WorldWideScience

Sample records for jupiter-like gas giant

  1. Gas giant planets as dynamical barriers to inward-migrating super-Earths

    CERN Document Server

    Izidoro, Andre; Morbidelli, Alessandro; Hersant, Franck; Pierens, Arnaud

    2015-01-01

    Planets of 1-4 times Earth's size on orbits shorter than 100 days exist around 30-50% of all Sun-like stars. In fact, the Solar System is particularly outstanding in its lack of "hot super-Earths" (or "mini-Neptunes"). These planets -- or their building blocks -- may have formed on wider orbits and migrated inward due to interactions with the gaseous protoplanetary disk. Here, we use a suite of dynamical simulations to show that gas giant planets act as barriers to the inward migration of super-Earths initially placed on more distant orbits. Jupiter's early formation may have prevented Uranus and Neptune (and perhaps Saturn's core) from becoming hot super-Earths. Our model predicts that the populations of hot super-Earth systems and Jupiter-like planets should be anti-correlated: gas giants (especially if they form early) should be rare in systems with many hot super-Earths. Testing this prediction will constitute a crucial assessment of the validity of the migration hypothesis for the origin of close-in supe...

  2. Gas Giant Planets as Dynamical Barriers to Inward-Migrating Super-Earths

    Science.gov (United States)

    Morbidelli, Alessandro; Izidoro da Costa, Andre; Raymond, Sean

    2015-08-01

    Planets of 1-4 times Earth’s size on orbits shorter than 100 days exist around 30-50% of all Sun-like stars. In fact, the Solar System is particularly outstanding in its lack of “hot super-Earths” (or “mini-Neptunes”). These planets —or their building blocks—may have formed on wider orbits and migrated inward due to interactions with the gaseous protoplanetary disk. Here, we use a suite of dynamical simulations to show that gas giant planets act as barriers to the inward migration of super-Earths initially placed on more distant orbits. Jupiter’s early formation may have prevented Uranus and Neptune (and perhaps Saturn’s core) from becoming hot super-Earths. Our model predicts that the populations of hot super-Earth systems and Jupiter-like planets should be anti-correlated: gas giants (especially if they form early) should be rare in systems with many hot super-Earths. Testing this prediction will constitute a crucial assessment of the validity of the migration hypothesis for the origin of close-in super-Earths.

  3. Foreign Giants Take Gas Pipeline Stake Equally

    Institute of Scientific and Technical Information of China (English)

    Xie Ye

    2002-01-01

    @@ Oil giants Royal/Dutch, ExxonMobil and Russia's Gazprom have agreed to take 15 percent stakes each in China's US$5.6 billion natural gas pipeline project,clearing away the final obstacles blocking the kickoff of the repeatedly delayed project, according to the latest reports from news media in early July.

  4. Separating gas-giant and ice-giant planets by halting pebble accretion

    Science.gov (United States)

    Lambrechts, M.; Johansen, A.; Morbidelli, A.

    2014-12-01

    In the solar system giant planets come in two flavours: gas giants (Jupiter and Saturn) with massive gas envelopes, and ice giants (Uranus and Neptune) with much thinner envelopes around their cores. It is poorly understood how these two classes of planets formed. High solid accretion rates, necessary to form the cores of giant planets within the life-time of protoplanetary discs, heat the envelope and prevent rapid gas contraction onto the core, unless accretion is halted. We find that, in fact, accretion of pebbles (~cm sized particles) is self-limiting: when a core becomes massive enough it carves a gap in the pebble disc. This halt in pebble accretion subsequently triggers the rapid collapse of the super-critical gas envelope. Unlike gas giants, ice giants do not reach this threshold mass and can only bind low-mass envelopes that are highly enriched by water vapour from sublimated icy pebbles. This offers an explanation for the compositional difference between gas giants and ice giants in the solar system. Furthermore, unlike planetesimal-driven accretion scenarios, our model allows core formation and envelope attraction within disc life-times, provided that solids in protoplanetary discs are predominantly made up of pebbles. Our results imply that the outer regions of planetary systems, where the mass required to halt pebble accretion is large, are dominated by ice giants and that gas-giant exoplanets in wide orbits are enriched by more than 50 Earth masses of solids.

  5. Separating gas-giant and ice-giant planets by halting pebble accretion

    CERN Document Server

    Lambrechts, Michiel; Morbidelli, Alessandro

    2014-01-01

    In the Solar System giant planets come in two flavours: 'gas giants' (Jupiter and Saturn) with massive gas envelopes and 'ice giants' (Uranus and Neptune) with much thinner envelopes around their cores. It is poorly understood how these two classes of planets formed. High solid accretion rates, necessary to form the cores of giant planets within the life-time of protoplanetary discs, heat the envelope and prevent rapid gas contraction onto the core, unless accretion is halted. We find that, in fact, accretion of pebbles (~ cm-sized particles) is self-limiting: when a core becomes massive enough it carves a gap in the pebble disc. This halt in pebble accretion subsequently triggers the rapid collapse of the super-critical gas envelope. As opposed to gas giants, ice giants do not reach this threshold mass and can only bind low-mass envelopes that are highly enriched by water vapour from sublimated icy pebbles. This offers an explanation for the compositional difference between gas giants and ice giants in the S...

  6. Jupiter-like planets as dynamical barriers to inward-migrating super-Earths: a new understanding of the origin of Uranus and Neptune and predictions for extrasolar planetary systems

    Science.gov (United States)

    Morbidelli, Alessandro; Izidoro Da Costa, Andre'; Raymond, Sean

    2014-11-01

    Planets of 1-4 times Earth's size on orbits shorter than 100 days exist around 30-50% of all Sun-like stars. These ``hot super-Earths'' (or ``mini-Neptunes''), or their building blocks, might have formed on wider orbits and migrated inward due to interactions with the gaseous protoplanetary disk. The Solar System is statistically unusual in its lack of hot super-Earths. Here, we use a suite of dynamical simulations to show that gas-giant planets act as barriers to the inward migration of super-Earths initially placed on more distant orbits. Jupiter's early formation may have prevented Uranus and Neptune (and perhaps Saturn's core) from becoming hot super-Earths. It may actually have been crucial to the very formation of Uranus and Neptune. In fact, the large spin obliquities of these two planets argue that they experienced a stage of giant impacts from multi-Earth mass planetary embryos. We show that the dynamical barrier offered by Jupiter favors the mutual accretion of multiple migrating planetary embryos, favoring the formation of a few massive objects like Uranus and Neptune. Our model predicts that the populations of hot super-Earth systems and Jupiter-like planets should be anti-correlated: gas giants (especially if they form early) should be rare in systems with many hot super-Earths. Testing this prediction will constitute a crucial assessment of the validity of the migration hypothesis for the origin of close-in super-Earths.

  7. How the presence of a gas giant affects the formation of mean-motion resonances between two low-mass planets in a locally isothermal gaseous disc

    Science.gov (United States)

    Podlewska-Gaca, E.; Szuszkiewicz, E.

    2014-03-01

    In this paper we investigate the possibility of a migration-induced resonance locking in systems containing three planets, namely an Earth analogue (1 M⊕), a super-Earth (4 M⊕) and a gas giant (one Jupiter mass). The planets have been listed in order of increasing orbital periods. All three bodies are embedded in a locally isothermal gaseous disc and orbit around a solar mass star. We are interested in answering the following questions: will the low-mass planets form the same resonant structures with each other in the vicinity of the gas giant as in the case when the gas giant is absent? More in general, how will the presence of the gas giant affect the evolution of the two low-mass planets? When there is no gas giant in the system, it has been already shown that if the two low-mass planets undergo a convergent differential migration, they will capture each other in a mean-motion resonance. For the choices of disc parameters and planet masses made in this paper, the formation of the 5:4 resonance in the absence of the Jupiter has been observed in a previous investigation and confirmed here. In this work we add a gas giant on the most external orbit of the system in such a way that its differential migration is convergent with the low-mass planets. We show that the result of this set-up is the speeding up of the migration of the super-Earth and, after that, all three planets become locked in a triple mean-motion resonance. However, this resonance is not maintained due to the low-mass planet eccentricity excitation, a fact that leads to close encounters between planets and eventually to the ejection from the internal orbits of one or both low-mass planets. We have observed that the ejected low-mass planets can leave the system, fall into a star or become the external planet relative to the gas giant. In our simulations the latter situation has been observed for the super-Earth. It follows from the results presented here that the presence of a Jupiter-like planet

  8. Using polarimetry to detect and characterize Jupiter-like extrasolar planets

    NARCIS (Netherlands)

    Stam, D.M.; Hovenier, J.W.; Waters, L.B.F.M.

    2004-01-01

    Using numerical simulations of flux and polarization spectra of visible to near-infrared starlight reflected by Jupiter-like extrasolar planets, we show that polarimetry can be used both for the detection and for the characterization of extrasolar planets. Polarimetry is valuable for detection becau

  9. Using polarimetry to detect and characterize Jupiter-like extrasolar planets

    NARCIS (Netherlands)

    Stam, D.M.; Hovenier, J.W.; Waters, L.B.F.M.

    2004-01-01

    Using numerical simulations of flux and polarization spectra of visible to near-infrared starlight reflected by Jupiter-like extrasolar planets, we show that polarimetry can be used both for the detection and for the characterization of extrasolar planets. Polarimetry is valuable for detection becau

  10. A desert of gas giant planets beyond tens of au

    CERN Document Server

    Nayakshin, Sergei

    2016-01-01

    Direct imaging observations constrain the fraction of stars orbited by gas giant planets with separations greater than 10 au to about 0.01 only. This is widely believed to indicate that massive protoplanetary discs rarely fragment on planetary mass objects. I use numerical simulations of gas clumps embedded in massive gas discs to show that these observations are consistent with $\\sim 0.2 - 10$ planetary mass clumps per star being born in young gravitationally unstable discs. A trio of processes -- rapid clump migration, tidal disruption and runaway gas accretion -- destroys or transforms all of the simulated clumps into other objects, resulting in a desert of gas giants beyond separation of approximately 10 au. The cooling rate of the disc controls which of the three processes is dominant. For cooling rates faster than a few local dynamical times, clumps always grow rapidly and become massive brown dwarfs or low mass stars. For longer cooling times, post-collapse (high density) planets migrate inward to $\\si...

  11. Embryo impacts and gas giant mergers II: Diversity of Hot Jupiters' internal structure

    CERN Document Server

    Liu, Shang-Fei; Lin, D N C; Li, Shu-Lin

    2014-01-01

    We consider the origin of compact, short-period, Jupiter-mass planets. We propose that their diverse structure is caused by giant impacts of embryos and super-Earths or mergers with other gas giants during the formation and evolution of these hot Jupiters. Through a series of numerical simulations, we show that typical head-on collisions generally lead to total coalescence of impinging gas giants. Although extremely energetic collisions can disintegrate the envelope of gas giants, these events seldom occur. During oblique and moderately energetic collisions, the merger products retain higher fraction of the colliders' cores than their envelopes. They can also deposit considerable amount of spin angular momentum to the gas giants and desynchronize their spins from their orbital mean motion. We find that the oblateness of gas giants can be used to infer the impact history. Subsequent dissipation of stellar tide inside the planets' envelope can lead to runaway inflation and potentially a substantial loss of gas ...

  12. Melting and metallization of silica in the cores of gas giants, ice giants and super Earths

    CERN Document Server

    Mazevet, S; Taniuchi, T; Benuzzi-Mounaix, A; Guyot, F

    2014-01-01

    The physical state and properties of silicates at conditions encountered in the cores of gas giants, ice giants and of Earth like exoplanets now discovered with masses up to several times the mass of the Earth remains mostly unknown. Here, we report on theoretical predictions of the properties of silica, SiO$_2$, up to 4 TPa and about 20,000K using first principle molecular dynamics simulations based on density functional theory. For conditions found in the Super-Earths and in ice giants, we show that silica remains a poor electrical conductor up to 10 Mbar due to an increase in the Si-O coordination with pressure. For Jupiter and Saturn cores, we find that MgSiO$_3$ silicate has not only dissociated into MgO and SiO$_2$, as shown in previous studies, but that these two phases have likely differentiated to lead to a core made of liquid SiO$_2$ and solid (Mg,Fe)O.

  13. Magnetic Coupling in the Disks Around Young Gas Giant Planets

    CERN Document Server

    Turner, N J; Sano, T

    2013-01-01

    We examine the conditions under which the disks of gas and dust orbiting young gas giant planets are sufficiently conducting to experience turbulence driven by the magneto-rotational instability. By modeling the ionization and conductivity in the disk around proto-Jupiter, we find that turbulence is possible if the X-rays emitted near the Sun reach the planet's vicinity and either (1) the gas surface densities are in the range of the minimum-mass models constructed by augmenting Jupiter's satellites to Solar composition, while dust is depleted from the disk atmosphere, or (2) the surface densities are much less, and in the range of gas-starved models fed with material from the Solar nebula, but not so low that ambipolar diffusion decouples the neutral gas from the plasma. The results lend support to both minimum-mass and gas-starved models of the protojovian disk: (1) The dusty minimum-mass models have negligible internal angular momentum transfer by magnetic forces, as required for the material to remain in ...

  14. Evolution of Gas Giant Entropy During Formation by Runaway Accretion

    CERN Document Server

    Berardo, David; Marleau, Gabriel-Dominique

    2016-01-01

    We calculate the evolution of gas giant planets during the runaway gas accretion phase of formation, to understand how the luminosity of young giant planets depends on the accretion conditions. We construct steady-state envelope models, and run time-dependent simulations of accreting planets with the Modules for Experiments in Stellar Astrophysics (MESA) code. We show that the evolution of the internal entropy depends on the contrast between the internal adiabat and the entropy of the accreted material, parametrized by the shock temperature $T_0$ and pressure $P_0$. At low temperatures ($T_0\\lesssim 300$--$1000\\ {\\rm K}$, depending on model parameters), the accreted material has a lower entropy than the interior. The convection zone extends to the surface and can drive a large luminosity, leading to rapid cooling and cold starts. For higher temperatures, the accreted material has a larger entropy than the interior, giving a radiative zone that stalls cooling. For $T_0\\gtrsim 2000\\ {\\rm K}$, the surface--inter...

  15. Embryo impacts and gas giant mergers - II. Diversity of hot Jupiters' internal structure

    Science.gov (United States)

    Liu, Shang-Fei; Agnor, Craig B.; Lin, D. N. C.; Li, Shu-Lin

    2015-01-01

    We consider the origin of compact, short-period, Jupiter-mass planets. We propose that their diverse structure is caused by giant impacts of embryos and super-Earths or mergers with other gas giants during the formation and evolution of these hot Jupiters. Through a series of numerical simulations, we show that typical head-on collisions generally lead to total coalescence of impinging gas giants. Although extremely energetic collisions can disintegrate the envelope of gas giants, these events seldom occur. During oblique and moderately energetic collisions, the merger products retain higher fraction of the colliders' cores than their envelopes. They can also deposit considerable amount of spin angular momentum to the gas giants and desynchronize their spins from their orbital mean motion. We find that the oblateness of gas giants can be used to infer the impact history. Subsequent dissipation of stellar tide inside the planets' envelope can lead to runaway inflation and potentially a substantial loss of gas through Roche lobe overflow. The impact of super-Earths on parabolic orbits can also enlarge gas giant planets' envelope and elevates their tidal dissipation rate over ˜100 Myr time scale. Since giant impacts occur stochastically with a range of impactor sizes and energies, their diverse outcomes may account for the dispersion in the mass-radius relationship of hot Jupiters.

  16. WASP-80b: a gas giant transiting a cool dwarf

    CERN Document Server

    Triaud, Amaury H M J; Cameron, A Collier; Doyle, A P; Fumel, A; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Lovis, C; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Segransan, D; Smalley, B; Smith, A M S; Udry, S; West, R G; Wheatley, P J; 10.1051/0004-6361/201220900

    2013-01-01

    We report the discovery of a planet transiting the star WASP-80 (1SWASP J201240.26-020838.2; 2MASS J20124017-0208391; TYC 5165-481-1; BPM 80815; V=11.9, K=8.4). Our analysis shows this is a 0.55 +/- 0.04 Mjup, 0.95 +/- 0.03 Rjup gas giant on a circular 3.07 day orbit around a star with a spectral type between K7V and M0V. This system produces one of the largest transit depths so far reported, making it a worthwhile target for transmission spectroscopy. We find a large discrepancy between the v sin i inferred from stellar line broadening and the observed amplitude of the Rossiter-McLaughlin effect. This can be understood either by an orbital plane nearly perpendicular to the stellar spin or by an additional, unaccounted for source of broadening.

  17. Triggered star formation in giant HI supershells: ionized gas

    CERN Document Server

    Egorov, O V; Moiseev, A V

    2015-01-01

    We considered the regions of triggered star formation inside kpc-sized HI supershells in three dwarf galaxies: IC 1613, IC 2574 and Holmberg II. The ionized and neutral gas morphology and kinematics were studied based on our observations with scanning Fabry-Perot interferometer at the SAO RAS 6-m telescope and 21 cm archival data of THINGS and LITTLE THINGS surveys. The qualitative analysis of the observational data performed in order to highlight the two questions: why the star formation occurred very locally in the supershells, and how the ongoing star formation in HI supershells rims influence its evolution? During the investigation we discovered the phenomenon never observed before in galaxies IC 2574 and Holmberg II: we found faint giant (kpc-sized) ionized shells in H-alpha and [SII]6717,6731 lines inside the supergiant HI shells.

  18. Magnetic Field Generation and Zonal Flows in the Gas Giants

    Science.gov (United States)

    Duarte, L.; Wicht, J.; Gastine, T.

    2013-12-01

    The surface dynamics of Jupiter and Saturn is dominated by a banded system of fierce zonal winds. The depth of these winds remains unclear but they are thought to be confined to the very outer envelopes where hydrogen remains molecular and the electrical conductivity is negligible. The dynamo responsible for the dipole dominated magnetic fields of both Gas Giants, on the other hand, likely operates in the deeper interior where hydrogen assumes a metallic state. We present numerical simulations that attempt to model both the zonal winds and the interior dynamo action in an integrated approach. Using the anelastic version of the MHD code MagIC, we explore the effects of density stratification and radial electrical conductivity variations. The electrical conductivity is assumed to remain constant in the thicker inner metallic region and decays exponentially towards the outer boundary throughout the molecular envelope. Our results show that the combination of stronger density stratification (Δρ≈55) and a weaker conducting outer layer is essential for reconciling dipole dominated dynamo action and a fierce equatorial zonal jet. Previous simulations with homogeneous electrical conductivity show that both are mutually exclusive, with solutions either having strong zonal winds and multipolar magnetic fields or weak zonal winds and dipole dominated magnetic fields. The particular setup explored here allows the equatorial jet to remain confined to the weaker conducting region where is does not interfere with the deeper seated dynamo action. The equatorial jet can afford to remain geostrophic and reaches throughout the whole shell. This is not an option for the additional mid to higher latitude jets, however. In dipole dominated dynamo solutions, appropriate for the Gas Giants, zonal flows remain very faint in the deeper dynamo region but increase in amplitude in the weakly conducting outer layer in some of our simulations. This suggests that the mid to high latitude jets

  19. An ultrahot gas-giant exoplanet with a stratosphere

    Science.gov (United States)

    Evans, Thomas M.; Sing, David K.; Kataria, Tiffany; Goyal, Jayesh; Nikolov, Nikolay; Wakeford, Hannah R.; Deming, Drake; Marley, Mark S.; Amundsen, David S.; Ballester, Gilda E.; Barstow, Joanna K.; Ben-Jaffel, Lotfi; Bourrier, Vincent; Buchhave, Lars A.; Cohen, Ofer; Ehrenreich, David; García Muñoz, Antonio; Henry, Gregory W.; Knutson, Heather; Lavvas, Panayotis; Etangs, Alain Lecavelier Des; Lewis, Nikole K.; López-Morales, Mercedes; Mandell, Avi M.; Sanz-Forcada, Jorge; Tremblin, Pascal; Lupu, Roxana

    2017-08-01

    Infrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum. Conversely, if there is a stratosphere—where temperature increases with altitude—these molecular features will be observed in emission. It has been suggested that stratospheres could form in highly irradiated exoplanets, but the extent to which this occurs is unresolved both theoretically and observationally. A previous claim for the presence of a stratosphere remains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5σ confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide.

  20. Developing Atmospheric Retrieval Methods for Direct Imaging Spectroscopy of Gas Giants in Reflected Light. I. Methane Abundances and Basic Cloud Properties

    Science.gov (United States)

    Lupu, Roxana E.; Marley, Mark S.; Lewis, Nikole; Line, Michael; Traub, Wesley A.; Zahnle, Kevin

    2016-12-01

    Upcoming space-based coronagraphic instruments in the next decade will perform reflected light spectroscopy and photometry of cool directly imaged extrasolar giant planets. We are developing a new atmospheric retrieval methodology to help assess the science return and inform the instrument design for such future missions, and ultimately interpret the resulting observations. Our retrieval technique employs a geometric albedo model coupled with both a Markov chain Monte Carlo Ensemble Sampler (emcee) and a multimodal nested sampling algorithm (MultiNest) to map the posterior distribution. This combination makes the global evidence calculation more robust for any given model and highlights possible discrepancies in the likelihood maps. As a proof of concept, our current atmospheric model contains one or two cloud layers, methane as a major absorber, and a H2-He background gas. This 6-to-9 parameter model is appropriate for Jupiter-like planets and can be easily expanded in the future. In addition to deriving the marginal likelihood distribution and confidence intervals for the model parameters, we perform model selection to determine the significance of methane and cloud detection as a function of expected signal-to-noise ratio in the presence of spectral noise correlations. After internal validation, the method is applied to realistic spectra of Jupiter, Saturn, and HD 99492c, a model observing target. We find that the presence or absence of clouds and methane can be determined with high confidence, while parameter uncertainties are model dependent and correlated. Such general methods will also be applicable to the interpretation of direct imaging spectra of cloudy terrestrial planets.

  1. Exploring extrasolar worlds: from gas giants to terrestrial habitable planets.

    Science.gov (United States)

    Tinetti, Giovanna; Griffith, Caitlin A; Swain, Mark R; Deroo, Pieter; Beaulieu, Jean Philippe; Vasisht, Gautam; Kipping, David; Waldmann, Ingo; Tennyson, Jonathan; Barber, Robert J; Bouwman, Jeroen; Allard, Nicole; Brown, Linda R

    2010-01-01

    Almost 500 extrasolar planets have been found since the discovery of 51 Peg b by Mayor and Queloz in 1995. The traditional field of planetology has thus expanded its frontiers to include planetary environments not represented in our Solar System. We expect that in the next five years space missions (Corot, Kepler and GAIA) or ground-based detection techniques will both increase exponentially the number of new planets discovered and lower the present limit of a approximately 1.9 Earth-mass object [e.g. Mayor et al., Astron. Astrophys., 2009, 507, 487]. While the search for an Earth-twin orbiting a Sun-twin has been one of the major goals pursued by the exoplanet community in the past years, the possibility of sounding the atmospheric composition and structure of an increasing sample of exoplanets with current telescopes has opened new opportunities, unthinkable just a few years ago. As a result, it is possible now not only to determine the orbital characteristics of the new bodies, but moreover to study the exotic environments that lie tens of parsecs away from us. The analysis of the starlight not intercepted by the thin atmospheric limb of its planetary companion (transit spectroscopy), or of the light emitted/reflected by the exoplanet itself, will guide our understanding of the atmospheres and the surfaces of these extrasolar worlds in the next few years. Preliminary results obtained by interpreting current atmospheric observations of transiting gas giants and Neptunes are presented. While the full characterisation of an Earth-twin might requires a technological leap, our understanding of large terrestrial planets (so called super-Earths) orbiting bright, later-type stars is within reach by current space and ground telescopes.

  2. WASP-80b: a gas giant transiting a cool dwarf

    Science.gov (United States)

    Triaud, A. H. M. J.; Anderson, D. R.; Collier Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Lovis, C.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Udry, S.; West, R. G.; Wheatley, P. J.

    2013-03-01

    We report the discovery of a planet transiting the star WASP-80 (1SWASP J201240.26-020838.2; 2MASS J20124017-0208391; TYC 5165-481-1; BPM 80815; V = 11.9, K = 8.4). Our analysis shows this is a 0.55 ± 0.04 Mjup, 0.95 ± 0.03 Rjup gas giant on a circular 3.07 day orbit around a star with a spectral type between K7V and M0V. This system produces one of the largest transit depths so far reported, making it a worthwhile target for transmission spectroscopy. We find a large discrepancy between the vsini⋆ inferred from stellar line broadening and the observed amplitude of the Rossiter-McLaughlin effect. This can be understood either by an orbital plane nearly perpendicular to the stellar spin or by an additional, unaccounted for source of broadening. Using WASP-South photometric observations, from Sutherland (South Africa), confirmed with the 60 cm TRAPPIST robotic telescope, EulerCam, and the CORALIE spectrograph on the Swiss 1.2 m Euler Telescope, and HARPS on the ESO 3.6 m (Prog ID 089.C-0151), all three located at La Silla Observatory, Chile.Radial velocity and photometric data are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A80

  3. Synthetic Spectra and Colors of Young Giant Planet Atmospheres: Effects of Initial Conditions and Atmospheric Metallicity

    CERN Document Server

    Fortney, Jonathan J; Saumon, Didier; Lodders, Katharina

    2008-01-01

    We examine the spectra and infrared colors of the cool methane-dominated atmospheres at Teff < 1400 K expected for young gas giant planets. We couple these spectral calculations to an updated version of the Marley et al. (2007) giant planet thermal evolution models that include formation by core accretion-gas capture. These relatively cool "young Jupiters" can be 1-6 magnitudes fainter than predicted by standard cooling tracks that include a traditional initial condition, which may provide a diagnostic of formation. If correct, this would make true Jupiter-like planets much more difficult to detect at young ages than previously thought. Since Jupiter and Saturn are of distinctly super-solar composition, we examine emitted spectra for model planets at both solar metallicity and a metallicity of 5 times solar. These metal-enhanced young Jupiters have lower pressure photospheres than field brown dwarfs of the same effective temperatures arising from both lower surface gravities and enhanced atmospheric opacit...

  4. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    NARCIS (Netherlands)

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the

  5. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    NARCIS (Netherlands)

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-01-01

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the ef

  6. Capture of terrestrial-sized moons by gas giant planets.

    Science.gov (United States)

    Williams, Darren M

    2013-04-01

    Terrestrial moons with masses >0.1 M (symbol in text) possibly exist around extrasolar giant planets, and here we consider the energetics of how they might form. Binary-exchange capture can occur if a binary-terrestrial object (BTO) is tidally disrupted during a close encounter with a giant planet and one of the binary members is ejected while the other remains as a moon. Tidal disruption occurs readily in the deep gravity wells of giant planets; however, the large encounter velocities in the wells make binary exchange more difficult than for planets of lesser mass. In addition, successful capture favors massive binaries with large rotational velocities and small component mass ratios. Also, since the interaction tends to leave the captured moons on highly elliptical orbits, permanent capture is only possible around planets with sizable Hill spheres that are well separated from their host stars.

  7. Erosion of icy cores in giant gas planets

    CERN Document Server

    Wilson, Hugh F

    2010-01-01

    Using ab initio simulations we investigate whether water ice is stable in the cores of giant planets, or whether it dissolves into the layer of metallic hydrogen above. By Gibbs free energy calculations we find that for pressures between 10 and 40 Mbar the ice-hydrogen interface is unstable at temperatures above approximately 3000 K, far below the temperature of the core-mantle boundaries in Jupiter and Saturn that are of the order of 10000 K. This implies that the cores of solar and extrasolar giant planets are at least partially eroded.

  8. GT1_vgeers_1: Tracing Remnant Gas in Planet Forming Debris Disk Systems

    Science.gov (United States)

    Geers, V.

    2010-03-01

    Recent studies of gas emission lines with Spitzer and sub-millimeter telescopes have shown that 10-100 Myr old stars with debris disks have too little gas left to form Jupiter like gas giant planets. Whether enough gas remains in these systems to form ice giant planets is still unanswered. The [OI] emission line at 63 micron is one of the most sensitive tracers of gas mass in the ice-giant region of 10-50 AU in disks, and Herschel PACS is therefore uniquely suited to trace the remnant gas in planet-forming disks. We propose to obtain PACS line spectroscopy of [OI] (63 micron) for two nearby young stars, HR 8799 and HD 15115, which are two systems with detected giant planets or signs of planet formation, while still harbouring prominent debris disks that could be in the process of forming ice giants such as Neptune and Uranus. The proposed observations will probe down to gas masses of 0.01 Earth masses, and allow us to constrain prospects for ice giant formation, measure gas-to-dust ratios in evolved disks to compare with planet formation / disk evolution models, and put constraints on whether the dust dynamics in these systems is driven by the remnant gas or by the radiation. Note: this proposal is submitted under the Swiss part of the HIFI Guaranteed Time program; HIFI PI: Frank Helmich, HIFI Swiss Lead CoI: Arnold Benz.

  9. Water Clouds in the Atmosphere of a Jupiter-Like Brown Dwarf

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Lying a mere 7.2 light-years away, WISE 0855 is the nearest known planetary-mass object. This brown dwarf, a failed star just slightly more massive than Jupiter, is also the coldest known compact body outside of our solar system and new observations have now provided us with a first look at its atmosphere.Temperaturepressure profiles of Jupiter, WISE 0855, and what was previously the coldest extrasolar object with a 5-m spectrum, Gl 570D. Thicker lines show the location of each objects 5-m photospheres. WISE 0855s and Jupiters photospheres are near the point where water starts to condense out into clouds (dashed line). [Skemer et al. 2016]Challenging ObservationsWith a chilly temperature of 250 K, the brown dwarf WISE 0855 is the closest thing weve been able to observe to a body resembling Jupiters ~130 K. WISE 0855 therefore presents an intriguing opportunity to directly study the atmosphere of an object whose physical characteristics are similar to our own gas giants.But studying the atmospheric characteristics of such a body is tricky. WISE 0855 is too cold and faint to be able to obtain traditional optical or near-infrared ( 2.5 m) spectroscopy of it. Luckily, like Jupiter, the opacity of its gas allows thermal emission from its deep atmosphere to escape through an atmospheric window around ~5 m.A team of scientists led by Andrew Skemer (UC Santa Cruz) set out to observe WISE 0855 in this window with the Gemini-North telescope and the Gemini Near-Infrared Spectrograph. Though WISE 0855 is five times fainter than the faintest object previously detected with ground-based 5-m spectroscopy, the dry air of Mauna Kea (and a lot of patience!) allowed the team to obtain unprecedented spectra of this object.WISE 0855s spectrum shows absorption features consistent with water vapor, and its best fit by a cloudy brown-dwarf model. [Skemer et al. 2016]Water Clouds FoundExoplanets and brown dwarfs cooler than ~350 K are expected to form water ice clouds in upper atmosphere

  10. Do we expect to find the Super-Earths close to the gas giants?

    CERN Document Server

    Podlewska, E

    2009-01-01

    We have investigated the evolution of a pair of interacting planets embedded in a gaseous disc, considering the possibility of the resonant capture of a Super-Earth by a Jupiter mass gas giant. First, we have examined the situation where the Super-Earth is on the internal orbit and the gas giant on the external one. It has been found that the terrestrial planet is scattered from the disc or the gas giant captures the Super-Earth into an interior 3:2 or 4:3 mean-motion resonance. The stability of the latter configurations depends on the initial planet positions and on eccentricity evolution. The behaviour of the system is different if the Super-Earth is the external planet. We have found that instead of being captured in the mean-motion resonance, the terrestrial planet is trapped at the outer edge of the gap opened by the gas giant. This effect prevents the occurrence of the first order mean-motion commensurability. These results are particularly interesting in light of recent exoplanet discoveries and provid...

  11. Final Masses of Giant Planets II: Jupiter Formation in a Gas-Depleted Disk

    CERN Document Server

    Tanigawa, Takayuki

    2015-01-01

    Firstly, we study the final masses of giant planets growing in protoplanetary disks through capture of disk gas, by employing an empirical formula for the gas capture rate and a shallow disk gap model, which are both based on hydrodynamical simulations. The shallow disk gaps cannot terminate growth of giant planets. For planets less massive than 10 Jupiter masses, their growth rates are mainly controlled by the gas supply through the global disk accretion, rather than their gaps. The insufficient gas supply compared with the rapid gas capture causes a depletion of the gas surface density even at the outside of the gap, which can create an inner hole in the protoplanetary disk. Our model can also predict the depleted gas surface density in the inner hole for a given planet mass. Secondly, our findings are applied to the formation of our solar system. For the formation of Jupiter, a very low-mass gas disk with a few or several Jupiter masses is required at the beginning of its gas capture because of the non-sto...

  12. Gas Giants in Hot Water: Inhibiting Giant Planet Formation and Planet Habitability in Dense Star Clusters Through Cosmic Time

    CERN Document Server

    Thompson, Todd A

    2012-01-01

    I show that the temperature of nuclear star clusters, starburst clusters in M82, compact high-z galaxies, and some globular clusters of the Galaxy likely exceeded the ice line temperature (T_Ice ~ 150-170 K) during formation for a time comparable to the planet formation timescale. The protoplanetary disks within these systems will thus not have an ice line, decreasing the total material available for building protoplanetary embryos, inhibiting the formation of gas- and ice-giants if they form by core accretion, and prohibiting habitability. Planet formation by gravitational instability is similarly suppressed because Toomre's Q > 1 in all but the most massive disks. I discuss these results in the context of the observed lack of planets in 47 Tuc. I predict that a similar search for planets in the globular cluster NGC 6366 ([Fe/H] = -0.82) should yield detections, whereas (counterintuitively) the relatively metal-rich globular clusters NGC 6440, 6441, and 6388 should be devoid of giant planets. The characteris...

  13. Gas giants in hot water: inhibiting giant planet formation and planet habitability in dense star clusters through cosmic time

    Science.gov (United States)

    Thompson, Todd A.

    2013-05-01

    I show that the temperature of nuclear star clusters, starburst clusters in M82, compact high-z galaxies and some globular clusters of the Galaxy likely exceeded the ice-line temperature (TIce ≈ 150-170 K) during formation for a time comparable to the planet formation time-scale. The protoplanetary discs within these systems will thus, not have an ice line, decreasing the total material available for building protoplanetary embryos, inhibiting the formation of gas- and ice-giants if they form by core accretion, and prohibiting habitability. Planet formation by gravitational instability is similarly suppressed because Toomre's Q > 1 in all but the most massive discs. I show that cluster irradiation can in many cases dominate the thermodynamics and structure of passive and active protoplanetary discs for semi-major axes larger than ˜1-5 au. I discuss these results in the context of the observed lack of planets in 47 Tuc. I predict that a similar search for planets in the globular cluster NGC 6366 ([Fe/H] = -0.82) should yield detections, whereas (counterintuitively) the relatively metal-rich globular clusters NGC 6440, 6441 and 6388 should be devoid of giant planets. The characteristic stellar surface density above which TIce is exceeded in star clusters is ˜ 6 × 103 M⊙ pc- 2 f- 1/2dg, MW, where fdg, MW is the dust-to-gas ratio of the embedding material, normalized to the Milky Way value. Simple estimates suggest that ˜5-50 per cent of the stars in the universe formed in an environment exceeding this surface density. Future microlensing planet searches that directly distinguish between the bulge and disc planet populations of the Galaxy and M31 can test these predictions. Caveats and uncertainties are detailed.

  14. Enhanced Prognosis for Abiotic Natural Gas and Petroleum Resources

    CERN Document Server

    Herndon, J M

    2006-01-01

    The prognosis for potential resources of abiotic natural gas and petroleum depends critically upon the nature and circumstances of Earth formation. Until recently, that prognosis has been considered solely within the framework of the so-called "standard model of solar system formation", which is incorrect and leads to the contradiction of terrestrial planets having insufficiently massive cores. By contrast, that prognosis is considerably enhanced (i) by the new vision I have disclosed of Earth formation as a Jupiter-like gas giant; (ii) by core formation contemporaneous with raining out from within a giant gaseous protoplanet rather than through subsequent whole-Earth re-melting after loss of gases; (iii) by the consequences of whole-Earth decompression dynamics, which obviates the unfounded assumption of mantle convection, and; (iv) by the process of mantle decompression thermal-tsunami. The latter, in addition to accounting for much of the heat leaving the Earth's surface, for the geothermal gradient observ...

  15. Formation of Wide-orbit Gas Giants Near the Stability Limit in Multi-stellar Systems

    Science.gov (United States)

    Higuchi, A.; Ida, S.

    2017-09-01

    We have investigated the formation of a circumstellar wide-orbit gas giant planet in a multiple stellar system. We consider a model of orbital circularization for the core of a giant planet after it is scattered from an inner disk region by a more massive planet, which was proposed by Kikuchi et al. We extend their model for single star systems to binary (multiple) star systems, by taking into account tidal truncation of the protoplanetary gas disk by a binary companion. As an example, we consider a wide-orbit gas giant in a hierarchical triple system, HD131399Ab. The best-fit orbit of the planet is that with semimajor axis ˜80 au and eccentricity ˜0.35. As the binary separation is ˜350 au, it is very close to the stability limit, which is puzzling. With the original core location ˜20-30 au, the core (planet) mass ˜50 M E and the disk truncation radius ˜150 au, our model reproduces the best-fit orbit of HD131399Ab. We find that the orbit after the circularization is usually close to the stability limit against the perturbations from the binary companion, because the scattered core accretes gas from the truncated disk. Our conclusion can also be applied to wider or more compact binary systems if the separation is not too large and another planet with ≳20-30 Earth masses that scattered the core existed in inner region of the system.

  16. Disk evolution, element abundances and cloud properties of young gas giant planets

    CERN Document Server

    Helling, Ch; Rimmer, P B; Kamp, I; Thi, W -F; Meijerink, R

    2014-01-01

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. ProDiMo protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O i...

  17. Oligarchic planetesimal accretion and giant planet formation

    CERN Document Server

    Fortier, A; Brunini, A

    2007-01-01

    Aims. In the context of the core instability model, we present calculations of in situ giant planet formation. The oligarchic growth regime of solid protoplanets is the model adopted for the growth of the core. Methods. The full differential equations of giant planet formation were numerically solved with an adaptation of a Henyey-type code. The planetesimals accretion rate was coupled in a self-consistent way to the envelope's evolution. Results. We performed several simulations for the formation of a Jupiter-like object by assuming various surface densities for the protoplanetary disc and two different sizes for the accreted planetesimals. We find that the atmospheric gas drag gives rise to a major enhancement on the effective capture radius of the protoplanet, thus leading to an average timescale reduction of 30% -- 55% and ultimately to an increase by a factor of 2 of the final mass of solids accreted as compared to the situation in which drag effects are neglected. With regard to the size of accreted pla...

  18. Migration of Gas Giant Planets in a Gravitationally Unstable Disk

    Science.gov (United States)

    Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Durisen, Richard H.

    2017-01-01

    Understanding the migration of giant planets in gravitationally unstable protoplanetary disks is important for understanding planetary system architecture, especially the existence of planets orbiting close to and at large distances from their stars. Migration rates can determine the efficiency of planet formation and survival rates of planets. We present results from simulations of 0.3, 1, and 3 Jupiter-mass planets in a 0.14 M⊙ protoplanetary disk around a 1 M⊙ star, where the disk is marginally unstable to gravitational instabilities (GIs). Each planet is simulated separately. We use CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include radiative cooling governed by realistic dust opacities. The planets are inserted into the disk, once the disk has settled into its quasi-steady GI-active phase. We simulate each of the 0.3, 1, and 3 Jupiter-mass planets by inserting it at three different locations in the disk, at the corotation radius and at the inner and outer Lindblad resonances. No matter where placed, the 3 Jupiter-mass planets tend to drift inexorably inward but with a rate that slows after many orbital periods. The 1 Jupiter-mass planets migrate mostly inward, but their motion can be delayed or reversed near the corotation of the two-armed wave. The 0.3 Jupiter-mass planets are much less predictable and frequently migrate outward. We analyze how the density of matter and waves in the disk at different azimuthal locations affect the migration.

  19. On the gravitational signature of zonal flows in Jupiter-like planets: An analytical solution and its numerical validation

    Science.gov (United States)

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2017-02-01

    It is expected that the Juno spacecraft will provide an accurate spectrum of the Jovian zonal gravitational coefficients that would be affected by both the deep zonal flow, if it exists, and the basic rotational distortion. We derive the first analytical solution, under the spheroidal-shape approximation, for the density anomaly induced by an internal zonal flow in rapidly rotating Jupiter-like planets. We compare the density anomaly of the analytical solution to that obtained from a fully numerical solution based on a three-dimensional finite element method; the two show excellent agreement. We apply the analytical solution to a rapidly rotating Jupiter-like planet and show that there exists a close relationship between the spatial structure of the zonal flow and the spectrum of zonal gravitational coefficients. We check the accuracy of the spheroidal-shape approximation by computing both the spheroidal and non-spheroidal solutions with exactly the same physical parameters. We also discuss implications of the new analytical solution for interpreting the future high-precision gravitational measurements of the Juno spacecraft.

  20. Toward a Deterministic Model of Planetary Formation VII: Eccentricity Distribution of Gas Giants

    CERN Document Server

    Ida, S; Nagasawa, M

    2013-01-01

    The ubiquity of planets and diversity of planetary systems reveal planet formation encompass many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches leads to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interaction between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamical interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form wit...

  1. VizieR Online Data Catalog: AO imaging of KOIs with gas giant planets (Wang+, 2015)

    Science.gov (United States)

    Wang, J.; Fischer, D. A.; Horch, E. P.; Xie, J.-W.

    2017-09-01

    From the NASA Exoplanet Archive (http://exoplanetarchive.ipac.caltech.edu), we select Kepler Objects of Interest (KOIs) that satisfy the following criteria: (1) disposition of either Candidate or Confirmed, (2) stellar effective temperature (Teff) lower than 6500 K, (3) stellar surface gravity (log g) higher than 4.0, (4) Kepler magnitude (KP) brighter than 14th mag, (5) with at least one gas giant planet (3.8 R{earth}=gas giant planets. Stellar and orbital parameters for these KOIs are given in Table 1. The median distance of these KOIs is 580 pc. There are 27 multi-planet systems among 84 KOIs. (2 data files).

  2. Using direct imaging to investigate the formation and migration histories of gas giant exoplanets

    Science.gov (United States)

    Ngo, Henry

    2016-10-01

    Gas giant exoplanets are found around their host stars at orbital separations spanning more than four orders of magnitude (0.01 to 100 AU). However, it is not known whether the planets at the extreme ends of this range could have formed in situ or if they instead formed closer to ice lines between 1-10 AU and then migrated to their present day locations. In this study, we use two direct imaging surveys to explore the potential origins of hot Jupiters and to characterize the population of gas giant planets beyond the ice line. In our first survey, we focus on the role of stellar companions in hot Jupiter formation and migration. We determine that less than 20% of hot Jupiters have stellar companions capable of inducing migration via Kozai-Lidov oscillations. In addition, we find that hot Jupiter hosts are three times more likely to have a stellar companion between 50-2000 AU than field stars, suggesting that binary star systems may be favorable environments for gas giant planet formation. In our second study, we present the results from the first year of a two-year direct imaging planet survey of 200 young M-dwarf stars. By imaging in L-band (3.8 micron) and taking advantage of the new 80 milliarcsecond inner working angle "vortex" coronagraph on Keck NIRC2, we are sensitive to young planets with masses between 1-10 Jupiter masses with projected separations between 1-10 AU. We can compare the semi-major axis distribution of directly imaged planets beyond 10 AU to that of intermediate period gas giants from radial velocity surveys and determine whether or not these two populations form a continuous distribution. If so, this would imply these populations share common formation (core accretion) and migration channels.

  3. Using direct imaging to investigate the formation and migration histories of gas giant exoplanets

    Science.gov (United States)

    Ngo, Henry

    2017-01-01

    Gas giant exoplanets are found around their host stars at orbital separations spanning more than four orders of magnitude (0.01 to 100 AU). However, it is not known whether the planets at the extreme ends of this range could have formed in situ or if they instead formed closer to ice lines between 1-10 AU and then migrated to their present day locations. In this study, we use two direct imaging surveys to explore the potential origins of hot Jupiters and to characterize the population of gas giant planets beyond the ice line. In our first survey, we focus on the role of stellar companions in hot Jupiter formation and migration. We determine that less than 20% of hot Jupiters have stellar companions capable of inducing migration via Kozai-Lidov oscillations. In addition, we find that hot Jupiter hosts are three times more likely to have a stellar companion between 50-2000 AU than field stars, suggesting that binary star systems may be favorable environments for gas giant planet formation. In our second study, we present the results from the first year of a two-year direct imaging planet survey of 200 young M-dwarf stars. By imaging in L-band (3.8 micron) and taking advantage of the new 80 milliarcsecond inner working angle "vortex" coronagraph on Keck NIRC2, we are sensitive to young planets with masses between 1-10 Jupiter masses with projected separations between 1-10 AU. We can compare the semi-major axis distribution of directly imaged planets beyond 10 AU to that of intermediate period gas giants from radial velocity surveys and determine whether or not these two populations form a continuous distribution. If so, this would imply these populations share common formation (core accretion) and migration channels.

  4. Enrichment and Differentiation in Gas Giants During Birth by Disk Instability

    CERN Document Server

    Boley, Aaron C

    2010-01-01

    We investigate the coupling between rock-size solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. In this study, we use three-dimensional radiative hydrodynamics simulations and model solids as a distribution of particles. The solids respond to gas drag forces, and the back reaction on the gas is taken into account. We show that (1) disk instability planets have the potential to form large cores due to aerodynamic capturing of solids in spiral arms before fragmentation; (2) that temporary clumps can concentrate tens of $M_{\\oplus}$ of solids in very localized regions before clump disruption; (3) that the formation of permanent clumps, even in the outer disk, is dependent on the grain-size distribution, i.e., the opacity; (4) that nonaxisymmetric structure in the disk can create disk regions that have a solids-to-gas ratio greater than unity; (5) that the solid distribution may affect the fragmentation process; (6) that proto-gas giants and prot...

  5. Accumulation Mechanisms and Evolution History of the Giant Puguang Gas Field, Sichuan Basin, China

    Institute of Scientific and Technical Information of China (English)

    HAO Fang; GUO Tonglou; DU Chunguo; ZOU Huayao; CAI Xunyu; ZHU Yangming; LI Pingping; WANG Chunwu; ZHANG Yuanchun

    2009-01-01

    Solid bitumens were found throughout the carbonate reservoirs in the Puguang gas field,the largest gas field SO far found in marine carbonates in China,confirming that the Puguang gas field evolved from a paleo-oil reservoir.The fluid conduit system at the time of intensive oil accumulation in the field Was reconstructed,and petroleum migration pathways were modeled using a 3-D model and traced by geochemical parameters.The forward modeling and inversion tracing coincided with each other and both indicated that oils accumulated in the Puguang-Dongyuezhai structure originated from a generative kitchen to the northwest of the Puguang gas field.The deposition of organic-rich Upper Permian source rocks dominated by sapropelic organic matter in the Northeast Sichuan Basin, the development of fluid conduit system that was vertically near-source rock and laterally near-generative kitchen,and the focusing of oils originated from a large area of the generative kitchen,were the three requirements for the formation of the giant paleo-oil reservoir from which the giant Puguang gas field evolved.The Puguang gas field had experienced a three-stage evolution.The post-accumulation processes,especially the organic-inorganic interaction in the hydrocarbon-water-rock system,had not only profoundly altered the composition and characteristics of the petroleum fluids,but also obviously changed the physicochemical conditions in the reservoir and resulted in complicated precipitation and solution of carbonate minerals.

  6. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    Directory of Open Access Journals (Sweden)

    Christiane Helling

    2014-04-01

    Full Text Available We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  7. Disk evolution, element abundances and cloud properties of young gas giant planets.

    Science.gov (United States)

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-04-14

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  8. A Discovery Mission to Determine the Interior Structure of Gas- and Ice-Giants

    Science.gov (United States)

    Hofstadter, Mark D.; Murphy, N.; Matousek, S.; Bairstow, S.; Maiwald, F.; Jeffries, S.; Schmider, F.; Guillot, T.

    2013-10-01

    The Ice Giants (Uranus and Neptune) are fundamentally different than the better-known Gas Giants (Jupiter and Saturn). Ice Giants are roughly 65% water by mass, compared to Gas Giants which are ~95% hydrogen and helium. Knowing the interior structure of both types of planets is a key measurement needed to advance our understanding of the formation and evolution of planetary systems, particularly in light of recent findings that Ice Giants are far more abundant in our galaxy than Gas Giants (Borucki et al., ApJ 2011). In the past, gravity measurements from spacecraft in low orbits have been the primary way to tease out information on interior structure. A new approach, Doppler imaging, can provide detailed information on interior structure from great distances (Gaulme et al., A&A 2011). A planetary Doppler Imager (DI) builds on the well-established fields of helio- and stellar-seismology, which have revolutionized our understanding of the interior of stars. The great advantage of a DI is that its observations do not require the spacecraft to enter orbit. We have designed a Discovery mission around such an instrument to determine the interior structures of Jupiter and Uranus during flybys of each planet. The data collected at Jupiter (after a 1.5 year flight) will compliment observations to be made by the Juno spacecraft in 2016, creating a much more accurate picture of the interior than is possible from the gravity technique alone. Roughly 6.5 years after the Jupiter flyby, DI measurements of Uranus will open that planet's interior for the first time. At both planets, measurements of the interior structure are made over a 4-month period centered on closest approach (CA), but with a ~1 week gap at CA when the planet is too close for whole-disk imaging. This allows other measurements to be made at that time, such as of small-scale weather features or satellites. We note that the DI technique, while enabling a Discovery-class mission, can also benefit larger missions

  9. Very high-density planets: a possible remnant of gas giants.

    Science.gov (United States)

    Mocquet, A; Grasset, O; Sotin, C

    2014-04-28

    Data extracted from the Extrasolar Planets Encyclopaedia (see http://exoplanet.eu) show the existence of planets that are more massive than iron cores that would have the same size. After meticulous verification of the data, we conclude that the mass of the smallest of these planets is actually not known. However, the three largest planets, Kepler-52b, Kepler-52c and Kepler-57b, which are between 30 and 100 times the mass of the Earth, have indeed density larger than an iron planet of the same size. This observation triggers this study that investigates under which conditions these planets could represent the naked cores of gas giants that would have lost their atmospheres during their migration towards the star. This study shows that for moderate viscosity values (10(25) Pa s or lower), large values of escape rate and associated unloading stress rate during the atmospheric loss process lead to the explosion of extremely massive planets. However, for moderate escape rate, the bulk viscosity and finite-strain incompressibility of the cores of giant planets can be large enough to retain a very high density during geological time scales. This would make those a new kind of planet, which would help in understanding the interior structure of the gas giants. However, this new family of exoplanets adds some degeneracy for characterizing terrestrial exoplanets.

  10. The Evolution of Gas Giant Entropy During Formation by Runaway Accretion

    Science.gov (United States)

    Berardo, David; Cumming, Andrew; Marleau, Gabriel-Dominique

    2017-01-01

    We calculate the evolution of gas giant planets during the runaway gas accretion phase of formation, to understand how the luminosity of young giant planets depends on the accretion conditions. We construct steady-state envelope models, and run time-dependent simulations of accreting planets with the code Modules for Experiments in Stellar Astrophysics. We show that the evolution of the internal entropy depends on the contrast between the internal adiabat and the entropy of the accreted material, parametrized by the shock temperature T0 and pressure P0. At low temperatures ({T}0≲ 300–1000 {{K}}, depending on model parameters), the accreted material has a lower entropy than the interior. The convection zone extends to the surface and can drive a high luminosity, leading to rapid cooling and cold starts. For higher temperatures, the accreted material has a higher entropy than the interior, giving a radiative zone that stalls cooling. For {T}0≳ 2000 {{K}}, the surface–interior entropy contrast cannot be accommodated by the radiative envelope, and the accreted matter accumulates with high entropy, forming a hot start. The final state of the planet depends on the shock temperature, accretion rate, and starting entropy at the onset of runaway accretion. Cold starts with L≲ 5× {10}-6 {L}ȯ require low accretion rates and starting entropy, and the temperature of the accreting material needs to be maintained close to the nebula temperature. If instead the temperature is near the value required to radiate the accretion luminosity, 4π {R}2σ {T}04∼ ({GM}\\dot{M}/R), as suggested by previous work on radiative shocks in the context of star formation, gas giant planets form in a hot start with L∼ {10}-4 {L}ȯ .

  11. Zero age planetary orbit of gas giant planets revisited: reinforcement of the link with stellar metallicity

    Science.gov (United States)

    Pinotti, R.; Boechat-Roberty, H. M.; Porto de Mello, G. F.

    2017-01-01

    In 2005, we suggested a relation between the optimal locus of gas giant planet formation, prior to migration, and the metallicity of the host star, based on the core accretion model, and radial profiles of dust surface density and gas temperature. At that time, less than 200 extrasolar planets were known, limiting the scope of our analysis. Here, we take into account the expanded statistics allowed by new discoveries, in order to check the validity of some premises. We compare predictions with the present available data and results for different stellar mass ranges. We find that the zero age planetary orbit (ZAPO) hypothesis continues to hold after an order of magnitude increase in discovered planets. In particular, the prediction that metal-poor stars harbour planets with average radii distinctively lower than metal-rich ones is still evident in the statistics, and cannot be explained by chaotic planetary formation mechanisms involving migration and gravitational interaction between planets. The ZAPO hypothesis predicts that in metal-poor stars the planets are formed near their host stars; as a consequence, they are more frequently engulfed by the stars during the migration process or stripped of their gaseous envelops. The depleted number of gas giant planets around metal-poor stars would then be the result of the synergy between low formation probability, as predicted by the core accretion model, and high destruction probability, for the ones that are formed.

