zealand

    Science.gov (United States)

    Zwicker, Jennifer; Steindl, Florian; Smrzka, Daniel; Böttcher, Michael; Gier, Susanne; Kiel, Steffen; Peckmann, Jörn

    2016-04-01

    Phosphate-rich deposits have been a topic of intense research for decades. The process of phosphogenesis is mainly observed in marine sediments of coastal upwelling zones, where organic matter delivers sufficient phosphorus (P) to enable the formation of phosphorites. As P may be cycled within marine sediments on short timescales, only specific geochemical conditions allow for the precipitation and preservation of phosphate minerals. The processes that enable phosphogenesis are still a matter of debate, and not all mechanisms involved are fully understood. We expand the scope of known phosphorous-rich deposits further, with evidence of phosphogenesis at methane seeps. Cretaceous methane-seep limestones from Waipiro Bay, New Zealand, exhibit (1) a matrix composed of cryptocrystalline fluorapatite in between micritic spheroids and coated calcite grains, and (2) phosphatic spheroids within a micritic matrix. Due to the abundant spherical morphologies of phosphate and carbonate grains, and the exceptionally well preserved phosphate matrix, we suggest that their formation was associated with microbial activity. Methane seeps provide ideal conditions for chemosynthetic communities to thrive, and for the growth of bacterial mats at the sediment water interface. To understand these unique deposits, we derive a formation scenario for apatite and spheroidal carbonate, using detailed petrographical observations, X-ray diffraction, scanning electron microscopy, and electron microprobe analyses. Furthermore, it is shown that phase-specific stable carbon and oxygen isotopes confirm that both phosphate and carbonate formation occurred at a methane seep.

  16. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds.

    Science.gov (United States)

    Zhang, Fucheng; Kearns, Stuart L; Orr, Patrick J; Benton, Michael J; Zhou, Zhonghe; Johnson, Diane; Xu, Xing; Wang, Xiaolin

    2010-02-25

    Spectacular fossils from the Early Cretaceous Jehol Group of northeastern China have greatly expanded our knowledge of the diversity and palaeobiology of dinosaurs and early birds, and contributed to our understanding of the origin of birds, of flight, and of feathers. Pennaceous (vaned) feathers and integumentary filaments are preserved in birds and non-avian theropod dinosaurs, but little is known of their microstructure. Here we report that melanosomes (colour-bearing organelles) are not only preserved in the pennaceous feathers of early birds, but also in an identical manner in integumentary filaments of non-avian dinosaurs, thus refuting recent claims that the filaments are partially decayed dermal collagen fibres. Examples of both eumelanosomes and phaeomelanosomes have been identified, and they are often preserved in life position within the structure of partially degraded feathers and filaments. Furthermore, the data here provide empirical evidence for reconstructing the colours and colour patterning of these extinct birds and theropod dinosaurs: for example, the dark-coloured stripes on the tail of the theropod dinosaur Sinosauropteryx can reasonably be inferred to have exhibited chestnut to reddish-brown tones.

  17. Correlated Terrestrial and Marine Evidence for Global Climate Changes before Mass Extinction at the Cretaceous-Paleogene Boundary

    National Research Council Canada - National Science Library

    Peter Wilf; Kirk R. Johnson; Brian T. Huber

    2003-01-01

    Terrestrial climates near the time of the end-Cretaceous mass extinction are poorly known, limiting understanding of environmentally driven changes in biodiversity that occurred before bolide impact...

  18. Small theropod teeth from the Late Cretaceous of the San Juan Basin, northwestern New Mexico and their implications for understanding latest Cretaceous dinosaur evolution.

    Science.gov (United States)

    Williamson, Thomas E; Brusatte, Stephen L

    2014-01-01

    Studying the evolution and biogeographic distribution of dinosaurs during the latest Cretaceous is critical for better understanding the end-Cretaceous extinction event that killed off all non-avian dinosaurs. Western North America contains among the best records of Late Cretaceous terrestrial vertebrates in the world, but is biased against small-bodied dinosaurs. Isolated teeth are the primary evidence for understanding the diversity and evolution of small-bodied theropod dinosaurs during the Late Cretaceous, but few such specimens have been well documented from outside of the northern Rockies, making it difficult to assess Late Cretaceous dinosaur diversity and biogeographic patterns. We describe small theropod teeth from the San Juan Basin of northwestern New Mexico. These specimens were collected from strata spanning Santonian - Maastrichtian. We grouped isolated theropod teeth into several morphotypes, which we assigned to higher-level theropod clades based on possession of phylogenetic synapomorphies. We then used principal components analysis and discriminant function analyses to gauge whether the San Juan Basin teeth overlap with, or are quantitatively distinct from, similar tooth morphotypes from other geographic areas. The San Juan Basin contains a diverse record of small theropods. Late Campanian assemblages differ from approximately coeval assemblages of the northern Rockies in being less diverse with only rare representatives of troodontids and a Dromaeosaurus-like taxon. We also provide evidence that erect and recurved morphs of a Richardoestesia-like taxon represent a single heterodont species. A late Maastrichtian assemblage is dominated by a distinct troodontid. The differences between northern and southern faunas based on isolated theropod teeth provide evidence for provinciality in the late Campanian and the late Maastrichtian of North America. However, there is no indication that major components of small-bodied theropod diversity were lost

  19. Small theropod teeth from the Late Cretaceous of the San Juan Basin, northwestern New Mexico and their implications for understanding latest Cretaceous dinosaur evolution.

    Directory of Open Access Journals (Sweden)

    Thomas E Williamson

    Full Text Available Studying the evolution and biogeographic distribution of dinosaurs during the latest Cretaceous is critical for better understanding the end-Cretaceous extinction event that killed off all non-avian dinosaurs. Western North America contains among the best records of Late Cretaceous terrestrial vertebrates in the world, but is biased against small-bodied dinosaurs. Isolated teeth are the primary evidence for understanding the diversity and evolution of small-bodied theropod dinosaurs during the Late Cretaceous, but few such specimens have been well documented from outside of the northern Rockies, making it difficult to assess Late Cretaceous dinosaur diversity and biogeographic patterns. We describe small theropod teeth from the San Juan Basin of northwestern New Mexico. These specimens were collected from strata spanning Santonian - Maastrichtian. We grouped isolated theropod teeth into several morphotypes, which we assigned to higher-level theropod clades based on possession of phylogenetic synapomorphies. We then used principal components analysis and discriminant function analyses to gauge whether the San Juan Basin teeth overlap with, or are quantitatively distinct from, similar tooth morphotypes from other geographic areas. The San Juan Basin contains a diverse record of small theropods. Late Campanian assemblages differ from approximately coeval assemblages of the northern Rockies in being less diverse with only rare representatives of troodontids and a Dromaeosaurus-like taxon. We also provide evidence that erect and recurved morphs of a Richardoestesia-like taxon represent a single heterodont species. A late Maastrichtian assemblage is dominated by a distinct troodontid. The differences between northern and southern faunas based on isolated theropod teeth provide evidence for provinciality in the late Campanian and the late Maastrichtian of North America. However, there is no indication that major components of small-bodied theropod

  20. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA.

    Directory of Open Access Journals (Sweden)

    Michael P Donovan

    Full Text Available Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia.

  1. Paleobiological implications of dinosaur egg-bearing deposits in the Cretaceous Gyeongsang Supergroup of Korea

    Science.gov (United States)

    Paik, In Sung; Kim, Hyun Joo; Huh, Min

    2010-05-01

    Dinosaur egg-bearing deposits in the Cretaceous Gyeongsang Basin in Korea is described in taphonomic aspect, their paleoenvironments are interpreted, and geobiological implications of dinosaur egg-bearing deposits in the world and Korea are analyzed in geographic occurrences, geological ages, paleoenvironments, and lithology. Dinosaur eggs with spheroolithids, faveoloolithid, and elongatoolithid structural types occur in several stratigraphic formations of the Cretaceous Gyeongsang Basin in South Korea, and most of the egg-bearing formations are the Late Cretaceous. The dinosaur eggs usually occur as clutches in purple sandy mudstone of floodplain deposits preserved as calcic paleosol with association of vertic paleosol features in places. Most of the eggs are top-broken and filled with surrounding sediments. The general depositional environment of dinosaur egg deposits in the Gyeongsang Supergroup are interpreted as a dried floodplain where volcanic activity occurred intermittently in the vicinity of the nesting sites. Their depositional settings on which floodplains developed are diverse from fluvial plain with meandering rivers to alluvial plain with episodic sheet flooding. The nesting areas in the Gyeongsang Basin are deemed to have been under semi-arid climate, which resulted in formation of calcic soils facilitating preservation of the dinosaur eggs. The geochronologic occurrences of dinosaur egg-bearing deposits are mostly restricted to the Late Cretaceous in the world as well as in Korea. If it has not been resulted from biased discoveries and reports of dinosaur eggs, biological rather than physical and chemical conditions for preservation of dinosaur eggs might be related with the restricted occurrences in the Late Cretaceous. Two hypotheses are suggested for probable biological causes to the geochronologically restricted occurrences of dinosaur egg-bearing deposits. One is related with the appearance of angiosperms in the Late Jurassic and the spreading

  2. The first definitive Asian spinosaurid (Dinosauria: Theropoda) from the early cretaceous of Laos

    Science.gov (United States)

    Allain, Ronan; Xaisanavong, Tiengkham; Richir, Philippe; Khentavong, Bounsou

    2012-05-01

    Spinosaurids are among the largest and most specialized carnivorous dinosaurs. The morphology of their crocodile-like skull, stomach contents, and oxygen isotopic composition of the bones suggest they had a predominantly piscivorous diet. Even if close relationships between spinosaurids and Middle Jurassic megalosaurs seem well established, very little is known about the transition from a generalized large basal tetanuran to the specialized morphology of spinosaurids. Spinosaurid remains were previously known from the Early to Late Cretaceous of North Africa, Europe, and South America. Here, we report the discovery of a new spinosaurid theropod from the late Early Cretaceous Savannakhet Basin in Laos, which is distinguished by an autapomorphic sinusoidal dorsosacral sail. This new taxon, Ichthyovenator laosensis gen. et sp. nov., includes well-preserved and partially articulated postcranial remains. Although possible spinosaurid teeth have been reported from various Early Cretaceous localities in Asia, the new taxon I. laosensis is the first definite record of Spinosauridae from Asia. Cladistic analysis identifies Ichthyovenator as a member of the sub-clade Baryonychinae and suggests a widespread distribution of this clade at the end of the Early Cretaceous. Chilantaisaurus tashouikensis from the Cretaceous of Inner Mongolia, and an ungual phalanx from the Upper Jurassic of Colorado are also referred to spinosaurids, extending both the stratigraphical and geographical range of this clade.

  3. From nappe stacking to exhumation: Cretaceous tectonics in the Apuseni Mountains (Romania)

    Science.gov (United States)

    Reiser, Martin Kaspar; Schuster, Ralf; Spikings, Richard; Tropper, Peter; Fügenschuh, Bernhard

    2016-05-01

    New Ar-Ar muscovite and Rb-Sr biotite age data in combination with structural analyses from the Apuseni Mountains provide new constraints on the timing and kinematics of deformation during the Cretaceous. Time-temperature paths from the structurally highest basement nappe of the Apuseni Mountains in combination with sedimentary data indicate exhumation and a position close to the surface after the Late Jurassic emplacement of the South Apuseni Ophiolites. Early Cretaceous Ar-Ar muscovite ages from structurally lower parts in the Biharia Nappe System (Dacia Mega-Unit) show cooling from medium-grade conditions. NE-SW-trending stretching lineation and associated kinematic indicators of this deformation phase (D1) are overprinted by top-NW-directed thrusting during D2. An Albian to Turonian age (110-90 Ma) is proposed for the main deformation (D2) that formed the present-day geometry of the nappe stack and led to a pervasive retrograde greenschist-facies overprint. Thermochronological and structural data from the Bihor Unit (Tisza Mega-Unit) allowed to establish E-directed differential exhumation during Early-Late Cretaceous times (D3.1). Brittle detachment faulting (D3.2) and the deposition of syn-extensional sediments indicate general uplift and partial surface exposure during the Late Cretaceous. Brittle conditions persist during the latest Cretaceous compressional overprint (D4).

  4. Tectonic Evolution of the North Depression of the South Yellow Sea Basin Since Late Cretaceous

    Institute of Scientific and Technical Information of China (English)

    LI Nan; LI Weiran; LONG Haiyan

    2016-01-01

    On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow Sea basin are quantitatively studied. The results show that the tectonic evolution of the north depression of the south Yellow Sea basin since late Cretaceous can be divided into a rifting phase (late Cretaceous to Paleogene) and a post-rifting phase (Neogene to Quaternary). The rifting phase can be further subdivided into an initial rifting stage (late Cretaceous), an intensive rifting stage (Paleocene), a rifting termination stage (Eocene), and an inversion-uplifting stage (Oligocene). Together, this division shows the characteristics of an episodic-evolved intracontinental rift-depression basin. The deformation of the north depression of the south Yellow Sea basin since late Cretaceous was mainly fault-related. The horizontal extension and tectonic subsidence were controlled by the activity of faults. The differential evolution of faults also caused variations in local uplift/subsidence movements and the regional heterogeneity in extension. The late Cretaceous initial rifting of the north depression of the south Yellow Sea basin is related to the Pacific-Eurasia convergence. From the Paleocene intensive rifting stage to present, the Pacific-Eurasia convergence and India-Eurasia convergence have played important roles in the evolution of this region.

  5. Tectonic evolution of the north depression of the south Yellow Sea basin since late Cretaceous

    Science.gov (United States)

    Li, Nan; Li, Weiran; Long, Haiyan

    2016-12-01

    On the basis of subsidence history analysis and balanced cross-section analysis, the vertical uplift/subsidence history and horizontal extension/compression history of the north depression of the south Yellow Sea basin are quantitatively studied. The results show that the tectonic evolution of the north depression of the south Yellow Sea basin since late Cretaceous can be divided into a rifting phase (late Cretaceous to Paleogene) and a post-rifting phase (Neogene to Quaternary). The rifting phase can be further subdivided into an initial rifting stage (late Cretaceous), an intensive rifting stage (Paleocene), a rifting termination stage (Eocene), and an inversion-uplifting stage (Oligocene). Together, this division shows the characteristics of an episodic-evolved intracontinental rift-depression basin. The deformation of the north depression of the south Yellow Sea basin since late Cretaceous was mainly fault-related. The horizontal extension and tectonic subsidence were controlled by the activity of faults. The differential evolution of faults also caused variations in local uplift/subsidence movements and the regional heterogeneity in extension. The late Cretaceous initial rifting of the north depression of the south Yellow Sea basin is related to the Pacific-Eurasia convergence. From the Paleocene intensive rifting stage to present, the Pacific-Eurasia convergence and India-Eurasia convergence have played important roles in the evolution of this region.

  6. Evidence of reworked Cretaceous fossils and their bearing on the existence of Tertiary dinosaurs

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, J.G. (Museum of Northern Arizona, Flagstaff (USA)); Kirkland, J.I. (Univ. of Nebraska, Lincoln (USA)); Doi, K. (Univ. of Colorado, Boulder (USA))

    1989-06-01

    The Paleocene Shotgun fauna of Wyoming includes marine sharks as well as mammals. It has been suggested that the sharks were introduced from the Cannonball Sea. It is more likely that these sharks were reworked from a Cretaceous rock sequence that included both marine and terrestrial deposits as there is a mixture of marine and freshwater taxa. These taxa have not been recorded elsewhere after the Cretaceous and are not known from the Cannonball Formation. Early Eocene localities at Raven Ridge, Utah, similarly contain teeth of Cretaceous marine and freshwater fish, dinosaurs, and Eocene mammals. The Cretaceous teeth are well preserved, variably abraded, and serve to cast doubts on criteria recently used to claim that dinosaur teeth recovered from the Paleocene of Montana are not reworked. Another Eocene locality in the San Juan Basin has produced an Eocene mammalian fauna with diverse Cretaceous marine sharks. Neither the nature of preservation nor the degree of abrasion could be used to distinguish reworked from contemporaneous material. The mixed environments represented by the fish taxa and recognition of the extensive pre-Tertiary extinction of both marine and freshwater fish were employed to recognize reworked specimens.

  7. The mid-Cretaceous super plume, carbon dioxide, and global warming

    Science.gov (United States)

    Caldeira, Ken; Rampino, Michael R.

    1991-01-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. A carbonate-silicate cycle model is developed to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern preindustrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 C over today's glogal mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 C, within the 6 to 14 C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20 percent of the mid-Cretaceous increase in atmospheric CO2.

  8. Interactions between tectonics, climate and vegetation during the Cretaceous. A context for the diversification of Angiosperms.

    Science.gov (United States)

    Sepulchre, Pierre; Chaboureau, Anne-Claire; Donnadieu, Yannick; Franc, Alain; Ladant, Jean-Baptiste

    2017-04-01

    It has long been thought that the Angiosperms diversification occurred within a context of warmer-than-present and equable climate during the Cretaceous. However, during the last decade, the view of a uniformely warm Cretaceous climate has been challenged both by paleoclimate proxies and numerical simulations. Among the processes likely affecting climate during this time, atmospheric pCO2 and tectonics appear to be pivotal to drive temperature and precipitation changes, while the feedbacks from vegetation cover changes on the hydrological cycles remain to be explored. Here we attempt to provide a review of the main studies exploring climate-vegetation interactions during the Cretaceous. Then we present climate simulations aiming at quantifying the impact of landmasses redistribution on climate and vegetation distribution from 225 Ma to 70 Ma. In our simulations, the Pangea breakup triggers the decrease of arid belts from the Triassic to the Cretaceous and a subsequent onset of humid conditions during the late Cretaceous. Positioning angiosperm-bearing fossil sites on our paleo-bioclimatic maps confirm that the rise of flowering plants occured within a context of changing climate. With additional simulations in which we modified physiological parameterizations of the vegetation, we explore the combined impact of paleogeography and shift to angiosperms-dominated land surfaces on climate at the regional and global scales. This gives us the opportunity to test earlier ideas that the angiosperms takeover could have benefited from a positive feedback induced by their particular transpiration capacities.

  9. HEFEI BASIN IN EARLY CRETACEOUS -CHARACTERIZATION AND ANALYSIS OF PETROLEUM POTENTIAL

    Institute of Scientific and Technical Information of China (English)

    YI Wanxia; ZHAO Zongju; LI Xuetian; SHEN Jinlong; ZHOU Jingao

    2003-01-01

    Comprehensive analyses were made based on seismic prospecting data, electrical prospecting data and basin simulation data as well as regional geological data and thorough discussions were conducted about the complicated structures, features and evolution of Hefei Basin in Early Cretaceous in this study,and it was derived that that Hefei Basin was a composite basin formed during the transformation of the stress field from compressive toward tensile in Early Cretaceous. In other words, this basin was a foreland basin of gliding-thrust type, which is mainly controlled by the Dabie orogenic belt in the south side in the early to middle period of Early Cretaceous, while being a strike-slip basin of pull-apart type,which is mainly controlled by the activity of Tanlu fracture in the east side in the middle to late period of Early Cretaceous. Moreover, the potential Lower Cretaceous oil and gas system in the pull-apart basin and the vista for its prospecting were explored in this study. Tectonism of the Tanlu fracture was further discussed based on the results of characterization of the basin, and it was pointed out that this is beneficial and instructive to the oil and gas prospecting in Hefei Basin

  10. Late Cretaceous - Eocene evolution of the Kronotsk arc

    Science.gov (United States)

    Shapiro, M. N.; Khotin, M. Y.

    2004-12-01

    Eastern peninsulas of Kamchatka and probably Komandorskiy Islands form Kronotsk paleoarc. Main components uniting these blocks in a single structure are Paleocene-Eocene subduction-related volcanics. The lowest part of this formation on the Kronotsk peninsula was dated as the Late Senonian. Paleomagnetic data show that, 60-40 Myr ago, Kronotsk arc undergo large northern drift after a nearly equal period of southern drift. The southern part of the Kamchatskiy Mys peninsula, Africa block, is interpreted as a fragment of the accretionary prism of the Kronotsk arc, related to period of the southern drift. There are five main parts of this prism: Olenegorsk gabbro (50-70 Ma); Smaginsk Fm (Albian-Senomanian, 110-95 Ma): hot-spot basaltes and pelagic sediments; Pickezh Fm (Campanian - Maastrichtian, 85-65 Ma): tuffites in the lower part and subarcosic sandstones in the upper; and Soldatsk ultramafics. These parts of the prism are mostly separated by the large thrusts, but locally we saw the konglobrechia with gabbroic and diabasic clasts in the lowest parts of the Smaginsk and Pickezh sequences. The transition from the Pickezh Fm to Pickezh sanstones was always described as gradual. Six published paleomagnetic determinations (from Campanian to Bartonian, 80-40 Ma) of Kronotsk arc volcanics, kinematics of the large plates in the Northern Pacific, and some geological data allow us to reconstruct the drift of the Kronotsk arc at the end of Cretaceous and the first half of Paleogene. 80-60 Myr ago, Kronotsk arc marked a southern margin of the North American Plate (or a little plate with the very similar kinematics) when the Kula plate was consumed in the Kronotsk while the Kula-Pacific Ridge and Hawaiian hot spot were placed to the south. The apron of tuffs and tuffites overlapped the slopes of the newly arc and neighboring oceanic structures. One of the latter, Smaginsk oceanic plateau on the Kula plate was partly separated from this plate and attached to the Kronotsk

  11. Cretaceous sedimentation and tectonism in the southeastern Kaiparowits region, Utah

    Science.gov (United States)

    Peterson, Fred

    1969-01-01

    Upper Cretaceous strata in the southeastern Kaiparowits region of south-central Utah consist of approximately 3,500 feet of interfingering sandstone, mudstone, shale, and coal in the Dakota Formation (oldest), Tropic Shale, Straight Cliffs Formation, and Wahweap Formation (youngest). The formations consist of several depositional facies that can be recognized by characteristic lithologies bedding structures, and fossils; these are the alluvial plain, deltaic plain, lagoonal-paludal, barrier sandstone, and offshore marine facies. The distribution of facies clearly defines the paleogeography of the region during several cycles of marine transgression and regression. The nonmarine beds were deposited on a broad alluvial coastal plain that was bordered on the west and southwest by highlands and on the east and northeast by the Western Interior seaway. The marine beds were deposited whenever the seaway advanced into or across the region. The Dakota Formation and the lower part of the Tropic Shale were deposited in nonmarine and marine environments, while the shoreline advanced generally westward across the region. The middle and upper part of the Tropic Shale and the Tibbet Canyon and Smoky Hollow Members of the Straight Cliffs Formation were deposited in marine and nonmarine environments when the seaway had reached its greatest areal extent and began a gradual northeastward withdrawal. An unconformity at the top of the Smoky Hollow represents a period of erosion and possibly nondeposition before deposition of the John Henry Member of the Straight Cliffs. The John Henry Member grades from nonmarine in the southwest to predominantly marine in the northeast, and was deposited during two relatively minor cycles of transgression and regression. The Drip Tank Member at the top of the Straight Cliffs Formation is a widespread sandstone unit deposited mainly in fluvial environments. Some of the beds in the northeastern part of the region were probably deposited in marine

  12. Double fossilization in eukaryotic microorganisms from Lower Cretaceous amber

    Directory of Open Access Journals (Sweden)

    Alonso Jesús

    2009-02-01

    Full Text Available Abstract Background Microfossils are not only useful for elucidating biological macro- and microevolution but also the biogeochemical history of our planet. Pyritization is the most important and extensive mode of preservation of animals and especially of plants. Entrapping in amber, a fossilized resin, is considered an alternative mode of biological preservation. For the first time, the internal organization of 114-million-year-old microfossils entrapped in Lower Cretaceous amber is described and analyzed, using adapted scanning electron microscopy in backscattered electron mode in association with energy dispersive X-ray spectroscopy microanalysis. Double fossilization of several protists included in diverse taxonomical groups and some vegetal debris is described and analyzed. Results In protists without an exoskeleton or shell (ciliates, naked amoebae, flagellates, determinate structures, including the nuclei, surface envelopes (cortex or cytoplasmic membrane and hyaloplasm are the main sites of pyritization. In protists with a biomineralized skeleton (diatoms, silicon was replaced by pyrite. Permineralization was the main mode of pyritization. Framboidal, subhedral and microcrystalline are the predominant pyrite textures detected in the cells. Abundant pyritized vegetal debris have also been found inside the amber nuggets and the surrounding sediments. This vegetal debris usually contained numerous pyrite framboids and very densely packed polycrystalline pyrite formations infilled with different elements of the secondary xylem. Conclusion Embedding in amber and pyritization are not always alternative modes of biological preservation during geological times, but double fossilization is possible under certain environmental conditions. Pyritization in protists shows a quite different pattern with regard to plants, due to the different composition and cellular architecture in these microorganisms and organisms. Anaerobic sulphate

  13. The global Cretaceous-Tertiary fire: Biomass or fossil carbon

    Science.gov (United States)

    Gilmour, Iain; Guenther, Frank

    1988-01-01

    The global soot layer at the K-T boundary indicates a major fire triggered by meteorite impact. However, it is not clear whether the principal fuel was biomass or fossil carbon. Forests are favored by delta value of C-13, which is close to the average for trees, but the total amount of elemental C is approximately 10 percent of the present living carbon, and thus requires very efficient conversion to soot. The PAH was analyzed at Woodside Creek, in the hope of finding a diagnostic molecular marker. A promising candidate is 1-methyl-7-isopropyl phenanthrene (retene,), which is probably derived by low temperature degradation of abietic acid. Unlike other PAH that form by pyrosynthesis at higher temperatures, retene has retained the characteristic side chains of its parent molecule. A total of 11 PAH compounds were identified in the boundary clay. Retene is present in substantial abundance. The identification was confirmed by analysis of a retene standard. Retene is characteristic of the combustion of resinous higher plants. Its formation depends on both temperature and oxygen access, and is apparently highest in oxygen-poor fires. Such fires would also produce soot more efficiently which may explain the high soot abundance. The relatively high level of coronene is not typical of a wood combustion source, however, though it can be produced during high temperature pyrolysis of methane, and presumably other H, C-containing materials. This would require large, hot, low O2 zones, which may occur only in very large fires. The presence of retene indicates that biomass was a significant fuel source for the soot at the Cretaceous-Tertiary boundary. The total amount of elemental C produced requires a greater than 3 percent soot yield, which is higher than typically observed for wildfires. However, retene and presumably coronene imply limited access of O2 and hence high soot yield.

  14. Climate model boundary conditions for four Cretaceous time slices

    Directory of Open Access Journals (Sweden)

    J. O. Sewall

    2007-06-01

    Full Text Available General circulation models (GCMs are useful tools for investigating the characteristics and dynamics of past climates. Understanding of past climates contributes significantly to our overall understanding of Earth's climate system. One of the most time consuming, and often daunting, tasks facing the paleoclimate modeler, particularly those without a geological background, is the production of surface boundary conditions for past time periods. These boundary conditions consist of, at a minimum, continental configurations derived from plate tectonic modeling, topography, bathymetry, and a vegetation distribution. Typically, each researcher develops a unique set of boundary conditions for use in their simulations. Thus, unlike simulations of modern climate, basic assumptions in paleo surface boundary conditions can vary from researcher to researcher. This makes comparisons between results from multiple researchers difficult and, thus, hinders the integration of studies across the broader community. Unless special changes to surface conditions are warranted, researcher dependent boundary conditions are not the most efficient way to proceed in paleoclimate investigations. Here we present surface boundary conditions (land-sea distribution, paleotopography, paleobathymetry, and paleovegetation distribution for four Cretaceous time slices (120 Ma, 110 Ma, 90 Ma, and 70 Ma. These boundary conditions are modified from base datasets to be appropriate for incorporation into numerical studies of Earth's climate and are available in NetCDF format upon request from the lead author. The land-sea distribution, bathymetry, and topography are based on the 1°×1° (latitude x longitude paleo Digital Elevation Models (paleoDEMs of Christopher Scotese. Those paleoDEMs were adjusted using the paleogeographical reconstructions of Ronald Blakey (Northern Arizona University and published literature and were then modified for use in GCMs. The paleovegetation

  15. Climate model boundary conditions for four Cretaceous time slices

    Directory of Open Access Journals (Sweden)

    J. O. Sewall

    2007-11-01

    Full Text Available General circulation models (GCMs are useful tools for investigating the characteristics and dynamics of past climates. Understanding of past climates contributes significantly to our overall understanding of Earth's climate system. One of the most time consuming, and often daunting, tasks facing the paleoclimate modeler, particularly those without a geological background, is the production of surface boundary conditions for past time periods. These boundary conditions consist of, at a minimum, continental configurations derived from plate tectonic modeling, topography, bathymetry, and a vegetation distribution. Typically, each researcher develops a unique set of boundary conditions for use in their simulations. Thus, unlike simulations of modern climate, basic assumptions in paleo surface boundary conditions can vary from researcher to researcher. This makes comparisons between results from multiple researchers difficult and, thus, hinders the integration of studies across the broader community. Unless special changes to surface conditions are warranted, researcher dependent boundary conditions are not the most efficient way to proceed in paleoclimate investigations. Here we present surface boundary conditions (land-sea distribution, paleotopography, paleobathymetry, and paleovegetation distribution for four Cretaceous time slices (120 Ma, 110 Ma, 90 Ma, and 70 Ma. These boundary conditions are modified from base datasets to be appropriate for incorporation into numerical studies of Earth's climate and are available in NetCDF format upon request from the lead author. The land-sea distribution, bathymetry, and topography are based on the 1°×1° (latitude × longitude paleo Digital Elevation Models (paleoDEMs of Christopher Scotese. Those paleoDEMs were adjusted using the paleogeographical reconstructions of Ronald Blakey (Northern Arizona University and published literature and were then modified for use in GCMs. The paleovegetation

  16. Double fossilization in eukaryotic microorganisms from Lower Cretaceous amber.

    Science.gov (United States)

    Martín-González, Ana; Wierzchos, Jacek; Gutiérrez, Juan-Carlos; Alonso, Jesús; Ascaso, Carmen

    2009-02-20

    Microfossils are not only useful for elucidating biological macro- and microevolution but also the biogeochemical history of our planet. Pyritization is the most important and extensive mode of preservation of animals and especially of plants. Entrapping in amber, a fossilized resin, is considered an alternative mode of biological preservation. For the first time, the internal organization of 114-million-year-old microfossils entrapped in Lower Cretaceous amber is described and analyzed, using adapted scanning electron microscopy in backscattered electron mode in association with energy dispersive X-ray spectroscopy microanalysis. Double fossilization of several protists included in diverse taxonomical groups and some vegetal debris is described and analyzed. In protists without an exoskeleton or shell (ciliates, naked amoebae, flagellates), determinate structures, including the nuclei, surface envelopes (cortex or cytoplasmic membrane) and hyaloplasm are the main sites of pyritization. In protists with a biomineralized skeleton (diatoms), silicon was replaced by pyrite. Permineralization was the main mode of pyritization. Framboidal, subhedral and microcrystalline are the predominant pyrite textures detected in the cells. Abundant pyritized vegetal debris have also been found inside the amber nuggets and the surrounding sediments. This vegetal debris usually contained numerous pyrite framboids and very densely packed polycrystalline pyrite formations infilled with different elements of the secondary xylem. Embedding in amber and pyritization are not always alternative modes of biological preservation during geological times, but double fossilization is possible under certain environmental conditions. Pyritization in protists shows a quite different pattern with regard to plants, due to the different composition and cellular architecture in these microorganisms and organisms. Anaerobic sulphate-reducing bacteria could play a crucial role in this microbial

  17. Late Cretaceous Breakup of the Pacific Margin of Southern Mexico

    Science.gov (United States)

    Guerrero-Garcia, J. C.; Herrero-Bervera, E.

    2006-12-01

    As geological, geophysical and geochemical evidence keeps accumulating over the years, there seems to be a growing general acceptance that the Chortis block (nuclear Central America) occupied a position further to the NW along the present-day margin of southwestern Mexico, sometime between Early Jurassic and Neogene time. The controversy resides no longer in the sense of motion along the coast but on the timing of events and in the latitude that the Chortis block occupied at the time of detachment. Previous studies mainly confined to the northern margin of the Chortis block, confirmed a left-lateral displacement of 130 km in Neogene time. Further studies made northwestward along the Mexican coast provided a better understanding of magmatic and metamorphic processes in the area, and suggested times of detachment increased to 30 Ma (Wadge and Burke, 1983), 40 Ma (Schaaf and others, 1995), and 66 Ma (Herrmann and others, 1994). The pre- detachment westernmost position of the block has changed, depending on the model chosen, from Puerto Vallarta and beyond, to the current position. We contend that several indicators, namely: (1) the truncated nature of the Pacific coast of SW Mexico; (2) the genesis of the Kula-Farallon ridge at 85 Ma; (3) the 2,600 km of northward transport of Baja British Columbia from the present-day latitude of the Baja California Peninsula, beginning at 85 Ma; (4) the paleomagnetic counterclockwise rotations of areas both in the Chortis block and along the Mexican coast, during Late Cretaceous-Paleogene time, and (5) the systematic NW-SE decrease of radiometric dates beginning at 85 Ma in Puerto Vallarta, point to this time and region for the onset of strike- slip drifting of the Chortis block toward its current position.

  18. Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary.

    Science.gov (United States)

    Longrich, Nicholas R; Bhullar, Bhart-Anjan S; Gauthier, Jacques A

    2012-12-26

    The Cretaceous-Paleogene (K-Pg) boundary is marked by a major mass extinction, yet this event is thought to have had little effect on the diversity of lizards and snakes (Squamata). A revision of fossil squamates from the Maastrichtian and Paleocene of North America shows that lizards and snakes suffered a devastating mass extinction coinciding with the Chicxulub asteroid impact. Species-level extinction was 83%, and the K-Pg event resulted in the elimination of many lizard groups and a dramatic decrease in morphological disparity. Survival was associated with small body size and perhaps large geographic range. The recovery was prolonged; diversity did not approach Cretaceous levels until 10 My after the extinction, and resulted in a dramatic change in faunal composition. The squamate fossil record shows that the end-Cretaceous mass extinction was far more severe than previously believed, and underscores the role played by mass extinctions in driving diversification.

  19. A new dinosaur ichnotaxon from the Lower Cretaceous Patuxent Formation of Maryland and Virginia

    Science.gov (United States)

    Stanford, R.; Weems, R.E.; Lockley, M.G.

    2004-01-01

    In recent years, numerous dinosaur footprints have been discovered on bedding surfaces within the Lower Cretaceous Patuxent Formation of Maryland and Virginia. Among these, distinctive small tracks that display a combination of small manus with five digit impressions and a relatively much larger pes with four toe impressions evidently were made by animals belonging to the ornithischian family Hypsilophodontidae. These tracks differ from any ornithischian ichnotaxon previously described. We here name them Hypsiloichnus marylandicus and provide a description of their diagnostic characteristics. Although hypsilophodontid skeletal remains have not been found in the Patuxent, their skeletal remains are known from Lower Cretaceous strata of similar age in both western North America and Europe. Therefore, it is not surprising to find that an Early Cretaceous representative of this family also existed in eastern North America. ?? Taylor and Francis Ltd.

  20. Biostratigraphy of the Cretaceous/Tertiary boundary in the Sirwan Valley (Sulaimani Region, Kurdistan, NE Iraq)

    Science.gov (United States)

    Sharbazheri, Khalid Mahmood; Ghafor, Imad Mahmood; Muhammed, Qahtan Ahmad

    2009-10-01

    The Cretaceous/Tertiary (K/T) boundary sequence, which crops out in the studied area is located within the High Folded Zone, in the Sirwan Valley, northeastern Iraq. These units mainly consist of flysch and flysch-type successions of thick clastic beds of Tanjero/Kolosh Formations. A detailed lithostratigraphic study is achieved on the outcropping uppermost part of the Upper Cretaceous successions (upper part of Tanjero Formation) and the lowermost part of the Kolosh Formation. On the basis of the identified planktonic foraminiferal assemblages, five biozones are recorded from the uppermost part of Tanjero Formation and four biozones from the lower part of the Kolosh Formation (Lower Paleocene) in the Sirwan section. The biostratigraphic correlations based on planktonic foraminiferal zonations showed a comparison between the biostratigraphic zones established in this study and other equivalents of the commonly used planktonic zonal scheme around the Cretaceous/Tertiary boundary in and outside Iraq.

  1. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae.

    Science.gov (United States)

    Prasad, V; Strömberg, C A E; Leaché, A D; Samant, B; Patnaik, R; Tang, L; Mohabey, D M; Ge, S; Sahni, A

    2011-09-20

    Rice and its relatives are a focal point in agricultural and evolutionary science, but a paucity of fossils has obscured their deep-time history. Previously described cuticles with silica bodies (phytoliths) from the Late Cretaceous period (67-65 Ma) of India indicate that, by the latest Cretaceous, the grass family (Poaceae) consisted of members of the modern subclades PACMAD (Panicoideae-Aristidoideae-Chloridoideae-Micrairoideae-Arundinoideae-Danthonioideae) and BEP (Bambusoideae-Ehrhartoideae-Pooideae), including a taxon with proposed affinities to Ehrhartoideae. Here we describe additional fossils and show that, based on phylogenetic analyses that combine molecular genetic data and epidermal and phytolith features across Poaceae, these can be assigned to the rice tribe, Oryzeae, of grass subfamily Ehrhartoideae. The new Oryzeae fossils suggest substantial diversification within Ehrhartoideae by the Late Cretaceous, pushing back the time of origin of Poaceae as a whole. These results, therefore, necessitate a re-evaluation of current models for grass evolution and palaeobiogeography.

  2. Largest bird from the Early Cretaceous and its implications for the earliest avian ecological diversification

    Science.gov (United States)

    Zhou, Zhonghe; Zhang, Fucheng

    2002-01-01

    With only one known exception, early Cretaceous birds were smaller than their closest theropod dinosaur relatives. Here we report on a new bird from the Early Cretaceous feathered-dinosaur-bearing continental deposits of Liaoning, northeast China, which is not only larger than Archaeopteryx but is nearly twice as large as the basal dromaeosaur Microraptor. The new taxon, Sapeornis chaoyangensis gen. et sp. nov. , has a more basal phylogenetic position than all other birds except for Archaeopteryx. Its exceptionally long forelimbs, well-developed deltoid crest of the humerus, proximally fused metacarpals, relatively short hindlimbs and short pygostyle indicate powerful soaring capability and further suggest that by the Early Cretaceous ecological diversification of early birds was greater than previously assumed. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00114-001-0276-9.

  3. Morphological features of Triassic and Late Cretaceous high-latitude radiolarian assemblages (comparative analysis)

    Science.gov (United States)

    Bragin, Nikita; Bragina, Liubov

    2010-05-01

    High-latitude radiolarian assemblages of Mesozoic represent particular interest for Boreal-Tethyan correlation of Mesozoic as well as for their paleobiogeography. Radiolarians are the only planktonic protists that present both in low- and high-latitude Mesozoic sections, therefore they have high importance. The aim of this work is to distinguish common and different features of Triassic and Late Cretaceous high-latitude assemblages of Radiolaria during their comparative analysis. We use material from Triassic of Omolon Massif (NE Siberia) (Bragin, Egorov, 2001) and Kotel'nyi Island (Arctic) (Bragin, Bragina, 2009; Bragin, in press) and Late Cretaceous of Western Siberia (Amon, 2000) and Kamchatka Peninsula (Vishnevskaya, 2005; Bragina, 1991). The main trends of radiolarian assemblages from these sections are: quantitative domination of some taxa, presence of characteristic high-latitude taxa that are absent or very rare in low-latitude regions, and relatively low taxonomic diversity with absence of many high taxa and many morphotypes. We made following conclusions after comparative analysis: 1. Triassic assemblages are dominated by morphotypes with bipolar main spines (Pseudostylosphaera and similar forms), and by pylomate forms (Glomeropyle). Genus Glomeropyle has bipolar distribution pattern and it is typically high-latitude taxon. Late Cretaceous assemblages are dominated by forms with bipolar three-bladed main spines (Amphisphaera, Protoxiphotractus, Stylosphaera), by prunoid morphotypes (Amphibrachium, Prunobrachium), discoid spongy forms (Orbiculiforma, Spongodiscus) by three-rayed (Paronaella, Spongotripus), four-rayed (Crucella, Histiastrum) and multirayed stauraxon forms (Pentinastrum, Multastrum). Pylomate forms (Spongopyle) are present in the Late Cretaceous high-latitude assemblages but not so common. 2. Spherical forms with spines that possess apophyses (Kahlerosphaera, Dumitricasphaera) are common for Triassic high-latitude areas, but not present in

  4. Extreme adaptations for probable visual courtship behaviour in a Cretaceous dancing damselfly

    Science.gov (United States)

    Zheng, Daran; Nel, André; Jarzembowski, Edmund A.; Chang, Su-Chin; Zhang, Haichun; Xia, Fangyuan; Liu, Haoying; Wang, Bo

    2017-01-01

    Courtship behaviours, frequent among modern insects, have left extremely rare fossil traces. None are known previously for fossil odonatans. Fossil traces of such behaviours are better known among the vertebrates, e.g. the hypertelic antlers of the Pleistocene giant deer Megaloceros giganteus. Here we describe spectacular extremely expanded, pod-like tibiae in males of a platycnemidid damselfly from mid-Cretaceous Burmese amber. Such structures in modern damselflies, help to fend off other suitors as well as attract mating females, increasing the chances of successful mating. Modern Platycnemidinae and Chlorocyphidae convergently acquired similar but less developed structures. The new findings provide suggestive evidence of damselfly courtship behaviour as far back as the mid-Cretaceous. These data show an unexpected morphological disparity in dancing damselfly leg structure, and shed new light on mechanisms of sexual selection involving intra- and intersex reproductive competition during the Cretaceous. PMID:28317876

  5. Stratigraphic correlation of the Late Cretaceous Simsima Formation United Arab Emirates and Akveren Formation, northwest Turkey

    Science.gov (United States)

    Abdelghany, O.; Abu Saima, M.; Ramazanoglu, S.; Arman, H.

    2015-11-01

    Latest Cretaceous (Campanian-Maastrichtian) microfossils are used to correlate the carbonate rocks of the Simsima Formation in the northeastern part of the Arabian Peninsula (Northern Oman Mountains, United Arab Emirates and Oman) with the Akveren Formation in Kandira (northwest Turkey, near Black Sea region). Both formations have characteristically rich planktonic foraminiferal and calcareous nannofossil faunal assemblages that permit the recognition of the Globotruncanella havanensis Zone and Quadrum sissinghii Zone CC22. The palaeontological data is used to build an appropriate palaeoenvironmental model for the latest Cretaceous Aruma Group in the Oman Mountains foreland basin. The study reveals that the Late Cretaceous formations of UAE and Turkey can be divided into an open marine carbonate shelf facies (planktonic foraminifera/calcareous nannofossil biomicrite) and a shallow-marine carbonate facies (rudistids, coralline algal foraminiferal biomicrite).

  6. A diverse ant fauna from the mid-cretaceous of Myanmar (Hymenoptera: Formicidae).

    Science.gov (United States)

    Barden, Phillip; Grimaldi, David

    2014-01-01

    A new collection of 24 wingless ant specimens from mid-Cretaceous Burmese amber (Albian-Cenomanian, 99 Ma) comprises nine new species belonging to the genus Sphecomyrmodes Engel and Grimaldi. Described taxa vary considerably with regard to total size, head and body proportion, cuticular sculpturing, and petiole structure while all species are unified by a distinct shared character. The assemblage represents the largest known diversification of closely related Cretaceous ants with respect to species number. These stem-group ants exhibit some characteristics previously known only from their extant counterparts along with presumed plesiomorphic morphology. Consequently, their morphology may inform hypotheses relating to basal relationships and general patterns of ant evolution. These and other uncovered Cretaceous species indicate that stem-group ants are not simply wasp-like, transitional formicids, but rather a group of considerable adaptive diversity, exhibiting innovations analogous to what crown-group ants would echo 100 million years later.

  7. Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary

    Science.gov (United States)

    Longrich, Nicholas R.; Bhullar, Bhart-Anjan S.; Gauthier, Jacques A.

    2012-12-01

    The Cretaceous-Paleogene (K-Pg) boundary is marked by a major mass extinction, yet this event is thought to have had little effect on the diversity of lizards and snakes (Squamata). A revision of fossil squamates from the Maastrichtian and Paleocene of North America shows that lizards and snakes suffered a devastating mass extinction coinciding with the Chicxulub asteroid impact. Species-level extinction was 83%, and the K-Pg event resulted in the elimination of many lizard groups and a dramatic decrease in morphological disparity. Survival was associated with small body size and perhaps large geographic range. The recovery was prolonged; diversity did not approach Cretaceous levels until 10 My after the extinction, and resulted in a dramatic change in faunal composition. The squamate fossil record shows that the end-Cretaceous mass extinction was far more severe than previously believed, and underscores the role played by mass extinctions in driving diversification.

  8. The last polar dinosaurs: high diversity of latest Cretaceous arctic dinosaurs in Russia.

    Science.gov (United States)

    Godefroit, Pascal; Golovneva, Lina; Shchepetov, Sergei; Garcia, Géraldine; Alekseev, Pavel

    2009-04-01

    A latest Cretaceous (68 to 65 million years ago) vertebrate microfossil assemblage discovered at Kakanaut in northeastern Russia reveals that dinosaurs were still highly diversified in Arctic regions just before the Cretaceous-Tertiary mass extinction event. Dinosaur eggshell fragments, belonging to hadrosaurids and non-avian theropods, indicate that at least several latest Cretaceous dinosaur taxa could reproduce in polar region and were probably year-round residents of high latitudes. Palaeobotanical data suggest that these polar dinosaurs lived in a temperate climate (mean annual temperature about 10 degrees C), but the climate was apparently too cold for amphibians and ectothermic reptiles. The high diversity of Late Maastrichtian dinosaurs in high latitudes, where ectotherms are absent, strongly questions hypotheses according to which dinosaur extinction was a result of temperature decline, caused or not by the Chicxulub impact.

  9. Enantiornithine Bird with Diapsidian Skull and Its Dental Development in the Early Cretaceous in Liaoning, China

    Institute of Scientific and Technical Information of China (English)

    GONG Enpu; HOU Lianhai; WANG Lixia

    2004-01-01

    A large number of enantiornithine birds are discovered from the Early Cretaceous Jiufutang Formation in western Liaoning, China. They are all small-sized birds with a few small teeth. The enantiornithine bird from the Jiufutang Formation in the Shangheshou area, Chaoyang, Liaoning Province reported in this paper is the largest individual known in all enantiornithine birds of the Early Cretaceous.However, its teeth possess a feature of pseudoheterodont. Some different development stages of the new teeth substitute the earlier stages and the stages of development are preserved in this specimen. This development pattern is similar to that of Archaeopteryx and alligator but not dinosaur. A well-developed postorbital was also preserved in the skull, which was a diapsidian skull like that of Confuciusornis. Additionally, the distinctive preservation of its prefrontal distinguishes it from other enantiornithine birds of the Early Cretaceous.

  10. SHRIMP U-Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: A new tectonic model of the Cretaceous Korean Peninsula

    Science.gov (United States)

    Kim, Sung Won; Kwon, Sanghoon; Park, Seung-Ik; Lee, Changyeol; Cho, Deung-Lyong; Lee, Hong-Jin; Ko, Kyoungtae; Kim, Sook Ju

    2016-10-01

    The Cretaceous tectonomagmatism of the Korean Peninsula was examined based on geochemical and geochronological data of the Cretaceous plutonic rocks, along with distribution of volcano-sedimentary nonmarine N- to NE-trending fault bounded sedimentary basins. We conducted sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb ages and whole-rock geochemical compositions of 21 Cretaceous plutonic rocks, together with previously published data, from the central to southern Korean Peninsula. Four age groups of plutonic rocks were identified: Group I (ca. 119-106 Ma) in the northern to central area, Group II (ca. 99-87 Ma) in the central southern area, Group III (ca. 85-82 Ma) in the central to southern area, and Group IV (ca. 76-67 Ma) in the southernmost area. These results indicate a sporadic trenchward-younging trend of the Cretaceous magmatism in the Korean Peninsula. The Group I, II, and III rocks are dominated by high-K calc-alkaline I-type rocks with rift-related A-type granitoids. In contrast, the Group IV rocks are high-K calc-alkaline I-type plutonic rocks with no A-type rocks. The geochemical signatures of the entire groups indicated LREEs (light rare earth elements) enrichments and negative Nb, Ta, and Ti anomalies, indicating normal arc magmatism. A new tectonic model of the Cretaceous Korean Peninsula was proposed based on temporal and spatial distribution of the Cretaceous plutons represented by four age groups; 1) magmatic quiescence throughout the Korean Peninsula from ca. 160 to 120 Ma, 2) intrusions of the I- and A-type granitoids in the northern and central Korean Peninsula (Group I plutonic rocks from ca. 120 to 100 Ma) resulted from the partial melting of the lower continental crust due to the rollback of the Izanagi plate expressed as the conversion from flat-lying subduction to normal subduction. The Gyeongsang nonmarine sedimentary rift basin in the Korean Peninsula and adakite magmatism preserved in the present-day Japanese Islands

  11. A paleolatitude reconstruction of the South Armenian Block (Lesser Caucasus) for the Late Cretaceous : Constraints on the Tethyan realm

    NARCIS (Netherlands)

    Meijers, Maud J M|info:eu-repo/dai/nl/298800101; Smith, Brigitte; Kirscher, Uwe; Mensink, Marily; Sosson, Marc; Rolland, Yann; Grigoryan, Araik; Sahakyan, Lilit; Avagyan, Ara; Langereis, Cor|info:eu-repo/dai/nl/073584223; Müller, Carla

    2015-01-01

    The continental South Armenian Block - part of the Anatolide-Tauride South Armenian microplate - of Gondwana origin rifted from the African margin after the Triassic and collided with the Eurasian margin after the Late Cretaceous. During the Late Cretaceous, two northward dipping subduction zones we

  12. Jurassic-Cretaceous Herpetofaunas from the Jehol Associated Strata in NE China:Evolutionary and Ecological Implications

    Institute of Scientific and Technical Information of China (English)

    WANG Yuan; DONG Liping; Susan E.EVANS

    2010-01-01

    @@ Jurassic-Cretaceous herpetofaunas have recently been recovered from tuffinterbedded lacustrine strata in northeastern(NE)China.Most of them are from the Early Cretaceous Jehol Group(131-120 Ma),which has yielded a diverse and important fossil assemblage including insects,plants,fishes and tetrapods.

  13. Record of the Cretaceous magnetic quiet zone: A precursor to the understanding of evolutionary history of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.; Subrahmanyam, V.; Sarma, K.V.L.N.S.; Desa, M.; Rao, M.M.M.; Subrahmanyam, C.

    magnetic smooth zone sandwiched between the known Late Cretaceous anomaly A34 (approx equal to 84 Myr) and the younger magnetic anomaly sequence of Early Cretaceous crust, reproesnted by MO (approx equal to 118 Myr). The smooth magnetic zone seems to have...