  12. Exploration practices and prospect of Upper Paleozoic giant gas fields in the Ordos Basin

    Directory of Open Access Journals (Sweden)

    Shengli Xi

    2015-11-01

    Full Text Available Natural gas resources is abundant in the Ordos Basin, where six gas fields with more than 100 billion cubic meters of gas reserves have been successively developed and proved, including Jingbian, Yulin, Zizhou, Wushenqi, Sulige and Shenmu. This study aims to summarize the fruitful results and functional practices achieved in the huge gas province exploration, which will be regarded as guidance and reference for the further exploration and development in this basin. Based on the past five decades' successful exploration practices made by PetroChina Changqing Oilfield Company, we first comb the presentation of geological theories at different historical stages as well as the breakthrough in the course. Then, we analyze a complete set of adaptive techniques obtained from the long-time technological research and conclude historical experiences and effective measures in terms of broadening exploration ideas, such as the fluvial delta reservoir-forming theory, giant tight gas reservoir-forming theory, the idea of sediment source system in the southern basin, etc., and innovating technical and management mechanism, such as all-digit seismic prediction, fine logging evaluation for gas formations, stimulation of tight sand reservoirs, flat project and benchmarking management, and so on.

  13. Infall of planetesimals onto growing giant planets: onset of runaway gas accretion and metallicity of their gas envelopes

    CERN Document Server

    Shiraishi, Masakazu

    2008-01-01

    We have investigated the planetesimal accretion rate onto giant planets that are growing through gas accretion, using numerical simulations and analytical arguments. We derived the condition for gap opening in the planetesimal disk, which is determined by a competition between the expansion of the planet's Hill radius due to the planet growth and the damping of planetesimal eccentricity due to gas drag. We also derived the semi-analytical formula for the planetesimal accretion rate as a function of ratios of the rates of the Hill radius expansion, the damping, and planetesimal scattering by the planet. The predicted low planetesimal accretion rate due to gap opening in early gas accretion stages quantitatively shows that "phase 2," which is a long slow gas accretion phase before onset of runaway gas accretion, is not likely to occur. In late stages, rapid Hill radius expansion fills the gap, resulting in significant planetesimal accretion, which is as large as several $M_{\\oplus}$ for Jupiter and Saturn. The ...

  14. Influence of Stellar Multiplicity On Planet Formation. III. Adaptive Optics Imaging of Kepler Stars With Gas Giant Planets

    CERN Document Server

    Wang, Ji; Horch, Elliott P; Xie, Ji-Wei

    2015-01-01

    As hundreds of gas giant planets have been discovered, we study how these planets form and evolve in different stellar environments, specifically in multiple stellar systems. In such systems, stellar companions may have a profound influence on gas giant planet formation and evolution via several dynamical effects such as truncation and perturbation. We select 84 Kepler Objects of Interest (KOIs) with gas giant planet candidates. We obtain high-angular resolution images using telescopes with adaptive optics (AO) systems. Together with the AO data, we use archival radial velocity data and dynamical analysis to constrain the presence of stellar companions. We detect 59 stellar companions around 40 KOIs for which we develop methods of testing their physical association. These methods are based on color information and galactic stellar population statistics. We find evidence of suppressive planet formation within 20 AU by comparing stellar multiplicity. The stellar multiplicity rate for planet host stars is 0$^{+5...

  15. Zero Age Planetary Orbit of Gas Giant Planets Revisited: Reinforcement of the Link with Stellar Metallicity

    CERN Document Server

    Pinotti, Rafael; de Mello, Gustavo Frederico Porto

    2016-01-01

    In 2005 we suggested a relation between the optimal locus of gas giant planet formation, prior to migration, and the metallicity of the host star, based on the core accretion model and radial profiles of dust surface density and gas temperature. At that time, less than two hundred extrasolar planets were known, limiting the scope of our analysis. Here we take into account the expanded statistics allowed by new discoveries, in order to check the validity of some premises. We compare predictions with the present available data and results for different stellar mass ranges. We find that the Zero Age Planetary Orbit (ZAPO) hypothesis continues to hold after a one order of magnitude increase in discovered planets. In particular, the prediction that metal poor stars harbor planets with an average radius distinctively lower than metal rich ones is still evident in the statistics, and cannot be explained away by chaotic planetary formation mechanisms involving migration and gravitational interaction between planets. ...

  16. Magnetosphere-ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: implications for detectability of auroral radio emissions

    CERN Document Server

    Nichols, J D

    2011-01-01

    In this paper we provide the first consideration of magnetosphere-ionosphere coupling at Jupiter-like exoplanets with internal plasma sources such as volcanic moons. We estimate the radio power emitted by such systems under the condition of near-rigid corotation throughout the closed magnetosphere, in order to examine the behaviour of the best candidates for detection with next generation radio telescopes. We thus estimate for different stellar X-ray-UV (XUV) luminosity cases the orbital distances within which the ionospheric Pedersen conductance would be high enough to maintain near-rigid corotation, and we then consider the magnitudes of the large-scale magnetosphere-ionosphere currents flowing within the systems, and the resulting radio powers, at such distances. We also examine the effects of two key system parameters, i.e. the planetary angular velocity and the plasma mass outflow rate from sources internal to the magnetosphere. In all XUV luminosity cases studied, a significant number of parameter combi...

  17. Growing the gas-giant planets by the gradual accumulation of pebbles

    CERN Document Server

    Levison, Harold F; Duncan, Martin J

    2015-01-01

    It is widely held that the first step in forming the gas giant planets, such as Jupiter and Saturn, is to form solid `cores' of roughly 10 M$_\\oplus$. Getting the cores to form before the solar nebula dissipates ($\\sim\\!1-10\\,$Myr) has been a major challenge for planet formation models. Recently models have emerged in which `pebbles' (centimeter- to meter-size objects) are first concentrated by aerodynamic drag and then gravitationally collapse to form 100 --- 1000 km objects. These `planetesimals' can then efficiently accrete leftover pebbles and directly form the cores of giant planets. This model known as `pebble accretion', theoretically, can produce 10 M$_\\oplus$ cores in only a few thousand years. Unfortunately, full simulations of this process show that, rather than creating a few 10 M$_\\oplus$ cores, it produces a population of hundreds of Earth-mass objects that are inconsistent with the structure of the Solar System. Here we report that this difficulty can be overcome if pebbles form slowly enough t...

  18. Dissociation of MgSiO3 in the cores of gas giants and terrestrial exoplanets.

    Science.gov (United States)

    Umemoto, Koichiro; Wentzcovitch, Renata M; Allen, Philip B

    2006-02-17

    CaIrO3-type MgSiO3 is the planet-forming silicate stable at pressures and temperatures beyond those of Earth's core-mantle boundary. First-principles quasiharmonic free-energy computations show that this mineral should dissociate into CsCl-type MgO cotunnite-type SiO2 at pressures and temperatures expected to occur in the cores of the gas giants + and in terrestrial exoplanets. At approximately 10 megabars and approximately 10,000 kelvin, cotunnite-type SiO2 should have thermally activated electron carriers and thus electrical conductivity close to metallic values. Electrons will give a large contribution to thermal conductivity, and electronic damping will suppress radiative heat transport.

  19. Circum-planetary discs as bottlenecks for gas accretion onto giant planets

    CERN Document Server

    Rivier, Guillaume; Morbidelli, Alessandro; Brouet, Yann

    2012-01-01

    With hundreds of exoplanets detected, it is necessary to revisit giant planets accretion models to explain their mass distribution. In particular, formation of sub-jovian planets remains unclear, given the short timescale for the runaway accretion of massive atmospheres. However, gas needs to pass through a circum-planetary disc. If the latter has a low viscosity (as expected if planets form in "dead zones"), it might act as a bottleneck for gas accretion. We investigate what the minimum accretion rate is for a planet under the limit assumption that the circum-planetary disc is totally inviscid, and the transport of angular momentum occurs solely because of the gravitational perturbations from the star. To estimate the accretion rate, we present a steady-state model of an inviscid circum-planetary disc, with vertical gas inflow and external torque from the star. Hydrodynamical simulations of a circum-planetary disc were conducted in 2D, in a planetocentric frame, with the star as an external perturber in orde...

  20. A desert of gas giant planets beyond tens of au: from feast to famine

    Science.gov (United States)

    Nayakshin, Sergei

    2017-09-01

    It is argued that frequency of gravitational fragmentation of young massive discs around FGK stars may be much higher than commonly believed. Numerical simulations presented here show that survival of gas giant planets at large separations from their host stars is very model dependent. Low-mass clumps in slowly cooling discs are found to accrete gas very slowly and migrate inward very rapidly in the well-known type I regime (no gap open). They are either tidally disrupted or survive as planets inwards of about 10 au. In this regime, probability of clump survival at large separations is extremely low, perhaps as low as 0.001, requiring up to a dozen clumps per star early on to explain the observed population. In contrast, initially massive clumps or low-mass clumps born in rapidly cooling discs accrete gas rapidly. Opening deep gaps in the disc, they migrate in the much slower type II regime and are more likely to survive beyond tens of au. The frequency of disc fragmentation in this case is at the per cent level if the clump growth saturates at brown dwarf masses but may be close to 100 per cent if clumps evolve into low stellar mass companions. Taking these theoretical uncertainties into account, current observations limit the number of planet mass clumps hatched by young massive discs around FGK stars to between 0.01 and ∼10. A deeper theoretical understanding of such discs is needed to narrow this uncertainty down.

  1. Self-determined shapes and velocities of giant near-zero drag gas cavities.

    Science.gov (United States)

    Vakarelski, Ivan U; Klaseboer, Evert; Jetly, Aditya; Mansoor, Mohammad M; Aguirre-Pablo, Andres A; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2017-09-01

    Minimizing the retarding force on a solid moving in liquid is the canonical problem in the quest for energy saving by friction and drag reduction. For an ideal object that cannot sustain any shear stress on its surface, theory predicts that drag force will fall to zero as its speed becomes large. However, experimental verification of this prediction has been challenging. We report the construction of a class of self-determined streamlined structures with this free-slip surface, made up of a teardrop-shaped giant gas cavity that completely encloses a metal sphere. This stable gas cavity is formed around the sphere as it plunges at a sufficiently high speed into the liquid in a deep tank, provided that the sphere is either heated initially to above the Leidenfrost temperature of the liquid or rendered superhydrophobic in water at room temperature. These sphere-in-cavity structures have residual drag coefficients that are typically less than [Formula: see text] those of solid objects of the same dimensions, which indicates that they experienced very small drag forces. The self-determined shapes of the gas cavities are shown to be consistent with the Bernoulli equation of potential flow applied on the cavity surface. The cavity fall velocity is not arbitrary but is uniquely predicted by the sphere density and cavity volume, so larger cavities have higher characteristic velocities.

  2. Small hydrocarbon molecules in cloud-forming Brown Dwarf and giant gas planet atmospheres

    CERN Document Server

    Bilger, Camille; Helling, Christiane

    2013-01-01

    We study the abundances of complex carbon-bearing molecules in the oxygen-rich dust- forming atmospheres of Brown Dwarfs and giant gas planets. The inner atmospheric re- gions that form the inner boundary for thermochemical gas-phase models are investigated. Results from Drift-phoenix atmosphere simulations, which include the feedback of phase- non-equilibrium dust cloud formation on the atmospheric structure and the gas-phase abun- dances, are utilised. The resulting element depletion leads to a shift in the carbon-to-oxygen ratio such that several hydrocarbon molecules and cyanopolycyanopolyynene molecules can be present. An increase in surface gravity and/or a decrease in metallicity support the increase in the partial pressures of these species. CO, CO2, CH4, and HCN contain the largest fraction of carbon. In the upper atmosphere of low-metallicity objects, more carbon is contained in C4H than in CO, and also CH3 and C2H2 play an increasingly important role as carbon-sink. We determine chemical relaxation...

  3. Self-determined shapes and velocities of giant near-zero drag gas cavities

    KAUST Repository

    Vakarelski, Ivan Uriev

    2017-09-09

    Minimizing the retarding force on a solid moving in liquid is the canonical problem in the quest for energy saving by friction and drag reduction. For an ideal object that cannot sustain any shear stress on its surface, theory predicts that drag force will fall to zero as its speed becomes large. However, experimental verification of this prediction has been challenging. We report the construction of a class of self-determined streamlined structures with this free-slip surface, made up of a teardrop-shaped giant gas cavity that completely encloses a metal sphere. This stable gas cavity is formed around the sphere as it plunges at a sufficiently high speed into the liquid in a deep tank, provided that the sphere is either heated initially to above the Leidenfrost temperature of the liquid or rendered superhydrophobic in water at room temperature. These sphere-in-cavity structures have residual drag coefficients that are typically less than Embedded Image those of solid objects of the same dimensions, which indicates that they experienced very small drag forces. The self-determined shapes of the gas cavities are shown to be consistent with the Bernoulli equation of potential flow applied on the cavity surface. The cavity fall velocity is not arbitrary but is uniquely predicted by the sphere density and cavity volume, so larger cavities have higher characteristic velocities.

  4. Geological constraints of giant and medium-sized gas fields in Kuqa Depression

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    There is a gas-rich and well-charged petroleum system in the Kuqa Depression where Triassic and Jurassic source rocks play important roles. Distributed in an area of more than 10000 km2 and with a thickness of up to 1000 m, they are composed of dark mudstones, carbonaceous mudstones and coal seams containing 6%, 40% and 90% of TOC, respectively, and are mainly the humic organic matter. As high-quality regional cap rocks, the Neogene and Eogene gypsum rocks and gypseous mudstones matched well with the underlying Neogene and Cretaceous-Eogene sandstones. They have formed the most favorable reservoir-seal assemblages in the Kuqa Depression. Also the Jurassic sandstones and mudstones formed another favorable reservoir-seal assemblage. The traps are shaped late in the fold-thrust belt, mainly fixed in the Tertiary-Quaternary, where ten structure styles have been distinguished. These traps spread as a zone in N-S, are scattered like a segmental line in W-E and show tier-styled vertically. The best traps are gypsum-salt covered fault-bend anticlines related to the passive roof duplex. This petroleum system is characterized by late accumulation. In the early Himalayan Movement, mainly gas condensate and oil accumulated and were distributed in the outer circular region of the kitchen; whereas in the middle and late Himalayan the gas accumulations mainly formed and were distributed in the inner circular region near the kitchen. The overpressure of gas pools is common and is formed by seal capacity of thick gypsum layers, extensive tectonic compression and large uplift. The well-preserved anticline traps underlying the high-quality regional cap rocks of the Tertiary gypsum rocks and gypseous mudstones are the main targets for the discovery of giant and medium-sized gas fields. Above conclusions are important for the petroleum geology theory and the exploration of the fold-thrust belt in foreland basins in central and western China.

  5. Migration and Growth of Protoplanetary Embryos II: Emergence of Proto-Gas-Giants Cores versus Super Earths' Progenitor

    CERN Document Server

    Liu, Beibei; Lin, Douglas N C; Aarseth, Sverre J

    2014-01-01

    Nearly $15-20%$ of solar type stars contain one or more gas giant planet. According to the core-accretion scenario, the acquisition of their gaseous envelope must be preceded by the formation of super-critical cores with masses ten times or larger than that of the Earth. It is natural to link the formation probability of gas giant planets with the supply of gas and solid in their natal disks. However, a much richer population of super Earths suggests that 1) there is no shortage of planetary building-block material, 2) gas giants' growth barrier is probably associated with whether they can merge into super-critical cores, and 3) super Earths are probably failed cores which did not attain sufficient mass to initiate efficient accretion of gas before it is severely depleted. Here we construct a model based on the hypothesis that protoplanetary embryos migrated extensively before they were assembled into bona fide planets. We construct a Hermite-Embryo code based on a unified viscous-irradiation disk model and a...

  6. The formation and retention of gas giant planets around stars with a range of metallicities

    CERN Document Server

    Ida, S

    2004-01-01

    The apparent dependence of detection frequency of extrasolar planets on the metallicity of their host stars is investigated with Monte Carlo simulations using a deterministic core-accretion planet formation model. According to this model, gas giants formed and acquired their mass $M_{\\rm p}$ through planetesimal coagulation followed by the emergence of cores onto which gas is accreted. These protoplanets migrate and attain their asymptotic semi-major axis $a$ through their tidal interaction with their nascent disk. Based on the observed properties of protostellar disks, we generate $M_{\\rm p}$-$a$ distribution. Our results reproduce the observed lack of planets with intermediate mass $M_{\\rm p} = 10$--100$M_{\\oplus}$ and $a \\la 3$AU and with large mass $M_{\\rm p} \\ga 10^3 M_{\\oplus}$ and $a \\la 0.2$AU. Based on the simulated $M_{\\rm p}$-$a$ distributions, we also evaluate the metallicity dependence of fraction of stars harboring planets that are detectable with current radial velocity survey. If protostellar ...

  7. MIGRATION AND GROWTH OF PROTOPLANETARY EMBRYOS. II. EMERGENCE OF PROTO-GAS-GIANT CORES VERSUS SUPER EARTH PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Beibei [Department of Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Zhang, Xiaojia [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lin, Douglas N. C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Aarseth, Sverre J., E-mail: bbliu1208@gmail.com [Institute of Astronomy, Cambridge University, Cambridge CB3 0HA (United Kingdom)

    2015-01-01

    Nearly 15%-20% of solar type stars contain one or more gas giant planets. According to the core-accretion scenario, the acquisition of their gaseous envelope must be preceded by the formation of super-critical cores with masses 10 times or larger than that of the Earth. It is natural to link the formation probability of gas giant planets with the supply of gases and solids in their natal disks. However, a much richer population of super Earths suggests that (1) there is no shortage of planetary building block material, (2) a gas giant's growth barrier is probably associated with whether it can merge into super-critical cores, and (3) super Earths are probably failed cores that did not attain sufficient mass to initiate efficient accretion of gas before it is severely depleted. Here we construct a model based on the hypothesis that protoplanetary embryos migrated extensively before they were assembled into bona fide planets. We construct a Hermite-Embryo code based on a unified viscous-irradiation disk model and a prescription for the embryo-disk tidal interaction. This code is used to simulate the convergent migration of embryos, and their close encounters and coagulation. Around the progenitors of solar-type stars, the progenitor super-critical-mass cores of gas giant planets primarily form in protostellar disks with relatively high (≳ 10{sup –7} M {sub ☉} yr{sup –1}) mass accretion rates, whereas systems of super Earths (failed cores) are more likely to emerge out of natal disks with modest mass accretion rates, due to the mean motion resonance barrier and retention efficiency.

  8. Effects of density stratification in driving zonal flow in gas giants

    Science.gov (United States)

    Gastine, T.; Wicht, J.

    2011-12-01

    The banded structures at the surfaces of Jupiter and Saturn are associated with prograde and retrograde zonal flows. The depth of these jets remains however poorly known. Theoretical scenarios range from ``shallow models'', that assume that zonal flows are restricted to a very thin layer close to the surface; to ``deep models'' that suppose that the jets involve the whole molecular shell (typically 104 kms). The latter idea was supported by fully 3-D numerical simulations (e.g. Heimpel, 2005) using the Boussinesq approximation, meaning that the background properties (temperature, density, ...) are constant with radius (Christensen, 2002). While this approximation is suitable for liquid iron cores of planets, it is more questionable in the envelopes of gas giants, where density increases by several orders of magnitude (Guillot, 1999). The anelastic approximation provides a more realistic framework to simulate the dynamics of zonal flows as it allows compressibility effects, while filtering out fast acoustic waves (Lantz & Fan, 1999). Recent anelastic simulations suggest that including compressibility effects yields interesting differences to Boussinesq approaches (Jones, 2009; Showman et al., 2011). Here, we therefore adopt an anelastic formulation to simulate 3-D compressible flows in rapidly rotating shells. We have conducted a systematic parametric study on the effects of background density stratification and analysed the influences on both convective flows and zonal jets. Despite the strong dependence of convection on the density stratification (i.e. the typical lengthscale of convective flows decreases when compressibility increases), the comparison between Boussinesq and anelastic simulations reveals striking common features: the latitudinal extent, the amplitude and the number of zonal jets is found to be nearly independent of the density stratification, provided convection is strongly driven. Mass-weighted properties of the flow (and notably a mass

  9. Stealing the Gas: Giant Impacts and the Large Diversity in Exoplanet Densities

    CERN Document Server

    Inamdar, Niraj K

    2015-01-01

    Although current sensitivity limits are such that true Solar System analogs remain challenging to detect, numerous planetary systems have been discovered that are very different from our own Solar System. The majority of systems harbor a new class of planets, bodies that are typically several times more massive than the Earth but that orbit their host stars well inside the orbit of Mercury. These planets frequently show evidence for large Hydrogen and Helium envelopes containing several percent of the planet's mass and display a large diversity in mean densities. Here we show that this wide range can be achieved by one or two late giant impacts, which are frequently needed to achieve long-term orbital stability in multiple planet systems once the gas disk has disappeared. We demonstrate using hydrodynamical simulations that a single collision between similarly sized exoplanets can easily reduce the envelope-to-core-mass ratio by a factor of two and show that this leads to a corresponding increase in the obser...

  10. Statistics of Long Period Gas Giant Planets in Known Planetary Systems

    CERN Document Server

    Bryan, Marta L; Howard, Andrew W; Ngo, Henry; Batygin, Konstantin; Crepp, Justin R; Fulton, B J; Hinkley, Sasha; Isaacson, Howard; Johnson, John A; Marcy, Geoffry W; Wright, Jason T

    2016-01-01

    We conducted a Doppler survey at Keck combined with NIRC2 K-band AO imaging to search for massive, long-period companions to 123 known exoplanet systems with one or two planets detected using the radial velocity (RV) method. Our survey is sensitive to Jupiter mass planets out to 20 AU for a majority of stars in our sample, and we report the discovery of eight new long-period planets, in addition to 20 systems with statistically significant RV trends indicating the presence of an outer companion beyond 5 AU. We combine our RV observations with AO imaging to determine the range of allowed masses and orbital separations for these companions, and account for variations in our sensitivity to companions among stars in our sample. We estimate the total occurrence rate of companions in our sample to be 52 +/- 5% over the range 1 - 20 M_Jup and 5 - 20 AU. Our data also suggest a declining frequency for gas giant planets in these systems beyond 3-10 AU, in contrast to earlier studies that found a rising frequency for g...

  11. Elemental abundance differences in the 16 Cygni binary system: a signature of gas giant planet formation?

    CERN Document Server

    Ramirez, I; Cornejo, D; Roederer, I U; Fish, J R

    2011-01-01

    The atmospheric parameters of the components of the 16Cygni binary system, in which the secondary has a gas giant planet detected, are measured accurately using high quality observational data. Abundances relative to solar are obtained for 25 elements with a mean error of 0.023 dex. The fact that 16CygA has about four times more lithium than 16CygB is normal considering the slightly different masses of the stars. The abundance patterns of 16CygA and B, relative to iron, are typical of that observed in most of the so-called solar twin stars, with the exception of the heavy elements (Z>30), which can, however, be explained by Galactic chemical evolution. Differential (A-B) abundances are measured with even higher precision (0.018 dex, on average). We find that 16CygA is more metal-rich than 16CygB by 0.041+/-0.007 dex. On an element-to-element basis, no correlation between the A-B abundance differences and dust condensation temperature (Tc) is detected. Based on these results, we conclude that if the process of...

  12. A discussion on gas sources of the Feixianguan Formation H2S-rich giant gas fields in the northeastern Sichuan Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In recent years several H2S-rich oolite giant gas pools have been discovered in the Lower Triassic Feixianguan Formation of the northeastern Sichuan basin, and their explored gas reserves have been over 5000x108 m3. However, gas sources remain unsolved due to multiple source horizons with high maturity in this area and TSR alterations. By integrating analytical data of natural gas samples with conprehensive investigations on many factors, such as oil-gas geology, distribution and evolution of source rocks, charging and adjustment of gas pools, mixture of natural gases and secondery alterations, the present study concluded that the dominant source for the Feixianguan Fr. gas pools is the Permian Longtan Fr. source rock and secondly the Silurian Longmaxi Fr. source rock. Natural gases from the various gas pools differ genetically due to the matching diversity of seal configurations with phases of hydrocarbon generation and expulsion by different source rocks, among which natural gases in Puguang Gasfield are dominated by the trapped gas generated from the Longtan Fr. source rock and commingled with the gas cracked from the Silurian crude oil, while those in Dukouhe,Tieshangpo and Luojiazhai Gasfields are composed mainly of the Silurian oil-cracking gas and commingled with the natural gas derived from the Longtan Fr. source rock.

  13. Meridional circulation of gas into gaps opened by giant planets in three-dimensional low-viscosity disks

    CERN Document Server

    Morbidelli, A; Crida, A; Lega, E; Bitsch, B; Tanigawa, T; Kanagawa, K

    2014-01-01

    We examine the gas circulation near a gap opened by a giant planet in a protoplanetary disk. We show with high resolution 3D simulations that the gas flows into the gap at high altitude over the mid-plane, at a rate dependent on viscosity. We explain this observation with a simple conceptual model. From this model we derive an estimate of the amount of gas flowing into a gap opened by a planet with Hill radius comparable to the scale-height of a layered disk (i. e. a disk with viscous upper layer and inviscid midplane). Our estimate agrees with modern MRI simulations(Gressel et al., 2013). We conclude that gap opening in a layered disk can not slow down significantly the runaway gas accretion of Saturn to Jupiter-mass planets.

  14. The Last Gasp of Gas Giant Planet Formation: A Spitzer Study of the 5 Myr-old Cluster NGC 2362

    Science.gov (United States)

    Currie, Thayne M.; Lada, C. J.; Plavchan, P.; Kenyon, S. J.; Irwin, J.

    2009-01-01

    We describe Spitzer IRAC and MIPS observations of the populous, 5 Myr-old open cluster NGC 2362. Combining these data with 2MASS near IR photometry, we analyze the mid-IR colors of cluster members. Optical/infrared photometry through 24 microns is used to constrain the spectral energy distributions of cluster stars, comparing them to star+circumstellar disk models covering a range of disk morphologies and evolutionary states. Early/intermediate-type (candidate) cluster members either have photospheric mid-IR emission or weak, optically-thin infrared excess emission at > 24 microns, consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by 'transition' disks and 'homologously depleted' disks. Both types of disks represent an intermediate stage between primordial disks and debris disks, so multiple paths for primordial-to-debris disk transition exist. Because evolved primordial disks greatly outnumber primordial disks, these results undermine standard arguments in favor of a < 10^5 year timescale for the transition based on the paucity of 'transition' disks in Taurus-Auriga. Combining our data with that from other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and constrain the timescale for gas giant planet formation. The formation timescale for gas giant planets surrounding early-type, high/intermediate-mass stars must be << 5 Myr. Most solar/subsolar-mass stars detected by Spitzer have SEDs that indicate their disks have evolved past the primordial disk phase. Thus, gas giant planet formation must occur prior to 5 Myr around stars with a wide range of masses.

  15. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high redshift

    Energy Technology Data Exchange (ETDEWEB)

    Bournaud, Frédéric; Renaud, Florent; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Gabor, Jared M.; Juneau, Stéphanie; Kraljic, Katarina; Le Floch' , Emeric [CEA, IRFU/SAp, F-91191 Gif-Sur-Yvette (France); Perret, Valentin; Amram, Philippe; Epinat, Benoit [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille), F-13388 Marseille (France); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, Debra M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Teyssier, Romain [Institute for Theoretical Physics, University of Zurich, CH-8057 Zurich (Switzerland)

    2014-01-01

    Star-forming disk galaxies at high redshift are often subject to violent disk instability, characterized by giant clumps whose fate is yet to be understood. The main question is whether the clumps disrupt within their dynamical timescale (≤50 Myr), like the molecular clouds in today's galaxies, or whether they survive stellar feedback for more than a disk orbital time (≈300 Myr) in which case they can migrate inward and help building the central bulge. We present 3.5-7 pc resolution adaptive mesh refinement simulations of high-redshift disks including photoionization, radiation pressure, and supernovae feedback. Our modeling of radiation pressure determines the mass loading and initial velocity of winds from basic physical principles. We find that the giant clumps produce steady outflow rates comparable to and sometimes somewhat larger than their star formation rate, with velocities largely sufficient to escape the galaxy. The clumps also lose mass, especially old stars, by tidal stripping, and the stellar populations contained in the clumps hence remain relatively young (≤200 Myr), as observed. The clumps survive gaseous outflows and stellar loss, because they are wandering in gas-rich turbulent disks from which they can reaccrete gas at high rates compensating for outflows and tidal stripping, overall keeping realistic and self-regulated gaseous and stellar masses. The outflow and accretion rates have specific timescales of a few 10{sup 8} yr, as opposed to rapid and repeated dispersion and reformation of clumps. Our simulations produce gaseous outflows with velocities, densities, and mass loading consistent with observations, and at the same time suggest that the giant clumps survive for hundreds of Myr and complete their migration to the center of high-redshift galaxies. These long-lived clumps are gas-dominated and contain a moderate mass fraction of stars; they drive inside-out disk evolution, thickening, spheroid growth, and fueling of the central

  16. The Effect of Protoplanetary Disk Cooling Times on the Formation of Gas Giant Planets by Gravitational Instability

    Science.gov (United States)

    Boss, Alan P.

    2017-02-01

    Observational evidence exists for the formation of gas giant planets on wide orbits around young stars by disk gravitational instability, but the roles of disk instability and core accretion for forming gas giants on shorter period orbits are less clear. The controversy extends to population synthesis models of exoplanet demographics and to hydrodynamical models of the fragmentation process. The latter refers largely to the handling of radiative transfer in three-dimensional (3D) hydrodynamical models, which controls heating and cooling processes in gravitationally unstable disks, and hence dense clump formation. A suite of models using the β cooling approximation is presented here. The initial disks have masses of 0.091 M ⊙ and extend from 4 to 20 au around a 1 M ⊙ protostar. The initial minimum Toomre Q i values range from 1.3 to 2.7, while β ranges from 1 to 100. We show that the choice of Q i is equal in importance to the β value assumed: high Q i disks can be stable for small β, when the initial disk temperature is taken as a lower bound, while low Q i disks can fragment for high β. These results imply that the evolution of disks toward low Q i must be taken into account in assessing disk fragmentation possibilities, at least in the inner disk, i.e., inside about 20 au. The models suggest that if low Q i disks can form, there should be an as yet largely undetected population of gas giants orbiting G dwarfs between about 6 au and 16 au.

  17. Source Rocks for the Giant Puguang Gas Field, Sichuan Basin: Implication for Petroleum Exploration in Marine Sequences in South China

    Institute of Scientific and Technical Information of China (English)

    ZOU Huayao; HAO Fang; ZHU Yangming; GUO Tonglou; CAI Xunyu; LI Pingping; ZHANG Xuefeng

    2008-01-01

    Detailed geochemistry studies were conducted to investigate the origin of solid bitumens and hydrocarbon gases in the giant Puguang gas field. Two types of solid bitumens were recognized: low sulfur content, low reflectance (LSLR) solid bitumens in sandstone reservoirs in the Xujiahe Formation and high sulfur content, high reflectance (HSHR) solid bitumens in the carbonate reservoirs in the Lower Triassic Feixianguan and Upper Permian Changxing formations. Solid bitumens in the Upper Triassic Xujiahe Formation correlate well with extracts from the Upper Triassic to Jurassic nonmarine source rocks in isotopic composition of the saturated and aromatic fractions and biomarker distribution. Solid bitumens in the Feixianguan and Changxing formations are distinctly different from extracts from the Cambrian and Silurian rocks but display reasonable correlation with extracts from the Upper Permian source rocks both in isotopic composition of the saturated and aromatic fractions and in biomarker distribution, suggesting that the Permian especially the Upper Permian Longtan Formation was the main source of solid bitumens in the carbonate reservoirs in the Feixianguan and Changxing formations in the Puguang gas field. Chemical and isotopic composition of natural gases indicates that the majority of hydrocarbon gases originated from sapropelic organic matter and was the products of thermal cracking of accumulated oils. This study indicates that source rock dominated by sapropelic organic matter existed in the Upper Permian and had made major contribution to the giant Puguang gas field, which has important implication for petroleum exploration in marine sequences in South China.

  18. The World is Spinning: Constraining the Origin of Supermassive Gas Giant Planets at Wide Separations Using Planetary Spin

    Science.gov (United States)

    Bryan, Marta; Knutson, Heather; Batygin, Konstantin; Benneke, Björn; Bowler, Brendan

    2017-01-01

    Planetary spin can inform our understanding of planet accretion histories, which determine final masses and atmospheric compositions, as well as the formation of moons and rings. At present, the physics behind how gas giant planets spin up is still very poorly understood. We know that when giant planets form, they accrete material and angular momentum via a circumplanetary disk, causing the planet to spin up. In order to prevent planet spins from reaching break-up velocity, some mechanism must regulate these spins. However, there is currently no well-formulated picture for how planet spins evolve. This is in part due to the fact that there are very few measurements of giant planet spin rates currently available. Outside the solar system, to date there has only been one published spin measurement of a directly imaged planet, beta Pic b. We use Keck/NIRSPEC to measure spin rates for a sample of bound and free-floating directly imaged planetary mass objects, providing a first look at the distribution of spin rates for these objects.

  19. Core-assisted gas capture instability: a new mode of giant planet formation by gravitationally unstable discs

    CERN Document Server

    Nayakshin, Sergei; Boley, Aaron C

    2014-01-01

    Giant planet formation in the core accretion (CA) paradigm is predicated by the formation of a core, assembled by the coagulation of grains and later by planetesimals within a protoplanetary disc. In contrast, in the disc instability paradigm, giant planet formation is believed to be independent of core formation: massive self-gravitating gas fragments cool radiatively and collapse as a whole. We show that giant planet formation in the disc instability model may be also enhanced by core formation for reasons physically very similar to the CA paradigm. In the model explored here, efficient grain sedimentation within an initial fragment (rather than the disc) leads to the formation of a core composed of heavy elements. We find that massive atmospheres form around cores and undergo collapse as a critical core mass is exceeded, analogous to CA theory. The critical mass of the core to initiate such a collapse depends on the fragment mass and metallicity, as well as core luminosity, but ranges from less than 1 to a...

  20. How the presence of a gas giant affects the formation of mean-motion resonances between two low-mass planets in a locally isothermal gaseous disc

    CERN Document Server

    Podlewska-Gaca, Edyta

    2013-01-01

    In this paper we investigate the possibility of a migration-induced resonance locking in systems containing three planets, namely an Earth analog, a super-Earth and a gas giant. The planets have been listed in order of increasing orbital periods. All three bodies are embedded in a locally isothermal gaseous disc and orbit around a solar mass star. We are interested in answering the following question: Will the low-mass planets form the same resonant structures with each other in the vicinity of the gas giant as in the case when the gas giant is absent? When there is no gas giant in the system, it has been already shown that if the two low-mass planets undergo a convergent differential migration, they will capture each other in a mean-motion resonance. For the choices of disc parameters and planet masses made in this paper, the formation of the 5:4 resonance in the absence of the Jupiter has been observed. In this work we add a gas giant on the most external orbit of the system in such a way that its different...

  1. The origin of cold gas in giant elliptical galaxies and its role in fueling radio-mode AGN feedback

    CERN Document Server

    Werner, N; Sun, M; Nulsen, P E J; Allen, S W; Canning, R E A; Simionescu, A; Hoffer, A; Connor, T; Donahue, M; Edge, A C; Fabian, A C; von der Linden, A; Reynolds, C S; Ruszkowski, M

    2013-01-01

    We present a multi-wavelength study of the interstellar medium in eight nearby, X-ray and optically bright, giant elliptical galaxies. Using Herschel PACS, we map the cold gas in the lines of [CII], [OI], and [OIb]. Additionally, we present Ha+[NII] imaging of warm ionized gas with the SOAR telescope, and a study of the hot X-ray emitting plasma with Chandra. All systems with extended Ha emission in our sample (6/8 galaxies) display significant [CII] line emission indicating the presence of cold gas. This emission is co-spatial with the Ha+[NII] emitting nebulae and the lowest entropy X-ray emitting plasma. The entropy profiles of the hot galactic atmospheres show a clear dichotomy, with the systems displaying extended emission line nebulae having lower entropies beyond r~1 kpc than the cold-gas-poor systems. We show that while the hot atmospheres of the cold-gas-poor galaxies are thermally stable outside of their innermost cores, the atmospheres of the cold-gas-rich systems are prone to cooling instabilities...

  2. EVIDENCE FOR THE DIRECT DETECTION OF THE THERMAL SPECTRUM OF THE NON-TRANSITING HOT GAS GIANT HD 88133 b

    KAUST Repository

    Piskorz, Danielle

    2016-11-23

    We target the thermal emission spectrum of the non-transiting gas giant HD 88133 b with high-resolution near-infrared spectroscopy, by treating the planet and its host star as a spectroscopic binary. For sufficiently deep summed flux observations of the star and planet across multiple epochs, it is possible to resolve the signal of the hot gas giant\\'s atmosphere compared to the brighter stellar spectrum, at a level consistent with the aggregate shot noise of the full data set. To do this, we first perform a principal component analysis to remove the contribution of the Earth\\'s atmosphere to the observed spectra. Then, we use a cross-correlation analysis to tease out the spectra of the host star and HD 88133 b to determine its orbit and identify key sources of atmospheric opacity. In total, six epochs of Keck NIRSPEC L-band observations and three epochs of Keck NIRSPEC K-band observations of the HD 88133 system were obtained. Based on an analysis of the maximum likelihood curves calculated from the multi-epoch cross-correlation of the full data set with two atmospheric models, we report the direct detection of the emission spectrum of the non-transiting exoplanet HD 88133 b and measure a radial projection of the Keplerian orbital velocity of 40 +/- 15 km s(-1), a true mass of 1.02(-0.28)(+0.61) M-J, a nearly face-on orbital inclination of 15(-5)(+60), and an atmosphere opacity structure at high dispersion dominated by water vapor. This, combined with 11 years of radial velocity measurements of the system, provides the most up-to-date ephemeris for HD 88133.

  3. Direct detection of precursors of gas giants formed by gravitational instability with the Atacama Large Millimetre/sub-millimetre Array

    CERN Document Server

    Mayer, Lucio; Pineda, Jaime E; Wadsley, James

    2016-01-01

    Phases of gravitational instability are expected in the early phases of disk evolution, when the disk mass is still a substantial fraction of the mass of the star. Disk fragmentation into sub-stellar objects could occur in the cold exterior part of the disk. Direct detection of massive gaseous clumps on their way to collapse into gas giant planets would offer an unprecedented test of the disk instability model. Here we use state-of-the-art 3D radiation-hydro simulations of disks undergoing fragmentation into massive gas giants, post-processed with the RADMC-3D ray-tracing code to produce dust continuum emission maps. These are then fed into the Common Astronomy Software Applications (CASA) ALMA simulator. The synthetic maps show that both overdense spiral arms and actual clumps at different stages of collapse can be detected with the Atacama Large Millimetre/sub-millimetre Array (ALMA) in the full configuration at the distance of the Ophiuchus star forming region (125 pc). The detection of clumps is particula...

  4. Evidence for the Direct Detection of the Thermal Spectrum of the Non-Transiting Hot Gas Giant HD 88133 b

    Science.gov (United States)

    Piskorz, Danielle; Crockett, Nathan R.; Lockwood, Alexandra; Benneke, Björn; Blake, Geoffrey A.; Barman, Travis S.; Bender, Chad F.; Bryan, Marta; Carr, John S.; Fischer, Debra; Howard, Andrew; Isaacson, Howard T.; Johnson, John A.

    2016-10-01

    We target the thermal emission spectrum of the non-transiting gas giant HD 88133 b with high-resolution near-infrared spectroscopy, by treating the planet and its host star as a spectroscopic binary. For sufficiently deep summed flux observations of the star and planet across multiple epochs, it is possible to resolve the signal of the hot gas giant's atmosphere compared to the brighter stellar spectrum, at a level consistent with the aggregate shot noise of the full data set. To do this, we first perform a principal component analysis to remove the contribution of the Earth's atmosphere to the observed spectra. Then, we use a cross-correlation analysis to tease out the spectra of the host star and HD 88133 b to determine its orbit and identify key sources of atmospheric opacity. In total, six epochs of Keck NIRSPEC L band observations and three epochs of Keck NIRSPEC K band observations of the HD 88133 system were obtained. Based on an analysis of the maximum likelihood curves calculated from the multi-epoch cross correlation of the full data set with two atmospheric models, we report the direct detection of the emission spectrum of the non-transiting exoplanet HD 88133 b and measure a radial projection of its Keplerian orbital velocity, its true mass, its orbital inclination, and dominant atmospheric species. This, combined with eleven years of radial velocity measurements of the system, provides the most up-to-date ephemeris for HD 88133.

  5. Spitzer Secondary Eclipse Observations of Five Cool Gas Giant Planets and Empirical Trends in Cool Planet Emission Spectra

    CERN Document Server

    Kammer, Joshua A; Line, Michael R; Fortney, Jonathan J; Deming, Drake; Burrows, Adam; Cowan, Nicolas B; Triaud, Amaury H M J; Agol, Eric; Desert, Jean-Michel; Fulton, Benjamin J; Howard, Andrew W; Laughlin, Gregory P; Lewis, Nikole K; Morley, Caroline V; Moses, Julianne I; Showman, Adam P; Todorov, Kamen O

    2015-01-01

    In this work we present Spitzer 3.6 and 4.5 micron secondary eclipse observations of five new cool (<1200 K) transiting gas giant planets: HAT-P-19b, WASP-6b, WASP-10b, WASP-39b, and WASP-67b. We compare our measured eclipse depths to the predictions of a suite of atmosphere models and to eclipse depths for planets with previously published observations in order to constrain the temperature- and mass-dependent properties of gas giant planet atmospheres. We find that the dayside emission spectra of planets less massive than Jupiter require models with efficient circulation of energy to the night side and/or increased albedos, while those with masses greater than that of Jupiter are consistently best-matched by models with inefficient circulation and low albedos. At these relatively low temperatures we expect the atmospheric methane to CO ratio to vary as a function of metallicity, and we therefore use our observations of these planets to constrain their atmospheric metallicities. We find that the most massi...

  6. Evidence for the Direct Detection of the Thermal Spectrum of the Non-Transiting Hot Gas Giant HD 88133 b

    CERN Document Server

    Piskorz, Danielle; Crockett, Nathan R; Lockwood, Alexandra C; Blake, Geoffrey A; Barman, Travis S; Bender, Chad F; Bryan, Marta L; Carr, John S; Fischer, Debra A; Howard, Andrew W; Isaacson, Howard; Johnson, John A

    2016-01-01

    We target the thermal emission spectrum of the non-transiting gas giant HD 88133 b with high-resolution near-infrared spectroscopy, by treating the planet and its host star as a spectroscopic binary. For sufficiently deep summed flux observations of the star and planet across multiple epochs, it is possible to resolve the signal of the hot gas giant's atmosphere compared to the brighter stellar spectrum, at a level consistent with the aggregate shot noise of the full data set. To do this, we first perform a principal component analysis to remove the contribution of the Earth's atmosphere to the observed spectra. Then, we use a cross-correlation analysis to tease out the spectra of the host star and HD 88133 b to determine its orbit and identify key sources of atmospheric opacity. In total, six epochs of Keck NIRSPEC L band observations and three epochs of Keck NIRSPEC K band observations of the HD 88133 system were obtained. Based on an analysis of the maximum likelihood curves calculated from the multi-epoch...

  7. The discoveries of WASP-91b, WASP-105b and WASP-107b: Two warm Jupiters and a planet in the transition region between ice giants and gas giants

    Science.gov (United States)

    Anderson, D. R.; Collier Cameron, A.; Delrez, L.; Doyle, A. P.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Madhusudhan, N.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Triaud, A. H. M. J.; Turner, O. D.; Udry, S.; West, R. G.

    2017-08-01

    We report the discoveries of three transiting exoplanets. WASP-91b is a warm Jupiter (1.34 MJup, 1.03 RJup) in a 2.8-day orbit around a metal-rich K3 star. WASP-105b is a warm Jupiter (1.8 MJup, 0.96 RJup) in a 7.9-day orbit around a metal-rich K2 star. WASP-107b is a warm super-Neptune/sub-Saturn (0.12 MJup, 0.94 RJup) in a 5.7-day orbit around a solar-metallicity K6 star. Considering that giant planets seem to be more common around stars of higher metallicity and stars of higher mass, it is notable that the hosts are all metal-rich, late-type stars. With orbital separations that place both WASP-105b and WASP-107b in the weak-tide regime, measurements of the alignment between the planets' orbital axes and their stars' spin axes may help us to understand the inward migration of short-period, giant planets. The mass of WASP-107b (2.2 MNep, 0.40 MSat) places it in the transition region between the ice giants and gas giants of the Solar System. Its radius of 0.94 RJup suggests that it is a low-mass gas giant with a H/He-dominated composition. The planet thus sets a lower limit of 2.2 MNep on the planetary mass above which large gaseous envelopes can be accreted and retained by proto-planets on their way to becoming gas giants. We may discover whether WASP-107b more closely resembles an ice giant or a gas giant by measuring its atmospheric metallicity via transmission spectroscopy, for which WASP-107b is a very good target. Based on observations made with: the WASP-South photometric survey instrument, the 0.6-m TRAPPIST robotic imager, and the EulerCam camera and the CORALIE spectrograph mounted on the 1.2-m Euler-Swiss telescope.The photometric time-series and radial-velocity data used in this work are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A110

  8. The Last Gasp of Gas Giant Planet Formation: A Spitzer Study of the 5 Myr Old Cluster NGC 2362

    Science.gov (United States)

    Currie, Thayne; Lada, Charles J.; Plavchan, Peter; Robitaille, Thomas P.; Irwin, Jonathan; Kenyon, Scott J.

    2009-06-01

    Expanding upon the Infrared Array Camera (IRAC) survey from Dahm & Hillenbrand, we describe Spitzer IRAC and Multiband Imaging Photometer for Spitzer observations of the populous, 5 Myr old open cluster NGC 2362. We analyze the mid-IR colors of cluster members and compared their spectral energy distributions (SEDs) to star+circumstellar disk models to constrain the disk morphologies and evolutionary states. Early/intermediate-type confirmed/candidate cluster members either have photospheric mid-IR emission or weak, optically thin IR excess emission at λ >= 24 μm consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by disks with inner holes (canonical "transition disks") and "homologously depleted" disks. Both types of disks represent an intermediate stage between primordial disks and debris disks. Thus, in agreement with previous results, we find that multiple paths for the primordial-to-debris disk transition exist. Because these "evolved primordial disks" greatly outnumber primordial disks, our results undermine standard arguments in favor of a lsim105 yr timescale for the transition based on data from Taurus-Auriga. Because the typical transition timescale is far longer than 105 yr, these data also appear to rule out standard ultraviolet photoevaporation scenarios as the primary mechanism to explain the transition. Combining our data with other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and investigate timescales for giant planet formation. Consistent with Currie et al., the luminosity of 24 μm emission in debris disks due to planet formation peaks at ≈10-20 Myr. If the gas and dust in disks evolve on similar timescales, the formation timescale for gas giant planets surrounding early-type, high/intermediate-mass (gsim1.4 M sun) stars is likely 1-5 Myr. Most solar/subsolar-mass stars detected by Spitzer have

  9. Exploration practices and prospect of Upper Paleozoic giant gas fields in the Ordos Basin

    OpenAIRE

    Shengli Xi; Xinshe Liu; Peilong Meng

    2015-01-01

    Natural gas resources is abundant in the Ordos Basin, where six gas fields with more than 100 billion cubic meters of gas reserves have been successively developed and proved, including Jingbian, Yulin, Zizhou, Wushenqi, Sulige and Shenmu. This study aims to summarize the fruitful results and functional practices achieved in the huge gas province exploration, which will be regarded as guidance and reference for the further exploration and development in this basin. Based on the past five deca...

  10. The First H-band Spectrum of the Massive Gas Giant Planet beta Pictoris b with the Gemini Planet Imager

    CERN Document Server

    Chilcote, Jeffrey; Fitzgerald, Michael P; Graham, James R; Larkin, James E; Macintosh, Bruce; Bauman, Brian; Burrows, Adam S; Cardwell, Andrew; De Rosa, Robert J; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Gavel, Donald; Goodsell, Stephen J; Hartung, Markus; Hibon, Pascale; Ingraham, Patrick; Kalas, Paul; Konopacky, Quinn; Maire, Jérôme; Marchis, Franck; Marley, Mark S; Marois, Christian; Millar-Blanchaer, Max; Morzinski, Katie; Norton, Andrew; Oppenheimer, B R; Palmer, David; Patience, Jennifer; Perrin, Marshall D; Poyneer, Lisa; Pueyo, Laurent; Rantakyrö, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Remi; Thomas, Sandrine; Wallace, J Kent; Wiktorowicz, Sloane J; Wolff, Schuyler

    2014-01-01

    Using the recently installed Gemini Planet Imager (GPI), we have taken the first H-band spectrum of the planetary companion to the nearby young star beta Pictoris. GPI is designed to image and provide low-resolution spectra of Jupiter sized, self-luminous planetary companions around young nearby stars. These observations were taken covering the H-band (1.65 microns). The spectrum has a resolving power of $\\sim$ 45 and demonstrates the distinctive triangular shape of a cool substellar object with low surface gravity. Using atmospheric models, we find an effective temperature of $1650 \\pm 50$ K and a surface gravity of $\\log(g) = 4.0 \\pm 0.25$ (cgs units). These values agree well with predictions from planetary evolution models for a gas giant with mass between 10 and 12 $M_{\\rm Jup}$ and age between 10 and 20 Myrs.

  11. Benchmark experiments with global climate models applicable to extra-solar gas giant planets in the shallow atmosphere approximation

    CERN Document Server

    Bending, V L; Kolb, U

    2012-01-01

    The growing field of exoplanetary atmospheric modelling has seen little work on standardised benchmark tests for its models, limiting understanding of the dependence of results on specific models and conditions. With spatially resolved observations as yet difficult to obtain, such a test is invaluable. Although an intercomparison test for models of tidally locked gas giant planets has previously been suggested and carried out, the data provided were limited in terms of comparability. Here, the shallow PUMA model is subjected to such a test, and detailed statistics produced to facilitate comparison, with both time means and the associated standard deviations displayed, removing the time dependence and providing a measure of the variability. Model runs have been analysed to determine the variability between resolutions, and the effect of resolution on the energy spectra studied. Superrotation is a robust and reproducible feature at all resolutions.

  12. Clumps in the Outer Disk by Disk Instability: Why They are Initially Gas Giants and the Legacy of Disruption

    CERN Document Server

    Boley, Aaron C; Mayer, Lucio; Durisen, Richard H

    2009-01-01

    We explore the initial conditions for fragments in the extended regions (r>50 AU) of gravitationally unstable disks. We combine analytic estimates for the fragmentation of spiral arms with 3D SPH simulations to show that initial fragment masses are in the gas giant regime. These initial fragments will have substantial angular momentum, and should form disks with radii of a few AU. We show that clumps will survive for multiple orbits before they undergo rapid collapse due to H2 dissociation and that it is possible to destroy bound clumps by transporting them into the inner disk. The consequences of disrupted clumps for planet formation, dust processing, and disk evolution are discussed. We find that it is possible to produce Earth-mass cores in the outer disk during the earliest phases of disk evolution.

  13. Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?

    Science.gov (United States)

    Leitzinger, M; Odert, P; Kulikov, Yu N; Lammer, H; Wuchterl, G; Penz, T; Guarcello, M G; Micela, G; Khodachenko, M L; Weingrill, J; Hanslmeier, A; Biernat, H K; Schneider, J

    2011-10-01

    We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a "Hot Neptune" nor a "Hot Uranus"-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.

  14. Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?

    Science.gov (United States)

    Leitzinger, M.; Odert, P.; Kulikov, Yu.N.; Lammer, H.; Wuchterl, G.; Penz, T.; Guarcello, M.G.; Micela, G.; Khodachenko, M.L.; Weingrill, J.; Hanslmeier, A.; Biernat, H.K.; Schneider, J.

    2011-01-01

    We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects. PMID:21969736

  15. Metabolism, gas exchange, and acid-base balance of giant salamanders.

    Science.gov (United States)

    Ultsch, Gordon R

    2012-08-01

    The giant salamanders are aquatic and paedomorphic urodeles including the genera Andrias and Cryptobranchus (Cryptobranchidae), Amphiuma (Amphiumidae), Siren (Sirenidae), and Necturus (Proteidae, of which only N. maculosus is considered 'a giant'). Species in the genera Cryptobranchus and Necturus are considered aquatic salamanders well adapted for breathing water, poorly adapted for breathing air, and with limited abilities to compensate acid-base disturbances. As such, they are water-breathing animals with a somewhat fish-like respiratory and acid-base physiology, whose habitat selection is limited to waters that do not typically become hypoxic or hypercarbic (although this assertion has been questioned for N. maculosus). Siren and Amphiuma species, by contrast, are dependent upon air-breathing, have excellent lungs, inefficient (Siren) or no (Amphiuma) gills, and are obligate air-breathers with an acid-base status more similar to that of terrestrial tetrapods. As such, they can be considered to be air-breathing animals that live in water. Their response to the aquatic hypercarbia that they often encounter is to maintain intracellular pH (pH(i) ) and abandon extracellular pH regulation, a process that has been referred to as preferential pH(i) regulation. The acid-base status of some present-day tropical air-breathing fishes, and of Siren and Amphiuma, suggests that the acid-base transition from a low PCO(2) -low [] system typical of water-breathing fishes to the high PCO(2) -high [] systems of terrestrial tetrapods may have been completed before emergence onto land, and likely occurred in habitats that were typically both hypoxic and hypercarbic.

  16. Gas and Stellar Kinematics in the Giant Spiral Galaxy NGC 1961

    Science.gov (United States)

    Sacash, Brian; Pinkney, Jason

    2009-04-01

    Long-slit spectroscopy and CCD imaging from the Hubble Space Telescope and the MDM Observatory is presented for the massive spiral galaxy NGC 1961. We aimed to measure the mass of the central supermassive black hole (SMBH). We have developed our own software for spectral extraction and for the fitting of absorption and emission lines. The program subtracts the absorption-line (stellar) component from the emission-line spectra to improve the fidelity of our emission line measurements. We present our line centroids (velocities), widths (velocity dispersions), and strengths for the most prominent emission lines (Hα, [NII], and [SII]). The rotation curve from the ground-based data is in good agreement with previous work by Rubin (1979); its asymmetric appearance suggests a tidal interaction or merger. We use the rotation curve and surface photometry to estimate the enclosed mass profile of the galaxy. The emission lines near the nucleus broaden indicating more intrinsic dispersion than expected for a cold, gas disk. We estimate the BH mass using simple gas disk models. However, the high dispersion and the asymmetry in its inner rotation curve suggest that this approach is unreliable.

  17. Thermal Effects of Circumplanetary Disk Formation around Proto-Gas Giant Planets

    CERN Document Server

    Machida, Masahiro N

    2008-01-01

    The formation of a circumplanetary disk and accretion of angular momentum onto a protoplanetary system are investigated using 3D hydrodynamical simulations. The local region around a protoplanet in a protoplanetary disk is considered with sufficient spatial resolution: the region from outside the Hill sphere to the Jovian radius is covered by the nested-grid method. To investigate the thermal effects of the circumplanetary disk, various equations of state are adopted. Large thermal energy around the protoplanet slightly changes the structure of the circumplanetary disk. Compared with a model adopting an isothermal equation of state, in a model with an adiabatic equation of state, the protoplanet's gas envelope extends farther, and a slightly thick disk appears near the protoplanet. However, different equations of state do not affect the acquisition process of angular momentum for the protoplanetary system. Thus, the specific angular momentum acquired by the system is fitted as a function only of the protoplan...

  18. Planet traps and first planets: The critical metallicity for gas giant formation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro; Hirashita, Hiroyuki, E-mail: yasu@asiaa.sinica.edu.tw, E-mail: hirashita@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2014-06-10

    The ubiquity of planets poses an interesting question: when are first planets formed in galaxies? We investigate this by adopting a theoretical model where planet traps are combined with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the metallicity ([Fe/H]) in disks. Three characteristic exoplanetary populations are examined: hot Jupiters, exo-Jupiters around 1 AU, and low-mass planets in tight orbits, such as super-Earths. We statistically compute planet formation frequencies (PFFs), as well as the orbital radius (〈R{sub rapid}〉) within which gas accretion becomes efficient enough to form Jovian planets, as a function of metallicity (–2 ≤ [Fe/H] ≤–0.6). We show that the total PFFs for these three populations increase steadily with metallicity. This is the direct outcome of the core accretion picture. For the metallicity range considered here, the population of low-mass planets dominates Jovian planets. The Jovian planets contribute to the PFFs above [Fe/H] ≅ –1. We find that the hot Jupiters form more efficiently than the exo-Jupiters at [Fe/H] ≲ –0.7. This arises from the slower growth of planetary cores and their more efficient radial inward transport by the host traps in lower metallicity disks. We show that the critical metallicity for forming Jovian planets is [Fe/H] ≅ –1.2 by comparing 〈R{sub rapid}〉 of hot Jupiters and low-mass planets. The comparison intrinsically links to the different gas accretion efficiency between these two types of planets. Therefore, this study implies that important physical processes in planet formation may be tested by exoplanet observations around metal-poor stars.

  19. Gas physical conditions and kinematics of the giant outflow Ou4

    CERN Document Server

    Corradi, Romano L M; Acker, Agnès; Greimel, Robert; Guillout, Patrick

    2014-01-01

    Ou4 is a recently discovered bipolar outflow with a projected size of more than one degree in the plane of the sky. It is apparently centred on the young stellar cluster -whose most massive representative is the triple system HR8119- inside the HII region Sh 2-129. The driving source, the nature, and the distance of Ou4 are not known. Deep narrow-band imagery of the whole nebula at arcsec resolution was obtained to study its morphology. Long-slit spectroscopy of the tips of the bipolar lobes was secured to determine the gas ionization mechanism, physical conditions, and line-of-sight velocities. An estimate of the proper motions at the tip of the south lobe using archival images is attempted. The existing multi-wavelength data for Sh 2-129 and HR 8119 are also comprehensively reviewed. The morphology of Ou4, its emission-line spatial distribution, line flux ratios, and the kinematic modelling adopting a bow-shock parabolic geometry, illustrate the expansion of a shock-excited fast collimated outflow. The radi...

  20. Planet Traps and First Planets: the Critical Metallicity for Gas Giant Formation

    CERN Document Server

    Hasegawa, Yasuhiro

    2014-01-01

    The ubiquity of planets poses an interesting question: when first planets are formed in galaxies. We investigate this problem by adopting a theoretical model developed for understanding the statistical properties of exoplanets. Our model is constructed as the combination of planet traps with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the dust density in disks or the metallicity ([Fe/H]). We statistically compute planet formation frequencies (PFFs) as well as the orbital radius ($$) within which gas accretion becomes efficient enough to form Jovian planets. The three characteristic exoplanetary populations are considered: hot Jupiters, exo-Jupiters densely populated around 1 AU, and low-mass planets such as super-Earths. We explore the behavior of the PFFs as well as $$ for the three different populations as a function of metallicity ($-2 \\leq$[Fe/H]$\\leq -0.6$). We show that the total PFFs increase steadily with metallicity, which is the direct ...

  1. Changes in gas exchange characteristics during the life span of giant sequoia: Implications for response to current and future concentrations of atmospheric ozone

    Energy Technology Data Exchange (ETDEWEB)

    Grulke, N.E.; Miller, P.R. (USDA Forest Service, Riverside, CA (United States))

    Native stands of giant sequoia are being exposed to relatively high concentrations of atmospheric ozone produced in urban and agricultural areas upwind. The expected change in environmental conditions over the next 100 y is likely to be unprecendented in the life span (ca 2,500 y) of giant sequoia. Changes in the physiological responses of three age classes of giant sequoia (current year, 12 y and 25 y) to different concentrations of ozone were determined, and age-related differences in sensitivity to pollutants were assessed by examining physiological changes (gas exchange, water use efficiency) across the life span of giant sequoia. The CO[sub 2] exchange rate (CER) was greater in current year (12.1 [mu]mol CO[sub 2]/m[sup 2]s) and 2 year old seedlings (4.8 [mu]mol CO[sub 2]/m[sup 2]s) than in all older trees (average of 3.0 [mu]mol CO[sub 2]/m[sup 2]s). Dark respiration was highest for current year seedlings and was increased twofold in symptotic individuals exposed to elevated ozone concentrations. Stomatal conductance was greater in current-year and 2 year old seedlings (335 and 200 mmol H[sub 2]O/m[sup 2]s), respectively, than in all older trees (50 mmol H[sub 2]O/m[sup 2]s), indicating that the ozone concentration in substomatol cavities is higher in young seedlings than in older trees. Significant changes in water use efficiency occurred in trees between ages 5 and 20 years. It is concluded that giant sequoia seedlings are sensitive to atmospheric ozone until they are ca 5 y old. Low conductance, high water use efficiency, and compact mesophyll all contribute to a natural ozone tolerance, or defense, or both, in foliage of older trees. 11 refs., 1 fig., 1 tab.

  2. Astrometric Constraints on the Masses of Long-period Gas Giant Planets in the TRAPPIST-1 Planetary System

    Science.gov (United States)

    Boss, Alan P.; Weinberger, Alycia J.; Keiser, Sandra A.; Astraatmadja, Tri L.; Anglada-Escude, Guillem; Thompson, Ian B.

    2017-09-01

    Transit photometry of the M8V dwarf star TRAPPIST-1 (2MASS J23062928-0502285) has revealed the presence of at least seven planets with masses and radii similar to that of Earth, orbiting at distances that might allow liquid water to be present on their surfaces. We have been following TRAPPIST-1 since 2011 with the CAPSCam astrometric camera on the 2.5 m du Pont telescope at the Las Campanas Observatory in Chile. In 2016, we noted that TRAPPIST-1 lies slightly farther away than previously thought, at 12.49 pc, rather than 12.1 pc. Here, we examine 15 epochs of CAPSCam observations of TRAPPIST-1, spanning the five years from 2011 to 2016, and obtain a revised trigonometric distance of 12.56 ± 0.12 pc. The astrometric data analysis pipeline shows no evidence for a long-period astrometric wobble of TRAPPIST-1. After proper motion and parallax are removed, residuals at the level of ±1.3 mas remain. The amplitude of these residuals constrains the masses of any long-period gas giant planets in the TRAPPIST-1 system: no planet more massive than ∼4.6 M Jup orbits with a 1 year period, and no planet more massive than ∼1.6 M Jup orbits with a 5 year period. Further refinement of the CAPSCam data analysis pipeline, combined with continued CAPSCam observations, should either detect any long-period planets, or put an even tighter constraint on these mass upper limits.

  3. Gas physical conditions and kinematics of the giant outflow Ou4

    Science.gov (United States)

    Corradi, Romano L. M.; Grosso, Nicolas; Acker, Agnès; Greimel, Robert; Guillout, Patrick

    2014-10-01

    Context. The recently discovered bipolar outflow Ou4 has a projected size of more than one degree in the plane of the sky. It is apparently centred on the young stellar cluster - whose most massive representative is the triple system HR 8119 - inside the H ii region Sh 2-129. The driving source, the nature, and the distance of Ou4 are not known. Aims: The basic properties of Ou4 and its environment are investigated to shed light on the origin of this remarkable outflow. Methods: Deep narrow-band imagery of the whole nebula at arcsecond resolution was obtained to study the details of its morphology. Long-slit spectroscopy of the bipolar lobe tips was secured to determine the gas ionisation mechanism, physical conditions, and line-of-sight velocities. An estimate of the proper motions at the tip of the south lobe using archival plate images was attempted. The existing multi-wavelength data for Sh 2-129 and HR 8119 were also comprehensively reviewed. Results: The observed morphology of Ou4, its emission-line spatial distribution, line flux ratios, and the kinematic modelling developed adopting a bow-shock parabolic geometry, illustrate the expansion of a shock-excited fast collimated outflow. The observed radial velocities of Ou4 and its reddening are consistent with those of Sh 2-129 and HR 8119. The improved determination of the distance to HR 8119 (composed of two B0 V and one B0.5 V stars) and Sh 2-129 is 712 pc. We identify in WISE images at 22 μm an emission bubble of 5' radius (1 pc at the distance above) emitted by hot (107 K) dust grains, located inside the central part of Ou4 and corresponding to several [O iii] emission features of Ou4. Conclusions: The apparent position of Ou4 and the properties studied in this work are consistent with the hypothesis that Ou4 is located inside the Sh 2-129 H ii region, suggesting that it was launched some 90 000 yr ago by HR 8119. The outflow total kinetic energy is estimated to be ≈4 × 1047 ergs. However, we cannot

  4. How Giant Planets Shape the Characteristics of Terrestrial Planets

    Science.gov (United States)

    Barclay, Thomas; Quintana, Elisa V.

    2016-01-01

    The giant planets in the Solar System likely played a defining role in shaping the properties of the Earth and other terrestrial planets during their formation. Observations from the Kepler spacecraft indicate that terrestrial planets are highly abundant. However, there are hints that giant planets a few AU from their stars are not ubiquitous. It therefore seems reasonable to assume that many terrestrial planets lack a Jupiter-like companion. We use a recently developed, state-of-the-art N-body model that allows for collisional fragmentation to perform hundreds of numerical simulations of the final stages of terrestrial planet formation around a Sun-like star -- with and without giant outer planets. We quantify the effects that outer giant planet companions have on collisions and the planet accretion process. We focus on Earth-analogs that form in each system and explore how giant planets influence the relative frequency of giant impacts occurring at late times and the delivery of volitiles. This work has important implications for determining the frequency of habitable planets.

  5. Quantum Giant Magnons

    CERN Document Server

    Zarembo, K

    2008-01-01

    The giant magnons are classical solitons of the O(N) sigma-model, which play an important role in the AdS/CFT correspondence. We study quantum giant magnons first at large N and then exactly using Bethe Ansatz, where giant magnons can be interpreted as holes in the Fermi sea. We also identify a solvable limit of Bethe Ansatz in which it describes a weakly-interacting Bose gas at zero temperature. The examples include the O(N) model at large N, weakly interacting non-linear Schrodinger model, and nearly isotropic XXZ spin chain in the magnetic field.

  6. The first H-band spectrum of the giant planet β Pictoris b [THE FIRST H-BAND SPECTRUM OF THE MASSIVE GAS GIANT PLANET BETA PICTORIS b WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Chilcote, Jeffrey; Barman, Travis; Fitzgerald, Michael P.; Graham, James R.; Larkin, James E.; Macintosh, Bruce; Bauman, Brian; Burrows, Adam S.; Cardwell, Andrew; De Rosa, Robert J.; Dillon, Daren; Doyon, René; Dunn, Jennifer; Erikson, Darren; Gavel, Donald; Goodsell, Stephen J.; Hartung, Markus; Hibon, Pascale; Ingraham, Patrick; Kalas, Paul; Konopacky, Quinn; Maire, Jérôme; Marchis, Franck; Marley, Mark S.; Marois, Christian; Millar-Blanchaer, Max; Morzinski, Katie; Norton, Andrew; Oppenheimer, Rebecca; Palmer, David; Patience, Jennifer; Perrin, Marshall; Poyneer, Lisa; Pueyo, Laurent; Rantakyrö, Fredrik T.; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Rémi; Thomas, Sandrine; Wallace, J. Kent; Wiktorowicz, Sloane; Wolff, Schuyler

    2014-12-12

    Using the recently installed Gemini Planet Imager (GPI), we have obtained the first H-band spectrum of the planetary companion to the nearby young star β Pictoris. GPI is designed to image and provide low-resolution spectra of Jupiter-sized, self-luminous planetary companions around young nearby stars. These observations were taken covering the H band (1.65 μm). The spectrum has a resolving power of ~45 and demonstrates the distinctive triangular shape of a cool substellar object with low surface gravity. Using atmospheric models, we find an effective temperature of 1600-1700 K and a surface gravity of log (g) = 3.5-4.5 (cgs units). These values agree well with "hot-start" predictions from planetary evolution models for a gas giant with mass between 10 and 12 MJup and age between 10 and 20 Myr.

  7. Changes in gas exchange characteristics during the life span of giant sequoia: implications for response to current and future concentrations of atmospheric ozone.

    Science.gov (United States)

    Grulke, N. E.; Miller, P. R.

    1994-01-01

    Native stands of giant sequoia (Sequoiadendron giganteum Bucholz) are being exposed to relatively high concentrations of atmospheric ozone produced in urban and agricultural areas upwind. The expected change in environmental conditions over the next 100 years is likely to be unprecedented in the life span (about 2,500 years) of giant sequoia. We determined changes in physiological responses of three age classes of giant sequoia (current-year, 12-, and 125-year-old) to differing concentrations of ozone, and assessed age-related differences in sensitivity to pollutants by examining physiological changes (gas exchange, water use efficiency) across the life span of giant sequoia (current-year, 2-, 5-, 20-, 125-, and > 2,000-year-old trees). The CO(2) exchange rate (CER) was greater in current-year (12.1 micro mol CO(2) m(-2) s(-1)) and 2-year-old seedlings (4.8 micro mol CO(2) m(-2) s(-1)) than in all older trees (3.0 micro mol CO(2) m(-2) s(-1), averaged across the four older age classes). Dark respiration was highest for current-year seedlings (-6.5 +/- 0.7 micro mol CO(2) m(-2) s(-1)) and was increased twofold in symptomatic individuals exposed to elevated ozone concentrations. Stomatal conductance (g(s)) was greater in current-year (355 mmol H(2)O m(-2) s(-1)) and 2-year-old seedlings (200 mmol H(2)O m(-2) s(-1)) than in all older trees (50 mmol H(2)O m(-2) s(-1)), indicating that the ozone concentration in substomatal cavities is higher in young seedlings than in trees. Significant changes in water use efficiency, as indicated by C(i)/C(a), occurred in trees between ages 5 and 20 years. We conclude that giant sequoias seedlings are sensitive to atmospheric ozone until they are about 5 years old. Low conductance, high water use efficiency, and compact mesophyll all contribute to a natural ozone tolerance, or defense, or both, in foliage of older trees.

  8. Clusters of Small Clumps as an Explanation for The Peculiar Properties of Giant Clumps Detected in Gas-Rich, High-Redshift Galaxies

    CERN Document Server

    Behrendt, Manuel; Schartmann, Marc

    2015-01-01

    Giant clumps are a characteristic feature of observed high-redshift disk galaxies. We propose that these kpc-sized clumps have a complex substructure and are the result of many smaller clumps self-organizing themselves into clump clusters (CC). This is in contrast to the common understanding that these giant clumps are single homogeneous objects. Using a high resolution hydrodynamical simulation of an isolated, fragmented massive gas disk and mimicking the observations from Genzel et al. (2011) at $z \\sim 2$, we find remarkable agreement in many details. The CCs appear as single entities of sizes $R_{HWHM} \\simeq 0.9-1.4$ kpc and masses $\\sim 1.5-3 \\times 10^9 \\ M_{\\odot}$ representative of high-z observations. They are organized in a ring around the center of the galaxy. The origin of the observed clump's high intrinsic velocity dispersion $\\sigma_{intrinsic} \\simeq 50 - 100 \\ km \\ s^{-1}$ is fully explained by the internal irregular motions of their substructure in our simulation. No additional energy input...

  9. The mass of planet GJ676A b from ground-based astrometry: A planetary system with two mature gas giants suitable for direct imaging

    CERN Document Server

    Sahlmann, J; Ségransan, D; Astudillo-Defru, N; Bonfils, X; Delfosse, X; Forveille, T; Hagelberg, J; Curto, G Lo; Pepe, F; Queloz, D; Udry, S; Zimmerman, N T

    2016-01-01

    GJ676A is an M0 dwarf hosting both gas-giant and super-Earth-type planets discovered with radial-velocity measurements. Using FORS2/VLT, we obtained position measurements of the star in the plane of the sky that tightly constrain its astrometric reflex motion caused by the super-Jupiter planet `b` in a 1052-day orbit. This allows us to determine the mass of this planet to $M_\\mathrm{b} = 6.7^{+1.8}_{-1.5}\\,M_\\mathrm{J}$, which is $\\sim$40 \\% higher than the minimum mass inferred from the radial-velocity orbit. Using new HARPS radial-velocity measurements, we improve upon the orbital parameters of the inner low-mass planets `d` and `e` and we determine the orbital period of the outer giant planet `c` to $P_\\mathrm{c}=7340$ days under the assumption of a circular orbit. The preliminary minimum mass of planet `c` is $M_\\mathrm{c} \\sin i = 6.8\\,M_\\mathrm{J}$ with an upper limit of $\\sim$$39\\,M_\\mathrm{J}$ that we set using NACO/VLT high-contrast imaging. We also determine precise parallaxes and relative proper mo...

  10. Using underground gas storage to replace the swing capacity of the giant natural gas field of Groningen in the Netherlands. A reservoir performance feasibility study

    NARCIS (Netherlands)

    Juez-Larre, J.; Remmelts, G.; Breunese, J.N.; Gessel, S.F.; Leeuwenburgh, O.

    2016-01-01

    In this study we probe the ultimate potential Underground Gas Storage (UGS) capacity of the Netherlands by carrying out a detailed feasibility study on inflow performances of all onshore natura! gas reservoirs. The Netherlands is one of the largest natura! gas producers in Western Europe. The curren

  11. Using underground gas storage to replace the swing capacity of the giant natural gas field of Groningen in the Netherlands. A reservoir performance feasibility study

    NARCIS (Netherlands)

    Juez-Larre, J.; Remmelts, G.; Breunese, J.N.; Gessel, S.F.; Leeuwenburgh, O.

    2016-01-01

    In this study we probe the ultimate potential Underground Gas Storage (UGS) capacity of the Netherlands by carrying out a detailed feasibility study on inflow performances of all onshore natura! gas reservoirs. The Netherlands is one of the largest natura! gas producers in Western Europe. The curren

  12. Using underground gas storage to replace the swing capacity of the giant natural gas field of Groningen in the Netherlands. A reservoir performance feasibility study

    NARCIS (Netherlands)

    Juez-Larre, J.; Remmelts, G.; Breunese, J.N.; Gessel, S.F.; Leeuwenburgh, O.

    2016-01-01

    In this study we probe the ultimate potential Underground Gas Storage (UGS) capacity of the Netherlands by carrying out a detailed feasibility study on inflow performances of all onshore natura! gas reservoirs. The Netherlands is one of the largest natura! gas producers in Western Europe. The

  13. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high redshift

    CERN Document Server

    Bournaud, Frederic; Renaud, Florent; Dekel, Avishai; Elmegreen, Bruce G; Elmegreen, Debra M; Teyssier, Romain; Amram, Philippe; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Epinat, Benoit; Gabor, Jared M; Juneau, Stephanie; Kraljic, Katarina; Floch', Emeric Le

    2013-01-01

    Star-forming disk galaxies at high redshift are often subject to violent disk instability, characterized by giant clumps whose fate is yet to be understood. The main question is whether the clumps disrupt within their dynamical timescale (<50Myr), like molecular clouds in today's galaxies, or whether they survive stellar feedback for more than a disk orbital time (~300Myr) in which case they can migrate inward and help building the central bulge. We present 3.5-7pc resolution AMR simulations of high-redshift disks including photo-ionization, radiation pressure, and supernovae feedback (Renaud et al. 2013, and Perret et al., this astro-ph issue). Our modeling of radiation pressure determines the mass loading and initial velocity of winds from basic physical principles. We find that the giant clumps produce steady outflow rates comparable to and sometimes somewhat larger than their star formation rate, with velocities largely sufficient to escape galaxy. The clumps also lose mass, especially old stars, by ti...

  14. Giant Planets

    CERN Document Server

    Guillot, Tristan

    2014-01-01

    We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion of the atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.

  15. Total petroleum system assessment of undiscovered resources in the giant Barnett Shale continuous (unconventional) gas accumulation, Fort Worth Basin, Texas

    Science.gov (United States)

    Pollastro, R.M.

    2007-01-01

    Undiscovered natural gas having potential for additions to reserves in the Mississippian Barnett Shale of the Fort Worth Basin, north-central Texas, was assessed using the total petroleum system assessment unit concept and a cell-based methodology for continuous-type (Unconventional) resources. The Barnett-Paleozoic total petroleum system is defined in the Bend arch-Fort Worth Basin as encompassing the area in which the organic-rich Barnett is the primary source rock for oil and gas produced from Paleozoic carbonate and clastic reservoirs. Exploration, technology, and drilling in the Barnett Shale play have rapidly evolved in recent years, with about 3500 vertical and 1000 horizontal wells completed in the Barnett through 2005 and more than 85% of the them completed since 1999. Using framework geology and historical production data, assessment of the Barnett Shale was performed by the U.S. Geological Survey using vertical wells at the peak of vertical well completions and before a transition to completions with horizontal wells. The assessment was performed after (1) mapping critical geological and geochemical parameters to define assessment unit areas with future potential, (2) defining distributions of drainage area (cell size) and estimating ultimate recovery per cell, and (3) estimating future success rates. Two assessment units are defined and assessed for the Barnett Shale continuous gas accumulation, resulting in a total mean undiscovered volume having potential for additions to reserves of 26.2 TCFG. The greater Newark East fracture-barrier continuous Barnett Shale gas assessment unit represents a core-producing area where thick, organic-rich, siliceous Barnett Shale is within the thermal window for gas generation (Ro ??? 1.1%) and is overlain and underlain by impermeable limestone barriers (Pennsylvanian Marble Falls Limestone and Ordovician Viola Limestone, respectively) that serve to confine induced fractures during well completion to maximize gas

  16. Model atmospheres for massive gas giants with thick clouds: Application to the HR 8799 planets and predictions for future detections

    CERN Document Server

    Madhusudhan, Nikku; Currie, Thayne

    2011-01-01

    We have generated an extensive new suite of massive giant planet atmosphere models and used it to obtain fits to photometric data for the planets HR 8799b, c, and d. We consider a wide range of cloudy and cloud-free models. The cloudy models incorporate different geometrical and optical thicknesses, modal particle sizes, and metallicities. For each planet and set of cloud parameters, we explore grids in gravity and effective temperature, with which we determine constraints on the planet's mass and age. Our new models yield statistically significant fits to the data, and conclusively confirm that the HR 8799 planets have much thicker clouds than those required to explain data for typical L and T dwarfs. Both models with 1) physically thick forsterite clouds and a 60-micron modal particle size and 2) clouds made of 1 micron-sized pure iron droplets and 1% supersaturation fit the data. The range of best-estimated masses for HR 8799b, HR 8799c, and HR 8799d conservatively span 2-12 M_J, 7-13 M_J, and 3-11 M_J, re...

  17. Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO3

    Science.gov (United States)

    Santander-Syro, A. F.; Fortuna, F.; Bareille, C.; Rödel, T. C.; Landolt, G.; Plumb, N. C.; Dil, J. H.; Radović, M.

    2014-12-01

    Two-dimensional electron gases (2DEGs) forming at the interfaces of transition metal oxides exhibit a range of properties, including tunable insulator-superconductor-metal transitions, large magnetoresistance, coexisting ferromagnetism and superconductivity, and a spin splitting of a few meV (refs , ). Strontium titanate (SrTiO3), the cornerstone of such oxide-based electronics, is a transparent, non-magnetic, wide-bandgap insulator in the bulk, and has recently been found to host a surface 2DEG (refs , , , ). The most strongly confined carriers within this 2DEG comprise two subbands, separated by an energy gap of 90 meV and forming concentric circular Fermi surfaces. Using spin- and angle-resolved photoemission spectroscopy (SARPES), we show that the electron spins in these subbands have opposite chiralities. Although the Rashba effect might be expected to give rise to such spin textures, the giant splitting of almost 100 meV at the Fermi level is far larger than anticipated. Moreover, in contrast to a simple Rashba system, the spin-polarized subbands are non-degenerate at the Brillouin zone centre. This degeneracy can be lifted by time-reversal symmetry breaking, implying the possible existence of magnetic order. These results show that confined electronic states at oxide surfaces can be endowed with novel, non-trivial properties that are both theoretically challenging to anticipate and promising for technological applications.

  18. Reentrant resistance and giant Andreev back scattering in a two-dimensional electron gas coupled to superconductors

    NARCIS (Netherlands)

    den Hartog, Sander; Wees, B.J. van; Nazarov, Yu.V.; Klapwijk, T.M.; Borghs, G.

    1998-01-01

    We first present the bias-voltage dependence of the superconducting phase-dependent reduction in the differential resistance of a disordered T-shaped two-dimensional electron gas (2DEG) coupled to two superconductors. This reduction exhibits a reentrant behavior, since it first increases upon loweri

  19. Using underground gas storage to replace the swing capacity of the giant natural gas field of Groningen in the Netherlands. A reservoir performance feasibility study.

    Science.gov (United States)

    Juez-Larre, Joaquim; Remmelts, Gijs; Breunese, Jaap; Van Gessel, Serge; Leeuwenburgh, Olwijn

    2017-04-01

    In this study we probe the ultimate potential Underground Gas Storage (UGS) capacity of the Netherlands by carrying out a detailed feasibility study on inflow performances of all available onshore natural gas reservoirs. The Netherlands is one of the largest natural gas producers in Western Europe. The current decline of its national production and looming production restrictions on its largest field of Groningen -owing to its induced seismicity- have recently made necessary to upgrade the two largest UGS of Norg and Grijpskerk. The joined working volume of these two UGS is expected to replace the swing capacity of the Groningen field to continue guaranteeing the security of supply of low calorific natural gas. The question is whether the current UGS configuration will provide the expected working storage capacity unrestricted by issues on reservoir performances and/or induced seismicity. This matter will be of paramount importance in the near future when production restrictions and/or the advance state of depletion of the Groningen field will turn the Netherlands into a net importer of high calorific natural gas. By then, the question will be whether the current UGS will still be economically attractive to continue operating, or if additional/alternative types of UGS will be needed?. Hence the characterization and ranking of the best potential reservoirs available today is of paramount importance for future UGS developments. We built an in-house automated module based on the application of the traditional inflow performance relationship analysis to screen the performances of 156 natural gas reservoirs in onshore Netherlands. Results enable identifying the 72 best candidates with an ultimate total working volume capacity of 122±30 billion Sm3. A detailed sensitivity analysis shows the impact of variations in the reservoir properties or wellbore/tubing configurations on withdrawal performances and storage capacity. We validate our predictions by comparing them to

  20. Giant tunneling electroresistance induced by ferroelectrically switchable two-dimensional electron gas at nonpolar BaTiO3/SrTiO3 interface

    Science.gov (United States)

    Wu, Qingyun; Shen, Lei; Yang, Ming; Zhou, Jun; Chen, Jingsheng; Feng, Yuan Ping

    2016-10-01

    Using first-principles calculations, we investigate the tunneling electroresistance (TER) of ferroelectric tunnel junctions [Pt /BaTiO3(BTO)/SrTiO3(STO )/Pt ]. It is found that the TER of Pt/BTO/STO/Pt junctions can be greatly increased with increasing thickness of STO layers. The underlying physics of this giant TER is the switchable two-dimensional electron gas (2DEG) at a nonpolar BTO/STO interface induced by the ferroelectric polarization. Our calculations show that when the ferroelectric polarization is pointing from BTO to STO, a 2DEG forms at the interface and acts as bridge for electrons to tunnel through the junctions. Nevertheless, there is no 2DEG at the interface under the opposite direction of the ferroelectric polarization, which results in a large tunnel resistance. More importantly, this ferroelectrically switchable 2DEG leads to a low resistance area product for Pt/BTO/STO/Pt junctions, which offers good compatibility with other components in an integrated circuit and is highly desired for industrial applications.

  1. Standing on the shoulders of giants: Trojan Earths and vortex trapping in low mass self-gravitating protoplanetary disks of gas and solids

    CERN Document Server

    Lyra, W; Klahr, H; Piskunov, N

    2008-01-01

    Centimeter and meter sized solid particles in protoplanetary disks are trapped within long lived high pressure regions, creating opportunities for collapse into planetesimals and planetary embryos. We study the accumulations in the stable Lagrangian points of a giant planet, as well as in the Rossby vortices launched at the edges of the gap it carves. We employ the Pencil Code, tracing the solids with a large number of interacting Lagrangian particles, usually 100,000. For particles of 1 cm to 10 cm radii, gravitational collapse occurs in the Lagrangian points in less than 200 orbits. For 5 cm particles, a 2 Earth mass planet is formed. For 10 cm, the final maximum collapsed mass is around 3 Earth masses. The collapse of the 1 cm particles is indirect, following the timescale of depletion of gas from the tadpole orbits. In the edges of the gap vortices are excited, trapping preferentially particles of 30 cm radii. The rocky planet that is formed is as massive as 17 Earth masses, constituting a Super-Earth. By...

  2. Rapid Formation of Ice Giant Planets

    CERN Document Server

    Boss, A P; Haghighipour, N; Boss, Alan P.; Wetherill, George W.; Haghighipour, Nader

    2002-01-01

    The existence of Uranus and Neptune presents severe difficulties for the core accretion model for the formation of ice giant planets. We suggest an alternative mechanism, namely disk instability leading to the formation of gas giant protoplanets, coagulation and settling of dust grains to form ice/rock cores at their centers, and photoevaporation of their gaseous envelopes by a nearby OB star, as a possible means of forming ice giant planets.

  3. The mass of planet GJ 676A b from ground-based astrometry. A planetary system with two mature gas giants suitable for direct imaging

    Science.gov (United States)

    Sahlmann, J.; Lazorenko, P. F.; Ségransan, D.; Astudillo-Defru, N.; Bonfils, X.; Delfosse, X.; Forveille, T.; Hagelberg, J.; Lo Curto, G.; Pepe, F.; Queloz, D.; Udry, S.; Zimmerman, N. T.

    2016-11-01

    The star GJ 676A is an M0 dwarf hosting both gas-giant and super-Earth-type planets that were discovered with radial-velocity measurements. Using FORS2/VLT, we obtained position measurements of the star in the plane of the sky that tightly constrain its astrometric reflex motion caused by the super-Jupiter planet "b" in a 1052-day orbit. This allows us to determine the mass of this planet to be , which is 40% higher than the minimum mass inferred from the radial-velocity orbit. Using new HARPS radial-velocity measurements, we improve upon the orbital parameters of the inner low-mass planets "d" and "e" and we determine the orbital period of the outer giant planet "c" to be Pc = 7340 days under the assumption of a circular orbit. The preliminary minimum mass of planet "c" is Mcsini = 6.8 MJ with an upper limit of 39 MJ that we set using NACO/VLT high-contrast imaging. We also determine precise parallaxes and relative proper motions for both GJ 676A and its wide M3 companion GJ 676B. Although the system is probably quite mature, the masses and projected separations ( 0.̋1-0.̋4) of planets "b" and "c" make them promising targets for direct imaging with future instruments in space and on extremely large telescopes. In particular, we estimate that GJ 676A b and GJ 676A c are promising targets for directly detecting their reflected light with the WFIRST space mission. Our study demonstrates the synergy of radial-velocity and astrometric surveys that is necessary to identify the best targets for such a mission. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 385.C-0416 (A,B), 086.C-0515(A), 089.C-0115(D,E), 072.C-0488(E), 180.C-0886(A), 183.C-0437(A), 085.C-0019(A), 091.C-0034(A), 095.C-0551(A), 096.C-0460(A).Full Table A.2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A77

  4. Giant fields in southwest Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-20

    According to Petroleos Mexicanos southeastern Mexico's Isthmus Saline basin holds five new giant fields - Tonala-El Burro, El Plan, Cinco Presidentes, Oraggio, and Magallanes - producing oil and gas from Tertiary sandstones. Numerous normal faults resulting from salt intrusion have given rise to multiple blocks, each with its own reservoir conditions. Previously discovered basins in the area include the Macuspana, which holds three giant gas- and condensate-producing fields: Jose Colomo, Chilapilla, and Hormiquero. The 3100-mi/sup 2/ Campeche marine platform, extending offshore nearby, contains the Cantarell complex, Mexico's most productive hydrocarbon province.

  5. Giant photoinduced Faraday rotation due to the spin-polarized electron gas in an n-GaAs microcavity

    Science.gov (United States)

    Giri, R.; Cronenberger, S.; Vladimirova, M.; Scalbert, D.; Kavokin, K. V.; Glazov, M. M.; Nawrocki, M.; Lemaître, A.; Bloch, J.

    2012-05-01

    Faraday rotation up to 19∘ in the absence of an external magnetic field is demonstrated in an n-type bulk GaAs microcavity under circularly polarized optical excitation. This strong effect is achieved because (i) the spin-polarized electron gas is an efficient Faraday rotator and (ii) the light wave makes multiple round trips in the cavity. We introduce a concept of Faraday rotation cross section as a proportionality coefficient between the rotation angle, electron spin density and optical path and calculate this cross section for our system. From independent measurements of photoinduced Faraday rotation and electron spin polarization we obtain quantitatively the cross section of the Faraday rotation induced by free electron spin polarization σFexp=-(2.5±0.6)×10-15 rad×cm2 for photon energy 18 meV below the band gap of GaAs, and electron concentration 2×1016 cm-3. It appears to exceed the theoretical value σFth=-0.7×10-15 rad×cm2, calculated without fitting parameters. We also demonstrate the proof-of-principle of a fast optically controlled Faraday rotator.

  6. Dynamical cooling of galactic discs by molecular cloud collisions - origin of giant clumps in gas-rich galaxy discs

    Science.gov (United States)

    Li, Guang-Xing

    2017-10-01

    Different from Milky Way-like galaxies, discs of gas-rich galaxies are clumpy. It is believed that the clumps form because of gravitational instability. However, a necessary condition for gravitational instability to develop is that the disc must dissipate its kinetic energy effectively, this energy dissipation (also called cooling) is not well understood. We propose that collisions (coagulation) between molecular clouds dissipate the kinetic energy of the discs, which leads to a dynamical cooling. The effectiveness of this dynamical cooling is quantified by the dissipation parameter D, which is the ratio between the free-fall time t_ff≈ 1/ √{G ρ _{disc}} and the cooling time determined by the cloud collision process tcool. This ratio is related to the ratio between the mean surface density of the disc Σdisc and the mean surface density of molecular clouds in the disc Σcloud. When D cloud), cloud collision cooling is inefficient, and fragmentation is suppressed. When D > 1/3 (which roughly corresponds to Σdisc > 1/3Σcloud), cloud-cloud collisions lead to a rapid cooling through which clumps form. On smaller scales, cloud-cloud collisions can drive molecular cloud turbulence. This dynamical cooling process can be taken into account in numerical simulations as a sub-grid model to simulate the global evolution of disc galaxies.

  7. A FIRST LOOK AT THE AURIGA-CALIFORNIA GIANT MOLECULAR CLOUD WITH HERSCHEL AND THE CSO: CENSUS OF THE YOUNG STELLAR OBJECTS AND THE DENSE GAS

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Paul M. [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Fallscheer, Cassandra [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Ginsburg, Adam [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States); Terebey, Susan [Department of Physics and Astronomy PS315, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Andre, Philippe; Koenyves, Vera [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d' Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Di Francesco, James; Matthews, Brenda C. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Peterson, Dawn E., E-mail: pmh@astro.as.utexas.edu, E-mail: Cassandra.Fallscheer@nrc-cnrc.gc.ca, E-mail: adam.ginsburg@colorado.edu, E-mail: sterebe@calstatela.edu, E-mail: pandre@cea.fr, E-mail: vera.konyves@cea.fr, E-mail: tbourke@cfa.harvard.edu, E-mail: James.DiFrancesco@nrc-cnrc.gc.ca, E-mail: Brenda.Matthews@nrc-cnrc.gc.ca, E-mail: dpeterson@spacescience.org [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80303 (United States)

    2013-02-20

    We have mapped the Auriga/California molecular cloud with the Herschel PACS and SPIRE cameras and the Bolocam 1.1 mm camera on the Caltech Submillimeter Observatory with the eventual goal of quantifying the star formation and cloud structure in this giant molecular cloud (GMC) that is comparable in size and mass to the Orion GMC, but which appears to be forming far fewer stars. We have tabulated 60 compact 70/160 {mu}m sources that are likely pre-main-sequence objects and correlated those with Spitzer and WISE mid-IR sources. At 1.1 mm, we find 18 cold, compact sources and discuss their properties. The most important result from this part of our study is that we find a modest number of additional compact young objects beyond those identified at shorter wavelengths with Spitzer. We also describe the dust column density and temperature structure derived from our photometric maps. The column density peaks at a few Multiplication-Sign 10{sup 22} cm{sup -2} (N {sub H2}) and is distributed in a clear filamentary structure along which nearly all of the pre-main-sequence objects are found. We compare the young stellar object surface density to the gas column density and find a strong nonlinear correlation between them. The dust temperature in the densest parts of the filaments drops to {approx}10 K from values {approx}14-15 K in the low-density parts of the cloud. We also derive the cumulative mass fraction and probability density function of material in the cloud, which we compare with similar data on other star-forming clouds.

  8. Cloud formation in giant planets

    CERN Document Server

    Helling, Christiane

    2007-01-01

    We calculate the formation of dust clouds in atmospheres of giant gas-planets. The chemical structure and the evolution of the grain size distribution in the dust cloud layer is discussed based on a consistent treatment of seed formation, growth/evaporation and gravitational settling. Future developments are shortly addressed.

  9. Photophoresis boosts giant planet formation

    CERN Document Server

    Teiser, Jens

    2013-01-01

    In the core accretion model of giant planet formation, a solid protoplanetary core begins to accrete gas directly from the nebula when its mass reaches about 5 earth masses. The protoplanet has at most a few million years to reach runaway gas accretion, as young stars lose their gas disks after 10 million years at the latest. Yet gas accretion also brings small dust grains entrained in the gas into the planetary atmosphere. Dust accretion creates an optically thick protoplanetary atmosphere that cannot efficiently radiate away the kinetic energy deposited by incoming planetesimals. A dust-rich atmosphere severely slows down atmospheric cooling, contraction, and inflow of new gas, in contradiction to the observed timescales of planet formation. Here we show that photophoresis is a strong mechanism for pushing dust out of the planetary atmosphere due to the momentum exchange between gas and dust grains. The thermal radiation from the heated inner atmosphere and core is sufficient to levitate dust grains and to ...

  10. STELLAR METALLICITIES AND KINEMATICS IN A GAS-RICH DWARF GALAXY : FIRST CALCIUM TRIPLET SPECTROSCOPY OF RED GIANT BRANCH STARS IN WLM

    NARCIS (Netherlands)

    Leaman, Ryan; Cole, Andrew A.; Venn, Kim A.; Tolstoy, Eline; Irwin, Mike J.; Szeifert, Thomas; Skillman, Evan D.; McConnachie, Alan W.

    2009-01-01

    We present the first determination of the radial velocities and metallicities of 78 red giant stars in the isolated dwarf irregular galaxy WLM. Observations of the calcium II triplet in these stars were made with FORS2 at the VLT-UT2 in two separated fields of view in WLM, and the [Fe/H] values were

  11. Primary Initiation of Submarine Canyons

    CERN Document Server

    Herndon, J Marvin

    2011-01-01

    The discovery of close-to-star gas-giant exo-planets lends support to the idea of Earth's origin as a Jupiter-like gas-giant and to the consequences of its compression, including whole-Earth decompression dynamics that gives rise, without requiring mantle convection, to the myriad measurements and observations whose descriptions are attributed to plate tectonics. I propose here another, unanticipated consequence of whole-Earth decompression dynamics: namely, a specific, dominant, non-erosion, underlying initiation-mechanism precursor for submarine canyons that follows as a direct consequence of Earth's early origin as a Jupiter-like gas-giant.

  12. Giant Planet Formation, Evolution, and Internal Structure

    CERN Document Server

    Helled, Ravit; Podolak, Morris; Boley, Aaron; Meru, Farzana; Nayakshin, Sergei; Fortney, Jonathan J; Mayer, Lucio; Alibert, Yann; Boss, Alan P

    2013-01-01

    The large number of detected giant exoplanets offers the opportunity to improve our understanding of the formation mechanism, evolution, and interior structure of gas giant planets. The two main models for giant planet formation are core accretion and disk instability. There are substantial differences between these formation models, including formation timescale, favorable formation location, ideal disk properties for planetary formation, early evolution, planetary composition, etc. First, we summarize the two models including their substantial differences, advantages, and disadvantages, and suggest how theoretical models should be connected to available (and future) data. We next summarize current knowledge of the internal structures of solar- and extrasolar- giant planets. Finally, we suggest the next steps to be taken in giant planet exploration.

  13. Developing Atmospheric Retrieval Methods for Direct Imaging Spectroscopy of Gas Giants in Reflected Light I: Methane Abundances and Basic Cloud Properties

    CERN Document Server

    Lupu, Roxana E; Lewis, Nikole; Line, Michael; Traub, Wesley A; Zahnle, Kevin

    2016-01-01

    Reflected light spectroscopy and photometry of cool, directly imaged extrasolar giant planets are expected to be performed in the next decade by space-based telescopes equipped with optical wavelength coronagraphs and integral field spectrographs, such as the Wide-Field Infrared Survey Telescope (WFIRST). We are developing a new atmospheric retrieval methodology to help assess the science return and inform the instrument design for such future missions, and ultimately interpret the resulting observations. Our retrieval technique employs a geometric albedo model coupled with both a Markov chain Monte Carlo Ensemble Sampler (emcee) and a multimodal nested sampling algorithm (MultiNest) to map the posterior distribution. This combination makes the global evidence calculation more robust for any given model, and highlights possible discrepancies in the likelihood maps. Here we apply this methodology to simulated spectra of cool giant planets. As a proof-of-concept, our current atmospheric model contains 1 or 2 cl...

  14. Searching for gas giant planets on Solar System scales - A NACO/APP L'-band survey of A- and F-type Main Sequence stars

    CERN Document Server

    Meshkat, T; Reggiani, M; Quanz, S P; Mamajek, E E; Meyer, M R

    2015-01-01

    We report the results of a direct imaging survey of A- and F-type main sequence stars searching for giant planets. A/F stars are often the targets of surveys, as they are thought to have more massive giant planets relative to solar-type stars. However, most imaging is only sensitive to orbital separations $>$30 AU, where it has been demonstrated that giant planets are rare. In this survey, we take advantage of the high-contrast capabilities of the Apodizing Phase Plate coronagraph on NACO at the Very Large Telescope. Combined with optimized principal component analysis post-processing, we are sensitive to planetary-mass companions (2 to 12 $M_{\\rm Jup}$) at Solar System scales ($\\leq$30 AU). We obtained data on 13 stars in L'-band and detected one new companion as part of this survey: an M$6.0\\pm0.5$ dwarf companion around HD 984. We re-detect low-mass companions around HD 12894 and HD 20385, both reported shortly after the completion of this survey. We use Monte Carlo simulations to determine new constraints...

  15. How Empty are Disk Gaps Opened by Giant Planets?

    CERN Document Server

    Fung, Jeffrey; Chiang, Eugene

    2013-01-01

    Gap clearing by giant planets has been proposed to explain the optically thin cavities observed in many protoplanetary disks. How much material remains in the gap determines not only how detectable young planets are in their birth environments, but also how strong corotation torques are, which impacts how planets can survive fast orbital migration. We determine numerically how the average surface density inside the gap, sigma_gap, depends on planet-to-star mass ratio q, Shakura-Sunyaev viscosity parameter alpha, and disk height-to-radius aspect ratio h/r. Our results are derived from our new GPU-accelerated Lagrangian hydrodynamical code PEnGUIn, and are verified by independent simulations with ZEUS90. For Jupiter-like planets, we find sigma_gap \\propto q^-2.2 alpha^1.4 (h/r)^6.6, and for near brown dwarf masses, sigma_gap \\propto q^-1 alpha^1.3 (h/r)^6.1. Surface density contrasts inside and outside gaps can be as large as 10^4, even when the planet does not accrete. We derive a simple analytic scaling, sigm...

  16. How empty are disk gaps opened by giant planets?

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Jeffrey [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Shi, Ji-Ming; Chiang, Eugene, E-mail: fung@astro.utoronto.ca [Department of Astronomy, UC Berkeley, Hearst Field Annex B-20, Berkeley, CA 94720-3411 (United States)

    2014-02-20

    Gap clearing by giant planets has been proposed to explain the optically thin cavities observed in many protoplanetary disks. How much material remains in the gap determines not only how detectable young planets are in their birth environments, but also how strong co-rotation torques are, which impacts how planets can survive fast orbital migration. We determine numerically how the average surface density inside the gap, Σ{sub gap}, depends on planet-to-star mass ratio q, Shakura-Sunyaev viscosity parameter α, and disk height-to-radius aspect ratio h/r. Our results are derived from our new graphics processing unit accelerated Lagrangian hydrodynamical code PEnGUIn and are verified by independent simulations with ZEUS90. For Jupiter-like planets, we find Σ{sub gap}∝q {sup –2.2}α{sup 1.4}(h/r){sup 6.6}, and for near brown dwarf masses, Σ{sub gap}∝q {sup –1}α{sup 1.3}(h/r){sup 6.1}. Surface density contrasts inside and outside gaps can be as large as 10{sup 4}, even when the planet does not accrete. We derive a simple analytic scaling, Σ{sub gap}∝q {sup –2}α{sup 1}(h/r){sup 5}, that compares reasonably well to empirical results, especially at low Neptune-like masses, and use discrepancies to highlight areas for progress.

  17. Reinflating Giant Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    Two new, large gas-giant exoplanets have been discovered orbiting close to their host stars. A recent study examining these planets and others like them may help us to better understand what happens to close-in hot Jupiters as their host stars reach the end of their main-sequence lives.OversizedGiantsUnbinned transit light curves for HAT-P-65b. [Adapted from Hartman et al. 2016]The discovery of HAT-P-65b and HAT-P-66b, two new transiting hot Jupiters, is intriguing. These planets have periods of just under 3 days and masses of roughly 0.5 and 0.8 times that of Jupiter, but their sizes are whats really interesting: they have inflated radii of 1.89 and 1.59 times that of Jupiter.These two planets, discovered using the Hungarian-made Automated Telescope Network (HATNet) in Arizona and Hawaii, mark the latest in an ever-growing sample of gas-giant exoplanets with radii larger than expected based on theoretical planetary structure models.What causes this discrepancy? Did the planets just fail to contract to the expected size when they were initially formed, or were they reinflated later in their lifetimes? If the latter, how? These are questions that scientists are only now starting to be able to address using statistics of the sample of close-in, transiting planets.Unbinned transit light curves for HAT-P-66b. [Hartman et al. 2016]Exploring Other PlanetsLed by Joel Hartman (Princeton University), the team that discovered HAT-P-65b and HAT-P-66b has examined these planets observed parameters and those of dozens of other known close-in, transiting exoplanets discovered with a variety of transiting exoplanet missions: HAT, WASP, Kepler, TrES, and KELT. Hartman and collaborators used this sample to draw conclusions about what causes some of these planets to have such large radii.The team found that there is a statistically significant correlation between the radii of close-in giant planets and the fractional ages of their host stars (i.e., the stars age divided by its full

  18. Transforming giants.

    Science.gov (United States)

    Kanter, Rosabeth Moss

    2008-01-01

    Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.

  19. Giant Cell Arteritis

    Science.gov (United States)

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  20. Could Jupiter or Saturn Have Ejected a Fifth Giant Planet?

    CERN Document Server

    Cloutier, Ryan; Valencia, Diana

    2015-01-01

    Models of the dynamical evolution of the early solar system following the dispersal of the gaseous protoplanetary disk have been widely successful in reconstructing the current orbital configuration of the giant planets. Statistically, some of the most successful dynamical evolution simulations have initially included a hypothetical fifth giant planet, of ice giant mass, which gets ejected by a gas giant during the early solar system's proposed instability phase. We investigate the likelihood of an ice giant ejection event by either Jupiter or Saturn through constraints imposed by the current orbits of their wide-separation regular satellites Callisto and Iapetus respectively. We show that planetary encounters that are sufficient to eject an ice giant, often provide excessive perturbations to the orbits of Callisto and Iapetus making it difficult to reconcile a planet ejection event with the current orbit of either satellite. Quantitatively, we compute the likelihood of reconciling a regular Jovian satellite ...

  1. A Sub-Earth-Mass Moon Orbiting a Gas Giant Primary or a High Velocity Planetary System in the Galactic Bulge

    CERN Document Server

    Bennett, D P; Bond, I A; Bennett, C S; Suzuki, D; Beaulieu, J -P; Udalski, A; Donatowicz, J; Abe, F; Botzler, C S; Freeman, M; Fukunaga, D; Fukui, A; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Sumi, T; Sweatman, W L; Tristram, P J; Tsurumi, N; Wada, K; Yock, P C M; Albrow, M D; Bachelet, E; Brillant, S; Caldwell, J A R; Cassan, A; Cole, A A; Corrales, E; Coutures, C; Dieters, S; Prester, D Dominis; Fouque, P; Greenhill, J; Horne, K; Koo, J -R; Kubas, D; Marquette, J -B; Martin, R; Menzies, J W; Sahu, K C; Wambsganss, J; Williams, A; Choi, M Zub J Y; DePoy, D L; Dong, Subo; Gaudi, B S; Gould, A; Han, C; Henderson, C B; McGregor, D; Lee, C -U; Pogge, R W; Shin, I -G; Yee, J C; Szymaski, M K; Skowron, J; Poleski, R; Kozowski, S; Wyrzykowski, L; Kubiak, M; Pietrukowicz, P; Pietrzyski, G; Soszyski, I; Ulaczyk, K; Tsapras, Y; Street, R A; Dominik, M; Bramich, D M; Browne, P; Hundertmark, M; Kains, N; Snodgrass, C; Steele, I A; Dekany, I; Gonzalez, O A; Heyrovsky, D; Kandori, R; Kerins, E; Lucas, P W; Minniti, D; Nagayama, T; Rejkuba, M; Robin, A C; Saito, R

    2013-01-01

    We present the first microlensing candidate for a free-floating exoplanet-exomoon system, MOA-2011-BLG-262, with a primary lens mass of M_host ~ 4 Jupiter masses hosting a sub-Earth mass moon. The data are well fit by this exomoon model, but an alternate star+planet model fits the data almost as well. Nevertheless, these results indicate the potential of microlensing to detect exomoons, albeit ones that are different from the giant planet moons in our solar system. The argument for an exomoon hinges on the system being relatively close to the Sun. The data constrain the product M pi_rel, where M is the lens system mass and pi_rel is the lens-source relative parallax. If the lens system is nearby (large pi_rel), then M is small (a few Jupiter masses) and the companion is a sub-Earth-mass exomoon. The best-fit solution has a large lens-source relative proper motion, mu_rel = 19.6 +- 1.6 mas/yr, which would rule out a distant lens system unless the source star has an unusually high proper motion. However, data f...