  14. A paleolatitude reconstruction of the South Armenian Block (Lesser Caucasus) for the Late Cretaceous : Constraints on the Tethyan realm

    NARCIS (Netherlands)

    Meijers, Maud J M; Smith, Brigitte; Kirscher, Uwe; Mensink, Marily; Sosson, Marc; Rolland, Yann; Grigoryan, Araik; Sahakyan, Lilit; Avagyan, Ara; Langereis, Cor; Müller, Carla

    2015-01-01

    The continental South Armenian Block - part of the Anatolide-Tauride South Armenian microplate - of Gondwana origin rifted from the African margin after the Triassic and collided with the Eurasian margin after the Late Cretaceous. During the Late Cretaceous, two northward dipping subduction zones we

  15. Cretaceous oceanic red bed deposition, a tool for paleoenvironmental changes--Workshop of IGCP 463 & 494

    Institute of Scientific and Technical Information of China (English)

    MihaelaCarmenMelinte; RobertScott; ChengshanWANG; XiumianHU

    2005-01-01

    Members of IGCP 463, Cretaceous Oceanic Red Beds (CORBs), held the third workshop in Romania. In addition to scientific sessions,discussions of results and future plans, the participants examined exposures of Upper Cretaceous Red Beds of the Romanian Carpathians characterized both by pelagic/hemipelagic and turbiditic facies.

  16. Sedimentologic Expression of the Cretaceous OAEs in a Tropical Epicontinental Sea

    Science.gov (United States)

    Silva-Tamayo, J. C.; Eisenhauer, A.

    2015-12-01

    The acidification and deoxygention of modern oceans are major environmental concerns to the international community. The effects of ocean acidification and deoxigention in the biogeochemical cycles of modern tropical oceans are poorly constrained mainly due to the lack of empirical and quantitative data. The Cretaceous World witnessed several period of potential ocean acidification and deoxygenation, which resulted from the rapid additions of volcanic derived CO2 to the atmosphere. The effects of ocean acidification and deoxygenation on the Cretaceous biogeochemical cycles are evidenced mainly by major global C-isotope anomalies. These anomalies parallel the occurrence of organic rich black shales as well as major decreases in the deposition of shallow marine carbonates worldwide. Here we use detailed C- and Sr- chemostratigraphy as well as published bioestratigraphic information and volcanic zircon U-Pb ages to precisely constrain the geochemical and sedimentologic expression of the Cretaceous OAES along a tropical epicontinental sea, the La Luna Sea. Our multi-pronged approach allows identifying the occurrence of several of the Cretaceous Oceanic Anoxic Events (OAEs) in carbonate units paleogeographically located along the northern most part of the La Luna Sea, i.e. Weissert-OAE-(Palanz and Rosablanca Formations), Faraoni-(Rosablanca Formation), AOE1a-(Paja and Fomeque Formations, Cogollo Group), OAE1c-(Cogollo Group), OAE2-(Cogollo Group), OAE3-(La Luna Formation). These events are preserved in highly euxinic - organic rich "black shales" successions deposited along the deepest part of the seaway at the Middle Magdalena Valley and Cundinamarca Basin; Weiser-OAE-(Lutitas de Macanal Formation), OAE1a-(Paja Formation, Fomeque Formation), OAE1C-(San Gil Formation). Regional changes in depositional settings and sedimentary facies preserving the different Cretaceous OAEs were likely the result of the combined action of regional changes in paleogeography and tectonic

  17. Sedimentary basin analysis and petroleum potential of the Cretaceous and Tertiary strata in Korea.

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jin-Dam; Kwak, Young-Hoon; Bong, Pil-Yoon [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Since 1992 sedimentary basin analysis to assess petroleum potential of the Cretaceous and Tertiary strata in the Korean onshore and continental shelf have been carried out. The Cretaceous non-marine strata mainly occupy the Gyeongsang Basin in southeastern part of the Korean Peninsula and small basins such as Haenam and Gyeokpo depressions in western coastal areas. The Tertiary strata are mostly distributed in Domi, Cheju, Socotra subbasins, and Okinawa Trough in the South Continental Shelf, and Kunsan and Heuksan basins in the West. The basin evolution and petroleum potential for each basins are characterized as follow. The Cretaceous Gyeongsang sediments were deposited in three subbasins including Milyang, Euisung and Yongyang subbasins. The black shales in Nakdong and Jinju formations are interpreted to contain abundant organic matter during the deposition, thermal maturity reaching up to the zone of dry gas formation. Because porosity and permeability are too low, the sandstones can act as a tight gas reservoir rather than conventional oil and gas reservoir. The latest Cretaceous strata of Haenam and Kyeokpo depressions in western coastal area are correlated into the Yuchon Volcanic Group of the Gyeongsang Basin. Petroleum potential of the Early Cretaceous basin in the West Continental Shelf could be relatively high in terms of sedimentary basin filled with thick lacustrine sediments. The Kunsan basin in the West Continental Shelf originated in the Early Cretaceous time expanded during the Paleocene time followed by regional erosion at the end of Paleocene on which Neogene sediment have been accumulated. The Paleocene-Eocene sublacustrine shales may play an major role as a source and cap rocks. South Continental Shelf Basin is subdivided by Cheju subbasin in the center, Socotra Subbasin to the west, Domi Subbasin to the northeast and Okinawa Trough to the East. The potential hydrocarbon traps associated with anticline, titled fault blocks, fault, unconformity

  18. Maps showing thermal maturity of Upper Cretaceous marine shales in the Bighorn Basin, Wyoming and Montana

    Science.gov (United States)

    Finn, Thomas M.; Pawlewicz, Mark J.

    2014-01-01

    The Bighorn Basin is one of many structural and sedimentary basins that formed in the Rocky Mountain foreland during the Laramide orogeny, a period of crustal instability and compressional tectonics that began in latest Cretaceous time and ended in the Eocene. The basin is nearly 180 mi long, 100 mi wide, and encompasses about 10,400 mi2 in north-central Wyoming and south-central Montana. The basin is bounded on the northeast by the Pryor Mountains, on the east by the Bighorn Mountains, and on the south by the Owl Creek Mountains). The north boundary includes a zone of faulting and folding referred to as the Nye-Bowler lineament. The northwest and west margins are formed by the Beartooth Mountains and Absaroka Range, respectively. Important conventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Cambrian through Tertiary. In addition, a potential unconventional basin-centered gas accumulation may be present in Cretaceous reservoirs in the deeper parts of the basin. It has been suggested by numerous authors that various Cretaceous marine shales are the principal source rock for these accumulations. Numerous studies of various Upper Cretaceous marine shales in the Rocky Mountain region have led to the general conclusion that these rocks have generated or are capable of generating oil and (or) gas. In recent years, advances in horizontal drilling and multistage fracture stimulation have resulted in increased exploration and completion of wells in Cretaceous marine shales in other Rocky Mountain Laramide basins that were previously thought of only as hydrocarbon source rocks. Important parameters controlling hydrocarbon production from these shale reservoirs include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for selected Upper Cretaceous marine

  19. Lower Cretaceous turbidites of the Moray Firth: sequence stratigraphical framework and reservoir distribution

    Energy Technology Data Exchange (ETDEWEB)

    Jeremiah, J.M. [Nederlandse Ardolie Maatschappij B.V., Assen (Netherlands)

    2000-11-01

    Lower Cretaceous depositional systems of the Moray Firth are influenced by eustatic sea-level oscillations which have been dramatically overprinted by two major phases of pulsed tectonism, the Late Cimmerian and Austrian. The biostratigraphical resolution obtained has allowed the timing and differentiation of distinct tectonic/sequence boundaries, some of which are utilized as important seismo-stratigraphic markers. The construction of detailed facies maps for individual sequences has, in parallel, allowed an insight into the tectonic history of the main source areas during the Early Cretaceous. (Author)

  20. Ancient hastisetae of Cretaceous carrion beetles (Coleoptera: Dermestidae) in Myanmar amber.

    Science.gov (United States)

    Poinar, George; Poinar, Roberta

    2016-11-01

    Hastisetae are extremely elaborate and intricate insect setae that occur solely on dermestid larvae (Coleoptera: Dermestidae). The present work characterizes hastisetae found in mid-Cretaceous amber from Myanmar and compares them to hastisetae found on extant dermestid larvae. The presence of hastisetae in Myanmar amber shows that lineages of dermestid beetles had already developed hastisetae by the mid-Cretaceous and their presence allows us to follow the evolutionary development of this particular arthropod structure over the past 100 million years. Hastisetae attached to a parasitic wasp in the same piece of amber indicates that ancient dermestid beetles used their hastisetae for defense, similar to their function today.

  1. A gigantic shark from the lower cretaceous duck creek formation of Texas.

    Science.gov (United States)

    Frederickson, Joseph A; Schaefer, Scott N; Doucette-Frederickson, Janessa A

    2015-01-01

    Three large lamniform shark vertebrae are described from the Lower Cretaceous of Texas. We interpret these fossils as belonging to a single individual with a calculated total body length of 6.3 m. This large individual compares favorably to another shark specimen from the roughly contemporaneous Kiowa Shale of Kansas. Neither specimen was recovered with associated teeth, making confident identification of the species impossible. However, both formations share a similar shark fauna, with Leptostyrax macrorhiza being the largest of the common lamniform sharks. Regardless of its actual identification, this new specimen provides further evidence that large-bodied lamniform sharks had evolved prior to the Late Cretaceous.

  2. A gigantic shark from the lower cretaceous duck creek formation of Texas.

    Directory of Open Access Journals (Sweden)

    Joseph A Frederickson

    Full Text Available Three large lamniform shark vertebrae are described from the Lower Cretaceous of Texas. We interpret these fossils as belonging to a single individual with a calculated total body length of 6.3 m. This large individual compares favorably to another shark specimen from the roughly contemporaneous Kiowa Shale of Kansas. Neither specimen was recovered with associated teeth, making confident identification of the species impossible. However, both formations share a similar shark fauna, with Leptostyrax macrorhiza being the largest of the common lamniform sharks. Regardless of its actual identification, this new specimen provides further evidence that large-bodied lamniform sharks had evolved prior to the Late Cretaceous.

  3. The Late Cretaceous fauna and flora of the Uberaba area (Minas Gerais State, Brazil)

    Science.gov (United States)

    Candeiro, Carlos Roberto A.; Santos, Adriano R.; Bergqvist, Lílian P.; Ribeiro, Luiz Carlos B.; Apesteguía, Sebastián

    2008-03-01

    The Uberaba area, in Minas Gerais State, Brazil, yields a rich continental fauna and flora from the Late Cretaceous Uberaba and Marília formations. This paper reviews the diversity of the biota recorded from these formations. The most significant taxa from Peirópolis are the frog Baurubatrachus pricei, the turtle Cambaremys langertoni, the lizard Pristiguana brasiliensis, the crocodyliforms Itasuchus jesuinoi, Peirosaurus tormini and Uberabasuchus terrificus, the titanosaurian Baurutitan britoi, Trigonosaurus pricei, Aeolosaurus sp., indeterminate titanosaurians, and abelisaurid, carcharodontosaurid and maniraptoran theropods. Together with faunas of a similar age in Argentina and Madagascar, the assemblages contribute to a better understanding of Late Cretaceous Gondwanan faunas as a whole.

  4. Growth ring analysis of fossil coniferous woods from early cretaceous of Araripe Basin.

    Science.gov (United States)

    Pires, Etiene F; Guerra-Sommer, Margot

    2011-06-01

    Growth ring analysis on silicified coniferous woods from the Missão Velha Formation (Araripe Basin - Brazil) has yielded important information about periodicity of wood production during the Early Cretaceous in the equatorial belt. Despite warm temperatures, dendrological data indicate that the climate was characterized by cyclical alternation of dry and rainy periods influenced by cyclical precipitations, typical of tropical wet and dry or savanna climate. The abundance of false growth rings can be attributed to both occasional droughts and arthropod damage. The present climate data agree with palaeoclimatic models that inferred summer-wet biomes for the Late Jurassic/Early Cretaceous boundary in the southern equatorial belt.

  5. Assessing the duration of drowning episodes during the Early Cretaceous

    Science.gov (United States)

    Godet, A.; Föllmi, K. B.

    2013-12-01

    Drowning unconformities are stratigraphic key surfaces in the history of carbonate platforms. They mostly consist in the deposition of deep marine facies on top of shallow marine limestones. Although large-scale depositional geometries mimic lowstand systems track architecture, these sedimentary turnovers are developed in relation with major sea level rise, inducing an increase in the rate of creation of accommodation space that outpaces the capacity of carbonate to keep up. This so-called paradox of carbonate platform drowning implies that other parameters than purely eustatic fluctuations are involved in the demise of shallow marine ecosystems. Worldwide and at different time during Earth history, in-depth studies of drowning unconformities revealed that changes in nutrient input, clastic delivery, temperature, or a combination of them may be responsible for a decrease in light penetration in the water column and the progressive suffocation and poisoning of photosynthetic carbonate producers. The examination of such case examples from various stratigraphic intervals and palaeogeographical settings thus helps in identifying and hierarchizing potential triggering mechanisms for drowning unconformities. This is complemented by new data from Early Cretaceous successions from the Helvetic Alps. During this time period, the Helvetic carbonate platform developed along the northern Tethyan margin using both photozoan and heterozoan communities. Phases of healthy production were interrupted by several drowning episodes. The latter are marked in the sedimentary record by condensation and associated phosphogenesis and glauconitisation. From the earliest Valanginian to the early to late Barremian, three drowning unconformities reflect the intermittent installation of a more humid climate and subsequent enhanced trophic conditions, which first induced a switch from photozoan to heterozoan communities and then to long-lasting drowning phases. The latter encompass several sea

  6. Deccan volcanism at the Cretaceous-Tertiary boundary

    Science.gov (United States)

    Courtillot, V.; Vandamme, D.; Besse, J.

    1988-01-01

    The accuracy with which one can claim that Deccan trap volcanism occurred at the Cretaceous-Tertiary boundary (KTB) over a very short time interval is of key importance in deciding whether a volcanic origin of the KTB events should be taken seriously. In the two years since paleomagnetic, paleontological and geodynamic evidence was published, further data have become available and the case now appears to be well constrained. The Ar-40/Ar-39 results from six labs have yielded some 24 reliable plateau ages that narrow the age range to 65 to 69 Ma. Moreover, it appears that a significant part of this range results from inter-lab spread and possible minor alteration. Paleontology demonstrates that volcanism started in the Maestrichtian, more precisely in the A. mayaroensis zone. Paleomagnetism shows that volcanism spanned only 3 chrons and only one correlation remains possible, that of the main central reversed chron with 29R. Therefore, whereas Ar-40/Ar-39 is able only to restrict the duration of volcanism to some 4 Ma, paleomagnetism restricts it to 0.5 Ma. Using some geochemical indicators such as C-13 as proxy, it is suggested that volcanism actually consists of a few shorter events of unequal magnitude. Extrusion rates may be as high as 100 cu km/yr and fissure lengths as long as several 100 km. Such a scenario appears to be at least as successful as others in accounting for most anomalies observed at the KTB. Particularly important are Iridium and other platinum group elements (PGE) profiles, Sr-87/Sr-86, C-13, 0-18, other exotic geochemical signatures, spherules, soot, shocked minerals, selective and stepwise extinctions. The environmental impact of CO2 possibly released during explosive phases of volcanism, and SO2 released during effusive phases, and the ability of volcanism to ensure worldwide distribution of KTB products are now all addressed. In conclusion, the case for a causal link between internal hotspot activity, birth of the Reunion hotspot itself as

  7. Dinosaur egg deposits in the Cretaceous Gyeongsang Supergroup, Korea: Diversity and paleobiological implications

    Science.gov (United States)

    Paik, In Sung; Kim, Hyun Joo; Huh, Min

    2012-08-01

    The taphonomy and depositional environments of dinosaur-egg-bearing deposits in the Cretaceous Gyeongsang Basin, Korea, are described and their paleobiological implications are discussed in the context of global geographic occurrences, geological ages, paleoenvironments, and lithology. The general depositional environment of dinosaur egg deposits in the Gyeongsang Supergroup is interpreted as dry floodplains with a semi-arid climate and intermittent volcanic activity. The diverse floodplain paleoenvironments include fluvial plains with meandering rivers to alluvial plains with episodic sheet-flooding. Both global and Korean dinosaur-egg-bearing deposits are generally restricted to the Late Cretaceous, a phenomenon for which two possible explanations are proposed. The first possible explanation for the temporal limitation of dinosaur egg preservation involves the appearance of angiosperms in the Late Jurassic, the Late Cretaceous ecological dispersion of angiosperm trees into swamps and floodplains, and the attendant change in herbivorous dinosaurs' diets. The second possible reason is related to nesting behavior in the Cretaceous. By contrast to the temporally limited occurrence of dinosaur eggs, paleoenvironments of nesting areas are diverse, ranging from inland areas to coastal areas. These hypotheses may provide new directions for the study and understanding of dinosaur egg distribution in the context of geologic time.

  8. Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc : Evidence from paleomagnetism, sediment provenance, and stratigraphy

    NARCIS (Netherlands)

    Huang, Wentao; van Hinsbergen, Douwe J J; Maffione, Marco; Orme, Devon A.; Dupont-Nivet, Guillaume; Guilmette, Carl; Ding, Lin; Guo, Zhaojie; Kapp, Paul

    2015-01-01

    The India-Asia suture zone of southern Tibet exposes Lower Cretaceous Xigaze ophiolites and radiolarian cherts, and time-equivalent Asian-derived clastic forearc sedimentary rocks (Xigaze Group). These ophiolites have been interpreted to have formed in the forearc of the north-dipping subduction zon

  9. Palynology of uppermost Jurassic and lowermost Cretaceous strata in the Eastern Netherlands

    NARCIS (Netherlands)

    Burger, D.

    1965-01-01

    The present investigation is a systematical treatment of the sporomorphs from strata at the Jurassic-Cretaceous boundary in the eastern Netherlands Twente area, and an attempt to apply palynology to detailed stratigraphical study, by making use of quantitative pollen analyses. The rock samples used

  10. Larger miliolids of the Late Cretaceous and Paleogene seen through space and time

    Directory of Open Access Journals (Sweden)

    Vlasta Ćosović

    2002-12-01

    Full Text Available Spatial and temporal occurrences of the larger (complex miliolids are discussed to give more light on biostratigraphy and paleobiogeographic provinces distribution. Seven generaand 47 species from the Late Cretaceous to Oligocene inhabited shallow marine settings in the Indo-Pacific, Tethyan and Caribbean regions. Of all genera only four (Idalina, Periloculina, Pseudolacazina, Lacazina widespread throughout Tethys in theLate Cretaceous and Paleogene. Single occurrence of Lacazina was recorded further to east (Moluccas. By now the Late Cretaceous genus Adrahentina is known only from the Spain. The newcomer’s Eocene genera were Fabularia and Lacazinella. Fabularia reachedhigh diversity in species term in the Central and Western Tethys and occured as unique genus in Caribbean realm, too. Conversely, during the same period, Lacazinella spread over the southern border of Neo-Tethys reaching New Guinea.On the Adriatic – Dinaric Carbonate Platform, larger miliolids occurred from the Late Cretaceous to Cuisian, having the same biostratigraphically trends and distribution as contemporaneous larger miliolids from the Tethys.

  11. Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary

    NARCIS (Netherlands)

    Vellekoop, J.; Sluijs, A.; Smit, J.; Schouten, S.; Weijers, J.W.H.; Sinninghe Damsté, J.S.; Brinkhuis, H.

    2014-01-01

    The mass extinction at the Cretaceous-Paleogene boundary, similar to 66 Ma, is thought to be caused by the impact of an asteroid at Chicxulub, present-day Mexico. Although the precise mechanisms that led to this mass extinction remain enigmatic, most postulated scenarios involve a short-lived global

  12. Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary

    NARCIS (Netherlands)

    Vellekoop, Johan; Sluijs, Appy; Smit, Jan; Schouten, Stefan; Weijers, Johan W H; Sinninghe Damsté, Jaap S.; Brinkhuis, Henk

    2014-01-01

    The mass extinction at the Cretaceous-Paleogene boundary, ~66 Ma, is thought to be caused by the impact of an asteroid at Chic-xulub, present-day Mexico. Although the precise mechanisms that led to this mass extinction remain enigmatic, most postulated scenarios involve a short-lived global cooling,

  13. Time scales of critical events around the Cretaceous-Paleogene boundary

    NARCIS (Netherlands)

    Renne, P.R.; Deino, A.L.; Hilgen, F.J.; Kuiper, K.F.; Mark, D.F.; Mitchell III, W.S.; Morgan, L.; Mundil, R.; Smit, J.

    2013-01-01

    Mass extinctions manifest in Earth's geologic record were turning points in biotic evolution. We present 40Ar/39Ar data that establish synchrony between the Cretaceous-Paleogene boundary and associated mass extinctions with the Chicxulub bolide impact to within 32,000 years. Perturbation of the atmo

  14. Seed ferns survived the end-Cretaceous mass extinction in Tasmania.

    Science.gov (United States)

    McLoughlin, Stephen; Carpenter, Raymond J; Jordan, Gregory J; Hill, Robert S

    2008-04-01

    Seed ferns, dominant elements of the vegetation in many parts of the world from the Triassic to Cretaceous, were considered to have disappeared at the end of the Cretaceous together with several other groups that had occupied key positions in terrestrial and marine ecosystems such as dinosaurs, plesiosaurs, and ammonoids. Seed-fern demise is generally correlated with competition from diversifying flowering plants through the Cretaceous and the global environmental crisis related to the Chicxulub impact event in the paleotropics at the end of the period. New fossils from Tasmania show that one seed-fern lineage survived into the Cenozoic by at least 13 million years. These fossils are described here as a new species, Komlopteris cenozoicus. Komlopteris is a genus of seed ferns attributed to Corystospermaceae and until now was not known from sediments younger than the Early Cretaceous. Discovery of this "Lazarus taxon," together with the presence of a range of other relictual fossil and extant organisms in Tasmania, other southern Gondwanan provinces, and some regions of northern North America and Asia, underscores high-latitude regions as biodiversity refugia during global environmental crises and highlights their importance as sources of postextinction radiations.

  15. Cretaceous and Tertiary terrane accretion in the Cordillera Occidental of the Andes of Ecuador

    Science.gov (United States)

    Hughes, Richard A.; Pilatasig, Luis F.

    2002-02-01

    New field, geochronological, geochemical and biostratigraphical data indicate that the central and northern parts of the Cordillera Occidental of the Andes of Ecuador comprise two terranes. The older (Pallatanga) terrane consists of an early to late (?) Cretaceous oceanic plateau suite, late Cretaceous marine turbidites derived from an unknown basaltic to andesitic volcanic source, and a tectonic mélange of probable late Cretaceous age. The younger (Macuchi) terrane consists of a volcanosedimentary island arc sequence, derived from a basaltic to andesitic source. A previously unidentified, regionally important dextral shear zone named the Chimbo-Toachi shear zone separates the two terranes. Regional evidence suggests that the Pallatanga terrane was accreted to the continental margin (the already accreted Cordillera Real) in Campanian times, producing a tectonic mélange in the suture zone. The Macuchi terrane was accreted to the Pallatanga terrane along the Chimbo-Toachi shear zone during the late Eocene, probably in a dextral shear regime. The correlation of Cretaceous rocks and accretionary events in the Cordillera Occidental of Ecuador and Colombia remains problematical, but the late Eocene event is recognised along the northern Andean margin.

  16. Osteology of Huabeisaurus allocotus (Sauropoda: Titanosauriformes from the Upper Cretaceous of China.

    Directory of Open Access Journals (Sweden)

    Michael D D'Emic

    Full Text Available BACKGROUND: The Late Cretaceous titanosauriform sauropod Huabeisaurus allocotus Pang and Cheng is known from teeth and much of the postcranial skeleton. Its completeness makes it an important taxon for integrating and interpreting anatomical observations from more fragmentary Cretaceous East Asian sauropods and for understanding titanosauriform evolution in general. METHODOLOGY/PRINCIPAL FINDINGS: We present a detailed redescription of Huabeisaurus allocotus and a suite of anatomical comparisons with other titanosauriforms that demonstrate its validity via autapomorphies (e.g., division of some presacral vertebral laminae, reduced development of caudal ribs, the development of fossae relative to one another in caudal vertebral neural arches, high tibia-to-femur ratio. Huabeisaurus shares many features with other Cretaceous East Asian sauropods (e.g., pendant cervical ribs, anterior-middle caudal vertebrae with a nearly flat anterior centrum face and a concave posterior centrum face that are absent in sauropods from other landmasses and strata, suggesting a close relationship among many of these forms within the clade Somphospondyli. CONCLUSIONS/SIGNIFICANCE: Restudy of Huabeisaurus provides further evidence for the existence of a clade of somphospondylans--Euhelopodidae--mainly found in the Cretaceous of East Asia. Euhelopodidae represents a fourth example of the evolution of narrow crowns within Sauropoda, along with diplodocoids, brachiosaurids, and advanced titanosaurs (lithostrotians. Despite being known from fewer species than Diplodocoidea, Brachiosauridae, or Lithostrotia, euhelopodids possessed a broader range of tooth shapes than any of these clades, suggesting that euhelopodids exemplified a comparably broad range of feeding strategies and perhaps diets.

  17. Burmese amber fossils bridge the gap in the Cretaceous record of polypod ferns

    OpenAIRE

    Schmidt, AR; Heinrichs, J.; Schneider, Harald

    2016-01-01

    publisher: Elsevier articletitle: Burmese amber fossils bridge the gap in the Cretaceous record of polypod ferns journaltitle: Perspectives in Plant Ecology, Evolution and Systematics articlelink: http://dx.doi.org/10.1016/j.ppees.2016.01.003 content_type: article copyright: Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Traces of a large crocodylian from the Lower Cretaceous Sousa Formation, Brazil

    DEFF Research Database (Denmark)

    Campos, Herbert B.N.; da Silva, Rafael C.; Milàn, Jesper

    2010-01-01

    Body imprints and tracks attributed to large crocodylians from the Lower Cretaceous Sousa Formation of Brazil are described and interpreted as having been produced in a subaqueous environment. In addition to the crocodylian tracks, the assemblage also comprises isolated tracks from medium-sized...

  19. Late Cretaceous extension and exhumation of the Stong Complex and Taku Schist, NE Peninsular Malaysia

    Science.gov (United States)

    François, Thomas; Afiq Md, Muhammad; Matenco, Liviu; Willingshofer, Ernst; Fatt Ng, Tham; Iskandar Taib, N.; Kamal Shuib, Mustaffa

    2017-04-01

    Dismembering large continental areas by post-orogenic extension requires favourable geodynamic conditions and frequently occurs along pre-existing suture zones or nappe contacts as exemplified by the Stong Complex and Taku Schist of northern Peninsular Malaysia. For this particular case we have employed a field and microstructural kinematic study combined with low temperature thermo-chronology to analyse the tectonic and exhumation history. The results show that the late Palaeozoic - Triassic Indosinian orogeny created successive phases of burial related metamorphism, shearing and contractional deformation. This orogenic structure was then dismembered during a Cretaceous thermal event that culminated in the formation of a large scale late Santonian - early Maastrichtian extensional detachment, genetically associated with crustal melting, the emplacement of syn-kinematic plutons and widespread migmatisation. The emplacement of these magmatic rocks led to an array of simultaneously formed structures that document deformation conditions over a wide temperature range, represented by amphibolite-facies mylonites and more brittle structures, such as cataclastic zones and normal faults that formed during exhumation in the footwall of the detachment. The formation of this detachment and a first phase of Late Cretaceous cooling was followed by renewed Eocene - Oligocene exhumation evidenced from our apatite fission track ages. We infer that an initial Cretaceous thermal anomaly was responsible for the formation of an extensional gneiss dome associated with simple shear and normal fault rotation. These Cretaceous processes played a critical role in the establishment of the presently observed crustal structure of Peninsular Malaysia.

  20. Cretaceous Bryozoa from the Campanian and Maastrichtian of the Atlantic and Gulf Coastal Plains, United States

    NARCIS (Netherlands)

    Taylor, P.D.; McKinney, F.K.

    2006-01-01

    The Late Cretaceous bryozoan fauna of North America has been severely neglected in the past. In this preliminary study based on museum material and a limited amount of fieldwork, we describe a total of 128 Campanian-Maastrichtian bryozoan species from Delaware, New Jersey, North Carolina, South

  1. Cretaceous and Cenozoic vegetation of Antarctica integrating the fossil wood record

    NARCIS (Netherlands)

    Poole, I.J.; Cantrill, David J.

    2006-01-01

    A compilation of data for Cretaceous and Cenozoic Antarctic fossil wood floras, predominantly from the James Ross Island Basin, provides a different perspective on floristic and vegetation change when compared with previous studies that have focused on leaf macrofossils or palynology. The wood recor

  2. Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary

    NARCIS (Netherlands)

    Vellekoop, J.; Sluijs, A.; Smit, J.; Schouten, S.; Weijers, J.W.H.; Sinninghe Damsté, J.S.; Brinkhuis, H.

    2014-01-01

    The mass extinction at the Cretaceous-Paleogene boundary, similar to 66 Ma, is thought to be caused by the impact of an asteroid at Chicxulub, present-day Mexico. Although the precise mechanisms that led to this mass extinction remain enigmatic, most postulated scenarios involve a short-lived global

  3. Evidence of cretaceous to recent West African intertropical vegetation from continental sediment spore-pollen analysis

    Science.gov (United States)

    Salard-Cheboldaeff, M.; Dejax, J.

    The succession of spore-pollen assemblages during the Cretaceous and Tertiary, as defined in each of the basin from Senegal to Angola, gives the possibility to consider the intertropical African flora evolution for the past 120 M.a. During the Early Cretaceous, xeric-adapted gymnosperms and various ferns were predominant the flora which nevertheless comprises previously unknown early angiosperm pollen. During the Middle Cretaceous, gymnospers were gradually replaced by angiosperms; these became more and more abundant, along with the diversification of new genera and species. During the Paleocene, the radiation of the monocotyledons (mainly that of the palm-trees) as well as a greater diversification among the dicotyledons and ferms are noteworthy. Since gymnosperms had almost disappeared by the Eocene, the diversification of the dicotyledons went on until the neogene, when all extinct pollen types are already present. These important modifications of the vegetation reflect evolutionary trends as well as climatic changes during the Cretaceous: the climate, firstly hot, dry and perhaps arid, did probably induced salt deposition, and later became gradually more humid under oceanic influences which arose in connection with the Gondwana break-up.

  4. Nonlinear Dynamic Study on Geomagnetic Polarity Reversal and Cretaceous Normal Superchron

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It is generally acknowledged that geomagnetic polarity has reversed many times in geological history and an abnormal geologic phenomenon is the Cretaceous normal superchron. However, the causes have been unknown up to now. The nonlinear theory has been applied to analyze the phenomenon in geomagnetic polarity reversal and the Cretaceous normal superchron. The Cretaceous normal superchron implies that interaction of the Earth's core-mantle and liquid movement in the outer core may be the lowest energy state and the system of Earth magnetic field maintains a sort of temporal or spatial order structure by exchanging substance and energy in the outside continuously.During 121-83 Ma, there was no impact of a celestial body that would result in a geomagnetic polarity reversal, which may be a cause for occurrence of the Cretaceous normal superchron. The randomness of geomagnetic polarity reversal has the self-reversion characteristic of chaos and the chaos theory gives a simple and clear explanation for the dynamic cause of the geomagnetic polarity reversal.

  5. Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary

    NARCIS (Netherlands)

    Vellekoop, Johan; Sluijs, Appy|info:eu-repo/dai/nl/311474748; Smit, Jan; Schouten, Stefan|info:eu-repo/dai/nl/137124929; Weijers, Johan W H|info:eu-repo/dai/nl/310911516; Sinninghe Damsté, Jaap S.|info:eu-repo/dai/nl/07401370X; Brinkhuis, Henk|info:eu-repo/dai/nl/095046097

    2014-01-01

    The mass extinction at the Cretaceous-Paleogene boundary, ~66 Ma, is thought to be caused by the impact of an asteroid at Chic-xulub, present-day Mexico. Although the precise mechanisms that led to this mass extinction remain enigmatic, most postulated scenarios involve a short-lived global cooling,

  6. Bolide impact and long- and short term environmental change across the cretaceous-paleogene boundary

    NARCIS (Netherlands)

    Vellekoop, J.

    2015-01-01

    The Cretaceous-Paleogene (K-Pg) boundary mass extinction, ~66 million years ago, was one of the most devastating events in the history of life, marking the end of the dinosaur era. This mass extinction event is now widely acknowledged to be related to the global environmental consequences of the

  7. Palaeomagnetic results from the southern Sierra Madre Oriental, Mexico: evidence for Early Cretaceous or Laramide remagnetization?

    Science.gov (United States)

    Böhnel, H.; Gose, W. A.; Testarmata, M. M.; Bocanegra Noriega, G.

    1990-12-01

    A large suite of samples from the Latest Triassic Huizachal and Early Jurassic Huayacocotla Groups and the Latest Jurassic Taman and Earliest Cretaceous Pimienta Formations was collected in the southern Sierra Madre Oriental for a palaeomagnetic study. Only the samples from three sites belonging to the Huizachal Group and the Las Juntas Formation possibly have retained their primary magnetization. If so, their pole position does not reveal any palaeomagnetically discernable motion relative to cratonic North America. All remaining sites were remagnetized as evidenced by a negative fold test at four sites and the fact that the pole positions cluster better at the 95% significance level if no structural corrections are applied. The tightness of the cluster ( α95 = 4.6 °) and the same polarity, suggest that the samples were remagnetized at some common time. These results permit two interpretations. (1) If the sampling region has not suffered any significant tectonic rotation, then the remagnetization can be dated by comparison with the polar wander path for North America as Early Cretaceous (≈ 130 Ma). This Early Cretaceous phase of deformation is not recognized in the northern Sierra Madre Oriental and clearly pre-dates the Early Tertiary Laramide orogeny. (2) If the southern Sierra Madre Oriental did rotate counterclockwise by ≈ 20 °, then the remagnetization could have originated in any Cretaceous or Early Tertiary time, and may indeed be related to the Laramide deformation. In either case, the data imply that the southern Sierra Madre Oriental constitutes an independent tectonic domain.

  8. Cretaceous and Cenozoic vegetation of Antarctica integrating the fossil wood record

    NARCIS (Netherlands)

    Poole, I.J.; Cantrill, David J.

    2006-01-01

    A compilation of data for Cretaceous and Cenozoic Antarctic fossil wood floras, predominantly from the James Ross Island Basin, provides a different perspective on floristic and vegetation change when compared with previous studies that have focused on leaf macrofossils or palynology. The wood

  9. Deshayesitid ammonites from the lower Aptian (Lower Cretaceous) of North-East Greenland

    NARCIS (Netherlands)

    Kelly, S.R.A.; Whitham, A.G.

    1999-01-01

    Two deshayesitid ammonite assemblages are described from the Lower Cretaceous succession of the north coast of Hold with Hope, North-East Greenland, and their biostratigraphical significance is assessed. In the earlier assemblage Prodeshayesites cf. bodei and P. laeviusculus occur. The second assemb

  10. Early Cretaceous decapod Crustacea from the Neuquén Basin, west-central Argentina

    NARCIS (Netherlands)

    Aguirre-Urreta, Maria Beatriz

    2003-01-01

    Marine deposits of the Neuquén Basin of west-central Argentina (southern South America) are richly fossiliferous; its Mesozoic invertebrate faunas, represented mostly by molluscs, have been extensively studied since the nineteenth century. However, Early Cretaceous decapod crustaceans are far less k

  11. Dynamics of Late Cretaceous rocky shores (Rosario Formation) from Baja California, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lescinsky, H.L. (Univ. of California, Davis (United States)); Ledesma-Vazquez, J. (Univ. Autonoma de Baja California, Ensenada (Mexico)); Johnson, M.E. (Williams Coll., Williamstown, MA (United States))

    1991-04-01

    Two rocky-shore deposits are described at localities of Late Cretaceous age in Baja California, Mexico. The main locality, at Las Minas, is characterized by a carbonate matrix containing clasts derived from an underlying andesite flow. Basal boulders give way up section to smaller cobbles and silt, indicating a transgression. The biotas from the sites include encrusting forms (coralline algae, bryozoans, serpulids, ostreids, spondylids), pholadid bivalve borings, and several nestling and mobile taxa. The well exposed boulder zone contains clusters of nestling pectinids preserved in growth position. This is the first such observation from an ancient rocky shore. Echinoids also lived within the relatively stable boulder interstices. Rocky-shore biotas of Late Cretaceous age from around the world contain many elements in common, including large encrusting oysters, spondylids, serpulids, rhynconellid brachiopods, and echinoids. Other groups common to rocky shores today are found at only some Cretaceous localities (e.g., barnacles, trochid and cerithiid gastropods, limpets, chitons). More archaic taxa, such as crinoids and large inarticulate brachiopods, are rarely represented at the known Cretaceous localities. Reconstructions of the biotas of ancient rocky shores offer a new avenue for the study of evolution on hard substrates. As the number and quality of described rocky-shore localities increases, it will be possible to put into a broader context evolutionary trends derived strictly from hard-grounds or other hard-substrate types.

  12. Evidence for gondwanan origins for sassafras (lauraceae)? : late cretaceous fossil wood of antarctica

    NARCIS (Netherlands)

    Poole, I.J.; Richter, Hans G.; Francis, Jane E.

    2000-01-01

    Sassafrasoxylon gottwaldii sp. nov. is a new taxon for fossil wood with a suite of features diagnostic of Sassafras Nees & Eberm. of the Lauraceae. The fossil wood described is from Late Cretaceous (Santonian- Maastrichtian) sediments of the northern Antarctica Peninsula region. This new species of

  13. Sedimentology and paleogeography of an Upper Cretaceous turbidite basin in the South-Central Pyrenees, Spain

    NARCIS (Netherlands)

    Hoorn, van B.

    1970-01-01

    The present study deals with the primary lithology, sedimentary structures, depositional history and paleogeography of an Upper Cretaceous turbidite basin in the south-central Pyrenees, and presents a brief review of the lithology and depositional environment of surrounding contemporaneous deposits.

  14. Upper Cretaceous pelagic red beds,implications for paleoclimate and pale oc eanography

    Institute of Scientific and Technical Information of China (English)

    LubaJansa; O.Tuysuz; R.W.Scott

    2004-01-01

    Members of IGCP 463, Upper Cretaceous Oceanic Red Beds: Response to Ocean/Climate Global Change (CORBs) held their second workshop near the Black Sea in Bartin, Turkey. In addition to discussion of results and plans, the participants examined exposures of pelagic red beds in northern Turkev.

  15. First planktonic foraminifera from the Early Cretaceous (Albian) of the Upper Magdalena Valley, Colombia

    Science.gov (United States)

    Blau, J.; Vergara, L.; Stock, H. W.

    1992-10-01

    Albian planktonic foraminifera have been found in the Caballos and "Villeta" formations at two localities in the Upper Magdalena Valley. This is the first documented record of Early Cretaceous planktonic foraminifera in Colombia. Hedbergellids and heterohelicids predominate; keeled forms are absent. The sedimentologic features and the associated microfauna indicate the onset of restricted environments from the middle Albian on.

  16. Evidence for Cretaceous-Paleogene boundary bolide “impact winter” conditions from New Jersey, USA

    NARCIS (Netherlands)

    Vellekoop, J.; Esmeray-Senlet, S.; Miller, K.G.; Browning, J.V.; Sluijs, A.; van de Schootbrugge, B.; Sinninghe Damsté, J.S.; Brinkhuis, H.

    2016-01-01

    Abrupt and short-lived “impact winter” conditions have commonly been implicated as the main mechanism leading to the mass extinction at the Cretaceous-Paleogene (K-Pg) boundary (ca. 66 Ma), marking the end of the reign of the non-avian dinosaurs. However, so far only limited evidence has been availa

  17. Evidence for Cretaceous-Paleogene boundary bolide "impact winter" conditions from New Jersey, USA

    NARCIS (Netherlands)

    Vellekoop, J.; Esmeray-Senlet, S.; Miller, K.G.; Browning, J.V.; Sluijs, A.; van de Schootbrugge, B.; Sinninghe Damsté, J.S.; Brinkhuis, H.

    2016-01-01

    Abrupt and short-lived “impact winter” conditions have commonly been implicated as the main mechanism leading to the mass extinction at the Cretaceous-Paleogene (K-Pg) boundary (ca. 66 Ma), marking the end of the reign of the non-avian dinosaurs. However, so far only limited evidence has been availa

  18. Curstal evolution and sedimentation history of the Bay of Bengal since the cretaceous

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.G.; Krishna, K.S.; Sar, D.

    on three latitudinal profiles) in the Bay of Bengal. The trend of the fracture zones, the locations of the magnetic chron 34, and the Cretaceous Magnetic Quiet Zone suggest that Greater India separated from Antarctica after a period of transform motion...

  19. Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous-Palaeogene mass extinction.

    Science.gov (United States)

    Halliday, Thomas John Dixon; Upchurch, Paul; Goswami, Anjali

    2016-06-29

    The effect of the Cretaceous-Palaeogene (K-Pg) mass extinction on the evolution of many groups, including placental mammals, has been hotly debated. The fossil record suggests a sudden adaptive radiation of placentals immediately after the event, but several recent quantitative analyses have reconstructed no significant increase in either clade origination rates or rates of character evolution in the Palaeocene. Here we use stochastic methods to date a recent phylogenetic analysis of Cretaceous and Palaeocene mammals and show that Placentalia likely originated in the Late Cretaceous, but that most intraordinal diversification occurred during the earliest Palaeocene. This analysis reconstructs fewer than 10 placental mammal lineages crossing the K-Pg boundary. Moreover, we show that rates of morphological evolution in the 5 Myr interval immediately after the K-Pg mass extinction are three times higher than background rates during the Cretaceous. These results suggest that the K-Pg mass extinction had a marked impact on placental mammal diversification, supporting the view that an evolutionary radiation occurred as placental lineages invaded new ecological niches during the Early Palaeocene.

  20. Maps showing thermal maturity of Upper Cretaceous marine shales in the Wind River Basin, Wyoming

    Science.gov (United States)

    Finn, Thomas M.; Pawlewicz, Mark J.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range, Owl Creek, and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, the Granite Mountains on the south, and the Wind River Range on the west. Important conventional and unconventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Mississippian through Tertiary. It has been suggested that various Upper Cretaceous marine shales are the principal hydrocarbon source rocks for many of these accumulations. Numerous source rock studies of various Upper Cretaceous marine shales throughout the Rocky Mountain region have led to the conclusion that these rocks have generated, or are capable of generating, oil and (or) gas. With recent advances and success in horizontal drilling and multistage fracture stimulation there has been an increase in exploration and completion of wells in these marine shales in other Rocky Mountain Laramide basins that were traditionally thought of only as hydrocarbon source rocks. Important parameters that control hydrocarbon production from shales include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a structural cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for Upper Cretaceous marine shales in the Wind River Basin.

  1. New Age of Fishes initiated by the Cretaceous-Paleogene mass extinction.

    Science.gov (United States)

    Sibert, Elizabeth C; Norris, Richard D

    2015-07-14

    Ray-finned fishes (Actinopterygii) comprise nearly half of all modern vertebrate diversity, and are an ecologically and numerically dominant megafauna in most aquatic environments. Crown teleost fishes diversified relatively recently, during the Late Cretaceous and early Paleogene, although the exact timing and cause of their radiation and rise to ecological dominance is poorly constrained. Here we use microfossil teeth and shark dermal scales (ichthyoliths) preserved in deep-sea sediments to study the changes in the pelagic fish community in the latest Cretaceous and early Paleogene. We find that the Cretaceous-Paleogene (K/Pg) extinction event marked a profound change in the structure of ichthyolith communities around the globe: Whereas shark denticles outnumber ray-finned fish teeth in Cretaceous deep-sea sediments around the world, there is a dramatic increase in the proportion of ray-finned fish teeth to shark denticles in the Paleocene. There is also an increase in size and numerical abundance of ray-finned fish teeth at the boundary. These changes are sustained through at least the first 24 million years of the Cenozoic. This new fish community structure began at the K/Pg mass extinction, suggesting the extinction event played an important role in initiating the modern "age of fishes."

  2. Two new ornithurine birds from the Early Cretaceous of western Liaoning, China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We describe two new ornithurine birds from the Early Cretaceous Jiufotang Formation of western Liaoning, northeast China: Yanornis martini gen. et sp. nov. and Yixianornis grabaui gen. et sp. nov. They represent the best fossil record of ornithurine birds known from the Early Cretaceous. They are more advanced than the most primitive ornithurine Liaoningornis, and are more similar to the other two Chinese Early Cretaceous ornithurines Chaoyangia and Songlingornis. Compared with Confuciusornis, Liaoxiornis and Eoenantiornis from the same age, the two new birds show remarkable advanced characteristics and suggest the presence of powerful flight capability like modern birds. Compared with Yixianornis and Chaoyangia, Yanornis is larger, with a more elongated skull and relatively long wings. The new discoveries indicate that by the Early Cretaceous both enantiornithine and ornithurine birds had already radiated significantly. The flight structures of Yanornis and Yixianornis are hardly distinguishable from those of modern birds; however, both retain a few primitive traits such as teeth on the jaws, wing claws and pubic symphysis, which exclude them from being the most recent ancestor of all ex-tant birds.

  3. Paleomagnetism of basalts from Alborz: Iran part of Asia in the Cretaceous

    NARCIS (Netherlands)

    Wensink, H.; Varekamp, J.C.

    1980-01-01

    Paleomagnetic results are reported from 20 sites within three units of volcanic rocks of Cretaceous age from the Central Albon Mountains, Iran. After application of progressive demonetization either with alternating magnetic fields or with heating, the mean characteristic remanence direction is foun

  4. Upper Cretaceous sequences and sea-level history, New Jersey Coastal Plain

    Science.gov (United States)

    Miller, K.G.; Sugarman, P.J.; Browning, J.V.; Kominz, M.A.; Olsson, R.K.; Feigenson, M.D.; Hernandez, J.C.

    2004-01-01

    We developed a Late Cretaceous sealevel estimate from Upper Cretaceous sequences at Bass River and Ancora, New Jersey (ODP [Ocean Drilling Program] Leg 174AX). We dated 11-14 sequences by integrating Sr isotope and biostratigraphy (age resolution ??0.5 m.y.) and then estimated paleoenvironmental changes within the sequences from lithofacies and biofacies analyses. Sequences generally shallow upsection from middle-neritic to inner-neritic paleodepths, as shown by the transition from thin basal glauconite shelf sands (transgressive systems tracts [TST]), to medial-prodelta silty clays (highstand systems tracts [HST]), and finally to upper-delta-front quartz sands (HST). Sea-level estimates obtained by backstripping (accounting for paleodepth variations, sediment loading, compaction, and basin subsidence) indicate that large (>25 m) and rapid (???1 m.y.) sea-level variations occurred during the Late Cretaceous greenhouse world. The fact that the timing of Upper Cretaceous sequence boundaries in New Jersey is similar to the sea-level lowering records of Exxon Production Research Company (EPR), northwest European sections, and Russian platform outcrops points to a global cause. Because backstripping, seismicity, seismic stratigraphic data, and sediment-distribution patterns all indicate minimal tectonic effects on the New Jersey Coastal Plain, we interpret that we have isolated a eustatic signature. The only known mechanism that can explain such global changes-glacio-eustasy-is consistent with foraminiferal ??18O data. Either continental ice sheets paced sea-level changes during the Late Cretaceous, or our understanding of causal mechanisms for global sea-level change is fundamentally flawed. Comparison of our eustatic history with published ice-sheet models and Milankovitch predictions suggests that small (5-10 ?? 106 km3), ephemeral, and areally restricted Antarctic ice sheets paced the Late Cretaceous global sea-level change. New Jersey and Russian eustatic estimates

  5. Compositional and temperature variations of the Pacific upper mantle since the Cretaceous

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guoliang

    2016-01-01

    The geological evolution of the Earth during the mid-Cretaceous were shown to be anomalous, e.g., the pause of the geomagnetic field, the global sea level rise, and increased intra-plate volcanic activities, which could be attributed to deep mantle processes. As the anomalous volcanic activities occurred mainly in the Cretaceous Pacific, here we use basalt chemical compositions from the oceanic drilling (DSDP/ODP/IODP) sites to investigate their mantle sources and melting conditions. Based on locations relative to the Pacific plateaus, we classified these sites as oceanic plateau basalts, normal mid-ocean ridge basalts, and near-plateau seafloor basalts. This study shows that those normal mid-ocean ridge basalts formed during mid-Cretaceous are broadly similar in average Na8, La/Sm and Sm/Yb ratios and Sr-Nd isotopic compositions to modern Pacific spreading ridge (the East Pacific Rise). The Ontong Java plateau (125–90 Ma) basalts have distinctly lower Na8 and 143Nd/144Nd, and higher La/Sm and87Sr/86Sr than normal seafloor basalts, whereas those for the near-plateau seafloor basalts are similar to the plateau basalts, indicating influences from the Ontong Java mantle source. The super mantle plume activity that might have formed the Ontong Java plateau influenced the mantle source of the simultaneously formed large areas of seafloor basalts. Based on the chemical data from normal seafloor basalts, I propose that the mantle compositions and melting conditions of the normal mid-ocean ridges during the Cretaceous are similar to the fast spreading East Pacific Rise. Slight variations of mid-Cretaceous normal seafloor basalts in melting conditions could be related to the local mantle source and spreading rate.

  6. Stratigraphy and evolution of the Cretaceous forearc Celica-Lancones basin of southwestern Ecuador

    Science.gov (United States)

    Jaillard, Etienne; Laubacher, Gérard; Bengtson, Peter; Dhondt, Annie V.; Bulot, Luc G.

    1999-01-01

    The "Celica-Lancones" forearc Basin of southern Ecuador and northern Peru is located between the Paleozoic Amotape-Tahuin Massif to the west and NW and the continental volcanic arc to the east and SE. The study of nine sections and exhaustive sampling of the poorly fossiliferous, mainly clastic Cretaceous deposits of this Basin allowed us to define five distinct series, which display two depositional periods. The first period corresponds to the development of an Early (?) and Middle Albian carbonate shelf, interrupted during Late Albian times by the creation of a tectonically generated trough filled by turbidites of Late Albian-Coniacian age. Geological mapping indicates that this "Celica-Lancones Basin s.s." includes distinct tectonic units, characterized by distinct early Late Cretaceous stratigraphic series and separated by major faults. These units can be grouped into two main paleogeographic domains. The southeastern one comprises mainly volcaniclastic deposits, whereas the northwestern domain exhibits quartz-rich deposits. Between Early Coniacian and Middle Campanian times, the "Celica-Lancones Basin s.s." forerarc trough was deformed and eroded as a result of the Late Cretaceous "Peruvian" tectonic phase. The second period corresponds to the latest Cretaceous, during which a new forearc basin was created (Paita-Yunguilla Basin), which is much wider and strikes obliquely with respect to the Celica-Lancones Basin. The sediments of the Paita-Yunguilla Basin exhibit a comparable succession of Campanian-Maastrichtian age throughout the area and conceal the tectonic juxtaposition of the early Late Cretaceous tectonic units. The occurrence of thick Early(?) Maastrichtian coarse-grained conglomerates and breccias express a new significant tectonic event.

  7. Diverse dinosaur-dominated ichnofaunas from the potomac group (Lower Cretaceous) Maryland

    Science.gov (United States)

    Stanford, R.; Lockley, M.; Weems, R.