  2. Giant Cell Arteritis

    Science.gov (United States)

    ... Cryopyrin-Associated Autoinflammatory Syndrome (CAPS) (Juvenile) Dermatomyositis (Juvenile) Familial Mediterranean Fever (Juvenile) Fibromyalgia Giant Cell Arteritis Glucocorticoid-induced Osteoperosis ...

  3. Nanodielectrics with giant permittivity

    Indian Academy of Sciences (India)

    S K Saha

    2008-06-01

    Nanodielectrics is an emerging area of research because of its potential application in energy storage and transducers. One-dimensional metallic nanostructures with localized electronic wave functions show giant dielectric constant. Following the prediction, during the last couple of years we have investigated the effect of giant permittivity in one-dimensional systems of conventional metals and conjugated polymer chains. In this article, we have tried to summarize the works on giant permittivity and finally the fabrication of nanocapacitor using metal nanowires, which shows giant permittivity is also discussed.

  4. Peripheral giant cell granuloma

    Directory of Open Access Journals (Sweden)

    Padam Narayan Tandon

    2012-01-01

    Full Text Available Peripheral giant cell granuloma or the so-called "giant cell epulis" is the most common oral giant cell lesion. It normally presents as a soft tissue purplish-red nodule consisting of multinucleated giant cells in a background of mononuclear stromal cells and extravasated red blood cells. This lesion probably does not represent a true neoplasm, but rather may be reactive in nature, believed to be stimulated by local irritation or trauma, but the cause is not certainly known. This article reports a case of peripheral giant cell granuloma arising at the maxillary anterior region in a 22-year-old female patient. The lesion was completely excised to the periosteum level and there is no residual or recurrent swelling or bony defect apparent in the area of biopsy after a follow-up period of 6 months.

  5. Trace Molecules in Giant Planet Atmospheres

    Science.gov (United States)

    Huestis, D. L.; Smith, G. P.

    2010-12-01

    Chemical kinetics matters in the upper atmospheres of giant planets in our solar system and in extrasolar systems. The composition of a volume of gas depends not only on where it is, but also on how it got there. The giant planets in our own solar system still have much to teach us about what we will be observing on extrasolar giant planets and how to interpret what we observe. Some molecules, such as CO, C2H2, C2H6, PH3, and NH3, which we call tracer molecules, provide remotely observable signatures of vertical transport. PH3 and NH3 especially have complicated thermochemistry and chemical kinetics that, until recently, have been poorly understood. Based on analysis of recent literature, we have identified new chemical mechanisms for interconverting NH3 and N2 and for interconverting PH3 and NH4-H2PO4.

  6. Deep HeII and CIV Spectroscopy of a Giant Lyman alpha Nebula: Dense Compact Gas Clumps in the Circumgalactic Medium of a z~2 Quasar

    CERN Document Server

    Battaia, Fabrizio Arrigoni; Prochaska, J Xavier; Cantalupo, Sebastiano

    2015-01-01

    The recent discovery by Cantalupo et al. (2014) of the largest (~500 kpc) and luminous Ly-alpha nebula associated with the quasar UM287 (z=2.279) poses a great challenge to our current understanding of the astrophysics of the halos hosting massive z~2 galaxies. Either an enormous reservoir of cool gas is required $M\\simeq10^{12}$ $M_{\\odot}$, exceeding the expected baryonic mass available, or one must invoke extreme gas clumping factors not present in high-resolution cosmological simulations. However, observations of Ly-alpha emission alone cannot distinguish between these two scenarios. We have obtained the deepest ever spectroscopic integrations in the HeII and CIV lines with the goal of detecting extended line emission, but detect neither line to a 3$\\sigma$ limiting SB $\\simeq10^{-18}$ erg/s/cm$^2$/arcsec$^2$. We construct models of the expected emission spectrum in the highly probable scenario that the nebula is powered by photoionization from the central hyper-luminous quasar. The non-detection of HeII ...

  7. Fingerprints of giant planets in the photospheres of Herbig stars

    CERN Document Server

    Kama, Mihkel; Pinilla, Paola

    2015-01-01

    Around 2% of all A stars have photospheres depleted in refractory elements. This is hypothesized to arise from a preferential accretion of gas rather than dust, but the specific processes and the origin of the material -- circum- or interstellar -- are not known. The same depletion is seen in 30% of young, disk-hosting Herbig Ae/Be stars. We investigate whether the chemical peculiarity originates in a circumstellar disk. Using a sample of systems for which both the stellar abundances and the protoplanetary disk structure are known, we find that stars hosting warm, flaring group I disks typically have Fe, Mg and Si depletions of 0.5 dex compared to the solar-like abundances of stars hosting cold, flat group II disks. The volatile, C and O, abundances in both sets are identical. Group I disks are generally transitional, having radial cavities depleted in millimetre-sized dust grains, while those of group II are usually not. Thus we propose that the depletion of heavy elements emerges as Jupiter-like planets blo...

  8. Dynamos of giant planets

    CERN Document Server

    Busse, F H; 10.1017/S1743921307000920

    2009-01-01

    Possibilities and difficulties of applying the theory of magnetic field generation by convection flows in rotating spherical fluid shells to the Giant Planets are outlined. Recent progress in the understanding of the distribution of electrical conductivity in the Giant Planets suggests that the dynamo process occurs predominantly in regions of semiconductivity. In contrast to the geodynamo the magnetic field generation in the Giant Planets is thus characterized by strong radial conductivity variations. The importance of the constraint on the Ohmic dissipation provided by the planetary luminosity is emphasized. Planetary dynamos are likely to be of an oscillatory type, although these oscillations may not be evident from the exterior of the planets.

  9. Giant Cell Fibroma

    OpenAIRE

    Tahere Nosratzehi; Lale Maleki

    2013-01-01

    Giant cell fibroma is a fibrous tumor which represents about 2 to 5% of all oral fibrotic proliferations. Compared to traumatic fibroma, giant (traumatic fibroma or irritation fibroma) cell fibroma occurs at a younger age. In about 60% of the cases the lesion is diagnosed within the first three decades of life and is slightly more in women. 50% of the cases is observed in the gum and will appear as a nodule with a papillary surface [1]. The giant cell fibroma is treated by conservative excisi...

  10. Spectroscopic confirmation of KOI-1299b: a massive warm Jupiter in a 52-day eccentric orbit transiting a giant star

    CERN Document Server

    Ortiz, Mauricio; Reffert, Sabine; Quirrenbach, Andreas; Deeg, Hans J; Karjalainen, Raine; Montañes-Rodríguez, Pilar; Nespral, Davide; Nowak, Grzegorz; Osorio, Yeisson; Palle, Enric

    2014-01-01

    Context: Planets around evolved stars exhibit different properties than those orbiting main-sequence stars. One of the most notable differences is the paucity of planets orbiting at short distance from giant stars (a < 0.5 AU). Detecting these rare close-in planets can shed light on planetary system formation and evolution mechanisms. Aims: We study the Kepler object KOI-1299, an evolved star ascending the red giant branch. We aim at confirming the planetary nature of the Jupiter-like transit signal recurring every ~52.5 days, and characterizing the orbital elements of the system. Methods: We derive radial velocities from multi-epoch high-resolution spectra of KOI-1299 acquired with CAFE at the 2.2m telescope of Calar Alto Observatory and FIES at the 2.56m Nordic Optical Telescope of Roque de los Muchachos Observatory. Results: We confirm the planetary nature of the transiting object KOI-1299b. We find a planetary mass of Mp=5.86 +\\- 0.05 Mjup and an eccentricity of e=0.479 +\\- 0.004. With a semi-major axi...

  11. The Search for other Earths: limits on the giant planet orbits that allow habitable terrestrial planets to form

    OpenAIRE

    Raymond, Sean N.

    2006-01-01

    Gas giant planets are far easier than terrestrial planets to detect around other stars, and are thought to form much more quickly than terrestrial planets. Thus, in systems with giant planets, the late stages of terrestrial planet formation are strongly affected by the giant planets' dynamical presence. Observations of giant planet orbits may therefore constrain the systems that can harbor potentially habitable, Earth-like planets. We present results of 460 N-body simulations of terrestrial a...

  12. Giant distal humeral geode

    Energy Technology Data Exchange (ETDEWEB)

    Maher, M.M. [Department of Radiology, Mater Misericordiae Hospital, Dublin (Ireland); Department of Radiology, St. Vincent' s Hospital, Elm Park, Dublin 4 (Ireland); Kennedy, J.; Hynes, D. [Department of Orthopaedics, Mater Misericordiae Hospital, Dublin (Ireland); Murray, J.G.; O' Connell, D. [Department of Radiology, Mater Misericordiae Hospital, Dublin (Ireland)

    2000-03-30

    We describe the imaging features of a giant geode of the distal humerus in a patient with rheumatoid arthritis, which presented initially as a pathological fracture. The value of magnetic resonance imaging in establishing this diagnosis is emphasized. (orig.)

  13. Metaphyseal giant cell tumor

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed.

  14. The Giant Cell.

    Science.gov (United States)

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  15. Seismology of Giant Planets

    CERN Document Server

    Gaulme, Patrick; Schmider, Francois-Xavier; Guillot, Tristan

    2014-01-01

    Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light ref...

  16. Migration of accreting giant planets

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  17. Giant magnetostrictive materials

    Institute of Scientific and Technical Information of China (English)

    LIU JingHua; JIANG ChengBao; XU HuiBin

    2012-01-01

    Giant magnetostrictive materials are a kind of functional materials developed since 1970s,known as their large magnetostrain and high energy density.In this paper,an introduction of magnetosttiction and the history of magnetostrictive materials are described firstly.Then we review the recent developments of both rare earth and non-rare earth magnetostrictive materials.Finally,the tendency of developing new giant magnetostrictive materials is presented.

  18. Red giant seismology: Observations

    Directory of Open Access Journals (Sweden)

    Mosser B.

    2013-03-01

    Full Text Available The CoRoT and Kepler missions provide us with thousands of red-giant light curves that allow a very precise asteroseismic study of these objects. Before CoRoT and Kepler, the red-giant oscillation patterns remained obscure. Now, these spectra are much more clear and unveil many crucial interior structure properties. For thousands of red giants, we can derive from seismic data precise estimates of the stellar mass and radius, the evolutionary status of the giants (with a clear difference between clump and RGB stars, the internal differential rotation, the mass loss, the distance of the stars... Analyzing this amount of information is made easy by the identification of the largely homologous red-giant oscillation patterns. For the first time, both pressure and mixed mode oscillation patterns can be precisely depicted. The mixed-mode analysis allows us, for instance, to probe directly the stellar core. Fine details completing the red-giant oscillation pattern then provide further information on the interior structure, including differential rotation.

  19. KOI-372: a young extrasolar system with two giant planets on wide and eccentric orbits

    CERN Document Server

    Mancini, L; Southworth, J; Borsato, L; Gandolfi, D; Ciceri, S; Barrado, D; Brahm, R; Henning, Th

    2015-01-01

    We confirm the planetary nature of KOI-372b (aka Kepler object of interest K00372.01), a giant transiting exoplanet orbiting a solar-analog G2V star. The mass of KOI-372b and the eccentricity of its orbit were accurately derived thanks to a series of precise radial velocity measurements obtained with the CAFE spectrograph mounted on the CAHA 2.2-m telescope. A simultaneous fit of the radial-velocity data and Kepler photometry revealed that KOI-372b is a dense Jupiter-like planet with a mass of Mp=3.25 Mjup and a radius of Rp=0.882 Rjup. KOI-372b is moving on a quite eccentric orbit, e=0.172, making a complete revolution around its parent star in 125.6 days. The semi-major axis of the orbit is 0.4937 au, implying that the planet is close to its habitable zone (roughly 0.5 au from it). By analysing the mid-transit times of the 12 transit events of KOI-372b recorded by the Kepler spacecraft, we found a clear transit time variation, which is attributable to the presence of a planet c in a wider orbit. We estimate...

  20. Thermal Giant Gravitons

    CERN Document Server

    Armas, Jay; Obers, Niels A; Orselli, Marta; Pedersen, Andreas Vigand

    2012-01-01

    We study the giant graviton solution as the AdS_5 X S^5 background is heated up to finite temperature. The analysis employs the thermal brane probe technique based on the blackfold approach. We focus mainly on the thermal giant graviton corresponding to a thermal D3-brane probe wrapped on an S^3 moving on the S^5 of the background at finite temperature. We find several interesting new effects, including that the thermal giant graviton has a minimal possible value for the angular momentum and correspondingly also a minimal possible radius of the S^3. We compute the free energy of the thermal giant graviton in the low temperature regime, which potentially could be compared to that of a thermal state on the gauge theory side. Moreover, we analyze the space of solutions and stability of the thermal giant graviton and find that, in parallel with the extremal case, there are two available solutions for a given temperature and angular momentum, one stable and one unstable. In order to write down the equations of mot...

  1. Rapidly rotating red giants

    CERN Document Server

    Gehan, Charlotte; Michel, Eric

    2016-01-01

    Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, which behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the id...

  2. Giant star seismology

    CERN Document Server

    Hekker, S

    2016-01-01

    The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-interrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.

  3. DO GIANT PLANETS SURVIVE TYPE II MIGRATION?

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10641, Taiwan (China); Ida, Shigeru, E-mail: yasu@asiaa.sinica.edu.tw, E-mail: ida@geo.titech.ac.jp [Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2013-09-10

    Planetary migration is one of the most serious problems to systematically understand the observations of exoplanets. We clarify that the theoretically predicted type II, migration (like type I migration) is too fast, by developing detailed analytical arguments in which the timescale of type II migration is compared with the disk lifetime. In the disk-dominated regime, the type II migration timescale is characterized by a local viscous diffusion timescale, while the disk lifetime is characterized by a global diffusion timescale that is much longer than the local one. Even in the planet-dominated regime where the inertia of the planet mass reduces the migration speed, the timescale is still shorter than the disk lifetime except in the final disk evolution stage where the total disk mass decays below the planet mass. This suggests that most giant planets plunge into the central stars within the disk lifetime, and it contradicts the exoplanet observations that gas giants are piled up at r {approx}> 1 AU. We examine additional processes that may arise in protoplanetary disks: dead zones, photoevaporation of gas, and gas flow across a gap formed by a type II migrator. Although they make the type II migration timescale closer to the disk lifetime, we show that none of them can act as an effective barrier for rapid type II migration with the current knowledge of these processes. We point out that gas flow across a gap and the fraction of the flow accreted onto the planets are uncertain and they may have the potential to solve the problem. Much more detailed investigation for each process may be needed to explain the observed distribution of gas giants in extrasolar planetary systems.

  4. Liquid Water Oceans in Ice Giants

    Science.gov (United States)

    Wiktorowicz, Sloane J.; Ingersoll, Andrew P.

    2007-01-01

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager

  5. Juvenile giant fibroadenoma

    Directory of Open Access Journals (Sweden)

    Vipul Yagnik

    2011-07-01

    Full Text Available Fibroadenomas are benign solid tumor associated with aberration of normal lobular development. Juvenile giant fibroadenoma is usually single and >5 cm in size /or >500 gms in weight. Important differential diagnoses are: phyllodes tumor and juvenile gigantomastia. Simple excision is the treatment of choice.

  6. [Giant retroperitoneal liposarcoma].

    Science.gov (United States)

    Mezzour, Mohamed Hicham; El Messaoudi, Yasser Arafat; Fekak, Hamid; Rabii, Redouane; Marnissi, Farida; Karkouri, Mehdi; Salam, Siham; Iraki, Moulay Ahmed; Joual, Abdenbi; Meziane, Fathi

    2006-02-01

    The authors report a case of giant retroperitoneal liposarcoma. The diagnosis was suspected after scanography and magnetic resonance imaging and confirmed by the histological analysis of the extracted piece after surgical treatment. Postoperative evolution was favourable after one year without recurrence or distant metastasis. The authors discuss the pathologic and therapeutic aspects and the prognosis of retroperitoneal liposarcoma.

  7. Giant Congenital Melanocytic Nevus

    DEFF Research Database (Denmark)

    Rasmussen, Bo Sonnich; Henriksen, Trine Foged; Kølle, Stig-Frederik Trojahn

    2015-01-01

    Giant congenital melanocytic nevi (GCMN) occur in 1:20,000 livebirths and are associated with increased risk of malignant transformation. The treatment of GCMN from 1981 to 2010 in a tertiary referral center was reviewed evaluating the modalities used, cosmetic results, associated complications...

  8. Waking the Sleeping Giant

    NARCIS (Netherlands)

    Ollenburger, Mary H.; Descheemaeker, Katrien; Crane, Todd A.; Sanogo, Ousmane M.; Giller, Ken E.

    2016-01-01

    The World Bank argued that West Africa's Guinea Savannah zone forms part of “Africa's Sleeping Giant,” where increases in agricultural production could be an engine of economic growth, through expansion of cultivated land in sparsely populated areas. The district of Bougouni, in southern Mali,

  9. How to design a planetary system for different scattering outcomes: giant impact sweet spot, maximizing exocomets, scattered discs

    Science.gov (United States)

    Wyatt, M. C.; Bonsor, A.; Jackson, A. P.; Marino, S.; Shannon, A.

    2017-01-01

    This paper considers the dynamics of the scattering of planetesimals or planetary embryos by a planet on a circumstellar orbit. We classify six regions in the planet's mass versus semimajor axis parameter space according to the dominant outcome for scattered objects: ejected, accreted, remaining, escaping, Oort Cloud, and depleted Oort Cloud. We use these outcomes to consider which planetary system architectures maximize the observability of specific signatures, given that signatures should be detected first around systems with optimal architectures (if such systems exist in nature). Giant impact debris is most readily detectable for 0.1-10 M⊕ planets at 1-5 au, depending on the detection method and spectral type. While A stars have putative giant impact debris at 4-6 au consistent with this sweet spot, that of FGK stars is typically ≪1 au contrary to expectations; an absence of 1-3 au giant impact debris could indicate a low frequency of terrestrial planets there. Three principles maximize the cometary influx from exo-Kuiper belts: a chain of closely separated planets interior to the belt, none of which is a Jupiter-like ejector; planet masses not increasing strongly with distance (for a net inward torque on comets); and ongoing replenishment of comets, possibly by embedded low-mass planets. A high Oort Cloud comet influx requires no ejectors and architectures that maximize the Oort Cloud population. Cold debris discs are usually considered classical Kuiper belt analogues. Here we consider the possibility of detecting scattered disc analogues, which could be betrayed by a broad radial profile and lack of small grains, as well as spherical 100-1000 au mini-Oort Clouds. Some implications for escaping planets around young stars, detached planets akin to Sedna, and the formation of super-Earths are also discussed.

  10. Control Effect of Evolution of North Sea Basin on Formation of Giant Oil-Gas Fields%北海盆地形成演化对大油气田的控制作用

    Institute of Scientific and Technical Information of China (English)

    刘政; 何登发; 温志新; 李涤

    2012-01-01

    The North Sea basin underwent eight orogenic stages and gave rise to the frameworks that the metamorphic basement was formed in Caledonian stage; Pangaea following Paleo-Tethys closure shaped in Hercynian, and the coal-measure source rock deposited in the south- em North Sea basin; southern and northern North Sea basin continued subsidence in intra-craton stage, with early arid .climate and late large-scale marine transgression, forming favorable reserv0ir-cap rocks assemblage in south of it; regional extension environment gave rise to Viking, Central and Moray Firth grabens and troughs in rifting stage; uplifting of central North Sea basin e0mpanied with many a volca- nic activity in thermal uplift stage, providing large amount of provenances for development of the northern reservoir rocks; central dome sub- sidence in major rifting stage followed by being submerged, causing premium source rocks development in northern of it; relatively stable sedimentary environment in late rifting state allowed large amount of chalks to develop in the central and deposit marls in the northern, shaping regional cap rocks in the northern of this basin; and in post-rifting stage, Norway-Greenland Sea separation occurred, and sustained and stable deposition under previous structural framework provided favorable environment for oil and gas preservation. Finally, these result- ed in framework as giant gas fields dominantly distributed in the southern and giant oil fields in the northern, and contemporarily, "upper source-lower reservoir" and "lower source-upper reservoir" characteristics were found in Viking graben and Central graben, respectively.%分析了北海盆地的形成演化对大油气田形成的控制作用。研究认为,北海盆地经历了8个构造演化期,加里东运动期形成了主要变质岩基底;海西运动导致古特提斯洋关闭,形成联合古陆,同时沉积了盆地南部重要的煤系烃源岩;陆内克拉通期盆地南、

  11. Convection and Mixing in Giant Planet Evolution

    CERN Document Server

    Vazan, Allona; Kovetz, Attay; Podolak, Morris

    2015-01-01

    The primordial internal structures of gas giant planets are unknown. Often giant planets are modeled under the assumption that they are adiabatic, convective, and homogeneously mixed, but this is not necessarily correct. In this work, we present the first self-consistent calculation of convective transport of both heat and material as the planets evolve. We examine how planetary evolution depends on the initial composition and its distribution, whether the internal structure changes with time, and if so, how it affects the evolution. We consider various primordial distributions, different compositions, and different mixing efficiencies and follow the distribution of heavy elements in a Jupiter-mass planet as it evolves. We show that a heavy-element core cannot be eroded by convection if there is a sharp compositional change at the core-envelope boundary. If the heavy elements are initially distributed within the planet according to some compositional gradient, mixing occurs in the outer regions resulting in a...

  12. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D. [Institute for Astronomy, Royal Observatory Edinburgh, University of Edinburgh, Blackford Hill, Edinburgh (United Kingdom); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.

  13. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs

    CERN Document Server

    Lambrechts, Michiel

    2014-01-01

    The formation of planetary cores must proceed rapidly in order for the giant planets to accrete their gaseous envelopes before the dissipation of the protoplanetary gas disc ( 100 M_E), but preferentially form Neptune-mass planets or smaller (< 10 M_E). This is consistent with exoplanet surveys which show that gas giants are relatively uncommon around stars of low mass or low metallicity.

  14. Giant Cell Arteritis.

    Science.gov (United States)

    Hoffman, Gary S

    2016-11-01

    This issue provides a clinical overview of giant cell arteritis, focusing on diagnosis, treatment, and practice improvement. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers.

  15. Intraoral giant condyloma acuminatum

    Directory of Open Access Journals (Sweden)

    Gupta R

    2001-09-01

    Full Text Available A case of intraoral giant condyloma acuminatum is reported in a 50- year- old Indian. He did not respond to topical application of podophyllin 20% but responded partially to electric cauterisation. Surgical excision was done to get rid of the warty growh completely. Since there were no skin or genital lesions and no history of marital or extramarital sexual contact the lesion was probably acquired from environmental sources. Nonsexual transmission should be considered especially when the lesions are extragenital.

  16. Giant Otters in Peru

    Directory of Open Access Journals (Sweden)

    Schenk C.

    1992-02-01

    Full Text Available We are in the second year of fieldwork surveying for Giant Otters in the southeastern rainforest of Peru, in three areas with differing levels of legal protection. While there is some illegal hunting still happening outside the protected areas, the main threat to the otters is badly-conducted tourism. Well-organised tourism can be a promising argument for establishing protected areas like national parks.

  17. A giant graviton genealogy

    CERN Document Server

    Lozano, Yolanda; Prinsloo, Andrea

    2013-01-01

    In this article we extend the construction of giant gravitons from holomorphic surfaces [arXiv:hep-th/0010206] to the ABJM correspondence. We construct a new class of 1/6-BPS M5-branes wrapping 5-manifolds in S^7/Z_k and supported by a large angular momentum in the orbifold space. These orbifold giant gravitons undergo a supersymmetry enhancement to 1/3-BPS and 1/2-BPS configurations in special cases. The compactification of M-theory on AdS_4 x S^7/Z_k to type IIA superstring theory on AdS_4 x CP^3 then gives rise to another new class of 1/6-BPS D4 and NS5-branes wrapping 4 and 5-manifolds in CP^3. The D4-branes carry a combination of D0-brane charge and angular momentum in the complex projective space, while the NS5-branes are supported only by D0-brane charge. Finally, we present a detailed analysis of a one-parameter family of 1/2-BPS M5-brane orbifold giant gravitons, and their D4 and NS5-brane CP^3 descendants.

  18. Giant prolactinomas in women

    DEFF Research Database (Denmark)

    Delgrange, Etienne; Raverot, Gerald; Bex, Marie

    2014-01-01

    OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg/l and id......OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg....../l and identified 19 similar cases from the literature; a gender-based comparison of the frequency and age distribution was obtained from a literature review. RESULTS: The initial PubMed search using the term 'giant prolactinomas' identified 125 patients (13 women) responding to the inclusion criteria. The female......:male ratio was 1:9. Another six female patients were found by extending the literature search, while our own series added 15 patients. The median age at diagnosis was 44 years in women compared with 35 years in men (Pwomen (n=34), we...

  19. Extrasolar Giant Planet and Brown Dwarf Models

    CERN Document Server

    Burrows, A; Lunine, J I; Guillot, M P; Saumon, D S; Freedman, R S

    1997-01-01

    With the discovery of the companions of 51 Peg, 55 Cnc, $\\tau$ Boo, gas giants and/or brown dwarfs with masses from 0.3 through 60 times that of Jupiter assume a new and central role in the emerging field of extrasolar planetary studies. In this contribution, we describe the structural, spectral, and evolutionary characteristics of such exotic objects, as determined by our recent theoretical calculations. These calculations can be used to establish direct search strategies via SIRTF, ISO, and HST (NICMOS), and via various ground--based adaptive optics and interferometric platforms planned for the near future.

  20. Debris disks as signposts of terrestrial planet formation. II Dependence of exoplanet architectures on giant planet and disk properties

    CERN Document Server

    Raymond, Sean N; Moro-Martin, Amaya; Booth, Mark; Wyatt, Mark C; Armstrong, John C; Mandell, Avi M; Selsis, Franck; West, Andrew A

    2012-01-01

    We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple unstable gas giants. We previously showed that the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and debris disks. Here we present new simulations that show that this connection is qualitatively robust to changes in: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk. We discuss how variations in these parameters affect the evolution. Systems with equal-mass giant planets undergo the most violent instabilities, and these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass outermost giant planets have stable gaps between these p...

  1. Giant bullae mimicking tension pneumothorax

    Directory of Open Access Journals (Sweden)

    Ahmet Erbey

    2012-12-01

    Full Text Available Giant bullae may mimic tension pneumothorax radiologicallyso that it may expand completely to hemithorax,increase of radiolucency mediastinal shift, flattening ofdiaphragm and printing on trachea. Sixty one year oldmale patient with giant bullae misdiagnosed as tensionpneumothorax and underwent to tube thoracostomy. Thedifferential diagnosis of giant bullae and tension pneumothoraxmay be confusing. The therapeutic approaches ofthese two radiologically similar entities differ significantly.Thus proper physical assessment and radiological examinationis crucial in the differential diagnosis and computedtomography examination should be performed before theadjustment of therapy. J Clin Exp Invest 2012; 3(4: 548-551Key words: Tension pneumothorax, giant bullae, computedtomography, tube thoracostomy

  2. Imaging Extrasolar Giant Planets

    Science.gov (United States)

    Bowler, Brendan P.

    2016-10-01

    High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (≈5-300 Myr) stars spanning stellar masses between 0.1 and 3.0 M ⊙, the overall occurrence rate of 5-13 M Jup companions at orbital distances of 30-300 au is {0.6}-0.5+0.7 % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically significant trend in planet frequency with host mass: giant planets are found around {2.8}-2.3+3.7 % of BA stars, planets spanning a broad range of masses and ages.

  3. GIANT PROSTHETIC VALVE THROMBUS

    Directory of Open Access Journals (Sweden)

    Prashanth Kumar

    2015-04-01

    Full Text Available Mechanical prosthetic valves are predisposed to bleeding, thrombosis & thromboembolic complications. Overall incidence of thromboembolic complications is 1% per year who are on oral anticoagulants, whereas bleeding complications incidence is 0.5% to 6.6% per year. 1, 2 Minimization of Scylla of thromboembolic & Charybdis of bleeding complication needs a balancing act of optimal antithrombotic therapy. We are reporting a case of middle aged male patient with prosthetic mitral valve presenting in heart failure. Patient had discontinued anticoagulants, as he had subdural hematoma in the past. He presented to our institute with a giant prosthetic valve thrombus.

  4. A Giant Urethral Calculus.

    Science.gov (United States)

    Sigdel, G; Agarwal, A; Keshaw, B W

    2014-01-01

    Urethral calculi are rare forms of urolithiasis. Majority of the calculi are migratory from urinary bladder or upper urinary tract. Primary urethral calculi usually occur in presence of urethral stricture or diverticulum. In this article we report a case of a giant posterior urethral calculus measuring 7x3x2 cm in a 47 years old male. Patient presented with acute retention of urine which was preceded by burning micturition and dribbling of urine for one week. The calculus was pushed in to the bladder through the cystoscope and was removed by suprapubic cystolithotomy.

  5. Giant infantile pulmonary hemangioma

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, Rajul; Tummala, Venkat [Hurley Medical Center One Hurley Plaza, Department of Radiology, Flint, MI (United States)

    2010-12-15

    We present a very unusual case of giant infantile pulmonary hemangioma presenting as a large solitary pulmonary mass. This was successfully managed with surgical resection. Histological examination revealed that the mass was positive for GLUT-1 receptor, a marker for infantile hemangioma. To our knowledge only a few cases of pulmonary hemangioma have been described previously in the literature. Pulmonary hemangiomas are very rare lesions, most of them presenting as a pulmonary mass. This case emphasizes the fact that this rare lesion should be considered in the differential of an enhancing pulmonary mass in an infant. (orig.)

  6. Giant Pandas and Their Conservation

    Institute of Scientific and Technical Information of China (English)

    GarethDavey

    2004-01-01

    IT is paradoxical that themost well-known conservation symbol in the world,the giant panda, is a criti-cally endangered species.The estimated 1,600 thatremain live in the high-altitude for-ests of southwest China (within theprovinces of Sichuan, Gansu andShaanxi). Giant pandas are popularand elicit affection and admiration

  7. Famine Threatens the Giant Panda

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Large swathes of arrow bamboo groves at and above 2,700 meters in the Piankou Nature Reserve in Sichuan's Mianyang are producing purple blooms, and some groves have started to wither and die. An absence of bamboo means famine for giant pandas living there. Sichuan has consequently activated its giant panda contingency plan.

  8. Giant planet formation in radially structured protoplanetary discs

    Science.gov (United States)

    Coleman, Gavin A. L.; Nelson, Richard P.

    2016-08-01

    Our recent N-body simulations of planetary system formation, incorporating models for the main physical processes thought to be important during the building of planets (i.e. gas disc evolution, migration, planetesimal/boulder accretion, gas accretion on to cores, etc.), have been successful in reproducing some of the broad features of the observed exoplanet population (e.g. compact systems of low-mass planets, hot Jupiters), but fail completely to form any surviving cold Jupiters. The primary reason for this failure is rapid inward migration of growing protoplanets during the gas accretion phase, resulting in the delivery of these bodies on to orbits close to the star. Here, we present the results of simulations that examine the formation of gas giant planets in protoplanetary discs that are radially structured due to spatial and temporal variations in the effective viscous stresses, and show that such a model results in the formation of a population of cold gas giants. Furthermore, when combined with models for disc photoevaporation and a central magnetospheric cavity, the simulations reproduce the well-known hot-Jupiter/cold-Jupiter dichotomy in the observed period distribution of giant exoplanets, with a period valley between 10 and 100 d.

  9. Two physical regimes for the Giant HII Regions and Giant Molecular Clouds in the Antennae Galaxies

    CERN Document Server

    Zaragoza-Cardiel, Javier; Beckman, John E; García-Lorenzo, Begoña; Erroz-Ferrer, Santiago; Gutiérrez, Leonel

    2014-01-01

    We have combined observations of the Antennae galaxies from the radio interferometer ALMA (Atacama Large Millimetre/submillimetre Array) and from the optical interferometer GH$\\alpha$FaS (Galaxy Halpha Fabry-Perot System). The two sets of observations have comparable angular and spectral resolutions, enabling us to identify 142 giant molecular clouds and 303 HII regions. We have measured, and compare, their basic physical properties (radius, velocity dispersion, luminosity). For the HII regions we find two physical regimes, one for masses $>10^{5.4} \\mathrm{M_{\\odot}}$ of ionized gas, which the gas density increases with gas mass, the other for masses $<10^{5.4} \\mathrm{M_{\\odot}}$ of ionized gas where the gas density decreases with gas mass. For the GMCs we find, in contrast to previous studies in other galaxies over a generally lower mass range of clouds, that the gas density increases with the total gas mass, hinting at two regimes for these clouds if we consider both sources of data. We also find that ...

  10. Giant Intradiverticular Bladder Tumor

    Science.gov (United States)

    Noh, Mohamad Syafeeq Faeez Md; Aziz, Ahmad Fuad Abdul; Ghani, Khairul Asri Mohd; Siang, Christopher Lee Kheng; Yunus, Rosna; Yusof, Mubarak Mohd

    2017-01-01

    Patient: Male, 74 Final Diagnosis: Giant intradiverticular bladder tumor with metastasis Symptoms: Hematuria Medication:— Clinical Procedure: — Specialty: Urology Objective: Rare disease Background: Intradiverticular bladder tumors are rare. This renders diagnosis of an intradiverticular bladder tumor difficult. Imaging plays a vital role in achieving the diagnosis, and subsequently staging of the disease. Case Report: A 74-year-old male presented to our center with a few months history of constitutional symptoms. Upon further history, he reported hematuria two months prior to presentation, which stopped temporarily, only to recur a few days prior to coming to the hospital. The patient admitted to having lower urinary tract symptoms. However, there was no dysuria, no sandy urine, and no fever. Palpation of his abdomen revealed a vague mass at the suprapubic region, which was non tender. In view of his history and the clinical examination findings, an ultrasound of the abdomen and computed tomography (CT) was arranged. These investigations revealed a giant tumor that seemed to be arising from a bladder diverticulum, with a mass effect and hydronephrosis. He later underwent operative intervention. Conclusions: Intradiverticular bladder tumors may present a challenge to the treating physician in an atypical presentation; thus requiring a high index of suspicion and knowledge of tumor pathophysiology. As illustrated in our case, CT with its wide availability and multiplanar imaging capabilities offers a useful means for diagnosis, disease staging, operative planning, and follow-up. PMID:28246375

  11. Rapidly Evolving Giant Dermatofibroma

    Directory of Open Access Journals (Sweden)

    K. J. Lang

    2010-01-01

    Full Text Available Dermatofibroma, also known as “fibrous histiocytoma”, is a benign dermal or subcutaneous poorly circumscribed proliferation of spindle-shaped fibroblasts and macrophages in the dermis. Although it is commonly present as a brownish nodule the legs of females, it may also arise on the upper extremities, trunk, and rarely on the head. The exact pathogenesis is unclear. However, it is widely believed that the originating insult to the dermis is a folliculitis, an arthropod bite, or an unspecified initial inflammatory condition. Giant dermatofibromas of greater than 5 cm in diameter are rare, with only 22 cases reported in the literature. We present a case of a rapidly evolving pedunculated mass in the groin of a male patient. Histological examination confirmed this to be a giant dermatofibroma. Though this specimen cannot is not confirmed as such, the cellular subtype is sometimes present as a larger lesion with anecdotal reports of local recurrence and distant metastases. The clinical and radiological features which were somewhat suspicious of malignancy are considered in the context of the definitive pathological diagnosis of a benign lesion.

  12. Pygmies, Giants, and Skins

    CERN Document Server

    Piekarewicz, J

    2012-01-01

    Understanding the equation of state (EOS) of neutron-rich matter is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of energetic heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova all depend critically on the nuclear-matter EOS. In this contribution I focus on the EOS of cold baryonic matter with special emphasis on its impact on the structure, dynamics, and composition of neutron stars. In particular, I discuss how laboratory experiments on neutron skins as well as on Pygmy and Giant resonances can help us elucidate the structure of these fascinating objects.

  13. [Giant esophageal fibrovascular polyp].

    Science.gov (United States)

    Palacios, Fernando; Contardo, Carlos; Guevara, Jorge; Vera, Augusto; Aguilar, Luis; Huamán, Manuel; Palomino, Américo; Yabar, Alejandro

    2003-01-01

    Fibrovascular polyps are extremely rare benign neoplasias of the esophagus, which usually originate in the lower cricoid area. They do not produce any discomfort in the patient for a long time, however it may make itself evident by the patient's regurgitation of the polyp, producing asphyxia or, more frequently, dysphagia. The case of a 58 year old male patient is presented herein, with a 9 month record of dysphagia, weight loss and intermittent melena. The barium x-ray showed a distended esophagus, with a tumor running from the upper esophageal sphincter to the cardia. The endoscopy confirmed the presence of a pediculated tumor, implanted in the cervical esophagus. Surgeons suspected the potential malignancy of the tumor and performed a transhiatal esophagectomy. The final pathologic diagnosis was giant fibrovascular esophageal polyp.

  14. A giant Ordovician anomalocaridid.

    Science.gov (United States)

    Van Roy, Peter; Briggs, Derek E G

    2011-05-26

    Anomalocaridids, giant lightly sclerotized invertebrate predators, occur in a number of exceptionally preserved early and middle Cambrian (542-501 million years ago) biotas and have come to symbolize the unfamiliar morphologies displayed by stem organisms in faunas of the Burgess Shale type. They are characterized by a pair of anterior, segmented appendages, a circlet of plates around the mouth, and an elongate segmented trunk lacking true tergites with a pair of flexible lateral lobes per segment. Disarticulated body parts, such as the anterior appendages and oral circlet, had been assigned to a range of taxonomic groups--but the discovery of complete specimens from the middle Cambrian Burgess Shale showed that these disparate elements all belong to a single kind of animal. Phylogenetic analyses support a position of anomalocaridids in the arthropod stem, as a sister group to the euarthropods. The anomalocaridids were the largest animals in Cambrian communities. The youngest unequivocal examples occur in the middle Cambrian Marjum Formation of Utah but an arthropod retaining some anomalocaridid characteristics is present in the Devonian of Germany. Here we report the post-Cambrian occurrence of anomalocaridids, from the Early Ordovician (488-472 million years ago) Fezouata Biota in southeastern Morocco, including specimens larger than any in Cambrian biotas. These giant animals were an important element of some marine communities for about 30 million years longer than previously realized. The Moroccan specimens confirm the presence of a dorsal array of flexible blades attached to a transverse rachis on the trunk segments; these blades probably functioned as gills.

  15. The Giant Magnetocaloric Effect

    Science.gov (United States)

    Pecharsky, Vitalij K.

    1998-03-01

    Since the discovery of the magnetocaloric effect in pure iron by E.Warburg in 1881, it has been measured experimentally on many magnetic metals and compounds. The majority of the materials studied order magnetically undergoing a second order phase transformation. The magnetocaloric effect, typically peaking near the Curie or the Néel temperature, generally ranges from 0.5 to 2 K (in terms of adiabatic temperature change) or at 1 to 4 J/kg K (in terms of isothermal magnetic entropy change) per 1 T magnetic field change. The giant magnetocaloric effect recently discovered in Gd_5(Si_xGe_1-x)4 alloys, where x refrigerant capacity, which is the measure of how much heat can be transferred from a cold to a hot reservoir in one ideal thermodynamic cycle, is larger than that of the best second order phase transition materials by 25 to 100%. When the Gd_5(Si_xGe_1-x)4 alloys are compared with other known materials, which show first order magnetic phase transition, such as Dy, Ho, Er, HoCo_2, NdMn_2Si_2, Fe_0.49Rh_0.51, and (Hf_0.83Ta_0.17)Fe_2+x, only Fe_0.49Rh_0.51 has comparable magnetocaloric properties. However, the first order magnetic phase transition in Fe_0.49Rh_0.51 is irreversible, and the magnetocaloric effect disappears after one magnetizing/demagnetizing cycle. A study of the crystal structure, thermodynamics, and magnetism of the Gd_5(Si_xGe_1-x)4 alloys, where 0 basic relations between the composition, the crystal structure, and the change in thermodynamics and magnetocaloric properties, which occur in the Gd_5(Si_xGe_1-x)4 system, and which brings about the giant magnetocaloric effect when x <= 0.5.

  16. Re-inflated Warm Jupiters Around Red Giants

    CERN Document Server

    Lopez, Eric D

    2015-01-01

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general however, these models can be grouped into two broad categories: 1) models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and 2) models that simply slow a planet's radiative cooling allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post main sequence stars will experience enormous increases their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupite...

  17. Formation of terrestrial planets in eccentric and inclined giant-planet systems

    Science.gov (United States)

    Sotiriadis, Sotiris; Libert, Anne-Sophie; Raymond, Sean

    2016-10-01

    The orbits of extrasolar planets are more various than the circular and coplanar ones of the Solar system. We study the impact of inclined and eccentric massive giant planets on the terrestrial planet formation process. The physical and orbital parameters of the giant planets considered in this study arise from n-body simulations of three giant planets in the late stage of the gas disc, under the combined action of Type II migration and planet-planet scattering. At the dispersal of the gas disc, the two- and three-planet systems interact then with an inner disc of planetesimals and planetary embryos. We discuss the mass and orbital parameters of the terrestrial planets formed by our simulations, as well as their water content. We also investigate how the disc of planetesimals and planetary embryos modifies the eccentric and inclined orbits of the giant planets.

  18. Landscape of the lost giants

    Science.gov (United States)

    2013-09-01

    The Pleistocene megafauna extinction erased a group of remarkable animals. Whether humans had a prominent role in the extinction remains controversial, but it is emerging that the disappearance of the giants has markedly affected the environment.

  19. Atmospheres of Extrasolar Giant Planets

    CERN Document Server

    Marley, M S; Seager, S; Barman, T; Marley, Mark S.; Fortney, Jonathan; Seager, Sara; Barman, Travis

    2006-01-01

    The key to understanding an extrasolar giant planet's spectrum--and hence its detectability and evolution--lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of extrasolar giant planets and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a ...

  20. Atmospheres of Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark

    2006-01-01

    The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.

  1. Annular Elastolytic Giant Cell Granuloma

    Directory of Open Access Journals (Sweden)

    Khandpur Sujay

    2001-01-01

    Full Text Available The clinical and histopathological features of annular elastolytic giant cell granuloma in a 42â€"year-old female patient are described. The condition presented as annular erythematous plaques over sun- exposed skin sparing the face. Histopathology revealed dense granulomatous infiltrate consisting of numerous giant cells and lymphohistiocytes without any palisading arrangement or necrobiosis. The features differentiating it from other similar granulomatous disorders are discussed.

  2. The forming factors and distribution rules of giant oil and gas fields in the coastal basins of West Africa%西非海岸盆地带大油气田形成条件与分布规律探析

    Institute of Scientific and Technical Information of China (English)

    郑应钊; 何等发; 马彩琴; 万德辉

    2011-01-01

    目的 探究西非海岸盆地带大油气田形成条件和分布的规律,为发现更多的大油气田提供理论依据.方法 从西非海岸盆地带沉积盆地分布和已发现的大油气田分布情况入手,分析其形成的有利条件,总结出西非最主要的两大含油气盆地——尼日尔三角洲盆地和下刚果盆地的含油气系统的相似性和差异性,归纳出西非大油气田形成及分布的规律.结果 在西非海岸盆地带,盐岩层的发育对各盆地油气的成藏和分布有重大影响.盐岩发育的大西洋带中段,盆地油气富集程度明显高于盐岩不发育的南段、北段盆地.西非海岸盆地带的含油气系统可分为盐下、盐上两套大的含油气系统,盐下含油气系统的烃源岩是湖相页岩,储层为河流相、三角洲相、滨海相砂岩,阿普第期蒸发岩层为盖层;盐上含油气系统的烃源岩是海相页岩,储层主要为浊积岩,盖层为泥页岩.结论 在西非海岸盆地带,大油气田多分布于近海或沿岸,受构造位置和沉积相带控制,形成多个油气富集带,具有垂直三角洲的沉积走向,呈带状富集的规律.由油气产出的岩性来看,其主要产出于碎屑岩储层,碳酸岩储层次之.产油层系以第三系为主,其次为白垩系.在南段盆地,形成了大气田;在中段的下刚果盆地和加蓬海岸盆地,只形成了大油田;在尼日尔三角洲盆地,形成了大油田、大气田共存的局面;西非北段盆地尚未发现大油气田.未来在西非海岸带中段盆地的深水浊积岩区有望发现更多的大油气田.%Aim To study the forming factors of giant oil and gas fields in the coastal basins of West Africa, and summarize the fields' distribution rules in order to help the hydrocarbon exploration in the future. Methods Based on the distribution of sedimentary basins and giant oil and gas fields in West Africa Coast, the factors of its forming is analyzed, the similarity

  3. Bringing Low the Giants

    CERN Multimedia

    2001-01-01

    Their work goes on unseen, because they a hundred metres beneath your feet. But while the race against the clock to build the LHC has begun on the surface, teams underground are feverishly engaged to dismantle LEP and its experiments. Four months after the start of dismantling, the technical coordinators of the different experiments discuss the progress of work. Little men attack the giant ALEPH. The barrel and its two endcaps have been removed to the end of the cavern and stripped of their cables. The breaking up of the detector can now begin. At ALEPH, counting rooms removed all in one go Jean-Paul Fabre, technical coordinator at ALEPH:'After making safe the structure, the first step was to remove the wiring and cables. Some 210 cubic metres were brought out. Then the counting rooms all round the detector were taken out. They were brought up from the cavern all in one go, up through the shaft, which is 10 metres wide and 150 metres deep. They made it with 15 centimetres to spare. They have been emptied of...

  4. Giant high occipital encephalocele

    Directory of Open Access Journals (Sweden)

    Agrawal Amit

    2016-03-01

    Full Text Available Encephaloceles are rare embryological mesenchymal developmental anomalies resulting from inappropriate ossification in skull through with herniation of intracranial contents of the sac. Encephaloceles are classified based on location of the osseous defect and contents of sac. Convexity encephalocele with osseous defect in occipital bone is called occipital encephalocele. Giant occipital encephaloceles can be sometimes larger than the size of baby skull itself and they pose a great surgical challenge. Occipital encephaloceles (OE are further classified as high OE when defect is only in occipital bone above the foramen magnum, low OE when involving occipital bone and foramen magnum and occipito-cervical when there involvement of occipital bone, foramen magnum and posterior upper neural arches. Chiari III malformation can be associated with high or low occipital encephaloceles. Pre-operatively, it is essential to know the size of the sac, contents of the sac, relation to the adjacent structures, presence or absence of venous sinuses/vascular structures and osseous defect size. Sometimes it becomes imperative to perform both CT and MRI for the necessary information. Volume rendered CT images can depict the relation of osseous defect to foramen magnum and provide information about upper neural arches which is necessary in classifying these lesions.

  5. Giant cell arteritis.

    Science.gov (United States)

    Ninan, Jem; Lester, Susan; Hill, Catherine

    2016-02-01

    Giant cell arteritis (GCA) is the most common vasculitis of the elderly. The diagnosis can be challenging at times because of the limitation of the American Rheumatology Association (ARA) classification criteria and the significant proportion of biopsy-negative patients with GCA. We discuss the role of advanced imaging techniques, including positron emission tomography (PET) scanning, in establishing diagnosis and improved histopathology techniques to improve the sensitivity of temporal artery biopsy. There have been significant advances in the understanding of the pathogenesis of GCA, particularly the role of cytokine pathways such as the interleukins, IL-6-IL-17 axis, and the IL-12-interferon-γ axis and their implication for new therapies. We highlight that glucocorticoids remain the primary treatment for GCA, but recognize the risk of steroid-induced side effects. A number of pharmacotherapies to enable glucocorticoid dose reduction and prevent relapse have been studied. Early diagnosis and fast-track pathways have improved outcomes by encouraging adherence to evidence-based practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Rotation of Giant Stars

    CERN Document Server

    Kissin, Yevgeni

    2015-01-01

    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5 and $5\\,M_\\odot$, taking into account mass loss on the giant branches and the partitioning of angular momentum between the outer and inner envelope. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag as well as the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles $\\Omega(r)$ is considered in the deep convective envelope, ranging from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force on the inward pumping of angular momentum, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core ro...

  7. Imaging Extrasolar Giant Planets

    CERN Document Server

    Bowler, Brendan P

    2016-01-01

    High-contrast adaptive optics imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order adaptive optics systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young ($\\approx$5--300~Myr) stars spanning stellar masses between 0.1--3.0~\\Msun, the overall occurrence rate of 5--13~\\Mjup \\ companions at orbital distances ...

  8. A gas density drop in the inner 6 AU of the transition disk around the Herbig Ae star HD 139614 . Further evidence for a giant planet inside the disk?

    Science.gov (United States)

    Carmona, A.; Thi, W. F.; Kamp, I.; Baruteau, C.; Matter, A.; van den Ancker, M.; Pinte, C.; Kóspál, A.; Audard, M.; Liebhart, A.; Sicilia-Aguilar, A.; Pinilla, P.; Regály, Zs.; Güdel, M.; Henning, Th.; Cieza, L. A.; Baldovin-Saavedra, C.; Meeus, G.; Eiroa, C.

    2017-02-01

    Context. Quantifying the gas surface density inside the dust cavities and gaps of transition disks is important to establish their origin. Aims: We seek to constrain the surface density of warm gas in the inner disk of HD 139614, an accreting 9 Myr Herbig Ae star with a (pre-)transition disk exhibiting a dust gap from 2.3 ± 0.1 to 5.3 ± 0.3 AU. Methods: We observed HD 139614 with ESO/VLT CRIRES and obtained high-resolution (R 90 000) spectra of CO ro-vibrational emission at 4.7 μm. We derived constraints on the disk's structure by modeling the CO isotopolog line-profiles, the spectroastrometric signal, and the rotational diagrams using grids of flat Keplerian disk models. Results: We detected υ = 1 → 0 12CO, 2→1 12CO, 1→0 13CO, 1→0 C18O, and 1→0 C17O ro-vibrational lines. Lines are consistent with disk emission and thermal excitation. 12CO υ = 1 → 0 lines have an average width of 14 km s-1, Tgas of 450 K and an emitting region from 1 to 15 AU. 13CO and C18O lines are on average 70 and 100 K colder, 1 and 4 km s-1 narrower than 12CO υ = 1 → 0, and are dominated by emission at R ≥ 6 AU. The 12CO υ = 1 → 0 composite line-profile indicates that if there is a gap devoid of gas it must have a width narrower than 2 AU. We find that a drop in the gas surface density (δgas) at R R R R ≤ 1 AU of 5 × 1015 cm-2 (NH ≤ 5 × 1019 cm-2). Conclusions: The dust gap in the disk of HD 139614 has molecular gas. The distribution and amount of gas at R ≤ 6 AU in HD 139614 is very different from that of a primordial disk. The gas surface density in the disk at R ≤ 1 AU and at 1 R 2 AU) gas gap, suggest the presence of an embedded program 091.C-0671(B).

  9. A gas density drop in the inner 6 AU of the transition disk around the Herbig Ae star HD 139614: Further evidence for a giant planet inside the disk?

    CERN Document Server

    Carmona, A; Kamp, I; Baruteau, C; Matter, A; Ancker, M van den; Pinte, C; Kóspál, A; Audard, M; Liebhart, A; Sicilia-Aguilar, A; Pinilla, P; Regály, Zs; Güdel, M; Henning, Th; Cieza, L A; Baldovin-Saavedra, C; Meeus, G; Eiroa, C

    2016-01-01

    Context: Quantifying the gas content inside the dust gaps of transition disks is important to establish their origin. Aims: We seek to constrain the surface density of warm gas in the disk of HD 139614, a Herbig Ae star with a transition disk exhibiting a dust gap from 2.3 to 6 AU. Methods: We have obtained ESO/VLT CRIRES high-resolution spectra of CO ro-vibrational emission. We derive disk structure constraints by modeling the line profiles, the spectroastrometric signal, and the rotational diagrams using flat Keplerian disk models. Results: We detected v=1-0 12CO, 2-1 12CO, 1-0 13CO, 1-0 C18O, and 1-0 C17O ro-vibrational lines. 12CO v=1-0 lines have an average width of 14 km/s, Tgas of 450 K and an emitting region from 1 to 15 AU. 13CO and C18O lines are on average 70 and 100 K colder, 1 and 4 km/s narrower, and are dominated by emission at R>6 AU. The 12CO v=1-0 line profile indicates that if there is a gap in the gas it must be narrower than 2 AU. We find that a drop in the gas surface density (delta_gas)...

  10. Rocky core solubility in Jupiter and giant exoplanets

    CERN Document Server

    Wilson, Hugh F

    2011-01-01

    Gas giants are believed to form by the accretion of hydrogen-helium gas around an initial protocore of rock and ice. The question of whether the rocky parts of the core dissolve into the fluid H-He layers following formation has significant implications for planetary structure and evolution. Here we use ab initio calculations to study rock solubility in fluid hydrogen, choosing MgO as a representative example of planetary rocky materials, and find MgO to be highly soluble in H for temperatures in excess of approximately 10000 K, implying significant redistribution of rocky core material in Jupiter and larger exoplanets.

  11. Rocky core solubility in Jupiter and giant exoplanets.

    Science.gov (United States)

    Wilson, Hugh F; Militzer, Burkhard

    2012-03-16

    Gas giants are believed to form by the accretion of hydrogen-helium gas around an initial protocore of rock and ice. The question of whether the rocky parts of the core dissolve into the fluid H-He layers following formation has significant implications for planetary structure and evolution. Here we use ab initio calculations to study rock solubility in fluid hydrogen, choosing MgO as a representative example of planetary rocky materials, and find MgO to be highly soluble in H for temperatures in excess of approximately 10,000 K, implying the potential for significant redistribution of rocky core material in Jupiter and larger exoplanets.

  12. Quasar feedback revealed by giant molecular outflows

    CERN Document Server

    Feruglio, Chiara; Piconcelli, Enrico; Menci, Nicola; Aussel, Herve'; Lamastra, Alessandra; Fiore, Fabrizio

    2010-01-01

    In the standard scenario for galaxy evolution the transformation of young star-forming galaxies into red bulge-dominated spheroids, where star formation has been quenched, is often explained by invoking a strong negative feedback generated by accretion onto a central super-massive black hole. The depletion of gas resulting from quasar-driven outflows should eventually stop star-formation across the host galaxy and lead to the black hole "suicide" for starvation. Direct observational evidence for a major quasar feedback onto the host galaxy is still missing, since outflows previously observed in quasars are associated with the ionized component of the gas, which only accounts for a minor fraction of the total gas content, and typically occur in the central regions. We used the IRAM PdBI to observe the CO(1-0) transition in Mrk 231, the closest quasar known. We detect broad wings of the CO line, with velocities up to 750 km/s and spatially resolved on the kpc scale. Such broad CO wings trace a giant molecular o...

  13. Oil and Gas in the Netherlands - Is there a future?

    NARCIS (Netherlands)

    Herber, R.; de Jager, J.

    2010-01-01

    The impact of oil and, in particular, gas fields discovered in the Dutch subsurface has been very significant. However, 50 years after the discovery of the giant Groningen gas field the Netherlands has become very mature for exploration of oil and gas, and the gas volume left to be discovered in con

  14. Giant planet formation in radially structured protoplanetary discs

    CERN Document Server

    Coleman, Gavin A L

    2016-01-01

    Our recent N-body simulations of planetary system formation, incorporating models for the main physical processes thought to be important during the building of planets (i.e. gas disc evolution, migration, planetesimal/boulder accretion, gas accretion onto cores, etc.), have been successful in reproducing some of the broad features of the observed exoplanet population (e.g. compact systems of low mass planets, hot Jupiters), but fail completely to form any surviving cold Jupiters. The primary reason for this failure is rapid inward migration of growing protoplanets during the gas accretion phase, resulting in the delivery of these bodies onto orbits close to the star. Here, we present the results of simulations that examine the formation of gas giant planets in protoplanetary discs that are radially structured due to spatial and temporal variations in the effective viscous stresses, and show that such a model results in the formation of a population of cold gas giants. Furthermore, when combined with models f...

  15. Leonardo Da Vinci’s giant crossbow

    CERN Document Server

    Landrus, Matt

    2010-01-01

    Leonardo's Giant Crossbow is one of his least understood drawings. This fascinating book offers the first in-depth account of its likely purpose and its highly resolved design. It presents original research and new discoveries about the giant crossbow.

  16. Giant optical manipulation.

    Science.gov (United States)

    Shvedov, Vladlen G; Rode, Andrei V; Izdebskaya, Yana V; Desyatnikov, Anton S; Krolikowski, Wieslaw; Kivshar, Yuri S

    2010-09-10

    We demonstrate a new principle of optical trapping and manipulation increasing more than 1000 times the manipulation distance by harnessing strong thermal forces while suppressing their stochastic nature with optical vortex beams. Our approach expands optical manipulation of particles into a gas media and provides a full control over trapped particles, including the optical transport and pinpoint positioning of ∼100  μm objects over a meter-scale distance with ±10  μm accuracy.

  17. Atmospheres of Extrasolar Giant Planets

    Science.gov (United States)

    Marley, M. S.; Fortney, J.; Seager, S.; Barman, T.

    The key to understanding an extrasolar giant planet's spectrum - and hence its detectability and evolution - lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets (EGPs) are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of EGPs and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a single stellar system leads to the study of comparative planetary architectures.

  18. Giant lobelias exemplify convergent evolution.

    Science.gov (United States)

    Givnish, Thomas J

    2010-01-14

    Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution.

  19. Giant lobelias exemplify convergent evolution

    Directory of Open Access Journals (Sweden)

    Givnish Thomas J

    2010-01-01

    Full Text Available Abstract Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution.

  20. Structure of giant muscle proteins

    Directory of Open Access Journals (Sweden)

    Nathan Thompson Wright

    2013-12-01

    Full Text Available Giant muscle proteins (e.g. titin, nebulin, and obscurin play a seminal role in muscle elasticity, stretch response, and sarcomeric organization. Each giant protein consists of multiple tandem structural domains, usually arranged in a modular fashion ranging from 500 kDa to 4 MDa. Although many of the domains are similar in structure, subtle differences create a unique function of each domain. Recent high and low resolution structural and dynamic studies now suggest more nuanced overall protein structures than previously realized. These findings show that atomic structure, interactions between tandem domains, and intrasarcomeric environment all influence the shape, motion, and therefore function of giant proteins. In this article we will review the current understanding of titin, obscurin, and nebulin structure, from the atomic level through the molecular level.

  1. Giant intravesical calculus during pregnancy.

    Science.gov (United States)

    Escobar-del Barco, Laura; Rodriguez-Colorado, Silvia; Dueñas-Garcia, Omar Felipe; Avilez-Cevasco, Juan Carlos

    2008-10-01

    Urolithiasis is commonly found during pregnancy; but the presence of a giant vesical calculus during pregnancy is a very rare entity, associated with several potential obstetric complications. A 25-year-old primigravida at 25 weeks of gestational age was referred to our tertiary care unit because she presented a giant hyperechoic intravesical mass and inability to pass urine with suprapubic pain since 2 days. An open cystolithotomy revealed a huge intravesical calculus. The patient continued with her pregnancy until full term without adverse perinatal outcomes.

  2. Giant planets: Clues on current and past organic chemistry in the outer solar system

    Science.gov (United States)

    Pollack, James B.; Atreya, Sushil K.

    1992-01-01

    The giant planets of the outer solar system - Jupiter, Saturn, Uranus, and Neptune - were formed in the same flattened disk of gas and dust, the solar nebula, as the terrestrial planets were. Yet, the giant planets differ in some very fundamental ways from the terrestrial planets. Despite enormous differences, the giant planets are relevant to exobiology in general and the origin of life on the Earth in particular. The giant planets are described as they are today. Their basic properties and the chemistry occurring in their atmospheres is discussed. Theories of their origin are explored and aspects of these theories that may have relevance to exobiology and the origin of life on Earth are stressed.

  3. Kepler-539: A young extrasolar system with two giant planets on wide orbits and in gravitational interaction

    Science.gov (United States)

    Mancini, L.; Lillo-Box, J.; Southworth, J.; Borsato, L.; Gandolfi, D.; Ciceri, S.; Barrado, D.; Brahm, R.; Henning, Th.

    2016-05-01

    We confirm the planetary nature of Kepler-539 b (aka Kepler object of interest K00372.01), a giant transiting exoplanet orbiting a solar-analogue G2 V star. The mass of Kepler-539 b was accurately derived thanks to a series of precise radial velocity measurements obtained with the CAFE spectrograph mounted on the CAHA 2.2-m telescope. A simultaneous fit of the radial-velocity data and Kepler photometry revealed that Kepler-539 b is a dense Jupiter-like planet with a mass of Mp = 0.97 ± 0.29 MJup and a radius of Rp = 0.747 ± 0.018 RJup, making a complete circular revolution around its parent star in 125.6 days. The semi-major axis of the orbit is roughly 0.5 au, implying that the planet is at ≈0.45 au from the habitable zone. By analysing the mid-transit times of the 12 transit events of Kepler-539 b recorded by the Kepler spacecraft, we found a clear modulated transit time variation (TTV), which is attributable to the presence of a planet c in a wider orbit. The few timings available do not allow us to precisely estimate the properties of Kepler-539 c and our analysis suggests that it has a mass between 1.2 and 3.6 MJup, revolving on a very eccentric orbit (0.4 CAFE spectra revealed a relatively high photospheric lithium content, A(Li) = 2.48 ± 0.12 dex, which, together with both a gyrochronological and isochronal analysis, suggests that the parent star is relatively young. RV/BVS measurements are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A112

  4. Giant lipomas of the hand

    Directory of Open Access Journals (Sweden)

    Gokce Yildiran

    2015-04-01

    Conclusion: Giant lipomas of the hand are very rare and may cause compressions and other complications. Thus, they require a careful preoperative evaluation in order to make a proper differential diagnosis. [Hand Microsurg 2015; 4(1.000: 8-11

  5. A Giant or a Dwarf?

    DEFF Research Database (Denmark)

    Schmid, Herman

    2005-01-01

    EU may appear to be a giant when it can act on behalf of a united Europe, but usually it is hampered by conflicting member state interests. The EU economic and administrative resources for foreign and trade policy are quite small (on level with one of its major member states) and the hopes in man...

  6. The giant panda gut microbiome.

    Science.gov (United States)

    Wei, Fuwen; Wang, Xiao; Wu, Qi

    2015-08-01

    Giant pandas (Ailuropoda melanoleuca) are bamboo specialists that evolved from carnivores. Their gut microbiota probably aids in the digestion of cellulose and this is considered an example of gut microbiota adaptation to a bamboo diet. However, this issue remains unresolved and further functional and compositional studies are needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Michigan has a sleeping giant

    CERN Multimedia

    Brock, Raymond; Nichols, Sue

    2007-01-01

    "That giant is 750 miles of fiber optic cable that lassoes its three biggest research universities and Van Andel Institute to the future. Its mission: to uncover the nature of the Big Bang by connecton U.S. physicists to their huge experiment ATLAS in Geneva.." (4 pages)

  8. Multiphonon giant resonances in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Mainz Univ. (Germany). Inst. fuer Kernchemie; Bortignon, P.F. [Milan Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Milan (Italy); Emling, H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    1998-07-01

    We review the present knowledge of multiphonon giant resonances in nuclei. Theoretical concepts approaching the intrinsic structure and excitation mechanisms of multi-phonon states are discussed. The available experimental results are summarized, including a brief description of applied techniques. This review emphasizes electromagnetic excitations of double dipole resonances. Open questions and possible routes toward a solution are addressed. (orig.)

  9. A Giant or a Dwarf?

    DEFF Research Database (Denmark)

    Schmid, Herman

    2005-01-01

    EU may appear to be a giant when it can act on behalf of a united Europe, but usually it is hampered by conflicting member state interests. The EU economic and administrative resources for foreign and trade policy are quite small (on level with one of its major member states) and the hopes in man...

  10. A Rare Case Presentation of a Perforated Giant Sigmoid Diverticulum

    Directory of Open Access Journals (Sweden)

    Jennifer C. Kam

    2013-01-01

    Full Text Available Giant sigmoid diverticulum (GSD is a rare complication of diverticulosis. These lesions arise from herniations of the mucosa through the muscle wall which progressively enlarge with colonic gas to become large air-filled cysts evident on plain X-ray and CT scans. We present a rare case of a 72-year-old female presenting with abdominal distention, abdominal tenderness, and fever who developed a type 1 giant sigmoid diverticulum (pseudodiverticulum that subsequently formed an intra-abdominal abscess and an accompanying type 2 diverticulum as well. The patient was treated with surgical resection of the diverticulum with a primary anastomosis and abscess drainage. The patient’s postoperative course was uneventful. This case helps to support the need for the consideration of GSD in patients aged 60 and older with a history of diverticulosis and presenting with abdominal discomfort and distension.

  11. Giant vesical diverticulum: A rare cause of defecation disturbance

    Institute of Scientific and Technical Information of China (English)

    Sami Akbulut; Bahri Cakabay; Arsenal Sezgin; Kenan Isen; Ayhan Senol

    2009-01-01

    Vesical diverticula frequently result from bladder outlet obstructions. However, giant vesical diverticula which cause acute abdomen or intestinal obstruction are very rare. Our review of the English medical literature found 3 cases of bladder diverticula which caused gastrointestinal symptoms. Here, we present a 57-yearold man with a giant diverticulum of the urinary bladder who complained of abdominal pain, nausea and vomiting,constipation, no passage of gas or feces, and abdominal distension for 3 d. A 20 cm × 15 cm diverticulum was observed upon laparotomy. The colonic obstruction was secondary to external compression of the rectum against the sacrum by a distended vesical diverticulum.We performed a diverticulectomy and primary closure.Twelve months postoperatively, the patient had no difficulty with voiding or defecation.

  12. On the structure of giant HII regions and HII galaxies

    CERN Document Server

    Tenorio-Tagle, G; Pérez, E; Silich, S; Telles, E

    2006-01-01

    We review the structural properties of giant extragalactic HII regions and HII galaxies based on two dimensional hydrodynamic calculations, and propose an evolutionary sequence that accounts for their observed detailed structure. The model assumes a massive and young stellar cluster surrounded by a large collection of clouds. These are thus exposed to the most important star-formation feedback mechanisms: photoionization and the cluster wind. The models show how the two feedback mechanisms compete with each other in the disruption of clouds and lead to two different hydrodynamic solutions: The storage of clouds into a long lasting ragged shell that inhibits the expansion of the thermalized wind, and the steady filtering of the shocked wind gas through channels carved within the cloud stratum that results into the creation of large-scale superbubbles. Both solutions are here claimed to be concurrently at work in giant HII regions and HII galaxies, causing their detailed inner structure. A full description of t...

  13. Efficiency of Planetesimal Ablation in Giant Planetary Envelopes

    CERN Document Server

    Pinhas, Arazi; Clarke, Cathie

    2016-01-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. I...

  14. Liquid Water Oceans in Ice Giants

    CERN Document Server

    Wiktorowicz, S J; Wiktorowicz, Sloane J.; Ingersoll, Andrew P.

    2006-01-01

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. We find that Neptune is both too warm (ph...

  15. Giants for cryogenics

    CERN Multimedia

    2009-01-01

    It takes 130 tonnes of liquid helium to cool down the LHC. In some situations—during a shutdown, for instance—this enormous volume of helium has to be removed from the machine and stored elsewhere. While this is a straightforward operation from the technical point of view, in logistical terms storing such a huge amount of the special element that is helium is far from trivial. Until recently, CERN had the capacity for storing up to 52 tonnes of helium in gas form, i.e. 40% of the total needed by the LHC, using the storage tanks that can be seen in the vicinity of some of the experiment sites. As of the middle of June, two new storage tanks, among the largest in the world, are now located at Point 18. Each holding up to 128 000 litres of liquid helium, for a total of 28 tonnes between the two of them, the new tanks have increased CERN’s helium storage capacity by 20%, to reach 60%. The goal is to have storage capacity at 100% by 2010, with the arrival of four mor...

  16. World-clas Petrochem Giants Locate China as Focus of Global Strategy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Three chemical giants in the world-BP, BASF and Bayer-have shifted their global business strategic emphasis to China at the same time. Shell and ExxonMobil have been involved in China's West-East gas transmission project. The Netherlands based DSM has become a cooperative partner of

  17. Thermodynamics of Giant Planet Formation: Shocking Hot Surfaces on Circumplanetary Disks

    CERN Document Server

    Szulágyi, J

    2016-01-01

    The luminosity of young giant planets can inform about their formation and accretion history. The directly imaged planets detected so far are consistent with the "hot-start" scenario of high entropy and luminosity. If nebular gas passes through a shock front before being accreted into a protoplanet, the entropy can be substantially altered. To investigate this, we present high resolution, 3D radiative hydrodynamic simulations of accreting giant planets. The accreted gas is found to fall with supersonic speed in the gap from the circumstellar disk's upper layers onto the surface of the circumplanetary disk and polar region of the protoplanet. There it shocks, creating an extended hot supercritical shock surface. This shock front is optically thick, therefore, it can conceal the planet's intrinsic luminosity beneath. The gas in the vertical influx has high entropy which when passing through the shock front decreases significantly while the gas becomes part of the disk and protoplanet. This shows that circumplan...

  18. Asteroseismology of Red Giant stars

    CERN Document Server

    Tarrant, N J; Elsworth, Y P; Spreckley, S A; Stevens, I R

    2008-01-01

    Sun-like oscillations, that is p-modes excited stochastically by convective noise, have now been observed in a number of Red Giant stars. Compared to those seen in the Sun, these modes are of large amplitude and long period, making the oscillations attractive prospects for observation. However, the low Q-factor of these modes, and issues relating to the rising background at low frequencies, present some interesting challenges for identifying modes and determining the related asteroseismic parameters. We report on the analysis procedure adopted for peak-bagging by our group at Birmingham, and the techniques used to robustly ensure these are not a product of noise. I also show results from a number of giants extracted from multi-year observations with the SMEI instrument.

  19. Giant condyloma acuminatum of vulva

    Directory of Open Access Journals (Sweden)

    S. M. Ramiz Ahmed

    2017-09-01

    Full Text Available In this paper, A 23 year old married woman who was diagnosed as a case of giant condyloma acuminatum of vulva measuring about 15 x 8 x 3 cm, irregular surface with multiple projections, oval in shape, firm to hard in consistency, mildly tender, exophytic, cauliflower like growth involving the whole vulva (lower part of mons pubis, labia, vestibule, clitoris, around vaginal opening. Another multiple small lesions were present at perineal region but there was no inguinal lymphadenopathy. She underwent a combined electro cauterization and cryotherapy for small to moderate size multiple primary and recurrent warty lesions and wide surgical excision with fasciocutaneous advancement flaps procedure for a giant lesions in the vulva. Excisional biopsies were performed to detect potential malignancy but malignancy was not found histologically. The patient was advised to first follow-up 1 month after operation when multiple small warty lesions were developed and treated and the subsequent follow-ups for 3 months.

  20. Giant Primeval Magnetic Dipoles

    Science.gov (United States)

    Thompson, Christopher

    2017-07-01

    Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.

  1. Idiopathic giant right atrial aneurysm

    Science.gov (United States)

    Uppu, Santosh C; Sachdeva, Ritu; Imamura, Michiaki

    2013-01-01

    A 2-year-old boy with an incidental finding of massive cardiomegaly on a chest X-ray was diagnosed with a giant right atrial aneurysm upon further investigation with echocardiography. The patient underwent successful surgical reduction of the right atrium and closure of the patent foramen ovale to prevent thromboembolic complications and to lower the risk of atrial arrhythmias. The resected atrium had paper-thin walls and pathological features of interstitial fibrosis with endocardial thickening. PMID:23626440

  2. Idiopathic giant right atrial aneurysm

    OpenAIRE

    Uppu, Santosh C; Ritu Sachdeva; Michiaki Imamura

    2013-01-01

    A 2-year-old boy with an incidental finding of massive cardiomegaly on a chest X-ray was diagnosed with a giant right atrial aneurysm upon further investigation with echocardiography. The patient underwent successful surgical reduction of the right atrium and closure of the patent foramen ovale to prevent thromboembolic complications and to lower the risk of atrial arrhythmias. The resected atrium had paper-thin walls and pathological features of interstitial fibrosis with endocardial thicken...

  3. Giant sialocele following facial trauma

    OpenAIRE

    Medeiros Júnior,Rui; Rocha Neto,Alípio Miguel da; Queiroz, Isaac Vieira; Cauby,Antônio de Figueiredo; Gueiros,Luiz Alcino Monteiro; Leão,Jair Carneiro

    2012-01-01

    Injuries in the parotid and masseter region can cause serious impairment secondary to damage of important anatomical structures. Sialocele is observed as facial swelling associated with parotid duct rupture due to trauma. The aim of this paper is to report a case of a giant traumatic sialocele in the parotid gland, secondary to a knife lesion in a 40-year-old woman. Conservative measures could not promote clinical resolution and a surgical intervention for the placement of a vacuum drain was ...

  4. Idiopathic giant right atrial aneurysm

    Directory of Open Access Journals (Sweden)

    Santosh C Uppu

    2013-01-01

    Full Text Available A 2-year-old boy with an incidental finding of massive cardiomegaly on a chest X-ray was diagnosed with a giant right atrial aneurysm upon further investigation with echocardiography. The patient underwent successful surgical reduction of the right atrium and closure of the patent foramen ovale to prevent thromboembolic complications and to lower the risk of atrial arrhythmias. The resected atrium had paper-thin walls and pathological features of interstitial fibrosis with endocardial thickening.

  5. Guiding the Giant

    Science.gov (United States)

    1998-08-01

    New ESO Survey Provides Targets for the VLT Giant astronomical telescopes like the ESO Very Large Telescope (VLT) must be used efficiently. Observing time is expensive and there are long waiting lines of excellent research programmes. Thus the work at the telescope must be very well prepared and optimized as much as possible - mistakes should be avoided and no time lost! Astronomers working with the new 8-m class optical/infrared telescopes must base their observations on detailed lists of suitable target objects if they want to perform cutting-edge science. This is particularly true for research programmes that depend on observations of large samples of comparatively rare, distant objects. This type of work requires that extensive catalogues of such objects must be prepared in advance. One such major catalogue - that will serve as a very useful basis for future VLT observations - has just become available from the new ESO Imaging Survey (EIS). The Need for Sky Surveys Astronomers have since long recognized the need to carry out preparatory observations with other telescopes in order to "guide" large telescopes. To this end, surveys of smaller or larger parts of the sky have been performed by wide-field telescopes, paving the way for subsequent work at the limits of the largest available ground-based telescopes. For instance, a complete photographic survey of the sourthern sky (declination deep imaging surveys have thus become an indispensable complement to the 8-m telescopes. The new generation of imaging surveys will, without doubt, be the backbone of future research and are likely to be as long-lived as their earlier counterparts, which have served the astronomical community so well over the past decades. The new surveys are now becoming possible, thanks to the new, extremely light-sensitive CCD-mosaics mounted on wide-field telescopes. The ESO Imaging Survey (EIS) A very successful, major step in this direction has recently been taken at ESO. It concerns an

  6. Electrodynamics in Giant Planet Atmospheres

    Science.gov (United States)

    Koskinen, T.; Yelle, R. V.; Lavvas, P.; Cho, J.

    2014-12-01

    The atmospheres of close-in extrasolar giant planets such as HD209458b are strongly ionized by the UV flux of their host stars. We show that photoionization on such planets creates a dayside ionosphere that extends from the thermosphere to the 100 mbar level. The resulting peak electron density near the 1 mbar level is higher than that encountered in any planetary ionosphere of the solar system, and the model conductivity is in fact comparable to the atmospheres of Sun-like stars. As a result, the momentum and energy balance in the upper atmosphere of HD209458b and similar planets can be strongly affected by ion drag and resistive heating arising from wind-driven electrodynamics. Despite much weaker ionization, electrodynamics is nevertheless also important on the giant planets of the solar system. We use a generic framework to constrain the conductivity regimes on close-in extrasolar planets, and compare the results with conductivites based on the same approach for Jupiter and Saturn. By using a generalized Ohm's law and assumed magnetic fields, we then demonstrate the basic effects of wind-driven ion drag in giant planet atmospheres. Our results show that ion drag is often significant in the upper atmosphere where it can also substantially alter the energy budget through resistive heating.

  7. Observed Properties of Giant Cells

    Science.gov (United States)

    Hathaway, David H.; Upton, Lisa; Colegrove, Owen

    2014-01-01

    The existence of Giant Cells has been suggested by both theory and observation for over 45 years. We have tracked the motions of supergranules in SDO/HMI Doppler velocity data and find larger (Giant Cell) flows that persist for months. The flows in these cells are clockwise around centers of divergence in the north and counter-clockwise in the south. Equatorward flows are correlated with prograde flows - giving the transport of angular momentum toward the equator that is needed to maintain the Sun's rapid equatorial rotation. The cells are most pronounced at mid- and high-latitudes where they exhibit the rotation rates representative of those latitudes. These are clearly large, long-lived, cellular features, with the dynamical characteristics expected from the effects of the Sun's rotation, but the shapes of the cells are not well represented in numerical models. While the Giant Cell flow velocities are small (<10 m/s), their long lifetimes should nonetheless substantially impact the transport of magnetic flux in the Sun's near surface layers.

  8. KEPLER RAPIDLY ROTATING GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R., E-mail: renan@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  9. Kepler rapidly rotating giant stars

    CERN Document Server

    Costa, A D; Bravo, J P; Paz-Chinchón, F; Chagas, M L das; Leão, I C; de Oliveira, G Pereira; da Silva, R Rodrigues; Roque, S; de Oliveira, L L A; da Silva, D Freire; De Medeiros, J R

    2015-01-01

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of sub-stellar companions by their hosting stars. In the present letter we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting very short rotation period with values ranging from 13 to 55 days. This finding points for remarkable surface rotation rates, up to 18 times the Sun rotation. These giants are combined with 6 other recently listed in the literature for mid-IR diagnostic based on WISE information, from which a trend for an infrared excess is revealed for at least a half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  10. Potentially Significant Source of Error in Magnetic Paleolatitude Determinations

    CERN Document Server

    Herndon, J Marvin

    2011-01-01

    The discovery of close-to-star gas-giant exo-planets lends support to the idea of Earth's origin as a Jupiter-like gas giant and to the consequences of its compression, including whole-Earth decompression dynamics that gives rise, without requiring mantle convection, to the myriad measurements and observations whose descriptions are attributed to plate tectonics. I show here that paleolatitude determinations, used extensively in Pangaea-like reconstructions and in paleoclimate considerations, may be subject to potentially significant errors if rock-magnetization was acquired at Earth-radii less than present.

  11. Multinational Oil Giants Expand Business Rapidly in China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ The multinational oil giants started to implement the globalization strategy on the basis of their advantages in resources, capital, technology and management from the middle of the 1990s after a large-scale structural adjustment. They have seen a rapid business development in China in the past decade and involved extensively in the country's oil and gas exploration and development,LPG and LNG business, pipeline, petrochemicals, oil refining, distribution of oil products, electric power and new energy, posing a severe challenge to the Chinese domestic enterprises.

  12. Miscibility calculations for water and hydrogen in giant planets

    CERN Document Server

    Soubiran, François

    2015-01-01

    We present results from ab initio simulations of liquid water-hydrogen mixtures in the range from 2 to 70 GPa and from 1000 to 6000 K, covering conditions in the interiors of ice giant planets and parts of the outer envelope of gas giant planets. In addition to computing the pressure and the internal energy, we derive the Gibbs free energy by performing a thermodynamic integration. For all conditions under consideration, our simulations predict hydrogen and water to mix in all proportions. The thermodynamic behavior of the mixture can be well described with an ideal mixing approximation. We suggest a substantial fraction of water and hydrogen in giant planets may occur in homogeneously mixed form rather than in separate layers. The extend of mixing depends on the planet's interior dynamics and its conditions of formation, in particular on how much hydrogen was present when icy planetesimals were delivered. Based on our results, we do not predict water-hydrogen mixtures to phase separate during any stage of th...

  13. The Interior Structure, Composition, and Evolution of Giant Planets

    CERN Document Server

    Fortney, Jonathan J

    2009-01-01

    We discuss our current understanding of the interior structure and thermal evolution of giant planets. This includes the gas giants, such as Jupiter and Saturn, that are primarily composed of hydrogen and helium, as well as the "ice giants," such as Uranus and Neptune, which are primarily composed of elements heavier than H/He. The effect of different hydrogen equations of state (including new first-principles computations) on Jupiter's core mass and heavy element distribution is detailed. This variety of the hydrogen equations of state translate into an uncertainty in Jupiter's core mass of 18 M_Earth. For Uranus and Neptune we find deep envelope metallicities up to 0.95, perhaps indicating the existence of an eroded core, as also supported by their low luminosity. We discuss the results of simple cooling models of our solar system's planets, and show that more complex thermal evolution models may be necessary to understand their cooling history. We review how measurements of the masses and radii of the ~50 ...

  14. Alexander's and Phoebe's stars: Two New Exotic Phoenix Giants

    Science.gov (United States)

    Melis, Carl; Zuckerman, B.; Song, I.; Rhee, J. H.; Bessell, M. S.; Murphy, S. J.

    2011-01-01

    Phoenix Giants are first-ascent giant stars orbited by substantial dusty and gaseous disks that are sometimes accreting onto the central star. We present the characterization of two dusty first-ascent giant stars identified through cross-correlating the Tycho-2 and IRAS catalogs. CD-30 11814 (hereafter Alexander's star) is a high-velocity Pop II star that exhibits rapid accretion and outflowing gas. Multiple epochs of spectroscopic observations show that the double-peaked Ca II infrared triplet emission from this source has variable morphology and strength. TYC 596 145 1 (hereafter Phoebe's star) is a lithium-rich K2.5 III star orbited by a substantial icy disk as indicated by water-ice features detected in Spitzer IRS and IRTF/SpeX infrared spectroscopy. Each source can yield interesting insights into binary star evolution and planetary systems. Funding for this research came from NASA grants and an LLNL-Minigrant to UCLA and from the Spitzer Visiting Graduate Student Program.

  15. Giant Planets in Reflected Light: What Science Can We Expect?

    Science.gov (United States)

    Marley, Mark

    2016-01-01

    Interpreting the reflection spectra of cool giant planets will be a challenge. Spectra of such worlds are expected to be primarily shaped by scattering from clouds and hazes and punctuated by absorption bands of methane, water, and ammonia. While the warmest giants may be cloudless, their atmospheres will almost certainly sport substantial photochemical hazes. Furthermore the masses of most direct imaging targets will be constrained by radial velocity observations, their radii, and thus atmospheric gravity, will be imperfectly known. The uncertainty in planet radius and gravity will compound with uncertain aerosol properties to make estimation of key absorber abundances difficult. To address such concerns our group is developing atmospheric retrieval tools to constrain quantities of interest, particular gas mixing ratios. We have applied our Markov Chain Monte Carlo methods to simulated data of the quality expected from the WFIRST CGI instrument and found that given sufficiently high SNR data we can confidentially identify and constrain the abundance of methane, cloud top pressures, gravity, and the star-planet-observer phase angle. In my presentation I will explain the expected characteristics of cool extrasolar giant planet reflection spectra, discuss these and other challenges in their interpretation, and summarize the science results we can expect from direct imaging observations.

  16. Solitary ulcerated congenital giant juvenile xanthogranuloma

    Directory of Open Access Journals (Sweden)

    Su Yuen Ng

    2015-01-01

    Full Text Available A 3-month-old female patient with a giant ulcerated nodule over the back since birth was diagnosed as congenital giant juvenile xanthogranuloma (JXG based on clinical and histopathological examination. Congenital giant JXG with ulceration at birth is a rare presentation of JXG and commonly misdiagnosed. This case emphasizes the importance of being aware of the myriad presentations of JXG in order to make a correct diagnosis and avoid unnecessary investigations or treatment.

  17. Giant magneto-resistance devices

    CERN Document Server

    Hirota, Eiichi; Inomata, Koichiro

    2002-01-01

    This book deals with the application of giant magneto-resistance (GMR) effects to electronic devices. It will appeal to engineers and graduate students in the fields of electronic devices and materials. The main subjects are magnetic sensors with high resolution and magnetic read heads with high sensitivity, required for hard-disk drives with recording densities of several gigabytes. Another important subject is novel magnetic random-access memories (MRAM) with non-volatile non-destructive and radiation-resistant characteristics. Other topics include future GMR devices based on bipolar spin transistors, spin field-effect transistors (FETs) and double-tunnel junctions.

  18. GIANT OILFIELD DISCOVERED IN BOHAI

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ PetroChina announced a discovery of a giant oilfield in the beginning of May, which has a reserve of one billion tons, or about 7.35 billion barrels, the largest discovery in China over four decades. Of the reserves, the basically proven oil in place is 405 million tons with the average thickness of oil formations ranging between 80 meters and 100 meters. The oilfield lies in the Nanpu block of PetroChina Jidong Oilfield Company in Caofeidian industrial zone, north China's Hebei province. The area is expected to enjoy a better chance of becoming a national oil strategic reserve base following the discovery of the Nanpu Oilfield.

  19. On the Shoulders of Giants...

    Science.gov (United States)

    2013-01-01

    On the shoulders of giantsI Basil A. Pruitt, Jr., MD and Todd E. Rasmussen, MD I n a letter dated February 5, 1676 (dated 1675 using the Julian...T.E.R.), Fort Sam Houston, San Antonio, TX. Address for reprints: Basil A. Pruitt, Jr, MD, Division of Trauma, Department of Surgery, The University...default.htm. 20. Moore FD. Edward Delos Churchill (1895Y1972). Ann Surg. 1973; 177:507Y508. 21. The Board for the Study of the Severely Wounded. The

  20. Internal rotation of red giants by asteroseismology

    CERN Document Server

    Di Mauro, M P; Ventura, R; Stello, D; Beck, P G; Davies, G; Elsworth, Y; Garcıa, R A; Hekker, S; Mosser, B; Christensen-Dalsgaard, J; Bloemen, S; Catanzaro, G; De Smedt, K; Tkachenko, A

    2012-01-01

    We present an asteroseismic approach to study the dynamics of the stellar interior in red-giant stars by asteroseismic inversion of the splittings induced by the stellar rotation on the oscillation frequencies. We show preliminary results obtained for the red giant KIC4448777 observed by the space mission Kepler.

  1. Giant Rings in the CMB Sky

    CERN Document Server

    Kovetz, Ely D; Itzhaki, Nissan

    2010-01-01

    We find a unique direction in the CMB sky around which giant rings have an anomalous mean temperature profile. This direction is in very close alignment with the afore measured anomalously large bulk flow direction. We argue that a cosmic defect seeded by a pre-inflationary particle could explain the giant rings, the large bulk flow and their alignment.

  2. Totally thrombosed giant anterior communicating artery aneurysm

    Directory of Open Access Journals (Sweden)

    V R Roopesh Kumar

    2015-01-01

    Full Text Available Giant anterior communicating artery aneurysmsarerare. Apatient presented with visual dysfunction, gait ataxia and urinary incontinence. MRI showed a giant suprasellar mass.At surgery, the lesion was identified as being an aneurysm arising from the anterior communicating artery.The difficulty in preoperative diagnosis and relevant literature are reviewed.

  3. Surgical treatment for giant incisional hernia

    DEFF Research Database (Denmark)

    Eriksson, A; Rosenberg, J; Bisgaard, T

    2014-01-01

    INTRODUCTION: Repair for giant incisional hernias is a challenge due to unacceptable high morbidity and recurrence rates. Several surgical techniques are available, but all are poorly documented. This systematic review was undertaken to evaluate the existing literature on repair for giant incisio...... procedure and severely lack evidence-based research from high-quality, large-scaled randomised studies....

  4. Thermodynamics of giant planet formation: shocking hot surfaces on circumplanetary discs

    Science.gov (United States)

    Szulágyi, J.; Mordasini, C.

    2017-02-01

    The luminosity of young giant planets can inform about their formation and accretion history. The directly imaged planets detected so far are consistent with the `hot-start' scenario of high entropy and luminosity. If nebular gas passes through a shock front before being accreted into a protoplanet, the entropy can be substantially altered. To investigate this, we present high-resolution, three-dimensional radiative hydrodynamic simulations of accreting giant planets. The accreted gas is found to fall with supersonic speed in the gap from the circumstellar disc's upper layers on to the surface of the circumplanetary disc and polar region of the protoplanet. There it shocks, creating an extended hot supercritical shock surface. This shock front is optically thick; therefore, it can conceal the planet's intrinsic luminosity beneath. The gas in the vertical influx has high entropy which when passing through the shock front decreases significantly while the gas becomes part of the disc and protoplanet. This shows that circumplanetary discs play a key role in regulating a planet's thermodynamic state. Our simulations furthermore indicate that around the shock surface extended regions of atomic - sometimes ionized - hydrogen develop. Therefore, circumplanetary disc shock surfaces could influence significantly the observational appearance of forming gas giants.

  5. Giant clumps in the FIRE simulations: a case study of a massive high-redshift galaxy

    Science.gov (United States)

    Oklopčić, Antonija; Hopkins, Philip F.; Feldmann, Robert; Kereš, Dušan; Faucher-Giguère, Claude-André; Murray, Norman

    2017-02-01

    The morphology of massive star-forming galaxies at high redshift is often dominated by giant clumps of mass ˜108-109 M⊙ and size ˜100-1000 pc. Previous studies have proposed that giant clumps might have an important role in the evolution of their host galaxy, particularly in building the central bulge. However, this depends on whether clumps live long enough to migrate from their original location in the disc or whether they get disrupted by their own stellar feedback before reaching the centre of the galaxy. We use cosmological hydrodynamical simulations from the FIRE (Feedback in Realistic Environments) project which implement explicit treatments of stellar feedback and interstellar medium physics to study the properties of these clumps. We follow the evolution of giant clumps in a massive (M* ˜ 1010.8 M⊙ at z = 1), discy, gas-rich galaxy from redshift z ≳ 2 to z = 1. Even though the clumpy phase of this galaxy lasts over a gigayear, individual gas clumps are short-lived, with mean lifetime of massive clumps of ˜20 Myr. During that time, they turn between 0.1 per cent and 20 per cent of their gas into stars before being disrupted, similar to local giant molecular clouds. Clumps with M ≳ 107 M⊙ account for ˜20 per cent of the total star formation in the galaxy during the clumpy phase, producing ˜1010 M⊙ of stars. We do not find evidence for net inward migration of clumps within the galaxy. The number of giant clumps and their mass decrease at lower redshifts, following the decrease in the overall gas fraction and star formation rate.

  6. Giant Black Hole Rips Apart Star

    Science.gov (United States)

    2004-02-01

    Thanks to two orbiting X-ray observatories, astronomers have the first strong evidence of a supermassive black hole ripping apart a star and consuming a portion of it. The event, captured by NASA's Chandra and ESA's XMM-Newton X-ray Observatories, had long been predicted by theory, but never confirmed. Astronomers believe a doomed star came too close to a giant black hole after being thrown off course by a close encounter with another star. As it neared the enormous gravity of the black hole, the star was stretched by tidal forces until it was torn apart. This discovery provides crucial information about how these black holes grow and affect surrounding stars and gas. "Stars can survive being stretched a small amount, as they are in binary star systems, but this star was stretched beyond its breaking point," said Stefanie Komossa of the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, leader of the international team of researchers. "This unlucky star just wandered into the wrong neighborhood." While other observations have hinted stars are destroyed by black holes (events known as "stellar tidal disruptions"), these new results are the first strong evidence. Evidence already exists for supermassive black holes in many galaxies, but looking for tidal disruptions represents a completely independent way to search for black holes. Observations like these are urgently needed to determine how quickly black holes can grow by swallowing neighboring stars. Animation of Star Ripped Apart by Giant Black Hole Star Ripped Apart by Giant Black Hole Observations with Chandra and XMM-Newton, combined with earlier images from the German Roentgen satellite, detected a powerful X-ray outburst from the center of the galaxy RX J1242-11. This outburst, one of the most extreme ever detected in a galaxy, was caused by gas from the destroyed star that was heated to millions of degrees Celsius before being swallowed by the black hole. The energy liberated in the process

  7. Hot-start Giant Planets Form with Radiative Interiors

    Science.gov (United States)

    Berardo, David; Cumming, Andrew

    2017-09-01

    In the hot-start core accretion formation model for gas giants, the interior of a planet is usually assumed to be fully convective. By calculating the detailed internal evolution of a planet assuming hot-start outer boundary conditions, we show that such a planet will in fact form with a radially increasing internal entropy profile, so that its interior will be radiative instead of convective. For a hot outer boundary, there is a minimum value for the entropy of the internal adiabat S min below which the accreting envelope does not match smoothly onto the interior, but instead deposits high entropy material onto the growing interior. One implication of this would be to at least temporarily halt the mixing of heavy elements within the planet, which are deposited by planetesimals accreted during formation. The compositional gradient this would impose could subsequently disrupt convection during post-accretion cooling, which would alter the observed cooling curve of the planet. However, even with a homogeneous composition, for which convection develops as the planet cools, the difference in cooling timescale will change the inferred mass of directly imaged gas giants.

  8. Giant Lyman-Alpha Nebulae in the Illustris Simulation

    CERN Document Server

    Gronke, Max

    2016-01-01

    Several `giant' Lyman-$\\alpha$ (Ly$\\alpha$) nebulae with extent $\\gtrsim 300\\,$kpc and observed Ly$\\alpha$ luminosity of $\\gtrsim 10^{44}\\,{\\rm erg}\\,{\\rm s}^{-1}\\,{\\rm cm}^{-2}\\,{\\rm arcsec}^{-2}$ have recently been detected, and it has been speculated that their presence hints at a substantial cold gas reservoir in small cool clumps not resolved in modern hydro-dynamical simulations. We use the Illustris simulation to predict the Ly$\\alpha$ emission emerging from large halos ($M > 10^{11.5}M_{\\odot}$) at $z\\sim 2$ and thus test this model. We consider both AGN and star driven ionization, and compared the simulated surface brightness maps, profiles and Ly$\\alpha$ spectra to a model where most gas is clumped below the simulation resolution scale. We find that while the cold clumps boost the Ly$\\alpha$ luminosity especially in the outer regions of the halo -- as expected by previous work -- with Illustris no additional clumping is necessary to explain the extents and luminosities of the `giant Ly$\\alpha$ nebul...

  9. Molecular Tracers of Turbulent Shocks in Giant Molecular Clouds

    CERN Document Server

    Pon, A; Kaufman, M J

    2012-01-01

    Giant molecular clouds contain supersonic turbulence and simulations of MHD turbulence show that these supersonic motions decay in roughly a crossing time, which is less than the estimated lifetimes of molecular clouds. Such a situation requires a significant release of energy. We run models of C-type shocks propagating into gas with densities around 10^3 cm^(-3) at velocities of a few km / s, appropriate for the ambient conditions inside of a molecular cloud, to determine which species and transitions dominate the cooling and radiative energy release associated with shock cooling of turbulent molecular clouds. We find that these shocks dissipate their energy primarily through CO rotational transitions and by compressing pre-existing magnetic fields. We present model spectra for these shocks and by combining these models with estimates for the rate of turbulent energy dissipation, we show that shock emission should dominate over emission from unshocked gas for mid to high rotational transitions (J >5) of CO. ...

  10. Geoperspective | Oil and Gas in the Netherlands – Is there a future?

    NARCIS (Netherlands)

    Herber, R.; Jager, J. de

    2010-01-01

    The impact of oil and, in particular, gas fields discovered in the Dutch subsurface has been very significant. However, 50 years after the discovery of the giant Groningen gas field the Netherlands has become very mature for exploration of oil and gas, and the gas volume left to be discovered in con

  11. A Cloud Microphysics Model for the Gas Giant Planets

    Science.gov (United States)

    Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler

    2016-10-01

    Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303–326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141–156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.

  12. THE TRANSIT TRANSMISSION SPECTRUM OF A COLD GAS GIANT PLANET

    Energy Technology Data Exchange (ETDEWEB)

    Dalba, Paul A.; Muirhead, Philip S.; Veyette, Mark J. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Hedman, Matthew M. [Department of Physics, University of Idaho, Moscow, ID 83843 (United States); Nicholson, Philip D., E-mail: pdalba@bu.edu [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)

    2015-12-01

    We use solar occultations observed by the Visual and Infrared Mapping Spectrometer on board the Cassini Spacecraft to extract the 1–5 μm transmission spectrum of Saturn, as if it were a transiting exoplanet. We detect absorption from methane, ethane, acetylene, aliphatic hydrocarbons, and possibly carbon monoxide, with peak-to-peak features of up to 90 parts-per-million despite the presence of ammonia clouds. We also find that atmospheric refraction, as opposed to clouds or haze, determines the minimum altitude that could be probed during mid-transit. Self-consistent exoplanet atmosphere models show good agreement with Saturn’s transmission spectrum but fail to reproduce a large absorption feature near 3.4 μm, likely caused by gaseous ethane and a C–H stretching mode of an unknown aliphatic hydrocarbon. This large feature is located in one of the Spitzer Space Telescope bandpasses and could alter interpretations of transmission spectra if not properly modeled. The large signal in Saturn’s transmission spectrum suggests that transmission spectroscopy of cold, long-period gaseous exoplanets should be possible with current and future observatories. Motivated by these results, we briefly consider the feasibility of  using a survey to search for and characterize cold exoplanets that are analogous to Jupiter and Saturn utilizing a target-of-opportunity approach.

  13. The Transit Transmission Spectrum of a Cold Gas Giant Planet

    CERN Document Server

    Dalba, Paul A; Fortney, Jonathan J; Hedman, Matthew M; Nicholson, Philip D; Veyette, Mark J

    2015-01-01

    We use solar occultations observed by the Visual and Infrared Mapping Spectrometer aboard the Cassini Spacecraft to extract the 1 to 5 micron transmission spectrum of Saturn, as if it were a transiting exoplanet. We detect absorption from methane, ethane, acetylene, aliphatic hydrocarbons, and possibly carbon monoxide with peak-to-peak features of up to 90 parts-per-million despite the presence of ammonia clouds. We also find that atmospheric refraction, as opposed to clouds or haze, determines the minimum altitude that could be probed during mid-transit. Self-consistent exoplanet atmosphere models show good agreement with Saturn's transmission spectrum but fail to reproduce a large absorption feature near 3.4 microns likely caused by gaseous ethane and a C-H stretching mode of an unknown aliphatic hydrocarbon. This large feature is located in one of the Spitzer Space Telescope bandpasses and could alter interpretations of transmission spectra if not properly modeled. The large signal in Saturn's transmission...

  14. Giant sialocele following facial trauma.

    Science.gov (United States)

    Medeiros Júnior, Rui; Rocha Neto, Alípio Miguel da; Queiroz, Isaac Vieira; Cauby, Antônio de Figueiredo; Gueiros, Luiz Alcino Monteiro; Leão, Jair Carneiro

    2012-01-01

    Injuries in the parotid and masseter region can cause serious impairment secondary to damage of important anatomical structures. Sialocele is observed as facial swelling associated with parotid duct rupture due to trauma. The aim of this paper is to report a case of a giant traumatic sialocele in the parotid gland, secondary to a knife lesion in a 40-year-old woman. Conservative measures could not promote clinical resolution and a surgical intervention for the placement of a vacuum drain was selected. Under local anesthesia, a small incision was performed adjacent to parotid duct papilla, followed by muscular divulsion and draining of significant amount of saliva. An active vacuum suction drain was placed for 15 days, aiming to form a new salivary duct. This technique was shown to be a safe, effective and low-cost option, leading to complete resolution and no recurrence after 28 months of follow up.

  15. Studies show giant panda could survive

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The giant panda (Ailuropoda melanoleuca) is not a relic species, and it can survive, according to scientists. Employing microsatellite and mitochondrial control region (CR) sequences as genetic markers, CAS researchers have obtained some key information about the giant panda and its recent evolution history. Their discovery that the lovely creature still possesses high genetic diversity and evolution potentials challenges the hypothesis suggesting the giant panda is facing an"evolutionary dead-end." The research was reported in a recent issue of Molecular Biology and Evolution by a team of scientists led by Prof.WEI Fuwen of the CAS Institute of Zoology and Prof. Michael W.Bruford of Cardiff University.

  16. SYNOVIAL GIANT CELL TUMOR OF THE KNEE.

    Science.gov (United States)

    Abdalla, Rene Jorge; Cohen, Moisés; Nóbrega, Jezimar; Forgas, Andrea

    2009-01-01

    Synovial giant cell tumor is a benign neoplasm, rarely reported in the form of malignant metastasis. Synovial giant cell tumor most frequently occurs on the hand, and, most uncommon, on the ankle and knee. In the present study, the authors describe a rare case of synovial giant cell tumor on the knee as well as the treatment approach. Arthroscopy has been shown, in this case, to be the optimal method for treating this kind of lesion, once it allowed a less aggressive approach, while providing good visualization of all compartments of knee joint and full tumor resection.

  17. Giant Cell Tumor: Role of Conservative Treatment

    Institute of Scientific and Technical Information of China (English)

    Anatolii Diedkov[1; Pavlo Kovalchuk[1; Marija Kukushkina[2; Sergey Bojchuk[1; Viktor Kostyuk[1

    2014-01-01

    Giant cell tumor is aggressive bone tumor. Surgical treatment is considered to be the only effective method of treatment ofthese tumors. The problem of inoperable patients with giant cell tumors is a challenge. A total of 8 patients had giant cell bone tumorsof pelvis and sacrum. 3 patients were treated by bisphosphonates, radiation therapy and embolization of tumor-nutrient arteries. 5patients received denosumab. The efficiency was assessed according to clinical data and CT scan control. Median follow up is 28months. All 8 patients had reduction of pain intensity. Treatment with denosumab demonstrated more than 30% tumor regression. Allof the patients are in remission.

  18. Giant choledochal calculosis: Surgical treatment

    Directory of Open Access Journals (Sweden)

    Hasan Bektas

    2014-01-01

    Full Text Available Context: Gallstone disease is one of the most common surgical pathologies. Choledocholithiasis may occur in some of these cases and require surgical intervention. Although there are relatively non-invasive procedures such as endoscopic retrograde cholangiopancreatography (ERCP, this technique is usually unsuccessful in patients with stones larger than 10 mm. In our case, we aimed to report a giant choledochal stone (15 cm × 4.5 cm, which is rare in surgical practice and our treatment with open surgery. Case Report: The patient was a 59-year-old woman. Magnetic resonance cholangiopancreatography (MRCP had showed a hydropic gallbladder with an excessively dilated CBD and a 110 mm × 41 mm stone. In the operation, an excessively dilated CBD was seen and after choledochotomy and a very large calculus that filled CBD completely. Choledochotomy incision was carried forward and a T-tube choledochostomy with choledochoduodenostomy (CD was performed. The patient was discharged without any complications on postoperative 8 th day. Conclusion: Benign gallstone disease is a multifactorial process, with risk factors such as obesity, hemolytic diseases, diabetes mellitus, and pregnancy. Risk factors for choledocholithiasis are similar to those for gallstone disease. MRCP is a non-invasive technique in detecting choledocholithiasis. The gold standard intervention for CBD stones is ERCP. Stones in CBD may reach very considerable dimensions without causing serious symptoms. The most common symptom is jaundice. During preoperative radiological examination, giant stones may be interfered with malignancies. Surgeons should obey conventional algorithms in diagnosis and open surgery must be kept in mind in earlier stages without being too insistent on endoscopic interventions.

  19. Natural gas; Gas Natural

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Carlos A.; Moraes, Claudia C.D. [Eletricidade de Sao Paulo S.A. (ELETROPAULO), Sao Paulo, SP (Brazil); Fonseca, Carlos H.F. [Centrais Eletricas de Santa Catarina S.A., Florianopolis, SC (Brazil); Silva, Clecio Fabricio da; Alves, Ricardo P. [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil); Sposito, Edivaldo Soares; Hulle, Lutero [Espirito Santo Centrais Eletricas S.A. (ESCELSA), Vitoria, ES (Brazil); S. Martins, Icaro da [Centrais Eletricas do Norte do Brasil S.A. (ELETRONORTE), Belem, PA (Brazil); Vilhena, Joao Luiz S. de [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil); Fagundes, Zaluar Aquino [Companhia Estadual de Energia Eletrica do Estado do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    1996-12-31

    An increase in the consumption of natural gas in Brazil is an expected fact in what concerns energetic planning. This work presents the existing situation in what concerns natural gas utilization in the main world economies, as well as an analysis of the participation of this fuel among the energy final consumption per sources. The Brazilian consumption of natural gas is also analysed as well as the international agreement between Brazil and Bolivia for natural gas commercialization. Some legal, institutional and political aspects related to natural gas commercialization are also discussed. Finally, several benefits to be brought by the utilization of natural gas are presented 10 refs., 3 tabs.

  20. STUDIES ON THE INGESTION CHARACTERISTICS OF GIANT FRESHWATER PRAWN, CHINESE PRAWN AND GIANT TIGER PRAWN

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The ingestion of giant freshwater prawn, Chinese prawn and giant tiger prawn had continuity and the ingestion high peak occurred at night. Light and temperature had significant effects on the daily ingestion rate (DIR) of giant freshwater prawn Macrobrachium rosenbergii. Red light and blue light favorably induced favorable ingestion. In the adaptive range of temperature, the DIR increased with rising temperature and feeding frequency, but decreased with rising body weight.

  1. VLA Discovers Giant Rings Around Galaxy Cluster

    Science.gov (United States)

    2006-11-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered giant, ring-like structures around a cluster of galaxies. The discovery provides tantalizing new information about how such galaxy clusters are assembled, about magnetic fields in the vast spaces between galaxy clusters, and possibly about the origin of cosmic rays. Radio-Optical Image of Cluster Galaxy Cluster Abell 3376 (Radio/Optical) CREDIT: Joydeep Bagchi, IUCAA, NRAO/AUI/NSF Above, a combined radio/optical image shows the galaxy cluster Abell 3376 in visible light (blue) and radio (red) images. The giant radio arcs surrounding the cluster were discovered using the Very Large Array. The visible-light image is from the Digitized Sky survey. Below, an X-ray image of Abell 3376 made using the European Space Agency's XMM-Newton telescope shows a spectacular, bullet-shaped region of X-rays coming from gas heated to 60 million degrees Kelvin. The bullet shape results from the supersonic collision of a smaller smaller galaxy subcluster with the main body of the larger cluster. Click on images for larger version. X-Ray Image of Cluster Galaxy Cluster Abell 3376 (X-Ray) CREDIT: Joydeep Bagchi, IUCAA, ESA "These giant, radio-emitting rings probably are the result of shock waves caused by violent collisions of smaller groups of galaxies within the cluster," said Joydeep Bagchi, of the Inter-University Centre for Astronomy and Astrophysics in Pune, India, who led an international research team. The scientists reported their findings in the November 3 edition of the journal Science. The newly-discovered ring segments, some 6 million light-years across, surround a galaxy cluster called Abell 3376, more than 600 million light-years from Earth. They were revealed because fast-moving electrons emitted radio waves as they spiraled around magnetic field lines in intergalactic space. "Even from this large distance, the feeble radio waves were easily picked up by the VLA

  2. AFSC/ABL: Female Giant Grenadier maturity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Giant grenadiers Albatrossia pectoralis are caught as bycatch in deep-sea commercial fisheries in relatively large numbers. The population appears to be stable,...