    2007-01-01

    Until recently fossil footprints were virtually unknown from the Cretaceous of the eastern United States. The discovery of about 300 footprints in iron-rich siliciclastic facies of the Patuxent Formation (Potomac Group) of Aptian age is undoubtedly one of the most significant Early Cretaceous track discoveries since the Paluxy track discoveries in Texas in the 1930s. The Patuxent tracks include theropod, sauropod, ankylosaur and ornithopod dinosaur footprints, pterosaur tracks, and miscellaneous mammal and other vertebrate ichnites that collectively suggest a diversity of about 14 morphotypes. This is about twice the previous maximum estimate for any known Early Cretaceous vertebrate ichnofauna. Among the more distinctive forms are excellent examples of hypsilophodontid tracks and a surprisingly large mammal footprint. A remarkable feature of the Patuxent track assemblage is the high proportion of small tracks indicative of hatchlings, independently verified by the discovery of a hatchling-sized dinosaur. Such evidence suggests the proximity of nest sites. The preservation of such small tracks is very rare in the Cretaceous track record, and indeed throughout most of the Mesozoic. This unusual preservation not only provides us with a window into a diverse Early Cretaceous ecosystem, but it also suggests the potential of such facies to provide ichnological bonanzas. A remarkable feature of the assemblage is that it consists largely of reworked nodules and clasts that may have previously been reworked within the Patuxent Formation. Such unusual contexts of preservation should provide intriguing research opportunities for sedimentologists interested in the diagenesis and taphonomy of a unique track-bearing facies.

  8. Upper Cretaceous to Pleistocene melilitic volcanic rocks of the Bohemian Massif: petrology and mineral chemistry

    Directory of Open Access Journals (Sweden)

    Skála Roman

    2015-06-01

    Full Text Available Upper Cretaceous to Pleistocene volcanic rocks of the Bohemian Massif represent the easternmost part of the Central European Volcanic Province. These alkaline volcanic series include rare melilitic rocks occurring as dykes, sills, scoria cones and flows. They occur in three volcanic periods: (i the Late Cretaceous to Paleocene period (80–59 Ma in northern Bohemia including adjacent territories of Saxony and Lusatia, (ii the Mid Eocene to Late Miocene (32.3–5.9 Ma period disseminated in the Ohře Rift, the Cheb–Domažlice Graben, Vogtland, and Silesia and (iii the Early to Late Pleistocene period (1.0–0.26 Ma in western Bohemia. Melilitic magmas of the Eocene to Miocene and Pleistocene periods show a primitive mantle source [(143Nd/144Ndt=0.51280–0.51287; (87Sr/86Srt=0.7034–0.7038] while those of the Upper Cretaceous to Paleocene period display a broad scatter of Sr–Nd ratios. The (143Nd/144Ndt ratios (0.51272–0.51282 of the Upper Cretaceous to Paleocene rocks suggest a partly heterogeneous mantle source, and their (87Sr/86Srt ratios (0.7033–0.7049 point to an additional late- to post-magmatic hydrothermal contribution. Major rock-forming minerals include forsterite, diopside, melilite, nepheline, sodalite group minerals, phlogopite, Cr- and Ti-bearing spinels. Crystallization pressures and temperatures of clinopyroxene vary widely between ~1 to 2 GPa and between 1000 to 1200 °C, respectively. Nepheline crystallized at about 500 to 770 °C. Geochemical and isotopic similarities of these rocks occurring from the Upper Cretaceous to Pleistocene suggest that they had similar mantle sources and similar processes of magma development by partial melting of a heterogeneous carbonatized mantle source.

  9. Cretaceous volcanic-intrusive magmatism in western Guangdong and its geological significance

    Institute of Scientific and Technical Information of China (English)

    GENG; Hongyan; XU; Xisheng; S.Y.O'Reilly; ZHAO; Ming; SUN; Tao

    2006-01-01

    Systematic zircon LA-ICPMS U-Pb dating reveals that Cretaceous volcanic-intrusive activities developed in western Guangdong. Representative volcanic rocks, i.e. Maanshan and Zhougongding rhyodacites, have zircon U-Pb isotopic ages of 100±1 Ma, and the intrusive ones including the Deqing monzonitic granite body and the Xinghua granodiorite body in the Shidong complex, as well as the Tiaocun granodiorite body in the Guangping complex yield ages of 99±2 Ma, ca.100 Ma, and 104±3 Ma respectively. The biotite-granites of the Shidong complex main body (461±35 Ma) and that of the Guangping complex (444±6 Ma) are Caledonian. In spite of the big time interval between Cretaceous volcanic-intrusive magmatisms and Caledonian intrusive ones, both of them are characterized by enrichment in Rb, Th, Ce, Zr, Hf, Sm, depletion in Ba, Nb, Ta, P, Ti, Eu, and weakly REE tetrad effect. Eu negative anomalies are: Cretaceous volcanic rocks (Eu/Eu*=0.74), Cretaceous intrusive rocks (Eu/Eu*=0.35-0.58), Caledonian biotite granites (Eu/Eu*=0.31-0.34). Studies of Sr-Nd isotope data show that all these igneous rocks have high initial 87Sr/86Sr ratios (0.7105-0.7518), and low εNd(t) values (-7.23--11.39) with their Nd two-stage model ages ranging from 1.6-2.0 Ga, which suggest that they all derived from the Proterozoic crustal basement of southeast China.The occurrence of Cretaceous volcanic-intrusive magmatisms in western Guangdong is related with the important lithospheric extension event in southeast China (including Nanling region) at ca. 100 Ma.The "volcanic line" defined by the large scale Mesozoic intermediate-acidic volcanic magmatisms in southeast China may further extend to the southwest margin of Nanling region.

  10. Orbital control on the timing of oceanic anoxia in the Late Cretaceous

    Science.gov (United States)

    Batenburg, Sietske J.; De Vleeschouwer, David; Sprovieri, Mario; Hilgen, Frederik J.; Gale, Andrew S.; Singer, Brad S.; Koeberl, Christian; Coccioni, Rodolfo; Claeys, Philippe; Montanari, Alessandro

    2016-10-01

    The oceans at the time of the Cenomanian-Turonian transition were abruptly perturbed by a period of bottom-water anoxia. This led to the brief but widespread deposition of black organic-rich shales, such as the Livello Bonarelli in the Umbria-Marche Basin (Italy). Despite intensive studies, the origin and exact timing of this event are still debated. In this study, we assess leading hypotheses about the inception of oceanic anoxia in the Late Cretaceous greenhouse world by providing a 6 Myr long astronomically tuned timescale across the Cenomanian-Turonian boundary. We procure insights into the relationship between orbital forcing and the Late Cretaceous carbon cycle by deciphering the imprint of astronomical cycles on lithologic, physical properties, and stable isotope records, obtained from the Bottaccione, Contessa and Furlo sections in the Umbria-Marche Basin. The deposition of black shales and cherts, as well as the onset of oceanic anoxia, is related to maxima in the 405 kyr cycle of eccentricity-modulated precession. Correlation to radioisotopic ages from the Western Interior (USA) provides unprecedented age control for the studied Italian successions. The most likely tuned age for the base of the Livello Bonarelli is 94.17 ± 0.15 Ma (tuning 1); however, a 405 kyr older age cannot be excluded (tuning 2) due to uncertainties in stratigraphic correlation, radioisotopic dating, and orbital configuration. Our cyclostratigraphic framework suggests that the exact timing of major carbon cycle perturbations during the Cretaceous may be linked to increased variability in seasonality (i.e. a 405 kyr eccentricity maximum) after the prolonged avoidance of seasonal extremes (i.e. a 2.4 Myr eccentricity minimum). Volcanism is probably the ultimate driver of oceanic anoxia, but orbital periodicities determine the exact timing of carbon cycle perturbations in the Late Cretaceous. This unites two leading hypotheses about the inception of oceanic anoxia in the Late

  11. Facies changes in the Cenomanian (Cretaceous) of the northwestern Elbe Valley near Dresden (Saxony, Germany)

    Science.gov (United States)

    Tröger, Karl-Armin

    2017-03-01

    The Upper Cretaceous of the Elbe Valley in Saxony and the erosion outliers west of it mark an Upper Cretaceous NW-SE-running strait between the Westsudetic Island in the NE and the Mid-European Island to the west. This street connected the NW-German-Polish Basin in the north and the Bohemian Cretaceous Basin (and adjacent regions of the Tethys) in the south. However, post-Cretaceous erosion north of Meißen removed any Upper Cretaceous deposits but erosion outliers at Siebenlehn and especially north of the Forest of Tharandt proof the presence of a marly through silty belt in this area. Three transgressions (base of uppermost Lower to Middle Cenomanian, base of Upper Cenomanian and base of the geslinianum Zone in the mid-Upper Cenomanian) have taken place. The sedimentation was influenced by the topography of the mentioned islands and by movements at structural lines in the Proterozoic and Palaeozoic basement. During the early Late Cenomanian, a marly-silty sedimentation (Mobschatz Formation) in the north existed besides sandy sedimentation in the south (Oberhäslich Formation). The transgression at the base of the geslinianum Zone caused the final submergence of island chains between Meißen, Dresden and Pirna, and a litho- and biofacies bound to cliffs and submarine swells formed. A silty-marly lithofacies, a mixed sandy-silty lithofacies (Dölzschen Formation) and a sandy lithofacies in the south (Sächsisches Elbsandsteingebirge) co-existed during the latest Cenomanian. The first mentioned biofacies yields a rich fauna mainly consisting of oysters, pectinids, rudists, and near-shore gastropods accompanied by echinids and, in some cliffs, teeth of sharks. The Pennrich fauna (Häntzschel 1933; Uhlig 1941) especially consists of the very common serpulids Pyrgopolon (P.) septemsulcata and Glomerula lombricus (formerly Hepteris septemsulcata and G. gordialis).

  12. Cretaceous alkaline intra-plate magmatism in the Ecuadorian Oriente Basin: Geochemical, geochronological and tectonic evidence

    Science.gov (United States)

    Barragán, Roberto; Baby, Patrice; Duncan, Robert

    2005-08-01

    Small volumes of Cretaceous alkaline basaltic magmas have been identified in the sedimentary infill of the Ecuadorian Oriente foreland basin. They are characterized by a restricted range of compositional variation, low LILE/HFSE ratios and Sr-Nd isotope values within the range of oceanic island basalts (OIB). Reflection seismic data show that a pre-existing NNE-SSW Triassic and Jurassic rift controls the location and occurrence of these alkaline eruptive sites. Radiometric ages ( 40Ar- 39Ar, incremental heating method) and the biostratigraphic record of their surrounding sediments indicate a NNE-SSW systematic age variation for the emplacement of this alkaline volcanism: from Albian (110 ± 5.2 Ma) in the northern part of the Oriente Basin, to Campanian (82.2 ± 2.0 Ma) in the west-central part. The geochemical, geochronological and tectonic evidences suggest that asthenospheric mantle has upwelled and migrated to the SSW, into the region underlying the pre-existing Triassic and Jurassic rift (thin-spot?). We propose that subduction was abandoned, subsequent to the accretion of allochthonous terranes onto the Ecuadorian and Colombian margin in the latest Jurassic-earliest Cretaceous, causing the relict slab material, corresponding to the eastwards-directed leading plate, to roll-back. Unmodified asthenospheric mantle migrated into the region previously occupied by the slab. This resulted in partial melting and the release of magmatic material to the surface in the northern part of the Oriente Basin since at least Aptian times. Then, magmatism migrated along the SSW-trending Central Wrench Corridor of the Oriente Basin during the Upper Cretaceous, probably as a consequence of the lateral propagation of the transpressive inversion of the Triassic-Jurassic rift. Eventually, the Late Cretaceous east-dipping Andean subduction system was renewed farther west, and the development of the compressional retro-foreland Oriente Basin system halted the Cretaceous alkaline

  13. Middle Cretaceous dinosaur assemblages from northern Brazil and northern Africa and their implications for northern Gondwanan composition

    Science.gov (United States)

    Candeiro, Carlos Roberto A.

    2015-08-01

    Dinosaurs are one of the most dominant groups in Cretaceous reptilian faunas. A summary of their record in northern Brazil and northern Africa during the middle of the Cretaceous Period (Aptian-Cenomanian) is presented here. Dinosaurs are represented by 32 species (three ornithischians, six sauropods and 23 theropods) from Brazil, Egypt, Lybia, Morocco, Niger, Sudan and Tunisia. These dinosaur assemblages provide fundamental data about distribution and composition of sauropods and theropods in northern Gondwana during the middle of the Cretaceous Period and confirm these assemblages to be among the most important dinosaur faunas in the north Gondwana areas.

  14. Linkages Between Cretaceous Forearc and Retroarc Basin Development in Southern Tibet

    Science.gov (United States)

    Orme, D. A.; Laskowski, A. K.

    2015-12-01

    Integrated provenance and subsidence analysis of forearc and retroarc foreland basin strata were used to reconstruct the evolution of the southern margin of Eurasia during the Early to Late Cretaceous. The Cretaceous-Eocene Xigaze forearc basin, preserved along ~600 km of the southern Lhasa terrane, formed between the Gangdese magmatic arc and accretionary complex as subduction of Neo-Tethyan oceanic lithosphere accommodated the northward motion and subsequent collision of the Indian plate. Petrographic similarities between Xigaze forearc basin strata and Cretaceous-Eocene sedimentary rocks of the northern Lhasa terrane, interpreted as a retroarc foreland basin, were previously interpreted to record N-S trending river systems connecting the retro- and forearc regions during Cretaceous time. New sandstone petrographic and U-Pb detrital zircon provenance analysis of Xigaze forearc basin strata support this hypothesis. Qualitative and statistical provenance analysis using cumulative distribution functions and Kolmogorov-Smirnov (K-S) tests show that the forearc basin was derived from either the same source region as or recycled from the foreland basin. Quartz-rich sandstones with abundant carbonate sedimentary lithic grains and rounded, cobble limestone clasts suggests a more distal source than the proximal Gangdese arc. Therefore, we interpret that the northern Lhasa terrane was a significant source of Xigaze forearc detritus and track spatial and temporal variability in the connection between the retro- and forearc basin systems during the Late Cretaceous. A tectonic subsidence curve for the Xigaze forearc basin shows a steep and "kinked" shape similar to other ancient and active forearc basins. Initial subsidence was likely driven by thermal relaxation of the forearc ophiolite after emplacement while additional periods of rapid subsidence likely result from periods of high flux magmatism in the Gangdese arc and changes in plate convergence rate. Comparison of the

  15. ENSO-Type Signals Recorded in the Late Cretaceous Laminated Sediments of Songliao Basin, Northeast China

    Science.gov (United States)

    Yu, E.; Wang, C.; Hinnov, L. A.; Wu, H.

    2014-12-01

    The quasi-periodic, ca. 2-7 year El Niño Southern Oscillation (ENSO) phenomenon globally influences the inter-annual variability of temperature and precipitation. Global warming may increase the frequency of extreme ENSO events. Although the Cretaceous plate tectonic configuration was different from today, the sedimentary record suggests that ENSO-type oscillations had existed at the time of Cretaceous greenhouse conditions. Cored Cretaceous lacustrine sediments from the Songliao Basin in Northeast China (SK-1 cores from the International Continental Drilling Program) potentially offer a partially varved record of Cretaceous paleoclimate. Fourteen polished thin sections from the depth interval 1096.12-1096.53 m with an age of 84.4 Ma were analyzed by optical and scanning electron microscopy (SEM). ImageJ software was applied to extract gray scale curves from optical images at pixel resolution. We tracked minimum values of the gray scale curves to estimate the thickness of each lamina. Five sedimentary structures were recognized: flaser bedding, wavy bedding, lenticular bedding, horizontal bedding, and massive layers. The mean layer thicknesses with different sedimentary structures range from 116 to 162mm, very close to the mean sedimentation rate estimated for this sampled interval, 135mm/year, indicating that the layers bounded by pure clay lamina with the minimum gray values are varves. SEM images indicate that a varve is composed, in succession, of one lamina rich in coarse silt, one lamina rich in fine silt, one clay-rich lamina with some silt, and one clay-rich lamina. This suggests that a Cretaceous year featured four distinct depositional seasons, two of which were rainy and the others were lacking precipitation. Spectral analysis of extended intervals of the tuned gray scale curve indicates the presence of inter-annual periodicities of 2.2-2.7 yr, 3.5-6.1 year, and 10.1-14.5 year consistent with those of modern ENSO cycles and solar cycles, as well as

  16. The mid-cretaceous water bearer: Isotope mass balance quantification of the Albian hydrologic cycle

    Science.gov (United States)

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.

    2002-01-01

    A latitudinal gradient in meteoric ??18O compositions compiled from paleosol sphaerosiderites throughout the Cretaceous Western Interior Basin (KWIB) (34-75??N paleolatitude) exhibits a steeper, more depleted trend than modern (predicted) values (3.0??? [34??N latitude] to 9.7??? [75??N] lighter). Furthermore, the sphaerosiderite meteoric ??18O latitudinal gradient is significantly steeper and more depleted (5.8??? [34??N] to 13.8??? [75??N] lighter) than a predicted gradient for the warm mid-Cretaceous using modern empirical temperature-??18O precipitation relationships. We have suggested that the steeper and more depleted (relative to the modern theoretical gradient) meteoric sphaerosiderite ??18O latitudinal gradient resulted from increased air mass rainout effects in coastal areas of the KWIB during the mid-Cretaceous. The sphaerosiderite isotopic data have been used to constrain a mass balance model of the hydrologic cycle in the northern hemisphere and to quantify precipitation rates of the equable 'greenhouse' Albian Stage in the KWIB. The mass balance model tracks the evolving isotopic composition of an air mass and its precipitation, and is driven by latitudinal temperature gradients. Our simulations indicate that significant increases in Albian precipitation (34-52%) and evaporation fluxes (76-96%) are required to reproduce the difference between modern and Albian meteoric siderite ??18O latitudinal gradients. Calculations of precipitation rates from model outputs suggest mid-high latitude precipitation rates greatly exceeded modern rates (156-220% greater in mid latitudes [2600-3300 mm/yr], 99% greater at high latitudes [550 mm/yr]). The calculated precipitation rates are significantly different from the precipitation rates predicted by some recent general circulation models (GCMs) for the warm Cretaceous, particularly in the mid to high latitudes. Our mass balance model by no means replaces GCMs. However, it is a simple and effective means of obtaining

  17. Re-examination of geophysical data off Northwest India: Implications to the Late Cretaceous plate tectonics between India and Africa.

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.; Desa, M.; Ramprasad, T.

    processes. Late Cretaceous seafloor spreading between India and Africa formed the Mascarene Basin, and the plate reconstruction models depict unequal crustal accretion in this basin. Re-interpretation of magnetic data in the Gop and Laxmi Basins suggests...

  18. Reproductive structures of Rhamnaceae from the Cerro del Pueblo (Late Cretaceous, Coahuila) and Coatzingo (Oligocene, Puebla) Formations, Mexico

    National Research Council Canada - National Science Library

    Calvillo-Canadell, Laura; Cevallos-Ferriz, Sergio R. S

    2007-01-01

    .... Coyoacan, 04510 México D.F., Mexico Recently discovered fossil flowers from the Cretaceous Cerro del Pueblo and flowers and fruits from the Oligocene Coatzingo Formations are assigned to the Rhamnaceae...

  19. Taxonomic turnover and abundance in Cretaceous to Tertiary wood floras of Antarctica: implications for changes in forest ecology

    NARCIS (Netherlands)

    Cantrill, David J.; Poole, I.J.

    2004-01-01

    Based on the temporal distribution, abundance, and taxonomic composition of wood floras, four phases of vegetation development are recognized through the Cretaceous to Early Tertiary of the Antarctic Peninsula: (1) Aptian to Albian communities dominated by podocarpaceous, araucarian, and minor

  20. Cretaceous to Quaternary Siliciclastic Sediments of the Tarfaya Basin, Marginal Atlantic, SW Morocco Petrography, Geochemistry, Provenance, Climate and Weathering

    OpenAIRE

    Ali, Sajid

    2012-01-01

    This dissertation is prepared to attain the doctorate under the title "Cretaceous to Quaternary Siliciclastic Sediments of the Tarfaya Basin, Marginal Atlantic, SW Morocco Petrography, Geochemistry, Provenance, Climate and Weathering".

  1. Lower cretaceous silcrete-ferricrete, at the northern end of the African Tethys shoreline, Maktesh Gadol, Israel

    Science.gov (United States)

    Azmon, E.; Kedar, Y.

    1985-04-01

    The lithostratigraphic relationships between the rock members across the Upper Jurassic to Lower Cretaceous unconformity in the Maktesh Gadol erosional crater in the Negev of Israel, show co-existence of silcretes and ferricretes at the base of the Lower Cretaceous rocks, and a change from biomicrite to biomicrite silt and back to biomicrite, near the top of the exposed Upper Jurassic rocks. The base of the Cretaceous is interpreted as the remains of a "B" zone of illuviation of a partly developed soil formation, which derived its components from the underlying biomicritic rocks or biomicrites and from overlying eolian and fluviatile marls, and which formed by a very long duration of weathering beneath a desert floor environment. This lithostratigraphy, displaying alternating clastic to non-clastic carbonates, followed by formation of a soil profile, may be a consequence of a fluctuating Tethys sea on the African plate in the Late Jurassic and consequent major marine regression in the Early Cretaceous.

  2. Stratigraphic framework and evolution of the Cretaceous continental sequences of the Bauru, Sanfranciscana, and Parecis basins, Brazil

    Science.gov (United States)

    Batezelli, Alessandro; Ladeira, Francisco Sergio Bernardes

    2016-01-01

    With the breakup of the supercontinent Gondwana, the South American Plate has undergone an intense process of tectonic restructuring that led to the genesis of the interior basins that encompassed continental sedimentary sequences. The Brazilian Bauru, Sanfranciscana and Parecis basins during Late Cretaceous have had their evolution linked to this process of structuring and therefore have very similar sedimentary characteristics. The purpose of this study is to establish a detailed understanding of alluvial sedimentary processes and architecture within a stratigraphic sequence framework using the concept of the stratigraphic base level or the ratio between the accommodation space and sediment supply. The integration of the stratigraphic and facies data contributed to defining the stratigraphic architecture of the Bauru, Sanfranciscana and Parecis Basins, supporting a model for continental sequences that depicts qualitative changes in the sedimentation rate (S) and accommodation space (A) that occurred during the Cretaceous. This study discusses the origin of the unconformity surfaces (K-0, K-1 and K-1A) that separate Sequences 1, 2A and 2B and the sedimentary characteristics of the Bauru, Sanfranciscana and Parecis Basins from the Aptian to the Maastrichtian, comparing the results with other Cretaceous Brazilian basins. The lower Cretaceous Sequence 1 (Caiuá and Areado groups) is interpreted as a low-accommodation systems tract compound by fluvial and aeolian systems. The upper Cretaceous lacustrine, braided river-dominated alluvial fan and aeolian systems display characteristics of the evolution from high-to low-accommodation systems tracts (Sequences 2A and 2B). Unconformity K-0 is related to the origin of the Bauru Basin itself in the Early Cretaceous. In Sanfranciscana and Parecis basins, the unconformity K-0 marks the contact between aeolian deposits from Lower Cretaceous and Upper Cretaceous alluvial systems (Sequences 1 and 2). Unconformity K-1, which was

  3. The deformation and tectonic evolution of the Huahui Basin, northeast China, during the Cretaceous-Early Cenozoic

    Science.gov (United States)

    Huang, Shiqi; Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Huang, Dezhi; Wei, Shi; Li, Zhenhong; Miao, Laicheng; Zhu, Mingshuai

    2015-12-01

    The Cretaceous Huahui basin lies along the Dunhua-Mishan fault (Dun-Mi fault), which is one of the northern branches of Tan-Lu fault in northeastern China. The study of the formation and the tectonic movements that took place in the basin can provide very important information for deciphering the tectonic evolution of northeastern China during Cretaceous-Early Cenozoic. The field analysis of fault-slip data collected from different units in the basin, demonstrates changes in the paleo-stress state that reveals a three-stage tectonic movement during the Cretaceous-Early Cenozoic. The earliest tectonic movement was NW-SE extension, which was responsible for the formation of the basin and sedimentary infilling during the Early Cretaceous. Dating of the andesite in the fill indicates it began during about 119.17 ± 0.80 Ma. The extensional structures formed in the Latest Early Cretaceous imply that this tectonic movement lasted until the beginning of the Late Cretaceous. The second stage began during the Late Cretaceous when the tectonic stress state changed and was dominated by NW-SE compression and NE-SW extension, which caused the inversion of the extensional basin. This compression folded the Early Cretaceous deposits and reactivated pre-existing faults and uplifted pre-existing granite in the basin. The strata and the unconformity in the basin shows that this compressive phase probably took place during the Late Cretaceous and ended in the Early Paleogene by a compressional regime with NE-SW compression and NW-SE extension that constitutes the third stage. The tectonic stress fields documented in the Huahui basin provide insight into the influences of plate tectonics on the crustal evolution of northeastern China during the Cretaceous to Early Cenozoic. These results show that the development of Huahui basin was controlled by the northwestward subduction of the paleo-Pacific plate during the Cretaceous, and later by the far-field effects of India-Asia collision in

  4. An analysis of apparent polar wander path for southwest Japan suggests no relative movement with respect to Eurasia during the Cretaceous

    Science.gov (United States)

    Uno, Koji; Furukawa, Kuniyuki; Hatanaka, Yuri

    2017-06-01

    To test the hypothesis that southwest Japan was involved in large-scale tectonic movement with southward translation as far as 2000 km with respect to Eurasia during the Cretaceous, we examined Cretaceous paleomagnetic poles from southwest Japan to compare with those from Eurasia. Red and gray sandstone samples from the Upper Cretaceous Onogawa Group were collected from twelve sites in the Onogawa Basin in the western part of southwest Japan for paleomagnetic analysis. This group formed over the time span in which the proposed tectonic event is hypothesized to have occurred. A characteristic remanent magnetization component was isolated from red sandstone at ten sites; it is interpreted to be of primary Late Cretaceous origin. The primary directions combined with previously reported data provide a mean direction (D = 76.8°, I = 44.6°, α95 = 11.1°, N = 15) and a paleomagnetic pole (24.4°N, 202.6°E, A95 = 11.0°) for the Onogawa area. This pole is consistent with other Late Cretaceous poles from a wide area of southwest Japan, and a mean Late Cretaceous pole (28.4°N, 202.5°E, A95 = 7.5°, N = 6) is calculated and regarded as representative of this region. The Late Cretaceous pole, together with mid- and Early Cretaceous poles, constitutes an apparent polar wander path (APWP) for southwest Japan during the Cretaceous. After restoration of post-Cretaceous tectonic rotation, each Cretaceous pole for southwest Japan shows agreement with the coeval poles for Eurasia; therefore, it is unlikely that the previously proposed tectonic model that includes southward translation of southwest Japan occurred in the Late Cretaceous. Southwest Japan is considered to have behaved as a stable part of the Eurasian continental margin during the Cretaceous.

  5. A new species of Allodaposuchus (Eusuchia, Crocodylia) from the Maastrichtian (Late Cretaceous) of Spain: phylogenetic and paleobiological implications

    OpenAIRE

    2015-01-01

    Background. The Late Cretaceous is a keystone period to understand the origin and early radiation of Crocodylia, the group containing all extant lineages of crocodilians. Among the taxa described from the latest Cretaceous of Europe, the genus Allodaposuchus is one of the most common but also one of the most controversial. However, because of its fragmentary record, several issues regarding its phylogenetic emplacement and its ecology remain unsolved or unknown. The discovery of a single spec...

  6. Chemostratigraphy across the Cretaceous-Tertiary boundary and a critical assessment of the iridium anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Tredoux, M.; De Wit, M.J.; Hart, R.J.; Lindsay, N.M.; Verhagen, B.; Sellschop, J.P.F. (Univ. of the Witwatersrand, Johannesburg (South Africa))

    1989-09-01

    The elevated concentration of iridium--one of the platinum-group elements (PGE)--at the Cretaceous-Tertiary boundary is still the most generally accepted evidence that a large bolide struck the earth at the time of the end-Cretaceous mass extinctions. New chemostratigraphic data for cross-boundary sections from both hemispheres are not easily explained in terms of such an impact event, for example the observation that the PGE patterns show marked differences between the hemispheres. The new constraints indicate that models of mantle-derived PGE should be seriously considered, and that PGE anomalies might not be as useful as previously thought as unambiguous identifiers of large impact events in the earth's history.

  7. Sedimentologic and tectonic evolution of the Upper Cretaceous-Lower Tertiary succession at Wadi Qena, Egypt

    Science.gov (United States)

    Soliman, Mohamed A.; Habib, Mohamed E.; Ahmed, Ezzat A.

    1986-01-01

    The Upper Cretaceous-Lower Tertiary rocks around Wadi Qena, Egypt, represent a mixed siliciclastic-carbonate-phosphorite succession including (from base to top) the Nubia Sandstone, Quseir Shale, Duwi Formation, Dakhla Shale, Tarawan Chalk, Esna Shale and Thebes Formation. Facies and microfacies investigations were carried out. The Nubia Sandstone was deposited by a fluviatile system, whereas the Quseir Shale was laid down by deltaic sedimentation. The Dakhla Shale, Esna Shale and Tarawan Chalk were formed in open marine (pelagic) realms. The Thebes Formation is a shallowing carbonate facies. Phosphorites were accumulated as lag deposits by reworking and winnowing of pre-existing phosphatic materials. The sedimentation of the Upper Cretaceous-Lower Tertiary rocks were affected by regional and local tectonics (i.e., faulting). The latter played a substantial role in the distribution of the different facies particularly the siliciclastic-carbonate facies.

  8. High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals.

    Science.gov (United States)

    Tarduno, J A; Cottrell, R D; Smirnov, A V

    2001-03-02

    Recent numerical simulations have yielded the most efficient geodynamo, having the largest dipole intensity when reversal frequency is low. Reliable paleointensity data are limited but heretofore have suggested that reversal frequency and paleointensity are decoupled. We report data from 56 Thellier-Thellier experiments on plagioclase crystals separated from basalts of the Rajmahal Traps (113 to 116 million years old) of India that formed during the Cretaceous Normal Polarity Superchron. These data suggest a time-averaged paleomagnetic dipole moment of 12.5 +/- 1.4 x 10(22) amperes per square meter, three times greater than mean Cenozoic and Early Cretaceous-Late Jurassic dipole moments when geomagnetic reversals were frequent. This result supports a correlation between intervals of low reversal frequency and high geomagnetic field strength.

  9. Taphonomy and palaeoecology of the gastropod fauna from a Late Cretaceous rocky shore, Sweden

    DEFF Research Database (Denmark)

    Sørensen, Anne Mehlin; Surlyk, Finn

    2011-01-01

    A gastropod fauna comprising 17 species, each represented by a limited number of specimens, is described from a Late Cretaceous, late early Campanian rocky shore at Ivö Klack, southern Sweden. The gastropod fauna is associated with the most diverse ancient rocky shore fauna ever found. However......, the low gastropod species diversity compared to the faunas of modern rocky shores is ascribed to taphonomic factors, notably dissolution of the aragonitic shells, but the predominance of epifaunal herbivores is indicative of a guild structure similar to that found on modern rocky shores. The presence...... preservation of such drill holes difficult, since the majority of infaunal prey such as burrowing bivalves has aragonitic shells which are not preserved. The relatively high number of species in comparison to many other Late Cretaceous rocky shore faunas, offers an opportunity to compare gastropod guild...

  10. Late Cretaceous to Middle Eocene Geological Evolution of the Northwestern Caribbean - Constraints from Cuban Data

    Science.gov (United States)

    Cobiella, J.; Hueneke, H.; Meschede, M.; Sommer, M.

    2006-05-01

    Cuba acts as the northwestern boundary of the Caribbean Sea. However it is not part of the Caribbean plate, its geological development is deeply related to the plate history. In fact, its Cretaceous volcanic arc rocks tightly correlate with coeval sections in Hispaniola and Puerto Rico, and the same probably occurs with the ophiolites. The early Palaeogene events in Cuba were also involved in the Caribbean plate history. In general, two principal structural levels can be distinguished in the geological structure of Cuba. The rocks belonging to the upper level (Eocene to Quaternary) are little disturbed and can be referred to as the cover. Below it occurs the great complex of the Cuban orogenic belt, which consists mainly of rocks of Jurassic to Eocene age. In addition, small outcrops of Proterozoic metamorphic rocks also occur in north central Cuba. The Palaeocene-Eocene section contains volcanic arc sequences in SE Cuba and northward thrusted piggy back and foreland basins in central and western Cuba. The Mesozoic rocks lies unconformably below. The contacts between the major Mesozoic elements are always tectonic. With the exception of the rocks of the passive Mesozoic margin of North America in northern Cuba, the remaining units represent tectonostratigraphic terranes extending parallel to the axis of the present main island of Cuba. The northernmost unit is the Mesozoic passive continental margin of North America. It consists of a Jurassic- Cretaceous mainly marine sedimentary sequence now exposed as a thrust and fold belt along the northern edge of the Cuban mainland. The other units are, from north to south: the Northern Ophiolitic Belt, the Volcanic Arc Terrane and the Southern Metamorphic Terranes. The ophiolites and the Cretaceous volcanic arc terranes belong to the Proto-Caribbean plate and were accreted to the palaeomargin during Late Cretaceous and early Palaeogene episodes. Some constrains to Caribbean plate origin and evolution according to data from

  11. Mid-Cretaceous carbon cycle perturbations and Oceanic Anoxic Events recorded in southern Tibet

    Science.gov (United States)

    Zhang, Xiaolin; Chen, Kefan; Hu, Dongping; Sha, Jingeng

    2016-12-01

    The organic carbon isotope (δ13Corg) curve for ~1.7-km-thick mid-Cretaceous strata of the Chaqiela section in Gamba area, southern Tibet is presented in this study. C-isotopic chemostratigraphic correlation combined with biostratigraphic constraints show that the Chaqiela section spans early Aptian through early Campanian period, and that almost all of the carbon cycle perturbations and Oceanic Anoxic Events during the mid-Cretaceous period are well recorded in the continental margin area of the southeastern Tethys Ocean. Significantly, two levels of methane-derived authigenic carbonates were identified at the onset of OAE1b near the Aptian-Albian boundary. We suggest that an increase in methane release from gas hydrates, potentially driven by sea-level fall and bottom water temperature increase, may have contributed to the large negative δ13Corg excursions and global warming during OAE1b.

  12. Spectroscopic studies of wood fossils from the Crato Formation, Cretaceous Period.

    Science.gov (United States)

    da Silva, J H; Freire, P T C; Abagaro, B T O; Silva, J A F; Saraiva, G D; de Lima, F J; Barros, O A; Bantim, R A; Saraiva, A A F; Viana, B C

    2013-11-01

    In this work we study two types of wood fossils (Gymnosperms, Araucariaceae) from the Crato Formation of Araripe Basin in Brazil, from the Cretaceous Period. The samples were characterized by Raman and infrared spectroscopies, X-ray diffraction and scanning electron microscopy. The results obtained by different techniques showed that although the rocks surrounding the fossils have predominantly the same constitution - calcite - however, the formation processes of these types of wood fossils are quite different. One of the fossils, denominated as light wood, is predominantly composed of gypsum, while the other fossil, the dark wood, is rich in amorphous carbon, possibly the kerogen type. Implications relative to the environment where the plants lived millions years ago are also given. Finally, the results highlight the constitution of one of the most important paleontological sites of the Cretaceous Period in the South America.

  13. New earwigs in mid-Cretaceous amber from Myanmar (Dermaptera, Neodermaptera

    Directory of Open Access Journals (Sweden)

    Michael Engel

    2011-09-01

    Full Text Available Two new earwigs (Dermaptera recently discovered in mid-Cretaceous (latest Albian amber from Myanmar are described and figured. Astreptolabis ethirosomatia gen. et sp. n. is represented by a peculiar pygidicranoid female, assigned to a new subfamily, Astreptolabidinae subfam. n., and differs from other protodermapterans in the structure of the head, pronotum, tegmina, and cercal forceps. Tytthodiplatys mecynocercus gen. et sp. n. is a distinctive form of first-instar nymph of the Diplatyidae, the earliest record for this basal earwig family. The taxon can be distinguished from other Early Cretaceous nymphs by the structure of the head, antennae, legs, and most notably its filamentous and annulate cerci. The character affinities of these taxa among Neodermaptera are generally discussed as is the identity of an enigmatic ‘earwig-like’ species from the Jurassic of China.

  14. NEW PTEROSAUR SPECIMENS FROM THE KEM KEM BEDS (UPPER CRETACEOUS, CENOMANIAN OF MOROCCO

    Directory of Open Access Journals (Sweden)

    TAISSA RODRIGUES

    2011-03-01

    Full Text Available Although pterosaurs from Africa are still rare, in recent years several specimens have been described from the Kem Kem beds (Upper Cretaceous, Cenomanian of Morocco. Here we describe four additional specimens from this informal lithostratigraphic unit: a jaw fragment, two mid-cervical vertebrae, and a humerus. All these specimens show three-dimensional preservation, differing much from the flat condition found in most pterosaur material. The vertebrae are particularly well preserved, and allow accurate observations on the pneumatization of the neural arch. Based on comparable material, we show that at least two edentulous pterosaur species were present in this informal lithostratigraphic unit, thus adding to the growing evidence of considerable pterosaur diversity in northwestern Africa during the "middle" Cretaceous. So far, the Kem Kem beds have the most diverse pterosaur fauna in this continent, with the presence of anhanguerids, azhdarchids, pteranodontids, and tapejarids. 

  15. Paleo—Latitude Variation of Guizhou Terrain from Devonian to Cretaceous

    Institute of Scientific and Technical Information of China (English)

    王俊达; 李华梅

    1998-01-01

    Over 800 paleomagnetic samples were collected from 79 sample localities,ranging in age from Devonian,Carboniferous,Permian to Jurassic for paleo-latitude research on the Guizhou terrain,The area sampled covers 13 couties with an area of about 50000km2.The paleomagnetic results obtained indicate that the Guizhou terrain was at 11.4°S in Devonian,4.5°-9.3°S in Carboniferous,2.6°-4.5°S in Permian,14.8°N in Triassic and 24.5°-26.0°N in Jurassic,In the Cretaceous period.the paleo-latitude of the area was at 22.4-23.6°N. Therefore ,a variation curve of paleo-latitude is established in this paper for the Guizhou terrain from late Devoian to Late Cretaceous time.

  16. Solid state {sup 13}C NMR analysis of Brazilian cretaceous ambers

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ricardo; Azevedo, Debora A., E-mail: ricardopereira@iq.ufrj.b, E-mail: debora@iq.ufrj.b [Universidade Federal do Rio de Janeiro (IQ/UFRJ), Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Lab. de Geoquimica Organica Molecular e Ambiental; San Gil, Rosane A.S. [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica. Lab. de RMN de Solidos; Carvalho, Ismar S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Geociencias. Dept. de Geologia; Fernandes, Antonio Carlos S. [Museu Nacional (MN/UFRJ), RJ (Brazil). Dept. de Geologia e Paleontologia

    2011-07-01

    {sup 13}C cross polarization with magic angle spinning nuclear magnetic resonance ({sup 13}C CPMAS NMR) spectra have been obtained for the first time to three Cretaceous amber samples from South America. The samples were dated to Lower Cretaceous and collected in sediments from the Amazonas, Araripe and Reconcavo basins, Brazil. All samples have very similar spectra, consistent with a common paleobotanical source. Some aspects of the spectra suggest a relationship between Brazilian ambers and Araucariaceae family, such as intense resonances at 38-39 ppm. All samples are constituted by polylabdane structure associated to Class Ib resins, constituted by polymers of labdanoid diterpenes. Finally, information concerning some structural changes during maturation, such as isomerization of {Delta}{sup 8(17)} and {Delta}{sup 12(13)} unsaturations, were obtained by {sup 13}C NMR analyses. The results concerning botanical affinities are in accordance with previous results obtained by gas chromatography-mass spectrometry (GC-MS). (author)

  17. Spectroscopic studies of wood fossils from the Crato Formation, Cretaceous Period

    Science.gov (United States)

    da Silva, J. H.; Freire, P. T. C.; Abagaro, B. T. O.; Silva, J. A. F.; Saraiva, G. D.; de Lima, F. J.; Barros, O. A.; Bantim, R. A.; Saraiva, A. A. F.; Viana, B. C.

    2013-11-01

    In this work we study two types of wood fossils (Gymnosperms, Araucariaceae) from the Crato Formation of Araripe Basin in Brazil, from the Cretaceous Period. The samples were characterized by Raman and infrared spectroscopies, X-ray diffraction and scanning electron microscopy. The results obtained by different techniques showed that although the rocks surrounding the fossils have predominantly the same constitution - calcite - however, the formation processes of these types of wood fossils are quite different. One of the fossils, denominated as light wood, is predominantly composed of gypsum, while the other fossil, the dark wood, is rich in amorphous carbon, possibly the kerogen type. Implications relative to the environment where the plants lived millions years ago are also given. Finally, the results highlight the constitution of one of the most important paleontological sites of the Cretaceous Period in the South America.

  18. Paleoceanographic events in cretaceous petroleum basins, offshore mid-Norway of SE Saskatchewan, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Gradstein, F.M.; Saether, T.; Nystuen, J.P.; Backstrom, S.A. [Saga Petroleum A/S, Forus (Norway)

    1997-09-01

    During the Cretaceous period, the narrow, longitudinal seaways between Greenland and Norway received a large volume of fine-grained siliciclast sediments with intercalated gravity-flow sandstone wedges. The sedimentary succession may be subdivided into four broad units: (1) thin and mostly oxic, marly sediments, (2) dark, dysaerobic mudstones and minor sands, (3) thick mudstone facies with thin slope-apron turbidite sands, and (4) grayish laminated mudstones with local sands in the northern area. A widespread Barremian-Aptian hiatus may be linked to Atlantic rift-onset unconformities recognized offshore eastern Canada. Around the lower-upper Cretaceous boundary, watermass conditions changed from dysaerobic to oxic, an event also reported from central and western Europe.

  19. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary.

    Science.gov (United States)

    Schulte, Peter; Alegret, Laia; Arenillas, Ignacio; Arz, José A; Barton, Penny J; Bown, Paul R; Bralower, Timothy J; Christeson, Gail L; Claeys, Philippe; Cockell, Charles S; Collins, Gareth S; Deutsch, Alexander; Goldin, Tamara J; Goto, Kazuhisa; Grajales-Nishimura, José M; Grieve, Richard A F; Gulick, Sean P S; Johnson, Kirk R; Kiessling, Wolfgang; Koeberl, Christian; Kring, David A; MacLeod, Kenneth G; Matsui, Takafumi; Melosh, Jay; Montanari, Alessandro; Morgan, Joanna V; Neal, Clive R; Nichols, Douglas J; Norris, Richard D; Pierazzo, Elisabetta; Ravizza, Greg; Rebolledo-Vieyra, Mario; Reimold, Wolf Uwe; Robin, Eric; Salge, Tobias; Speijer, Robert P; Sweet, Arthur R; Urrutia-Fucugauchi, Jaime; Vajda, Vivi; Whalen, Michael T; Willumsen, Pi S

    2010-03-05

    The Cretaceous-Paleogene boundary approximately 65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.

  20. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification.

    Science.gov (United States)

    Meredith, Robert W; Janečka, Jan E; Gatesy, John; Ryder, Oliver A; Fisher, Colleen A; Teeling, Emma C; Goodbla, Alisha; Eizirik, Eduardo; Simão, Taiz L L; Stadler, Tanja; Rabosky, Daniel L; Honeycutt, Rodney L; Flynn, John J; Ingram, Colleen M; Steiner, Cynthia; Williams, Tiffani L; Robinson, Terence J; Burk-Herrick, Angela; Westerman, Michael; Ayoub, Nadia A; Springer, Mark S; Murphy, William J

    2011-10-28

    Previous analyses of relations, divergence times, and diversification patterns among extant mammalian families have relied on supertree methods and local molecular clocks. We constructed a molecular supermatrix for mammalian families and analyzed these data with likelihood-based methods and relaxed molecular clocks. Phylogenetic analyses resulted in a robust phylogeny with better resolution than phylogenies from supertree methods. Relaxed clock analyses support the long-fuse model of diversification and highlight the importance of including multiple fossil calibrations that are spread across the tree. Molecular time trees and diversification analyses suggest important roles for the Cretaceous Terrestrial Revolution and Cretaceous-Paleogene (KPg) mass extinction in opening up ecospace that promoted interordinal and intraordinal diversification, respectively. By contrast, diversification analyses provide no support for the hypothesis concerning the delayed rise of present-day mammals during the Eocene Period.

  1. Crocodyliform biogeography during the Cretaceous: evidence of Gondwanan vicariance from biogeographical analysis.

    Science.gov (United States)

    Turner, Alan H.

    2004-01-01

    Explanations of the distributions of terrestrial vertebrates during the Mesozoic are currently vigorously contested and debated in palaeobiogeography. Recent studies focusing on dinosaurs yield conflicting hypotheses. Dispersal, coupled with regional extinction or vicariance driven by continental break-up, have been cited as the main causal factors behind dinosaur distributions in the Mesozoic. To expand the scope of the debate and test for vicariance within another terrestrial group, I herein apply a cladistic biogeographical method to a large sample of Cretaceous crocodyliform taxa. A time-slicing methodology is employed and a refinement made to account for the divergence times of the analysed clades. The results provide statistically significant evidence that Gondwana fragmentation affected crocodyliform diversification during the Mid-Late Cretaceous. Detection of a vicariant pattern within crocodyliforms is important as it helps corroborate vicariance hypotheses in other fossil and extant groups as well as furthers the move towards more taxonomically diverse approaches to palaeobiogeographical research. PMID:15451689

  2. Cretaceous Small Scavengers: Feeding Traces in Tetrapod Bones from Patagonia, Argentina

    Science.gov (United States)

    de Valais, Silvina; Apesteguía, Sebastián; Garrido, Alberto C.

    2012-01-01

    Ecological relationships among fossil vertebrate groups are interpreted based on evidence of modification features and paleopathologies on fossil bones. Here we describe an ichnological assemblage composed of trace fossils on reptile bones, mainly sphenodontids, crocodyliforms and maniraptoran theropods. They all come from La Buitrera, an early Late Cretaceous locality in the Candeleros Formation of northwestern Patagonia, Argentina. This locality is significant because of the abundance of small to medium-sized vertebrates. The abundant ichnological record includes traces on bones, most of them attributable to tetrapods. These latter traces include tooth marks that provde evidence of feeding activities made during the sub-aerial exposure of tetrapod carcasses. Other traces are attributable to arthropods or roots. The totality of evidence provides an uncommon insight into paleoecological aspects of a Late Cretaceous southern ecosystem. PMID:22253800

  3. Marine dinoflagellates from Lower Cretaceous Muling Formation of Jixi Basin,China and their palaeoenvironmental significance

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaoju; HE Chengquan; LI Wenben; PIAO Taiyuan

    2003-01-01

    Newly discovered marine dinoflagellates from the lower-middle parts of the Lower Cretaceous Muling Formation of the Jixi Basin, eastern Heilongjiang Province, China, were identified as Circulodinium cingulatum He et al., C. attadalicum (Cookson et Eisenack) Helby, Palaeoperidinium cretaceum Pocock, Oligosphaeridium totum Brideaux and Sentusidinium sp. Most of these species are distributed in the marine Lower Cretaceous strata of Europe, North America, Africa, Australia and Asia. It demonstrates that a transgression occurred in eastern Heilongjiang Province during the deposition of the Muling Formation, which was previously considered to be a coal-bearing continental stratigraphic unit. The marine dinoflagellates indicated that the Muling Formation is Barremian in age. The Palaeogeographic framework of eastern Heilongjiang Province in Late Mesozoic era should be rebuilt through systematic facies analyses of the marine, paralic and terrestrial deposits.

  4. Late cretaceous precessional cycles in double time: a warm-Earth milankovitch response.

    Science.gov (United States)

    Park, J; D'Hondt, S L; King, J W; Gibson, C

    1993-09-10

    Late Cretaceous climatic cycles are reflected in lithological and magnetic variations in carbonate sediments from South Atlantic Deep-Sea Drilling Project site 516F at a paleolatitude of roughly 30 degrees S. Magnetic susceptibility cycles 20 to 60 centimeters in length appear to be controlled by the precession of the equinoxes. Cyclicity is particularly robust within a 24-meter interval in the lower Campanian, where overtone spectral peaks are observed as well as secondary susceptibility maxima within individual precession cycles. One model for this behavior is that sedimentation in the narrow Cretaceous South Atlantic was controlled by equatorial climate dynamics, with the precessional insolation signal rectified by the large land masses surrounding the ocean basin.

  5. Terpenoid composition and botanical affinity of Cretaceous resins from India and Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Suryendu; Mallick, Monalisa [Department of Earth Sciences, Indian Institute of Technology-Bombay (India); Kumar, Kishor [Wadia Institute of Himalayan Geology, Uttarakhand (India); Mann, Ulrich [Forschungzentrum Juelich (Germany). Institut fuer Chemie und Dynamik der Geosphaere; Greenwood, Paul F. [John De Laeter Mass Spectrometry and WA Biogeochemistry Centres (M090), University of Western Australia, Crawley (Australia)

    2011-01-01

    Fossil resins from the Cretaceous sediments of Meghalaya, India and Kachin, Myanmar (Burma) were analysed using Curie point pyrolysis-gas chromatography-mass spectrometry and thermochemolysis gas chromatography-mass spectrometry to help elucidate their botanical source. The major pyrolysis products and methyl-esterified thermochemolysis products of both the resins were abietane and labdane type diterpenoids with minor amount of sesquiterpenoids. The thermochemolysis products also included methyl-16,17-dinor callitrisate, methyl-16,17-dinor dehydroabietate and methyl-8-pimaren-18-oate - the latter two from just the Myanmarese resin. The exclusive presence of both labdane and abietane diterpenoids and the lack of phenolic terpenoids may suggest that the studied Cretaceous resins were derived from Pinaceae (pine family) conifers. (author)

  6. A New Genus and Species of Sapeornithidae from Lower Cretaceous in Western Liaoning, China

    Institute of Scientific and Technical Information of China (English)

    YUAN Chongxi

    2008-01-01

    Sapeornithidae is a basal pygostylian family of Early Cretaceous primitive birds, in which only one genus and species, Sapeornis chaoyangensis, was reported before. This paper deals with a new genus and species of this family, Didactylornis jii gen. et sp. nov., which was unearthed from the Early Cretaceous Jiufotang Formation in western Liaoning. According to our phylogenetic analyses, both Didactylornis gen. nov. and Sapeornis form a sister group, which is basal to the clade formed by Confuciusornis and all the more derived birds, and more closely related to the short-tailed pygostylian birds than to the long-tailed avialian birds. The early history of pygostylian birds is poorly documented except for the studies of Confuciusornis and Sapeornis. The discovery of Didactylornis jii gen. et sp. nov. adds the new material for the study on the early evolution of birds.

  7. Spheroids at the Cretaceous-Tertiary boundary are altered impact droplets of basaltic composition

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, A.; Hay, R.L.; Alvarez, W.; Asaro, F.; Michel, H.V.; Alvarez, L.W.; Smit, J.

    1983-11-01

    Sand-size spheroids of K-feldspar in the Cretaceous-Tertiary (C-T) boundary clay at Caravaca, southern Spain, were interpreted by Smit and Klaver as having solidified from a melt resulting from the impact of a large extraterrestrial body. Sand-size spheroids of K-feldspar, glauconite, and magnetite-quartz have been found in the C-T boundary clay in northern Italy, and spheroids of K-feldspar and pyrite were found in the boundary clay at Deep Sea Drilling Project Site 465A, in the central Pacific. These spheroids have textures similar to those of rapidly crystallized feldspar and mafic silicates. They are interpreted as diagenetically altered microcrystalline spherules of basaltic composition produced by the impact of a large asteroid in an ocean basin at the end of the Cretaceous. They are analogous to the glassy microtektites produced by impacts on more siliceous target rocks. 21 references, 4 figures.

  8. A large carnivorous mammal from the Late Cretaceous and the North American origin of marsupials

    Science.gov (United States)

    Wilson, Gregory P.; Ekdale, Eric G.; Hoganson, John W.; Calede, Jonathan J.; Vander Linden, Abby

    2016-12-01

    Marsupial mammal relatives (stem metatherians) from the Mesozoic Era (252-66 million years ago) are mostly known from isolated teeth and fragmentary jaws. Here we report on the first near-complete skull remains of a North American Late Cretaceous metatherian, the stagodontid Didelphodon vorax. Our phylogenetic analysis indicates that marsupials or their closest relatives evolved in North America, as part of a Late Cretaceous diversification of metatherians, and later dispersed to South America. In addition to being the largest known Mesozoic therian mammal (node-based clade of eutherians and metatherians), Didelphodon vorax has a high estimated bite force and other craniomandibular and dental features that suggest it is the earliest known therian to invade a durophagous predator-scavenger niche. Our results broaden the scope of the ecomorphological diversification of Mesozoic mammals to include therian lineages that, in this case, were linked to the origin and evolution of marsupials.

  9. The fossil record of Cunoniaceae: new evidence from Late Cretaceous wood of Antarctica?

    Science.gov (United States)

    Poole; Cantrill; Hayes; Francis

    2000-08-01

    Fossil angiosperm wood from Upper Cretaceous sediments of Livingston Island and James Ross Island in the northern Antarctic Peninsula region is identified as having the combination of anatomical characters most similar to modern Cunoniaceae. The material is characterised by predominantly solitary vessels, opposite to scalariform intervessel pitting, scalariform perforation plates, heterocellular multiseriate and homocellular uniseriate rays, diffuse axial parenchyma. Anatomically, the specimens conform most closely to the fossil organ genus Weinmannioxylon Petriella which has been placed within the Cunoniaceae. The presence of Weinmannioxylon in Late Cretaceous sediments suggests that taxa within or stem taxa to the Cunoniaceae might have been a notable component of the forest vegetation that covered the Antarctic Peninsula during the Late Mesozoic and may therefore represent the earliest record of this family.

  10. Crocodilian Nest in a Late Cretaceous Sauropod Hatchery from the Type Lameta Ghat Locality, Jabalpur, India.

    Directory of Open Access Journals (Sweden)

    Rahul Srivastava

    Full Text Available The well-known Late Cretaceous Lameta Ghat locality (Jabalpur, India provides a window of opportunity to study a large stable, near shore sandy beach, which was widely used by sauropod dinosaurs as a hatchery. In this paper, we revisit the eggs and eggshell fragments previously assigned to lizards from this locality and reassign them to crocodylomorphs. Several features point to a crocodilian affinity, including a subspherical to ellipsoidal shape, smooth, uneven external surface, discrete trapezoid shaped shell units with wide top and narrow base, basal knobs and wedge shaped crystallites showing typical inverted triangular extinction under crossed nicols. The crocodylomorph eggshell material presented in this paper adds to the skeletal data of these most probably Cretaceous-Eocene dryosaurid crocodiles.

  11. Record of the genus Aeolosaurus (Sauropoda, Titanosauria) in the Late Cretaceous of South America: paleogeographic implications

    Energy Technology Data Exchange (ETDEWEB)

    Candeiro, C.R.A.

    2010-07-01

    The Upper Cretaceous of South America has yielded fossils of the Aeolosaurini titanosaurian Aeolosaurus from Argentina (from the Allen, Los Alamitos, Angostura Colorada, and Bajo Barreal formations) and Brazil (Adamantina and Marilia formations). To date, four Aeolosaurus species have been recognized: Aeolosaurus colhuehuapensis, Aeolosaurus rionegrinus, A. rionegrinus? and Aeolosaurus sp. Gondwanatitan faustoi, recently considered a junior synonym of Aeolosaurus, is here demonstrated to be a valid taxon. The occurrence of Aeolosaurus in Turonian-Santonian rocks of central Brazil and in Campanian-Maastrichtian deposits of Argentina suggests that the temporal and geographic distribution of aeolosaurines was greater than previously recognized. The Aeolosaurus records from the Maastrichtian Marilia Formation of Brazil demonstrate that this genus persisted after the marine incursion that occurred in northern Patagonia during the Campanian-Maastrichtian. The Late Cretaceous tetrapod assemblages of central Brazil and Patagonia are comparable in age and fossil content. (Author).

  12. A New Titanosauriform Sauropod from the Early Late Cretaceous of Dongyang, Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    L(U) Junchang; Yoichi AZUMA; CHEN Rongjun; ZHENG Wenjie; JIN Xingsheng

    2008-01-01

    A new titanosauriform sauropod Dongyangosaurus sinensis gen. et sp. nov. from the early Late Cretaceous of Dongyang County, Zhejiang Province, is erected based on a partial postcranial skeleton. It is characterized by complex laminae on the lateral surface of the neural spines and postzygapophyses of dorsal vertebrae, a distinct fossa on the ventral surfaces of the prezygapophyses of dorsal vertebrae, distinct fossae are also present on the lateral surface of the postzygapophysis of anterior caudal vertebrae; pubis is shorter than ischium, the small obturator foramen of pubis elongated, and nearly closed. The lamina complexity of dorsal vertebrae in Dongyangosaurus indicates that a higher diversity of titanosauriformes occurred during the early Late Cretaceous in China.

  13. Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary

    OpenAIRE

    Vellekoop, J.; A. Sluijs; Smit, J.; Schouten, S.; J. W. H. Weijers; Sinninghe Damsté, J. S.; Brinkhuis, H.

    2014-01-01

    The mass extinction at the Cretaceous-Paleogene boundary, similar to 66 Ma, is thought to be caused by the impact of an asteroid at Chicxulub, present-day Mexico. Although the precise mechanisms that led to this mass extinction remain enigmatic, most postulated scenarios involve a short-lived global cooling, a so-called "impact winter" phase. Here we document a major decline in sea surface temperature during the first months to decades following the impact event, using TEX86 paleothermometry ...

  14. Reconstruction of Late Cretaceous Magmatic Arcs in the Northern Andes: Single Versus Multiple Arc Systems

    Science.gov (United States)

    Cardona, A.; Jaramillo, J. S.; Leon, S.; Hincapie, S.; Mejia, D.; Patino, A. M.; Vanegas, J.; Zapata, S.; Valencia, V.; Jimenez, G.; Monsalve, G.

    2014-12-01

    Although magmatic rocks are major tracers of the geological evolution of convergent margins, pre-collisional events such as subduction erosion, collisional thrusting or late collisional strike slip segmentation may difficult the recognizing of multiple arc systems and therefore the existence of paleogeographic scenarios with multiple subduction systems. New field, U-Pb geochronology and whole rock geochemistry constraints from the northwestern segment of the Central Cordillera in the states of Antioquia and Caldas (Colombia) are used to understand the nature of the Late Cretaceous arc magmatism and evaluate the existence of single or multiple Pacific and Caribbean arc systems in the growth of the Northwestern Andes. The new results integrated with additional field and published information is used to suggest the existence of at least three different magmatic arcs. (1) An Eastern Continental arc built within a well defined Permian to Triassic continental crust that record a protracted 90-70 Ma magmatic evolution, (2) a 90-80 arc formed within attenuated continental crust and associated oceanic crust, (3) 90-88 Ma arc formed over a Late Cretaceous plateau crust. The eastern arcs were formed as part of double eastern vergent subduction system, where the most outboard arc represent a fringing arc formed over detached fragments of continental crust, whereas the easternmost continental arc growth by the closure an subduction of and older and broad Triassic to Early Jurassic back-arc ocean. Its closure also end up in ophiolite emplacement. The third allochtonous oceanic arc was formed over the Caribbean plateau crust and was accreted to the continental margin in the Late Cretaceous. Ongoing paleomagnetic, deformational, gravimetric and basin analysis will be integrate to test this model and understand the complex Late Cretaceous tectonic evolution of the Northern Andes.

  15. Terrestrial catastrophe caused by cometary impact at the end of Cretaceous

    Science.gov (United States)

    Hsü, Kenneth J.

    1980-05-01

    Evidence is presented indicating that the extinction, at the end of the Cretaceous, of large terrestrial animals was caused by atmospheric heating during a cometary impact and that the extinction of calcareous marine plankton was a consequence of poisoning by cyanide released by the fallen comet and of a catastrophic rise in calcite-compensation depth in the oceans after the detoxification of the cyanide.

  16. Sea level and vertical motion of continents from dynamic earth models since the Late Cretaceous

    OpenAIRE

    Spasojevic, Sonja; Gurnis, Michael

    2012-01-01

    Dynamic earth models are used to better understand the impact of mantle dynamics on the vertical motion of continents and regional and global sea level change since the Late Cretaceous. A hybrid approach combines inverse and forward models of mantle convection and accounts for the principal contributors to long-term sea level change: the evolving distribution of ocean floor age, dynamic topography in oceanic and continental regions, and the geoid. We infer the relative importance of dynamic v...

  17. The oldest micropepline beetle from Cretaceous Burmese amber and its phylogenetic implications (Coleoptera: Staphylinidae)

    Science.gov (United States)

    Cai, Chen-Yang; Huang, Di-Ying

    2014-10-01

    The staphylinid subfamily Micropeplinae includes small strongly sclerotized beetles with truncate elytra leaving the most part of abdomen exposed. Fossil micropeplines are rare and confined to Cenozoic representatives of extant genera. Here, we describe the oldest micropepline, Protopeplus cretaceus gen. and sp. n., from the Upper Cretaceous Burmese amber. Fluorescence microscope and confocal laser scanning microscopy (CLSM) were both used to reveal diagnostic features of Micropeplinae and some primitive traits that place Protopeplus very basally within Micropeplinae.

  18. West Liaoning Found to be an Origin Area of Cretaceous Pterosaurs

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The fresh discoveries on pterosaurs by CAS researchers from the Jehol Fauna in the northeast China's Liaoning Province might shed new light on the studies of the extinct flying reptile that once ruled the skies for 160 million years in the Jurassic and Cretaceous periods. They make scientists to speculate that the western backwater of Liaoning could be one of the origin centers, from which the diverse populations of pterosaurs first made debut hundreds of thousand years ago.

  19. Carbonate sedimentation in an extensional active margin: Cretaceous history of the Haymana region, Pontides

    Science.gov (United States)

    Okay, Aral I.; Altiner, Demir

    2016-10-01

    The Haymana region in Central Anatolia is located in the southern part of the Pontides close to the İzmir-Ankara suture. During the Cretaceous, the region formed part of the south-facing active margin of the Eurasia. The area preserves a nearly complete record of the Cretaceous system. Shallow marine carbonates of earliest Cretaceous age are overlain by a 700-m-thick Cretaceous sequence, dominated by deep marine limestones. Three unconformity-bounded pelagic carbonate sequences of Berriasian, Albian-Cenomanian and Turonian-Santonian ages are recognized: Each depositional sequence is preceded by a period of tilting and submarine erosion during the Berriasian, early Albian and late Cenomanian, which corresponds to phases of local extension in the active continental margin. Carbonate breccias mark the base of the sequences and each carbonate sequence steps down on older units. The deep marine carbonate deposition ended in the late Santonian followed by tilting, erosion and folding during the Campanian. Deposition of thick siliciclastic turbidites started in the late Campanian and continued into the Tertiary. Unlike most forearc basins, the Haymana region was a site of deep marine carbonate deposition until the Campanian. This was because the Pontide arc was extensional and the volcanic detritus was trapped in the intra-arc basins and did not reach the forearc or the trench. The extensional nature of the arc is also shown by the opening of the Black Sea as a backarc basin in the Turonian-Santonian. The carbonate sedimentation in an active margin is characterized by synsedimentary vertical displacements, which results in submarine erosion, carbonate breccias and in the lateral discontinuity of the sequences, and differs from blanket like carbonate deposition in the passive margins.

  20. A new family of aphids (Hemiptera, Sternorrhyncha from the Lower Cretaceous of Baissa, Transbaikalia

    Directory of Open Access Journals (Sweden)

    Agnieszka Homan

    2011-09-01

    Full Text Available The family Rasnitsynaphididae fam. n. has a unique combination of characters: 9-segmented antennae; rhinaria arranged in many transverse rows, surrounding the antennal segments; segment IX narrower than other segments of flagellum, always without rhinaria; cubitus branches separated; ovipositor present; siphuncular pores absent. The new family comprises the genus Rasnitsynaphis gen. n. with three species, R. ennearticulata sp. n., R. coniuncta sp. n., and R. quadrata sp. n., all from the Lower Cretaceous of Transbaikalia.

  1. Traces of evaporites in Upper Cretaceous lacustrine deposits of Korea: Origin and paleoenvironmental implications

    Science.gov (United States)

    Paik, In Sung; Huh, Min; So, Yoon Hwan; Lee, Jeong Eun; Kim, Hyun Joo

    2007-04-01

    Diverse types of halite and sulfate evaporite traces occur in the Upper Cretaceous lacustrine deposits of the Jindong Formation and the Jangdong Tuff in Korea, in which dinosaur tracks are common. The halite traces usually occur as casts or moulds, and they include traces of primary halite hoppers, primary and intrasedimentary skeletal halite, and intrasedimentary tiny halite. The sulfate traces occur as intrasedimentary and displacive casts filled with sediments and sparry calcite, and the casts occur as diverse modes from single crystal casts through nodular aggregates to massive aggregates. Some aggregates of the sulfate casts are aligned in crack pattern, and selective occurrence of the laths in ripple troughs are observed. Soluble sulfate evaporite minerals such as gypsum, glauberite, or mirabilite are probable for the precursors of these traces. These halite and sulfate traces are interpreted to have been formed in a saline lake and mudflats. It is interpreted that meteoric water was responsible for the evaporite precipitation in the Jindong Lake and Jangdong Lake. Recycled brine produced by the repeated dissolution of evaporites might contribute to the evaporite precipitation in the paleo-Jindong Lake and the paleo-Jangdong Lake. The development of saline lake deposits in the Jindong Formation and the Jangdong Tuff suggests that the southern part of the Korean Peninsula remained an inland continental area during the Cretaceous resulting in semi-arid paleoclimatic condition due to an orographic effect by the location of the Korean Peninsula on continental margin in mid-latitude with topographic barriers during the Cretaceous. The occurrence of dinosaur tracks in the lake margin deposits of saline lake with frequent inflow of dilute meteoric water suggests that Upper Cretaceous dinosaurs inhabiting lakes on the Korean Peninsula might have drunken brackish water.

  2. Effect of Cretaceous oceanic anoxic events on the evolutionary trend of planktonic foraminifera

    Science.gov (United States)

    Kuroyanagi, A.; Ozaki, K.; Kawahata, H.

    2014-12-01

    It is widely thought that oceanic redox state is essential for the evolutionary history of life on the earth, and "anoxic events" have been proposed as one of the causal mechanisms for mass extinctions. During mid-Cretaceous, widely known as the extremely warm period, oceanic anoxic events (OAEs) occurred several times and they would have caused a substantial impact on the biosphere. Planktonic foraminifera are marine planktons with calcite tests and their productions constitute ~30-80% of the modern deep-marine calcite budget, thus they play an important role in the global carbon cycle. Previous study reported that planktonic foraminifera displayed the high turnover (extinction and speciation) rate at or near the major OAEs. However, the impact of Cretaceous OAEs on the evolutionary trend of planktonic foraminifera remains obscure. In this study, we investigated the role of spatiotemporal extent of anoxia on the evolutionary trend of planktonic foraminifera by assessing the extinction/speciation rate of planktonic foraminifera around Cretaceous OAEs. The number of foraminiferal species increased across the OAE1a and then showed a peak after this episode. Around OAE2, several planktonic foraminifera species became extinct and several speciated, however, long-term trends in foraminiferal evolution showed no drastic changes near the event. Therefore these results suggest that the ocean surface environment at OAEs would not have a direct effect on foraminiferal extinction/speciation. This interpretation is reinforced when considering the recent culturing results, which demonstrate that modern planktonic foraminifera have a high tolerance to extremely low dissolved oxygen levels than expected. Accumulating geochemical data also suggest a spatial heterogeneity of oceanic anoxia/euxinia during OAE2. These results lead us to conclude that Cretaceous OAEs would not directly related to planktonic foraminiferal extinction due to regional distribution of anoxia/euxinia.

  3. Evolutionary and paleobiological implications of Coleoptera (Insecta from Tethyan-influenced Cretaceous ambers

    Directory of Open Access Journals (Sweden)

    David Peris

    2016-07-01

    Full Text Available The intense study of coleopteran inclusions from Spanish (Albian in age and French (Albian–Santonian in age Cretaceous ambers, both of Laurasian origin, has revealed that the majority of samples belong to the Polyphaga suborder and, in contrast to the case of the compression fossils, only one family of Archostemata, one of Adephaga, and no Myxophaga suborders are represented. A total of 30 families from Spain and 16 families from France have been identified (with almost twice bioinclusions identified in Spain than in France; 13 of these families have their most ancient representatives within these ambers. A similar study had previously only been performed on Lebanese ambers (Barremian in age and Gondwanan in origin, recording 36 coleopteran families. Few lists of taxa were available for Myanmar (Burmese amber (early Cenomanian in age and Laurasian in origin. Coleopteran families found in Cretaceous ambers share with their modern relatives mainly saproxylic and detritivorous habits in the larval or adult stages, rather than wood-boring behavior. Fifteen of the coleopteran families occur in both the Lebanese and Spanish ambers; while only five are present in both Spanish and French. Considering the paleogeographic proximity and similarity of age of the Spanish and French ambers, the small number of taxa found in common at both areas is surprising. The ancient origin for the Lebanese and Spanish ambers, the paleogeography (including some barriers for terrestrial biota and the local paleohabitats are factors that may explain the dissimilarity with the French specimens. Wildfires are believed to be a more likely cause of resin production during the Cretaceous than infestation by beetles. Current knowledge of the beetle species found in the Cretaceous ambers is introduced.

  4. Cretaceous origin of dogwoods: an anatomically preserved Cornus (Cornaceae fruit from the Campanian of Vancouver Island

    Directory of Open Access Journals (Sweden)

    Brian A. Atkinson

    2016-12-01

    Full Text Available Background Cornaceae consists of 58 species, all within the genus Cornus. The Cenozoic record of Cornus is extensive and well documented. Molecular divergence-time studies suggest that crown-group Cornus may have originated by the Late Cretaceous. However, there has been no formal report of Cornus from Cretaceous deposits. Here, we characterize a permineralized fossil fruit assignable to Cornus subg. Cornus from the Upper Cretaceous (Campanian Shelter Point locality of Vancouver Island, British Columbia, Canada. Methods Serial sections of the specimen were made using the cellulose acetate peel technique. Peels were mounted onto microscope slides and studied by light microscopy. Results The fossil fruit consists of a tri-locular woody endocarp with dorsal germination valves. The locules are sub-triangular to ellipsoidal in transverse section and are separated by thin septa. Endocarp tissue consists of elongated and isodiametric sclereids and secretory cavities. Internal vascular tissue was not observed, but is interpreted to have been located along the outer periphery of the septa for some length, common in many cornalean taxa. There is one seed in each locule, one of which was found to have endosperm and a dicotyledonous embryo. Discussion Woody endocarps with germination valves, without central vascular bundles, and with one seed per locule are characteristic of several families within the order Cornales. The interpreted vascular pattern and presence of secretory cavities indicates that the fossil fruit is assignable to Cornus subg. Cornus. Comparative analysis suggests that the fossil is most similar to Cornus piggae, a species described from the Paleocene of North Dakota. This fossil is the first evidence of crown-group Cornaceae from the Cretaceous and sheds light on both the plesiomorphic fruit characters and the timing of the initial diversification of the family and basal asterid lineage, Cornales.

  5. Comment on "Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification".

    Science.gov (United States)

    Bininda-Emonds, Olaf R P; Purvis, Andy

    2012-07-01

    Meredith et al. (Reports, 28 October 2011, p. 521) question three findings of our delayed-rise hypothesis for present-day mammals made with reference to the Cretaceous-Paleogene (KPg) boundary, based on their new time tree of the group. We show that their own data do not support their objections and that the macroevolutionary patterns from the respective phylogenies are not statistically different.

  6. Cretaceous Apparent Polar Wander Relative to the Major Cratons and Displacement Estimates of Baja British Columbia

    Science.gov (United States)

    Enkin, R. J.

    2004-12-01

    When paleogeographic interpretations derived from independent observations conflict, the methods and results from each discipline come under careful scrutiny, as illustrated by the Baja British Columbia controversy. Cretaceous paleomagnetic data from a large region of the Canadian Cordillera render paleopoles which are far-sided with respect to cratonic North American poles, suggesting this region, designated Baja British Columbia, translated northward during Late Cretaceous - Paleogene time. Criticism of this interpretation based on other geological reasoning prompted me to perform new reviews of Cretaceous to Eocene paleomagnetic results from the Cordillera and from the major cratons of the globe. The global review follows the method of Besse and Courtillot (1991; 2002). One difference between our methods is that I compiled paleomagnetic results from highly studied rock units to single results to balance data weightings spatially and temporally, thus reducing the number of individual results. For the period 160 to 40 Ma, 51 poles were included compared to 92 poles by Besse and Courtillot (2002). Differences between apparent polar wander paths in their and my analyses are never significant at 95% confidence, however mean pole positions differ by up to 500 km, which is important for paleogeographic analysis. The global distribution of sampling localities and the tight clustering of the paleomagnetic poles after plate reconstruction provide invaluable confirmation of plate tectonically derived Euler rotations, the reliability of paleomagnetic remanence directions, and the geocentric dipole geometry of the geomagnetic field. My Cordilleran review shows that paleolatitudes derived from plutons and remagnetized rocks are significantly more scattered than those derived from bedded rocks. Using bedded rocks only, the paleomagnetic record shows that Baja British Columbia sat 2100 ± 500 km south of its present position with respect to cratonic North America during the

  7. Reconstructing a mid-Cretaceous landscape from paleosols in western Canada

    Science.gov (United States)

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.; Leckie, D.

    2005-01-01

    The Albian Stage of the mid-Cretaceous was a time of equable climate conditions with high sea levels and broad shallow epeiric seas that may have had a moderating affect on continental climates. A Late Albian landscape surface that developed during a regression and subsequent sea-level rise in the Western Canada Foreland Basin is reconstructed on the basis of correlation of paleosols penetrated by cores through the Paddy Member of the Peace River Formation. Reconstruction of this landscape refines chronostratigraphic relationships and will benefit future paleoclimatological studies milizing continental sphaerosiderite proxy records. The paleosols developed in estuarine sandstones and mudstones, and they exhibit evidence of a polygenetic history. Upon initial exposure and pedogenesis, the Paddy Member developed deeply weathered, well-drained cumulative soil profiles. Later stages of pedogenesis were characterized by hydromorphic soil conditions. The stages of soil development interpreted for the Paddy Member correlate with inferred stages of pedogenic development in time-equivalent formations located both basinward and downslope (upper Viking Formation), and landward and upslope (Boulder Creek Formation). On the basis of the genetic similarity among paleosols in these three correlative formations, the paleosols are interpreted as having formed along a single, continuous landscape surface. Results of this study indicate that the catena concept of pedogenesis along sloping landscapes is applicable to ancient successions. Sphaerosiderites in the Paddy Mem ber paleosols are used to provide proxy values for meteoric ??18O values at 52?? N paleolatitude in the Cretaceous Western Interior Basin. The meteoric ??18O values are used to refine existing interpretations about the mid-Cretaceous paleolatitudinal gradient in meteoric ?? 18O values, and the mid-Cretaceous hydrologic cycle. Copyright ?? 2005, SEPM (Society for Sedimentary Geology).

  8. End-Cretaceous marine mass extinction not caused by productivity collapse

    OpenAIRE

    Alegret, Laia; Thomas, Ellen; Lohmann, Kyger C.

    2011-01-01

    An asteroid impact at the end of the Cretaceous caused mass extinction, but extinction mechanisms are not well-understood. The collapse of sea surface to sea floor carbon isotope gradients has been interpreted as reflecting a global collapse of primary productivity (Strangelove Ocean) or export productivity (Living Ocean), which caused mass extinction higher in the marine food chain. Phytoplankton-dependent benthic foraminifera on the deep-sea floor, however, did not suffer significant extinc...

  9. First Record of Anisoptera (Insecta: Odonata) from mid-Cretaceous Burmese Amber.

    Science.gov (United States)

    Schädel, Mario; Bechly, Günter

    2016-04-18

    The fossil dragonfly Burmalindenia imperfecta gen. et sp. nov. is described from mid-Cretaceous Burmese amber as the first record of the odonate suborder Anisoptera for this locality and one of the few records from amber in general. The inclusion comprises two fragments of the two hind wings of a dragonfly. The fossil can be attributed to a new genus and species of the family Gomphidae, presumably in the subfamily Lindeniinae, and features a strange teratological phenomenon in its wing venation.

  10. Brachyceran Diptera (Insecta) in Cretaceous ambers, Part IV, Significant New Orthorrhaphous Taxa.

    Science.gov (United States)

    Grimaldi, David A; Arillo, Antonio; Cumming, Jeffrey M; Hauser, Martin

    2011-01-01

    Thirteen species of basal Brachycera (11 described as new) are reported, belonging to nine families and three infraorders. They are preserved in amber from the Early Cretaceous (Neocomian) of Lebanon, Albian of northern Spain, upper Albian to lower Cenomanian of northern Myanmar, and Late Cretaceous of New Jersey USA (Turonian) and Alberta, Canada (Campanian). Taxa are as follows, with significance as noted: In Stratiomyomorpha: Stratiomyidae (Cretaceogaster pygmaeus Teskey [2 new specimens in Canadian amber], Lysistrata emerita Grimaldi & Arillo, gen. et sp. n. [stem-group species of the family in Spanish amber]), and Xylomyidae (Cretoxyla azari Grimaldi & Cumming, gen. et sp. n. [in Lebanese amber], and an undescribed species from Spain). In Tabanomorpha: Tabanidae (Cratotabanus newjerseyensis Grimaldi, sp. n., in New Jersey amber). In Muscomorpha: Acroceridae (Schlingeromyia minuta Grimaldi & Hauser, gen. et sp. n. and Burmacyrtus rusmithi Grimaldi & Hauser gen. etsp. n., in Burmese amber, the only definitive species of the family from the Cretaceous); Mythicomyiidae (Microburmyia analvena Grimaldi & Cumming gen. et sp. n. and Microburmyia veanalvena Grimaldi & Cumming, sp. n., stem-group species of the family, both in Burmese amber); Apsilocephalidae or near (therevoid family-group) (Kumaromyia burmitica Grimaldi & Hauser, gen. et sp. n. [in Burmese amber]); Apystomyiidae (Hilarimorphites burmanica Grimaldi & Cumming, sp. n. [in Burmese amber], whose closest relatives are from the Late Jurassic of Kazachstan, the Late Cretaceous of New Jersey, and Recent of California). Lastly, two species belonging to families incertae sedis, both in Burmese amber: Tethepomyiidae (Tethepomyia zigrasi Grimaldi & Arillo sp. n., the aculeate oviscapt of which indicates this family was probably parasitoidal and related to Eremochaetidae); and unplaced to family is Myanmyia asteiformia Grimaldi, gen. et sp. n., a minute fly with highly reduced venation. These new taxa significantly

  11. Porosphaera globularis (Phillips, 1829) (Porifera, Calcarea) in the Campanian (Upper Cretaceous) of extra-Carpathian Poland

    Science.gov (United States)

    Jurkowska, Agata; Świerczewska-Gładysz, Ewa; Dubicka, Zofia; Olszewska-Nejbert, Danuta

    2015-03-01

    The stratigraphical distribution of Porosphaera globularis, a common calcareous sponge in the Upper Cretaceous (mostly Campanian and Maastrichtian) of Poland was studied. The presented material, both new and from museum collections, comes from the Campanian of the Miechow Synclinorium, in southern Poland, and from the Lower Campanian of Mielnik in the south-eastern part of the Mazury-Podlasie Homocline, in eastern Poland. The significance of the species in extra-regional correlation, its palaeobiogeography and stratigraphical potential is critically reviewed.

  12. A New Sauropod Dinosaur from the Late Cretaceous Gaogou Formation of Nanyang, Henan Province

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xingliao; L(U) Junchang; XU Li; LI Jinhua; YANG Li; HU Weiyong; JIA Songhai; JI Qiang; ZHANG Chengjun

    2009-01-01

    A new sauropod dinosaur Baotianmansaurus henanensis gen. et sp. nov. from the Cretaceous Gaogou Formation of Neixiang, Henan Province is erected. It is characterized by somphospondylous presacral vertebrae; a highly-developed lamina system on the dorsal vertebrae; transverse process supported by four laminae; and the dorsal portion of the anterior centroparapophyseai lamina is bifurcated, with a small branch extending to the ventral surface of the prezygapophysis. It represents a new titanosauriform sauropod.

  13. Molecular and paleontological evidence for a post-Cretaceous origin of rodents.

    Directory of Open Access Journals (Sweden)

    Shaoyuan Wu

    Full Text Available The timing of the origin and diversification of rodents remains controversial, due to conflicting results from molecular clocks and paleontological data. The fossil record tends to support an early Cenozoic origin of crown-group rodents. In contrast, most molecular studies place the origin and initial diversification of crown-Rodentia deep in the Cretaceous, although some molecular analyses have recovered estimated divergence times that are more compatible with the fossil record. Here we attempt to resolve this conflict by carrying out a molecular clock investigation based on a nine-gene sequence dataset and a novel set of seven fossil constraints, including two new rodent records (the earliest known representatives of Cardiocraniinae and Dipodinae. Our results indicate that rodents originated around 61.7-62.4 Ma, shortly after the Cretaceous/Paleogene (K/Pg boundary, and diversified at the intraordinal level around 57.7-58.9 Ma. These estimates are broadly consistent with the paleontological record, but challenge previous molecular studies that place the origin and early diversification of rodents in the Cretaceous. This study demonstrates that, with reliable fossil constraints, the incompatibility between paleontological and molecular estimates of rodent divergence times can be eliminated using currently available tools and genetic markers. Similar conflicts between molecular and paleontological evidence bedevil attempts to establish the origination times of other placental groups. The example of the present study suggests that more reliable fossil calibration points may represent the key to resolving these controversies.

  14. Characterization of the source horizons within the Late Cretaceous transgressive sequence of northeast Africa

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, V. (Texaco, Inc., Houston (United States)); Engel, M. (Univ. of Oklahoma, Norman, TX (United States))

    1991-03-01

    Source rocks were deposited in northeastern Africa during a major Late Cretaceous transgression. The preserved stratigraphic sequence begins with a series of fluvio-deltaic sands and progresses up into a thick marine carbonate section. These deposits represent ever increasing water depths and isolation from the continental landmass. Across northeast Africa and portions of Arabia, oil-prone source facies were deposited along the mid to outer shelf during the initial phases of this Late Cretaceous transgression. Within the source sequence itself, variations in the organic matter record the changing influences of coastal upwelling, development of anoxia, and terrigenous input. In Egypt, the transgression deposited sediments found today in the upper portion of the Nubian through Thebes formations. The source facies found within this sequence include portions of the Duwi and Dakhla formations. Both the Duwi and Dakhla record changes in salinity, depth of the water column, and oxygen concentration, which are depicted in the organic matter content, quality, and type. The variability observed in the source sequence in Egypt can be related to the Late Cretaceous source facies preserved across northeast Africa.

  15. Global correlation for strontium isotope curve in the Late Cretaceous of Tibet and dating marine sediments

    Institute of Scientific and Technical Information of China (English)

    HUANG; Sijing; SHI; He; SHEN; Licheng; ZHANG; Meng; WU; Wen

    2005-01-01

    87Sr/86Sr ratios of marine carbonate samples collected from a sedimentary section of the Late Cretaceous in the south of Tibet were measured. Based on the absence of cathodoluminescence and a very low Mn/Sr ratio (average 0.06) of the samples, it is thought that they contain information on the original seawater strontium isotope composition. The strontium isotope evolution curve of the Late Cretaceous in Tibet we established here, is consistent with other coeval curves from Europe, North America and Antarctica, supports the notion that the strontium isotope composition of seawater is governed by global events, which provides a new approach for the inter-continental and inter-basinal correlations of Late Cretaceous in the area and is a complementarity for biostratigraphy. In addition, we attempt to determine the age of the boundaries for Campanian/Santonian and Maastrichtian/Campanian by 87Sr/86Sr ratios for Gamba section in southern Tibet. The two boundaries are located in the thickness of 217 m (83.5 Ma) and 291 m (71.3 Ma), respectively.

  16. Cretaceous/Paleogene floral turnover in Patagonia: drop in diversity, low extinction, and a Classopollis spike.

    Directory of Open Access Journals (Sweden)

    Viviana D Barreda

    Full Text Available Nearly all data regarding land-plant turnover across the Cretaceous/Paleogene boundary come from western North America, relatively close to the Chicxulub, Mexico impact site. Here, we present a palynological analysis of a section in Patagonia that shows a marked fall in diversity and abundance of nearly all plant groups across the K/Pg interval. Minimum diversity occurs during the earliest Danian, but only a few palynomorphs show true extinctions. The low extinction rate is similar to previous observations from New Zealand. The differing responses between the Southern and Northern hemispheres could be related to the attenuation of damage with increased distance from the impact site, to hemispheric differences in extinction severity, or to both effects. Legacy effects of the terminal Cretaceous event also provide a plausible, partial explanation for the fact that Paleocene and Eocene macrofloras from Patagonia are among the most diverse known globally. Also of great interest, earliest Danian assemblages are dominated by the gymnosperm palynomorphs Classopollis of the extinct Mesozoic conifer family Cheirolepidiaceae. The expansion of Classopollis after the boundary in Patagonia is another example of typically Mesozoic plant lineages surviving into the Cenozoic in southern Gondwanan areas, and this greatly supports previous hypotheses of high latitude southern regions as biodiversity refugia during the end-Cretaceous global crisis.

  17. Cretaceous/Paleogene floral turnover in Patagonia: drop in diversity, low extinction, and a Classopollis spike.

    Science.gov (United States)

    Barreda, Viviana D; Cúneo, Nestor R; Wilf, Peter; Currano, Ellen D; Scasso, Roberto A; Brinkhuis, Henk

    2012-01-01

    Nearly all data regarding land-plant turnover across the Cretaceous/Paleogene boundary come from western North America, relatively close to the Chicxulub, Mexico impact site. Here, we present a palynological analysis of a section in Patagonia that shows a marked fall in diversity and abundance of nearly all plant groups across the K/Pg interval. Minimum diversity occurs during the earliest Danian, but only a few palynomorphs show true extinctions. The low extinction rate is similar to previous observations from New Zealand. The differing responses between the Southern and Northern hemispheres could be related to the attenuation of damage with increased distance from the impact site, to hemispheric differences in extinction severity, or to both effects. Legacy effects of the terminal Cretaceous event also provide a plausible, partial explanation for the fact that Paleocene and Eocene macrofloras from Patagonia are among the most diverse known globally. Also of great interest, earliest Danian assemblages are dominated by the gymnosperm palynomorphs Classopollis of the extinct Mesozoic conifer family Cheirolepidiaceae. The expansion of Classopollis after the boundary in Patagonia is another example of typically Mesozoic plant lineages surviving into the Cenozoic in southern Gondwanan areas, and this greatly supports previous hypotheses of high latitude southern regions as biodiversity refugia during the end-Cretaceous global crisis.

  18. Preliminary analysis of climate indicator plant distribution in the Early Cretaceous of China

    Science.gov (United States)

    Saiki, Ken'ichi; Wang, Yong-dong

    2003-06-01

    We review the distribution of Early Cretaceous megafossil plants from China. The distribution patterns of Ginkgoales, Acanthopteris, Nilssonia, Podozamites, Gleichenites, frenelopsids, Otozamites, Zamites, Zamiophyllum, Ptilophyllum, and Weichselia are illustrated on maps. The Early Cretaceous flora of China has been divided into two floristic provinces. The 'Northern type' (Tetori-type or Siberia-Canadian) flora flourished under a warm-temperate and humid climate while the 'Southern type' (Ryoseki-type or Euro-Sinian) flora flourished under a tropical-subtropical and rather arid climate. Although most researchers agree with the estimations of climate mentioned above, the locations of the boundary between these two floristic provinces and their mixed zone are still controversial. Distribution maps from the present study show that each taxon has a different distribution area. This means that the boundary positions advocated previously are not supported by the present study. These results indicate that an objective methodology is needed for further study. To solve this problem, we compiled a database of the Early Cretaceous flora and its components in East Asia, which includes all the taxa described in the referenced publications.

  19. Cretaceous Volcanic Events in Southeastern Jilin Province, China: Evidence from Single Zircon U-Pb Ages

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuejun; SUN Chunlin; SUN Yuewu; SUN Wei

    2008-01-01

    Mesozoic volcanic rocks in southeastern Jilin Province are an important component of the huge Mesozoic volcanic belt in the northeastern area. Study of the age of their formation is of great significance to recognize Mesozoic volcanic rule in northeastern China. Along with the research of rare Mesozoic biota and extensive Mesozoic mineralization in western Liaoning, a number of researchers have focused on Mesozoic volcanic events. The authors studied the ages of the Cretaceous volcanic rocks in southeastern Jilin Province using single Zircon U-Pb. The result shows that the Sankeyushu Formation volcanic rocks in the Tonghua area are 119.2 Ma in age, the Yingcheng Formation in the Jiutai area 113.4±3.1 Ma, the Jinjiatun Formation in Pinggang Town of Liaoyuan City and the Wufeng volcanic rocks in the Yanji area 103.2±4.7 Ma and 103.6±1 Ma, respectively. Combined with the data of recent publication on volcanic rocks ages; the Cretaceous volcanic events in southeastern Jilin Province can be tentatively subdivided into three eruption periods: 119 Ma, 113 Ma and 103 Ma. The result not only provides important chronology data for subdividing Mesozoic strata in southeastern Jilin Province, establishing Mesozoic volcanic event sequence, discussing geological tectonic background, and surveying the relation between noble metals to the Cretaceous volcanic rocks, but also otters important information of Mesozoic volcanism in northeastern China.

  20. Neurocranial osteology and neuroanatomy of a late Cretaceous titanosaurian sauropod from Spain (Ampelosaurus sp.).

    Science.gov (United States)

    Knoll, Fabien; Ridgely, Ryan C; Ortega, Francisco; Sanz, Jose Luis; Witmer, Lawrence M

    2013-01-01

    Titanosaurians were a flourishing group of sauropod dinosaurs during Cretaceous times. Fossils of titanosaurians have been found on all continents and their remains are abundant in a number of Late Cretaceous sites. Nonetheless, the cranial anatomy of titanosaurians is still very poorly known. The Spanish latest Cretaceous locality of "Lo Hueco" yielded a relatively well preserved, titanosaurian braincase, which shares a number of phylogenetically restricted characters with Ampelosaurus atacis from France such as a flat occipital region. However, it appears to differ from A. atacis in some traits such as the greater degree of dorsoventral compression and the presence of proatlas facets. The specimen is, therefore, provisionally identified as Ampelosaurus sp. It was CT scanned, and 3D renderings of the cranial endocast and inner-ear system were generated. Our investigation highlights that, although titanosaurs were derived sauropods with a successful evolutionary history, they present a remarkably modest level of paleoneurological organization. Compared with the condition in the basal titanosauriform Giraffatitan brancai, the labyrinth of Ampelosaurus sp. shows a reduced morphology. The latter feature is possibly related to a restricted range of head-turning movements.

  1. A New Giant Titanosauria (Dinosauria: Sauropoda) from the Late Cretaceous Bauru Group, Brazil

    Science.gov (United States)

    2016-01-01

    Titanosaurian dinosaurs include some of the largest land-living animals that ever existed, and most were discovered in Cretaceous deposits of Argentina. Here we describe the first Brazilian gigantic titanosaur, Austroposeidon magnificus gen. et sp. nov., from the Late Cretaceous Presidente Prudente Formation (Bauru Group, Paraná Basin), São Paulo State, southeast Brazil. The size of this animal is estimated around 25 meters. It consists of a partial vertebral column composed by the last two cervical and the first dorsal vertebrae, all fairly complete and incomplete portions of at least one sacral and seven dorsal elements. The new species displays four autapomorphies: robust and tall centropostzygapophyseal laminae (cpol) in the last cervical vertebrae; last cervical vertebra bearing the posterior centrodiapophyseal lamina (pcdl) bifurcated; first dorsal vertebra with the anterior and posterior centrodiapophyseal laminae (acdl/pcdl) curved ventrolaterally, and the diapophysis reaching the dorsal margin of the centrum; posterior dorsal vertebra bearing forked spinoprezygapophyseal laminae (sprl). The phylogenetic analysis presented here reveals that Austroposeidon magnificus is the sister group of the Lognkosauria. CT scans reveal some new osteological internal features in the cervical vertebrae such as the intercalation of dense growth rings with camellae, reported for the first time in sauropods. The new taxon further shows that giant titanosaurs were also present in Brazil during the Late Cretaceous and provides new information about the evolution and internal osteological structures in the vertebrae of the Titanosauria clade. PMID:27706250

  2. Neurocranial Osteology and Neuroanatomy of a Late Cretaceous Titanosaurian Sauropod from Spain (Ampelosaurus sp.)

    Science.gov (United States)

    Knoll, Fabien; Ridgely, Ryan C.; Ortega, Francisco; Sanz, Jose Luis; Witmer, Lawrence M.

    2013-01-01

    Titanosaurians were a flourishing group of sauropod dinosaurs during Cretaceous times. Fossils of titanosaurians have been found on all continents and their remains are abundant in a number of Late Cretaceous sites. Nonetheless, the cranial anatomy of titanosaurians is still very poorly known. The Spanish latest Cretaceous locality of “Lo Hueco” yielded a relatively well preserved, titanosaurian braincase, which shares a number of phylogenetically restricted characters with Ampelosaurus atacis from France such as a flat occipital region. However, it appears to differ from A. atacis in some traits such as the greater degree of dorsoventral compression and the presence of proatlas facets. The specimen is, therefore, provisionally identified as Ampelosaurus sp. It was CT scanned, and 3D renderings of the cranial endocast and inner-ear system were generated. Our investigation highlights that, although titanosaurs were derived sauropods with a successful evolutionary history, they present a remarkably modest level of paleoneurological organization. Compared with the condition in the basal titanosauriform Giraffatitan brancai, the labyrinth of Ampelosaurus sp. shows a reduced morphology. The latter feature is possibly related to a restricted range of head-turning movements. PMID:23355905

  3. Paleomagnetic study of Jurassic and Cretaceous rocks from the Mixteca terrane (Mexico)

    Science.gov (United States)

    Böhnel, Harald

    1999-11-01

    Three sites from Cretaceous limestone and Jurassic sandstone in northern Oaxaca, Mexico, were studied paleomagnetically. Thermal demagnetization isolated site-mean remanence directions which differ significantly from the recent geomagnetic field. The paleopole for the Albian-Cenomanian Morelos formation is indistinguishable from the corresponding reference pole for stable North America, indicating tectonic stability of the Mixteca terrane since the Cretaceous. Rock magnetic properties and a positive reversal test for the Bajocian Tecomazuchil sandstone suggest that the remanence could be of primary origin, although no fold test could be applied. The Tecomazuchil paleopole is rotated 10°±5° clockwise and displaced 24°±5° towards the study area, with respect to the reference pole for stable North America. Similar values were found for the Toarcien-Aalenian Rosario Formation, with 35°±6° clockwise rotation and 33°±6° latitudinal translation. These data support a post-Bajocian southward translation of the Mixteca terrane by around 25°, which was completed in mid-Cretaceous time.

  4. Possible Decoupling of the Geochemical Cycles of Sulfur and Carbon During the Early Cretaceous (Hauterivian)

    Science.gov (United States)

    Kristall, B.; Hurtgen, M. T.; Sageman, B. B.

    2013-12-01

    During the past decade there has been significant focus on understanding the global sulfur cycle during the Mid- to Late-Cretaceous. The occurrence of several oceanic anoxic events (OAEs) during this time period and the relationships among the sulfur, carbon, and oxygen cycles controlling the redox state of the ocean have been motivating factors in this research. These efforts have centered on identifying what impact, if any, massive volcanism and evaporite deposition associated with opening of the South Atlantic had on the sulfate content of the ocean and what role these events may have played in triggering OAEs. However, relatively little work has been done to characterize the sulfur cycle during the Early Cretaceous. In the present study, we have analyzed the sulfur isotope composition of carbonate-associated sulfate (CAS) from Hauterivian-aged samples (Resolution Guyot ODP Hole 866A). We found a previously unrecognized ~4‰ positive sulfur isotope excursion in sulfate sulfur. This well structured, excursion spans approximately 15-20 m of core and is estimated to be less than 300-500 kyr. Corresponding carbonate carbon isotope analyses do not show a comparable, well-structured excursion. During this event δ13C values vary only by 0.25-0.5‰. The rapid shift and recovery in δ34Ssulfate suggests either that this event was regional or that the Early Cretaceous oceans contained low sulfate levels (factors necessary to produce the observed S isotope shift without a corresponding change in C isotope composition.

  5. A drowned Mesozoic bird breeding colony from the Late Cretaceous of Transylvania

    Science.gov (United States)

    Dyke, Gareth; Vremir, Mátyás; Kaiser, Gary; Naish, Darren

    2012-06-01

    Despite a rapidly improving fossil record, the reproductive biology of Mesozoic birds remains poorly known: only a handful of undisputed, isolated Cretaceous eggs (some containing embryonic remains) are known. We report here the first fossil evidence for a breeding colony of Mesozoic birds, preserved at the Late Cretaceous (Maastrichtian) Oarda de Jos (Od) site in the Sebeş area of Transylvania, Romania. A lens of calcareous mudstone with minimum dimensions of 80 cm length, 50 cm width and 20 cm depth contains thousands of tightly packed, morphologically homogenous eggshell fragments, seven near-complete eggs and neonatal and adult avialan skeletal elements. Eggshell forms 70-80 % of the matrix, and other fossils are entirely absent. The bones exhibit clear characters of the Cretaceous avialan clade Enantiornithes, and the eggshell morphology is also consistent with this identification. Both taphonomy and lithology show that the components of this lens were deposited in a single flood event, and we conclude that it represents the drowned remains of a larger enantiornithine breeding colony, swamped by rising water, washed a short distance and deposited in a shallow, low-energy pond. The same fate often befalls modern bird colonies. Such a large concentration of breeding birds suggests aquatic feeding in this species, augments our understanding of enantiornithine biology and shows that colonial nesting was not unique to crown birds.

  6. Cretaceous deposits and flora of the Muravyov-Amurskii Peninsula (Amur Bay, sea of Japan)

    Science.gov (United States)

    Volynets, E. B.

    2015-05-01

    The Cretaceous sections and plant macrofossils are investigated in detail near Vladivostok on the Muravyov-Amurskii Peninsula of southern Primorye. It is established that the Ussuri and Lipovtsy formations in the reference section of the Markovskii Peninsula rest with unconformity upon Upper Triassic strata. The continuous Cretaceous succession is revealed in the Peschanka River area of the northern Muravyov-Amurskii Peninsula, where plant remains were first sampled from the lower and upper parts of the Korkino Group, which are determined to be the late Albian-late Cenmanian in age. The taxonomic composition of floral assemblages from the Ussuri, Lipovtsy, and Galenki formations is widened owing to additional finds of plant remains. The Korkino Group received floral characteristics for the first time. The Cretaceous flora of the peninsula is represented by 126 taxa. It is established that ferns and conifers are dominant elements of the Ussuri floral assemblage, while the Lipovtsy Assemblage is dominated by ferns, conifers, and cycadphytes. In addition, the latter assemblage is characterized by the highest taxonomic diversity. The Galenki Assemblage is marked by the first appearance of rare flowering plants against the background of dominant ferns and conifers. The Korkino floral assemblage is subdivided into two subassemblages dominated by different groups: conifers in the early and flowering plants in the late.

  7. Burial Records of Reactive Iron in Cretaceous Black Shales and Oceanic Red Beds from Southern Tibet

    Institute of Scientific and Technical Information of China (English)

    HUANG Yongjian; WANG Chengshan; HU Xiumian; CHEN Xi

    2007-01-01

    One of the new directions in the field of Cretaceous research is to elucidate the mechanism of the sedimentary transition from the Cretaceous black shales to oceanic red beds. A chemical sequential extraction method was applied to these two types of rocks from southern Tibet to investigate the burial records of reactive iron. Results indicate that carbonate-associated iron and pyrite are relatively enriched in the black shales, but depleted or absent in red beds. The main feature of the reactive iron in the red beds is relative enrichment of iron oxides (largely hematite), which occurred during syn-depostion or early diagenesis. The ratio between iron oxides and the total iron indicates an oxygen-enriched environment for red bed deposition. A comparison between the reactive iron burial records and proxies of paleo-productivity suggests that paleo-productivity decreases when the ratio between iron oxides and the total iron increases in the red beds. This phenomenon could imply that the relationship between marine redox and productivity might be one of the reasons for the sedimentary transition from Cretaceous black shale to oceanic red bed deposition.

  8. A diplodocid sauropod survivor from the early cretaceous of South America.

    Directory of Open Access Journals (Sweden)

    Pablo A Gallina

    Full Text Available Diplodocids are by far the most emblematic sauropod dinosaurs. They are part of Diplodocoidea, a vast clade whose other members are well-known from Jurassic and Cretaceous strata in Africa, Europe, North and South America. However, Diplodocids were never certainly recognized from the Cretaceous or in any other southern land mass besides Africa. Here we report a new sauropod, Leikupal laticauda gen. et sp. nov., from the early Lower Cretaceous (Bajada Colorada Formation of Neuquén Province, Patagonia, Argentina. This taxon differs from any other sauropod by the presence of anterior caudal transverse process extremely developed with lateroventral expansions reinforced by robust dorsal and ventral bars, very robust centroprezygapophyseal lamina in anterior caudal vertebra and paired pneumatic fossae on the postzygapophyses in anterior-most caudal vertebra. The phylogenetic analyses support its position not only within Diplodocidae but also as a member of Diplodocinae, clustering together with the African form Tornieria, pushing the origin of Diplodocoidea to the Middle Jurassic or even earlier. The new discovery represents the first record of a diplodocid for South America and the stratigraphically youngest record of this clade anywhere.

  9. Cretaceous shallow drilling, US Western Interior: Core research. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, M.A.

    1993-02-17

    This project is a continuing multidisciplinary study of middle to Upper Cretaceous marine carbonate and clastic rocks in the Utah-Colorado-Kansas corridor of the old Cretaceous seaway that extended from the Gulf Coast to the Arctic during maximum Cretaceous transgressions. It is collaborative between in the US Geological Survey (W.E. Dean, P.I.) and University researchers led by The Pennsylvania State University(M.A. Arthur, P.I.) and funded by DOE and the USGS, in part. Research focusses on the Greenhom, Niobrara and lower Pierre Shale units and their equivalents, combining biostratigraphic/paleoecologic studies, inorganic, organic and stable isotopic geochemical studies, mineralogical investigations and high-resolution geophysical logging. This research requires unweathered samples and continuous smooth ``exposures`` in the form of cores from at least 4 relatively shallow reference holes (i.e. < 1000m) in transect from east to west across the basin. The major initial effort was recovery in Year 1 of the project of continuous cores from each site in the transect. This drilling provided samples and logs of strata ranging from pelagic sequences that contain organic-carbon-rich marine source rocks to nearshore coal-bearing units. This transect also will provide information on the extent of thermal maturation and migration of hydrocarbons in organic-carbon-rich strata along a burial gradient.