  3. growing African giant rats Cricetomys gambianus

    African Journals Online (AJOL)

    bolism, conductance and evaporative water loss changes in relation to physical and behavioural development in growing giant rat pups ... evaporation) into dry air was collected in a pre-weighed column of silica ..... Principles and adaptation.

  4. Giant prostatic fossa with misleading radiographic features.

    Science.gov (United States)

    Stenzl, A; Fuchs, G J

    1989-01-01

    The long-term complication of a perforation of the prostatic capsule during transurethral resection of the prostate is described. Calcifications in a giant prostatic fossa led to initially misleading radiologic findings.

  5. Giant planet and brown dwarf formation

    CERN Document Server

    Chabrier, G; Janson, M; Rafikov, R

    2014-01-01

    Understanding the dominant brown dwarf and giant planet formation processes, and finding out whether these processes rely on completely different mechanisms or share common channels represents one of the major challenges of astronomy and remains the subject of heated debates. It is the aim of this review to summarize the latest developments in this field and to address the issue of origin by confronting different brown dwarf and giant planet formation scenarios to presently available observational constraints. As examined in the review, if objects are classified as "Brown Dwarfs" or "Giant Planets" on the basis of their formation mechanism, it has now become clear that their mass domains overlap and that there is no mass limit between these two distinct populations. Furthermore, while there is increasing observational evidence for the existence of non-deuterium burning brown dwarfs, some giant planets, characterized by a significantly metal enriched composition, might be massive enough to ignite deuterium bur...

  6. A giant protogalactic disk linked to the cosmic web.

    Science.gov (United States)

    Martin, D Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D; Moore, Anna; Cantalupo, Sebastiano; Prochaska, J Xavier; Chang, Daphne

    2015-08-13

    The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that 'cold accretion flows'--relatively cool (temperatures of the order of 10(4) kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 10(13) solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.

  7. Deformation effects in Giant Monopole Resonance

    CERN Document Server

    Kvasil, J; Repko, A; Bozik, D; Kleinig, W; Reinhard, P -G

    2014-01-01

    The isoscalar giant monopole resonance (GMR) in Samarium isotopes (from spherical $^{144}$Sm to deformed $^{148-154}$Sm) is investigated within the Skyrme random-phase-approximation (RPA) for a variety of Skyrme forces. The exact RPA and its separable version (SRPA) are used for spherical and deformed nuclei, respectively. The quadrupole deformation is shown to yield two effects: the GMR broadens and attains a two-peak structure due to the coupling with the quadrupole giant resonance.

  8. Giant rhinophyma: Excision with coblation assisted surgery

    Directory of Open Access Journals (Sweden)

    Caner Sahin

    2014-01-01

    Full Text Available An 83-year-old man presented with an unusually severe case of rhinophyma. Giant rhinopyhma is very rare in literature. The giant lesion was widely excised using sharp surgical incision and coblation assisted surgery. Using direct coblation to the nasal dorsum may cause edema in the surrounding tissue. There was minimal edema in surrounding tissue using this technique. A full thickness-skin graft was applied after excision. Cosmetic and functional postoperative results were satisfactory.

  9. Giant rhinophyma: Excision with coblation assisted surgery.

    Science.gov (United States)

    Sahin, Caner; Turker, Mesut; Celasun, Bulent

    2014-01-01

    An 83-year-old man presented with an unusually severe case of rhinophyma. Giant rhinopyhma is very rare in literature. The giant lesion was widely excised using sharp surgical incision and coblation assisted surgery. Using direct coblation to the nasal dorsum may cause edema in the surrounding tissue. There was minimal edema in surrounding tissue using this technique. A full thickness-skin graft was applied after excision. Cosmetic and functional postoperative results were satisfactory.

  10. Taxonomy of Indonesian giant clams (Cardiidae, Tridacninae)

    OpenAIRE

    UDHI EKO HERNAWAN

    2012-01-01

    Hernawan E. 2012. Taxonomy of Indonesian giant clams (Cardiidae, Tridacninae). Biodiversitas 13: 118-123. A taxonomic study was conducted on the giant clam’s specimens deposited in Museum Zoologicum Bogoriense (MZB), Cibinong Indonesia. Taxonomic overviews of the examined specimens are given with diagnostic characters, remarks, habitat and distribution. Discussion is focused on specific characters distinguishing each species. From seven species known to distribute in Indonesian waters, there ...

  11. Perianal Giant Condyloma Acuminatum: A Case Report

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Rare giant condyloma acuminatum (CA) reported by this paper is an interesting unusual case in China. Giant CA is a tumor that primarily affects the genital and perianal areas. Its feature is the high rate of local recurrence and transformation into squamous cell carcinoma. Making choice of wide surgical excision and using interferon as antiviral and immunoenhancement for CA after operation, we obtain satisfactory functional and cosmetic results.

  12. Testing planet formation theories with Giant stars

    CERN Document Server

    Pasquini, Luca; Hatzes, A; Setiawan, J; Girardi, L; da Silva, L; De Medeiros, J R

    2008-01-01

    Planet searches around evolved giant stars are bringing new insights to planet formation theories by virtue of the broader stellar mass range of the host stars compared to the solar-type stars that have been the subject of most current planet searches programs. These searches among giant stars are producing extremely interesting results. Contrary to main sequence stars planet-hosting giants do not show a tendency of being more metal rich. Even if limited, the statistics also suggest a higher frequency of giant planets (at least 10 %) that are more massive compared to solar-type main sequence stars. The interpretation of these results is not straightforward. We propose that the lack of a metallicity-planet connection among giant stars is due to pollution of the star while on the main sequence, followed by dilution during the giant phase. We also suggest that the higher mass and frequency of the planets are due to the higher stellar mass. Even if these results do not favor a specific formation scenario, they su...

  13. Bayesian Inference of Giant Exoplanet Physics

    Science.gov (United States)

    Thorngren, Daniel; Fortney, Jonathan J.

    2017-01-01

    The physical processes within a giant planet directly set its observed radius for a given mass, age, and insolation. The important aspects are the planet’s bulk composition and its interior thermal evolution. By studying many giant planets as an ensemble, we can gain insight into this physics. We demonstrate two novel examples here. We examine 50 cooler transiting giant planets, whose insolation is sufficiently low (T_eff < 1000 K) that they are not affected by the hot Jupiter radius inflation effect. For these planets, the thermal evolution is relatively well understood, and we show that the bulk planet metallicity increases with the total planet mass, which directly impacts plans for future atmospheric studies. We also examine the relation with stellar metallicity and discuss how these relations place new constraints on the core accretion model of planet formation. Our newest work seeks to quantify the flow of energy into hot Jupiters needed to explain their enlarged radii, in addition to their bulk composition. Because the former is related to stellar insolation and the latter is related to mass, we are able to create a hierarchical Bayesian model to disentangle the two effects in our sample of ~300 transiting giant planets. Our results show conclusively that the inflation power is not a simple fraction of stellar insolation: instead, the power increases with incident flux at a much higher rate. We use these results to test published models of giant planet inflation and to provide accurate empirical mass-radius relations for giant planets.

  14. Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.

    Science.gov (United States)

    Morbidelli, Alessandro

    2014-04-28

    In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.

  15. Living among giants exploring and settling the outer solar system

    CERN Document Server

    Carroll, Michael

    2015-01-01

    The outer Solar System is rich in resources and may be the best region in which to search for life beyond Earth. In fact, it may ultimately be the best place for Earthlings to set up permanent abodes. This book surveys the feasibility of that prospect, covering the fascinating history of exploration that kicks off our adventure into the outer Solar System.   Although other books provide surveys of the outer planets, Carroll approaches it from the perspective of potential future human exploration, exploitation and settlement, using insights from today’s leading scientists in the field. These experts take us to targets such as the moons Titan, Triton, Enceladus, Iapetus and Europa, and within the atmospheres of the gas and ice giants. In these pages you will experience the thrill of discovery awaiting those who journey through the giant worlds and their moons.   All the latest research is included, as are numerous illustrations, among them original paintings by the author, a renowned prize-winning space art...

  16. Giant hepatocellular adenoma; case report

    Energy Technology Data Exchange (ETDEWEB)

    Pitella, F.A.; Coutinho, A.M.N.; Coura Filho, G.B.; Costa, P.L.A.; Ono, C.R.; Watanabe, T.; Sapienza, M.T.; Hironaka, F.; Cerri, G.G.; Buchpiguel, C.A. [Universidade de Sao Paulo (FM/USP), SP (Brazil). Inst. de Radiologia. Servico de Medicina Nuclear

    2008-07-01

    Full text: Introduction: Hepatocellular adenoma is a benign hepatic tumor identified mainly in women during fertility age, with estimated incidence of 4/1000 inhabitants. It is usually unique, well circumscribed, with or without a capsule, size varying from 1 to 30 cm, with possible central areas of necrosis and hemorrhage. Case Report: A 37-year-old female patient presenting with no comorbities, use of hormonal birth control pills for 18 years, a condition of reduction in the consistency of feces, increase in number of daily defecations, abdominal cramps, and a stuffed sensation after meals for two years. A palpable abdominal mass extending from the right hypochondriac to the right iliac fossa was noticed four months ago. A computerized tomography (CT) showed an extensive hepatic mass on the right which was considered, within the diagnostic hypotheses, hepatic adenomatosis, without ruling out secondary lesions. A hepatic scintillography with {sup 99m}Tc-DISIDA showed an extensive exophytic area from segment V to the right iliac fossa with arterialized blood flow and hepatocytic activity, as well as a hepatic nodule in segment VII with hepatocytic activity consistent with the hepatic adenomas hypothesis. The biopsy confirmed the hepatic adenoma diagnosis and the patient was submitted to a partial hepatectomy and cholecystectomy with good clinical evolution. Conclusion: Nuclear Medicine may supplement the assessment of hepatic nodules, including giant masses, thus suggesting new hypotheses and direction to therapeutic conduct. (author)

  17. Endoscopically removed giant submucosal lipoma

    Directory of Open Access Journals (Sweden)

    Jovanović Ivan

    2007-01-01

    Full Text Available Background. Although uncommon, giant submucosal colon lipomas merit attention as they are often presented with dramatic clinical features such as bleeding, acute bowel obstruction, perforation and sometimes may be mistaken for malignancy. There is a great debate in the literature as to how to treat them. Case report. A patient, 67-year old, was admitted to the Clinic due to a constipation over the last several months, increasing abdominal pain mainly localized in the left lower quadrant accompanied by nausea, vomiting and abdominal distension. Physical examination was unremarkable and the results of the detailed laboratory tests and carcinoembryonic antigen remained within normal limits. Colonoscopy revealed a large 10 cm long, and 4 to 5 cm in diameter, mobile lesion in his sigmoid colon. Conventional endoscopic ultrasound revealed 5 cm hyperechoic lesion of the colonic wall. Twenty MHz mini-probe examination showed that lesion was limited to the submucosa. Since polyp appeared too large for a single transaction, it was removed piecemeal. Once the largest portion of the polyp has been resected, it was relatively easy to place the opened snare loop around portions of the residual polyp. Endoscopic resection was carried out safely without complications. Histological examination revealed the common typical histological features of lipoma elsewhere. The patient remained stable and eventually discharged home. Four weeks later he suffered no recurrent symptoms. Conclusion. Colonic lipomas can be endoscopically removed safely eliminating unnecessary surgery.

  18. Episodic model for star formation history and chemical abundances in giant and dwarf galaxies

    Science.gov (United States)

    Debsarma, Suma; Chattopadhyay, Tanuka; Das, Sukanta; Pfenniger, Daniel

    2016-11-01

    In search for a synthetic understanding, a scenario for the evolution of the star formation rate and the chemical abundances in galaxies is proposed, combining gas infall from galactic haloes, outflow of gas by supernova explosions, and an oscillatory star formation process. The oscillatory star formation model is a consequence of the modelling of the fractional masses changes of the hot, warm and cold components of the interstellar medium. The derived periods of oscillation vary in the range (0.1-3.0) × 107 yr depending on various parameters existing from giant to dwarf galaxies. The evolution of metallicity varies in giant and dwarf galaxies and depends on the outflow process. Observed abundances in dwarf galaxies can be reproduced under fast outflow together with slow evaporation of cold gases into hot gas whereas slow outflow and fast evaporation is preferred for giant galaxies. The variation of metallicities in dwarf galaxies supports the fact that low rate of SNII production in dwarf galaxies is responsible for variation in metallicity in dwarf galaxies of similar masses as suggested by various authors.

  19. Revising the Transit Depth-Metallicity Correlation of Kepler's Giant Candidates

    Science.gov (United States)

    Sarkis, Paula; Nehmé, Cyrine

    2015-08-01

    The two favored mechanisms suggested for forming gas giants are disk instability and core accretion. The latter is the generally accepted mechanism on short orbits. According to this model, one would expect to observe a positive correlation between the transit depth of gas giants and the metallicity of the host star. However, a negative correlation was reported between Kepler’s Q1-Q12 gas giant candidates and the stellar metallicity. Even though this correlation is extremely weak, at the -1.17 sigma, it challenges the theory of planet formation. My work involves revising this correlation now that the number of Kepler's candidates/confirmed has increased. But large-scale surveys, such as Kepler, are subject to selection effects and biases. These biases should be quantified and accounted for in the statistical analysis in order to best understand the correlation. This work reflects the importance of statistical analysis in detecting and characterizing exoplanets, especially in the era of large-scale surveys. Such analysis will lead to a greater understanding of planet formation.

  20. An extrasolar giant planet in a close triple-star system.

    Science.gov (United States)

    Konacki, Maciej

    2005-07-14

    Hot Jupiters are gas-giant planets orbiting with periods of 3-9 days around Sun-like stars. They are believed to form in a disk of gas and condensed matter at or beyond approximately 2.7 astronomical units (au-the Sun-Earth distance) from their parent star. At such distances, there exists a sufficient amount of solid material to produce a core capable of capturing enough gas to form a giant planet. Subsequently, they migrate inward to their present close orbits. Here I report the detection of an unusual hot Jupiter orbiting the primary star of a triple stellar system, HD 188753. The planet has an orbital period of 3.35 days and a minimum mass of 1.14 times that of Jupiter. The primary star's mass is 1.06 times that of the Sun, 1.06 M(\\circ). The secondary star, itself a binary stellar system, orbits the primary at an average distance of 12.3 au with an eccentricity of 0.50. The mass of the secondary pair is 1.63 M(\\circ). Such a close and massive secondary would have truncated a disk around the primary to a radius of only approximately 1.3 AU (ref. 4) and might have heated it up to temperatures high enough to prohibit giant-planet formation, leaving the origin of this planet unclear.

  1. Episodic Model For Star Formation History and Chemical Abundances in Giant and Dwarf Galaxies

    CERN Document Server

    Debsarma, Suma; Das, Sukanta; Pfenniger, Daniel

    2016-01-01

    In search for a synthetic understanding, a scenario for the evolution of the star formation rate and the chemical abundances in galaxies is proposed, combining gas infall from galactic halos, outflow of gas by supernova explosions, and an oscillatory star formation process. The oscillatory star formation model is a consequence of the modelling of the fractional masses changes of the hot, warm and cold components of the interstellar medium. The observed periods of oscillation vary in the range $(0.1-3.0)\\times10^{7}$\\,yr depending on various parameters existing from giant to dwarf galaxies. The evolution of metallicity varies in giant and dwarf galaxies and depends on the outflow process. Observed abundances in dwarf galaxies can be reproduced under fast outflow together with slow evaporation of cold gases into hot gas whereas slow outflow and fast evaporation is preferred for giant galaxies. The variation of metallicities in dwarf galaxies supports the fact that low rate of SNII production in dwarf galaxies i...

  2. Sprite discharges on Venus and Jupiter-like planets: a laboratory investigation.

    NARCIS (Netherlands)

    Dubrovin, S.; Nijdam, S.; Veldhuizen, E.M. van; Ebert, U.; Yair, Y.; Price, C.

    2010-01-01

    Large sprite discharges at high atmospheric altitudes have been found to be physically similar to small streamer discharges in air at sea level density. Based on this understanding, we investigate possible sprite discharges on Venus or Jupiter‐like planets through laboratory experiments on streamers

  3. Parasitic Interference in Long Baseline Optical Interferometry: Requirements for Hot Jupiter-like Planet Detection

    CERN Document Server

    Matter, Alexis; Lagarde, Stéphane; Danchi, William C; Robbe-Dubois, Sylvie; Petrov, Romain G; Navarro, Ramon; 10.1088/0004-637X/706/2/1299

    2010-01-01

    The observable quantities in optical interferometry, which are the modulus and the phase of the complex visibility, may be corrupted by parasitic fringes superimposed on the genuine fringe pattern. These fringes are due to an interference phenomenon occurring from straylight effects inside an interferometric instrument. We developed an analytical approach to better understand this phenomenon when straylight causes crosstalk between beams. We deduced that the parasitic interference significantly affects the interferometric phase and thus the associated observables including the differential phase and the closure phase. The amount of parasitic flux coupled to the piston between beams appears to be very influential in this degradation. For instance, considering a point-like source and a piston ranging from $\\lambda/500$ to $\\lambda/5$ in L band ($\\lambda=3.5\\:\\mu$m), a parasitic flux of about 1\\% of the total flux produces a parasitic phase reaching at most one third of the intrinsic phase. The piston, which can...

  4. Giant elves: Lightning-generated electromagnetic pulses in giant planets.

    Science.gov (United States)

    Luque Estepa, Alejandro; Dubrovin, Daria; José Gordillo-Vázquez, Francisco; Ebert, Ute; Parra-Rojas, Francisco Carlos; Yair, Yoav; Price, Colin

    2015-04-01

    We currently have direct optical observations of atmospheric electricity in the two giant gaseous planets of our Solar System [1-5] as well as radio signatures that are possibly generated by lightning from the two icy planets Uranus and Neptune [6,7]. On Earth, the electrical activity of the troposphere is associated with secondary electrical phenomena called Transient Luminous Events (TLEs) that occur in the mesosphere and lower ionosphere. This led some researchers to ask if similar processes may also exist in other planets, focusing first on the quasi-static coupling mechanism [8], which on Earth is responsible for halos and sprites and then including also the induction field, which is negligible in our planet but dominant in Saturn [9]. However, one can show that, according to the best available estimation for lightning parameters, in giant planets such as Saturn and Jupiter the effect of the electromagnetic pulse (EMP) dominates the effect that a lightning discharge has on the lower ionosphere above it. Using a Finite-Differences, Time-Domain (FDTD) solver for the EMP we found [10] that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial elve. Although these emissions are about 10 times fainter than the emissions coming from the lightning itself, it may be possible to target them for detection by filtering the appropiate wavelengths. [1] Cook, A. F., II, T. C. Duxbury, and G. E. Hunt (1979), First results on Jovian lightning, Nature, 280, 794, doi:10.1038/280794a0. [2] Little, B., C. D. Anger, A. P. Ingersoll, A. R. Vasavada, D. A. Senske, H. H. Breneman, W. J. Borucki, and The Galileo SSI Team (1999), Galileo images of

  5. Detecting Exomoons Around Self-luminous Giant Exoplanets Through Polarization

    CERN Document Server

    Sengupta, Sujan

    2016-01-01

    Many of the directly imaged self-luminous gas giant exoplanets have been found to have cloudy atmospheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time resolved linear polarization signal. The peak amplitude of such time dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time re...

  6. Is mass loss from red giant stars dust driven?

    Science.gov (United States)

    Yates, J. A.

    1992-12-01

    Long period variable stars on the Asymptotic Giant Branch are observed to be losing mass in the form of cool dusty molecular stellar winds at rates from 10-7 to 10-4 Msunyr-1. The driving force for this mass loss is thought to be radiation pressure on dust particles. The dust transfers its momentum to gas molecules via collisions. This paper discusses the existing evidence for this scenario. New results, from analysis of 22 GHz H2O maser observations made by Merlin, show that the cruical acceleration past the stellar escape velocity of the central star takes place in the inner circumstellar envelope around the central star. The analysis of the velocity fields of the circumstellar envelopes of VX Sgr and VY CMa using the model described by Chapman and Cohen (1986) are discussed.

  7. Lithium-Rich Giants in Globular Clusters

    CERN Document Server

    Kirby, Evan N; Zhang, Andrew J; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G; Cunha, Katia

    2016-01-01

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 +/- 0.1)% for the RGB, (1.6 +/- 1.1)% for the AGB, and (0.3 +/- 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propo...

  8. Giant cell tumor in adipose package Hoffa

    Science.gov (United States)

    Etcheto, H. Rivarola; Escobar, G.; Blanchod, C. Collazo; Palanconi, M.; Zordan, J.; Salinas, E. Alvarez; Autorino₁, Carlos

    2017-01-01

    Tumors of adipose Hoffa package are very uncommon, with isolated cases reported in the literature. His presentation in pediatric patients knee is exceptional. The most frequently described tumors are benign including vellonodular synovitis. The extra-articular localized variant there of is known as giant cell tumor of the tendon sheath. It is characterized by locally aggressive nature, and has been described in reports of isolated cases. Objective: A case of giant cell tumor of the tendon sheath in adipose presentation package Hoffa in pediatric patients is presented in this paper. Methods: male patient eleven years with right knee pain after sports practice was evaluated. Physical examination, showed limited extension -30º, joint effusion, stable negative Lachman maneuver without peripheral knee laxity. MRI hyperintense on tumor is observed in T2 and hypointense on T1 homogeneous and defined edges content displayed prior to LCA related to adipose Hoffa package. Results: The tumor specimen was obtained and histopathology is defined as densely cellular tissue accumulation of xantomisados fibrocollagenous with histiocytes and multinucleated giant cells, compatible with giant cell tumor of tendon sheath. Conclusion: The presentation of giant cell tumors of the tendon sheath in Hoffa fat pad is exceptional. However, his suspicion allows adequate preoperative surgical planning, as a whole resection is the only procedure that has been shown to decrease the rate of recurrence of this disease.

  9. Infrared spectral properties of M giants

    CERN Document Server

    Sloan, G C; Ramirez, R M; Kraemer, K E; Engelke, C W

    2015-01-01

    We observed a sample of 20 M giants with the Infrared Spectrograph on the Spitzer Space Telescope. Most show absorption structure at 6.6-6.8 um which we identify as water vapor, and in some cases, the absorption extends from 6.4 um into the SiO band at 7.5 um. Variable stars show stronger H2O absorption. While the strength of the SiO fundamental at 8 um increases monotonically from spectral class K0 to K5, the dependence on spectral class weakens in the M giants. As with previously studied samples, the M giants show considerable scatter in SiO band strength within a given spectral class. All of the stars in our sample also show OH band absorption, most noticeably in the 14-17 um region. The OH bands behave much like the SiO bands, increasing in strength in the K giants but showing weaker dependence on spectral class in the M giants, and with considerable scatter. An examination of the photometric properties reveals that the V-K color may be a better indicator of molecular band strength than the spectral class...

  10. An MHD model for magnetar giant flares

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Y.; Lin, J.; Zhang, Q. S. [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming, Yunnan 650011 (China); Zhang, L. [Department of Physics, Yunnan University, Kunming, Yunnan 650091 (China); Reeves, K. K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yuan, F., E-mail: mengy@ynao.ac.cn, E-mail: jlin@ynao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2014-04-10

    Giant flares on soft gamma-ray repeaters that are thought to take place on magnetars release enormous energy in a short time interval. Their power can be explained by catastrophic instabilities occurring in the magnetic field configuration and the subsequent magnetic reconnection. By analogy with the coronal mass ejection events on the Sun, we develop a theoretical model via an analytic approach for magnetar giant flares. In this model, the rotation and/or displacement of the crust causes the field to twist and deform, leading to flux rope formation in the magnetosphere and energy accumulation in the related configuration. When the energy and helicity stored in the configuration reach a threshold, the system loses its equilibrium, the flux rope is ejected outward in a catastrophic way, and magnetic reconnection helps the catastrophe develop to a plausible eruption. By taking SGR 1806–20 as an example, we calculate the free magnetic energy released in such an eruptive process and find that it is more than 10{sup 47} erg, which is enough to power a giant flare. The released free magnetic energy is converted into radiative energy, kinetic energy, and gravitational energy of the flux rope. We calculated the light curves of the eruptive processes for the giant flares of SGR 1806–20, SGR 0526–66, and SGR 1900+14, and compared them with the observational data. The calculated light curves are in good agreement with the observed light curves of giant flares.

  11. Surface rotation of Kepler red giant stars

    Science.gov (United States)

    Ceillier, T.; Tayar, J.; Mathur, S.; Salabert, D.; García, R. A.; Stello, D.; Pinsonneault, M. H.; van Saders, J.; Beck, P. G.; Bloemen, S.

    2017-09-01

    Kepler allows the measurement of starspot variability in a large sample of field red giants for the first time. With a new method that combines autocorrelation and wavelet decomposition, we measure 361 rotation periods from the full set of 17 377 oscillating red giants in our sample. This represents 2.08% of the stars, consistent with the fraction of spectroscopically detected rapidly rotating giants in the field. The remaining stars do not show enough variability to allow us to measure a reliable surface rotation period. Because the stars with detected rotation periods have measured oscillations, we can infer their global properties, e.g. mass and radius, and quantitatively evaluate the predictions of standard stellar evolution models as a function of mass. Consistent with results for cluster giants when we consider only the 4881 intermediate-mass stars, M > 2.0 M⊙ from our full red giant sample, we do not find the enhanced rates of rapid rotation expected from angular momentum conservation. We therefore suggest that either enhanced angular momentum loss or radial differential rotation must be occurring in these stars. Finally, when we examine the 575 low-mass (Mhttp://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A111

  12. Electrodynamics on extrasolar giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, T. T.; Yelle, R. V. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Lavvas, P. [Groupe de Spectroscopie Moléculaire et Atmosphérique UMR CNRS 7331, Université Reims Champagne-Ardenne, F-51687 Reims (France); Cho, J. Y-K., E-mail: tommi@lpl.arizona.edu [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially

  13. Anaplastic giant cell thyroid carcinoma.

    Science.gov (United States)

    Wallin, G; Lundell, G; Tennvall, J

    2004-01-01

    Anaplastic (giant cell) thyroid carcinoma (ATC), is one of the most aggressive malignancies in humans with a median survival time after diagnosis of 3-6 months. Death from ATC was earlier seen because of local growth and suffocation. ATC is uncommon, accounting for less than 5 % of all thyroid carcinomas. The diagnosis can be established by means of multiple fine needle aspiration biopsies, which are neither harmful nor troublesome for the patient. The cytological diagnosis of this high-grade malignant tumour is usually not difficult for a well trained cytologist. The intention to treat patients with ATC is cure, although only few of them survive. The majority of the patients are older than 60 years and treatment must be influenced by their high age. We have by using a combined modality regimen succeeded in achieving local control in most patients. Every effort should be made to control the primary tumour and thereby improve the quality of remaining life and it is important for patients, relatives and the personnel to know that cure is not impossible. Different treatment combinations have been used since 30 years including radiotherapy, cytostatic drugs and surgery, when feasible. In our latest combined regimen, 22 patients were treated with hyper fractionated radiotherapy 1.6Gy x 2 to a total target dose of 46 Gy given preoperatively, 20 mg doxorubicin was administered intravenously once weekly and surgery was carried out 2-3 weeks after the radiotherapy. 17 of these 22 patients were operated upon and none of these 17 patients got a local recurrence. In the future we are awaiting the development of new therapeutic approaches to this aggressive type of carcinoma. Inhibitors of angiogenesis might be useful. Combretastatin has displayed cytotoxicity against ATC cell lines and has had a positive effect on ATC in a patient. Sodium iodide symporter (NIS) genetherapy is also being currently considered for dedifferentiated thyroid carcinomas with the ultimate aim of

  14. Giant black hole rips star apart

    Science.gov (United States)

    2004-02-01

    Astronomers believe that a doomed star came too close to a giant black hole after a close encounter with another star threw it off course. As it neared the enormous gravity of the black hole, the star was stretched by tidal forces until it was torn apart. This discovery provides crucial information on how these black holes grow and affect the surrounding stars and gas. "Stars can survive being stretched a small amount, as they are in binary star systems, but this star was stretched beyond its breaking point," said Dr Stefanie Komossa of the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, who led the international team of researchers. "This unlucky star just wandered into the wrong neighbourhood." While other observations have hinted that stars are destroyed by black holes (events known as ‘stellar tidal disruptions’), these new results are the first strong evidence. Observations with XMM-Newton and Chandra, combined with earlier images from the German Roentgensatellite (ROSAT), detected a powerful X-ray outburst from the centre of the galaxy RXJ1242-11. This outburst, one of the most extreme ever detected in a galaxy, was caused by gas from the destroyed star that was heated to millions of degrees before being swallowed by the black hole. The energy liberated in this process is equivalent to that of a supernova. "Now, with all of the data in hand, we have the smoking gun proof that this spectacular event has occurred," said co-author Prof. Guenther Hasinger, also of MPE. The black hole in the centre of RX J1242-11 is estimated to have a mass about 100 million times that of the Sun. By contrast, the destroyed star probably had a mass about equal to that of the Sun, making it a lopsided battle of gravity. "This is the ultimate ‘David versus Goliath’ battle, but here David loses," said Hasinger. The astronomers estimated that about one hundredth of the mass of the star was ultimately consumed, or accreted, by the black hole. This small

  15. Dimethylsulfoniopropionate in six species of giant clams and the evolution of dimethylsulfide after death

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.W.; Hill, S.D. [Michigan State Univ., East Lansing, MI (United States). Dept. of Zoology; Dacey, J.W.H. [Woods Hole Oceanographic Inst., Woods Hole, MA (United States). Dept. of Biology; Edward, A. [Micronesia College, Pohnpei (Micronesia, Federated States); Hicks, W.A. [Michigan State Univ., East Lansing, MI (United States). Dept. of Bioichemistry and Molecular Biology

    2004-05-01

    Dimethylsulfoniopropionate (DMSP) could accumulate in large concentrations in animals living symbiotically with algae. The giant clam family Tridacnidae accumulates DMSP because they have a symbiotic relationship with dinoflagellates (or zooxanthellae). In this study, well preserved clam tissues from the western Pacific Islands were analyzed to provide definitive evidence of DMSP in the tissues. Six of the common species in the Tridacnidae family were examined. The objective was to test the hypothesis that dimethyl sulfide (DMS) is released from clam tissues soon after death due to the breakdown of DMSP tissue. In particular, it determined if DMS is responsible for the problem of potent odours and off-taste that have hindered the commercial success of giant clams mariculture. Gas chromatography and mass spectrometry was used in this study to measure DMSP concentrations in siphonal mantle, byssal mantle, adductor muscle and gill tissues. The formation of DMS by tissues after death was documented. It was suggested that since giant clams associate with dinoflagellates, they could accumulate DMSP to high concentrations which could affect multiple properties and functions. It was concluded that the perishability of giant clam tissues is most likely due to the high concentrations of DMS produced one day post mortem. 15 refs., 2 tabs., 4 figs.

  16. Giant Impact: An Efficient Mechanism for Devolatilization of Super-Earths

    CERN Document Server

    Liu, Shang-Fei; Lin, D N C; Asphaug, Erik

    2015-01-01

    Mini-Neptunes and volatile-poor super-Earths coexist on adjacent orbits in proximity to host stars such as Kepler-36 and Kepler-11. Several post-formation processes have been proposed for explaining the origin of the compositional diversity: the mass loss via stellar XUV irradiation, degassing of accreted material, and in-situ accumulation of the disk gas. Close-in planets are also likely to experience giant impacts during the advanced stage of planet formation. This study examines the possibility of transforming volatile-rich super-Earths / mini-Neptunes into volatile-depleted super-Earths through giant impacts. We present the results of three-dimensional giant impact simulations in the accretionary and disruptive regimes. Target planets are modeled with a three-layered structure composed of an iron core, silicate mantle and hydrogen/helium envelope. In the disruptive case, the giant impact can remove most of the H/He atmosphere immediately and homogenize the refractory material in the planetary interior. In...

  17. Giant Uterine Leiomyoma. A Case Report

    Directory of Open Access Journals (Sweden)

    Luis Noel Marrero Quiala

    2014-09-01

    Full Text Available Giant uterine fibromyoma is a benign condition which has a very low incidence. Its management poses a challenge for the surgical team due to the volume of the surgical specimen and the variations in the distribution of the intra-abdominal organs caused by the uterine growth. The case of a 29-year-old patient misdiagnosed with giant hepatomegaly at admission is presented. Her symptoms included hard abdomen and feeling of heaviness. Successful completion of the interview, physical examination and imaging studies led to the correct diagnosis of giant uterine fibromyoma. Surgical treatment was applied. A total abdominal hysterectomy was performed with satisfactory results. This case is presented to the medical community for teaching purposes and due to its rarity.

  18. Red-giant stars in eccentric binaries

    Directory of Open Access Journals (Sweden)

    Beck P. G.

    2015-01-01

    Full Text Available The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to improved understanding of red-giant stars and binary stars. We discuss the characterization of known eccentric system, containing a solar-like oscillating red-giant primary component. We also report several new binary systems that are candidates for hosting an oscillating companion. A powerful approach to study binary stars is to combine asteroseimic techniques with light curve fitting. Seismology allows us to deduce the properties of red giants. In addition, by modeling the ellipsoidal modulations we can constrain the parameters of the binary system. An valuable independent source are ground-bases, high-resolution spectrographs.

  19. Observations of Radio Giant Pulses with GAVRT

    CERN Document Server

    Jones, Glenn

    2015-01-01

    Radio giant pulses provide a unique opportunity to study the pulsar radio emission mechanism in exquisite detail. Previous studies have revealed a wide range of properties and phenomena, including extraordinarily high brightness temperatures, sub-nanosecond emission features, and banded dynamic spectra. New measurements of giant pulse characteristics can help guide and test theoretical emission models. To this end, an extensive observation campaign has begun which will provide more than 500 hours on the Crab with a 34-meter antenna located in California, USA. The observations are being done as part of an educational outreach program called the Goldstone-Apple Valley Radio Telescope (GAVRT). This antenna has a novel wide bandwidth receiver which provides up to 8 GHz of instantaneous bandwidth in the range of 2.5 to 14 GHz. These observations will provide detailed information about the variability, amplitude distribution, and detailed frequency structure of radio giant pulses. In addition, a database of pulses ...

  20. Giant Uterine Leiomyoma. A Case Report

    Directory of Open Access Journals (Sweden)

    Luis Noel Marrero Quiala

    2014-09-01

    Full Text Available Giant uterine fibromyoma is a benign condition which has a very low incidence. Its management poses a challenge for the surgical team due to the volume of the surgical specimen and the variations in the distribution of the intra-abdominal organs caused by the uterine growth. The case of a 29-year-old patient misdiagnosed with giant hepatomegaly at admission is presented. Her symptoms included hard abdomen and feeling of heaviness. Successful completion of the interview, physical examination and imaging studies led to the correct diagnosis of giant uterine fibromyoma. Surgical treatment was applied. A total abdominal hysterectomy was performed with satisfactory results. This case is presented to the medical community for teaching purposes and due to its rarity.

  1. Hepatic Giant Cell Arteritis and Polymyalgia Rheumatica

    Directory of Open Access Journals (Sweden)

    Donald R Duerksen

    1994-01-01

    Full Text Available Polymyalgia rheumatica (PMR is a clinical syndrome of the elderly characterized by malaise, proximal muscle aching and stiffness, low grade fever, elevated erythrocyte sedimentation rare and the frequent association with temporal giant cell arteritis. The authors describe a case of PMR associated with hepatic giant cell arteritis. This lesion has been described in two other clinical reports. The distribution of the arteritis may be patchy; in this report, diagnosis was made with a wedge biopsy performed after an initial nonspecific percutaneous liver biopsy. The authors review the spectrum of liver involvement in PMR and giant cell arteritis. Hepatic abnormalities respond to systemic corticosteroids, and patients with hepatic arteritis have a good prognosis.

  2. Asymptomatic post-rheumatic giant left atrium.

    Science.gov (United States)

    Özkartal, Tardu; Tanner, Felix C; Niemann, Markus

    2016-06-26

    A 78-year-old asymptomatic woman was referred to our clinic for a second opinion regarding indication for mitral valve surgery. An echocardiogram showed a moderate mitral stenosis with a concomitant severe regurgitation. The most striking feature, however, was a giant left atrium with a parasternal anteroposterior diameter of 79 mm and a left atrial volume index of 364 mL/m². There are various echocardiographic definitions of a giant left atrium, which are mainly based on measurements of the anteroposterior diameter of the left atrium using M-mode in the parasternal long axis view. Since the commonly accepted method for echocardiographic evaluation of left atrial size is left atrial volume index, we propose a cut-off value of 140 mL/m(2) for the definition of a "giant left atrium".

  3. Lithium-rich Giants in Globular Clusters

    Science.gov (United States)

    Kirby, Evan N.; Guhathakurta, Puragra; Zhang, Andrew J.; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G.; Cunha, Katia

    2016-03-01

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Evan N.; Cohen, Judith G. [California Institute of Technology, 1200 E. California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Guhathakurta, Puragra [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Zhang, Andrew J. [The Harker School, 500 Saratoga Avenue, San Jose, CA 95129 (United States); Hong, Jerry [Palo Alto High School, 50 Embarcadero Road, Palo Alto, CA, 94301 (United States); Guo, Michelle [Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Guo, Rachel [Irvington High School, 41800 Blacow Road, Fremont, CA 94538 (United States); Cunha, Katia [Observatório Nacional, São Cristóvão Rio de Janeiro (Brazil)

    2016-03-10

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron–Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.

  5. Gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ok Ryong

    2004-01-15

    This book introduces gas turbine cycle explaining general thing of gas turbine, full gas turbine cycle, Ericson cycle and Brayton cycle, practical gas turbine cycle without pressure loss, multiaxial type gas turbine cycle and special gas turbine cycle, application of basic theory on a study on suction-cooling gas turbine cycle with turbo-refrigerating machine using the bleed air, and general performance characteristics of the suction-cooling gas turbine cycle combined with absorption-type refrigerating machine.

  6. Neglected Giant Scalp Basal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Anne Kristine Larsen, MD

    2014-03-01

    Full Text Available Summary: Rarely, basal cell carcinoma grows to a giant size, invading the underlying deep tissue and complicating the treatment and reconstruction modalities. A giant basal cell carcinoma on the scalp is in some cases treated with a combination of surgery and radiation therapy, resulting in local control, a satisfactory long-term cosmetic and functional result. We present a case with a neglected basal cell scalp carcinoma, treated with wide excision and postoperative radiotherapy, reconstructed with a free latissimus dorsi flap. The cosmetic result is acceptable and there is no sign of recurrence 1 year postoperatively.

  7. Mass loss from giant and supergiant stars

    Science.gov (United States)

    Wannier, P. G.; Sahai, R.

    1986-01-01

    The 12 m telescope of the National Radio Astronomy Observatory has been used at the J = 2-1 transition of CO to increase the known list of giant and supergiant stars with observable circumstellar envelopes. The candidate objects were generally M-type giants and supergiants, chosen for their strong infrared luminosities. Of the 35 objects which were previously undetected, or only marginally detected, 10 were found to produce detectable CO emission. Physical parameters of the envelopes are derived by source modeling. Mass-loss rates vary from 10 to the -7th to 4 x 10 to the -5th solar mass/yr.

  8. Enhanced recovery after giant ventral hernia repair

    DEFF Research Database (Denmark)

    Jensen, K K; Brøndum, T L; Harling, H.

    2016-01-01

    PURPOSE: Giant ventral hernia repair is associated with a high risk of postoperative morbidity and prolonged length of stay (LOS). Enhanced recovery (ERAS) measures have proved to lead to decreased morbidity and LOS after various surgical procedures, but never after giant hernia repair. The current....... Pain, nausea and fatigue were registered prospectively in all patients treated according to ERAS, as well as continuous measurement of transcutaneous capillary oxygen saturation. Postoperative morbidity and LOS were compared between patients treated according to ERAS and a historic group treated...

  9. Kepler Asteroseismology of Red-giant Stars

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J.

    2012-01-01

    The Kepler mission, launched in March 2009, has revolutionized asteroseismology, providing detailed observations of thousands of stars. This has allowed in-depth analyses of stars ranging from compact hot subdwarfs to red giants, and including the detection of solar-like oscillations in hundreds...... of stars on or near the main sequence. Here I mainly consider solar-like oscillations in red giants, where Kepler observations are yielding results of a perhaps unexpected richness. In addition to giving a brief overview of the observational and numerical results for these stars, I present a simple...

  10. Neglected giant scalp Basal cell carcinoma

    DEFF Research Database (Denmark)

    Larsen, Anne Kristine; El-Charnoubi, Waseem-Asim Ghulam; Gehl, Julie;

    2014-01-01

    SUMMARY: Rarely, basal cell carcinoma grows to a giant size, invading the underlying deep tissue and complicating the treatment and reconstruction modalities. A giant basal cell carcinoma on the scalp is in some cases treated with a combination of surgery and radiation therapy, resulting in local...... control, a satisfactory long-term cosmetic and functional result. We present a case with a neglected basal cell scalp carcinoma, treated with wide excision and postoperative radiotherapy, reconstructed with a free latissimus dorsi flap. The cosmetic result is acceptable and there is no sign of recurrence...

  11. MAPPING DIRECTLY IMAGED GIANT EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, Veselin [Department of Physics and Astronomy, Johns Hopkins University, 366 Bloomberg Center, 3400 North Charles Street, Baltimore, MD 21218 (United States); Apai, Daniel, E-mail: vkostov@pha.jhu.edu [Department of Astronomy, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85718 (United States)

    2013-01-01

    With the increasing number of directly imaged giant exoplanets, the current atmosphere models are often not capable of fully explaining the spectra and luminosity of the sources. A particularly challenging component of the atmosphere models is the formation and properties of condensate cloud layers, which fundamentally impact the energetics, opacity, and evolution of the planets. Here we present a suite of techniques that can be used to estimate the level of rotational modulations these planets may show. We propose that the time-resolved observations of such periodic photometric and spectroscopic variations of extrasolar planets due to their rotation can be used as a powerful tool to probe the heterogeneity of their optical surfaces. In this paper, we develop simulations to explore the capabilities of current and next-generation ground- and space-based instruments for this technique. We address and discuss the following questions: (1) what planet properties can be deduced from the light curve and/or spectra, and in particular can we determine rotation periods, spot coverage, spot colors, and spot spectra?; (2) what is the optimal configuration of instrument/wavelength/temporal sampling required for these measurements?; and (3) can principal component analysis be used to invert the light curve and deduce the surface map of the planet? Our simulations describe the expected spectral differences between homogeneous (clear or cloudy) and patchy atmospheres, outline the significance of the dominant absorption features of H{sub 2}O, CH{sub 4}, and CO, and provide a method to distinguish these two types of atmospheres. Assuming surfaces with and without clouds for most currently imaged planets the current models predict the largest variations in the J band. Simulated photometry from current and future instruments is used to estimate the level of detectable photometric variations. We conclude that future instruments will be able to recover not only the rotation periods

  12. Giant Panda habitat selection in the Foping Nature Reserve, China

    NARCIS (Netherlands)

    Liu, X.; Toxopeus, A.G.; Skidmore, A.K.; Shao, X.; Dang, D.; Wang, T.; Prins, H.H.T.

    2005-01-01

    Little is known about habitat selection of the giant panda (Ailuropoda melanoleuca), especially about the relationship between giant panda presence and bamboo and tree structures. We presented data on giant panda habitat use and selection in Foping Nature Reserve (NR), China. We used 1,066

  13. Observing giant panda habitat and forage abundance from space

    NARCIS (Netherlands)

    Wang, T.

    2009-01-01

    Giant pandas are obligate bamboo grazers. The bamboos favoured by giant pandas are typical forest understorey plants. Therefore, the availability and abundance of understorey bamboo is a key factor in determining the quantity and quality of giant panda food resources. However, there is little or

  14. Giant Panda habitat selection in the Foping Nature Reserve, China

    NARCIS (Netherlands)

    Liu, X.; Toxopeus, A.G.; Skidmore, A.K.; Shao, X.; Dang, D.; Wang, T.; Prins, H.H.T.

    2005-01-01

    Little is known about habitat selection of the giant panda (Ailuropoda melanoleuca), especially about the relationship between giant panda presence and bamboo and tree structures. We presented data on giant panda habitat use and selection in Foping Nature Reserve (NR), China. We used 1,066 radiotrac

  15. The Mass-Metallicity Relation for Giant Planets

    CERN Document Server

    Thorngren, Daniel P; Lopez, Eric D

    2015-01-01

    Exoplanet discoveries of recent years have provided a great deal of new data for studying the bulk compositions of giant planets. Here we identify 38 transiting giant planets ($20 M_\\oplus 50 M_\\oplus$) suggest significant amounts of heavy elements in H/He envelopes, rather than cores, such that metal-enriched giant planet atmospheres should be the rule.

  16. Normalized spectra of 82 Kepler red giants (Thygesen+, 2012)

    NARCIS (Netherlands)

    A.O. Thygesen; S. Frandsen; H. Bruntt; T. Kallinger; M.F. Andersen; Y.E. Elsworth; S. Hekker; C. Karoff; D. Stello; K. Brogaard; C. Bruke; D.A. Caldwell; J.L. Christiansen

    2012-01-01

    Normalized spectra of 82 red giants in the Kepler Field. Target names are as found in the Kepler Input Catalogue (Kepler Mission Team 2009) Also included spectra of 10 well-studied bright giants observed for reference. 9 of the reference giants were chosen from the PASTEL catalogue (Soubiran et al.,

  17. Normalized spectra of 82 Kepler red giants (Thygesen+, 2012) [Dataset

    NARCIS (Netherlands)

    Thygesen, A.O.; Frandsen, S.; Bruntt, H.; Kallinger, T.; Andersen, M.F.; Elsworth, Y.E.; Hekker, S.; Karoff, C.; Stello, D.; Brogaard, K.; Bruke, C.; Caldwell, D.A.; Christiansen, J.L.

    2012-01-01

    Normalized spectra of 82 red giants in the Kepler Field. Target names are as found in the Kepler Input Catalogue (Kepler Mission Team 2009) Also included spectra of 10 well-studied bright giants observed for reference. 9 of the reference giants were chosen from the PASTEL catalogue (Soubiran et al.,

  18. Correlations between compositions and orbits established by the giant impact era of planet formation

    CERN Document Server

    Dawson, Rebekah I; Chiang, Eugene

    2015-01-01

    The giant impact phase of terrestrial planet formation establishes connections between super-Earths' orbital properties (semimajor axis spacings, eccentricities, mutual inclinations) and interior compositions (the presence or absence of gaseous envelopes). Using N-body simulations and analytic arguments, we show that spacings derive not only from eccentricities, but also from inclinations. Flatter systems attain tighter spacings, a consequence of an eccentricity equilibrium between gravitational scatterings, which increase eccentricities, and mergers, which damp them. Dynamical friction by residual disk gas plays a critical role in regulating mergers and in damping inclinations and eccentricities. Systems with moderate gas damping and high solid surface density spawn gas-enveloped super-Earths with tight spacings, small eccentricities, and small inclinations. Systems in which super-Earths coagulate without as much ambient gas, in disks with low solid surface density, produce rocky planets with wider spacings,...

  19. Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars II. Sulfur and Phosphorus

    CERN Document Server

    Visscher, C

    2005-01-01

    We use thermochemical equilibrium and kinetic calculations to model sulfur and phosphorus chemistry in the atmospheres of giant planets, brown dwarfs, low-mass stars, and extrasolar giant planets (EGPs). The chemical behavior of individual S- and P-bearing gases and condensates is determined as a function of pressure, temperature, and metallicity. Our results are independent of any particular model atmosphere and the behavior of different gases can be used to constrain atmospheric structure and metallicity. Hydrogen sulfide is the dominant sulfur gas in substellar atmospheres and approximately represents the atmospheric sulfur inventory. Depending on the prevailing S and C chemistry, the abundance of minor sulfur gases may constrain atmospheric temperatures or metallicity. Disequilibrium abundances of PH3 are expected in the observable atmospheres of substellar objects, and PH3 is representative of the total P abundance in giant planets and T dwarfs. A number of other phosphorus gases become relatively abunda...

  20. Giant clumps in the FIRE simulations: a case study of a massive high-redshift galaxy

    CERN Document Server

    Oklopcic, Antonija; Feldmann, Robert; Keres, Dusan; Faucher-Giguere, Claude-Andre; Murray, Norman

    2016-01-01

    The morphology of massive star-forming galaxies at high redshift is often dominated by giant clumps of mass ~10^8-10^9 Msun and size ~100-1000 pc. Previous studies have proposed that giant clumps might have an important role in the evolution of their host galaxy, particularly in building the central bulge. However, this depends on whether clumps live long enough to migrate from their original location in the disc or whether they get disrupted by their own stellar feedback before reaching the centre of the galaxy. We use cosmological hydrodynamical simulations from the FIRE (Feedback in Realistic Environments) project that implement explicit treatments of stellar feedback and ISM physics to study the properties of these clumps. We follow the evolution of giant clumps in a massive (stellar mass ~10^10.8 Msun at z=1), discy, gas-rich galaxy from redshift z>2 to z=1. Even though the clumpy phase of this galaxy lasts over a gigayear, individual gas clumps are short-lived, with mean lifetime of massive clumps of ~2...

  1. Abundance differences among G and K giants

    Science.gov (United States)

    Challener, Sharon Lynn Montgomery

    Effective temperatures and surface gravities were derived for 52 G and K giants using model atmosphere. Of these, 33 were called very strong-lined (or VSL) stars primarily because of their CN line strength. We find that when compared to normal stars, the VSL stars show a mean iron overabundance of 0.15 dex. Contrary to earlier suggestions, none of the heavier elements (Z greater than 10) appear selectively enhanced. Red giants are believed to undergo mixing, thereby driving the surface abundances towards those of the stellar interior. Carbon, nitrogen, and oxygen abundances are most sensitive to mixing as they are produced through nucleosynthesis at various depths beneath the star's surface. The CNO abundances (normalized to the iron abundances) of the VSLs appear on average to be normal for G and K giants. This result suggests that the strong CN absorption seen in VSLs is not the result of unusual mixing. Their general overabundance of metal appears instead to be innate, presumably reflecting the metallicity of the gaseous clouds from which they formed. This should be settled once the appropriate number of VSL dwarfs is found. The deviations from the normal population of giants are rather small, however, and certainly not of the magnitude envisioned by Spinrad and Taylor (1969). It is likely that VSLs are merely the stars lying in the tail of the normal abundance distribution.

  2. Giant Viruses of Amoebas: An Update.

    Science.gov (United States)

    Aherfi, Sarah; Colson, Philippe; La Scola, Bernard; Raoult, Didier

    2016-01-01

    During the 12 past years, five new or putative virus families encompassing several members, namely Mimiviridae, Marseilleviridae, pandoraviruses, faustoviruses, and virophages were described. In addition, Pithovirus sibericum and Mollivirus sibericum represent type strains of putative new giant virus families. All these viruses were isolated using amoebal coculture methods. These giant viruses were linked by phylogenomic analyses to other large DNA viruses. They were then proposed to be classified in a new viral order, the Megavirales, on the basis of their common origin, as shown by a set of ancestral genes encoding key viral functions, a common virion architecture, and shared major biological features including replication inside cytoplasmic factories. Megavirales is increasingly demonstrated to stand in the tree of life aside Bacteria, Archaea, and Eukarya, and the megavirus ancestor is suspected to be as ancient as cellular ancestors. In addition, giant amoebal viruses are visible under a light microscope and display many phenotypic and genomic features not found in other viruses, while they share other characteristics with parasitic microbes. Moreover, these organisms appear to be common inhabitants of our biosphere, and mimiviruses and marseilleviruses were isolated from human samples and associated to diseases. In the present review, we describe the main features and recent findings on these giant amoebal viruses and virophages.

  3. Standing on the shoulders of giants.

    Science.gov (United States)

    Romanovsky, Andrej A

    2014-01-01

    In this editorial, the author explains that the journal Temperature stands on the shoulders of giants-prominent scientists of the past and current members of the Temperature community. Temperature also uses the best tools, such as Google Scholar profiles. The editorial includes a new puzzle: why does warm water freeze faster than cold water?

  4. Giant Magnetostrictive Material Exciter for Panel Loudspeaker

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; ZHANG Yong-fa

    2008-01-01

    The exciter component in a panel loudspeaker has a profound effect on the overall performance of the system.The equivalent circuit analysis of the combination of giant magnetostrictive material exciter and distributed mode panel is introduced and how exciter parameters influence panel lffudspeaker's performance is discussed.NumericaI predictions are given in order to show how these influences are manifested.

  5. Giant melanoma of the left thumb

    NARCIS (Netherlands)

    Zeebregts, CJAM; Schraffordt Koops, H.