  10. The first reported ceratopsid dinosaur from eastern North America (Owl Creek Formation, Upper Cretaceous, Mississippi, USA

    Directory of Open Access Journals (Sweden)

    Andrew A. Farke

    2017-05-01

    Full Text Available Ceratopsids (“horned dinosaurs” are known from western North America and Asia, a distribution reflecting an inferred subaerial link between the two landmasses during the Late Cretaceous. However, this clade was previously unknown from eastern North America, presumably due to limited outcrop of the appropriate age and depositional environment as well as the separation of eastern and western North America by the Western Interior Seaway during much of the Late Cretaceous. A dentary tooth from the Owl Creek Formation (late Maastrichtian of Union County, Mississippi, represents the first reported occurrence of Ceratopsidae from eastern North America. This tooth shows a combination of features typical of Ceratopsidae, including a double root and a prominent, blade-like carina. Based on the age of the fossil, we hypothesize that it is consistent with a dispersal of ceratopsids into eastern North America during the very latest Cretaceous, presumably after the two halves of North America were reunited following the retreat of the Western Interior Seaway.

  11. New Mid-Cretaceous (latest Albian dinosaurs fromWinton, Queensland, Australia.

    Directory of Open Access Journals (Sweden)

    Scott A Hocknull

    Full Text Available BACKGROUND: Australia's dinosaurian fossil record is exceptionally poor compared to that of other similar-sized continents. Most taxa are known from fragmentary isolated remains with uncertain taxonomic and phylogenetic placement. A better understanding of the Australian dinosaurian record is crucial to understanding the global palaeobiogeography of dinosaurian groups, including groups previously considered to have had Gondwanan origins, such as the titanosaurs and carcharodontosaurids. METHODOLOGY/PRINCIPAL FINDINGS: We describe three new dinosaurs from the late Early Cretaceous (latest Albian Winton Formation of eastern Australia, including; Wintonotitan wattsi gen. et sp. nov., a basal titanosauriform; Diamantinasaurus matildae gen. et sp. nov., a derived lithostrotian titanosaur; and Australovenator wintonensis gen. et sp. nov., an allosauroid. We compare an isolated astragalus from the Early Cretaceous of southern Australia; formerly identified as Allosaurus sp., and conclude that it most-likely represents Australovenator sp. CONCLUSION/SIGNIFICANCE: The occurrence of Australovenator from the Aptian to latest Albian confirms the presence in Australia of allosauroids basal to the Carcharodontosauridae. These new taxa, along with the fragmentary remains of other taxa, indicate a diverse Early Cretaceous sauropod and theropod fauna in Australia, including plesiomorphic forms (e.g. Wintonotitan and Australovenator and more derived forms (e.g. Diamantinasaurus.

  12. Micropaleontology and palaeoclimate during the early Cretaceous in the Lishu depression, Songliao basin, Northeast China

    Directory of Open Access Journals (Sweden)

    Wei Yan

    2017-01-01

    Full Text Available Diverse and abundant microfossils, such as palynomorphs, algae and Ostracoda, were collected from lower Cretaceous strata of Lishu depression, located in southeastern Songliao basin, and were identified and classified in order to provide relevant, detailed records for paleoclimate research. The early Cretaceous vegetation and climate of southeastern Songliao basin have been inferred from the analysis of palynomorph genera, algae and Ostracoda of the LS1 and SW110 wells. The lower Cretaceous strata include, in ascending stratigraphic order, the Shahezi, Yingcheng and Denglouku formations. Palynological assemblages for each formation, based on biostratigraphic and statistical analyses, provide an assessment of their longitudinal variations. During deposition of the Shahezi Formation, the climate was mid-subtropical. Vegetation consisted of coniferous forest and herbage. During deposition of the Yingcheng Formation, the climate was south Asian tropical. Vegetation consisted mainly of coniferous forest and herbal shrub. In addition, fresh and saline non-marine water dominated the lacustrine setting during deposition of these formations. Deposition of the Denglouku Formation, however, occurred under a hot and dry tropical climate. The vegetation was mostly coniferous forest and lake waters became saline. Palaeoclimate variation is correlated by the lake level change and the development of sedimentary facies. Palaeoclimate contribute to the formation of hydrocarbon source rocks and reservoir.

  13. The evolution of mammal-like crocodyliforms in the Cretaceous Period of Gondwana.

    Science.gov (United States)

    O'Connor, Patrick M; Sertich, Joseph J W; Stevens, Nancy J; Roberts, Eric M; Gottfried, Michael D; Hieronymus, Tobin L; Jinnah, Zubair A; Ridgely, Ryan; Ngasala, Sifa E; Temba, Jesuit

    2010-08-05

    Fossil crocodyliforms discovered in recent years have revealed a level of morphological and ecological diversity not exhibited by extant members of the group. This diversity is particularly notable among taxa of the Cretaceous Period (144-65 million years ago) recovered from former Gondwanan landmasses. Here we report the discovery of a new species of Cretaceous notosuchian crocodyliform from the Rukwa Rift Basin of southwestern Tanzania. This small-bodied form deviates significantly from more typical crocodyliform craniodental morphologies, having a short, broad skull, robust lower jaw, and a dentition with relatively few teeth that nonetheless show marked heterodonty. The presence of morphologically complex, complementary upper and lower molariform teeth suggests a degree of crown-crown contact during jaw adduction that is unmatched among known crocodyliforms, paralleling the level of occlusal complexity seen in mammals and their extinct relatives. The presence of another small-bodied mammal-like crocodyliform in the Cretaceous of Gondwana indicates that notosuchians probably filled niches and inhabited ecomorphospace that were otherwise occupied by mammals on northern continents.

  14. Molecular and paleontological evidence for a post-Cretaceous origin of rodents.

    Science.gov (United States)

    Wu, Shaoyuan; Wu, Wenyu; Zhang, Fuchun; Ye, Jie; Ni, Xijun; Sun, Jimin; Edwards, Scott V; Meng, Jin; Organ, Chris L

    2012-01-01

    The timing of the origin and diversification of rodents remains controversial, due to conflicting results from molecular clocks and paleontological data. The fossil record tends to support an early Cenozoic origin of crown-group rodents. In contrast, most molecular studies place the origin and initial diversification of crown-Rodentia deep in the Cretaceous, although some molecular analyses have recovered estimated divergence times that are more compatible with the fossil record. Here we attempt to resolve this conflict by carrying out a molecular clock investigation based on a nine-gene sequence dataset and a novel set of seven fossil constraints, including two new rodent records (the earliest known representatives of Cardiocraniinae and Dipodinae). Our results indicate that rodents originated around 61.7-62.4 Ma, shortly after the Cretaceous/Paleogene (K/Pg) boundary, and diversified at the intraordinal level around 57.7-58.9 Ma. These estimates are broadly consistent with the paleontological record, but challenge previous molecular studies that place the origin and early diversification of rodents in the Cretaceous. This study demonstrates that, with reliable fossil constraints, the incompatibility between paleontological and molecular estimates of rodent divergence times can be eliminated using currently available tools and genetic markers. Similar conflicts between molecular and paleontological evidence bedevil attempts to establish the origination times of other placental groups. The example of the present study suggests that more reliable fossil calibration points may represent the key to resolving these controversies.

  15. Oxygen isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous climates.

    Science.gov (United States)

    Amiot, Romain; Wang, Xu; Zhou, Zhonghe; Wang, Xiaolin; Buffetaut, Eric; Lécuyer, Christophe; Ding, Zhongli; Fluteau, Frédéric; Hibino, Tsuyoshi; Kusuhashi, Nao; Mo, Jinyou; Suteethorn, Varavudh; Wang, Yuanqing; Xu, Xing; Zhang, Fusong

    2011-03-29

    Early Cretaceous vertebrate assemblages from East Asia and particularly the Jehol Biota of northeastern China flourished during a period of highly debated climatic history. While the unique characters of these continental faunas have been the subject of various speculations about their biogeographic history, little attention has been paid to their possible climatic causes. Here we address this question using the oxygen isotope composition of apatite phosphate (δ ) from various reptile remains recovered from China, Thailand, and Japan. δ values indicate that cold terrestrial climates prevailed at least in this part of Asia during the Barremian-early Albian interval. Estimated mean air temperatures of about 10 ± 4 °C at midlatitudes (∼ 42 °N) correspond to present day cool temperate climatic conditions. Such low temperatures are in agreement with previous reports of cold marine temperatures during this part of the Early Cretaceous, as well as with the widespread occurrence of the temperate fossil wood genus Xenoxylon and the absence of thermophilic reptiles such as crocodilians in northeastern China. The unique character of the Jehol Biota is thus not only the result of its evolutionary and biogeographical history but is also due to rather cold local climatic conditions linked to the paleolatitudinal position of northeastern China and global icehouse climates that prevailed during this part of the Early Cretaceous.

  16. New Mid-Cretaceous (Latest Albian) Dinosaurs from Winton, Queensland, Australia

    Science.gov (United States)

    Hocknull, Scott A.; White, Matt A.; Tischler, Travis R.; Cook, Alex G.; Calleja, Naomi D.; Sloan, Trish; Elliott, David A.

    2009-01-01

    Background Australia's dinosaurian fossil record is exceptionally poor compared to that of other similar-sized continents. Most taxa are known from fragmentary isolated remains with uncertain taxonomic and phylogenetic placement. A better understanding of the Australian dinosaurian record is crucial to understanding the global palaeobiogeography of dinosaurian groups, including groups previously considered to have had Gondwanan origins, such as the titanosaurs and carcharodontosaurids. Methodology/Principal Findings We describe three new dinosaurs from the late Early Cretaceous (latest Albian) Winton Formation of eastern Australia, including; Wintonotitan wattsi gen. et sp. nov., a basal titanosauriform; Diamantinasaurus matildae gen. et sp. nov., a derived lithostrotian titanosaur; and Australovenator wintonensis gen. et sp. nov., an allosauroid. We compare an isolated astragalus from the Early Cretaceous of southern Australia; formerly identified as Allosaurus sp., and conclude that it most-likely represents Australovenator sp. Conclusion/Significance The occurrence of Australovenator from the Aptian to latest Albian confirms the presence in Australia of allosauroids basal to the Carcharodontosauridae. These new taxa, along with the fragmentary remains of other taxa, indicate a diverse Early Cretaceous sauropod and theropod fauna in Australia, including plesiomorphic forms (e.g. Wintonotitan and Australovenator) and more derived forms (e.g. Diamantinasaurus). PMID:19584929

  17. Cretaceous plutonic rocks in the Donner Lake-Cisco Grove area, northern Sierra Nevada, California

    Science.gov (United States)

    Kulow, Matthew J.; Hanson, Richard E.; Girty, Gary H.; Girty, Melissa S.; Harwood, David S.

    1998-01-01

    The northernmost occurrences of extensive, glaciated exposures of the Sierra Nevada batholith occur in the Donner Lake-Cisco Grove area of the northern Sierra Nevada. The plutonic rocks in this area, which are termed here the Castle Valley plutonic assemblage, crop out over an area of 225 km2 and for the most part are shown as a single undifferentiated mass on previously published geological maps. In the present work, the plutonic assemblage is divided into eight separate intrusive units or lithodemes, two of which each consist of two separate plutons. Compositions are dominantly granodiorite and tonalite, but diorite and granite form small plutons in places. Spectacular examples of comb layering and orbicular texture occur in the diorites. U-Pb zircon ages have been obtained for all but one of the main units and range from ~120 to 114 Ma, indicating that the entire assemblage was emplaced in a narrow time frame in the Early Cretaceous. This is consistent with abundant field evidence that many of the individual phases were intruded penecontemporaneously. The timing of emplacement correlates with onset of major Cretaceous plutonism in the main part of the Sierra Nevada batholith farther south. The emplacement ages also are similar to isotopic ages for gold-quartz mineralization in the Sierran foothills west of the study area, suggesting a direct genetic relationship between the voluminous Early Cretaceous plutonism and hydrothermal gold mineralization.

  18. Preliminary magnetostratigraphy and environmental magnetism of the Lower Cretaceous from the Italian Dolomites

    Science.gov (United States)

    Savian, J. F.; Jovane, L.; Florindo, F.; Lukeneder, A.

    2011-12-01

    The Lower Cretaceous (~146 to 100 Ma) represents an enigmatic time interval for paleoclimatic, paleogeography and paleomagnetic evolution of the Earth's history. The climatic changes include global oceanic anoxic events (OAEs), biotic changes, global excursions of carbon and strontium isotopes, rises in eustatic sea level and paleotemperature. Paleoceanography was marked by a rapid rate of ocean spreading in the Atlantic. The opening of the Atlantic Ocean was wide enough to allow significant circulation of masses of waters across the equator. This period is furthermore important for the oceanographic events occurring at the base of the Aptian (Selli Level). This period also present one of the most intriguing geomagnetic events: the long normal Cretaceous superchron, lasted for almost 40 million years. We study here the lower Cretaceous deposits of the Puez section in the Dolomites (northern Italy) which represents a continuous section during this period. The samples collected represent marine sedimentary materials of the Biancone and Puez formations. The Puez section consists essentially of green-grey to red limestones and calcareous marls. We present preliminary results of integrated magnetostratigraphic analysis, including a detailed lithostratigraphy and environmental magnetism. We recognize magnetic behavior that are relative to normal polarity (the normal Cretaceous superchron), with a short reverse interval that might represent the M-1r event. We also recognize a series of normal and reverse polarities (below the normal Cretaceous superchron) which can be referred to the magnetozones M1/M5. The environmental magnetic data consists of magnetic susceptibility (χ), natural remanent magnetization (NRM), anhysteretic remanent magnetization (ARM), isothermal remanent magnetization (IRM) at 900 mT and backfield isothermal remanent magnetization (BIRM) at 100 mT and 300 mT. Derived parameters, such as S-ratio (S300=BIRM300/IRM900) and hard isothermal remanent

  19. Dolomitization in Late Jurassic-Early Cretaceous Platform Carbonates (Berdiga Formation), Ayralaksa Yayla (Trabzon), NE Turkey

    Science.gov (United States)

    Yıldız, Merve; Ziya Kırmacı, Mehmet; Kandemir, Raif

    2017-04-01

    ABSTRACT Pontides constitute an E-W trending orogenic mountain belt that extends about 1100 km along the northern side of Turkey from the immediate east of Istanbul to the Georgian border at the east. Tectono-stratigraphically, the Pontides are divided into three different parts: Eastern, Central, and Western Pontides. The Eastern Pontides, including the studied area, comprise an area of 500 km in length and 100 km in width, extending along the southeast coast of the Black Sea from the Kizilirmak and Yesilirmak Rivers in the vicinity of Samsun to the Little Caucasus. This area is bordered by the Eastern Black Sea basin to the north and the Ankara-Erzincan Neotethyan suture zone to the south. The Late Jurassic-Early Cretaceous platform carbonates are widely exposed in E-W direction in the Eastern Pontides (NE Turkey). The Platform carbonates shows varying lithofacies changing from supratidal to platform margin reef laterally and vertically, and was buried until the end of Late Cretaceous. The studied Ayralaksa Yayla (Trabzon, NE Turkey) area comprises one of the best typical exposures of formation in northern zone of Eastern Pontides. In this area, the lower parts of the formation are pervasively dolomitized by fabric-destructive and fabric-preserving replacement dolomite which are Ca-rich and nonstoichiometric (Ca56-66Mg34-44). Replacement dolomites (Rd) are represented by D18O values of -19.0 to -4.2 (VPDB), D13C values of 4.4 to 2.1 \\permil (VPDB) and 87Sr/86Sr ratios of 0.70889 to 0.70636. Petrographic and geochemical data indicate that Rd dolomites are formed prior to compaction at shallow-moderate burial depths from Late Jurassic-Early Cretaceous seawater and/or partly modified seawater as a result of water/rock interaction and they were recrystallized at elevated temperatures during subsequent burial. In the subsequent diagenetic process during the Late Cretaceous when the region became a magmatic arc, as a result of interaction with Early Jurassic volcanic

  20. Clumped isotope geochemistry of mid-Cretaceous (Barremian-Aptian) rudist shells: paleoclimatic and paleoenvironmental implications

    Science.gov (United States)

    Huck, S.; Steuber, T.; Bernasconi, S.; Weissert, H.

    2012-04-01

    The Cretaceous period is generally considered to have been a time of climate warmth, but there is an ongoing dispute about the existence of Cretaceous cool episodes - including the short-termed installation of polar ice caps. The Late Barremian-Early Aptian represents a Cretaceous key interval in terms of paleoclimate and paleoceanography, as it provides evidence for (i) a cooler climate (Pucéat et al., 2003) and (ii) a considerable seasonality of sea surface temperatures (SSTs) at low latitudes (Steuber et al., 2005). The timing and significance of these cool episodes, however, are not well constrained. Recently published TEX86 data, in contrast to oxygen isotope paleotemperature estimates, now are in support of a climate scenario with equable hot (~30° C) tropical SSTs from the Early Cretaceous onwards. The aim of this project is to reconstruct the evolution of Barremian-Aptian sea-surface temperatures (SSTs) in the tropical Tethyan realm by use of a combined geochemical approach including oxygen isotope analysis and carbonate clumped-isotope thermometry. Paleotemperature proxies are based on the isotope geochemistry of low-Mg calcite of pristine rudist bivalve shells (Toucasia, Requienia) collected from different carbonate platform settings, including the Provence platform in SE France and the Adriatic Carbonate platform in Croatia. Carbonate clumped-isotope geochemistry deals with the state of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes (13C-18O) rather than with the most abundant ones. Carbonate clumped-isotope thermometry has been shown to allow for reconstructing (i) the temperature of carbonate mineral formation and calculating (ii) the isotopic composition of the water from which carbonate minerals were formed (by using the δ18O of the analysed carbonate sample). Our approach seeks to provide insights into possible biases in temperature estimates of different paleothermometers

  1. Detrital Zircon Geochronology of Cretaceous and Paleogene Strata Across the South-Central Alaskan Convergent Margin

    Science.gov (United States)

    Bradley, Dwight; Haeussler, Peter; O'Sullivan, Paul; Friedman, Rich; Till, Alison; Bradley, Dan; Trop, Jeff

    2009-01-01

    Ages of detrital zircons are reported from ten samples of Lower Cretaceous to Paleogene metasandstones and sandstones from the Chugach Mountains, Talkeetna Mountains, and western Alaska Range of south-central Alaska. Zircon ages are also reported from three igneous clasts from two conglomerates. The results bear on the regional geology, stratigraphy, tectonics, and mineral resource potential of the southern Alaska convergent margin. Chugach Mountains - The first detrital zircon data are reported here from the two main components of the Chugach accretionary complex - the inboard McHugh Complex and the outboard Valdez Group. Detrital zircons from sandstone and two conglomerate clasts of diorite were dated from the McHugh Complex near Anchorage. This now stands as the youngest known part of the McHugh Complex, with an inferred Turonian (Late Cretaceous) depositional age no older than 91-93 Ma. The zircon population has probability density peaks at 93 and 104 Ma and a smattering of Early Cretaceous and Jurassic grains, with nothing older than 191 Ma. The two diorite clasts yielded Jurassic U-Pb zircon ages of 179 and 181 Ma. Together, these findings suggest a Mesozoic arc as primary zircon source, the closest and most likely candidate being the Wrangellia composite terrane. The detrital zircon sample from the Valdez Group contains zircons as young as 69 and 77 Ma, consistent with the previously assigned Maastrichtian to Campanian (Late Cretaceous) depositional age. The zircon population has peaks at 78, 91, 148, and 163 Ma, minor peaks at 129, 177, 330, and 352 Ma, and no concordant zircons older than Devonian. A granite clast from a Valdez Group conglomerate yielded a Triassic U-Pb zircon age of 221 Ma. Like the McHugh Complex, the Valdez Group appears to have been derived almost entirely from Mesozoic arc sources, but a few Precambrian zircons are also present. Talkeetna Mountains - Detrital zircons ages were obtained from southernmost metasedimentary rocks of the

  2. Late Cretaceous-early Eocene counterclockwise rotation of the Fueguian Andes and evolution of the Patagonia-Antarctic Peninsula system

    Science.gov (United States)

    Poblete, F.; Roperch, P.; Arriagada, C.; Ruffet, G.; Ramírez de Arellano, C.; Hervé, F.; Poujol, M.

    2016-02-01

    The southernmost Andes of Patagonia and Tierra del Fuego present a prominent arc-shaped structure: the Patagonian Bend. Whether the bending is a primary curvature or an orocline is still matter of controversy. New paleomagnetic data have been obtained south of the Beagle Channel in 39 out of 61 sites. They have been drilled in Late Jurassic and Early Cretaceous sediments and interbedded volcanics and in mid-Cretaceous to Eocene intrusives of the Fuegian Batholith. The anisotropy of magnetic susceptibility was measured at each site and the influence of magnetic fabric on the characteristic remanent magnetizations (ChRM) in plutonic rocks was corrected using inverse tensors of anisotropy of remanent magnetizations. Normal polarity secondary magnetizations with west-directed declination were obtained in the sediments and they did not pass the fold test. These characteristic directions are similar to those recorded by mid Cretaceous intrusives suggesting a remagnetization event during the normal Cretaceous superchron and describe a large (> 90°) counterclockwise rotation. Late Cretaceous to Eocene rocks of the Fueguian Batholith, record decreasing counterclockwise rotations of 45° to 30°. These paleomagnetic results are interpreted as evidence of a large counterclockwise rotation of the Fueguian Andes related to the closure of the Rocas Verdes Basin and the formation of the Darwin Cordillera during the Late Cretaceous and Paleocene. The tectonic evolution of the Patagonian Bend can thus be described as the formation of a progressive arc from an oroclinal stage during the closure of the Rocas Verdes basin to a mainly primary arc during the final stages of deformation of the Magallanes fold and thrust belt. Plate reconstructions show that the Antarctic Peninsula would have formed a continuous margin with Patagonia between the Early Cretaceous and the Eocene, and acted as a non-rotational rigid block facilitating the development of the Patagonian Bend.

  3. Evolution of Early Cretaceous paleotemperatures: A balance between global carbon burial rates and large igneous provinces activity

    Science.gov (United States)

    Bodin, Stephane; Meissner, Philipp; Janssen, Nico; Steuber, Thomas; Mutterlose, Jörg

    2015-04-01

    The lack of a high-resolution, long-term Early Cretaceous paleotemperature record hampers a full-scale comprehension, as well as a more holistic approach, to Early Cretaceous climate changes. Here we present an extended compilation of belemnite-based oxygen, carbon and strontium isotope records covering the late Berriasian - middle Albian from the Vocontian Basin (SE France). Integrated with paleontological and sedimentological evidences, this dataset clearly demonstrates that three intervals of cold climatic conditions have taken place during the Early Cretaceous greenhouse world. More specifically, these have taken place during (1) the late Valanginian-earliest Hauterivian, (2) the late early Aptian and (3) the latest Aptian - earliest Albian. Each of these intervals is associated with high amplitude sea-level fluctuations, pointing at transient installations of polar ice caps. As evidenced by carbon isotope positive excursions, each cold episode is associated with enhanced burial of organic matter on a global scale. Moreover, there is a very good match between the timing and size of large igneous provinces eruptions and the amplitude of Early Cretaceous warming episodes. Altogether, these observations confirm the instrumental role of atmospheric CO2 variations in the making of Mesozoic climate change. On a long-term perspective, during the Early Cretaceous, the coupling of global paleotemperature and seawater strontium isotopic ratio is best explained by temperature-controlled changes of continental crust weathering rates.

  4. Progress in Late Cretaceous planktonic foraminiferal stable isotope paleoecology and implications for paleoceanographic reconstructions

    Science.gov (United States)

    Petrizzo, Maria Rose; Falzoni, Francesca; Huber, Brian T.; MacLeod, Kenneth G.

    2015-04-01

    Paleoecological preferences proposed for Cretaceous planktonic foraminiferal taxa have traditionally been based on morphological analogies with depth-stratified modern species, on biofacies comparison in continental margin and deepwater settings, and limited oxygen and carbon stable isotope data. These studies concluded that large-sized, keeled and heavily calcified planktonic foraminifera generally lived at deeper levels in the surface waters than small-sized, thinner-walled non-keeled species. Stable isotope data have been used to infer information on paleotemperature, paleoceanography and paleoproductivity of ancient oceans and constrain biological paleo-activities (i.e. photosymbiosis and respiration) of fossil species. These studies have suggested that the depth-distribution model based on analogy with modern taxa might not be fully applicable for Cretaceous species, and found particularly 13C-enriched values in some Maastrichtian multiserial taxa that have been related to the activity of photosymbionts. We have collected about 1500 δ18O and δ13C species-specific analyses on glassy preserved planktonic foraminifera from Tanzania (Tanzania Drilling Project TDP sites 23, 28 and 32) and well-preserved planktonic foraminifera from other mid-low latitude localities (Shatsky Rise, northwestern Pacific Ocean, ODP Leg 198 Hole 1210B; Exmouth Plateau, eastern Indian Ocean, ODP Leg 122, Hole 762C; Eratosthenes Seamount, eastern Mediterranean, ODP Leg 160, Hole 967E; Blake Nose, central Atlantic Ocean, ODP Leg 171B, holes 1050C and 1052E) to investigate Late Cretaceous species paleoecological preferences, life strategies and depth distribution in the surface water column. Our results indicates that several large-sized (> 500 μm) double-keeled species belonging to the genera Dicarinella, Marginotruncana and Contusotruncana, generally interpreted as deep to thermocline dwellers, instead occupied shallow/warm layers of the water column, whilst not all biserial species

  5. Seasonal Equability in Late Cretaceous Central-Eastern Iberia? Inferences from Isotopic Data on Vertebrates

    Science.gov (United States)

    Domingo, L.; Barroso-Barcenilla, F.; Cambra-Moo, O.

    2013-12-01

    After the mid-Cretaceous thermal maximum, the latest Cretaceous witnessed a long-term cooling trend (Santonian-Maastrichtian). It has been proposed that seasonal equability (low mean annual range of temperatures) accompanied the mid-Cretaceous greenhouse period, but was it also a climatic feature of the colder latest Cretaceous? Terrestrial proxies have proven useful in understanding past seasonality and in this vein, we performed oxygen isotope analyses of the phosphate (δ18OPO4) on the rich and exceptionally well preserved late Campanian-early Maastrichtian vertebrate assemblage of 'Lo Hueco' fossil site (Cuenca, Spain). We analysed theropod and crocodilian tooth enamel, turtle shell, and gar ganoine with the aim of evaluating paleoclimatic conditions existing in the western area of the Tethys realm. The 'Lo Hueco' locality was situated at a paleo-latitude of 31°N and sedimentological and paleontological studies point to a coastal environment with distributary channels and sporadic sabkhas. Samples were collected from two different levels: G1 (proximal muddy floodplain) and G2 (distal muddy floodplain), with G1 being older. δ18OH2O values were calculated from theropod, crocodilian and turtle δ18OPO4 values using established equations and in all cases they are in good agreement with precipitation water from subtropical latest Cretaceous and modern settings. Theropods recorded consistently slightly lower δ18OH2O values (G1: -4.1×1.4‰, G2: -3.5×0.5‰) than crocodilians (G1: -3.6×0.6‰, G2: -2.7×0.6‰) and turtles (G1: -3.8×0.6‰, G2: -2.9×0.5‰). This may be due to terrestrial endothermic taxa, such as theropods, recording ingested water year round, meanwhile semiaquatic ectothermic taxa, such as crocodilians and turtles, would record δ18OH2O values representing local meteoric waters over the warm season, when conditions are favorable for apatite synthesis. With these δ18OH2O values, we used gar ganoine δ18OPO4 values as an independent proxy to

  6. An early bothremydid (Testudines, Pleurodira from the Late Cretaceous (Cenomanian of Utah, North America

    Directory of Open Access Journals (Sweden)

    Walter G. Joyce

    2016-09-01

    Full Text Available Background Bothremydidae is a clade of extinct pleurodiran turtles known from the Cretaceous to Paleogene of Africa, Europe, India, Madagascar, and North and South America. The group is most diverse during the Late Cretaceous to Paleogene of Africa. Little is known, however, about the early evolution of the group. Methods We here figure and describe a fossil turtle from early Late Cretaceous deposits exposed at MacFarlane Mine in Cedar Canyon, southwestern Utah, USA. The sediments associated with the new turtle are utilized to infer its stratigraphic provenience and the depositional settings in which it was deposited. The fossil is compared to previously described fossil pleurodires, integrated into a modified phylogenetic analysis of pelomedusoid turtles, and the biogeography of bothremydid turtles is reassessed. In light of the novel phylogenetic hypotheses, six previously established taxon names are converted to phylogenetically defined clade names to aid communication. Results The new fossil turtle can be inferred with confidence to have originated from a brackish water facies within the late Cenomanian Culver Coal Zone of the Naturita Formation. The fossil can be distinguished from all other previously described pleurodires and is therefore designated as a new taxon, Paiutemys tibert gen. et. sp. nov. Phylogenetic analysis places the new taxon as sister to the European Polysternon provinciale, Foxemys trabanti and Foxemys mechinorum at the base of Bothremydinae. Biogeographic analysis suggests that bothremydids originated as continental turtles in Gondwana, but that bothremydines adapted to near-shore marine conditions and therefore should be seen as having a circum-Atlantic distribution.

  7. Stress variability in the Parnaíba Basin, Brazil, during Cretaceous rifting

    Science.gov (United States)

    Ibanez, Delano M.; Pestilho, André L. S.; Turra, Bruno B.; Destro, Nivaldo; Miranda, Fernando P.; Riccomini, Claudio; Lammoglia, Talita; Dubois, Daniel S.; Schmidt, Jaques S.

    2017-03-01

    The Cretaceous section of the Parnaíba Basin, designated as Grajaú Basin, represents an intracontinental half-graben formed during the Early Cretaceous due to the separation between the South American and African continents during the final dispersal of Western Gondwana. Here, through a synergetic approach between fluid inclusion planes (FIPs), outcropping geologic structures, borehole breakouts and remote sensing data, we elucidate in different scales the main structural features and their kinematic indicators. Normal faults strike mainly NNE-SSW and WNW-ESE, while deformation bands and extension joints trend to NW-SE and NE-SW, and FIPs to NE-SW and WNW-ESE. In addition, normal fault-generated scarps border geomorphological units and constitute dense zones of deformation bands and fluidization. Microthermometric FIP analyses suggest this fracturing event occurred at shallow basin levels, at temperatures below 50 °C. Furthermore, joints, bands and FIPs present mutually cross-cutting relationships, thus indicating contemporaneity. The numerical inversions applied to striated faults, non-striated faults, joints, deformation bands and FIPs suggest the occurrence of an extensional event characterized by variable direction of extension (σ3) trending from NW-SE to WNW-ESE or NE-SE to NNE-SSW. This event probably started in the Albian during the final Gondwana fragmentation stages. The quasi-perpendicular σ3 trend could be caused by one or all of the following phenomena: a) stress ratio R values obtained (switch positions in relation to the regional extension (WNW-ESE) by rotating 90°; c) influence of the pre-existing structures on the regional stress field. Thus, the spatial and temporal relationships between Cretaceous fault activity, stress field and the development of the geomorphological features in the Grajaú Basin contribute to understanding of the Brazilian Equatorial margin geodynamics.

  8. Cretaceous to miocene palaeogegraphic evolution of Turkey: implications for hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Gorur, N. [Tubitak Mam, Gebze (Turkey)

    2001-04-01

    The Cretaceous to Miocene palaeogeographic development of Turkey in general reflects the evolution of the various oceanic branches of Neo-Tethys together with interactions between the Laurasian and Gondwanan margins. At the beginning of the Cretaceous, the first-order palacotectonic units which make up present-day Turkey either formed parts of these supercontinents or were isolated continental blocks within the Neo-Tethys. In Aptian to Albian times, north-dipping subduction commenced along the southern margins of these units and resulted in the development of magmatic arcs and arc-related sedimentary basins. Coeval with the start of subduction, large-scale ophiolite abduction occurred on the units' passive margins. Terminal closure of the oceans' branches took place between the latest Cretaceous and the Miocene, forming the Anatolian orogenic collage whose outline defines present-day Turkey. Post-collisional intra-continental convergence continued until the late Miocene and resulted in north-south shortening of the collage. This shortening led to internal imbrication, thrusting and crustal thickening. It forced the Anatolian landmass westwards, away from east Anatolia where there has been continuous north-south compression since the Miocene between Laurasia and the Arabian Platform. Both the continental and the oceanic palaeotectonic units pose significant problems regarding their original geometry, size, depth, extent, contact relations, motion paths, subduction polarity, stratigraphy and timing of formation. Clarification of these issues is essential if the units' original paleogeographic relationships with respect to Neo-Tethys are to be reconstructed. This paper reviews some of these problems with the aid of a number of palinspastic and non-palinspastic maps. These maps are intended to provide a basis for evaluating the hydrocarbon potential of Turkey. (author)

  9. Early to mid Cretaceous vegetation of northern Gondwana - the onset of angiosperm radiation and climatic implications

    Science.gov (United States)

    Coiffard, Clément; Mohr, Barbara

    2014-05-01

    Early Cretaceous Northern Gondwana seems to be the cradle of many early flowering plants, especially mesangiosperms that include magnoliids and monocots and basal eudicots. So far our knowledge was based mostly on dispersed pollen and small flowering structures. New fossil finds from Brazil include more complete plants with attached roots, leaves and flowers. Taxonomic studies show that these fossils belonged to clades which are, based on macroscopic characters and molecular data, also considered to be rather basal, such as several members of Nymphaeales, Piperales, Laurales, Magnoliales, monocots (Araliaceae) and Ranunculales. Various parameters can be used in order to understand the physiology and habitat of these plants. Adaptations to climate and habitat are partly mirrored in their root anatomy (evidence of tap roots), leaf size and shape, leaf anatomy including presence of glands, and distribution of stomata. An important ecophysiolocical parameter is vein density as an indicator for the plants' cabability to pump water, and the stomatal pore index, representing the proportion of stomatal pore area on the leaf surface, which is related to the water vapor resistance of the leaf epidermis. During the mid-Cretaceous leaf vein density started to surpass that of gymnosperms, one factor that made angiosperms very successful in conquering many kinds of new environments. Using data on these parameters we deduce that during the late Early to mid Cretaceous angiosperms were already diverse, being represented as both herbs, with aquatic members, such as Nymphaeles, helophytes (e.g. some monocots) and plants that may have grown in shady locations. Other life forms included shrubs and perhaps already small trees (e.g. Magnoliales). These flowering plants occupied various habitats, ranging from xeric (e.g. some Magnoliales) to mesic and shady (e.g. Piperales) or aquatic (e.g. Araceae, Nymphaeales). Overall, it seems that several of these plants clearly exhibited some

  10. Mid-Cretaceous polar standstill of the Americas and motion of the Atlantic hotspots

    Science.gov (United States)

    Somoza, R.

    2008-05-01

    The hotspot (HS) fixity axiom installed early in the plate tectonics as an attractive toll for geodynamic analyzes. In particular, a mid-Cretaceous discrepancy between fixed Indo-Atlantic hotspot and paleomagnetic reference frames has been interpreted as evidence for true polar wander (TPW). Recent paleomagnetic findings (C.B. Zaffarana, this session) indicate that the Americas rotated (with different angular rates) about the spin axis between 125 and at least 100 Ma. This kinematic-paleogeographic scenario points to failure of the above mentioned TPW hypothesis, suggesting that the mid-Cretaceous HS-paleomagnetic discrepancy is related to motion of the Atlantic hotspots. On the other hand, dated outcrops and seamounts in the >2000 km White Mountains - New England trail define a tight cluster with no clear age progression when observed in African coordinates, suggesting that the sub-lithospheric melting anomaly responsible for the New England chain moved little with respect to Africa between 120 and 80 Ma. However, small circles centered in the feeder of the New England seamounts as seen from Africa misfit the 120-80 Ma trend of the Walvis ridge in the African South Atlantic, arguing for ~1 cm/yr inter-Atlantic HS motion, which in turn represents about 30 % the rate of coeval full spreading in the Central Atlantic. These observations suggest that a scenario where sub-lithospheric melting anomalies move and deform in concert with flow in the surrounding mantle needs to be allowed for assaying tectonic and geodynamic models. In agreement with this, reconstruction of Cretaceous poles from the Americas with respect to the moving-hotspot framework developed by O´Neill et al. (G3 6 (4), 2005) reduced to a half the paleopole-spin axis offset observed in fixed-HS coordinates (R. Somoza and C.B. Zaffarana, EPSL, in revision), with the residual offset being similar than that is found when large datasets of Cenozoic poles are observed in moving-HS coordinates.

  11. Constraints on deformation of the Southern Andes since the Cretaceous from anisotropy of magnetic susceptibility

    Science.gov (United States)

    Maffione, Marco; Hernandez-Moreno, Catalina; Ghiglione, Matias C.; Speranza, Fabio; van Hinsbergen, Douwe J. J.; Lodolo, Emanuele

    2015-12-01

    The southernmost segment of the Andean Cordillera underwent a complex deformation history characterized by alternation of contractional, extensional, and strike-slip tectonics. Key elements of southern Andean deformation that remain poorly constrained, include the origin of the orogenic bend known as the Patagonian Orocline (here renamed as Patagonian Arc), and the exhumation mechanism of an upper amphibolite facies metamorphic complex currently exposed in Cordillera Darwin. Here, we present results of anisotropy of magnetic susceptibility (AMS) from 22 sites in Upper Cretaceous to upper Eocene sedimentary rocks within the internal structural domain of the Magallanes fold-and-thrust belt in Tierra del Fuego (Argentina). AMS parameters from most sites reveal a weak tectonic overprint of the original magnetic fabric, which was likely acquired upon layer-parallel shortening soon after sedimentation. Magnetic lineation from 17 sites is interpreted to have formed during compressive tectonic phases associated to a continuous N-S contraction. Our data, combined with the existing AMS database from adjacent areas, show that the Early Cretaceous-late Oligocene tectonic phases in the Southern Andes yielded continuous contraction, variable from E-W in the Patagonian Andes to N-S in the Fuegian Andes, which defined a radial strain field. A direct implication is that the exhumation of the Cordillera Darwin metamorphic complex occurred under compressive, rather than extensional or strike-slip tectonics, as alternatively proposed. If we agree with recent works considering the curved Magallanes fold-and-thrust belt as a primary arc (i.e., no relative vertical-axis rotation of the limbs occurs during its formation), then other mechanisms different from oroclinal bending should be invoked to explain the documented radial strain field. We tentatively propose a kinematic model in which reactivation of variably oriented Jurassic faults at the South American continental margin controlled

  12. Variation on Foraminiferal Composition in Cretaceous Black-Gray-Red Bed Sequence of Southern Tibet, China

    Institute of Scientific and Technical Information of China (English)

    Wan Xiaoqiao; Si Jialiang

    2004-01-01

    An Upper Cretaceous black-gray-red bed sequence was deposited in the Tethys-Himalayan Sea where abundant foraminifera,especially planktons,were yielded. In the shallow shelf to the upper slope on the north margin of Indian plate was recorded an extinction-recovery-radiation cycle of foraminiferal fauna highly sensitive to paleoceanographical changes. The black unit, consisting of the Late Cenomanian-earliest Turonian beds, displays a major extinction, with keeled planktonic and many benthic species as the principal victims at the end of the Cenomanian when existed only low diversity, surface water-dwelling foraminifera. The gray unit spans a long-term recovery interval from the Turonian to the early Santonian with keeled planktonic foraminifera returning stepwise to the water column. The planktonic biota in the red unit, extremely abundant, indicate a biotic radiation during the Late Santonian and the Early Campanian, implying that the high oxygen levels had returned to all the oceanic depth levels, and that the water stratification disappeared, followed by the radiation of all depth-dwellers. The variation on foraminiferal faunas from the whole sequence refers to the extreme warm climate that appeared in the Middle Cretaceous and to the declined temperature toward the late epoch. Substantial deposits for this warming and cooling zones represent the black shales in the Middle Cretaceous and the red beds in the later period of the southern Tibet. The change in the foraminiferal composition corresponded to the formation of dysaerobic facies and to the development of high-oxidized circumstances.

  13. Tectonic evolution of the Malay Peninsula inferred from Jurassic to Cretaceous paleomagnetic results

    Science.gov (United States)

    Otofuji, Yo-ichiro; Moriyama, Yuji T.; Arita, Maiko P.; Miyazaki, Masanari; Tsumura, Kosuke; Yoshimura, Yutaka; Shuib, Mustaffa Kamal; Sone, Masatoshi; Miki, Masako; Uno, Koji; Wada, Yutaka; Zaman, Haider

    2017-02-01

    A primary remanent magnetization is identified in the Jurassic-Cretaceous red bed sandstones of the Tembeling Group in Peninsular Malaysia. This high-temperature magnetic component is unblocked at 680-690 °C, revealing a clockwise deflected direction of Ds = 56.8°, Is = 31.6° (where ks = 8.5, α95 = 11.3° and N = 22) in stratigraphic coordinates. The primary origin of this component is ascertained by a positive fold test and a geomagnetic polarity reversal in the Kuala Wau section. Secondary remanent magnetizations are identified in the rocks of the Tembeling and Bertangga basins, which indicate a counter-clockwise deflection in the geographic coordinates (Dg = 349.1°, Ig = 15.3° where kg = 11.8, α95 = 5.1°, N = 72). The comparison with the expected paleomagnetic directions from the 130 Ma and 40 Ma Eurasian poles indicates two-stages of tectonic movement in the southern Malay Peninsula: (1) a clockwise rotation of 61.1° ± 11.9° accompanied by a 13.3° ± 8.1° southward displacement after the Cretaceous; and (2) a subsequent counter-clockwise rotation of 18.5° ± 5.0° to the present day position. The first stage of rotation is ascribed to tectonic deformation caused by the indentation of India into Asia after 55 Ma, while the second stage is attributed to the collision of the Australian Plate with SE Asia after 30-20 Ma. The present paleomagnetic results from the Jurassic-Cretaceous Tembeling Group thus reveal impacts of both of these collisions on SE Asia in general and on Peninsular Malaysia in particular.

  14. MORPHOLOGY, TAXONOMY AND DISTRIBUTION OF THE CRETACEOUS CORAL GENUS PARONASTRAEA (BARREMIAN-CENOMANIAN; SCLERACTINIA

    Directory of Open Access Journals (Sweden)

    HANNES LÖSER

    2006-03-01

    Full Text Available The middle Cretaceous genus Paronastraea Beauvais, 1977 is being revised on the basis of sample material available from Italy, France, Germany, and Greece. Paronastraea, a plocoid and cerioid coral similar to Pachycoenia, is characterised by regular secondary septal apophyses arranged in pairs. Six species are distinguished by their respective numbers of septal cycles and systems, two of them in open nomenclature and one, Paronastraea occulta from the Early Aptian of Greece, is newly described. The genus occurred from the Barremian to the basal Cenomanian in the central and eastern Tethys.

  15. Radioactivity and uranium content of some Cretaceous shales, central Great Plains

    Science.gov (United States)

    Tourtelot, Harry A.

    1955-01-01

    The Sharon Springs member of the Pierre shale of Cretaceous age, a hard black organic-rich shale similar to the Chattanooga shale, is radioactive throughout central and western South Dakota, most of Nebraska, northern Kansas, and northeastern Colorado. In the Missouri River valley, thin beds of the shale contain as much as 0.01 percent uranium. Beds as much as 20 feet thick or more have a radioactivity of about 0.01 percent equivalent uranium in southwestern Nebraska according to interpretation of gamma-ray well logs. The radioactivity and uranium content is highest in the Missouri River valley in South Dakota and in southwestern Nebraska where the shale rests disconformably on the underlying Niobrara formation of Cretaceous age. Near the Black Hills, and in the area to the north, the shale of the Sharon Springs member rests on a wedge of the Gammon ferruginous member of the Pierre, which is represented by a disonformity to the east and south, and the radioactivity of the shale is low although greater than that of over-lying strata. The shale also contains a suite of trace elements in which arsenic, boron, chromium, copper, molybdenum, nickel, selenium, and vanadium are conspicuous. Molybdenum and tin are less abundant in the Sharon Springs than in similar shales of Palezoic age and silver and selenium are more abundant. In the Great Plains region, the upper 30-50 feet of Cretaceous shales overlain unconformably by the White River group of Oligocene age has been altered to bright-colored material. This altered zone is chiefly the result of pre-Oligocene weathering although post-Oligocene ground water conditions also have affected the zone. The greatest radioactivity occurs in masses of unaltered shale measuring about 1 x 4 feet in cross section included in the lower part of the altered zone. Where the zone is developed on shale and marl of the Niobrara formation, parts of the included unaltered shale contains as much as 0.1 percent equivalent uranium and 0

  16. Preservation of ancestral Cretaceous microflora recovered from a hypersaline oil reservoir

    Science.gov (United States)

    Gales, Grégoire; Tsesmetzis, Nicolas; Neria, Isabel; Alazard, Didier; Coulon, Stéphanie; Lomans, Bart P.; Morin, Dominique; Ollivier, Bernard; Borgomano, Jean; Joulian, Catherine

    2016-03-01

    Microbiology of a hypersaline oil reservoir located in Central Africa was investigated with molecular and culture methods applied to preserved core samples. Here we show that the community structure was partially acquired during sedimentation, as many prokaryotic 16S rRNA gene sequences retrieved from the extracted DNA are phylogenetically related to actual Archaea inhabiting surface evaporitic environments, similar to the Cretaceous sediment paleoenvironment. Results are discussed in term of microorganisms and/or DNA preservation in such hypersaline and Mg-rich solutions. High salt concentrations together with anaerobic conditions could have preserved microbial/molecular diversity originating from the ancient sediment basin wherein organic matter was deposited.

  17. Exploring Early Angiosperm Fire Feedbacks using Coupled Experiments and Modelling Approaches to Estimate Cretaceous Palaeofire Behaviour

    Science.gov (United States)

    Belcher, Claire; Hudpsith, Victoria

    2016-04-01

    Using the fossil record we are typically limited to exploring linkages between palaeoecological changes and palaeofire activity by assessing the abundance of charcoals preserved in sediments. However, it is the behaviour of fires that primarily governs their ecological effects. Therefore, the ability to estimate variations in aspects of palaeofire behaviour such as palaeofire intensity and rate of spread would be of key benefit toward understanding the coupled evolutionary history of ecosystems and fire. The Cretaceous Period saw major diversification in land plants. Previously, conifers (gymnosperms) and ferns (pteridophytes) dominated Earth's ecosystems until flowering plants (angiosperms) appear in the fossil record of the Early Cretaceous (~135Ma). We have created surface fire behaviour estimates for a variety of angiosperm invasion scenarios and explored the influence of Cretaceous superambient atmospheric oxygen levels on the fire behaviour occurring in these new Cretaceous ecosystems. These estimates are then used to explore the hypothesis that the early spread of the angiosperms was promoted by the novel fire regimes that they created. In order to achieve this we tested the flammability of Mesozoic analogue fuel types in controlled laboratory experiments using an iCone calorimeter, which measured the ignitability as well as the effective heat of combustion of the fuels. We then used the BehavePlus fire behaviour modelling system to scale up our laboratory results to the ecosystem scale. Our results suggest that fire-angiosperm feedbacks may have occurred in two phases: The first phase being a result of weedy angiosperms providing an additional easily ignitable fuel that enhanced both the seasonality and frequency of surface fires. In the second phase, the addition of shrubby understory fuels likely expanded the number of ecosystems experiencing more intense surface fires, resulting in enhanced mortality and suppressed post-fire recruitment of gymnosperms

  18. Mineralogical, geochemical and hydrocarbon potential of subsurface Cretaceous shales, Northern Western Desert, Egypt

    Directory of Open Access Journals (Sweden)

    D.A. Mousa

    2014-03-01

    Full Text Available Twenty four Cretaceous shale core samples of Gibb Afia-1, Betty-1, Salam-1X and Mersa Matruh-1 wells were mineralogically and geochemically studied using XRD, XRF and Rock Eval Pyrolysis. Kaolinite, smectite and illite are the main clay minerals in addition to rare chlorite, while the non-clay minerals include quartz, calcite, dolomite and rare siderite. The shales were derived through intensive chemical weathering of mafic basement and older sedimentary rocks. These sediments were deposited in a near-shore shallow marine environment with some terrestrial material input. The shales have poor to fair organic content. It is marginally to rarely mature.

  19. Emplacement of cretaceous-tertiary boundary shocked quartz from chicxulub crater.

    Science.gov (United States)

    Alvarez, W; Claeys, P; Kieffer, S W

    1995-08-18

    Observations on shocked quartz in Cretaceous-Tertiary (K-T) boundary sediments compellingly tied to Chicxulub crater raise three problems. First, in North America shocked quartz occurs above the main K-T ejecta layer. Second, shocked quartz is more abundant west than east of Chicxulub. Third, shocked quartz reached distances requiring initial velocities up to 8 kilometers per second, corresponding to shock pressures that would produce melt, not the moderate-pressure shock lamellae observed. Shock devolatilization and the expansion of carbon dioxide and water from impacted wet carbonate, producing a warm, accelerating fireball after the initial hot fireball of silicate vapor, may explain all three problems.

  20. The Cretaceous Tetori biota in Japan and its evolutionary significance for terrestrial ecosystems in Asia

    Science.gov (United States)

    Matsukawa, M.; Ito, M.; Nishida, N.; Koarai, K.; Lockley, M.G.; Nichols, D.J.

    2006-01-01

    Cretaceous nonmarine deposits are widely distributed on the Asian continent and include various kinds of zoo- and phyto-assemblages. The Tetori Group is one of the most important Mesozoic terrestrial deposits in East Asia, and for this reason its geology, stratigraphy, and biota have been studied intensively by our group for more than a decade. We present the main results herein. We confirm that formations as lithostratigraphic units are the best geological correlation tools for the Tetori Group and the best tools for a geological mapping of the group. Although subgroups have previously been used for correlation, proper designation and evaluation of subgroups is required if they are to be used effectively, and we show that previous geological correlation of the Tetori Group has been confused by inappropriate definition of these subgroups. We located fossil localities including reported zoo- and phyto-assemblages in the framework of formations correlated by our stratigraphy. The occurrence of zoo-assemblages was probably controlled by environments (i.e., most are in situ), but phyto-assemblages were mostly transported and rapidly buried by high-energy river systems. Although two distinct dinosaur faunas and four floras have been named for the zoo- and phyto-assemblages in the Tetori Group, in reality there is only one Tetori Dinosaur Fauna and one Tetori Flora, as proved by careful correlation. Two types of zoo-assemblages co-occur in the Tetori Group: vertebrate species whose ancestors flourished in the Jurassic (as found in China), and their descendants from the Late Cretaceous. As the latter modern type of assemblage is more abundant than the former, changeable environments at the continental margin probably accelerated evolution of more modern species. We can employ nonmarine molluscan species as geological correlation tools in some cases, i.e., when their taxon ranges are well-confirmed by independent evidence. However, because freshwater molluscan species and

  1. A New Hadrosauroid Dinosaur from the Mid-Cretaceous of Liaoning,China

    Institute of Scientific and Technical Information of China (English)

    YOU Hailu; JI Qiang; LI Jinglu; LI Yinxian

    2003-01-01

    A new hadrosauroid dinosaur, Shuangmiaosaurus gilmorei gen. et sp. nov., is described based on acomplete left maxilla with articulated premaxilla and lacrimal fragments, and a complete left dentary from the mid-Cretaceous Sunjiawan Formation of Beipiao, Liaoning, northeastern China. Cladistic analysis shows thatShuangmiaosaurus is a basal hadrosauroid, and comprises the sister taxon to Hadrosauridae. In both Shuangmiaosaurusand Hadrosauridae, the maxilla-jugal suture is butt-jointed, rather than finger-in-recess articulation as in other basalhadrosauroids. However, Shuangmiaosaurus does not possess such hadrosaurid synapomorphies as the diamond-shapedmaxillary crowns with reduced primary ridges and reduced marginal denticles.

  2. Molecular evidence for the diversification of extant lichens in the late cretaceous and tertiary.

    Science.gov (United States)

    Printzen, C; Lumbsch, H T

    2000-12-01

    A molecular clock based on ITS sequence data from the lichen genera Biatora and Phyllopsora is calibrated with the help of paleoclimatic data and evidence of forest history. The clock indicates that diversification within Biatora started as early as in the Late Cretaceous and took place during periods of climatic cooling, when new types of forest evolved and spread in the Northern Hemisphere. Arctic-alpine species of the genus appear to be of considerable age, dating back to the Late Eocene-Oligocene climatic cooling. By using calibrated phylogenies of epiphytic lichens it may become possible to date many paleoenvironmental events, for which little fossil evidence exists.

  3. Cap-shaped gastropods from Upper Jurassic and Lower Cretaceous deposits of northern East Siberia

    Science.gov (United States)

    Guzhov, A. V.; Zakharov, V. A.

    2015-09-01

    Cap-shaped gastropods are first identified in Upper Jurassic and Lower Cretaceous sections of northern East Siberia. They belong to three new genera of the subclass Pectinibranchia ( Boreioconus gen. nov., Nixepileolus gen. nov., and Taimyroconus gen. nov.), which are identified at the species level ( B. bojarkensis sp. nov., N. depressus sp. nov., T. zakharovi sp. nov.), and several species with the open nomenclature. The genus Taimyroconus attributed to the family Calyptraeidae is considered as an ancestral form of the genus Crepidula. The stratigraphic position of each taxon is determined for several sections. The facies confinement, habitat conditions, and ethology of defined genera are considered with the analysis of their geographic distribution.

  4. A New Gigantic Sauropod Dinosaur with the Deepest Known Body Cavity from the Cretaceous of Asia

    Institute of Scientific and Technical Information of China (English)

    L(U) Junchang; XU Li; ZHANG Xingliao; HU Weiyong; WU Yanhua; JIA Songhai; JI Qiang

    2007-01-01

    A new species of sauropod dinosaur Huanghetitan ruyangensis is erected based on the following characters: deepest body cavity with a dorsal rib reaching at least 2.93 m long, anterior caudal vertebrae with mushroom-shaped neural spines. Based on this new specimen of Huanghetitan found in the early Late Cretaceous Mangchuan Formation of Ruyang, Henan Province, the family Huanghetitanidae fam. nov. is proposed as a new rank to include only the genus Huanghetitan You et al.2006. At present, Huanghetitan includes two species: H. liujiaxiaensis You et al., 2006 and H.ruyangensis sp. nov. The systematic relationships of Huanghetitan among sauropod dinosaurs are briefly discussed.

  5. The tectonic evolution of Southeast Asia through accretionary and extensional episodes since the Cretaceous

    Science.gov (United States)

    Seton, M.; Zahirovic, S.; Müller, R.

    2012-12-01

    Although a number of tectonic reconstructions exist that document the development of the present-day complex assemblage of exotic terranes in Southeast Asia, very few describe the continuously evolving plate boundaries and the geodynamic driving forces in the region. We propose a plate motion model that attempts to reconcile evidence from both surface geology and the subsurface mantle structure, and implement continuously closing plate polygons using our open-source plate reconstruction software, GPlates, for the eastern Asian margin and eastern Tethyan domain since the Cretaceous. We link the change from a compressional to an extensional regime along eastern Asia in the Late Cretaceous as the likely opening of the Proto South China Sea in a back-arc setting to account for obducted ophiolite sections on Palawan that are Cretaceous in age, with a likely Miocene emplacement resulting from subduction of the Proto South China Sea crust. Such an interpretation is also consistent with the timing of accretionary episodes along northern Borneo and the upper mantle slab visible in P-wave seismic tomography models. The development of Sundaland is also intricately linked to the opening of the Proto South China Sea and the accretion of Gondwana-derived micro-continental blocks, including East Java and West Sulawesi, in the Cretaceous. Whether Sundaland behaved as a rigid cohesive block, or whether Borneo rotated and moved relative to Sundaland has been a matter of debate due to inconsistencies between paleomagnetic and structural data. Paleomagnetic results indicate significant rotations of Borneo that are accommodated by oroclinal bending without the need for bounding transform faults, which are not obvious in both seismic and potential field data. In the absence of preserved seafloor, we use geological evidence such as ophiolite emplacements, magmatic episodes, paleomagnetic constraints, structural reactivation and deformation as proxies to build a self-consistent plate

  6. The Rise of Flowering Plants and Land Surface Physics: The Cretaceous and Eocene Were Different

    Science.gov (United States)

    Upchurch, G. R.; Feild, T.

    2010-12-01

    The Cretaceous and Eocene have served as the poster children of past greenhouse climates. One difference between the two time periods is that angiosperms (flowering plants) underwent a major diversification and rise to dominance during the mid-Cretaceous to Paleocene. Flowering plants differ from all other living and fossil plants in having significantly higher rates of transpiration and photosynthesis, which in modern leaves correlate with the density of venation (Dv), a feature that can be measured directly from fossils. This increase in Dv, coupled with an increase in the abundance of angiosperms, is thought to have had major impact on the climate system. This is, in part, because transpiration plays an important role in determining the ratio of sensible to latent heat flux from the land surface and in determining precipitation rate in regions such as the equatorial rainforest. Analysis of Dv in fossil leaves indicates two phases of increase in transpiration rate for angiosperms during the Cretaceous-Paleocene. The oldest known angiosperms (Aptian-early Albian) have a low Dv characteristic of extant and fossil ferns and gymnosperms. At this time angiosperms are low-stature plants of minor importance in terms of relative abundance and diversity (<5%). The first phase of Dv increase occurs during the Late Albian to Cenomanian, where average Dv is 40% greater than that of conifers and ferns, and maximum Dv reaches levels characteristic of many trees from the temperate zone. This first phase coincides with the first local dominance of angiosperms, the first occurrence of moderate to large angiosperm trees (up to 1 m in diameter) , and the first common occurrence of angiosperms in the Arctic. The second phase of Dv increase occurs during the Maastrichtian to Paleocene, where average Dv reaches levels characteristic of modern tropical forests and maximum Dv reaches the level found in highly productive modern vegetation. This second phase coincides with the rise to

  7. Subtle traps in Cretaceous, Archuleta, Conejos, Mineral, and Rio Grande counties, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.T. Jr. (Coastal Oil and Gas Corp., Denver, CO (USA))

    1989-09-01

    Regional interpretation of the stratigraphy, faulting, fracturing, and hydrodynamics in Archuleta, Conejos, Mineral, and Rio Grande Counties in southern Colorado indicates that significant reserves of hydrocarbons could exist in subtle trapping situations within the Cretaceous sequences. The presence of Price-Gramps field (7 million bbl of oil ultimate recoverable), which produces primarily from the Dakota Formation, is presently anomalous in this area but is indicative of existing hydrocarbon potential. Hydrocarbon shows from drilled wells and outcrops suggest that significant quantities of hydrocarbons are present in this area, sourced both from the San Juan basin to the south and west, and from more local areas for fractured reservoirs.

  8. Cyclostratigraphic calibration of cretaceous magnetic polarity events (Cismon, Southern Alps, Italy)

    Science.gov (United States)

    Mayer, H.

    1994-01-01

    In an introductory section the problems of constructing a geologic time scale and the role of magnetic reversals and Milankovitch cycles in geochronology are outlined. Results of a detailed cyclostratigraphic and magnetostratigraphic study of the Valanginian/Hauterivian part of the pelagic limestone section at Cismon in the Southern Alps are presented and used in conjunction to estimate the duration of magnetic subchrons between CM10N and CM8. The new estimates are shorter than in most published time scales by a factor of two to three. More research along these lines may make a revision of the Early Cretaceous time scale necessary. ?? 1994 International Association for Mathematical Geology.

  9. The Cretaceous Fossil Burmaculex antiquus Confirmed as the Earliest Known Lineage of Mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Borkent, Art; Grimaldi, David A

    2016-01-01

    A second female of mid-Cretaceous Burmaculex antiquus Borkent & Grimaldi, preserved in 99 myo Burmese amber, and the oldest known member of the Culicidae, is described in detail. Although generally opaque and distorted, some character states are added or refined. The discovery of well-developed scales on the legs shows that this feature must now be considered a synapomorphy of both the fossil and all extant members of the family. Previously described synapomorphies and further interpretation here confirm the phylogenetic position of this fossil as the sister group to extant and all known fossil Culicidae. It is placed in the new subfamily Burmaculicinae.

  10. A new hermit crab (Anomura, Paguroidea) from the upper Albian (Cretaceous) of Annopol, Poland.

    Science.gov (United States)

    Fraaije, René H B; Van Bakel, Barry W M; Jagt, John W M; Machalski, Marcin

    2015-05-06

    A new diogenid paguroid, Paguristes liwinskii sp. nov., is described from upper Albian phosphorite-bearing deposits near Annopol, along the east bank of the River Vistula (Wisła), east-central Poland. This new species constitutes an additional example of Early-Mid-Cretaceous macrofaunal shift, from marine reefal limestone to siliciclastic facies, triggered by the worldwide radiation of planktonic organisms. The species described here is the earliest known member of the genus Paguristes, previously recorded from the upper Santonian/lower Campanian to the Recent.

  11. Sporopollen Assemblages from the Cretaceous Yimin Formation of the Hailar Basin, Inner Mongolia, China

    Institute of Scientific and Technical Information of China (English)

    WAN Chuanbiao; QIAO Xiuyun; XU Yanbin; SUN Yuewu; REN Yanguang; JIN Yudong; GAO Ping; LIU Tongyan

    2005-01-01

    Three sporopollen assemblages are recognized for the first time from the Cretaceous Yimin Formation in the Hailar Basin of eastern Inner Mongolia.They are (in ascending order): the Impardecispora-AequitriraditesClavatipollenites assemblage; the Triporoletes-Pilosisporites-Asteropollis assemblage; and the AppendicisporitesAsteropollis-Tricolpites assemblage,distributed in Members 1,2 and 3 of the Yimin Formation respectively.Recognition of this biostratigraphic sequence is very important for the division and correlation of the Yimin Formation in the basin.Meanwhile,the age of the Yimin Formation is considered to be Barremian to Early Albian based on the palynological data.

  12. TRANSITION FROM CARBONATE PLATFORM TO PELAGIC DEPOSITION (MID JURASSIC- LATE CRETACEOUS, VOURINOS MASSIF, NORTHERN GREECE

    Directory of Open Access Journals (Sweden)

    NICOLAOS CARRAS

    2004-03-01

    Full Text Available A Jurassic- Cretaceous carbonate succession crops out along the Zyghosti Rema, Kozani (Northern Greece. The substratum consists of the ophiolitic succession of the Vourinos Massif (Pelagonian Domain: serpentinites tectonically overlain by basalts, with thin lenses of radiolarian cherts of middle Bathonian age. The contact with the overlying Jurassic limestones is tectonic. Eight informal units have been distinguished within the Mesozoic limestones, from the base upwards. (A bioclastic, intraclastic and oolitic packstone (Callovian- Oxfordian. (B bioclastic packstone and coral boundstone (Oxfordian . (C bioclastic and oncoidal wackestone with Clypeina jurassica (Oxfordian- Upper Kimmeridgian. (D (Upper Kimmeridgian- Portlandian: oncoidal packstone and rudstone (facies D1; intraclastic and bioclastic grainstone and packstone (facies D2; neptunian dykes with intraclastic and bioclastic wackestone and packstone filling (facies D3; neptunian dykes with Fe-Mn rich laterite filling and with pink silty filling of early Late Cretaceous age. An unconformity surface, due to emersion and erosion of the platform during the latest Jurassic- Early Cretaceous, is overlain by (E intraclastic, bioclastic packstone and grainstone (Cenomanian. (F massive body of debrites with coral, echinoderm, algae and rudist large clasts (facies F1 (Cenomanian; turbiditic beds of bioclastic, intraclastic and lithoclastic rudstone and grainstone (facies F2. (G thin bedded bioclastic mudstone and wackestone with planktonic foraminifers and radiolarians, alternating with turbiditic beds of bioclastic, intraclastic packstone and rudstone and with conglomeratic levels and slumped beds of the previous turbidites (upper Santonian- lower Campanian. (H: bioclastic packstone with planktonic foraminifers (facies H1 (lower Campanian - ?Maastrichtian; amalgamated turbiditic beds of bioclastic wackestone and packstone with planktonic foraminifers (facies H2; turbiditic beds of bioclastic

  13. Changes of taxonomical composition of Late Jurassic Early Cretaceous palynofloras of Bureya Basin,Russia

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The changes of taxonomical composition of the Late Jurassic-Early Cretaceous palynofloras are revealed,in the upper stream of Bureya River in Bureya Basin.The palynofloras are dominated as follows:the Berriasian one by ferns (Cyatheaceae,Dicksoniaceae,Osmundaceae), Classopollis and bisaccate pollen;the Valanginian-Hauterivian one by ferns (Cyatheaceae,Dicksoniaceae), Ginkgocycadophytus and bisaccate pollen;the Barremian one by ferns(Cyatheaceae,Dieksoniaceae);the Aptian one by ferns(Cyatheaceae,Dieksoniaceae,Gleicheniaceae)and Ginkgocycadophytus;and the Albian one by ferns(Schizaeaceae)and bisaccate pollen.In the Albian the floral diversity raises with the angiosperms appearing.

  14. LATE JURASSIC AND EARLY CRETACEOUS AMMONITES FROM THE WEIMEI FORMATION IN GYANGZE, SOUTHERN TIBET

    Directory of Open Access Journals (Sweden)

    MASAHIKO TAKEI

    2004-03-01

    Full Text Available The Weimei Formation in southern Tibet is a shallow marine sequence accumulated in the northern margin of the Indian subcontinent. It has been dated as Tithonian based on ammonites such as Haplophylloceras strigile (Blanford, Berriasella sp. and Himalayites sp. Six ammonite specimens were found in the type locality of the Weimei Formation. They include Spiticeras (Spiticeras spitiense (Blanford, Berriasella sp. and Phylloceras sp. The occurrence of S. spitiense indicates that the ammonite-bearing portion is assignable to the Berriasian stage. The Jurassic/Cretaceous boundary possibly exists within the Weimei Formation.

  15. Early Cretaceous vegetation and climate change at high latitude: palynological evidence from Isachsen Formation, Arctic Canada

    Science.gov (United States)

    Galloway, Jennifer M.; Tullius, Dylan N.; Evenchick, Carol A.; Swindles, Graeme T.; Hadlari, Thomas; Embry, Ashton

    2015-04-01

    Understanding the behaviour of global climate during relatively warm periods in Earth's history, such as the Cretaceous Period, advances our overall understanding of the climate system and provides insight on drivers of climate change over geologic time. While it has been suggested that the Valanginian Age represents the first episode of Cretaceous greenhouse climate conditions with relatively equable warm temperatures, mounting evidence suggests that this time was relatively cool. A paucity of paleoclimate data currently exists for polar regions compared to mid- and low-latitudes and this is particularly true for the Canadian Arctic. There is also a lack of information about the terrestrial realm as most paleoclimate studies have been based on marine material. Here we present quantitative pollen and spore data obtained from the marginal marine and deltaic-fluvial Isachsen Formation of the Sverdrup Basin, Canadian Arctic, to better understand the long-term vegetation and climate history of polar regions during the warm but variable Early Cretaceous (Valanginian to Early Aptian). Detrended correspondence analysis of main pollen and spore taxa is used to derive three ecological groupings influenced by moisture and disturbance based on the botanical affinities of palynomorphs: 1) a mixed coniferous assemblage containing both lowland and upland components; 2) a conifer-filicopsid community that likely grew in dynamic lowland habitats; and, 3) a mature dry lowland community composed of Cheirolepidaceans. Stratigraphic changes in the relative abundance of pollen and spore taxa reflect climate variability in this polar region during the ~20 Mya history of the Isachsen Formation. The late Valanginian was relatively cool and moist and promoted lowland conifer-filicopsid communities. Warming in the Hauterivian resulted in the expansion coniferous communities in well-drained or arid hinterlands. A return to relatively cool and moist conditions in the Barremian resulted in the

  16. Possible markers of the Jurassic/Cretaceous boundary in the Mediterranean Tethys: A review and state of art

    Directory of Open Access Journals (Sweden)

    Jozef Michalík

    2011-10-01

    Full Text Available During the last decades, several integrated studies of Tethyan Jurassic/Cretaceous boundary sections from different countries were published with the objective to indicate problems for the selection of biological, chemical or physical markers suitable for identification of the Jurassic/Cretaceous boundary – the only system boundary within the Phanerozoic still not fixed by GSSP. Drawing the boundary between the Jurassic and Cretaceous systems is a matter of global scale discussions. The problem of proposing possible J/K boundary stratotypes results from lack of a global index fossils, global sea level drop, paleogeographic changes causing development of isolated facies areas, as well as from the effect of Late Cimmerian Orogeny. This contribution summarizes and comments data on J/K boundary interval obtained from several important Tethyan sections and shows still existing problems and discrepancies in its determination.

  17. Earth history. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction.

    Science.gov (United States)

    Schoene, Blair; Samperton, Kyle M; Eddy, Michael P; Keller, Gerta; Adatte, Thierry; Bowring, Samuel A; Khadri, Syed F R; Gertsch, Brian

    2015-01-09

    The Chicxulub asteroid impact (Mexico) and the eruption of the massive Deccan volcanic province (India) are two proposed causes of the end-Cretaceous mass extinction, which includes the demise of nonavian dinosaurs. Despite widespread acceptance of the impact hypothesis, the lack of a high-resolution eruption timeline for the Deccan basalts has prevented full assessment of their relationship to the mass extinction. Here we apply uranium-lead (U-Pb) zircon geochronology to Deccan rocks and show that the main phase of eruptions initiated ~250,000 years before the Cretaceous-Paleogene boundary and that >1.1 million cubic kilometers of basalt erupted in ~750,000 years. Our results are consistent with the hypothesis that the Deccan Traps contributed to the latest Cretaceous environmental change and biologic turnover that culminated in the marine and terrestrial mass extinctions.

  18. Isolated teeth of Anhangueria  (Pterosauria: Pterodactyloidea) from the Lower Cretaceous of Lightning Ridge, New South Wales, Australia

    Science.gov (United States)

    Smith, Elizabeth T.; Bell, Phil R.

    2017-01-01

    The fossil record of Australian pterosaurs is sparse, consisting of only a small number of isolated and fragmentary remains from the Cretaceous of Queensland, Western Australia and Victoria. Here, we describe two isolated pterosaur teeth from the Lower Cretaceous (middle Albian) Griman Creek Formation at Lightning Ridge (New South Wales) and identify them as indeterminate members of the pterodactyloid clade Anhangueria. This represents the first formal description of pterosaur material from New South Wales. The presence of one or more anhanguerian pterosaurs at Lightning Ridge correlates with the presence of ‘ornithocheirid’ and Anhanguera-like pterosaurs from the contemporaneous Toolebuc Formation of central Queensland and the global distribution attained by ornithocheiroids during the Early Cretaceous. The morphology of the teeth and their presence in the estuarine- and lacustrine-influenced Griman Creek Formation is likely indicative of similar life habits of the tooth bearer to other members of Anhangueria. PMID:28480142

  19. An Early Cretaceous root-climbing epiphyte (Lindsaeaceae) and its significance for calibrating the diversification of polypodiaceous ferns.

    Science.gov (United States)

    Schneider, H; Kenrick, P

    2001-05-01

    The discovery of fossilised roots of a lindsaeoid fern within the trunk of the extinct tree fern Tempskya provides new fossil evidence for Lindsaeaceae in the Mesozic, as well as the first direct evidence of an ecological association between Tempskya and root-climbing epiphytes. Data were collected from permineralised Tempskya trunks from the Aspen Shale (Early Cretaceous, Albian), Wyoming (USA). The roots of the lindsaeoid fossil are clearly distinguishable from those of Tempskya and other living ferns based on a suite of distinctive anatomical features, which are described in detail. The foliage is unknown. The new fossil is interpreted as a root climber, and comparisons are made with similar living species in Lindsaea subgenus Odontoloma (Lindsaeaceae). The documentation of Lindsaeaceae in the Early Cretaceous adds to a small but growing body of data on the diversification of polypodiaceous ferns during this important period. These recent discoveries point to a much earlier (Early Cretaceous) crown group radiation of polypodiaceous ferns than previously suspected.

  20. Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and sea-level change during the Turonian (Cretaceous)

    NARCIS (Netherlands)

    Jarvis, I.; Trabucho-Alexandre, João; Gröcke, D.R.; Uličný, D.; Laurin, J.

    2015-01-01

    Carbon (d13Corg, d13Ccarb) and oxygen (d18Ocarb) isotope records are presented for an expanded Upper Cretaceous (Turonian–Coniacian) hemipelagic succession cored in the central Bohemian Cretaceous Basin, Czech Republic. Geophysical logs, biostratigraphy and stable carbon isotope chemostratigraphy pr

  1. Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and sea-level change during the Turonian (Cretaceous)

    NARCIS (Netherlands)

    Jarvis, I.; Trabucho-Alexandre, João; Gröcke, D.R.; Uličný, D.; Laurin, J.

    2015-01-01

    Carbon (d13Corg, d13Ccarb) and oxygen (d18Ocarb) isotope records are presented for an expanded Upper Cretaceous (Turonian–Coniacian) hemipelagic succession cored in the central Bohemian Cretaceous Basin, Czech Republic. Geophysical logs, biostratigraphy and stable carbon isotope chemostratigraphy

  2. Nannoplankton Assemblage Succession Throughout Cretaceous/ Tertiary Boundary in the “P” Well Section, Santos Basin, Brazil

    Directory of Open Access Journals (Sweden)

    Panuju Panuju

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i1.115The massive change in calcareous nannoplankton assemblages throughout Cretaceous/Tertiary (K/T boundary (65.5 M.a. has been illustrated by several authors. The diverse and abundant assemblage disappears suddenly above the Cretaceous/Tertiary boundary. This event is related to the most dramatic environmental changes in the Earth's history due to the catastrophic events, those are meteorite impact (Chicxulub and supervolcano eruption (Deccan occurring at the end of Cretaceous. The succeeding age was a time of rapid evolution of nannoplankton during Paleocene. A quantitative method analysis of nannoplankton throughout Maastrichtian to Paleocene of “P” well section, Santos Basin, Brazil, indicated that the nannoplankton assemblages abruptly decrease in diversity and abundance and mostly change in species composition. The various complex shapes of species at Maastrichtian also underwent changing to simple plain shapes and small at Paleocene. The sedimentary section ranges from the top of zone CC23 (Coccolith Cretaceous 23 to NP9 (Nannoplankton Paleogen 9. It is bounded by the Last Occurrence (LO of Tranolithus pachelosus at the base and Fasciculithus tympaniformis at the top. The biostratigraphic discontinuity characterized by the absence of zone CC26 to NP4 is an indicator for the presence of an unconformity at K/T boundary within analyzed section. The Cretaceous nannoplankton assemblages are dominated by Genera Watznaueria, Micula, Arkhangelskiella, Cribrosphaerella, Eiffellithus, Predicosphaera, and Retecapsa, whilst the Paleocene assemblages are dominated by Genera Toweius, Ericsonia, and Coccolithus. Survivor Cretaceous species recovered into Tertiary sediments consist of Braarudosphaera bigelowii, Biscutum melaniae, Neocrepidolithus neocrassus, Placozygus sigmoides, Cyclagelosaphaera reinhardtii, Markalius inversus, and Scapolithus fossilis.

  3. Paleomagnetism of Jurassic and Cretaceous rocks bounding the Santa Marta massif - NW corner of Colombia, South America

    Science.gov (United States)

    Bayona, G.; Jimenez, G.; Silva, C.

    2008-12-01

    The Santa Marta massif (SMM) is a complex terrain located in the NW margin of South America, bounded by the left-lateral Santa Marta fault to the west and the right-lateral Oca fault to the north. The SMM is cored by Precambrian metamorphic and Jurassic intrusive rocks, whereas along the SE flank crop out Jurassic volcanic rocks overlying unconformably by Limestones of Cretaceous age. Paleomagnetic analysis of 30 sites in the Jurassic and Cretaceous units in the SE region uncovered two principal magnetic components. The component "a", isolated in low coercivity and temperatures, has declinations to the north and moderate positive inclinations representing the actual field direction (n=11, D=347.6 I=23 K=30.77, a95=8.4). The component "c", with high coercivity and temperatures, has two orientations. After two-step tilt corrections, the first has northward declination and positive, low inclination (n=9, D=12, I=3, K=18.99, a95=12.1); this direction was uncovered in Cretaceous and some Jurassic rocks near to the Santa Marta fault, and we consider it as a Cretaceous component. The second direction was uncovered only in Jurassic rocks and has NNE declinations with negative-low inclinations (n=9, D=11.3 I=-14.3 K=12.36, a95=15.2); this direction represents a Jurassic component. Jurassic and Cretaceous directions isolated in areas faraway of the Santa Marta Fault suggest slight clockwise vertical-axes rotation. The Jurassic component suggests northward translation of the SMM from Paleolatitude -7.3, to near the magnetic equador in the Cretaceous, and to northern latitudes in the Cenozoic.

  4. A paleolatitude reconstruction of the South Armenian Block (Lesser Caucasus) for the Late Cretaceous: Constraints on the Tethyan realm

    Science.gov (United States)

    Meijers, Maud J. M.; Smith, Brigitte; Kirscher, Uwe; Mensink, Marily; Sosson, Marc; Rolland, Yann; Grigoryan, Araik; Sahakyan, Lilit; Avagyan, Ara; Langereis, Cor; Müller, Carla

    2015-03-01

    The continental South Armenian Block - part of the Anatolide-Tauride South Armenian microplate - of Gondwana origin rifted from the African margin after the Triassic and collided with the Eurasian margin after the Late Cretaceous. During the Late Cretaceous, two northward dipping subduction zones were simultaneously active in the northern Neo-Tethys between the South Armenian Block in the south and the Eurasian margin in the north: oceanic subduction took place below the continental Eurasian margin and intra-oceanic subduction resulted in ophiolite obduction onto the South Armenian Block in the Late Cretaceous. The paleolatitude position of the South Armenian Block before its collision with Eurasia within paleogeographic reconstructions is poorly determined and limited to one study. This earlier study places the South Armenian Block at the African margin in the Early Jurassic. To reconstruct the paleolatitude history of the South Armenian Block, we sampled Upper Devonian-Permian and Cretaceous sedimentary rocks in Armenia. The sampled Paleozoic rocks have likely been remagnetized. Results from two out of three sites sampled in Upper Cretaceous strata pass fold tests and probably all three carry a primary paleomagnetic signal. The sampled sedimentary rocks were potentially affected by inclination shallowing. Therefore, two sites that consist of a large number of samples (> 100) were corrected for inclination shallowing using the elongation/inclination method. These are the first paleomagnetic data that quantify the South Armenian Block's position in the Tethys ocean between post-Triassic rifting from the African margin and post-Cretaceous collision with Eurasia. A locality sampled in Lower Campanian Eurasian margin sedimentary rocks and corrected for inclination shallowing, confirms that the corresponding paleolatitude falls on the Eurasian paleolatitude curve. The north-south distance between the South Armenian Block and the Eurasian margin just after Coniacian

  5. Stratigraphy, foraminiferal assemblages and paleoenvironments in the Late Cretaceous of the Upper Magdalena Valley, Colombia (part I)

    Science.gov (United States)

    Vergara, Luis S.

    1997-03-01

    The present work focuses on the Cretaceous record (Middle Albian-Maastrichtian) of the Upper Magdalena Valley (UMV), with a scope that covers facies and biofacies. The nomenclatural scheme previously stated for the Girardot-Guataqui area is here extended and proposed for all the basin, the following fomational units being characterized in detail. The Hondita Formation (Middle Albian-late Turonian), placed on top of the Caballos Formation, is separated from the Lomagorda Formation (late Turonian-early Santonian) by a chert interval within a succession of predominantly dark shales deposited in outer shelf environments. The Olini Group (early Santonian-late Campanian) presents two conspicuous chert units (Lidita Inferior and Superior) overlain by the Nivel de Lutitas y Arenas (early Maastrichtian). The sandstones of La Tabla and finally the mudstones of the Seca Formation (Maastrichtian) represent diverse littoral environments of the end of the Cretaceous. In the UMV, the Cretaceous system attains approximately 1350 m of thickness. Within the paleogeographic scenario, the drowning of the basin and of the adjacent Central Cordillera during most of the Late Cretaceous enabled upwelling currents and the development of widespread pelagic sediments. These sediments graded to shallower water deposits towards the south of the basin. In the Upper Cretaceous, four sequences of second order can be identified. The longer cycle begins at the base of the Hondita Formation and exhibits the maximum flooding in the Cenomanian condensed section of this unit. Following this cycle, three successive sudden sea level drops mark the boundaries of complete sequences, each comprising well developed lowstand, transgressive and highstand system tracts. After the last cycle was completed, the basin was uplifted and rocks of the Seca Formation were cannibalized by fluvial processes during the Tertiary. An angular unconformity that truncates this unit represents the uppermost sequence boundary of

  6. Genesis of Low-Resistivity Oil layers from Cretaceous System in Luxi Area and Its Geological Significance

    Institute of Scientific and Technical Information of China (English)

    朱国华

    2002-01-01

    Genesis of low-resistivity oil layers from cretaceous system in Luxi area was studied. The result shows that the resistivity of oil layers is lower than that of water layers from Tugulu Group(K1tg),Cretaceous in Luliang area,Zhungeer basin, resulting in a disaccordance with logging interpretation on oil layers,oil-water layers and water layers.The research on the petro-texture of reservoirs also shows that the watered clay pellicle (I/S, I, ch) is well developed in K1tg expands the section of conductive net and results in a low resistivity of oil layers.

  7. The fern-spore abundance anomaly at the Cretaceous-Tertiary boundary: A regional bioevent in western North America

    Science.gov (United States)

    Fleming, R. F.; Nichols, D. J.

    At most localities where the palynological Cretaceous-Tertiary (K-T) boundary has been located in continuous deposition sequences in nonmarine rocks, an anomalous abundance of fern spores occurs immediately above the boundary. The fern-spore anomaly is characterized by unusually high relative abundance of fern spores and dominance by only one of a few species at each locality; it is independent of lithology. Its presence at the K-T boundary at localities from New Mexico to Saskatchewan is evidence of a regional bioevent in earliest Tertiary time: the overwhelming dominance of the continental flora by pioneer species following catastrophic destruction of existing plant communities by the terminal Cretaceous event.

  8. Late Cretaceous-Paleogene Palynostratigraphy from the Arkhara-Boguchan Brown Coal Mine of Zeya-Bureya Depression, Russia

    Institute of Scientific and Technical Information of China (English)

    Tatyana V. Kezina

    2003-01-01

    A well-preserved Late Cretaceous-Paleogene palynological flora from the middle member of the Tsagajan Formation and the upper member of the Tsagajan Formation including the Kivda Beds is reported for the first time from the Arkhara-Boguchan brown coal mine, southeastern part of the Zeya-Bureya Basin. Four palynocomplexes were established for the Cretaceous-Tertiary transition. The climate and phytocoenoses were also analyzed,based on the detailed palynological data. The results are coincident with those of mega-flora studied by Akhmetiev et al. (2002).

  9. Ginkgoites myrioneurus sp nov and associated shoots from the Lower Cretaceous of the Jixi Basin, Heilongjiang, China

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.J. [Chinese Academy of Science, Nanjing (China). Nanjing Institute of Geology & Palaeontology

    2004-10-01

    Ginkgoalean leaves attributed to Ginkgoites myrioneurus sp. nov. and associated long and dwarf shoots were collected from the Lower Cretaceous coal-bearing Muling Formation of the Jixi Basin, eastern Heilongjiang, China. The common characteristic feature of the various leaves is the dense venation. The species may be distinguished from other known species of Ginkgoites from the Jurassic and Lower Cretaceous of eastern Asia in having 8-18 closely arranged oblanceolate segments each with 6-16 veins. The fragmentary long and dwarf shoots are similar to those of extant Ginkgo biloba in gross morphology. They are considered to belong to the same tree as that which produced Ginkgoites myrioneurus.

  10. Geologic and biostratigraphic framework of the non-marine Cretaceous-Tertiary boundary interval in western North America

    Science.gov (United States)

    Nichols, D.J.

    1990-01-01

    Palynologically defined Cretaceous-Tertiary boundary sites in nonmarine rocks in western North America exhibit similar characteristics. All are marked by abrupt disappearance of the regional uppermost Cretaceous palynoflora at the level of an iridium anomaly; most also yeild shock-metamorphosed minerals. All are in coal-bearing, fluvial or paludal depositional settings, although the boundary horizon may be below, within, above, or at some stratigraphic distance from coal seams. At many sites the lowermost Tertiary beds contain assemblages overwhelmed by fern spores that, together with extinctions of some groups of angiosperms, are taken as evidence of regional devastation of terrestrial plant communities and subsequent recolonization by pioneer species. ?? 1990.

  11. The distribution of Cretaceous and Paleocene deep-water reservoirs in the Norwegian Sea basins

    Energy Technology Data Exchange (ETDEWEB)

    Vergara, L. [RWE-DEA AG, Hamburg (Germany); Wreglesworth, I. [IWA Associates, Colwyn Bay (United Kingdom); Trayfoot, M. [PGS Reservoir Consultants, Lysaker (Norway); Richardsen, G. [RWE-DEA Norge, Oslo (Norway)

    2001-07-01

    Facies maps for selected Cretaceous and Paleocene deep-water sandstone reservoirs in the Norwegian Sea constitute an exploration tool and allow description of the basin infill in relation to tectonic phases. Sequences K40 (middle-late Albian) and K60 (middle-late Cenomanian) formed in an immature basin where most of the fan systems and slumps were derived from local highs. Sequence K80 (Coniacian-late Santonian) contains sandstones interpreted to be slumped deposits in parts of the Halten and Donna terraces (Lysing Formation), but with fans of widespread extent in the Voring and northern More Basin. The K85-K90 sequence set (early Santonian-late Campanian) contains sandstones equivalent to the Nise Formation that are the main potential reservoirs in the Voring Basin; they were fed by multiple entry points and developed into areally extensive basin floor thicks. Sequence Pg10 (Danian-Selandian: 'Egga' Member) is interpreted to comprise a basin floor fan in the Ormen Lange discovery. During this cycle the Halten Terrace rotated eastwards exposing Upper Cretaceous mudstones. Vast amounts of sediment were deposited in the western More and Voring Basin around new exposed areas. (author)

  12. Timing, duration, and causes for Late Jurassic-Early Cretaceous anoxia in the Barents Sea

    Science.gov (United States)

    Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.; Xu, Guangping; Bingen, Bernard; Weiss, Hermann M.

    2017-03-01

    Re-Os isochron ages for black shales of the Hekkingen Formation in the Barents Sea constrain the onset (157.7 ± 1.3 Ma) and termination (138.8 ± 1.0 Ma), and thereby indicate a long duration (∼19 Myr) of widespread Jurassic-Cretaceous anoxia in the Arctic. Integration of these new Re-Os ages with published radiometric ages, ammonite biostratigraphy and geomagnetic polarity chrons shows shorter late Oxfordian-late Kimmeridgian and longer Berriasian stages relative to estimates in the 2012 and 2016 Geological Time Scales. Late Jurassic anoxia was likely the result of warming climate due to high atmospheric CO2 levels from increased oceanic crust production. Rising temperatures enhanced weathering and nutrient supply, increased productivity, and slowed ocean circulation before a sea-level rise brought anoxic waters onto continental shelves. Assessment of new and published Os- and Sr-isotopic data suggests that prolonged oceanic anoxia required a sustained CO2 source from fast spreading rates and/or longer subduction zones and spreading ridges to balance large burial of carbon in voluminous Upper Jurassic and Lower Cretaceous black shales.

  13. Severity of ocean acidification following the end-Cretaceous asteroid impact.

    Science.gov (United States)

    Tyrrell, Toby; Merico, Agostino; Armstrong McKay, David Ian

    2015-05-26

    Most paleo-episodes of ocean acidification (OA) were either too slow or too small to be instructive in predicting near-future impacts. The end-Cretaceous event (66 Mya) is intriguing in this regard, both because of its rapid onset and also because many pelagic calcifying species (including 100% of ammonites and more than 90% of calcareous nannoplankton and foraminifera) went extinct at this time. Here we evaluate whether extinction-level OA could feasibly have been produced by the asteroid impact. Carbon cycle box models were used to estimate OA consequences of (i) vaporization of up to 60 × 10(15) mol of sulfur from gypsum rocks at the point of impact; (ii) generation of up to 5 × 10(15) mol of NOx by the impact pressure wave and other sources; (iii) release of up to 6,500 Pg C as CO2 from vaporization of carbonate rocks, wildfires, and soil carbon decay; and (iv) ocean overturn bringing high-CO2 water to the surface. We find that the acidification produced by most processes is too weak to explain calcifier extinctions. Sulfuric acid additions could have made the surface ocean extremely undersaturated (Ωcalcite ocean very rapidly (over a few days) and if the quantity added was at the top end of literature estimates. We therefore conclude that severe ocean acidification might have been, but most likely was not, responsible for the great extinctions of planktonic calcifiers and ammonites at the end of the Cretaceous.

  14. Hadrosauroid Dinosaurs from the Late Cretaceous of the Sultanate of Oman.

    Directory of Open Access Journals (Sweden)

    Eric Buffetaut

    Full Text Available Fragmentary post-cranial remains (femora, tibia, vertebrae of ornithischian dinosaurs from the Late Cretaceous of the Sultanate of Oman are described and referred to hadrosauroids. The specimens come from the Al-Khod Conglomerate, of latest Campanian to Maastrichtian age, in the north-eastern part of the country. Although the fragmentary condition of the fossils precludes a precise identification, various characters, including the shape of the fourth trochanter of the femur and the morphology of its distal end, support an attribution to hadrosauroids. With the possible exception of a possible phalanx from Angola, this group of ornithopod dinosaurs, which apparently originated in Laurasia, was hitherto unreported from the Afro-Arabian plate. From a paleobiogeographical point of view, the presence of hadrosauroids in Oman in all likelihood is a result of trans-Tethys dispersal from Asia or Europe, probably by way of islands in the Tethys shown on all recent paleogeographical maps of that area. Whether hadrosauroids were widespread on the Afro-Arabian landmass in the latest Cretaceous, or where restricted to the « Oman island » shown on some paleogeographical maps, remains to be determined.

  15. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics.

    Science.gov (United States)

    Zhang, Shu-Dong; Jin, Jian-Jun; Chen, Si-Yun; Chase, Mark W; Soltis, Douglas E; Li, Hong-Tao; Yang, Jun-Bo; Li, De-Zhu; Yi, Ting-Shuang

    2017-05-01

    Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Sedimentary record of terminal Cretaceous accretions in Ecuador: The Yunguilla Group in the Cuenca area

    Science.gov (United States)

    Jaillard, Etienne; Bengtson, Peter; Ordoñez, Martha; Vaca, Wilmer; Dhondt, Annie; Suárez, Johnny; Toro, Jorge

    2008-03-01

    A reappraisal of the "Late Cretaceous Yunguilla Formation" of the Cuenca area enables the definition of four distinct formations, correlatable with those of southwestern Ecuador. A mid- to late-Campanian marine transgression (Jadán Formation) is overlain by quartz-rich conglomerates of fan-delta to turbiditic fan environment (Quimas Formation) of latest Campanian-earliest Maastrichtian age, which are interpreted as evidence of the accretion of a first oceanic terrane (San Juan). Disconformable, arkosic turbidites and cherts (Tabacay Formation) of early Maastrichtian age are thought to represent the erosion of the newly accreted oceanic terrane. A major unconformity of late Maastrichtian age, caused by the accretion of a second oceanic terrane (Guaranda), is followed by the deposition of quartz-rich micaceous shelf sandstones (Saquisilí Formation) of Paleocene age. A third accretion event (late Paleocene) is recorded in coastal Ecuador. Each accretion event correlates with the uplift and erosion of the Eastern Cordillera and with a sedimentary hiatus in the eastern areas. In Ecuador, accretion of oceanic terranes contributed to the build up of the Andes through tectonic underplating of low-density material, and the eastern areas did not behave as flexural foreland basins during late Cretaceous-Paleogene times.

  17. Mineralogy of Cretaceous/Tertiary boundary clays in the Chicxulub structure in northern Yucatan

    Science.gov (United States)

    Ming, D. W.; Sharpton, Virgil L.; Schuraytz, B. C.

    1991-01-01

    The Cretaceous/Tertiary (K/T) boundary clay layer is thought to be derived from ejecta material from meteorite impact, based on the anomalous concentrations of noble metals in the layer. Because of recent findings of a half-meter thick ejecta deposit at the K/T boundary in Haiti, efforts have focused on locating a large impact feature in the Caribbean and the Gulf of Mexico. One of the leading candidates for the site of a large impact is the Chicxulub structure located on the northern Yucatan Peninsula in Mexico. The Chicxulub structure is a subsurface zone of upper Cretaceous igneous rocks, carbonates, and breccias. The structure has been interpreted to be a 200 km diameter; however, there is some question to the size of the structure or to the fact that it even is an impact feature. Little is known about the mineralogy of this structure; the objective of this study was to determine the clay mineralogy of core samples from within the Chicxulub structure.

  18. A new genus of highly specialized ants in Cretaceous Burmese amber (Hymenoptera: Formicidae).

    Science.gov (United States)

    Barden, Phillip; Grimaldi, David

    2013-01-01

    A new genus of ants, Zigrasimecia Barden and Grimaldi, is described for a new and uniquely specialized species, Z. tonsora Barden and Grimaldi n.sp., preserved in Cretaceous amber from Myanmar. The amber is radiometrically dated at 99 myo. Zigrasimecia is closely related to another basal genus of ants known only in Burmese and French Cretaceous amber, Sphecomyrmodes Engel and Grimaldi, based in part on the shared possession of a comb of pegs on the clypeal margin, as well as mandible structure. Highly specialized features of Zigrasimecia include extensive development of the clypeal comb, a thick brush of setae on the oral surface of the mandibles and on the labrum, and a head that is broad, flattened, and which bears a crown of blackened, rugose cuticle. Mouthparts are hypothesized to have functioned in a unique manner, showing no clear signs of dentition representative of "chewing" or otherwise processing solid food. Although all ants in Burmese amber are basal, stem-group taxa, there is an unexpected diversity of mouthpart morphologies and probable feeding modes.

  19. Metamorphic pattern of the Cretaceous Celica Formation, SW Ecuador, and its geodynamic implications

    Science.gov (United States)

    Aguirre, Luis

    1992-04-01

    The volcanic rocks of the Cretaceous Celica Formation of southern Ecuador are affected by a weak although widespread alteration. The chemical study of the secondary chemical phases present in andesitic and basaltic lava flows reveals that this alteration corresponds to very low-grade metamorphism comprising the zeolite and the prehnite-pumpellyite facies. Main features of this metamorphism are: weak lithostatic pressure, moderate to steep thermal gradient, high ƒ O2, low value of the seawater/rock ratio and total absence of deformation. These characteristics are typically present in other volcanic suites of similar age and composition along the Andes and correspond to the pattern of metamorphism developed in extensional settings (diastathermal metamorphism) linked to various degrees of thinning of the continental crust. Based on this metamorphic pattern, a geodynamic model is proposed in which the Celica Formation is interpreted as an ensialic, aborted, marginal basin developed on strongly attenuated continental crust at the border of the South American plate. The relationship between the Ecuadorian and Colombian volcanic suites of Cretaceous age present along the Western Cordillera is discussed in the light of the model suggested.

  20. Dinosaur footprints and other ichnofauna from the cretaceous Kem Kem beds of Morocco.

    Science.gov (United States)

    Ibrahim, Nizar; Varricchio, David J; Sereno, Paul C; Wilson, Jeffery A; Wilson, Jeff A; Dutheil, Didier B; Martill, David M; Baidder, Lahssen; Zouhri, Samir

    2014-01-01

    We describe an extensive ichnofossil assemblage from the likely Cenomanian-age 'lower' and 'upper' units of the 'Kem Kem beds' in southeastern Morocco. In the lower unit, trace fossils include narrow vertical burrows in cross-bedded sandstones and borings in dinosaur bone, with the latter identified as the insect ichnotaxon Cubiculum ornatus. In the upper unit, several horizons preserve abundant footprints from theropod dinosaurs. Sauropod and ornithischian footprints are much rarer, similar to the record for fossil bone and teeth in the Kem Kem assemblage. The upper unit also preserves a variety of invertebrate traces including Conichnus (the resting trace of a sea-anemone), Scolicia (a gastropod trace), Beaconites (a probable annelid burrow), and subvertical burrows likely created by crabs for residence and detrital feeding on a tidal flat. The ichnofossil assemblage from the Upper Cretaceous Kem Kem beds contributes evidence for a transition from predominantly terrestrial to marine deposition. Body fossil and ichnofossil records together provide a detailed view of faunal diversity and local conditions within a fluvial and deltaic depositional setting on the northwestern coast of Africa toward the end of the Cretaceous.

  1. The first freshwater mosasauroid (Upper Cretaceous, Hungary) and a new clade of basal mosasauroids.

    Science.gov (United States)

    Makádi, László; Caldwell, Michael W; Ősi, Attila

    2012-01-01

    Mosasauroids are conventionally conceived of as gigantic, obligatorily aquatic marine lizards (1000s of specimens from marine deposited rocks) with a cosmopolitan distribution in the Late Cretaceous (90-65 million years ago [mya]) oceans and seas of the world. Here we report on the fossilized remains of numerous individuals (small juveniles to large adults) of a new taxon, Pannoniasaurus inexpectatus gen. et sp. nov. from the Csehbánya Formation, Hungary (Santonian, Upper Cretaceous, 85.3-83.5 mya) that represent the first known mosasauroid that lived in freshwater environments. Previous to this find, only one specimen of a marine mosasauroid, cf. Plioplatecarpus sp., is known from non-marine rocks in Western Canada. Pannoniasaurus inexpectatus gen. et sp. nov. uniquely possesses a plesiomorphic pelvic anatomy, a non-mosasauroid but pontosaur-like tail osteology, possibly limbs like a terrestrial lizard, and a flattened, crocodile-like skull. Cladistic analysis reconstructs P. inexpectatus in a new clade of mosasauroids: (Pannoniasaurus (Tethysaurus (Yaguarasaurus, Russellosaurus))). P. inexpectatus is part of a mixed terrestrial and freshwater faunal assemblage that includes fishes, amphibians turtles, terrestrial lizards, crocodiles, pterosaurs, dinosaurs and birds.

  2. Ecological impact of the end-Cretaceous extinction on lamniform sharks.

    Science.gov (United States)

    Belben, Rachel A; Underwood, Charlie J; Johanson, Zerina; Twitchett, Richard J

    2017-01-01

    Lamniform sharks are apex marine predators undergoing dramatic local and regional decline worldwide, with consequences for marine ecosystems that are difficult to predict. Through their long history, lamniform sharks have faced widespread extinction, and understanding those 'natural experiments' may help constrain predictions, placing the current crisis in evolutionary context. Here we show, using novel morphometric analyses of fossil shark teeth, that the end-Cretaceous extinction of many sharks had major ecological consequences. Post-extinction ecosystems supported lower diversity and disparity of lamniforms, and were dominated by significantly smaller sharks with slimmer, smoother and less robust teeth. Tooth shape is intimately associated with ecology, feeding and prey type, and by integrating data from extant sharks we show that latest Cretaceous sharks occupied similar niches to modern lamniforms, implying similar ecosystem structure and function. By comparison, species in the depauperate post-extinction community occupied niches most similar to those of juvenile sand tigers (Carcharias taurus). Our data show that quantitative tooth morphometrics can distinguish lamniform sharks due to dietary differences, providing critical insights into ecological consequences of past extinction episodes.

  3. A plate tectonic-paleoceanographic hypothesis for Cretaceous source rocks and cherts of northern South America

    Energy Technology Data Exchange (ETDEWEB)

    Villamil, T.; Arango, C. (Univ. of Colorado, Boulder, CO (United States))

    1996-01-01

    New paleocontinental reconstructions show a northern migration of the South American Plate with respect to the paleoequator from the Jurassic to the Late Cretaceous. This movement caused the northern margin of South America to migrate from a position south to a position north of the paleoequator. Ekman transport generated net surface water movement towards the south during times when northern South America was south of the paleoequator. This situation favored downwelling and prevented Jurassic and earliest Cretaceous marine source rocks from being deposited. When northern South America was north of the paleoequator Ekman transport forced net water movement to the north favoring upwelling, paleoproductivity, and the deposition of one of the best marine source rocks known (the La Luna, Villeta, and equivalents). This plate tectonic paleoceanographic hypothesis explains the origin of hydrocarbons in northern South America. The stratigraphic record reflects this increase in paleoproductivity through time. This can be observed in facies (non-calcareous shales to calcareous shales to siliceous shales and finally to bedded cherts) and in changing planktic communities which were initially dominated by healthy calcareous foraminifer assemblages, followed by stressed foraminifer populations and finally by radiolarians. Total organic carbon and source rock quality were affected by this long term increase in paleoproductivity but also, and more markedly, by a punctuated sequence stratigraphic record dominated by low- frequency changes in relative sea level. The magnitude of transgressive episodes caused by rise in sea level determined the extent of source rock intervals and indirectly the content of organic carbon.

  4. A plate tectonic-paleoceanographic hypothesis for Cretaceous source rocks and cherts of northern South America

    Energy Technology Data Exchange (ETDEWEB)

    Villamil, T.; Arango, C. [Univ. of Colorado, Boulder, CO (United States)

    1996-12-31

    New paleocontinental reconstructions show a northern migration of the South American Plate with respect to the paleoequator from the Jurassic to the Late Cretaceous. This movement caused the northern margin of South America to migrate from a position south to a position north of the paleoequator. Ekman transport generated net surface water movement towards the south during times when northern South America was south of the paleoequator. This situation favored downwelling and prevented Jurassic and earliest Cretaceous marine source rocks from being deposited. When northern South America was north of the paleoequator Ekman transport forced net water movement to the north favoring upwelling, paleoproductivity, and the deposition of one of the best marine source rocks known (the La Luna, Villeta, and equivalents). This plate tectonic paleoceanographic hypothesis explains the origin of hydrocarbons in northern South America. The stratigraphic record reflects this increase in paleoproductivity through time. This can be observed in facies (non-calcareous shales to calcareous shales to siliceous shales and finally to bedded cherts) and in changing planktic communities which were initially dominated by healthy calcareous foraminifer assemblages, followed by stressed foraminifer populations and finally by radiolarians. Total organic carbon and source rock quality were affected by this long term increase in paleoproductivity but also, and more markedly, by a punctuated sequence stratigraphic record dominated by low- frequency changes in relative sea level. The magnitude of transgressive episodes caused by rise in sea level determined the extent of source rock intervals and indirectly the content of organic carbon.