    2000-01-01

    A 74-year-old female patient is described with a giant melanoma of the left thenar and concomitant bilateral pulmonary metastases. Palliative treatment consisted of a two-staged procedure in order to save the limb from amputation. Firstly, perfusion with gamma-interferon, tumour necrosis factor-alph

  6. Southern Africa - a giant natural photochemical reactor

    CSIR Research Space (South Africa)

    Diab, RD

    2006-04-01

    Full Text Available The analogy of a ‘giant natural photochemical reactor’ is extended in this paper to the central and southern African tropics, where tropospheric ozone enhancement occurs over a vast geographical area from the Congo to South Africa, and over a long...

  7. Tuberculosis Detection by Giant African Pouched Rats

    Science.gov (United States)

    Poling, Alan; Weetjens, Bart; Cox, Christophe; Beyene, Negussie; Durgin, Amy; Mahoney, Amanda

    2011-01-01

    In recent years, operant discrimination training procedures have been used to teach giant African pouched rats to detect tuberculosis (TB) in human sputum samples. This article summarizes how the rats are trained and used operationally, as well as their performance in studies published to date. Available data suggest that pouched rats, which can…

  8. Giant viruses of amoebas: an update

    Directory of Open Access Journals (Sweden)

    Sarah eAherfi

    2016-03-01

    Full Text Available During the 12 past years, five new or putative virus families encompassing several members, namely Mimiviridae, Marseilleviridae, pandoraviruses, faustoviruses, and virophages were described. In addition, Pithovirus sibericum and Mollivirus sibericum represent type strains of putative new giant virus families. All these viruses were isolated using amoebal coculture methods. These giant viruses were linked by phylogenomic analyses to other large DNA viruses. They were then proposed to be classified in a new viral order, the Megavirales, on the basis of their common origin, as shown by a set of ancestral genes encoding key viral functions, a common virion architecture, and shared major biological features including replication inside cytoplasmic factories. Megavirales is increasingly demonstrated to stand in the tree of life aside Bacteria, Archaea and Eukarya, and the megavirus ancestor is suspected to be as ancient as cellular ancestors. In addition, giant amoebal viruses are visible under a light microscope and display many phenotypic and genomic features not found in other viruses, while they share other characteristics with parasitic microbes. Moreoever, these organisms appear to be common inhabitants of our biosphere, and mimiviruses and marseilleviruses were isolated from human samples and associated to diseases. In the present review, we describe the main features and recent findings on these giant amoebal viruses and virophages.

  9. Insights on a Giant Aneurysm Treated Endovascularly.

    Science.gov (United States)

    Graziano, Francesca; Iacopino, Domenico Gerardo; Ulm, Arthur John

    2016-07-01

    Background Endovascular treatment with stent-assisted Guglielmi detachable coils is an accepted method for treating intracranial giant aneurysms that otherwise would require more invasive or destructive treatment or could not be treated at all. Nevertheless, there is a paucity of information concerning inner postcoiling aneurysmal changes in human subjects over the long term. We report a postmortem analysis of a patient with a giant aneurysm at the vertebrobasilar junction (VBJ) who was treated endovascularly and studied pathologically 24 months after treatment. Materials and Method The head was removed at autopsy and prefixed in a 10% neutral buffered formalin solution. The brain was gently removed from the skull base after cutting the intracranial nerves and vascular structures. The giant VBJ aneurysm and its relationship with the brainstem, cranial nerves, and vessels were captured photographically and analyzed. Afterward, under operating microscope guidance, the vertebrobasilar system with the aneurysm was gently and carefully detached from the brainstem and carefully analyzed. Results No complete fibrous obliteration of the aneurysm lumen could be detected in our case, and no endothelialization had taken place 24 months after treatment. Conclusions Our findings agree with those of previous similar reports. Coiling, in particular in large or giant aneurysms, may be burdened by the risk of coil compaction and recanalization, but it has the advantage of not affecting the flow in the perforating arteries.

  10. Giant omental lipoblastoma and CD56 expression

    Directory of Open Access Journals (Sweden)

    Go Miyano

    2013-01-01

    Full Text Available We report a case of giant omental lipoblastoma in a 13-month-old boy, which was treated successfully by total excision. Tumor cells were positive for S100, CD34 and CD56. This is the first report of lipoblastoma expressing CD56, a fact that could be used to differentiate lipoblastoma from liposarcoma.

  11. Anharmonic effects and double giant dipole resonances

    CERN Document Server

    Voronov, V V

    2001-01-01

    A brief review of recent results of the microscopic calculations to describe characteristics of the double giant dipole resonances (DGDR) is presented. A special attention is paid to a microscopic study of the anharmonic properties of the DGDR. It is found that the deviation of the energy centroid of the DGDR from the harmonic limit follows A sup - sup 1 dependence

  12. Giant cell arteritis: diagnosis and treatment.

    Science.gov (United States)

    Calvo Romero, J M

    2015-01-01

    Giant cell arteritis is the most common primary systemic vasculitis in adults. The condition is granulomatous arteritis of large and medium vessels, which occurs almost exclusively in patients aged 50 years or more. This article reviews the diagnosis and treatment of the disease. Copyright © 2015. Published by Elsevier España, S.L.U.

  13. The operation of giant incisional hernia

    DEFF Research Database (Denmark)

    Eriksson, Axelina; Krag, Christen; Jørgensen, Lars Nannestad

    2014-01-01

    Incisional hernia is a common complication to laparotomy impacting negatively on quality of life, risk of emergency surgery and cosmesis. The operation of giant incisional hernia (cross diameter of hernia defect > 20 cm) is a high risk procedure and the surgical techniques are not based on high...

  14. [A rare clinical report of giant hemangiopericytoma].

    Science.gov (United States)

    Shkarubo, A N; Shishkina, L V; Tailakov, Sh T; Dorosh, K V; Khromov, A P

    2014-01-01

    Authors show an example of a successful treatment of a patient with a giant intracranial hemangiopericytoma. Hemangiopericytoma are aggressive tumors with a high rate of recurrence and metastasis. Despite the malignant nature of these tumors often reach a large size with minor clinical signs. Surgical removal of the tumor is still the primary method of treatment.

  15. Giant Cholesteatoma : Recommendations for Follow-up

    NARCIS (Netherlands)

    Geven, Leontien I.; Mulder, Jef J. S.; Graamans, Kees

    2008-01-01

    This report presents the management of five patients who presented with giant recurrent or residual cholesteatoma after periods of 2 to 50 years. Their case histories are highly diverse, but all provide evidence of the need for long-term follow-up.

  16. Chirp-driven giant phase space vortices

    Science.gov (United States)

    Trivedi, Pallavi; Ganesh, Rajaraman

    2016-06-01

    In a collisionless, unbounded, one-dimensional plasma, modelled using periodic boundary conditions, formation of steady state phase space coherent structures or phase space vortices (PSV) is investigated. Using a high resolution one-dimensional Vlasov-Poisson solver based on piecewise-parabolic advection scheme, the formation of giant PSV is addressed numerically. For an infinitesimal external drive amplitude and wavenumber k, we demonstrate the existence of a window of chirped external drive frequency that leads to the formation of giant PSV. The linear, small amplitude, external drive, when chirped, is shown to couple effectively to the plasma and increase both streaming of "untrapped" and "trapped" particle fraction. The steady state attained after the external drive is turned off and is shown to lead to a giant PSV with multiple extrema and phase velocities, with excess density fraction, defined as the deviation from the Maxwellian background, Δ n / n 0 ≃ 20 % - 25 % . It is shown that the process depends on the chirp time duration Δt. The excess density fraction Δn/n0, which contains both trapped and untrapped particle contribution, is also seen to scale with Δt, only inhibited by the gradient of the distribution in velocity space. Both single step drive and multistep chirp processes are shown to lead to steady state giant PSV, with multiple extrema due to embedded holes and clumps, long after the external drive is turned off.

  17. Caring for the Giant Pandas' Future

    Institute of Scientific and Technical Information of China (English)

    TANG YUANKAI

    2010-01-01

    @@ A long-term partnership was formed in October by American corporation Broadcom, Broadcom Foundation,and the San Diego Zoo, together with China Wolong National Natural Reserve and the Institute of Zoology of the Chinese Academy of Sciences (CAS) to study giant panda protection and breeding.

  18. [Giant paraovarian cyst in childhood - Case report].

    Science.gov (United States)

    Torres, Janina P; Íñiguez, Rodrigo D

    2015-01-01

    Paraovarian cysts are very uncommon in children To present a case of giant paraovarian cyst case in a child and its management using a modified laparoscopic-assisted technique A 13-year-old patient with a 15 day-history of intermittent abdominal pain, located in the left hemiabdomen and associated with progressive increase in abdominal volume. Diagnostic imaging was inconclusive, describing a giant cystic formation that filled up the abdomen, but without specifying its origin. Laboratory tests and tumor markers were within normal range. Video-assisted transumbilical cystectomy, a modified laparoscopic procedure with diagnostic and therapeutic intent, was performed with a successful outcome. The histological study reported giant paraovarian cyst. Cytology results were negative for tumor cells. The patient remained asymptomatic during the postoperative follow-up. The video-assisted transumbilical cystectomy is a safe procedure and an excellent diagnostic and therapeutic alternative for the treatment of giant paraovarian cysts. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  19. Polarization Spectra of Extrasolar Giant Planets

    NARCIS (Netherlands)

    Stam, D.M.

    2004-01-01

    We present simulated spectra of the flux and degree of polarization of starlight that is reflected by extrasolar giant planets (EGPs). In particular the polarization depends strongly on the structure of the planetary atmosphere, and appears to be a valuable tool for the characterization of EGPs.

  20. Giant cell tumour of distal ulna.

    Science.gov (United States)

    Archik, Shreedhar; Tripathi, Sanjay Kumar; Nanda, Saurav Narayan; Choudhari, Ashlesh

    2017-01-01

    Giant cell tumor (GCT) of distal end epiphysis ulna is a rare presentation, and only few cases are reported in the scientific literature. We report a case of GCT of distal end epiphysis ulna treated at our Tertiary Care Hospital, Mumbai.

  1. Tuberculosis Detection by Giant African Pouched Rats

    Science.gov (United States)

    Poling, Alan; Weetjens, Bart; Cox, Christophe; Beyene, Negussie; Durgin, Amy; Mahoney, Amanda

    2011-01-01

    In recent years, operant discrimination training procedures have been used to teach giant African pouched rats to detect tuberculosis (TB) in human sputum samples. This article summarizes how the rats are trained and used operationally, as well as their performance in studies published to date. Available data suggest that pouched rats, which can…

  2. Floret-like multinucleated giant cells in neurofibroma.

    Science.gov (United States)

    Shaktawat, Sameer Singh; Golka, Dariusz

    2007-12-08

    This short report discusses a case of neurofibroma containing floret-like multinucleated giant cells. This being the second such case in the literature. Floret-like multinucleated giant cells have been reported in gynaecomastia and neurofibroma in neurofibromatosis type 1. These cells have been reported in uncommon soft tissue tumours including pleomorphic lipoma, giant cell collagenoma, giant cell fibroblastoma and giant cell angiofibroma. We recommend these cells to be interpreted carefully keeping in mind the rare malignant change in neurofibromas. Immunohistochemistry would help in defining the nature of such cells.

  3. Floret-like multinucleated giant cells in neurofibroma

    Directory of Open Access Journals (Sweden)

    Golka Dariusz

    2007-12-01

    Full Text Available Abstract This short report discusses a case of neurofibroma containing floret-like multinucleated giant cells. This being the second such case in the literature. Floret-like multinucleated giant cells have been reported in gynaecomastia and neurofibroma in neurofibromatosis type 1. These cells have been reported in uncommon soft tissue tumours including pleomorphic lipoma, giant cell collagenoma, giant cell fibroblastoma and giant cell angiofibroma. We recommend these cells to be interpreted carefully keeping in mind the rare malignant change in neurofibromas. Immunohistochemistry would help in defining the nature of such cells.

  4. Sucrose-mediated giant cell formation in the genus Neisseria.

    Science.gov (United States)

    Johnson, K G; McDonald, I J

    1976-03-01

    Growth of Neisseria perflava, Neisseria cinerea, and Neisseria sicca strain Kirkland in media supplemented with sucrose (0.5 to 5.0% w/v) resulted in the formation of giant cells. Response to sucrose was specific in that a variety of other carbohydrates did not mediate giant cell formation. Giant cells appeared only under growth conditions and did not lyse upon transfer to medium lacking sucrose or upon resuspension in hypotonic media. Reversion of giant to normal cells occurred when giant cells were used as inocula and allowed to multiply in media lacking sucrose.

  5. Dynamo-generated magnetic fields in fast rotating single giants

    CERN Document Server

    Konstantinova-Antova, Renada; Schröder, Klaus-Peter; Petit, Pascal

    2009-01-01

    Red giants offer a good opportunity to study the interplay of magnetic fields and stellar evolution. Using the spectro-polarimeter NARVAL of the Telescope Bernard Lyot (TBL), Pic du Midi, France and the LSD technique, we began a survey of magnetic fields in single G-K-M giants. Early results include 6 MF-detections with fast rotating giants, and for the first time a magnetic field was detected directly in an evolved M-giant: EK Boo. Our results could be explained in the terms of $\\alpha$--$\\omega$ dynamo operating in these giants.

  6. Exploring the Relationship Between Planet Mass and Atmospheric Metallicity for Cool Giant Planets

    Science.gov (United States)

    Thomas, Nancy H.; Wong, Ian; Knutson, Heather; Deming, Drake; Desert, Jean-Michel; Fortney, Jonathan J.; Morley, Caroline; Kammer, Joshua A.; Line, Michael R.

    2016-10-01

    Measurements of the average densities of exoplanets have begun to help constrain their bulk compositions and to provide insight into their formation locations and accretionary histories. Current mass and radius measurements suggest an inverse relationship between a planet's bulk metallicity and its mass, a relationship also seen in the gas and ice giant planets of our own solar system. We expect atmospheric metallicity to similarly increase with decreasing planet mass, but there are currently few constraints on the atmospheric metallicities of extrasolar giant planets. For hydrogen-dominated atmospheres, equilibrium chemistry models predict a transition from CO to CH4 below ~1200 K. However, with increased atmospheric metallicity the relative abundance of CH4 is depleted and CO is enhanced. In this study we present new secondary eclipse observations of a set of cool (planet mass and atmospheric metallicity as predicted by the core accretion models and observed in our solar system.

  7. Magnetic fields in giant planet formation and protoplanetary discs

    Science.gov (United States)

    Keith, Sarah Louise

    2015-12-01

    Protoplanetary discs channel accretion onto their host star. How this is achieved is critical to the growth of giant planets which capture their massive gaseous atmosphere from the surrounding flow. Theoretical studies find that an embedded magnetic field could power accretion by hydromagnetic turbulence or torques from a large-scale field. This thesis presents a study of the inuence of magnetic fields in three key aspects of this process: circumplanetary disc accretion, gas flow across gaps in protoplanetary discs, and magnetic-braking in accretion discs. The first study examines the conditions needed for self-consistent accretion driven by magnetic fields or gravitational instability. Models of these discs typically rely on hydromagnetic turbulence as the source of effective viscosity. However, magnetically coupled,accreting regions may be so limited that the disc may not support sufficient inflow. An improved Shakura-Sunyaev ? disc is used to calculate the ionisation fraction and strength of non-ideal effects. Steady magnetically-driven accretion is limited to the thermally ionised, inner disc so that accretion in the remainder of the disc is time-dependent. The second study addresses magnetic flux transport in an accretion gap evacuated by a giant planet. Assuming the field is passively drawn along with the gas, the hydrodynamical simulation of Tanigawa, Ohtsuki & Machida (2012) is used for an a posteriori analysis of the gap field structure. This is used to post-calculate magnetohydrodynamical quantities. This assumption is self-consistent as magnetic forces are found to be weak, and good magnetic coupling ensures the field is frozen into the gas. Hall drift dominates across much of the gap, with the potential to facilitate turbulence and modify the toroidal field according to the global field orientation. The third study considers the structure and stability of magnetically-braked accretion discs. Strong evidence for MRI dead-zones has renewed interest in

  8. Structure and Evolution of Hot Gas in 30 Dor

    CERN Document Server

    Wang, Q D

    1999-01-01

    We have investigated the structure and evolution of hot gas in the 30 Dor nebula, based on recent X-ray observations. Our deep ROSAT HRI image shows that diffuse X-ray emission arises in blister-shaped regions outlined by loops of HII gas. X-ray spectroscopic data from ASCA confirm the thermal nature of the emission and indicate that hot gas temperature decreases from the core to the halo of the nebula. The structure of the nebula can be understood as outflows of hot and HII gases from the parent giant molecular cloud of the central OB association. The dynamic mixing between the two gas phases is likely responsible for the mass loading to the hot gas, as required to explain the observed thermal structure and X-ray luminosity of the nebula. Such processes should also be important in the formation of similar giant HII regions and in their subsequent evolution into supergiant bubbles or galactic chimneys.

  9. Making Planet Nine: A Scattered Giant in the Outer Solar System

    CERN Document Server

    Bromley, Benjamin C

    2016-01-01

    Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least ten times the mass of the Earth and a perihelion well beyond 100 AU, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore this possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 AU. Massive disks that clear from the inside out on million-year time scales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over t...

  10. Giant hepatic regenerative nodules in Alagille syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Jordan B. [Lewis Katz School of Medicine at Temple University, Department of Radiology, Temple University Hospital, Philadelphia, PA (United States); Bellah, Richard D.; Anupindi, Sudha A. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); Maya, Carolina [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Pawel, Bruce R. [University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); The Children' s Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Philadelphia, PA (United States)

    2017-02-15

    Children with Alagille syndrome undergo surveillance radiologic examinations as they are at risk for developing cirrhosis and hepatocellular carcinoma. There is limited literature on the imaging of liver masses in Alagille syndrome. We report the ultrasound (US) and magnetic resonance imaging (MRI) appearances of incidental benign giant hepatic regenerative nodules in this population. To describe the imaging findings of giant regenerative nodules in patients with Alagille syndrome. A retrospective search of the hospital database was performed to find all cases of hepatic masses in patients with Alagille syndrome during a 10-year period. Imaging, clinical charts, laboratory data and available pathology were reviewed and analyzed and summarized for each patient. Twenty of 45 patients with confirmed Alagille syndrome had imaging studies. Of those, we identified six with giant focal liver masses. All six patients had large central hepatic masses that were remarkably similar on US and MRI, in addition to having features of cirrhosis. In each case, the mass was located in hepatic segment VIII and imaging showed the mass splaying the main portal venous branches at the hepatic hilum, as well as smaller portal and hepatic venous branches coursing through them. On MRI, signal intensity of the mass was isointense to liver on T1-weighted sequences in four of six patients, but hyperintense on T1 in two of six patients. In all six cases, the mass was hypointense on T2- weighted sequences. The mass post-contrast was isointense to adjacent liver in all phases in five the cases. Five out of six patients had pathological correlation demonstrating preserved ductal architecture confirming the final diagnosis of a regenerative nodule. Giant hepatic regenerative nodules with characteristic US and MR features can occur in patients with Alagille syndrome with underlying cirrhosis. Recognizing these lesions as benign giant hepatic regenerative nodules should, thereby, mitigate any need for

  11. Constructing stable 3D hydrodynamical models of giant stars

    CERN Document Server

    Ohlmann, Sebastian T; Pakmor, Rüdiger; Springel, Volker

    2016-01-01

    Hydrodynamical simulations of stellar interactions require stable models of stars as initial conditions. Such initial models, however, are difficult to construct for giant stars because of the wide range in spatial scales of the hydrostatic equilibrium and in dynamical timescales between the core and the envelope of the giant. They are needed for, e.g., modeling the common envelope phase where a giant envelope encompasses both the giant core and a companion star. Here, we present a new method of approximating and reconstructing giant profiles from a stellar evolution code to produce stable models for multi-dimensional hydrodynamical simulations. We determine typical stellar stratification profiles with the 1D stellar evolution code MESA. After an appropriate mapping, hydrodynamical simulations are conducted using the moving-mesh code AREPO. The giant profiles are approximated by replacing the core of the giant with a point mass and by constructing a suitable continuation of the profile to the center. Differen...

  12. PERIPHERAL GIANT CELL GRANULOMAS OF ORAL CAVITY: OUR EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Kamal

    2015-07-01

    Full Text Available Peripheral giant cell granuloma or the so - called “giant cell epulis” is the most common oral giant cell lesion. Peripheral giant cell granuloma (PGCG is an infrequent exophytic lesion of the oral cavity, also known as giant - cell hyperplasia, osteoclastoma, or giant cell reparative granuloma. Lesions vary in appearance from smooth, regularly outlined masses to irregularly shaped, multilobulated protuberances with surface indentations. Ulcerations of the margin are occasionally seen . This lesion probably does not represent a true neoplasm, but rather may be reactive in nature, believed to be stimulated by local irritation or trauma, but the cause is not certainly known. The aim in publishing this study is to present the clinical, histopathological features and treatment of peripheral giant cell granulomas of various sizes in different age groups in jaws

  13. Modeling Impacts of Climate Change on Giant Panda Habitat

    Directory of Open Access Journals (Sweden)

    Melissa Songer

    2012-01-01

    Full Text Available Giant pandas (Ailuropoda melanoleuca are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

  14. Giant Impact: An Efficient Mechanism for the Devolatilization of Super-Earths

    Science.gov (United States)

    Liu, Shang-Fei; Hori, Yasunori; Lin, D. N. C.; Asphaug, Erik

    2015-10-01

    Mini-Neptunes and volatile-poor super-Earths coexist on adjacent orbits in proximity to host stars such as Kepler-36 and Kepler-11. Several post-formation processes have been proposed for explaining the origin of the compositional diversity between neighboring planets: mass loss via stellar XUV irradiation, degassing of accreted material, and in situ accumulation of the disk gas. Close-in planets are also likely to experience giant impacts during the advanced stage of planet formation. This study examines the possibility of transforming volatile-rich super-Earths/mini-Neptunes into volatile-depleted super-Earths through giant impacts. We present the results of three-dimensional hydrodynamic simulations of giant impacts in the accretionary and disruptive regimes. Target planets are modeled with a three-layered structure composed of an iron core, silicate mantle, and hydrogen/helium envelope. In the disruptive case, the giant impact can remove most of the H/He atmosphere immediately and homogenize the refractory material in the planetary interior. In the accretionary case, the planet is able to retain more than half of the original gaseous envelope, while a compositional gradient suppresses efficient heat transfer as the planetary interior undergoes double-diffusive convection. After the giant impact, a hot and inflated planet cools and contracts slowly. The extended atmosphere enhances the mass loss via both a Parker wind induced by thermal pressure and hydrodynamic escape driven by the stellar XUV irradiation. As a result, the entire gaseous envelope is expected to be lost due to the combination of those processes in both cases. Based on our results, we propose that Kepler-36b may have been significantly devolatilized by giant impacts, while a substantial fraction of Kepler-36c’s atmosphere may remain intact. Furthermore, the stochastic nature of giant impacts may account for the observed large dispersion in the mass-radius relationship of close-in super

  15. An interesting natural phenomenon - giant rings on Lake Baikal ice

    Science.gov (United States)

    Kouraev, Alexei; Shimaraev, Michail; Remy, Frederique; Ivanov, Andrei; Golubov, Boris

    2010-05-01

    Starting from May 2009 scientific community and large public have been puzzled by the formation of giant rings on Baikal ice. These rings (diameter 5-7 km, thickness of dark layer - 1 - 1.8 km) have almost perfect circular shape what makes them so interesting and attractive not only to scientists, but also for large public. . The rings have been observed since 1999 by various satellites and sensors (AVHRR, MODIS, Landsat, SPOT) as early as 1999 but probably also in 1984 and 1994 (Shuttle missions). These rings are usually well observed in April, when snow cover is thin or absent. Rings have been observed in the southern tip of the lake (2009), and in three places in the central part: near Krestovskiy cape (1999, 2003, 2005 and 2008), near Turka (2008), and near Cape Nizhnee Izgolovye (2009). All these places are located in the region of steep bottom topography, over depths of more than 500 m. According to in situ measurements done by the Limnological Institute in Irkutsk in 2009, ice thickness is about 70 cm in the center and on the outside of the ring, and 40 cm in the ring itself. It is known that the Baikal lake has important hydrothermal activity, and there are numerous observations of gas (methane etc) seepage from its 7 km-thick layer of bottom sediments. Local-scale absence of ice cover (steamthroughs or "propariny") is typical for some places in Lake Baikal. They result from gas emissions (associated with rise of warm water), near capes and straits (due to better vertical mixing), thermal sources, outlets of large rivers. Often they are observed near Capes Big and Small Kadil'niy, and in the Olkhonskiye vorota strait. However they size ranges from just a half a meter to several hundreds of meters (but not several kilometers) and this could not be an explanation for the formation of giant rings. We present several existing hypotheses of the origin of these rings including gas emission, heat flux, cyclonic subsurface currents and mega-bubble formation due to

  16. Gas and Gas Pains

    Science.gov (United States)

    ... problems with gas if you: Are lactose or gluten intolerant Eat a diet rich in fruits, vegetables, whole grains and legumes Drink carbonated beverages Have a chronic intestinal condition, such as irritable bowel syndrome or inflammatory bowel disease Neither age nor sex ...

  17. Dying Stars Indicate Lots of Dark Matter in Giant Galaxy

    Science.gov (United States)

    1994-04-01

    Very difficult and time-consuming observations performed with the ESO 3.5-metre New Technology Telescope (NTT) in November 1993 by an international team of astronomers [1], indicate that up to 90 percent of the matter in a distant giant galaxy may be of a kind that cannot be seen by normal telescopes. The astronomers were able to observe the individual motions of 37 extremely faint Planetary Nebulae [2] in the outskirts of the giant elliptical galaxy NGC 1399 that is located at the centre of the southern Fornax cluster of galaxies, at a distance of about 50 million light-years. The mass of the galaxy can be inferred from these motions: the faster they are, the more massive is the galaxy. Surprisingly, the total mass of NGC 1399 found from these new measurements is about ten times as large as the combined mass of the stars and nebulae seen in this galaxy. These new results also have important implications for the current ideas about the formation of giant galaxies. GIANT GALAXIES Galaxies are the basic building blocks of the Universe. Some look like spinning spirals, like our own Milky Way galaxy, with its several hundreds of billions of stars in a flat, rotating disk. Some galaxies lead a comparatively quiet life, others are violent and explosive. But perhaps the most enigmatic of them all are the largest ones, the giant elliptical galaxies. They are huge collections of stars and hot gas, 100 times brighter than the Milky Way and in many of them, the hot gas is a powerful emitter of radio waves and X-rays. The giant galaxies are mostly found at the centres of vast clusters of hundreds or thousands of smaller galaxies, like swarms of bees about the central hive. How did these great galaxies form at the centres of their clusters? Astronomers who make computer simulations of the early Universe believe they know the answer. In their simulations, they see these giant galaxies forming by gradual aggregation of small clumps of matter falling towards the centre, thereby

  18. On the feedback from super stellar clusters. I. The structure of giant HII regions and HII galaxies

    CERN Document Server

    Tenorio-Tagle, G; Pérez, E; Silich, S; Telles, E

    2006-01-01

    We review the structural properties of giant extragalactic HII regions and HII galaxies based on 2D hydrodynamic calculations, and propose an evolutionary sequence that accounts for their observed detailed structure. The model assumes a massive and young stellar cluster surrounded by a large collection of clouds. These are thus exposed to the most important star-formation feedback mechanisms: photoionization and the cluster wind. The models show how the two feedback mechanisms compete in the disruption of clouds and lead to two different hydrodynamic solutions: The storage of clouds into a long lasting ragged shell that inhibits the expansion of the thermalized wind, and the steady filtering of the shocked wind gas through channels carved within the cloud stratum. Both solutions are claimed to be concurrently at work in giant HII regions and HII galaxies, causing their detailed inner structure. This includes multiple large-scale shells, filled with an X-ray emitting gas, that evolve to finally merge with each...

  19. A Mechanism of Exciting Planetary Inclination and Eccentricity through a Residual Gas Disk

    CERN Document Server

    Chen, Yuan-Yuan; Zhao, Gang; Zhou, Ji-Lin

    2013-01-01

    Accordling to the theory of Kozai resonance, the initial mutual inclination between a small body and a massive planet in an outer circular orbit is as high as $\\sim39.2^{\\circ}$ for pumping the eccentricity of the inner small body. Here we show that, with the presence of a residual gas disk outside two planetary orbits, the inclination can be reduced as low as a few degrees. The presence of disk changes the nodal precession rates and directions of the planet orbits. At the place where the two planets achieve the same nodal processing rate, vertical secular resonance would occur so that mutual inclination of the two planets will be excited, which might trigger the Kozai resonance between the two planets further. However, in order to pump an inner Jupiter-like planet, the conditions required for the disk and the outer planet are relatively strict. We develop a set of evolution equations, which can fit the N-body simulation quite well but be integrated within a much shorter time. By scanning the parameter spaces...

  20. The Metallicity Dependence of Giant Planet Incidence

    CERN Document Server

    Gonzalez, Guillermo

    2014-01-01

    We describe three corrections that should be applied to the observed relative incidence of nearby stars hosting giant planets. These are diffusion in the stellar atmosphere, use of the [Ref] index in place of [Fe/H] for metallicity, and correction for local sampling with the W velocity. We have applied these corrections to a subset of the SPOCS exoplanet survey with uniform giant planet detectability. Fitting the binned data to a power law of the form, $\\alpha 10^{\\beta [Fe/H]}$, we derived $\\alpha = 0.022 \\pm 0.007$ and $\\beta = 3.0 \\pm 0.5$; this value of $\\beta$ is 50\\% larger than the value determined by \\citet{fv05}. While the statistical significance of this difference is marginal, given the small number statistics, these corrections should be included in future analyses that include larger samples.

  1. Giant colonic diverticulum: radiographic and MDCT characteristics.

    Science.gov (United States)

    Zeina, Abdel-Rauf; Mahamid, Ahmad; Nachtigal, Alicia; Ashkenazi, Itamar; Shapira-Rootman, Mika

    2015-12-01

    Giant colonic diverticulum (GCD), defined as a diverticulum larger than 4 cm, is a rare entity that is generally a manifestation of colonic diverticular disease. Because of its rarity and its variable and non-specific presentation, the diagnosis of GCD depends mainly on imaging findings. Knowledge of the spectrum of radiographic and CT features of the GCD is important in making the correct diagnosis and potentially preventing complications. This review focuses on imaging findings characteristic of GCD as well as its complications and radiographic mimics. Teaching points • Giant colonic diverticulum is a rare complication of diverticulosis.• The most common symptom is abdominal pain presenting in approximately 70 % of patients.• Diagnosis is based on imaging findings with plain abdominal radiographs and MDCT.• Treatment consists of en bloc resection of the diverticulum and affected adjacent colon.

  2. Fingering Convection in Red Giants Revisited

    CERN Document Server

    Wachlin, F C; Althaus, L G

    2014-01-01

    Fingering (thermohaline) convection has been invoked for several years as a possible extra-mixing which could occur in Red Giant stars due to the modification of the chemical composition induced by nuclear reactions in the hydrogen burning zone. Recent studies show however that this mixing is not sufficient to account for the needed surface abundances. A new prescription for fingering convection, based on 3D numerical simulations has recently been proposed (BGS). The resulting mixing coefficient is larger than the ones previously given in the literature. We compute models using this new coefficient and compare them to previous studies. We use the LPCODE stellar evolution code with the GNA generalized version of the mixing length theory to compute Red Giant models and we introduce fingering convection using the BGS prescription. The results show that, although the fingering zone now reaches the outer dynamical convective zone, the efficiency of the mixing is not enough to account for the observations. The fing...

  3. Giant radio galaxies and cosmic web

    Science.gov (United States)

    Heinämäki, Pekka

    2016-10-01

    Giant radio galaxies create the welldistinguishable class of sources.These sources are characterized with edge-brightened radio lobes withhighly collimated radio jets and large linear sizes which make themthe largest individual structures in the Universe. They are also knownto be hosted by elliptical/disturbed host galaxies and avoid clustersand high galaxy density regions. Because of GRG, large linear sizeslobes extend well beyond the interstellar media and host galaxyhalo the evolution of the radio lobes may depend on interactionwith this environment. Using our method to extract filamentarystructure of the galaxies in our local universe we study whetherradio lobe properties in some giant radio galaxies are determinedon an interaction of this filament ambient.

  4. Taxonomy of Indonesian giant clams (Cardiidae, Tridacninae

    Directory of Open Access Journals (Sweden)

    UDHI EKO HERNAWAN

    2012-07-01

    Full Text Available Hernawan E. 2012. Taxonomy of Indonesian giant clams (Cardiidae, Tridacninae. Biodiversitas 13: 118-123. A taxonomic study was conducted on the giant clam’s specimens deposited in Museum Zoologicum Bogoriense (MZB, Cibinong Indonesia. Taxonomic overviews of the examined specimens are given with diagnostic characters, remarks, habitat and distribution. Discussion is focused on specific characters distinguishing each species. From seven species known to distribute in Indonesian waters, there are six species, Tridacna squamosa Lamarck, 1819; T. gigas Linnaeus, 1758; T. derasa Roding, 1798; T. crocea Lamarck, 1819; T. maxima Roding,1798; and Hippopus hippopus Linnaeus, 1758. This study suggests the need for collecting specimen of H. porcellanus Rosewater, 1982. Important characters to distinguish species among Tridacninae are interlocking teeth on byssal orifice, life habits, presence of scales and inhalant siphon tentacles.

  5. Spectroscopy of late type giant stars

    Science.gov (United States)

    Spaenhauer, A.; Thevenin, F.

    1984-06-01

    An attempt to calibrate broadband RGU colors of late type giant stars in terms of the physical parameters of the objects is reported. The parameters comprise the effective temperature, surface gravity and global metal abundance with respect to the sun. A selection of 21 giant star candidates in the Basel fields Plaut 1, Centaurus III and near HD 95540 were examined to obtain a two color plot. Attention is focused on the G-R color range 1.5-2.15 mag, i.e., spectral types K0-K5. A relationship between R and the metallicity is quantified and shown to have a correlation coefficient of 0.93. No correlation is found between metallicity and gravity or R and the effective temperature.

  6. About a Case Report of Giant Hydronephrosis

    Directory of Open Access Journals (Sweden)

    Enrique Mediavilla

    2013-01-01

    Full Text Available Introduction. Our objective is to report a case of an infrequent entity as the giant hydronephrosis. Case Report. We report the case of an 82-syear-old male referred for a poor general condition. A radiological study revealed a great left hydronephrosis secondary to an urothelial carcinoma. The patient died due to his poor general condition. A histological diagnosis revealed a transitional cell carcinoma of renal pelvis and ureter and atrophic renal parenchyma. Conclusion. Giant hydronephrosis represents a very often entity to be taken into account in cases with big cystic abdominal masses in absence of unilateral or bilateral kidney. Simple nephrectomy is the treatment of choice in most cases. Nevertheless, in cases of nonsubsidiary surgery, percutaneous drainage may be necessary.

  7. Thermal escape from extrasolar giant planets.

    Science.gov (United States)

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres.

  8. A CASE REPORT OF GIANT GENITAL WARTS

    Directory of Open Access Journals (Sweden)

    L. Grimaldi

    2014-12-01

    Full Text Available Giant genital warts (GGW represent a rare form of sexually transmitted disease caused by the human papillomavirus, arising more frequently in the vulvar and perianal regions as large exophytic cauliflower-like mass. Estimated rate of recurrence is 60 to 66%, while malignant transformation is possible and it has been reported in 30 to 56% of cases. A 45- years-old woman was admitted to our Structure of Plastic and Reconstructive Surgery, Siena, Italy with an extensive cauliflower- like masses diffused on vulvar and perianal region. The patient was treated in general anaesthesia, with a wide en bloc excision up to free clinical edges and immediate reconstruction of the vulvar continuity. Buschke Lowenstein tumour or giant genital warts is a sporadic tumour with an elevate local recurrence rate. In some cases, surgery can be very difficult and it must be associated to other strategies. An accurate follow-up is always necessary

  9. Interacting Giant Gravitons from Spin Matrix Theory

    CERN Document Server

    Harmark, Troels

    2016-01-01

    Using the non-abelian DBI action we find an effective matrix model that describes the dynamics of weakly interacting giant gravitons wrapped on three-spheres in the AdS part of AdS_5 x S^5 at high energies with two angular momenta on the S^5. In parallel we consider the limit of \\CN=4 super Yang-Mills theory near a certain unitarity bound where it reduces to the quantum mechanical theory called SU(2) Spin Matrix Theory. We show that the exact same matrix model that describes the giant gravitons on the string theory side also provides the effective description in the strong coupling and large energy limit of the Spin Matrix Theory. Thus, we are able to match non-supersymmetric dynamics of D-branes on AdS_5 x S^5 to a finite-N regime in \\CN=4 super Yang-Mills theory near a unitarity bound.

  10. Multicentric giant cell tumor around the knee

    Directory of Open Access Journals (Sweden)

    Salgia Anil

    2007-01-01

    Full Text Available A case of multicentric giant cell tumor with synchronous occurrence in all three bones around the knee is reported here in view of its rarity. A 33-year-old average built male reported with complaints of severe pain, gradually increasing swelling around the right knee. A 3 x 2 cm swelling was present on the lateral aspect of the distal end of the right femur and a 3 x 3 cm swelling on the proximal part of the right tibia. Plain X-ray of right knee showed subarticular eccentrically located expansile lytic lesion in the lateral tibia condyle, lateral condyle of femur and patella. Fine needle aspiration cytology and subsequent histology ascertained the diagnosis of giant cell tumor of the bone. The patient was treated successfully with curettage, bone grafting and methyl methacrylate cementing (Sandwich technique.

  11. Giant Uterine Fibromyoma. A Case Report

    Directory of Open Access Journals (Sweden)

    Tahiluma Santana Pedraza

    2013-12-01

    Full Text Available The uterus is the common site for multiple benign and malignant conditions. Giant uterine fibromyoma is a benign tumor of low incidence. Its management poses a challenge for the surgical team because of the volume of the surgical specimen and the variations in the distribution of intra-abdominal organs caused by uterine growth. A case of a 43-year-old patient with a history of bronchial asthma and hypertension who presented with enlargement of the abdomen and vaginal bleeding is reported. The patient was attended by the General Surgery Department of the María Genoveva Guerrero Ramos Comprehensive Diagnostic Center in the Libertador Municipality, Capital District, Venezuela. Total abdominal hysterectomy and complementary appendectomy were performed. The histopathological study showed a giant uterine fibromyoma. Postoperative progress was satisfactory. It was decided to present the case due to its rarity.

  12. PERIPHERAL GIANT CELL GRANULOMA- A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Ashutosh Agrawal

    2013-07-01

    Full Text Available The peripheral giant cell granuloma (PGCG is a benign inflammatory hyperplastictype of lesion of unknown etiology occurring in gingiva or alveolar ridge. It normally presentsas a soft tissue purplish-red nodule consisting of multinucleated giant cells in a background ofmononuclear stromal cells and extravasated red blood cells. A 75 years old male patientreported with a chief complaint of pain and swelling in lower right back region of mouth. Onintra-oral examination the swelling was red, firm and sessile with smooth surface texture. Theorthopantomogram (OPG revealed a well-demarcated radiolucency extending from distalaspect of mandibular canine to mesial aspect of mandibular first molar. The cone beamcomputed tomography also showed the features suggestive of soft tissue lesion causingcupping resorption of mandible. Excisional biopsy was performed under local anaesthesiaand tissue was examined histopathologically. The lesion was diagnosed as PGCG afterthorough clinical, radiologic and histopathologic examination.

  13. Red Giant evolution and specific problems

    CERN Document Server

    Bressan, Alessandro; Girardi, Leo; Nanni, Ambra; Rubele, Stefano

    2013-01-01

    In spite of the great effort made in the last decades to improve our understanding of stellar evolution, significant uncertainties still remain due to our poor knowledge of some complex physical processes that still require an empirical calibration, such as the efficiency of convective heat transport and interior mixing. Here we will review the impact of these uncertainties on the evolution of red giant stars.

  14. Giant velum interpositum meningioma in a child

    OpenAIRE

    Aliasgar V Moiyadi; Prakash Shetty

    2012-01-01

    Intraventricular meningiomas are rare, but are relatively more often seen in children. Large size at presentation often obscures anatomical details. A particular subset of such tumors arising from the velum interpositum pose a significant surgical challenge. Thorough preoperative imaging, especially with respect to the course of the deep venous structures, provides useful evidence as to the origin. Preservation of venous anatomy at surgery is vital. We describe a 3-year-old girl with a giant ...

  15. Giant intraparenchymal neurocysticercosis: Unusual MRI findings

    Directory of Open Access Journals (Sweden)

    Agarwal Prachi

    2004-04-01

    Full Text Available We report a case of surgically proven giant neurocysticercosis (NCC. MR imaging revealed an unusually large solitary parenchymal cystic lesion showing signal intensity similar to CSF on all pulse sequences, with internal septations and a small nodule in the anterior aspect of this lesion compatible with this diagnosis. Identification of a scolex in a cystic lesion with CSF intensity plays a key role in the diagnosis of NCC. The presence of internal septations is an atypical feature.

  16. Trichomonas tenax: ultrastructure of giant forms.

    Science.gov (United States)

    Ribaux, C L; Joffre, A; Magloire, H

    1988-03-01

    Trichomonas tenax is a parasitic flagellate of the human mouth. The morphology and the ultrastructure of the protozoan are identical to those of other trichomonads. Giant forms suddenly appeared in a strain maintained in culture for two years. The structure and the ultrastructure of these abnormal forms were studied at the light and electron microscope level. Several nuclei, groups of flagella, undulating membranes and Golgi complexes were observed. The significance of these forms is still unknown.

  17. Giant Leiomyosarcoma of the Urinary Bladder.

    Science.gov (United States)

    Ribeiro, José G A; Klojda, Carlos A B; Araújo, Claudio P De; Pires, Lucas A S; Babinski, Marcio A

    2016-05-01

    The bladder leiomyosarcoma is a rare and agressive mesenchymal tumour, and adult women of reproductive age have a higher incidence of developing the bladder leiomyosarcoma. The pathophysiology of the disease is not certain, and its main symptoms are hematuria, dysuria and abdominal pain. There are not a considerable amount of cases described in the literature. We report a case of a giant leiomyosarcoma of the urinary bladder in a 31-year-old woman.

  18. A case of giant prostatic hyperplasia

    OpenAIRE

    Luke Wang; Paul Davis; Kevin McMillan

    2016-01-01

    Benign prostatic hyperplasia (BPH) is one of the most common conditions experienced by aging males and a frequent cause of bladder outlet obstruction and macroscopic haematuria. Giant prostatic hyperplasia (GPH) is an extremely rare form of prostatic hyperplasia. We present a case of a patient with GPH of 800 mL. To our knowledge, this is the fourth largest prostatic hyperplasia ever reported in the literature.

  19. Giant gastric trichobezoar in a young female.

    Science.gov (United States)

    Ibuowo, Abdulrazaq Akin; Saad, Anwar; Okonkwo, Thomas

    2008-12-01

    Bezoars are concretions of undigested matter in the gastrointestinal tract (GIT), most commonly in the stomach. The main predispositions to bezoar formation are, altered GIT anatomy or disordered GIT motility/physiology. Clinically, bezoars are classified according to their predominant component. Trichobezoars (composed mainly of hair) as a clinical entity are almost always associated with an underlying psychiatric disorder. We present below a case of giant gastric trichobezoar in a young female which was treated by gastrostomy and excision of the mass.

  20. Giant osteoblastoma of temporal bone: case report

    Directory of Open Access Journals (Sweden)

    FIGUEIREDO EBERVAL GADELHA

    1998-01-01

    Full Text Available Benign osteoblastoma is an uncommon bone tumor accounting for approximately 1% of all bone tumors. There are only 35 cases of skull osteoblastoma reported in the literature. We describe the case of a 23 year old male with a giant osteoblastoma of temporal bone submitted to a total removal of the tumor after an effective embolization of all external carotid branches. The authors discuss diagnostic and management aspects of this uncommon skull tumor.

  1. Asteroseismic age determination for dwarfs and giants

    CERN Document Server

    Aguirre, V Silva

    2015-01-01

    Asteroseismology can make a substantial contribution to our understanding of the formation history and evolution of our Galaxy by providing precisely determined stellar properties for thousands of stars in different regions of the Milky Way. We present here the different sets of observables used in determining asteroseismic stellar properties, the typical level of precision obtained, the current status of results for ages of dwarfs and giants and the improvements than can be expected in the near future in the context of Galactic archaeology.

  2. A case of giant prostatic hyperplasia

    Directory of Open Access Journals (Sweden)

    Luke Wang

    2016-01-01

    Full Text Available Benign prostatic hyperplasia (BPH is one of the most common conditions experienced by aging males and a frequent cause of bladder outlet obstruction and macroscopic haematuria. Giant prostatic hyperplasia (GPH is an extremely rare form of prostatic hyperplasia. We present a case of a patient with GPH of 800 mL. To our knowledge, this is the fourth largest prostatic hyperplasia ever reported in the literature.

  3. Giant Magneto-Impedance and its Applications

    CERN Document Server

    Tannous, C

    2002-01-01

    The status of Giant Magneto-Impedance effect is reviewed in Wires, Ribbons and Multilayered Soft Ferromagnetic Thin Films. After establishing the theoretical framework for the description of the effect, and the constraints any material should have in order to show the effect, experimental work in Wires, Ribbons and Multilayered Thin Films is described. Existing and potential applications of the effect in Electronics and Sensing are highlighted.

  4. Giant Myoepithelioma of the Soft Palate

    Directory of Open Access Journals (Sweden)

    Murat Oktay

    2014-01-01

    Full Text Available Myoepitheliomas are benign salivary gland tumors and account for less than 1% of all salivary gland tumors. They are usually located in the parotid gland. The soft palate is very rare affected site. The differential diagnosis of myoepitheliomas should include reactive and neoplastic lesions. The treatment of myoepitheliomas is complete removal of the tumor. Herein, we report a case with giant myoepithelioma of the soft palate, reviewing the related literature.

  5. Giant eruptions of very massive stars

    CERN Document Server

    Davidson, Kris

    2016-01-01

    Giant eruptions or supernova-impostor events are far more mysterious than true supernovae. An extreme example can release as much radiative energy as a SN, ejecting several M_sun of material. These events involve continuous radiation-driven outflows rather than blast waves. They constitute one of the main unsolved problems in stellar astrophysics, but have received surprisingly little theoretical effort. Here I note some aspects that are not yet familiar to most astronomers.

  6. Muscle Giants: Molecular Scaffolds in Sarcomerogenesis

    OpenAIRE

    2009-01-01

    Myofibrillogenesis in striated muscles is a highly complex process that depends on the coordinated assembly and integration of a large number of contractile, cytoskeletal, and signaling proteins into regular arrays, the sarcomeres. It is also associated with the stereotypical assembly of the sarcoplasmic reticulum and the transverse tubules around each sarcomere. Three giant, muscle-specific proteins, titin (3–4 MDa), nebulin (600–800 kDa), and obscurin (~720–900 kDa), have been proposed to p...

  7. Radio Mode Outbursts in Giant Elliptical Galaxies

    CERN Document Server

    Nulsen, Paul; Forman, William; Churazov, Eugene; McNamara, Brian; David, Laurence; Murray, Stephen

    2009-01-01

    Outbursts from active galactic nuclei (AGN) affect the hot atmospheres of isolated giant elliptical galaxies (gE's), as well as those in groups and clusters of galaxies. Chandra observations of a sample of nearby gE's show that the average power of AGN outbursts is sufficient to stop their hot atmospheres from cooling and forming stars, consistent with radio mode feedback models. The outbursts are intermittent, with duty cycles that increases with size.

  8. Rare cause of odynophagia: Giant esophageal ulcer.

    Science.gov (United States)

    Veroux, Massimiliano; Aprile, Giuseppe; Amore, Francesca F; Corona, Daniela; Giaquinta, Alessia; Veroux, Pierfrancesco

    2016-04-14

    Gastrointestinal complications are a frequent cause of morbidity after transplantation and may affect up to 40% of kidney transplant recipients. Here we report a rare case of idiopathic giant esophageal ulcer in a kidney transplant recipient. A 37-year-old female presented with a one-week history of odynophagia and weight loss. Upon admission, the patient presented cold sores, and a quantitative cytomegalovirus polymerase chain reaction was positive (10(5) copies/mL). An upper endoscopy demonstrated the presence of a giant ulcer. Serological test and tissue biopsies were unable to demonstrate an infectious origin of the ulcer. Immunosuppression was reduced and everolimus was introduced. An empirical i.v. therapy with acyclovir was started, resulting in a dramatic improvement in symptoms and complete healing of the ulcer. Only two cases of idiopathic giant esophageal ulcer in kidney transplant recipients have been reported in the literature; in both cases, steroid therapy was successful without recurrence of symptoms or endoscopic findings. However, this report suggests that correction of immune imbalance is mandatory to treat such a rare complication.

  9. Social waves in giant honeybees repel hornets.

    Directory of Open Access Journals (Sweden)

    Gerald Kastberger

    Full Text Available Giant honeybees (Apis dorsata nest in the open and have evolved a plethora of defence behaviors. Against predatory wasps, including hornets, they display highly coordinated Mexican wave-like cascades termed 'shimmering'. Shimmering starts at distinct spots on the nest surface and then spreads across the nest within a split second whereby hundreds of individual bees flip their abdomens upwards. However, so far it is not known whether prey and predator interact and if shimmering has anti-predatory significance. This article reports on the complex spatial and temporal patterns of interaction between Giant honeybee and hornet exemplified in 450 filmed episodes of two A. dorsata colonies and hornets (Vespa sp.. Detailed frame-by-frame analysis showed that shimmering elicits an avoidance response from the hornets showing a strong temporal correlation with the time course of shimmering. In turn, the strength and the rate of the bees' shimmering are modulated by the hornets' flight speed and proximity. The findings suggest that shimmering creates a 'shelter zone' of around 50 cm that prevents predatory wasps from foraging bees directly from the nest surface. Thus shimmering appears to be a key defence strategy that supports the Giant honeybees' open-nesting life-style.

  10. Social Waves in Giant Honeybees Repel Hornets

    Science.gov (United States)

    Kastberger, Gerald; Schmelzer, Evelyn; Kranner, Ilse

    2008-01-01

    Giant honeybees (Apis dorsata) nest in the open and have evolved a plethora of defence behaviors. Against predatory wasps, including hornets, they display highly coordinated Mexican wave-like cascades termed ‘shimmering’. Shimmering starts at distinct spots on the nest surface and then spreads across the nest within a split second whereby hundreds of individual bees flip their abdomens upwards. However, so far it is not known whether prey and predator interact and if shimmering has anti-predatory significance. This article reports on the complex spatial and temporal patterns of interaction between Giant honeybee and hornet exemplified in 450 filmed episodes of two A. dorsata colonies and hornets (Vespa sp.). Detailed frame-by-frame analysis showed that shimmering elicits an avoidance response from the hornets showing a strong temporal correlation with the time course of shimmering. In turn, the strength and the rate of the bees' shimmering are modulated by the hornets' flight speed and proximity. The findings suggest that shimmering creates a ‘shelter zone’ of around 50 cm that prevents predatory wasps from foraging bees directly from the nest surface. Thus shimmering appears to be a key defence strategy that supports the Giant honeybees' open-nesting life-style. PMID:18781205

  11. Giant basal cell carcinoma Carcinoma basocelular gigante

    Directory of Open Access Journals (Sweden)

    Nilton Nasser

    2012-06-01

    Full Text Available The basal cell carcinoma is the most common skin cancer but the giant vegetating basal cell carcinoma reaches less than 0.5 % of all basal cell carcinoma types. The Giant BCC, defined as a lesion with more than 5 cm at its largest diameter, is a rare form of BCC and commonly occurs on the trunk. This patient, male, 42 years old presents a Giant Basal Cell Carcinoma which reaches 180 cm2 on the right shoulder and was negligent in looking for treatment. Surgical treatment was performed and no signs of dissemination or local recurrence have been detected after follow up of five years.O carcinoma basocelular é o tipo mais comum de câncer de pele, mas o carcinoma basocelular gigante vegetante não atinge 0,5% de todos os tipos de carcinomas basocelulares. O Carcinoma Basocelular Gigante, definido como lesão maior que 5 cm no maior diâmetro, é uma forma rara de carcinoma basocelular e comumente ocorre no tronco. Este paciente apresenta um Carcinoma Basocelular Gigante com 180cm² no ombro direito e foi negligente em procurar tratamento. Foi realizado tratamento cirúrgico e nenhum sinal de disseminação ou recorrência local foi detectada após 5 anos.

  12. General circulation of giant planet atmospheres

    Science.gov (United States)

    Liu, J.; Schneider, T.