  5. Diversification of the Genus Anopheles and a Neotropical Clade from the Late Cretaceous.

    Directory of Open Access Journals (Sweden)

    Lucas A Freitas

    Full Text Available The Anopheles genus is a member of the Culicidae family and consists of approximately 460 recognized species. The genus is composed of 7 subgenera with diverse geographical distributions. Despite its huge medical importance, a consensus has not been reached on the phylogenetic relationships among Anopheles subgenera. We assembled a comprehensive dataset comprising the COI, COII and 5.8S rRNA genes and used maximum likelihood and Bayesian inference to estimate the phylogeny and divergence times of six out of the seven Anopheles subgenera. Our analysis reveals a monophyletic group composed of the three exclusively Neotropical subgenera, Stethomyia, Kerteszia and Nyssorhynchus, which began to diversify in the Late Cretaceous, at approximately 90 Ma. The inferred age of the last common ancestor of the Anopheles genus was ca. 110 Ma. The monophyly of all Anopheles subgenera was supported, although we failed to recover a significant level of statistical support for the monophyly of the Anopheles genus. The ages of the last common ancestors of the Neotropical clade and the Anopheles and Cellia subgenera were inferred to be at the Late Cretaceous (ca. 90 Ma. Our analysis failed to statistically support the monophyly of the Anopheles genus because of an unresolved polytomy between Bironella and A. squamifemur.

  6. A New Family of Sauropod Dinosaur from the Upper Cretaceous of Tianzhen, Shanxi Province, China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new gigantic sauropod, Huabeisaurus allocotus gen. et sp. nov., about 20 m in length and 5 m in height, was discovered in the Upper Cretaceous Huiquanpu Formation, Tianzhen County,Shanxi Province. It is notably different from Diplodocidae, Titanosauridae and Nemegtosauridae in the following aspects: the teeth are strong, peg-like with a length ratio of the tooth crown to tooth root at about 3 to 1; the cervical vertebrae are long with forked spines; the spines in dorsal vertebrae are relatively high, unbifurcated; the caudal vertebrae are amphicoelous, with anterior neural spines and unbifurcated spines and chevrons; the femur is straight and long, narrow and flat and the tibia and fibula are long and flat. These characters show that the described genus should represent a new family, Huabeisauridae fam. nov. The discovery enriches the sauropod dinosaur record in China, and is quite significant to the study of the taxonomy, evolution, migration, extinction and palaeobiogeographic provincialism of the Late Cretaceous sauropod dinosaurs.

  7. Petrochemistry and tectonic significance of Lower Cretaceous Barros Arana Formation basalts, southernmost Chilean Andes

    Science.gov (United States)

    Stern, C. R.; Mohseni, P. P.; Fuenzalida, P. R.

    The Lower Cretaceous Barros Arana Formation (Albian, hornblende KAr age of 104 Ma), in the Magallanes region of Chile, consists of a sequence of spilitized clinopyroxene- and amphibole-bearing mafic dikes and lavas, and volcaniclastic breccias, occurring within the sedimentary infill of the Rocas Verdes marginal basin and its eastward extension onto the Cretaceous continental platform. Although the original alkali and alkaline earth element concentrations of the basaltic lavas and dikes have been altered by spilitization, the presence of relict pargasitic amphibole phenocrysts, the absence of orthopyroxene, and high LREE contents and LREE/HREE ratios imply mildly alkaline affinities for these basalts. Their low TiO 2 and HFSE (Zr, Nb, Ta, and Hf) contents and high LREE/HFSE ratios suggest affinities with convergent plate boundary arc magmas. The Barros Arana basalts are interpreted as mafic members of the mildly alkaline shoshonitic rock suite of subduction-related arcs. They may have formed as subduction geometry began to undergo the changes (flattening) that ultimately led to the initiation of the closure, deformation, and uplift of the Rocas Verdes basin by the late or post-Albian. The low initial 87Sr/ 86Sr (0.7031) and high initial 143Nd/ 144Nd (0.51277) of the basalts indicate that a generally extensional tectonic regime east of the main calc-alkaline arc allowed eruption of these mafic shoshonites without interaction with continental crust (in contrast to the contemporaneous plutons of the Patagonian batholith).

  8. Origination and death of petroleum systems along the Late Jurassic/Early Cretaceous northern Tethyan margin

    Energy Technology Data Exchange (ETDEWEB)

    Golonka, J. [Mobil Research and Development Corp., Dallas, TX (United States); Kiessling, W. [Erlangen-Nuernberg Univ., Erlangen (Germany). Inst. fuer Geologie und Mineralogie; Krobicki, M. [Academy of Mining and Metallurgy, Cracow (Poland). Inst. of Petroleum Engineering; Bocharova, N.Y. [Russian Academy of Sciences, Moscow (Russian Federation). Center for Program Studies

    1997-09-01

    Breakup of Pangea during Jurassic and Cretaceous times created a system of rifts along the northern Tethyan margin. Some of these rifts developed into oceanic basins while others developed on continental crust and turned into aulacogenes. The basins were separated from the main Tethys ocean by several plates and ridges. Partial uplift of the main European plate and late Kimmerian orogeny resulted in the establishment of restricted conditions in the marginal Tethyan basins. The paleogeographic and paleoclimatic setting favoured upwelling along the ridges and continental margins. Source rock prediction value modelling placed Tethyan marginal basins among the best Jurassic source rocks of the world. Self-contained petroleum systems consisting of source rocks, carbonate reservoirs and evaporitic seals occur in the area east of Poland. Actual hydrocarbon production is ongoing in Afghanistan and the Amu-Daria province. Some of Carpathian oils might also be sourced by Late Jurassic/Early Cretaceous rocks. In the western area, petroleum systems were destroyed during the Alpine orogeny.

  9. Constraining Cretaceous subduction polarity in eastern Pacific from seismic tomography and geodynamic modeling

    Science.gov (United States)

    Liu, Lijun

    2014-11-01

    Interpretation of recent mantle seismic images below the America ignited a debate on the Cretaceous subduction polarity in the eastern Pacific Ocean. The traditional view is that the massive vertical slab wall under eastern North America resulted from an eastward Farallon subduction. An alternative interpretation attributes this prominent seismic structure to a westward subduction of the North American Plate against a stationary intraoceanic trench. Here I design quantitative subduction models to test these two scenarios, using their implied plate kinematics as velocity boundary conditions. Modeling results suggest that the westward subduction scenario could not produce enough slab volume as seismic images reveal, as is due to the overall slow subduction rate (~2.5 cm/yr). The results favor the continuous eastward Farallon subduction scenario, which, with an average convergence rate of >10 cm/yr prior to the Eocene, can properly generate both the volume and the geometry of the imaged lower mantle slab pile. The eastward subduction model is also consistent with most Cretaceous geological records along the west coast of North America.

  10. A new pterosaur (Pterodactyloidea: Azhdarchidae from the Upper Cretaceous of Morocco.

    Directory of Open Access Journals (Sweden)

    Nizar Ibrahim

    Full Text Available The Kem Kem beds in South Eastern Morocco contain a rich early Upper (or possibly late Lower Cretaceous vertebrate assemblage. Fragmentary remains, predominantly teeth and jaw tips, represent several kinds of pterosaur although only one species, the ornithocheirid Coloborhynchus moroccensis, has been named. Here, we describe a new azhdarchid pterosaur, Alanqa saharica nov. gen. nov. sp., based on an almost complete well preserved mandibular symphysis from Aferdou N'Chaft. We assign additional fragmentary jaw remains, some of which have been tentatively identified as azhdarchid and pteranodontid, to this new taxon which is distinguished from other azhdarchids by a remarkably straight, elongate, lance-shaped mandibular symphysis that bears a pronounced dorsal eminence near the posterior end of its dorsal (occlusal surface. Most remains, including the holotype, represent individuals of approximately three to four meters in wingspan, but a fragment of a large cervical vertebra, that probably also belongs to A. saharica, suggests that wingspans of six meters were achieved in this species. The Kem Kem beds have yielded the most diverse pterosaur assemblage yet reported from Africa and provide the first clear evidence for the presence of azhdarchids in Gondwana at the start of the Late Cretaceous. This, the relatively large size achieved by Alanqa, and the additional evidence of variable jaw morphology in azhdarchids provided by this taxon, indicates a longer and more complex history for this clade than previously suspected.

  11. Specialized proteinine rove beetles shed light on insect-fungal associations in the Cretaceous.

    Science.gov (United States)

    Cai, Chenyang; Newton, Alfred F; Thayer, Margaret K; Leschen, Richard A B; Huang, Diying

    2016-12-28

    Insects and fungi have a long history of association in shared habitats. Fungus-feeding, or mycophagy, is remarkably widespread in beetles (Coleoptera) and appears to be a primitive feeding habit that preceded feeding on plant tissues. Numerous Mesozoic beetles belonging to extant fungus-associated families are known, but direct fossil evidence elucidating mycophagy in insects has remained elusive. Here, we report a remarkable genus and species, Vetuproteinus cretaceus gen. et sp. nov., belonging to a new tribe (Vetuproteinini trib. nov.) of the extant rove beetle subfamily Proteininae (Staphylinidae) in Mid-Cretaceous Burmese amber. The mouthparts of this beetle have a markedly enlarged protruding galea bearing an apparent spore brush, a specialized structure we infer was used to scrape spores off surfaces and direct them into the mouth, as in multiple modern spore-feeding beetles. Considering the long evolutionary history of Fungi, the Mid-Cretaceous beetles likely fed on ancient Basidiomycota and/or Ascomycota fungi or spore-producing organisms such as slime moulds (Myxomycetes). The discovery of the first Mesozoic proteinine illustrates the antiquity of the subfamily, and suggests that ancestral Proteininae were already diverse and widespread in Pangaea before the supercontinent broke up.

  12. The first freshwater mosasauroid (Upper Cretaceous, Hungary and a new clade of basal mosasauroids.

    Directory of Open Access Journals (Sweden)

    László Makádi

    Full Text Available Mosasauroids are conventionally conceived of as gigantic, obligatorily aquatic marine lizards (1000s of specimens from marine deposited rocks with a cosmopolitan distribution in the Late Cretaceous (90-65 million years ago [mya] oceans and seas of the world. Here we report on the fossilized remains of numerous individuals (small juveniles to large adults of a new taxon, Pannoniasaurus inexpectatus gen. et sp. nov. from the Csehbánya Formation, Hungary (Santonian, Upper Cretaceous, 85.3-83.5 mya that represent the first known mosasauroid that lived in freshwater environments. Previous to this find, only one specimen of a marine mosasauroid, cf. Plioplatecarpus sp., is known from non-marine rocks in Western Canada. Pannoniasaurus inexpectatus gen. et sp. nov. uniquely possesses a plesiomorphic pelvic anatomy, a non-mosasauroid but pontosaur-like tail osteology, possibly limbs like a terrestrial lizard, and a flattened, crocodile-like skull. Cladistic analysis reconstructs P. inexpectatus in a new clade of mosasauroids: (Pannoniasaurus (Tethysaurus (Yaguarasaurus, Russellosaurus. P. inexpectatus is part of a mixed terrestrial and freshwater faunal assemblage that includes fishes, amphibians turtles, terrestrial lizards, crocodiles, pterosaurs, dinosaurs and birds.

  13. EVOLUTION. A four-legged snake from the Early Cretaceous of Gondwana.

    Science.gov (United States)

    Martill, David M; Tischlinger, Helmut; Longrich, Nicholas R

    2015-07-24

    Snakes are a remarkably diverse and successful group today, but their evolutionary origins are obscure. The discovery of snakes with two legs has shed light on the transition from lizards to snakes, but no snake has been described with four limbs, and the ecology of early snakes is poorly known. We describe a four-limbed snake from the Early Cretaceous (Aptian) Crato Formation of Brazil. The snake has a serpentiform body plan with an elongate trunk, short tail, and large ventral scales suggesting characteristic serpentine locomotion, yet retains small prehensile limbs. Skull and body proportions as well as reduced neural spines indicate fossorial adaptation, suggesting that snakes evolved from burrowing rather than marine ancestors. Hooked teeth, an intramandibular joint, a flexible spine capable of constricting prey, and the presence of vertebrate remains in the guts indicate that this species preyed on vertebrates and that snakes made the transition to carnivory early in their history. The structure of the limbs suggests that they were adapted for grasping, either to seize prey or as claspers during mating. Together with a diverse fauna of basal snakes from the Cretaceous of South America, Africa, and India, this snake suggests that crown Serpentes originated in Gondwana.

  14. The first South American sandownid turtle from the Lower Cretaceous of Colombia.

    Science.gov (United States)

    Cadena, Edwin

    2015-01-01

    Sandownids are a group of Early Cretaceous-Paleocene turtles that for several decades have been only known by cranial and very fragmentary postcranial elements. Here I report and describe the most complete sandownid turtle known so far, including articulated skull, lower jaw and postcranial elements, from the Early Cretaceous (upper Barremian-lower Aptian, >120 Ma), Paja Formation, Villa de Leyva town, Colombia. The new Colombian sandownid is defined here as Leyvachelys cipadi new genus, new species and because of its almost identical skull morphology with a previously reported turtle from the Glen Rose Formation, Texas, USA, both are grouped in a single and officially (ICNZ rules) defined taxon. Phylogenetic analysis including L. cipadi supports once again the monophyly of Sandownidae, as belonging to the large and recently redefined Pan-Chelonioidea clade. The morphology of L. cipadi indicates that sandownids were not open marine turtles, but instead littoral to shallow marine durophagous dwellers. Leyvachelys cipadi not only constitutes the first record of sandowinds in South America, but also the earliest global record for the group.

  15. Dinosaur footprints and other ichnofauna from the cretaceous Kem Kem beds of Morocco.

    Directory of Open Access Journals (Sweden)

    Nizar Ibrahim

    Full Text Available We describe an extensive ichnofossil assemblage from the likely Cenomanian-age 'lower' and 'upper' units of the 'Kem Kem beds' in southeastern Morocco. In the lower unit, trace fossils include narrow vertical burrows in cross-bedded sandstones and borings in dinosaur bone, with the latter identified as the insect ichnotaxon Cubiculum ornatus. In the upper unit, several horizons preserve abundant footprints from theropod dinosaurs. Sauropod and ornithischian footprints are much rarer, similar to the record for fossil bone and teeth in the Kem Kem assemblage. The upper unit also preserves a variety of invertebrate traces including Conichnus (the resting trace of a sea-anemone, Scolicia (a gastropod trace, Beaconites (a probable annelid burrow, and subvertical burrows likely created by crabs for residence and detrital feeding on a tidal flat. The ichnofossil assemblage from the Upper Cretaceous Kem Kem beds contributes evidence for a transition from predominantly terrestrial to marine deposition. Body fossil and ichnofossil records together provide a detailed view of faunal diversity and local conditions within a fluvial and deltaic depositional setting on the northwestern coast of Africa toward the end of the Cretaceous.

  16. Endolithic fungi: A possible killer for the mass extinction of Cretaceous dinosaurs

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mycelium-like structures found under ESEM within radial sections of fragmental dinosaur eggshells would be the endolithic fungi coexistent with dinosaur eggs in the upper part of the Late Cretaceous Hugang Formation from the Wenjiaping section of Wenxian, Danjiangkou, northwestern Hubei, Central China. The endolithic fungi selectively occurred in the bad biomineral zone within the columnar layer of the eggshells, where the crowded endolithic fungi penetrated the columnar layer at near-vertical or near-horizontal angles. The endolithic fungi are needle-like, ribbon-like and silk-like, and 5-18 μm long, 0.3-0.5 μm wide at their base, with pointed tip, and are unbranched. The hyphae are mainly composed of oxygen, carbon and calcium, and are with minor sodium, potassium, chlorine and sulfur. The en-dolithic fungi and host have the same characters in lithification, fracture and main chemical composi-tion. We suggested that the episode endolithic fungi invading dinosaur eggs may have taken place in the interval between after formation of dinosaur eggshells and before their petrifaction and that dino-saur eggs invaded by endolithic fungi would not be normally incubated or would only be incubated into venerable and pathologic baby dinosaurs to be easily to aborted and contributed to the mass extinction of the dinosaurs at the end of Cretaceous.

  17. Paleomagnetic data from Early Cretaceous volcanic rocks of West Liaoning:Evidence for intracontinental rotation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Detailed rock magnetic studies of 55 lavas from Yixian and Fuxin area, West Liaoning, show the primary carriers of remanence to be pseudo-single domain titanomagnetite. K/Ar dating indicates that the volcanic sequence spans 93 to 133 Ma. Stepwise thermal demagnetization successfully isolated well-defined characteristic magnetization (ChRM) in all lavas thermal-treated above 250℃. The mean paleodirections are D/I = 5.9°/58.8° (α95 = 2.9°) and D/I =179.2°/-59.9° (α95 = 5.2°) for 27 normally magnetized flows and 28 reversibly magnetized flows, respectively. It indicates that since the Early Cretaceous there is no significant horizontal movement and rotation between the Yixian-Fuxin area and Eurasia. However, Korea Peninsula may have undergone a clockwise rotation of 33.9° relative to the Yixian-Fuxin area during the Cretaceous. On the basis of characteristics of hotspot origins (core-mantle boundary or upper mantle), the clockwise rotation of Korea Peninsula relative to Eurasia is assumed to be mainly caused by an extensional force in the crust of eastern China, which was corresponding to intensive surface volcanic activities in this area.

  18. Evidence of temporary mining in the Cretaceous fossil mine assemblage of Negev,Israel

    Institute of Scientific and Technical Information of China (English)

    Valentin A.Krassilov

    2008-01-01

    Temporary mining is a peculiar behavioral trait in leaf parasites requiring adaptations of consecutive larval stages to the endophytic and ectophytic life.The first fossil evidence for the origin of the trait comes from the Cretaceous (Turonian) plant-insect locality of the Negev Desert containing rich trace assemblages of leaf parasites,including blotch mines with leaf pieces cut out for case construction,as well as attached larval cases.The host plants are deciduous broadleafs or aquatic angiosperms with emergent leaves,suggesting that initial acquisition of the habit might have been related to leaf abscission and the risk for the larva being chocked in the mine during floods.Unlike tracks of permanent miners,temporary mines never co-occur on leaves with other type mines,which attests to their effect of enhancing plant resistance.Mine predation appears to have been widespread in the Cretaceous biotic community,suggesting a possibility of top-down regulation of mining habits at this early stage of their evolutionary development.

  19. A Late Cretaceous Piper (Piperaceae) from Colombia and diversification patterns for the genus.

    Science.gov (United States)

    Martínez, Camila; Carvalho, Mónica R; Madriñán, Santiago; Jaramillo, Carlos A

    2015-02-01

    Documented fossil floras in the neotropics are sparse, yet their records provide evidence on the spatial and temporal occurrence of taxa, allowing for testing of biogeographical and diversification scenarios on individual lineages. A new fossil Piper from the Late Cretaceous of Colombia is described here, and its importance for assessing diversification patterns in the genus is addressed. Leaf architecture of 32 fossil leaf compressions from the Guaduas Formation was compared with that of 294 extant angiosperm species. The phylogenetic position of the fossil named Piper margaritae sp. nov. was established based on leaf traits and a molecular scaffold of Piper. The age of the fossil was independently used as a calibration point for divergence time estimations. Natural affinities of P. margaritae to the Schilleria clade of Piper indicate that the genus occurred in tropical America by the Late Cretaceous. Estimates of age divergence and lineage accumulation reveal that most of the extant diversity of the genus accrued during the last ∼30 Myr. The recent radiation of Piper is coeval with both the Andean uplift and the emergence of Central America, which have been proposed as important drivers of diversity. This pattern could exemplify a recurrent theme among many neotropical plant lineages. © 2015 Botanical Society of America, Inc.

  20. Palaeointensity and palaeomagnetic study of Cretaceous and Palaeocene rocks from Western Antarctica

    Science.gov (United States)

    Shcherbakova, V. V.; Bakhmutov, V. G.; Shcherbakov, V. P.; Zhidkov, G. V.; Shpyra, V. V.

    2012-04-01

    A combined palaeodirectional and palaeointensity study of a representative collection of plutonic rocks from the Antarctic Peninsula batholith from the western part of the Antarctic Peninsula, near the Ukrainian Antarctic base 'Academik Vernadsky' were carried out. Petrographically, the collection includes gabbros, diorites and quartz diorites, tonalities, granodiorites and granites. The ages of igneous complex emplacement vary from 50 to 117 Ma with most of the rocks belonging to the Cretaceous Normal Superchron. The characteristic remanent magnetizations were isolated by stepwise thermal demagnetization over the temperature interval 440-590°C and their intensities amount to 95 per cent of the NRM. The geographic positions of palaeopoles do not contradict the 'key poles' of the Antarctic Peninsula between 90 and 60 Ma. A significant part of the collection was subjected to Coe-modified Thellier palaeointensity experiments with the pTRM checks, which yielded seven reliable palaeointensity determinations for seven different locations. The obtained VDMs are relatively low for all sites, being on average about half of the present day VDM. The analysis of available palaeointensity data for the Cretaceous, Miocene and Middle Jurassic indicates the existence of strong correlations between the mean VDM and VDM scatter versus the rate of reversals. However, due to the shortage of data, the correlations are not significant at the 5 per cent significance level.

  1. The bivalve Anopaea (Inoceramidae) from the Upper Jurassic-lowermost Cretaceous of Mexico

    Science.gov (United States)

    Zell, Patrick; Crame, J. Alistair; Stinnesbeck, Wolfgang; Beckmann, Seija

    2015-07-01

    In Mexico, the Upper Jurassic to lowermost Cretaceous La Casita and coeval La Caja and La Pimienta formations are well-known for their abundant and well-preserved marine vertebrates and invertebrates. The latter include conspicuous inoceramid bivalves of the genus Anopaea not formally described previously from Mexico. Anopaea bassei (Lecolle de Cantú, 1967), Anopaea cf. stoliczkai (Holdhaus, 1913), Anopaea cf. callistoensis Crame and Kelly, 1995 and Anopaea sp. are rare constituents in distinctive Tithonian-lower Berriasian levels of the La Caja Formation and one Tithonian horizon of the La Pimienta Formation. Anopaea bassei was previously documented from the Tithonian of central Mexico and Cuba, while most other members of Anopaea described here are only known from southern high latitudes. The Mexican assemblage also includes taxa which closely resemble Anopaea stoliczkai from the Tithonian of India, Indonesia and the Antarctic Peninsula, and Anopaea callistoensis from the late Tithonian to ?early Berriasian of the Antarctic Peninsula. Our new data expand the palaeogeographical distribution of the high latitude Anopaea to the Gulf of Mexico region and substantiate faunal exchange, in the Late Jurassic-earliest Cretaceous, between Mexico and the Antarctic Realm.

  2. Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous.

    Science.gov (United States)

    Jud, Nathan A

    2015-09-07

    Eudicot flowering plants comprise roughly 70% of land plant species diversity today, but their early evolution is not well understood. Fossil evidence has been largely restricted to their distinctive tricolpate pollen grains and this has limited our understanding of the ecological strategies that characterized their primary radiation. I describe megafossils of an Early Cretaceous eudicot from the Potomac Group in Maryland and Virginia, USA that are complete enough to allow reconstruction of important life-history traits. I draw on quantitative and qualitative analysis of functional traits, phylogenetic analysis and sedimentological evidence to reconstruct the biology of this extinct species. These plants were small and locally rare but widespread, fast-growing herbs. They had complex leaves and they were colonizers of bright, wet, disturbance-prone habitats. Other early eudicot megafossils appear to be herbaceous rather than woody, suggesting that this habit was characteristic of their primary radiation. A mostly herbaceous initial diversification of eudicots could simultaneously explain the heretofore sparse megafossil record as well as their rapid diversification during the Early Cretaceous because the angiosperm capacity for fast reproduction and fast evolution is best expressed in herbs. © 2015 The Author(s).

  3. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution

    Science.gov (United States)

    de Boer, Hugo Jan; Eppinga, Maarten B.; Wassen, Martin J.; Dekker, Stefan C.

    2012-01-01

    The revolutionary rise of broad-leaved (flowering) angiosperm plant species during the Cretaceous initiated a global ecological transformation towards modern biodiversity. Still, the mechanisms involved in this angiosperm radiation remain enigmatic. Here we show that the period of rapid angiosperm evolution initiated after the leaf interior (post venous) transport path length for water was reduced beyond the leaf interior transport path length for CO2 at a critical leaf vein density of 2.5–5 mm mm−2. Data and our modelling approaches indicate that surpassing this critical vein density was a pivotal moment in leaf evolution that enabled evolving angiosperms to profit from developing leaves with more and smaller stomata in terms of higher carbon returns from equal water loss. Surpassing the critical vein density may therefore have facilitated evolving angiosperms to develop leaves with higher gas exchange capacities required to adapt to the Cretaceous CO2 decline and outcompete previously dominant coniferous species in the upper canopy. PMID:23187621

  4. Male spike strobiles with Gnetum affinity from the Early Cretaceous in western Liaoning, Northeast China

    Institute of Scientific and Technical Information of China (English)

    Shuang-Xing GUO; Jin-Geng SHA; Li-Zeng BIAN; Yin-Long QIU

    2009-01-01

    A fossil with Gnetum affinity was found in the Jianshangou Member (Barremian Age) of the Yixian Formation (Lower Cretaceous Epoch) of the Jehol Group in western Liaoning, northeastern China. The single fossil specimen is represented by both elongate-cylindrical male spike strobiles which borne within a nodal bract of cauliflorous branch. The spike strobiles have apparent nodes, invisible internodes, and numerous verticillate involucral collars. The microsporangiate units within involucral collars are not seen. The male spike strobiles with verticillate involucral collars occur exclusively in Gnetum; hence, the fossil strobiles are attributed to a new taxon, Khitania columnispicata gen. & sp. nov., being closely related to Gnetum. The general isotopic dating suggests an age of Barremian, ca. 125-122 million years (Myr) ago for the Jianshangou Member. The palaeoecological and palaeoclimatic inference based on the compositions of flora and fauna, and lithological characters of the fossil locality suggests that the fossil plants grew in a subtropical mesophytic forest and under a warmer climate. The remains of male spike strobiles are the first record of gnetalean macrofossil. It documents the evolution of the distinct gnetoid morphology and indicates a wider range of distribution of Gnetaceae in the Early Cretaceous than present day.

  5. El Niño-Southern oscillation variability from the late cretaceous marca shale of California

    Science.gov (United States)

    Davies, Andrew; Kemp, Alan E.S.; Weedon, Graham P.; Barron, John A.

    2012-01-01

    Changes in the possible behavior of El Niño–Southern Oscillation (ENSO) with global warming have provoked interest in records of ENSO from past “greenhouse” climate states. The latest Cretaceous laminated Marca Shale of California permits a seasonal-scale reconstruction of water column flux events and hence interannual paleoclimate variability. The annual flux cycle resembles that of the modern Gulf of California with diatoms characteristic of spring upwelling blooms followed by silt and clay, and is consistent with the existence of a paleo–North American Monsoon that brought input of terrigenous sediment during summer storms and precipitation runoff. Variation is also indicated in the extent of water column oxygenation by differences in lamina preservation. Time series analysis of interannual variability in terrigenous sediment and diatom flux and in the degree of bioturbation indicates strong periodicities in the quasi-biennial (2.1–2.8 yr) and low-frequency (4.1–6.3 yr) bands both characteristic of ENSO forcing, as well as decadal frequencies. This evidence for robust Late Cretaceous ENSO variability does not support the theory of a “permanent El Niño,” in the sense of a continual El Niño–like state, in periods of warmer climate.

  6. Severe environmental effects of Chicxulub impact imply key role in end-Cretaceous mass extinction

    Science.gov (United States)

    Brugger, Julia; Feulner, Georg; Petri, Stefan

    2017-04-01

    66 million years ago, during the most recent of the five severe mass extinctions in Earth's history, non-avian dinosaurs and many other organisms became extinct. The cause of this end-Cretaceous mass extinction is seen in either flood-basalt eruptions or an asteroid impact. Modeling the climatic changes after the Chicxulub asteroid impact allow to assess its contribution to the extinction event and to analyze the short-term and long-term response of the climate and the biosphere to the impact. Existing studies either investigated the effect of dust, which is now believed to play a minor role, or used one-dimensional, non-coupled models. In contrast, we use a coupled climate model to explore the longer lasting cooling due to sulfate aerosols. Based on data from geophysical impact modeling, we set up simulations with different stratospheric residence times for sulfate aerosols. Depending on this residence time, global surface air temperature decreased by at least 26°C, with 3 to 16 years subfreezing temperatures and a recovery time larger than 30 years. Vigorous ocean mixing, caused by the fast cooling of the surface ocean, might have perturbed marine ecosystems by the upwelling of nutrients. The dramatic climatic changes seen in our simulations imply severe environmental effects and therefore a significant contribution of the impact in the end-Cretaceous mass extinction.

  7. Cretaceous ostracods of the Barreirinhas Basin: Taxonomy, biostratigraphic considerations and paleoenvironmental inferences

    Science.gov (United States)

    Santos Filho, M. A. B.; Fauth, G.; Piovesan, E. K.

    2017-01-01

    Ostracods are microcrustaceans that inhabit different aquatic environments and are frequently used in paleoecological interpretations and biostratigraphic studies. The Barreirinhas Basin, Northern of Brazil, contains a well-preserved ostracod assemblage in its sedimentary rocks of early and late Cretaceous age, which have been so far poorly studied. This paper contains the first taxonomic identification of the ostracod assemblages, as well as the elaboration of paleoenvironmental and biostratigraphic inferences, for the Cretaceous of the Barreirinhas Basin. The studied material consists of 147 samples from the wells 1-MAS-1A, 1-MAS-3A, 1-MAS-4A and 1-MAS-14A. 495 specimens were recovered, distributed between 40 species, 16 genera and 9 families, including three new species. Based on previously established biozones for the Sergipe basin, two biozones were identified: the Nigeroloxoconcha aff. Nigeroloxoconcha sp. GA A 22 Range Zone, of lower Cenomanian age; and the Brachycythere sapucariensis Interval Zone, of Turonian to middle Coniacian age. Finally, three distinct ostracod assemblages were defined: Assemblage 1, dominated by Conchoecia? species; Assemblage 2, well diversified but with low abundance; and Assemblage 3, with cold water ostracods such as Krithe. Based on the ostracod assemblages identified, a middle neritic, platformal paleoenvironment was inferred for the studied interval.

  8. Equator To Pole in the Cretaceous: A Comparison of Clumped Isotope Data and CESM Model Runs

    Science.gov (United States)

    Petersen, S. V.; Tabor, C. R.; Meyer, K.; Lohmann, K. C.; Poulsen, C. J.; Carpenter, S. J.

    2015-12-01

    An outstanding issue in the field of paleoclimate is the inability of models to reproduce the shallower equator-to-pole temperature gradients suggested by proxies for past greenhouse periods. Here, we focus on the Late Cretaceous (Maastrichtian, 72-66 Ma), when estimated CO2 levels were ~400-1000ppm. New clumped isotope temperature data from more than 10 sites spanning 65°S to 48°N are used to reconstruct the Maastrichtian equator-to-pole temperature gradient. This data is compared to CESM model simulations of the Maastrichtian, run using relevant paleogeography and atmospheric CO2 levels of 560 and 1120 ppm. Due to a reduced "proxy toolkit" this far in the past, much of our knowledge of Cretaceous climate comes from the oxygen isotope paleothermometer, which incorporates an assumption about the oxygen isotopic composition of seawater (δ18Osw), a quantity often related to salinity. With the clumped isotope paleothermometer, we can directly calculate δ18Osw. This will be used to test commonly applied assumptions about water composition, and will be compared to modeled ocean salinity. We also discuss basin-to-basin differences and their implications for paleo-circulation patterns.

  9. Discovery of fossil lamprey larva from the Lower Cretaceous reveals its three-phased life cycle.

    Science.gov (United States)

    Chang, Mee-mann; Wu, Feixiang; Miao, Desui; Zhang, Jiangyong

    2014-10-28

    Lampreys are one of the two surviving jawless vertebrate groups and one of a few vertebrate groups with the best exemplified metamorphosis during their life cycle, which consists of a long-lasting larval stage, a peculiar metamorphosis, and a relatively short adulthood with a markedly different anatomy. Although the fossil records have revealed that many general features of extant lamprey adults were already formed by the Late Devonian (ca. 360 Ma), little is known about the life cycle of the fossil lampreys because of the lack of fossilized lamprey larvae or transformers. Here we report the first to our knowledge discovery of exceptionally preserved premetamorphic and metamorphosing larvae of the fossil lamprey Mesomyzon mengae from the Lower Cretaceous of Inner Mongolia, China. These fossil ammocoetes look surprisingly modern in having an eel-like body with tiny eyes, oral hood and lower lip, anteriorly positioned branchial region, and a continuous dorsal skin fin fold and in sharing a similar feeding habit, as judged from the detritus left in the gut. In contrast, the larger metamorphosing individuals have slightly enlarged eyes relative to large otic capsules, thickened oral hood or pointed snout, and discernable radials but still anteriorly extended branchial area and lack a suctorial oral disk, which characterize the early stages of the metamorphosis of extant lampreys. Our discovery not only documents the larval conditions of fossil lampreys but also indicates the three-phased life cycle in lampreys emerged essentially in their present mode no later than the Early Cretaceous.

  10. Metamorphic history and geodynamic significance of the Early Cretaceous Sabzevar granulites (Sabzevar structural zone, NE Iran

    Directory of Open Access Journals (Sweden)

    M. Nasrabady

    2011-05-01

    Full Text Available The Iranian ophiolites are part of the vast orogenic suture zones that mark the Alpine-Himalayan convergence zone. Few petrological and geochronological data are available from these ophiolitic domains, hampering a full assessment of the timing and regimes of subduction zone metamorphism and orogenic construction in the region. This paper describes texture, geochemistry and the pressure-temperature path of the Early Cretaceous granulites that occur within the Tertiary Sabzevar suture zone of NE Iran. The geochemical data set document that the granulites are remnants of a MORB-type oceanic crust and thus of a (Early Cretaceous ? back-arc basin formed in the upper plate of the Neotethyan subduction and thus interpreted as portions of a dismembered dynamothermal sole formed during oceanic subduction. The metamorphic history of the granulites suggests an anticlockwise pressure-temperature loop, compatible with burial in a hot subduction zone followed by cooling during exhumation. This is interpreted as the evidence of a nascent subduction zone formed at the expenses of hot and hence young oceanic lithosphere. These data point to diachronous and independent tectonic evolutions of the different ophiolitic domains of central Iran, for which a growing heterogeneity in the timing of metamorphic equilibration and of pressure-temperature paths can be expected with further investigations.

  11. Eocene and not Cretaceous origin of spider wasps: Fossil evidence from amber

    Directory of Open Access Journals (Sweden)

    Juanita Rodriguez

    2016-02-01

    Full Text Available Spider wasps had long been proposed to originate in the mid-Cretaceous based on the Burmese amber fossil Bryopompilus interfector Engel and Grimaldi, 2006. We performed a morphological examination of this fossil and determined it does not belong to Pompilidae or any other described hymenopteran family. Instead, we place it in the new family Bryopompilidae. The oldest verifiable member of the Pompilidae is from Baltic amber, which suggests the family probably originated in the Eocene, not in the mid-Cretaceous as previously proposed. The origin of spider wasps appears to be correlated with an increase in spider familial diversity in the Cenozoic. We also we add two genera to the extinct pompilid fauna: Tainopompilus gen. nov., and Paleogenia gen. nov., and describe three new species of fossil spider wasps: Anoplius planeta sp. nov., from Dominican amber (Burdigalian to Langhian; Paleogenia wahisi sp. nov., from Baltic amber (Lutetian to Priabonian; and Tainopompilus argentum sp. nov, from Dominican amber (Chattian to Langhian.

  12. A new Cretaceous family of enigmatic two-winged lacewings (Neuroptera

    Directory of Open Access Journals (Sweden)

    V. N. Makarkin

    2013-02-01

    Full Text Available Lacewings (Neuroptera normally bear four well-developed wings. There are a few brachypterous, micropterous or apterous species, found in several extant families; this wing reduction is usually associated with flightlessness. The only documented fossil neuropteran with reduced hind wings (modified to small haltere-like structures is the enigmatic minute genus Mantispidiptera Grimaldi from the Late Cretaceous amber of New Jersey. In this paper, we report a new genus and species from the Early Cretaceous Yixian Formation of China (Dipteromantispa brevisubcosta n. gen. et n. sp. resembling Mantispidiptera. We place these two genera in the new family Dipteromantispidae, n. fam. They bear well-developed forewings with reduced venation, and hind wings that are extremely modified as small structures resembling the halteres of Diptera. Dipteromantispidae n. fam. might be specialized descendants of some early Berothidae or of stem group Mantispidae + Berothidae. We presume that dipteromantispids were active fliers. This is a remarkable example of parallel evolution of wing structures in this neuropteran family and Diptera. doi:10.1002/mmng.201300002

  13. Upper Jurassic to Lower Cretaceous(?) synorogenic sedimentary rocks in the southern Spring Mountains, Nevada

    Science.gov (United States)

    Carr, Michael D.

    1980-08-01

    A newly recognized sequence of Upper Jurassic to Lower Cretaceous(?) terrigenous rocks in the Good-springs district, Nevada, was deposited during the emplacement of the Contact thrust plate. Two facies are recognized: (1) interbedded conglomerate and sandstone derived from Mesozoic igneous and terrigenous platform rocks and (2) interbedded carbonate and sandstone-clast conglomerate, quartz sandstone, and red shale. No igneous detritus occurs in the facies with carbonate-clast conglomerate. Carbonate clasts could only have been derived from the Paleozoic carbonate sequence, which was exposed in the area by latest Jurassic to earliest Cretaceous thrusting. The age of rocks from a volcanic unit within the synorogenic sequence was determined radiometrically to be 150 ± 10 m.y. (K-Ar on biotite). The sequence was deposited disconformably on deeply eroded rocks of the early Mesozoic platform and ultimately overridden from the west by the Contact thrust plate. Information from the sequence corroborates previously reported regional data regarding the timing and nature of the Contact-Red Springs thrust event. *Present address: U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025

  14. A gravid lizard from the Cretaceous of China and the early history of squamate viviparity

    Science.gov (United States)

    Wang, Yuan; Evans, Susan E.

    2011-09-01

    Although viviparity is most often associated with mammals, roughly one fifth of extant squamate reptiles give birth to live young. Phylogenetic analyses indicate that the trait evolved more than 100 times within Squamata, a frequency greater than that of all other vertebrate clades combined. However, there is debate as to the antiquity of the trait and, until now, the only direct fossil evidence of squamate viviparity was in Late Cretaceous mosasauroids, specialised marine lizards without modern equivalents. Here, we document viviparity in a specimen of a more generalised lizard, Yabeinosaurus, from the Early Cretaceous of China. The gravid female contains more than 15 young at a level of skeletal development corresponding to that of late embryos of living viviparous lizards. This specimen documents the first occurrence of viviparity in a fossil reptile that was largely terrestrial in life, and extends the temporal distribution of the trait in squamates by at least 30 Ma. As Yabeinosaurus occupies a relatively basal position within crown-group squamates, it suggests that the anatomical and physiological preconditions for viviparity arose early within Squamata.

  15. Hadrosauroid Dinosaurs from the Late Cretaceous of the Sultanate of Oman.

    Science.gov (United States)

    Buffetaut, Eric; Hartman, Axel-Frans; Al-Kindi, Mohammed; Schulp, Anne S

    2015-01-01

    Fragmentary post-cranial remains (femora, tibia, vertebrae) of ornithischian dinosaurs from the Late Cretaceous of the Sultanate of Oman are described and referred to hadrosauroids. The specimens come from the Al-Khod Conglomerate, of latest Campanian to Maastrichtian age, in the north-eastern part of the country. Although the fragmentary condition of the fossils precludes a precise identification, various characters, including the shape of the fourth trochanter of the femur and the morphology of its distal end, support an attribution to hadrosauroids. With the possible exception of a possible phalanx from Angola, this group of ornithopod dinosaurs, which apparently originated in Laurasia, was hitherto unreported from the Afro-Arabian plate. From a paleobiogeographical point of view, the presence of hadrosauroids in Oman in all likelihood is a result of trans-Tethys dispersal from Asia or Europe, probably by way of islands in the Tethys shown on all recent paleogeographical maps of that area. Whether hadrosauroids were widespread on the Afro-Arabian landmass in the latest Cretaceous, or where restricted to the « Oman island » shown on some paleogeographical maps, remains to be determined.

  16. Cretaceous alkaline volcanism in south Marzanabad, northern central Alborz, Iran: Geochemistry and petrogenesis

    Directory of Open Access Journals (Sweden)

    Roghieh Doroozi

    2016-11-01

    Full Text Available The alkali-basalt and basaltic trachy-andesites volcanic rocks of south Marzanabad were erupted during Cretaceous in central Alborz, which is regarded as the northern part of the Alpine-Himalayan orogenic belt. Based on petrography and geochemistry, en route fractional crystallization of ascending magma was an important process in the evolution of the volcanic rocks. Geochemical characteristics imply that the south Marzanabad alkaline basaltic magma was originated from the asthenospheric mantle source, whereas the high ratios of (La/YbN and (Dy/YbN are related to the low degree of partial melting from the garnet bearing mantle source. Enrichment pattern of Nb and depletion of Rb, K and Y, are similar to the OIB pattern and intraplate alkaline magmatic rocks. The K/Nb and Zr/Nb ratios of volcanic rocks range from 62 to 588 and from 4.27 to 9 respectively, that are some higher in more evolved samples which may reflect minor crustal contamination. The isotopic ratios of Sr and Nd respectively vary from 0.70370 to 0.704387 and from 0.51266 to 0.51281 that suggest the depleted mantle as a magma source. The development of south Marzanabad volcanic rocks could be related to the presence of extensional phase, upwelling and decompressional melting of asthenospheric mantle in the rift basin which made the alkaline magmatism in Cretaceous, in northern central Alborz of Iran.

  17. From Mesoproterozoic magmatism to collisional Cretaceous anatexis: Tectonomagmatic history of the Pelagonian Zone, Greece

    Science.gov (United States)

    Schenker, Filippo Luca; Burg, Jean-Pierre; Kostopoulos, Dimitrios; Moulas, Evangelos; Larionov, Alexander; Quadt, Albrecht

    2014-08-01

    The magmatic history of the Pelagonian Zone, in northern Greece, is constrained with secondary ion mass spectrometer (SIMS) U-Pb dating on zircons of various granitoids whose structural positions were defined with respect to the regional main foliation. Ages pertain to four groups: (i) Mesoproterozoic (circa 1430 Ma) crystallization of granites inferred from inherited magmatic zircon cores that have been partially molten during the (ii) Neoproterozoic at circa 685 Ma (metamorphic zircon rims) and subsequently intruded by a Neoproterozoic leucogranite (circa 600 Ma). (iii) Late- or post-Variscan calc-alkaline granitoids (315-301 Ma) were in turn intruded by a subvolcanic dike at about 280 Ma. In the Early Permian the ɛNd(t) in magmas decreased from -7.3 to -1.3, hinting to mantle-derived melts produced during extension. Rifting is further heralded by two acidic and one mafic dike containing Lower-Middle Triassic zircons (246-242 Ma). (iv) Early Cretaceous anatectic melts at 117 ± 8 Ma formed during regional metamorphism. This age is the first report of in situ anatexis in the Pelagonian Zone. Cretaceous anatexis developed during the Mesozoic collision of Pelagonia with the Eurasian margin. Major- and trace-element geochemistry of amphibolites further attests for the complex pre-Alpine tectonic history with Neoproterozoic calc-alkaline and back-arc geochemical signature and Triassic alkali-magmatism.

  18. Jurassic-Early Cretaceous Gondwanan homoxylous woods: a nomenclatural revision of the genera with taxonomic notes.

    Science.gov (United States)

    Bamford, M K.; Philippe, M

    2001-04-01

    The homoxylous fossil woods occurring in the Gondwanan continents of South America, Australia, Africa, India and Antarctica during the Jurassic and Early Cretaceous period are considered here. Original descriptions of the genera and wherever possible, the type material, have been consulted. Applying the rules of the International Code of Botanical Nomenclature, the generic names of the homoxylous woods have been revised from a nomenclatural point of view. According to this review, out of 31 generic names used for woods from the given time interval and area, 6 are illegitimate later nomenclatural synonyms, 1 is a later homonym, and 5 can be considered as taxonomical synonyms. Moreover, 9 genera have been used erroneously. We propose one new generic name (Protaxodioxylon n. gen.) and elsewhere we will propose for conservation, with a conserved type one of the illegitimate names and one of the taxonomic synonyms. As a result, we consider that there are only eighteen generic names correctly quoted for the Jurassic-Early Cretaceous of Gondwana, and we provide a taxonomic key for the corresponding genera. This revision is the first step in systematically comparing northern and southern hemisphere woods.

  19. Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages

    Directory of Open Access Journals (Sweden)

    Sorenson Michael D

    2008-01-01

    Full Text Available Abstract Background Determining an absolute timescale for avian evolutionary history has proven contentious. The two sources of information available, paleontological data and inference from extant molecular genetic sequences (colloquially, 'rocks' and 'clocks', have appeared irreconcilable; the fossil record supports a Cenozoic origin for most modern lineages, whereas molecular genetic estimates suggest that these same lineages originated deep within the Cretaceous and survived the K-Pg (Cretaceous-Paleogene; formerly Cretaceous-Tertiary or K-T mass-extinction event. These two sources of data therefore appear to support fundamentally different models of avian evolution. The paradox has been speculated to reflect deficiencies in the fossil record, unrecognized biases in the treatment of genetic data or both. Here we attempt to explore uncertainty and limit bias entering into molecular divergence time estimates through: (i improved taxon (n = 135 and character (n = 4594 bp mtDNA sampling; (ii inclusion of multiple cladistically tested internal fossil calibration points (n = 18; (iii correction for lineage-specific rate heterogeneity using a variety of methods (n = 5; (iv accommodation of uncertainty in tree topology; and (v testing for possible effects of episodic evolution. Results The various 'relaxed clock' methods all indicate that the major (basal lineages of modern birds originated deep within the Cretaceous, although temporal intraordinal diversification patterns differ across methods. We find that topological uncertainty had a systematic but minor influence on date estimates for the origins of major clades, and Bayesian analyses assuming fixed topologies deliver similar results to analyses with unconstrained topologies. We also find that, contrary to expectation, rates of substitution are not autocorrelated across the tree in an ancestor-descendent fashion. Finally, we find no signature of episodic molecular evolution related to either

  20. Cretaceous and Paleogene Fagaceae from North America and Greenland: evidence for a Late Cretaceous split between Fagus and the remaining Fagaceae

    Directory of Open Access Journals (Sweden)

    Grímsson Friðgeir

    2016-12-01

    Full Text Available Modern lineages of the beech family, Fagaceae, one of the most important north-temperate families of woody flowering plants, have been traced back to the early Eocene. In contrast, molecular differentiation patterns indicate that the Fagus lineage, Fagoideae, with a single modern genus, evolved much earlier than the remaining lineages within Fagaceae (Trigonobalanoideae, Castaneoideae, Quercoideae. The minimum age for this primary split in the Fagaceae has been estimated as 80 ± 20 Ma (i.e. Late Cretaceous in recently published, time-calibrated phylogenetic trees including all Fagales. Here, we report fagaceous fossils from the Campanian of Wyoming (82-81 Ma; Eagle Formation [Fm], the Danian of western Greenland (64-62 Ma; Agatdal Fm, and the middle Eocene of British Columbia (ca 48 Ma; Princeton Chert, and compare them to the Fagaceae diversity of the recently studied middle Eocene Hareøen Fm of western Greenland (42-40 Ma. The studied assemblages confirm that the Fagus lineage (= Fagoideae and the remainder of modern Fagaceae were diverged by the middle Late Cretaceous, together with the extinct Fagaceae lineage(s of Eotrigonobalanus and the newly recognised genus Paraquercus, a unique pollen morph with similarities to both Eotrigonobalanus and Quercus. The new records push back the origin of (modern Fagus by 10 Ma and that of the earliest Fagoideae by 30 Ma. The earliest Fagoideae pollen from the Campanian of North America differs from its single modern genus Fagus by its markedly thicker pollen wall, a feature also seen in fossil and extant Castaneoideae. This suggests that a thick type 1 foot layer is also the plesiomorphic feature in Fagoideae although not seen in any of its living representatives. The Danian Fagus pollen of Greenland differs in size from those of modern species but is highly similar to that of the western North American early Eocene F. langevinii, the oldest known beech so far. Together with the Quercus pollen record

  1. Chemostratigraphy of Late Cretaceous deltaic and marine sedimentary rocks from high northern palaeolatitudes in the Nuussuaq Basin, West Greenland

    DEFF Research Database (Denmark)

    Lenniger, Marc; Pedersen, Gunver Krarup; Bjerrum, Christian J.

    The Nuussuaq Basin in the Baffin Bay area in West Greenland formed as a result of the opening of the Labrador Sea in Late Mesozoic to Early Cenozoic times. The first rifting and the development of the Nuussuaq Basin took place during the Early Cretaceous and was followed by a second rifting phase...

  2. Stratigraphic and Petrological Constraints of Cretaceous Subduction Initiation and Arc-Continent Collision in the Northern Andes

    Science.gov (United States)

    Leon, S.; Cardona, A.; Mejia, D.; Parra, M.

    2014-12-01

    Middle to Late-Cretaceous orogenic events in the northern Andes have been commonly reconstructed from the analysis of inland basins or the integration of regional scale thermochronological, geochronological and geochemical datasets from the accreted blocks. In contrast, limited studies have been developed on the stratigraphic and deformational record of magmatic and sedimentary sequences exposed near the suture zones. New field and petrologic data are used to characterize an ophiolite type sequence that outcrops in the western flank from the northwestern segment of the Central Cordillera of Colombia. Stratigraphic analysis indicate the existence of Albian-Aptian deep marine pelitic sequence interbedded with minor chert and thin quartz sandstone beds that apparently change to a volcanic dominate stratigraphy. Deformed ophiolite-like mafic and ultramafic plutonic rocks and isolated pillow lavas are also exposed to the east in fault contact with the pelitic sequence. The pelitic and interlayered volcanic rocks represent the growth of an extensional Early-Cretaceous basin that followed a Late-Jurassic magmatic quiescence in the Northern Andes. The volcano-sedimentary record is probably related to the growth of a fore-arc basin in a new subduction zone that extends until the Late Cretaceous. The deformation and obduction of the ophiolitic association and the fore-arc basin were probably triggered by the Late Cretaceous collision with an allocthonous plateau-arc associated to the migration of the Caribbean plate.

  3. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    NARCIS (Netherlands)

    Maffione, Marco; van Hinsbergen, Douwe J.J.; de Gelder, Giovanni I.N.O.; van der Goes, Freek C.; Morris, Antony

    2017-01-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Sup

  4. Extinction and recovery patterns in benthic foraminiferal paleocommunities across the Cretaceous/Paleogene and Paleocene/Eocene boundaries

    NARCIS (Netherlands)

    Speijer, R.P.

    1994-01-01

    In this thesis Late Cretaceous to Early Paleogene (66-54 Ma) benthic foraminiferal distribution patterns in the southern Tethys (northern margin of Africa) are discussed. We focus in particular on extinction and recovery patterns in middle neritic (50-100 m) to upper bathyal (200-600 m) benthic fora

  5. Depositional history and clay minerals of the Upper Cretaceous basin in the South-Central Pyrenees, Spain

    NARCIS (Netherlands)

    Nagtegaal, P.J.C.

    1972-01-01

    An ordered sequence of well-defined sedimentary environments reflects the deepening and shallowing stages in the depositional history of the Upper Cretaceous basin in the South-Central Pyrenees, Spain. The sequence, which has a Santonian age at its base, starts with a calcarenite barrier system on w

  6. Late Cretaceous extension and exhumation of the Stong and Taku magmatic and metamorphic complexes, NE Peninsular Malaysia

    Science.gov (United States)

    François, T.; Md Ali, M. A.; Matenco, L.; Willingshofer, E.; Ng, T. F.; Taib, N. I.; Shuib, M. K.

    2017-08-01

    Fragmentation of large continental areas by post-orogenic extension requires favourable geodynamic conditions and frequently occurs along pre-existing suture zones or nappe contacts, as exemplified by the Stong and Taku magmatic and metamorphic complexes of northern Peninsular Malaysia. For this case, we have employed a field and microstructural kinematic study combined with low temperature thermo-chronology to analyse the tectonic and exhumation history. The results show that the Late Palaeozoic - Triassic Indosinian orogeny created successive phases of burial related metamorphism, shearing and contractional deformation. This orogenic structure was subsequently dismembered during a Cretaceous thermal event that culminated in the formation of a large scale Late Santonian - Early Maastrichtian extensional detachment, genetically associated with crustal melting, the emplacement of syn-kinematic plutons and widespread migmatisation. The emplacement of these magmatic rocks led to an array of simultaneously formed structures that document deformation conditions over a wide temperature range, represented by amphibolite- and greenschist- facies mylonites and as well as brittle structures, such as cataclastic zones and normal faults that formed during exhumation in the footwall of the detachment. The formation of this detachment and a first phase of Late Cretaceous cooling was followed by renewed Eocene - Oligocene exhumation, as evidenced from our fission track ages. We infer that an initial Cretaceous thermal anomaly was responsible for the formation of an extensional gneiss dome associated with simple shear and rotation of normal faults. These Cretaceous processes played a critical role in the establishment of the presently observed crustal structure of Peninsular Malaysia.

  7. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    NARCIS (Netherlands)

    Maffione, Marco; van Hinsbergen, Douwe J.J.; de Gelder, Giovanni I.N.O.; van der Goes, Freek C.; Morris, Antony

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia.

  8. Palynological characteristics of Upper Cretaceous and Paleogene deposits on the west of the Sambian Peninsula (Kaliningrad region), Part 1

    Science.gov (United States)

    Aleksandrova, G. N.; Zaporozhets, N. I.

    2008-06-01

    The results of studying dinocysts in the Upper Cretaceous-Lower Paleogene succession of the Kaliningrad region are considered. Distinguished in the succession are seven biostratigraphic units in the rank of the Palaeohystrichophora infusorioides, Chatangiella vnigrii, Cerodinium diebelii, Alisocysta margarita, Deflandrea oebisfeldensis, Areosphaeridium diktyoplokum, and Rhombodinium perforatum beds and one Charlesdowniea clathrata angulosa Zone.

  9. A multi-proxy approach to determine Antarctic terrestrial palaeoclimate during the Late Cretaceous and Early Tertiary

    NARCIS (Netherlands)

    Poole, I.J.; Cantrill, David J.; Utescher, T.

    2005-01-01

    Fossil wood is abundant throughout the Cretaceous and Tertiary sequences of the northern Antarctic Peninsula region. The fossil wood represents the remains of the vegetation that once grew at the southern high palaeolatitudes at 59–628S through the general decline in climate, from the Late

  10. Evidence of predation on the vertebra of a hadrosaurid dinosaur from the Upper Cretaceous (Campanian) of Coahuila, Mexico

    OpenAIRE

    2009-01-01

    International audience; In sediments of the Aguja Formation (Late Cretaceous: Campanian) at La Salada in northern part of the state of Coahuila, Mexico, numerous fossils of vertebrates have been discovered including Hadrosauridae. One hadrosaur vertebra provides evidence of predation probably by a giant alligator Deinosuchus riograndensis.

  11. Assessment of undiscovered oil and gas resources in Jurassic and Cretaceous strata of the Gulf Coast, 2010

    Science.gov (United States)

    Dubiel, Russell F.; Warwick, Peter D.; Swanson, Sharon; Burke, Lauri; Biewick, Laura R.H.; Charpentier, Ronald R.; Coleman, James L.; Cook, Troy A.; Dennen, Kris; Doolan, Colin; Enomoto, Catherine; Hackley, Paul C.; Karlsen, Alexander W.; Klett, Timothy R.; Kinney, Scott A.; Lewan, Michael D.; Merrill, Matt; Pearson, Krystal; Pearson, Ofori N.; Pitman, Janet K.; Pollastro, Richard M.; Rowan, Elizabeth L.; Schenk, Christopher J.; Valentine, Brett

    2011-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 147.4 trillion cubic feet of undiscovered natural gas, 2.4 billion barrels of undiscovered oil, and 2.96 billion barrels of undiscovered natural gas liquids in Jurassic and Cretaceous strata in onshore lands and State waters of the Gulf Coast.

  12. Dinoflagellates: Fossil motile-stage tests from the upper cretaceous of the Northern New Jersey coastal plain

    Science.gov (United States)

    May, F.E.

    1976-01-01

    Fossil dinoflagellate tests have been considered to represent encysted, nonmotile stages. The discovery of flagellar porelike structures and probable trichocyst pores in the Upper Cretaceous genus Dinogymnium suggests that motile stage tests are also preserved as acid-resistant, organic-walled microfossils.

  13. Depositional history and clay minerals of the Upper Cretaceous basin in the South-Central Pyrenees, Spain

    NARCIS (Netherlands)

    Nagtegaal, P.J.C.

    1972-01-01

    An ordered sequence of well-defined sedimentary environments reflects the deepening and shallowing stages in the depositional history of the Upper Cretaceous basin in the South-Central Pyrenees, Spain. The sequence, which has a Santonian age at its base, starts with a calcarenite barrier system on w

  14. Sedimentary and tectonic evolution of the arc zone of Southwestern Ecuador during Late Cretaceous and early Tertiary times

    Science.gov (United States)

    Jaillard, Etienne; Ordoñez, Martha; Berrones, Gerardo; Bengtson, Peter; Bonhomme, Michel; Jimenez, Nelson; Zambrano, Italo

    1996-03-01

    The eastern part of the "Celica basin" of southwesternmost Ecuador exhibits Late Cretaceous to Tertiary sediments which belong to the magmatic arc paleogeographic zone. Important N-S to NE-trending faults separate a western, mainly Late Cretaceous series (Río Playas) from an eastern succession (Catamayo-Gonzanamá) of (?) Late Cretaceous to early Tertiary age. The analysis of these sediments indicates a complex geologic history, which recorded the main stages of the early tectonic evolution of the Andes. In the Río Playas area, a submarine andesitic volcanic pile (Celica Fm) represents the products of a volcanic arc of probably Albian age. It is apparently overlain by a thick, early Late Cretaceous series of volcanic flows and coarse-grained volcaniclastic high-density turbiditic beds (Alamor Fm), the deposition of which might result from the Mochica phase (late Albian-early Cenomanian) Deformation, uplift and erosion (early Peruvian phase) are followed by the sedimentation of unconformable marls and greywackes of marine open shelf to deltaic environment. These comprise Santonian and/or Campanian fine- to mediumgrained deposits (Naranjo Fm), abruptly overlain (late Peruvian phase ?) by fan-delta coarse-grained marine deposits of latest Cretaceous age (Casanga Fm) They are locally capped by undated, partly volcaniclastic red beds, indicating an important regression/uplift of latest Cretaceous-early Tertiary age. In the Catamayo-Gonzanamá area, thick subaerial andesitic volcanic rocks (Sacapalca Fm) are intruded by Paleocene to early Eocene plutons and are overlain by undated fluvial red beds. They express uplift movements of latest Cretaceous-early Tertiary age. To the South, these are capped by slumped lacustrine black shales and greywackes of possible Maastrichtian-Paleocene age (Gonzanamá Fm) Farther north, the Sacapalca volcanics and red beds are overlain by variegated shales, sandstones and conglomerates, dated as latest Oligocene-early Miocene (Catamayo Fm

  15. Quantification of a greenhouse hydrologic cycle from equatorial to polar latitudes: The mid-Cretaceous water bearer revisited

    Science.gov (United States)

    Suarez, M.B.; Gonzalez, Luis A.; Ludvigson, Greg A.

    2011-01-01

    This study aims to investigate the global hydrologic cycle during the mid-Cretaceous greenhouse by utilizing the oxygen isotopic composition of pedogenic carbonates (calcite and siderite) as proxies for the oxygen isotopic composition of precipitation. The data set builds on the Aptian-Albian sphaerosiderite ??18O data set presented by Ufnar et al. (2002) by incorporating additional low latitude data including pedogenic and early meteoric diagenetic calcite ??18O. Ufnar et al. (2002) used the proxy data derived from the North American Cretaceous Western Interior Basin (KWIB) in a mass balance model to estimate precipitation-evaporation fluxes. We have revised this mass balance model to handle sphaerosiderite and calcite proxies, and to account for longitudinal travel by tropical air masses. We use empirical and general circulation model (GCM) temperature gradients for the mid-Cretaceous, and the empirically derived ??18O composition of groundwater as constraints in our mass balance model. Precipitation flux, evaporation flux, relative humidity, seawater composition, and continental feedback are adjusted to generate model calculated groundwater ??18O compositions (proxy for precipitation ??18O) that match the empirically-derived groundwater ??18O compositions to within ??0.5???. The model is calibrated against modern precipitation data sets.Four different Cretaceous temperature estimates were used: the leaf physiognomy estimates of Wolfe and Upchurch (1987) and Spicer and Corfield (1992), the coolest and warmest Cretaceous estimates compiled by Barron (1983) and model outputs from the GENESIS-MOM GCM by Zhou et al. (2008). Precipitation and evaporation fluxes for all the Cretaceous temperature gradients utilized in the model are greater than modern precipitation and evaporation fluxes. Balancing the model also requires relative humidity in the subtropical dry belt to be significantly reduced. As expected calculated precipitation rates are all greater than modern

  16. Reinvestigating an interval of the English Wealden (non-marine Lower Cretaceous): Integrated analysis for palaeoenvironmental and climate cyclicities

    Science.gov (United States)

    Sames, Benjamin

    2017-04-01

    Although increasing over the last years, relatively few studies on changing palaeoenvironments and climate cycles in non-marine archives of the Cretaceous greenhouse Earth do exist. This is primarily a result of the nature of non-marine or terrestrial deposits - strong lateral facies change on local scales and the strong local to regional control of deposition - as well as the lack of high-resolution stratigraphy and correlations to the marine record. On the other hand, major advances in the refinements of the Cretaceous timescale now facilitate the correlation and dating of short-term sea-level records and their supposable relation to climate and/or tectonic events with appropriate resolution, i.e. on Milankovitch scales. Innovations and progress in non-marine bio-, magneto- and chemostratigraphy as well as growing data on Lower and Upper Cretaceous non-marine successions are promising towards approaches for supraregional correlation of these deposits and their appropriate correlation to the Cretaceous marine standard sections. However, convincing evidence for orbitally (climate) driven cyclicity in non-marine Lower Cretaceous deposits is thus far sparse. The non-marine Wealden deposits of England have been used eponymous for widely distributed similar Lower Cretaceous non-marine facies, and they are a 'classical' example for a Mesozoic non-marine succession for which depositional cycles have been suggested since the 1970s, including the famous ostracod 'faunicycles' by F.W. Anderson, but so far lack convincing analyses and remain to be tested. The project 'Lower Cretaceous Climate and Non-marine Stratigraphy (LCCNS)' funded by the Austrian Science Fund (FWF) analyses a chosen interval of the English Wealden at the Clock House Brickworks pit (near Capel, Surrey, England, UK) for orbitally/climate driven cyclicities with an interdisciplinary methodology: micropalaeontology, sedimentology, and geochemistry. Ostracod (aquatic microcrustaceans with calcified shell

  17. Cretaceous black shale and the oceanic red beds:Process and mechanisms of oceanic anoxic events and oxic environment

    Institute of Scientific and Technical Information of China (English)

    Zhenguo ZHANG; Nianqiao FANG; Lianfeng GAO; Baoling GUI; Muhua CUI

    2008-01-01

    The Cretaceous is an important period in which many geological events occurred,especially the OAEs (oceanic anoxic events) which are characterized by black shale,and the oxic process characterized by CORBs (Cretaceous oceanic red beds).In this paper,the causative mechanism behind the formation of black shale and the oceanic red beds are described in detail.This may explain how the oceanic environment changed from anoxic to oxic in the Cretaceous period.It is suggested that these two different events happened because of the same cause.On the one hand,the large-scale magma activities in Cretaceous caused the concentration of CO2,the release of the inner energy of the earth,superficial change in the ocean-land,and finally,the increase of atmospheric temperature.These changes implied the same tendency as the oceanic water temperature show,and caused the decrease in O2 concentration in the Cretaceous ocean,and finally resulted in the occurrence of the OAEs.On the other hand,violent and frequent volcanic eruptions in the Cretaceous produced plenty of Fe-enriched lava on the seafloor.When the seawater reacted with the lava,the element Fe became dissolved in seawater.Iron,which could help phytoplankton grow rapidly,is a micronutrient essential to the synthesis of enzymes required for photosynthesis in the oceanic environment.Phytoplankton,which grows in much of the oceans around the world,can consume carbon dioxide in the air and the ocean.Meanwhile,an equal quantity of oxygen can be produced by the phytoplankton during its growth.Finally,the oxic environment characterized by red sediment rich in Fe3+appeared.The anoxic and oxic conditions in the Cretaceous ocean were caused by volcanic activities,but they stemmed from different causative mechanisms.The former was based on physical and chemical processes,while the latter involved more complicated bio-oceanic-geochemical processes.

  18. Middle Jurassic - Early Cretaceous rifting on the Chortis Block in Honduras: Implications for proto-Caribbean opening (Invited)

    Science.gov (United States)

    Rogers, R. D.; Emmet, P. A.

    2009-12-01

    Regional mapping integrated with facies analysis, age constraints and airborne geophysical data reveal WNW and NE trends of Middle Jurassic to Early Cretaceous basins which intersect in southeast Honduras that we interpret as the result of rifting associated with the breakup of the Americas and opening of the proto-Caribbean seaway. The WNW-trending rift is 250 km long by 90 km wide and defined by a basal 200 to 800 m thick sequence of Middle to Late Jurassic fluvial channel and overbank deposits overlain by transgressive clastic shelf strata. At least three sub-basins are apparent. Flanking the WNW trending rift basins are fault bounded exposures of the pre-Jurassic continental basement of the Chortis block which is the source of the conglomeratic channel facies that delineate the axes of the rifts. Cretaceous terrigenous strata mantle the exposed basement-cored rift flanks. Lower Cretaceous clastic strata and shallow marine limestone strata are dominant along this trend indicating that post-rift related subsidence continued through the Early Cretaceous. The rifts coincide with a regional high in the total magnetic intensity data. We interpret these trends to reflect NNE-WSW extension active from the Middle Jurassic through Early Cretaceous. These rifts were inverted during Late Cretaceous shortening oriented normal to the rift axes. To the east and at a 120 degree angle to the WNW trending rift is the 300 km long NE trending Guayape fault system that forms the western shoulder of the Late Jurassic Agua Fria rift basin filled by > 2 km thickness of clastic marine shelf and slope strata. This NE trending basin coincides with the eastern extent of the surface exposure of continental basement rocks and a northeast-trending fabric of the Jurassic (?) metasedimentary basement rocks. We have previously interpreted the eastern basin to be the Jurassic rifted margin of the Chortis block with the Guayape originating as a normal fault system. These two rifts basin intersect

  19. Paleomagnetism of Jurassic-Cretaceous basalts from the Franz Josef Land Archipelago: tectonic implications

    Science.gov (United States)

    Abashev, Victor; Mikhaltsov, Nikolay; Vernikovsky, Valery

    2015-04-01

    New paleomagnetic data were obtained from a total of 158 oriented samples collected from the Jurassic magmatic complexes exposed on the Franz Joseph Land Archipelago (FJL). The field work was conducted during 2011 field season. Present study was focused on the tholeiitic basaltic lava flows that crop out on the Hooker Island. The samples were subjected to a detailed step-wise thermal demagnetization in temperatures up to 600 deg C or alternating field demagnetization with maximum filed up to 140 mT. Natural remanent magnetization (NRM) was measured with a 2G cryogenic magnetometer or a JR-6A spin-magnetometer housed in a magnetically shielded room at the Institute of Petroleum Geology and Geophysics, Siberian Branch of Russian Academy of Sciences. The main NRM carriers in the FJL samples are titanomagnetites with varying Ti-content. Magnetic remanence was unblocked in temperatures of 350-400 deg C. Some samples are characterized by unblocking temperatures of 560 deg C. The new paleomagnetic data were combined with those previously obtained from the early Cretaceous volcanics exposed on the FJL. A new mean paleomagnetic direction for the Jurassic rocks was calculated as D=78.3 deg, I=74.7 deg, a95=3.1 deg, k=194.3, N=13. A corresponding paleomagnetic pole is now located at Plat=62.1 deg; Plon=136.5 deg, A95=5.5 deg, K=63.6. New results suggest that the JFL occupied a significantly different position from that of the present day. However, in early Cretaceous the JFL was already located close to its present day position. We propose a rifting event between the North Barentz terrane (FJL and possibly Svalbard) and the counterpart of European tectonic domain. The rifting occurred during Early-Middle Jurassic. This event was accompanied by a significant shift of the FJL to the north-east for approximately 500 km. New results are in good agreement with a hypothesis that the FJL was passing over the Icelandic-Siberian hot spot during the Jurassic-Cretaceous time

  20. The Cretaceous Polar and Western Interior seas: paleoenvironmental history and paleoceanographic linkages

    Science.gov (United States)

    Schröder-Adams, Claudia

    2014-03-01

    This study reviews the Cretaceous histories of the Polar and Western Interior seas as recorded in the Canadian High Arctic Sverdrup Basin, Beaufort-Mackenzie Basin of northwest Canada and Western Canadian Foreland Basin. Newly emerging stratigraphic, paleoclimatic and paleoenvironmental interpretations from the polar realm allow for a fresh look at the response of this oceanic system to global climatic trends and sea-level histories over 35 Ma. Sverdrup basin localities on Axel Heiberg and Ellef Ringnes islands represent shelf to slope environments that contrasted with the shallow water and low gradient settings of the Canadian Western Interior Sea. Both marine systems, connected throughout Aptian to Maastrichtian time, responded to global transgressive-regressive cycles resulting in dynamic paleogeographic changes. The upper Aptian to Campanian succession of the Polar Sea shows at least two unconformable boundaries; one at the Albian/Cenomanian transition and another within the upper Cenomanian. The shallow basin setting and in particular the forebulge and backbulge settings of the Western Canadian Foreland Basin are characterized by multiple erosional surfaces throughout the Cretaceous succession. The Upper Albian disconformity is widely discernible close to the entrance of the Western Interior Sea to the Polar Sea. This suggests a short-lived closure of the latest Albian Mowry Sea that might have been responsible for the large loss of benthic foraminiferal species at this time. Several oceanic anoxic events are documented in these basins representing their response to global climate dynamics. During the Late Cretaceous temperature maximum benthic foraminiferal communities were severely restricted by bottom water hypoxia in both basins. A stratified water column might have been the result of increased freshwater runoff under warm, humid conditions. These conditions supported vegetation up into the polar latitudes that added abundant organic matter to marine shelf

  1. Influences of floral composition and environment on plant biomarkers across a Cretaceous landscape (Big Cedar Ridge)

    Science.gov (United States)

    Bush, R. T.; Diefendorf, A. F.; Wing, S. L.; McInerney, F. A.

    2013-12-01

    The Late Cretaceous fossil site at Big Cedar Ridge (BCR; late Campanian, 72.7 Ma), located in the Bighorn Basin, Wyoming, USA, contains a flora preserved in situ in a volcanic ash tuff over an organic-rich paleosol. The BCR flora is irregularly but extensively exposed along a ~4 km north-south transect and records a lowland flora that grew on a coastal delta on the western shore of the Cretaceous Interior Seaway (Meeteetse Formation). The transect spans a diverse landscape and a range of environmental gradients from very carbon-rich, swampy soils in the southern portion to less carbon-rich in the north; the landscape is also intersected by multiple inactive channel cuts that were filling with sediment and organic matter at the time of ash deposition. Recently Wing and others (2012, Ecological Monographs) described the composition of the local plant community at high resolution across the entire landscape, including identification and quantification of cover and richness for >122 taxonomic morphotypes, for each of 100 sites along the transect. Big Cedar Ridge captures an important time in the ecological development of plant communities: the site preserves ferns, gymnosperms, and angiosperms in 'fern thicket' floral assemblages, which are rare today, as well as disturbed habitats with abundant herbaceous 'dicot' angiosperms. During the Late Cretaceous angiosperms were globally increasing in abundance, displacing other plant groups as vegetational dominants. This setting allows for a novel analysis of plant biomarkers in the context of floral diversity, abundance, and landscape heterogeneity. We quantified leaf waxes (n-alkyl lipids), plant-derived terpenoids, bacterial hopanes, carbon isotope values (including bulk and compound-specific), and percent total organic carbon of the underlying paleosol for 36 sites along the transect in order to assess the influence of floral composition and soil environment on biomarker distributions and preservation. We compare lipid

  2. Foraminifera and the ecology of sea grass communities since the late Cretaceous

    Science.gov (United States)

    Hart, Malcolm; Smart, Christopher; Jagt, John

    2016-04-01

    Sea grasses are marine angiosperms (plants) that, in the late Cretaceous, migrated from the land into shallow-water marine environments. They represent a distinct, but fragile, marine habitat and sea grass meadows are often regarded as biodiversity hot-spots with a range of species (including fish, sea horses and cuttlefish) using them as nurseries for their young. Foraminifera are often found associated with sea grass meadows, with the associated taxa reflecting both the environment and palaeolatitude. In the tropics and sub-tropics, miliolid foraminifera dominate (e.g., Peneroplis spp.) as do large discoidal taxa such as Marginopora and Calcarina. In temperate to cool latitudes the assemblage changes to one dominated by smaller benthic taxa, including Elphidium spp. One taxon, Elphidium crispum, is geotropic and is often found - in the summer months - to crowd the fronds of the sea grass. In the Gulpen and Maastricht formations of the Maastricht area (The Netherlands and Belgium) sea grass fossils (both fronds and rhizomes) have been recorded in association with assemblages of both larger and smaller benthic foraminifera (Hart et al., 2016). Some of the large discoidal forms (e.g., Omphalocyclus and Orbitoides/Lepidorbitoides) and the distinctive Siderolites are associated with these sea grass fossils and are suggestive of the modern sea grass communities of sub-tropical areas. While earlier records were of relatively isolated sea grasses, in September/October 2015 surfaces with abundant sea grasses were found that are suggestive of complete 'meadows'. Preservation of some silicified rhizomes indicates that silicification must have been very rapid, before any degradation or compaction of the delicate tissues. The presence of sea grass fossils and their associated benthic foraminifera is indicative of a clear, shallow-water seaway, with a maximum depth of 15-20 m. The reported variations in sea level during the latest Cretaceous cannot, therefore, have been very

  3. Understanding redox conditions in the mid-Cretaceous Baffin Bay - a combined model-data approach

    Science.gov (United States)

    Lenniger, M.; Bjerrum, C. J.; Pedersen, G. K.; Azhar, M. Al

    2012-04-01

    Cretaceous events of widespread oceanic anoxia are characterized by perturbations in the global carbon cycle and accompanied increased carbon burial in marine sediments. Their occurrence is thought to have been linked to an interaction of greenhouse conditions, palaeogeography and increased nutrient discharge, which led to enhanced surface productivity and improved conditions for carbon preservation. One of the most widespread oceanic anoxic events is the Cenomanian-Turonian boundary event (OAE2). Evidence for anoxic or even euxinic conditions during OAE2 is mainly observed in the Western Interior Seaway and at low- and mid-palaeolatitudes in the proto-Atlantic. However, our understanding of the distribution and characteristics of OAE2 in high palaeolatitudes is still incomplete. In order to investigate the palaeoceanographic conditions in high palaeolatitudes in the mid-Cretaceous, we studied the Umiivik-I stratigraphic core from West Greenland using an integrated approach combining sedimentology and geochemistry with three dimensional regional ocean modeling. Sedimentary rocks from the Umiivik-I core show relative high TOC contents with values up to about 5 %. The organic carbon-to-pyrite sulphur ratio (C/S-ratio) indicates that the organic matter (OM) is predominantly of normal marine origin. Increased C/S-ratios are caused by intermittent input of terrestrial OM and indicate fluctuations in runoff. Redox sensitive trace metal concentrations (e.g. Mo, U and V) were measured in bulk rock samples in order to reconstruct the redox conditions during the deposition. The concentrations of the trace metals (TM) are relatively low and in the same range as reported for average shale reference material. The low TM concentrations in the Umiivik-I core are indicative of deposition under oxygenated bottom water conditions in contrast to usually observed high TM concentrations in anoxic depositional environments during the mid-Cretaceous. These findings are exceptional due to

  4. Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin

    Science.gov (United States)

    Craddock, W.H.; Kirby, E.; Dewen, Z.; Jianhui, L.

    2012-01-01

    Quantifying the Cenozoic growth of high topography in the Indo-Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present-day north-eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE-vergent thrust faults and are now exposed in the high ranges of the north-eastern corner of the Tibetan Plateau. We focus on a particularly well-exposed basin, located ~20km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900m of alluvial sediments that become finer-grained away from the basin-bounding fault. Additionally, beds in the proximal footwall of the basin-bounding fault exhibit progressive, up-section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K-Ar dating of volcanic rocks that floor and cross-cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW-SE contractional deformation similar to that documented throughout the Qinling-Dabie orogen to the east. The Songpan-Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming

  5. Kilop Cretaceous Hardground (Kale, Gümüshane, NE Turkey):description and origin

    Science.gov (United States)

    Eren, Muhsin; Tasli, Kemal

    2002-06-01

    A hardground surface is well exposed in the Kilop area of Kale (Gümüshane, NE Turkey) which forms part of the Eastern Pontides. Here, the hardground is underlain by shallow water Lower Cretaceous limestones, and overlain by Upper Cretaceous red limestones/marls which contains a planktonic microfauna including Globotruncanidae. In the field, the recognition of the hardground is based on the presence of extensive burrows (especially vertical burrows), the encrusting rudistid bivalve Requienia, neptunian-dykes with infills of pelagic sediments and synsedimentary faults. Skolithos and Thalassinoides-type burrows are present. Some burrow walls show iron hydroxide-staining. The extensive burrowing occurred prior to lithification. On the other hand, the neptunian-dykes and synsedimentary faults, which cut the hard ground, occurred after the lithification. These features indicate the progressive hardening of the substrate. The burrowed limestone consists of an intrabioclastic peloidal grainstone which was deposited in an intertidal to shallow, subtidal, moderate to relatively high energy environment. The peloidal limestone shows little or no evidence of submarine cementation, characterized by only scarce relics of isopachous cement rims of bladed calcite spar. The grainstone cement is composed predominantly of blocky calcite and overgrowth calcite cements on the echinoid-fragments. The origin of this cement is controversial. Biostratigraphic analysis of the limestones demonstrates that there is a marked stratigraphic gap (hiatus), spanning the Aptian to the Santonian, in the Cretaceous of the Kilop area. The formation of the Kilop Hardground is related to the break-up and subsidence of the Eastern Pontides carbonate platform during the formation of the Black Sea backarc basin. Hardground development was initiated in a shallow marine environment of slow sedimentation and with moderate to high energy indicating slow subsidence. Later, the hardground subsided abruptly, as

  6. Late Cretaceous to middle Tertiary tectonic history of the northern Rio Grande Rift, New Mexico

    Science.gov (United States)

    Kelley, Shari A.; Duncan, Ian J.

    1986-05-01

    Apatite fission track ages for samples collected from three mountain ranges on the eastern margin of the Rio Grande rift are used to examine the late Cretaceous to middle Miocene uplift and erosional history of north central New Mexico. The dates indicate that uplift and erosion was in progress in the Sandia Mountains near Albuquerque and in the Taos Range portion of the Sangre de Cristo Mountains near Taos at least 30-35 m.y. ago. Uplift and erosion continued in the Sandia Mountains at a relatively constant rate (81 m/m.y.) until 15 Ma; the rate of uplift and erosion in this area has approximately tripled in the past 15 m.y. (230 m/m.y.). Igneous activity in the Taos Range has largely obscured the early Tertiary uplift and erosional history of this portion of the Sangre de Cristo Mountains. A fission track date from one of the middle Tertiary intrusions in the Taos Range is used to calculate the cooling rate due to uplift and erosion in this area for the past 14 m.y. (210 m/m.y.). The uplift and erosion rates derived from the fission track data for the past 14-15 m.y. are similar to those obtained from other geological evidence. In contrast to the Oligocene to Miocene ages found in the other two areas, the apatite fission track ages from the Santa Fe Range portion of the Sangre de Cristo Mountains near Santa Fe are Late Cretaceous to early Eocene. These dates record the cooling of the area due to uplift and erosion during the Laramide event. The preservation of these older ages indicates that the Santa Fe Range was a low-lying area during the Oligocene to Miocene, while the surrounding areas (Sandia Mountains and Taos Range) underwent uplift and erosion. Volcanic activity occurred in the vicinity of the two areas of positive relief. Localized crustal extension associated with the volcanism may have contributed, in part, to the uplift of these areas. Using simple, two-dimensional thermal models, we found that the apparent denudation rates derived from the fission

  7. Evidence for subduction-related magmatism during the Cretaceous and Cenozoic in Myanmar

    Science.gov (United States)

    Sevastjanova, Inga; Sagi, David Adam; Webb, Peter; Masterton, Sheona; Hill, Catherine; Davies, Clare

    2017-04-01

    Myanmar's complex geological history, numerous controversies around its tectonic evolution and the presence of prospective hydrocarbon basins make it a key area of interest for geologists. Understanding whether a passive or an active margin existed in the region during the Cenozoic is particularly important for the production of accurate basin models; active Cenozoic subduction would imply that hydrocarbon basins in the forearc experienced extension due to slab rollback. The geology of Myanmar was influenced by the regional tectonics associated with the Cretaceous and Cenozoic closure of the Neotethys Ocean. During this time, India travelled rapidly from Gondwana to Asia at speeds up to 20 cm/yr. To accommodate the north-eastward motion of India, the Neotethys Ocean was consumed at the subduction zone along the southern margin of Eurasia. Based on our Global Plate Model, this subduction zone can reasonably be expected to extend for the entire width of the Neotethys Ocean as far as Myanmar and Southeast Asia at their eastern extent. Moreover, a) Cretaceous volcanism onshore Myanmar, b) the middle Cenozoic arc-related extension in the Present Day eastern Andaman Sea and c) the late Cenozoic uplift of the Indo-Burman Ranges are all contemporaneous with the subduction ages predicted by the global plate motions. However, because of the geological complexity of the area, additional evidence would augment interpretations that are based on structural data. In an attempt to reduce the uncertainty in the existing interpretations, we have compiled published zircon geochronological data from detrital and igneous rocks in the region. We have used published zircon U-Pb ages and, where available, published Hf isotope data and CL images (core/rim) in order to distinguish 'juvenile' mantle-derived zircons from those of reworked crustal origin. The compilation shows that Upper Cretaceous and Cenozoic zircons, which are interpreted to have a volcanic provenance, are common across the

  8. Cretaceous mantle of the Congo craton: Evidence from mineral and fluid inclusions in Kasai alluvial diamonds

    Science.gov (United States)

    Kosman, Charles W.; Kopylova, Maya G.; Stern, Richard A.; Hagadorn, James W.; Hurlbut, James F.

    2016-11-01

    Alluvial diamonds from the Kasai River, Democratic Republic of the Congo (DRC) are sourced from Cretaceous kimberlites of the Lucapa graben in Angola. Analysis of 40 inclusion-bearing diamonds provides new insights into the characteristics and evolution of ancient lithospheric mantle of the Congo craton. Silicate inclusions permitted us to classify diamonds as peridotitic, containing Fo91-95 and En92-94, (23 diamonds, 70% of the suite), and eclogitic, containing Cr-poor pyrope and omphacite with 11-27% jadeite (6 diamonds, 18% of the suite). Fluid inclusion compositions of fibrous diamonds are moderately to highly silicic, matching compositions of diamond-forming fluids from other DRC diamonds. Regional homogeneity of Congo fibrous diamond fluid inclusion compositions suggests spatially extensive homogenization of Cretaceous diamond forming fluids within the Congo lithospheric mantle. In situ cathodoluminescence, secondary ion mass spectrometry and Fourier transform infrared spectroscopy reveal large heterogeneities in N, N aggregation into B-centers (NB), and δ13C, indicating that diamonds grew episodically from fluids of distinct sources. Peridotitic diamonds contain up to 2962 ppm N, show 0-88% NB, and have δ13C isotopic compositions from - 12.5‰ to - 1.9‰ with a mode near mantle-like values. Eclogitic diamonds contain 14-1432 ppm N, NB spanning 29%-68%, and wider and lighter δ13C isotopic compositions of - 17.8‰ to - 3.4‰. Fibrous diamonds on average contain more N (up to 2976 ppm) and are restricted in δ13C from - 4.1‰ to - 9.4‰. Clinopyroxene-garnet thermobarometry suggests diamond formation at 1350-1375 °C at 5.8 to 6.3 GPa, whereas N aggregation thermometry yields diamond residence temperatures between 1000 and 1280 °C, if the assumed mantle residence time is 0.9-3.3 Ga. Integrated geothermobaromtery indicates heat fluxes of 41-44 mW/m2 during diamond formation and a lithosphere-asthenosphere boundary (LAB) at 190-210 km. The hotter

  9. Paleogeography and Depositional Systems of Cretaceous-Oligocene Strata: Eastern Precordillera, Argentina

    Science.gov (United States)

    Reat, Ellen J.; Fosdick, Julie C.

    2016-04-01

    New data from the Argentine Precordillera in the southern Central Andes document changes in depositional environment and sediment accumulation rates during Upper Cretaceous through Oligocene basin evolution, prior to the onset Miocene foredeep sedimentation. This work presents new sedimentology, detrital geochronology, and geologic mapping from a series of continental strata within this interval to resolve the timing of sedimentation, nature of depositional environments, and basin paleogeography at the nascent phase of Andean orogenic events, prior to the uplift and deformation of the Precordillera to the west. Five stratigraphic sections were measured across both limbs of the Huaco Anticline, detailing sedimentology of the terrestrial siliciclastic upper Patquía, Ciénaga del Río Huaco (CRH), Puesto la Flecha, Vallecito, and lower Cerro Morado formations. Paleocurrent data indicate a flow direction change from predominantly NE-SW in the upper Patquía and the lower CRH to SW-NE directed flow in the upper CRH, consistent with a large meandering river system and a potential rise in topography towards the west. This interpretation is further supported by pebble lag intervals and 1-3 meter scale trough cross-bedding in the CRH. The thinly laminated gypsum deposits and siltstones of the younger Puesto la Flecha Formation indicate an upsection transition into overbank and lacustrine sedimentation during semi-arid climatic conditions, before the onset of aeolian dune formation. New maximum depositional age results from detrital zircon U-Pb analysis indicate that the Puesto la Flecha Formation spans ~57 Myr (~92 to ~35 Ma) across a ~48 m thick interval without evidence for major erosion, indicating very low sedimentation rates. This time interval may represent distal foredeep or forebulge migration resultant from western lithospheric loading due to the onset of Andean deformation at this latitude. Detrital zircon U-Pb age spectra also indicate shifts in sediment routing

  10. The Jurassic of Denmark and Greenland: Upper Jurassic – Lower Cretaceous of the Danish Central Graben: structural framework and nomenclature

    Directory of Open Access Journals (Sweden)

    Japsen, Peter

    2003-10-01

    Full Text Available The Danish Central Graben is part of the mainly Late Jurassic complex of grabens in the central and southern North Sea which form the Central Graben. The tectonic elements of the Danish Central Graben in the Late Jurassic are outlined and compared to those in the Early Cretaceous based on reduced versions of published maps (1:200 000, compiled on the basis of all 1994 public domain seismic and well data. The Tail End Graben, a half-graben which stretches for about 90 km along the East North Sea High, is the dominant Late Jurassic structural feature. The Rosa Basin (new name is a narrow, north-south-trending basin extending from the south-western part of the Tail End Graben. The Tail End Graben ceased to exist as a coherent structural element during the Early Cretaceous and developed into three separate depocentres: the Iris and Gulnare Basins to the north and the Roar Basin to the south (new names. The Early Cretaceous saw a shift from subsidence focused along the East North Sea High during the Late Jurassic to a more even distribution of minor basins within the Danish Central Graben. The depth to the top of the Upper Jurassic - lowermost Cretaceous Farsund Formation reaches a maximum of 4800 m in the northern part of the study area, while the depth to the base of the Upper Jurassic reaches 7500 m in the Tail End Graben, where the Upper Jurassic attains a maximum thickness of 3600 m. The Lower Cretaceous Cromer Knoll Group attains a maximum thickness of 1100 m in the Outer Rough Basin.

  11. Depositional sequence architecture and filling response model of the Cretaceous in the Kuqa depression, the Tarim basin

    Institute of Scientific and Technical Information of China (English)

    LIN; Changsong; WANG; Qinghua; XIAO; Jianxin; WANG; Guoli

    2004-01-01

    The Cretaceous system of the Kuqa depression is a regional scale (second order) depositional sequence defined by parallel unconformities or minor angular unconformities. It can be divided into four third-order sequence sets, eleven third-order sequences and tens of fourth- and fifth-order sequences. It consists generally of a regional depositional cycle from transgression to regression and is composed of three sets of facies associations: alluvial-fluvial, braided river-deltaic and lacustrine-deltaic facies associations. They represent the lowstand, transgressive and highstand facies tracts within the second-order sequence. The tectonic subsidence curve reconstructed by backstripping technique revealed that the Cretaceous Kuqa depression underwent a subsidence history from early accelerated subsidence, middle rapid subsidence and final slower subsidence phases during the Cretaceous time, with the correspondent tectonic subsidence rates being 30-35 m/Ma, 40-45 m/Ma and 5-10 m/Ma obtained from northern foredeep. This is likely attributed to the foreland dynamic process from early thrust flexural subsidence to late stress relaxation and erosion rebound uplift. The entire sedimentary history and the development of the three facies tracts are a response to the basin subsidence process. The slower subsidence foreland gentle slope was a favorable setting for the formation of braided fluvial deltaic systems during the late period of the Cretaceous, which comprise the important sandstone reservoirs in the depression. Sediment records of impermanent marine transgression were discovered in the Cretaceous and the major marine horizons are correctable to the highstands of the global sea level during the period.

  12. Dinoflagellate cysts as indicators of palaeoenvironmental and sea-level change: the Late Cenomanian - Early Coniacian (Cretaceous) of Europe

    Science.gov (United States)

    Olde, Kate; Jarvis, Ian; Pearce, Martin; Tocher, Bruce

    2014-05-01

    The Late Cretaceous represented a period of greenhouse climate of Earth history, and was characterised by high temperatures, high atmospheric CO2 and high eustatic sea level, with large areas of shallow, warm, epicontinental sea. Understanding the dynamics of the Late Cretaceous climate is important for understanding the Earth System and the impact of modern climate change. The productive Late Cretaceous oceans led to the deposition of a large portion of the world's oil and gas resources, so reconstruction of depositional environments and refinement of stratigraphic correlation are important for the petroleum industry. Dinoflagellates were a prolific and diverse group within the phyto- and zooplankton throughout Late Cretaceous oceans, and their cysts display good preservation across different facies, and so are a good group for biostratigraphic and palaeoenvironmental study. Selected results from a high-resolution quantitative study of the palynology from 5 European Upper Cenomanian to the Lower Coniacian (Upper Cretaceous) sections are summarised, along with their carbon stable-isotope chemostratigraphy. The sections are from a range of palaeolatitudes and basins, including the North Sea Basin, the Anglo-Paris Basin, the Bohemian Basin, the Polish Trough and the Vocontian Basin. Palynological assemblages differ between sections in the concentration of palynomorphs, proportions of terrestrial and marine palynomorphs, and in the diversity and varying proportions of species of dinoflagellate cysts (dinocysts). Dinocyst distribution is considered to have been controlled largely by nutrient levels, but was also impacted by temperature, sea level, and water mass changes. Influxes of certain species are related to changes in salinity, changes in temperature, and water mass change, and increased communication between basins. High dinocyst abundance, and particularly a high proportion of peridinioid cysts (which are thought to be derived from eutrophy

  13. The stratigraphy of cretaceous mudstones in the eastern Fuegian Andes: new data from body and trace fossils

    Directory of Open Access Journals (Sweden)

    Eduardo B. Olivero

    2009-04-01

    Full Text Available The stratigraphy of Cretaceous marine mudstones in the Fuegian Andes, roughly equivalent to Charles Darwin's clay-slate formation, remains a still unsolved problem. Previous records of Albian, Turonian-Coniacian, and Santonian-Campanian bivalves are combined with new findings of the Late Albian inoceramid Inoceramus anglicus Woods, and the Maastrichtian ammonites Diplomoceras sp., Anagaudryceras sp., Maorites densicostatus (Kilian and Reboul, Maorites sp., and Pachydiscus (Neodesmoceras sp. to further constrain the Cretaceous stratigraphy of the eastern Fuegian Andes. In addition, new records of distinctive trace fossils and ichnofabric are meaningful for stratigraphic division and delineation of paleoenvironmental settings in these Cretaceous mudstones. The Lower Cretaceous ichnoassemblage of Chondrites targioni (Brongniart and Zoophycos isp. is consistent with the inferred slope-volcaniclastic apron settings of the Yahgan Formation; Nereites missouriensis (Weller reflects distal basin plain depositional settings for the Beauvoir Formation. In the Upper Cretaceous, the "Estratos de Buen Suceso" record the earliest extensively bioturbated horizons, reflecting prolonged well-oxygenated bottom conditions. In the Bahía Thetis Formation, organic-rich, channel margin or distal basin slaty mudstones record the last occurrence of inoceramid bivalves in the Austral Basin; the generalized absence of trace fossils is consistent with dysoxic bottom conditions. The thoroughly bioturbated Policarpo Formation, records a marked change in paleoceanographic conditions. The strong contrast in the intensity of bioturbation between the Upper Campanian-Maastrichtian Bahía Thetis Formation, almost devoid of trace fossils, and the highly bioturbated Maastrichtian-Danian Policarpo Formation reflects a change from dysoxic-anoxic to well ventilated conditions, probably associated with a cooling trend of bottom waters in the austral deep oceans.

  14. Europatitan eastwoodi, a new sauropod from the lower Cretaceous of Iberia in the initial radiation of somphospondylans in Laurasia

    Directory of Open Access Journals (Sweden)

    Fidel Torcida Fernández-Baldor

    2017-06-01

    Full Text Available The sauropod of El Oterillo II is a specimen that was excavated from the Castrillo de la Reina Formation (Burgos, Spain, late Barremian–early Aptian, in the 2000s but initially remained undescribed. A tooth and elements of the axial skeleton, and the scapular and pelvic girdle, represent it. It is one of the most complete titanosauriform sauropods from the Early Cretaceous of Europe and presents an opportunity to deepen our understanding of the radiation of this clade in the Early Cretaceous and study the paleobiogeographical relationships of Iberia with Gondwana and with other parts of Laurasia. The late Barremian–early Aptian is the time interval in the Cretaceous with the greatest diversity of sauropod taxa described in Iberia: two titanosauriforms, Tastavinsaurus and Europatitan; and a rebbachisaurid, Demandasaurus. The new sauropod Europatitan eastwoodi n. gen. n. sp. presents a series of autapomorphic characters in the presacral vertebrae and scapula that distinguish it from the other sauropods of the Early Cretaceous of Iberia. Our phylogenetic study locates Europatitan as the basalmost member of the Somphospondyli, clearly differentiated from other clades such as Brachiosauridae and Titanosauria, and distantly related to the contemporaneous Tastavinsaurus. Europatitan could be a representative of a Eurogondwanan fauna like Demandasaurus, the other sauropod described from the Castrillo de la Reina Formation. The presence of a sauropod fauna with marked Gondwananan affinities in the Aptian of Iberia reinforces the idea of faunal exchanges between this continental masses during the Early Cretaceous. Further specimens and more detailed analysis are needed to elucidate if this Aptian fauna is caused by the presence of previously unnoticed Aptian land bridges, or it represents a relict fauna from an earlier dispersal event.

  15. THE CISMON APTICORE (SOUTHERN ALPS, ITALY: A "REFERENCE SECTION " FOR THE LOWER CRETACEOUS AT LOW LATITUDES

    Directory of Open Access Journals (Sweden)

    ELISABETTA ERBA

    1998-07-01

    Full Text Available APTICORE at the Cismon Valley (Belluno Basin, Southern Alps penetrated 131.8 m of limestones, marlstones and "black shales". The cored interval extends from the Upper Aptian down to the lower Upper Hauterivian (about 117-130 Ma and can be considered a "reference section" for low latitudes. The hole was continuously cored with essentially 100% recovery of excellent quality material and completely logged with state-of-the art logging tools. Freshly cored material and logs from the Cismon drill site provide the most informative records for documenting and understanding global changes in the paleoenvironment, biota, geochemistry, paleotemperature of Early Cretaceous oceans. The following is a "site report" containing descriptions of the geologic setting, field operations, basic lithology and age information, and the logging tools and techniques. 

  16. A New Enantiornitine Bird with Four Long Rectrices from the Early Cretaceous of Northern Hebei, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Paraprotopteryx gracilis, a new enantiornithine bird from the Early Cretaceous Yixian Formation in Fengning, northern Hebei Province is erected, based on the following characters: Yshaped furcula with a long hypocleidum and a much narrow interclavicular angle, and the morphology of the sternum are different from other enantiornithines. Additionally, alular digit bearing the biggest manual claw extends distally to the distal end of the major metacarpal; the minor metacarpal is slender than the major metacarpal. Carpometacarpus only fused proximally; astragalus and calcaneum partially fused to one another but unfused to the tibia. This is the first record of Mesozoic birds in having four long rectrices, which may represent morphologically a secondary sexual character, an intermediate stage from elongated scale to branched feather, and possess functional advantage in supplementing the lifting surface to compensate the unskilled flight.

  17. Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: An overview

    Science.gov (United States)

    Cavin, L.; Tong, H.; Boudad, L.; Meister, C.; Piuz, A.; Tabouelle, J.; Aarab, M.; Amiot, R.; Buffetaut, E.; Dyke, G.; Hua, S.; Le Loeuff, J.

    2010-07-01

    Fossils of vertebrates have been found in great abundance in the continental and marine early Late Cretaceous sediments of Southeastern Morocco for more than 50 years. About 80 vertebrate taxa have so far been recorded from this region, many of which were recognised and diagnosed for the first time based on specimens recovered from these sediments. In this paper, we use published data together with new field data to present an updated overview of Moroccan early Late Cretaceous vertebrate assemblages. The Cretaceous series we have studied encompasses three Formations, the Ifezouane and Aoufous Formations, which are continental and deltaic in origin and are often grouped under the name "Kem Kem beds", and the Akrabou Formation which is marine in origin. New field observations allow us to place four recognised vertebrate clusters, corresponding to one compound assemblage and three assemblages, within a general temporal framework. In particular, two ammonite bioevents characterise the lower part of the Upper Cenomanian ( Calycoceras guerangeri Zone) at the base of the Akrabou Formation and the upper part of the Lower Turonian ( Mammites nodosoides Zone), that may extend into the Middle Turonian within the Akrabou Formation, and allow for more accurate dating of the marine sequence in the study area. We are not yet able to distinguish a specific assemblage that characterises the Ifezouane Formation when compared to the similar Aoufous Formation, and as a result we regard the oldest of the four vertebrate "assemblages" in this region to be the compound assemblage of the "Kem Kem beds". This well-known vertebrate assemblage comprises a mixture of terrestrial (and aerial), freshwater and brackish vertebrates. The archosaur component of this fauna appears to show an intriguingly high proportion of large-bodied carnivorous taxa, which may indicate a peculiar trophic chain, although collecting biases alter this palaeontological signal. A small and restricted assemblage, the

  18. The Upper Cretaceous paleogeographical rudist subprovinces of the tethys in Slovenia

    Directory of Open Access Journals (Sweden)

    Mario Pleničar

    2008-12-01

    Full Text Available To the present knowlege according to DERCOURT et al. (1985 the following Upper Cretaceous rudist subprovinces in Slovenia can be distinguished from the North to the South:1. Carpathian-Balcanic-Pontidian subprovince2. Transitional subprovince and3. Apulian-Tauridian-intraoceanic subprovince.Rudist deposits of the first subprovince occur in northeastern Slovenia in Pohorje. These deposits contain representativesof the genera Vaccinites, Radiolites and Lapeirouseia. Rudist faunas of the transitional subprovince existed in the regions of the Central Slovenia (Inner Dinarids. In this area rudists and other shallow marine organisms were transported into flysch and deep-marine basins within olistoliths (allochtonous fauna or as individual specimens. The third subprovince comprise carbonate platformes with rudist associations developed in conditions of the warm and shallow seas.

  19. Mid-Paleozoic age of granitoids in enclaves within early Cretaceous granulites, Fiordland, southwest New Zealand

    Science.gov (United States)

    Bradshaw, J.Y.; Kimbrough, D.L.

    1991-01-01

    Orthogneisses of granite, quartz monzonite, monzonite, and tonalite, occur locally as isolated enclaves within the Early Cretaceous granulite terrain (Western Fiordland Orthogneiss - WFO). Discordant U-Pb zircon isotopic data (seven fractions) from four granitoid samples from enclaves at George Sound, define an upper intecept age of 341??34 Ma that is interpreted as approximating the time of formation of the granitoid suite. The lower intercept age of 93??37 Ma is interpreted as approximating the time of zircon isotopic disturbance by major episodic Pb loss. The low 87Sr/ 86Sr initial ratio indicates that these mid-Paleozoic granitoids were derived from an isotopically primitive source. The granitoid enclaves within WFO show influences of several different sources. The granitoids provide evidence linking WFO to a mid-Palaeozoic country rock similar to the central Fiordland metasediments. -from Authors

  20. A New Troodontid (Theropoda:Troodontidae) from the Lower Cretaceous Yixian Formation of Western Liaoning, China

    Institute of Scientific and Technical Information of China (English)

    XU Xing; WANG Xiaolin

    2004-01-01

    A specimen collected from the Lower Cretaceous Yixian Formation of western Liaoning, China, represents a new genus and species of troodontid theropod. The new taxon is named and described on the basis of the holotype and the only known specimen, which comprises an articulated skeleton with the presacral vertebral, shoulder girdle and forelimbs missing as preserved. Diagnostic features of the new species include nasals that are sinusoid in lateral view, absence of a passage connecting the antorbital and maxillary fenestrae, relatively large teeth, plate-like chevrons forming a band along most of the length of the tail, and a long neck between the femoral head and shaft. The temporal constraints of the three paravian groups (Troodontidae, Dromaeosauridae and Aves) combined with the character distributions among the earliest known troodontids indicate a rapid evolution at the base of the Troodontidae.