    2008-12-01

    The atmospheres of the giant planets are driven by differential solar heating and intrinsic heat fluxes emanating from the deep interior. We show that if both processes are taken into account in an energetic consistent manner, the observed large-scale features of the general circulations of all giant planet atmospheres can be reproduced. We use energetically consistent general circulation models to simulate the outer atmospheres of Jupiter, Saturn, Uranus, and Neptune. In the models, the solar radiative fluxes are deposited in the upper atmosphere by absorption and scattering, and temporally constant and spatially homogeneous heat fluxes consistent with the observed intrinsic heat fluxes are imposed at the bottom boundary. Convection transports heat from the bottom boundary into the upper atmosphere when the intrinsic heat fluxes are sufficiently strong to generate statically unstable conditions. For Jupiter and Saturn, the intrinsic heat fluxes are strong enough to lead to convection, which generates Rossby waves in the equatorial upper atmosphere. Momentum transport associated with these Rossby waves leads to the generation of equatorial superrotation on Jupiter and Saturn. For Uranus and Neptune, the intrinsic heat fluxes are not strong enough to lead to convection penetrating into the upper atmosphere; as a consequence, the equatorial flow is retrograde. Differences in the optical properties of the atmospheres and in planetary parameters such as the gravitational acceleration and rotation rate can account for the differences in the general circulations of the giant planets, such as the different jet widths and strengths.

  13. Simultaneous formation of Solar System giant planets

    CERN Document Server

    Guilera, O M; Brunini, A; Benvenuto, O G

    2011-01-01

    In the last few years, the so-called "Nice model" has got a significant importance in the study of the formation and evolution of the solar system. According to this model, the initial orbital configuration of the giant planets was much more compact than the one we observe today. We study the formation of the giant planets in connection with some parameters that describe the protoplanetary disk. The aim of this study is to establish the conditions that favor their simultaneous formation in line with the initial configuration proposed by the Nice model. We focus in the conditions that lead to the simultaneous formation of two massive cores, corresponding to Jupiter and Saturn, able to achieve the cross-over mass (where the mass of the envelope of the giant planet equals the mass of the core, and gaseous runway starts) while Uranus and Neptune have to be able to grow to their current masses. We compute the in situ planetary formation, employing the numerical code introduced in our previous work, for different d...

  14. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  15. An MSX Infrared Analysis of the Superbubble around Giant HII Region NGC3603

    CERN Document Server

    Wang, Jia

    2009-01-01

    Using the MSX mid-infrared observation, we reveal a 100 pc-scale superbubble surrounding the giant HII region NGC3603. We suggest that the diffuse surrounding infrared emission in bands A, C, and D is dominated by that of PAH and the emission in band E is dominated by that of dust grains. The fitted dust temperature is consistent with the heating by the central cluster's UV photons. The derived gas-to-dust mass ratio for the bubble shell is of order 10^2.

  16. Giant planet formation in the framework of the core instability model

    CERN Document Server

    Fortier, Andrea

    2010-01-01

    In this Thesis I studied the formation of the four giant planets of the Solar System in the framework of the nucleated instability hypothesis. The model considers that solids and gas accretion are coupled in an interactive fashion, taking into account detailed constitutive physics for the envelope. The accretion rate of the core corresponds to the oligarchic growth regime. I also considered that accreted planetesimals follow a size distribution. One of the main results of this Thesis is that I was able to compute the formation of Jupiter, Saturn, Uranus and Neptune in less than 10 million years, which is considered to be the protoplanetary disk mean lifetime.

  17. Shocks and a Giant Planet in the Disk Orbiting BP Piscium?

    CERN Document Server

    Melis, C; Chen, C H; Rhee, Joseph H; Song, Inseok; Zuckerman, B

    2010-01-01

    Spitzer IRS spectroscopy supports the interpretation that BP Piscium, a gas and dust enshrouded star residing at high Galactic latitude, is a first-ascent giant rather than a classical T Tauri star. Our analysis suggests that BP Piscium's spectral energy distribution can be modeled as a disk with a gap that is opened by a giant planet. Modeling the rich mid-infrared emission line spectrum indicates that the solid-state emitting grains orbiting BP Piscium are primarily composed of ~75 K crystalline, magnesium-rich olivine; ~75 K crystalline, magnesium-rich pyroxene; ~200 K amorphous, magnesium-rich pyroxene; and ~200 K annealed silica ('cristobalite'). These dust grains are all sub-micron sized. The giant planet and gap model also naturally explains the location and mineralogy of the small dust grains in the disk. Disk shocks that result from disk-planet interaction generate the highly crystalline dust which is subsequently blown out of the disk mid-plane and into the disk atmosphere.

  18. Giant arachnoid granulation in a patient with benign intracranial hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Kiroglu, Yilmaz; Yaqci, Baki; Cirak, Bayram; Karabulut, Nevzat [Pamukkale University, Department of Radiology, School of Medicine, Denizli (Turkey)

    2008-10-15

    We report magnetic resonance (MR), computed tomography (CT) and angiographic imaging of an unusual giant arachnoid granulation in the superior sagittal sinus in a man with headache and vertigo. Intrasinus pressure measurements revealed a significant pressure gradient across the lesion. MR imaging is useful to identify giant arachnoid granulation and dural sinus thrombosis, whereas dural sinus pressure measurement in certain cases of giant arachnoid granulations can be used to evaluate the lesion as the cause of the patient's symptoms. (orig.)

  19. Three cases giant panda attack on human at Beijing Zoo

    Science.gov (United States)

    Zhang, Peixun; Wang, Tianbing; Xiong, Jian; Xue, Feng; Xu, Hailin; Chen, Jianhai; Zhang, Dianying; Fu, Zhongguo; Jiang, Baoguo

    2014-01-01

    Panda is regarded as Chinese national treasure. Most people always thought they were cute and just ate bamboo and had never imagined a panda could be vicious. Giant panda attacks on human are rare. There, we present three cases of giant panda attacks on humans at the Panda House at Beijing Zoo from September 2006 to June 2009 to warn people of the giant panda’s potentially dangerous behavior. PMID:25550978

  20. Three cases giant panda attack on human at Beijing Zoo.

    Science.gov (United States)

    Zhang, Peixun; Wang, Tianbing; Xiong, Jian; Xue, Feng; Xu, Hailin; Chen, Jianhai; Zhang, Dianying; Fu, Zhongguo; Jiang, Baoguo

    2014-01-01

    Panda is regarded as Chinese national treasure. Most people always thought they were cute and just ate bamboo and had never imagined a panda could be vicious. Giant panda attacks on human are rare. There, we present three cases of giant panda attacks on humans at the Panda House at Beijing Zoo from September 2006 to June 2009 to warn people of the giant panda's potentially dangerous behavior.

  1. Three cases giant panda attack on human at Beijing Zoo

    OpenAIRE

    Zhang, Peixun; Wang, Tianbing; Xiong, Jian; Xue, Feng; Xu, Hailin; Chen, Jianhai; Zhang, Dianying; Fu, Zhongguo; Jiang, Baoguo

    2014-01-01

    Panda is regarded as Chinese national treasure. Most people always thought they were cute and just ate bamboo and had never imagined a panda could be vicious. Giant panda attacks on human are rare. There, we present three cases of giant panda attacks on humans at the Panda House at Beijing Zoo from September 2006 to June 2009 to warn people of the giant panda’s potentially dangerous behavior.

  2. On dynamo action in the giant star Pollux : first results

    CERN Document Server

    Palacios, A

    2013-01-01

    We present preliminary results of a 3D MHD simulation of the convective envelope of the giant star Pollux for which the rotation period and the magnetic ?eld intensity have been measured from spectroscopic and spectropolarimetric observations. This giant is one of the ?rst single giants with a detected magnetic ?eld, and the one with the weakest ?eld so far. Our aim is to understand the development and the action of the dynamo in its extended convective envelope.

  3. Jupiter's influence will lead Brazil to gas self-sufficiency

    Energy Technology Data Exchange (ETDEWEB)

    Abrantes, Dayse

    2008-07-01

    The discovery, announced last January, of a huge natural gas and condensates reservoir off the coast of Rio de Janeiro could make Brazil self-sufficient in gas said Guilherme Estrella, exploration and production director of Petrobras the state-controlled oil giant (author)

  4. Giant Impacts on Earth-Like Worlds

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    Earth has experienced a large number of impacts, from the cratering events that may have caused mass extinctions to the enormous impact believed to have formed the Moon. A new study examines whether our planets impact history is typical for Earth-like worlds.N-Body ChallengesTimeline placing the authors simulations in context of the history of our solar system (click for a closer look). [Quintana et al. 2016]The final stages of terrestrial planet formation are thought to be dominated by giant impacts of bodies in the protoplanetary disk. During this stage, protoplanets smash into one another and accrete, greatly influencing the growth, composition, and habitability of the final planets.There are two major challenges when simulating this N-body planet formation. The first is fragmentation: since computational time scales as N^2, simulating lots of bodies that split into many more bodies is very computationally intensive. For this reason, fragmentation is usually ignored; simulations instead assume perfect accretion during collisions.Total number of bodies remaining within the authors simulations over time, with fragmentation included (grey) and ignored (red). Both simulations result in the same final number of bodies, but the ones that include fragmentation take more time to reach that final number. [Quintana et al. 2016]The second challengeis that many-body systems are chaotic, which means its necessary to do a large number of simulations to make statistical statements about outcomes.Adding FragmentationA team of scientists led by Elisa Quintana (NASA NPP Senior Fellow at the Ames Research Center) has recently pushed at these challenges by modeling inner-planet formation using a code that does include fragmentation. The team ran 140 simulations with and 140 without the effects of fragmentation using similar initial conditions to understand how including fragmentation affects the outcome.Quintana and collaborators then used the fragmentation-inclusive simulations to

  5. Exotic Earths: Forming Habitable Worlds with Giant Planet Migration

    CERN Document Server

    Raymond, S N; Sigurdsson, S; Raymond, Sean N.; Mandell, Avi M.; Sigurdsson, Steinn

    2006-01-01

    Close-in giant planets (e.g. ``Hot Jupiters'') are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth mass planets also form interior to the migrating Jovian planet, analogous to recently-discovered ``Hot Earths''. Very water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the Habitable Zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  6. GIANT LIPOMA OF THE SPERMATIC CORD: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Hussain Ahmed

    2014-04-01

    Full Text Available Lipoma is a common soft tissue benign tumor. Lipomas of the spermatic cord are rare. We present here a case of giant lipoma of the spermatic cord presented as an irreducible inguinal hernia and its surgical management. The giant lipoma was completely excised and removed in toto. Giant lipoma of the spermatic cord is a large, irreducible, complete, sac-less and indirect fatty inguinal hernia. So, to avoid medico-legal consequences, giant lipoma of the spermatic cord should also be considered as hernias. [Natl J Med Res 2014; 4(2.000: 170-171

  7. Giant Planet Observations with the James Webb Space Telescope

    CERN Document Server

    Norwood, James; Fletcher, Leigh N; Orton, Glenn; Irwin, Patrick G J; Atreya, Sushil; Rages, Kathy; Cavalié, Thibault; Sánchez-Lavega, Agustin; Hueso, Ricardo; Chanover, Nancy

    2015-01-01

    This white paper examines the benefit of the upcoming James Webb Space Telescope for studies of the Solar System's four giant planets: Jupiter, Saturn, Uranus, and Neptune. JWST's superior sensitivity, combined with high spatial and spectral resolution, will enable near- and mid-infrared imaging and spectroscopy of these objects with unprecedented quality. In this paper we discuss some of the myriad scientific investigations possible with JWST regarding the giant planets. This discussion is preceded by the specifics of JWST instrumentation most relevant to giant planet observations. We conclude with identification of desired pre-launch testing and operational aspects of JWST that would greatly benefit future studies of the giant planets.

  8. Exotic Earths: forming habitable worlds with giant planet migration.

    Science.gov (United States)

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-08

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  9. File list: His.Plc.20.AllAg.Trophoblast_giant_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.20.AllAg.Trophoblast_giant_cells mm9 Histone Placenta Trophoblast giant cel...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Plc.20.AllAg.Trophoblast_giant_cells.bed ...

  10. File list: His.Plc.10.AllAg.Trophoblast_giant_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.10.AllAg.Trophoblast_giant_cells mm9 Histone Placenta Trophoblast giant cel...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Plc.10.AllAg.Trophoblast_giant_cells.bed ...

  11. File list: His.Plc.50.AllAg.Trophoblast_giant_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.50.AllAg.Trophoblast_giant_cells mm9 Histone Placenta Trophoblast giant cel...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Plc.50.AllAg.Trophoblast_giant_cells.bed ...

  12. File list: His.Plc.05.AllAg.Trophoblast_giant_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Plc.05.AllAg.Trophoblast_giant_cells mm9 Histone Placenta Trophoblast giant cel...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Plc.05.AllAg.Trophoblast_giant_cells.bed ...

  13. Cellular cannibalism in giant cells of central giant cell granuloma of jaw bones and giant cell tumors of long bones.

    Science.gov (United States)

    Sarode, Gargi S; Sarode, Sachin C; Gawande, Shailesh; Patil, Snehal; Anand, Rahul; Patil, Shankar Gouda; Patil, Prakash

    2017-05-01

    The aim of the present study was to investigate the relationship of central giant cell granuloma (CGCG) and giant cell tumor of long bones (GCT) with respect to cannibalistic giant cells (GCs). Sixteen cases each of CGCG and GCT were histopathologically analyzed for cannibalistic GCs. One hundred GCs were examined in each section, and the number of cannibalistic GCs was expressed in percentage. Cannibalistic GCs were seen in all cases of CGCG and GCT (100%). GCT showed significantly higher mean cannibalistic GC frequency (44.81 ± 1.013) than CGCG (32.06 ± 1.398), aggressive CGCG (38.17 ± 1.579), non-aggressive CGCG (28.40 ± 0.6360), non-recurrent CGCG (30.42 ± 1.417), and recurrent CGCG (37.00 ± 2.483). In aggressive CGCG, the mean cannibalistic GC frequency was significantly higher (38.17 ± 1.579) than the non-aggressive variant (28.40 ± 0.6360). Recurrent CGCG cases showed significantly higher mean cannibalistic GC frequency (37.00 ± 2.483) than non-recurrent cases (30.42 ± 1.417). Similarly, recurrent GCT showed significantly higher mean cannibalistic GC frequency (47.4 ± 4.97) than non-recurrent GCT (43.63 ± 3.1). The distinctness of CGCG and GCT was observed in terms of mean cannibalistic GC count. The assessment of cannibalistic GC in CGCG and GCT could help in predicting the biological behavior and grading of the tumor. © 2016 John Wiley & Sons Australia, Ltd.

  14. Ultrabass Sounds of the Giant Star xi Hya

    Science.gov (United States)

    2002-05-01

    times larger. The new observations demonstrate that xi Hya oscillates with several periods of around 3 hours. xi Hya is now approaching the end of its life - it is about to expand its outer envelope and to become a "red giant star" . It is quite different from stars like the Sun, which are only halfway through their active life. xi Hya is considerably more massive than any other star in which solar-like oscillations have so far been detected. This observational feat allows to study for the first time with seismic techniques the interior of such a highly evolved star. It paves the way for similar studies of different types of stars. A new chapter of stellar astrophysics is now opening as asteroseismology establishes itself as an ingenious method that is able to revolutionise our detailed understanding of stellar interiors and the overall evolution of stars . PR Photo 13a/02 : Oscillation frequencies in the Giant Star xi Hya PR Photo 13b/02 : Non-radial oscillations of xi Hya (computer graphics) PR Audio Clip 01/02 : Listen to the sound of xi Hya (RealMedia and MP3) The difficult art of asteroseismology Helioseismology (seismology of the Sun) is based on measurements of the changing radial velocity of the solar upper atmospheric layers (the "surface") by means of the well-known Doppler effect, as this surface moves up and down during acoustic oscillations. The corresponding amplitudes are very small, with velocities of up to 15 - 20 cm/sec, and the typical period is around 5 minutes. Therefore the phenomenon was first known as the "five-minute oscillations". Intensity measurements have also been tried, but the noise level is larger than for velocity data due to the presence of "granulation" (moving cells of hot gas) on the solar surface. In the case of larger and brighter stars like the giant stars, the corresponding amplitudes and periods increase. For instance, theoretical predictions for the giant star xi Hya have indicated that velocity amplitudes of about 7 m/sec and

  15. Chemical enrichment of giant planets and discs due to pebble drift

    Science.gov (United States)

    Booth, Richard A.; Clarke, Cathie J.; Madhusudhan, Nikku; Ilee, John D.

    2017-08-01

    Chemical compositions of giant planets provide a means to constrain how and where they form. Traditionally, super-stellar elemental abundances in giant planets were thought to be possible due to accretion of metal-rich solids. Such enrichments are accompanied by oxygen-rich compositions (i.e. C/O below the disc's value, assumed to be solar, C/O = 0.54). Without solid accretion, the planets are expected to have sub-solar metallicity, but high C/O ratios. This arises because the solids are dominated by oxygen-rich species, e.g. H2O and CO2, which freeze out in the disc earlier than CO, leaving the gas metal poor but carbon rich. Here we demonstrate that super-solar metallicities can be achieved by gas accretion alone when growth and radial drift of pebbles are considered in protoplanetary discs. Through this mechanism, planets may simultaneously acquire super-solar metallicities and super-solar C/O ratios. This happens because the pebbles transport volatile species inwards as they migrate through the disc, enriching the gas at snow lines where the volatiles sublimate. Furthermore, the planet's composition can be used to constrain where it formed. Since high C/H and C/O ratios cannot be created by accreting solids, it may be possible to distinguish between formation via pebble accretion and planetesimal accretion by the level of solid enrichment. Finally, we expect that Jupiter's C/O ratio should be near or above solar if its enhanced carbon abundance came through accreting metal-rich gas. Thus, Juno's measurement of Jupiter's C/O ratio should determine whether Jupiter accreted its metals from carbon-rich gas or oxygen-rich solids.

  16. Giant Low Surface Brightness Galaxies: Evolution in Isolation

    Indian Academy of Sciences (India)

    M. Das

    2013-03-01

    Giant Low Surface Brightness (GLSB) galaxies are amongst the most massive spiral galaxies that we know of in our Universe. Although they fall in the class of late type spiral galaxies, their properties are far more extreme. They have very faint stellar disks that are extremely rich in neutral hydrogen gas but low in star formation and hence low in surface brightness. They often have bright bulges that are similar to those found in early type galaxies. The bulges can host low luminosity Active Galactic Nuclei (AGN) that have relatively low mass black holes. GLSB galaxies are usually isolated systems and are rarely found to be interacting with other galaxies. In fact many GLSB galaxies are found under dense regions close to the edges of voids. These galaxies have very massive dark matter halos that also contribute to their stability and lack of evolution. In this paper we briefly review the properties of this unique class of galaxies and conclude that both their isolation and their massive dark matter halos have led to the low star formation rates and the slower rate of evolution in these galaxies.

  17. Detecting Exomoons Around Self-Luminous Giant Exoplanets Through Polarization

    Science.gov (United States)

    Sengupta, Sujan; Marley, Mark Scott

    2016-01-01

    Many of the directly imaged self-luminous gas giant exoplanets have been found to have cloudy atmo- spheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time resolved linear polarization signal. The peak amplitude of such time dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time resolved imaging polarimetry. Adopting detailed atmospheric models for several values of effective temperature and surface gravity which are appropriate for self-luminous exoplanets, we present the polarization profiles of these objects in the infrared during transit phase and estimate the peak amplitude of polarization that occurs during the the inner contacts of the transit ingress/egress phase. The peak polarization is predicted to range between 0.1 and 0.3 % in the infrared.

  18. Regulation of star formation in giant galaxies by precipitation, feedback and conduction.

    Science.gov (United States)

    Voit, G M; Donahue, M; Bryan, G L; McDonald, M

    2015-03-12

    The Universe's largest galaxies reside at the centres of galaxy clusters and are embedded in hot gas that, if left undisturbed, would cool quickly and create many more new stars than are actually observed. Cooling can be regulated by feedback from accretion of cooling gas onto the central black hole, but requires an accretion rate finely tuned to the thermodynamic state of the hot gas. Theoretical models in which cold clouds precipitate out of the hot gas via thermal instability and accrete onto the black hole exhibit the necessary tuning. Recent observational evidence shows that the abundance of cold gas in the centres of clusters increases rapidly near the predicted threshold for instability. Here we report observations showing that this precipitation threshold extends over a large range in cluster radius, cluster mass and cosmic time. We incorporate the precipitation threshold into a framework of theoretical models for the thermodynamic state of hot gas in galaxy clusters. According to that framework, precipitation regulates star formation in some giant galaxies, while thermal conduction prevents star formation in others if it can compensate for radiative cooling and shut off precipitation.

  19. A stability limit for the atmospheres of giant extrasolar planets.

    Science.gov (United States)

    Koskinen, Tommi T; Aylward, Alan D; Miller, Steve

    2007-12-06

    Recent observations of the planet HD209458b indicate that it is surrounded by an expanded atmosphere of atomic hydrogen that is escaping hydrodynamically. Theoretically, it has been shown that such escape is possible at least inside an orbit of 0.1 au (refs 4 and 5), and also that H3+ ions play a crucial role in cooling the upper atmosphere. Jupiter's atmosphere is stable, so somewhere between 5 and 0.1 au there must be a crossover between stability and instability. Here we show that there is a sharp breakdown in atmospheric stability between 0.14 and 0.16 au for a Jupiter-like planet orbiting a solar-type star. These results are in contrast to earlier modelling that implied much higher thermospheric temperatures and more significant evaporation farther from the star. (We use a three-dimensional, time-dependent coupled thermosphere-ionosphere model and properly include cooling by H3+ ions, allowing us to model globally the redistribution of heat and changes in molecular composition.) Between 0.2 and 0.16 au cooling by H3+ ions balances heating by the star, but inside 0.16 au molecular hydrogen dissociates thermally, suppressing the formation of H3+ and effectively shutting down that mode of cooling.

  20. Constructing stable 3D hydrodynamical models of giant stars

    Science.gov (United States)

    Ohlmann, Sebastian T.; Röpke, Friedrich K.; Pakmor, Rüdiger; Springel, Volker

    2017-02-01

    Hydrodynamical simulations of stellar interactions require stable models of stars as initial conditions. Such initial models, however, are difficult to construct for giant stars because of the wide range in spatial scales of the hydrostatic equilibrium and in dynamical timescales between the core and the envelope of the giant. They are needed for, e.g., modeling the common envelope phase where a giant envelope encompasses both the giant core and a companion star. Here, we present a new method of approximating and reconstructing giant profiles from a stellar evolution code to produce stable models for multi-dimensional hydrodynamical simulations. We determine typical stellar stratification profiles with the one-dimensional stellar evolution code mesa. After an appropriate mapping, hydrodynamical simulations are conducted using the moving-mesh code arepo. The giant profiles are approximated by replacing the core of the giant with a point mass and by constructing a suitable continuation of the profile to the center. Different reconstruction methods are tested that can specifically control the convective behaviour of the model. After mapping to a grid, a relaxation procedure that includes damping of spurious velocities yields stable models in three-dimensional hydrodynamical simulations. Initially convectively stable configurations lead to stable hydrodynamical models while for stratifications that are convectively unstable in the stellar evolution code, simulations recover the convective behaviour of the initial model and show large convective plumes with Mach numbers up to 0.8. Examples are shown for a 2 M⊙ red giant and a 0.67 M⊙ asymptotic giant branch star. A detailed analysis shows that the improved method reliably provides stable models of giant envelopes that can be used as initial conditions for subsequent hydrodynamical simulations of stellar interactions involving giant stars.

  1. Quiescent Giant Molecular Cloud Cores in the Galactic Center

    Science.gov (United States)

    Lis, D. C.; Serabyn, E.; Zylka, R.; Li, Y.

    2000-01-01

    We have used the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory (ISO) to map the far-infrared continuum emission (45-175 micrometer) toward several massive Giant Molecular Cloud (GMC) cores located near the Galactic center. The observed far-infrared and submillimeter spectral energy distributions imply low temperatures (approx. 15 - 22 K) for the bulk of the dust in all the sources, consistent with external heating by the diffuse ISRF and suggest that these GMCs do not harbor high- mass star-formation sites, in spite of their large molecular mass. Observations of FIR atomic fine structure lines of C(sub II) and O(sub I) indicate an ISRF enhancement of approx. 10(exp 3) in the region. Through continuum radiative transfer modeling we show that this radiation field strength is in agreement with the observed FIR and submillimeter spectral energy distributions, assuming primarily external heating of the dust with only limited internal luminosity (approx. 2 x 10(exp 5) solar luminosity). Spectroscopic observations of millimeter-wave transitions of H2CO, CS, and C-34S carried out with the Caltech Submillimeter Observatory (CSO) and the Institut de Radio Astronomie Millimetrique (IRAM) 30-meter telescope indicate a gas temperature of approx. 80 K, significantly higher than the dust temperatures, and density of approx. 1 x 10(exp 5)/cc in GCM0.25 + 0.01, the brightest submillimeter source in the region. We suggest that shocks caused by cloud collisions in the turbulent interstellar medium in the Galactic center region are responsible for heating the molecular gas. This conclusion is supported by the presence of wide-spread emission from molecules such as SiO, SO, and CH3OH, which are considered good shock tracers. We also suggest that the GMCs studied here are representative of the "typical", pre-starforming cloud population in the Galactic center.

  2. Cyanogen in NGC 1851 Red Giant Branch and Asymptotic Giant Branch Stars: Quadrimodal Distributions

    DEFF Research Database (Denmark)

    Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.

    2012-01-01

    The Galactic globular cluster NGC 1851 has raised much interest since Hubble Space Telescope photometry revealed that it hosts a double subgiant branch. Here we report on our homogeneous study into the cyanogen (CN) band strengths in the red giant branch (RGB) population (17 stars) and asymptotic...

  3. Lithium and magnetic fields in giants. HD 232862 : a magnetic and lithium-rich giant star

    CERN Document Server

    Lèbre, A; Nascimento, J D do; Konstantinova-Antova, R; Kolev, D; Aurière, M; De Laverny, P; De Medeiros, J R

    2009-01-01

    We report the detection of an unusually high lithium content in HD 232862, a field giant classified as a G8II star, and hosting a magnetic field. With the spectropolarimeters ESPaDOnS at CFHT and NARVAL at TBL, we have collected high resolution and high signal-to-noise spectra of three giants : HD 232862, KU Peg and HD 21018. From spectral synthesis we have inferred stellar parameters and measured lithium abundances that we have compared to predictions from evolutionary models. We have also analysed Stokes V signatures, looking for a magnetic field on these giants. HD 232862, presents a very high abundance of lithium (ALi = 2.45 +/- 0.25 dex), far in excess of the theoretically value expected at this spectral type and for this luminosity class (i.e, G8II). The evolutionary stage of HD 232862 has been precised, and it suggests a mass in the lower part of the [1.0 Msun ; 3.5 Msun ] mass interval, likely 1.5 to 2.0 solar mass, at the bottom of the Red Giant Branch. Besides, a time variable Stokes V signature has...

  4. Cyanogen in NGC 1851 Red Giant Branch and Asymptotic Giant Branch Stars: Quadrimodal Distributions

    DEFF Research Database (Denmark)

    Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.;

    2012-01-01

    The Galactic globular cluster NGC 1851 has raised much interest since Hubble Space Telescope photometry revealed that it hosts a double subgiant branch. Here we report on our homogeneous study into the cyanogen (CN) band strengths in the red giant branch (RGB) population (17 stars) and asymptotic...

  5. [Local excision of giant rectal polypoid neoplasms].

    Science.gov (United States)

    Cimitan, Andrea; Burza, Antonio; Basile, Ursula; Saputo, Serena; Mingazzini, Pietro; Stipa, Francesco

    2008-01-01

    Local excision is the best therapeutic option for giant adenomas of the rectum. Parks technique for lower rectal lesions and the T.E.M. technique for lesions localised in the middle and upper rectum offer exceptionally good exposure, allowing radical excision in the case of early low-risk T1 adenocarcinomas (well or moderately differentiated [G1/2] without lymphovascular invasion [L0]). From July 1987 to March 2006, 224 patients were treated by local excision for rectal lesions in our department. In 48 patients (21.4%) a large sessile benign lesion was diagnosed preoperatively. In 3 patients with a preoperative diagnosis of severe dysplasia (Tis) final pathology showed adenoma and for this reason they were included in our study group. A total of 51 patients with giant preoperative benign lesions were treated by local excision (Parks technique, T.E.M. or both). Twenty-five (49%) patients had a definitive diagnosis of adenocarcinoma: in situ (pTis) in 22 patients (88%), pT1 in 2 patients (8%) and pT2 in 1 patient (4%). In 26 patients (51%) the diagnosis was adenoma. The overall local recurrence rate was 9.8% (5/51); the recurrence rate was 7.6% (2/26) for adenomas and 12% (3/25) for carcinomas. The median hospital stay was 7 days (range 3-39). There was no operative mortality. Giant sessile polypoid lesions localized in the middle and upper rectum are best treated with T.E.M., while Parks technique is a good option in lower rectal tumours. These techniques, if correctly indicated and well performed, offer great advantages in terms of safety and radicality. In our experience the operative mortality was nil and the morbidity and recurrence rates were low.

  6. Dynamics of Giant Planet Polar Vortices

    Science.gov (United States)

    Brueshaber, Shawn R.; Sayanagi, Kunio M.

    2016-10-01

    The polar atmospheres of the giant planets have come under increasing interest since a compact, warm-core, stable, cyclonic polar vortex was discovered at each of Saturn's poles. In addition, the south pole of Neptune appears to have a similar feature, and Uranus' north pole is exhibiting activity that could indicate the formation of a polar vortex. We investigate the formation and maintenance of these giant planet polar vortices by varying several key atmospheric dynamics parameters in a forced-dissipative, 1.5-layer shallow water model. Our simulations are run using the EPIC (Explicit Planetary Isentropic Coordinate) global circulation model, to which we have added a gamma-plane rectangular grid option appropriate for simulating polar atmospheric dynamics.In our numerical simulations, we vary the atmospheric deformation radius, planetary rotation rate, storm forcing intensity, and storm vorticity (cyclone-to-anticyclone) ratio to determine what combination of values favors the formation of a polar vortex. We find that forcing the atmosphere by injecting small-scale mass perturbations ("storms") to form either all cyclones, all anticyclones, or equal numbers of both, may all result in a cyclonic polar vortex. Additionally, we examine the role of eddy momentum convergence in the intensification and maintenance of a polar cyclone.Our simulation results are applicable to understanding all four of the solar system giant planets. In the future, we plan to expand our modeling effort with a more realistic 3D primitive equations model, also with a gamma-plane rectangular grid using EPIC. With our 3D primitive equations model, we will study how various vertical atmospheric stratification structures influence the formation and maintenance of a polar cyclone. While our shallow-water model only involves storms of a single layer, a 3D primitive equations model allows us to study how storms of finite vertical extent and at differing levels in the atmosphere may further favor

  7. Lyme carditis mimicking giant cell arteritis

    Directory of Open Access Journals (Sweden)

    Krati Chauhan

    2015-10-01

    Full Text Available Presenting an interesting case of a patient who complained of myalgias, fatigue, headache, jaw claudication and scalp tenderness. Patient’s physical examination was unremarkable. Laboratory findings showed elevated erythrocyte sedimentation rate and C-reactive protein, bilateral temporal artery biopsy results were negative and first degree atrioventricular block was seen on electrocardiogram. Serology for Borrelia burgdorferi was positive; patient was diagnosed with Lyme carditis and treated with doxycycline. Lyme is a tick-borne, multi-system disease and occasionally its presentation may mimic giant cell arteritis. On follow-up there was complete resolution of symptoms and electrocardiogram findings.

  8. China's Giant Oilfields: Discovered & to Be Discovered

    Institute of Scientific and Technical Information of China (English)

    Li Xiaodi

    2006-01-01

    @@ World oil production and reserve additions heavily depend on giant oilfields. Currently, there are more than 4,000 producing oilfields in the world, producing around 68 million barrels of oil per day. Most oilfields in the world are minor ones, with oil production below 20,000barrels per day; only 3% (about 120) oilfields in the world produce over 100,000 barrels per day with overall daily production exceeding 32 million barrels, which accounts for 47% of the total world oil supply [1].

  9. Giant granuloma gravidarium of the oral cavity.

    Science.gov (United States)

    Krishnan, Balasubramanian; Arunprasad, Gnanasekaran; Madhan, Balasubramanian

    2014-04-08

    Oral health is affected by hormonal changes during pregnancy but is usually neglected by both the obstetrician and the patient during follow-up visits. Gingival enlargement is one of the most common oral lesions seen during pregnancy. Rarely, gingival enlargement can be very big, significantly affecting maternal nutrition and impairing haemodynamic status. A giant granuloma gravidarium and appropriate management strategies are discussed. Patients must be encouraged to undergo regular dental check-ups during pregnancy. Simple oral hygiene measures are highly effective in mitigating most oral lesions of pregnancy.

  10. Taxonomy Icon Data: giant panda [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available giant panda Ailuropoda melanoleuca Chordata/Vertebrata/Mammalia/Theria/Eutheria/Carnivora Ailuropoda..._melanoleuca_L.png Ailuropoda_melanoleuca_NL.png Ailuropoda_melanoleuca_S.png Ailuropoda_me...lanoleuca_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ailuropoda+melanoleuca&t=L http://bioscien...cedbc.jp/taxonomy_icon/icon.cgi?i=Ailuropoda+melanoleuca&t=NL http://biosciencedb...c.jp/taxonomy_icon/icon.cgi?i=Ailuropoda+melanoleuca&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Ailuropoda+melanoleuca&t=NS ...

  11. Silent giant left atrium. A case report.

    Science.gov (United States)

    Badui, E; Delgado, C; Enciso, R; Graef, A; Solorio, S; Madrid, R; Cruz, H

    1995-05-01

    A sixty-two-year-old white woman with a 14.5 cm (145 mm) silent giant left atrial enlargement secondary probably to rheumatic heart disease is presented. Aside from mild progressive shortness of breath during the past year, the patient had been asymptomatic all her life. Her clinical picture was manifested for the first time by syncope secondary to slow atrial fibrillation, for which a permanent pacemaker was required. The correct diagnosis of the enlarged chamber was not possible through the routine chest roentgenogram. In this case, the echocardiogram, nuclear angiogram, and computed tomography were the pertinent studies needed to reach the diagnosis.

  12. Nonlinear Giant Magnetoresistance in Dual Spin Valves

    Science.gov (United States)

    Aziz, A.; Wessely, O. P.; Ali, M.; Edwards, D. M.; Marrows, C. H.; Hickey, B. J.; Blamire, M. G.

    2009-12-01

    Giant magnetoresistance (GMR) arises from differential scattering of the majority and minority spin electrons by a ferromagnet (FM) so that the resistance of a heterostructure depends on the relative magnetic orientation of the FM layers within it separated by nonmagnetic spacers. Here, we show that highly nonequilibrium spin accumulation in metallic heterostructures results in a current-dependent nonlinear GMR which is not predicted within the present understanding of GMR. The behavior can be explained by allowing the scattering asymmetries in an ultrathin FM layer to be current dependent.

  13. Giant velum interpositum meningioma in a child.

    Science.gov (United States)

    Moiyadi, Aliasgar V; Shetty, Prakash

    2012-07-01

    Intraventricular meningiomas are rare, but are relatively more often seen in children. Large size at presentation often obscures anatomical details. A particular subset of such tumors arising from the velum interpositum pose a significant surgical challenge. Thorough preoperative imaging, especially with respect to the course of the deep venous structures, provides useful evidence as to the origin. Preservation of venous anatomy at surgery is vital. We describe a 3-year-old girl with a giant velum interpositum meningioma that was completely excised with excellent outcome. This is probably the youngest such case reported.

  14. Giant velum interpositum meningioma in a child

    Directory of Open Access Journals (Sweden)

    Aliasgar V Moiyadi

    2012-01-01

    Full Text Available Intraventricular meningiomas are rare, but are relatively more often seen in children. Large size at presentation often obscures anatomical details. A particular subset of such tumors arising from the velum interpositum pose a significant surgical challenge. Thorough preoperative imaging, especially with respect to the course of the deep venous structures, provides useful evidence as to the origin. Preservation of venous anatomy at surgery is vital. We describe a 3-year-old girl with a giant velum interpositum meningioma that was completely excised with excellent outcome. This is probably the youngest such case reported.

  15. Giant magnetoresistance in bilayer graphene nanoflakes

    Science.gov (United States)

    Farghadan, Rouhollah; Farekiyan, Marzieh

    2016-09-01

    Coherent spin transport through bilayer graphene (BLG) nanoflakes sandwiched between two electrodes made of single-layer zigzag graphene nanoribbon was investigated by means of Landauer-Buttiker formalism. Application of a magnetic field only on BLG structure as a channel produces a perfect spin polarization in a large energy region. Moreover, the conductance could be strongly modulated by magnetization of the zigzag edge of AB-stacked BLG, and the junction, entirely made of carbon, produces a giant magnetoresistance (GMR) up to 100%. Intestinally, GMR and spin polarization could be tuned by varying BLG width and length. Generally, MR in a AB-stacked BLG strongly increases (decreases) with length (width).

  16. Hypophosphatemic rickets associated with giant hairy nevus

    Directory of Open Access Journals (Sweden)

    Sameer Aggarwal

    2013-01-01

    Full Text Available The association of multisystem pathologic conditions and epidermal nevi, known as the epidermal nevus syndrome, includes disorders of bone, central nervous system, eye, kidney, vasculature and skin. Rarely, congenital nevomelanocytic nevus also known as hairy nevus has also been reported in association with hypophosphatemic rickets. Studies suggest that phosphaturia, caused by circulating factors, called "phosphatonins" may be secreted by an epidermal or hairy nevus. We report here, a rare case of hypophosphatemic rickets associated with a giant hairy nevus in a 10-year-old boy.

  17. Asymptomatic Giant Intraventricular Cysticercosis: A Case Report

    Science.gov (United States)

    Wongjittraporn, Suwarat; Tongma, Chawat; Chung, Heath

    2016-01-01

    Neurocysticercosis is a growing health problem in the United States and worldwide. Diagnosis and treatment is challenging especially if the physician is not familiar with this condition. The World Health Organization (WHO) estimates that neurocysticercosis affects 50 million people worldwide, especially in developing countries and causes approximately 50,000 deaths annually.1 Neurocysticercosis is of emerging importance in the United States especially in Hawai‘i because of immigration from disease-endemic regions.2 We present a case of a young Chinese immigrant male who presented with impressive imaging studies of a giant intraventricular neurocysticercosis. This case emphasizes the importance of recognizing neurocysticercosis, especially in the immigrant population. PMID:27437162

  18. Giant Breast Cyst. A Case Report

    Directory of Open Access Journals (Sweden)

    Miriam Magaly González González del Pino

    2013-04-01

    Full Text Available Breast cancer in women is among the top three causes of death in the world and in our country it is, according to the latest statistics, in the first place. We report the case of a woman aged 94, who died at the Dr. Gustavo Aldereguia Lima General University Hospital of Cienfuegos, with a diagnosis of breast malignancy with metastases. The autopsy, was conducted on November 7, 2009 and it confirmed the presence of giant benign cyst, from which this report was prepared.

  19. Giant oral lipoma: a rare entity*

    Science.gov (United States)

    Ponce, José Burgos; Ferreira, Gustavo Zanna; Santos, Paulo Sérgio da Silva; Lara, Vanessa Soares

    2016-01-01

    Lipomas are very common benign slow-growing soft tissue neoplasms composed of mature adipose tissue mostly diagnosed in the fifth decade of life. These tumors rarely present in the oral cavity, representing less than approximately 5% of all benign mouth tumors. They are usually less than 2cm in size and etiology remains unclear. We report a young male patient presenting with a giant lipoma in the buccal mucosa. Histopathology revealed a large area of mature fat cells consistent with conventional lipoma and an area of the mucosal lining of the lesion suggestive of morsicatio buccarum. In the present article, we emphasize the clinicopathological features and differential diagnosis of the disease.

  20. Double giant dipole resonance in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cinausero, M.; Rizzi, V.; Viesti, G.; Fabris, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pesente, S.; Barbui, M.; Fioretto, E.; Prete, G.; Bracco, A.; Camera, F.; Million, B.; Leoni, S.; Wieland, O.; Benzoni, G.; Brambilla, S.; Airoldi, A.; Maj, A.; Kmiecik, M

    2004-02-09

    Signals from Double Dipole Giant Resonances (DGDR) in hot nuclei have been searched in a {gamma}-{gamma} coincidence experiment using the HECTOR array at the Laboratori Nazionali di Legnaro. The experimental single {gamma}-ray spectrum and the projection of the {gamma}-{gamma} matrix have been compared with a standard Monte Carlo Statistical Model code including only the single GDR excitation. These calculations have been used as background to determine the extra-yield associated with the DGDR de-excitation. Results have been compared with a previous experiment confirming the presence of the DGDR excitation in fusion-evaporation reactions.

  1. Microwave plasmatrons for giant integrated circuit processing

    Energy Technology Data Exchange (ETDEWEB)

    Petrin, A.B.

    2000-02-01

    A method for calculating the interaction of a powerful microwave with a plane layer of magnetoactive low-pressure plasma under conditions of electron cyclotron resonance is presented. In this paper, the plasma layer is situated between a plane dielectric layer and a plane metal screen. The calculation model contains the microwave energy balance, particle balance, and electron energy balance. The equation that expressed microwave properties of nonuniform magnetoactive plasma is found. The numerical calculations of the microwave-plasma interaction for a one-dimensional model of the problem are considered. Applications of the results for microwave plasmatrons designed for processing giant integrated circuits are suggested.

  2. Giant ascending colonic diverticulum presenting with intussusception.

    Science.gov (United States)

    Kim, Ho Jin; Kim, Jin Ha; Moon, Ok In; Kim, Kyung Jong

    2013-10-01

    Diverticular disease of the colon is a common disease, and its incidence is increasing gradually. A giant colonic diverticulum (GCD) is a rare entity and is defined as a diverticulum greater than 4 cm in size. It mainly arises from the sigmoid colon, and possible etiology is a ball-valve mechanism permitting progressive enlargement. A plain abdominal X-ray can be helpful to make a diagnosis initially, and a barium enema and abdominal computed tomography may confirm the diagnosis. Surgical intervention is a definite treatment for a GCD. We report a case of an ascending GCD presenting with intussusception in a young adult.

  3. Giant Compton Shifts in Hyperbolic Metamaterial

    CERN Document Server

    Iorsh, Ivan; Ginzburg, Pavel; Belov, Pavel; Kivshar, Yuri

    2014-01-01

    We study the Compton scattering of light by free electrons inside a hyperbolic medium. We demonstrate that the unconventional dispersion and local density of states of the electromagnetic modes in such media can lead to a giant Compton shift and dramatic enhancement of the scattering cross section. We develop an universal approach for the study of coupled multi-photon processes in nanostructured media and derive the spectral intensity function of the scattered radiation for realistic metamaterial structures. We predict the Compton shift of the order of a few meVs for the infrared spectrum that is at least one order of magnitude larger than the Compton shift in any other system.

  4. New Observations of the Giant's Churches

    Science.gov (United States)

    Ridderstad, Marianna

    2015-05-01

    Orientations of the axes and gates of 49 Giant's Churches (GCs) were examined. Orientations to both solar and lunar events were discovered. The results especially suggest the importance of full moon events. Comparison between the orientations of the southern and the northern GCs did not reveal great differences. The majority of the GCs are situated on the eastern or southern sides of their ridges, and most of them enclose or are surrounded by cairns. Based on parallels to other North European Neolithic cultures, it is proposed that the GCs went through several phases of construction, the last phase being probably related to ritual activities.

  5. Giant cell arteritis. Part II. Treatment

    Directory of Open Access Journals (Sweden)

    Azamat Makhmudovich Satybaldyev

    2012-01-01

    Full Text Available Treatment options for giant cell arteritis (GCA and its complications are considered. GCA is treatable with glucocorticoids (GC. The data available in the literature suggest that it is necessary to hospitalize GCA patients with acute vision loss or brain ischemia to administer intravenous megadose methylprednisolone and to control and prevent complications of GC therapy. It is expedient to use aspirin in these cases. The evidence for the use of methotrexate and other disease-modifying antirheumatic and genetically engineered drugs as GC-saving drugs is discussed.

  6. Giant cell myocarditis : a fatal cause of dyspnea in pregnancy

    NARCIS (Netherlands)

    van Haelst, PL; van Rossem, M; Valentijn, RM; Beijer, GJP

    2001-01-01

    The clinical course of a pregnant patient, who presented with progressive dyspnea and heart failure is described. Despite intensive care and resuscitative efforts to mother and child, both expired. The autopsy revealed giant cell myocarditis in the mother. Giant cell myocarditis can affect pregnant

  7. Lung metastasis of benign giant cell tumor: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Bosi, Thiago Carneiro da Cunha; Andrade, Fernando Coelho Goulart de; Turtelli, Celso Montenegro; Ribeiro Junior, Helio Antonio [Universidade Federal do Triangulo Mineiro (UFMT), Uberaba, MG (Brazil). Dept. of Radiology and Imaging Diagnosis]. E-mail: tccbosi@yahoo.com.br; Fatureto, Marcelo Cunha [Universidade Federal do Triangulo Mineiro (UFMT), Uberaba, MG (Brazil). Dept. of Thoracic Surgery; Etchebehere, Renata Margarida [Universidade Federal do Triangulo Mineiro (UFMT), Uberaba, MG (Brazil). Dept. of Pathology

    2008-05-15

    Giant cell tumor is the sixth most frequent primary bone neoplasm, affecting long bone metaphysis, most frequently in young adults. On radiological images, this tumor appears as a lytic, well-defined, eccentric lesion. The authors report a case of benign giant cell tumor in a patient who presented with lung metastases five years after undergoing resection of the primary tumor. (author)

  8. Records of the Giant Otter, Pteronura brasiliensis, from Guyana

    Directory of Open Access Journals (Sweden)

    Barnett A.

    2000-10-01

    Full Text Available The results of interviews and surveys of status of the giant otter are presented. These include information on Pteronura brasiliensis on the upper Potaro River and other rivers in Guyana. Suggestions are made for future work on giant otters on the Potaro Plateau. These include monitoring the effects of mining, studies of mercury poisoning, ecotourism feasibility studies and autecological studies.

  9. [Giant lithiasis in left ureterocele. Its endoscopic resolution].

    Science.gov (United States)

    García-Matres, M J; Cárcamo Valor, P I; Cózar Olmo, J M; San Míllan, J P; Hidalgo Togores, L; Martínez-Piñeiro, J A

    1992-05-01

    Herein we describe a case of giant calculus in an orthotopic ureterocele in a female patient who had consulted for recurrent left-sided nephritic colic. A plain film of the urinary tract prompted us to suspect a giant calculus, which was confirmed by IVP. Treatment was by endoscopic surgery. The patient has remained asymptomatic one year postoperatively.

  10. Giant pericardial cyst mimicking dextrocardia on chest X-ray.

    Science.gov (United States)

    Hamad, Hamad M; Galrinho, Ana; Abreu, João; Valente, Bruno; Bakero, Luis; Ferreira, Rui C

    2013-01-01

    Pericardial cysts are rare benign congenital malformations, usually small, asymptomatic and detected incidentally on chest X-ray as a mass located in the right costophrenic angle. Giant pericardial cysts are very uncommon and produce symptoms by compressing adjacent structures. In this report, the authors present a case of a symptomatic giant pericardial cyst incorrectly diagnosed as dextrocardia on chest X-ray.

  11. Spin down of the core rotation in red giants

    NARCIS (Netherlands)

    Mosser, B.; Goupil, M.J.; Belkacem, K.; Marques, J.P.; Beck, P.G.; Bloemen, S.; De Ridder, J.; Barban, C.; Deheuvels, S.; Elsworth, Y.; Hekker, S.; Kallinger, T.; Ouazzani, R.M.; Pinsonneault, M.; Samadi, R.; Stello, D.; García, R.A.; Klaus, T.C.; Li, J.; Mathur, S.; Morris, R.L.

    2012-01-01

    Context. The space mission Kepler provides us with long and uninterrupted photometric time series of red giants. We are now able to probe the rotational behaviour in their deep interiors using the observations of mixed modes. Aims. We aim to measure the rotational splittings in red giants and to

  12. Idiopathic giant oesophageal ulcer and leucopoenia after renal transplantation

    NARCIS (Netherlands)

    Boekel, G.A.J van; Volbeda, M.; Hoogen, M.W. van den; Hilbrands, L.B.; Berden, J.H.

    2012-01-01

    A 45-year-old male recipient of a renal allograft was admitted because of a giant oesophageal ulcer coinciding with leucopoenia. An extensive workup revealed no explanation for the ulcer and leucopoenia. Our final diagnosis by exclusion was an idiopathic giant oesophageal ulcer and late-onset

  13. How Giant Pandas Thrive on a Bamboo Diet

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In a research project funded by NSFC,Dr.Wei Fuwen of Institute of Zoology,Chinese Academy of Sciences,explained how giant pandas thrive on a bamboo diet,and published their research findings in an article "Evidence of cellulose metabolism by the giant panda gut microbiome," on PNAS in October 17,2011.

  14. A giant cloud of hydrogen escaping the warm Neptune-mass planet GJ 436b

    Science.gov (United States)

    Ehrenreich, David

    2015-12-01

    Exoplanets in extreme irradiation environments, close to their parent stars, could lose some fraction of their atmospheres because of the extreme irradiation. Atmospheric mass loss has been observed during the past 12 years for hot gas giants, as large (~10%) ultraviolet absorption signals during transits. Meanwhile, no confident detection have been obtained for lower-mass planets, which are most likely to be significantly affected by atmospheric escape. In fact, hot rocky planets observed by Corot and Kepler might have lost all of their atmosphere, having begun as Neptune-like. The signature of this loss could be observed in the ultraviolet, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical. I will report on new Hubble observations of the Neptune-mass exoplanet GJ 436b, around which an extended atmosphere has been tentatively detected in 2014. The new data reveal that GJ 436b has huge transit depths of 56.3±3.5% in the hydrogen Lyman-alpha line, far beyond the 0.69% optical transit depth, and even far beyond mass loss signatures observed at the same wavelength from more irradiated gas giants. We infer from this repeated observations that the planet is surrounded and trailed by a large exospheric cloud of hydrogen, shaped as a giant comet, much bigger than the star. We estimate a mass-loss rate, which today is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past. This 16-sigma detection opens exciting perspectives for the atmospheric characterization of low-mass and moderately-irradiated exoplanets, a large number of which will be detected by forthcoming transit surveys.

  15. [Giant hydronephrosis. Diagnostic aspect: report of a case].

    Science.gov (United States)

    Rabii, A; Joual, M; Hafiani, M; Bennani, S; el Mrini, M; Benjelloun, S

    2000-06-01

    In this study, we have reported an unusual case of giant hydronephrosis of the right kidney diagnosed as a result of pain, and upon palpation the detection of an abdominal mass. An ultrasound examination also indicated the possible presence of a large abdominal liquid mass. The hydatic serology was negative. A complementary CT scan and retroperitoneal approach confirmed the diagnosis of a right giant hydronephrosis with a liquid content of 8 liters, caused by stricture at the pyeloureteral junction with destruction of the kidney. The liquid was drained off. Based on the findings in this case, the pathogenesis, diagnosis and investigation of giant hydronephrosis have been discussed. In the event of giant hydronephrosis with total destruction of the kidney following an anomaly at the pyeloureteral junction, nephrectomy has to be performed. In the presence of a retroperitoneal liquid mass and in the absence of other pathological signs, the diagnosis of a possible giant hydronephrosis should be taken into consideration.

  16. Giant magnons of string theory in the lambda background

    Science.gov (United States)

    Appadu, Calan; Hollowood, Timothy J.; Miramontes, J. Luis; Price, Dafydd; Schmidtt, David M.

    2017-07-01

    The analogues of giant magnon configurations are studied on the string world sheet in the lambda background. This is a discrete deformation of the AdS5× S 5 background that preserves the integrability of the world sheet theory. Giant magnon solutions are generated using the dressing method and their dispersion relation is found. This reduces to the usual dyonic giant magnon dispersion relation in the appropriate limit and becomes relativistic in another limit where the lambda model becomes the generalized sine-Gordon theory of the Pohlmeyer reduction. The scattering of giant magnons is then shown in the semi-classical limit to be described by the quantum S-matrix that is a quantum group deformation of the conventional giant magnon S-matrix. It is further shown that in the small g limit, a sector of the S-matrix is related to the XXZ spin chain whose spectrum matches the spectrum of magnon bound states.

  17. Interleukin-1 blockade in refractory giant cell arteritis.

    Science.gov (United States)

    Ly, Kim-Heang; Stirnemann, Jérôme; Liozon, Eric; Michel, Marc; Fain, Olivier; Fauchais, Anne-Laure

    2014-01-01

    Giant cell arteritis is a primary large-vessel vasculitis characterized by an arterial wall inflammation associated with intimal hyperplasia leading to arterial occlusion. Glucocorticoids remain the mainstay of giant cell arteritis treatment. However, relapses and glucocorticoid-related complications are frequent and therapeutic options for refractory giant cell arteritis are quite limited. Like tumor necrosis factor-α and interleukin-6, interleukin-1β is also highly expressed in inflamed arterial walls of patients with giant cell arteritis and may contribute in the pathogenesis of this disease. We report treatment of three cases of refractory giant cell arteritis successfully treated with anakinra, an interleukin-1 blockade therapy. Anakinra was effective for all patients, yielding improvement in their inflammation biomarkers and/or in their symptoms, as well as a disappearance of arterial inflammation in PET/CT for two of them. Copyright © 2013. Published by Elsevier SAS.

  18. Reactor vibration reduction based on giant magnetostrictive materials

    Science.gov (United States)

    Rongge, Yan; Weiying, Liu; Yuechao, Wu; Menghua, Duan; Xiaohong, Zhang; Lihua, Zhu; Ling, Weng; Ying, Sun

    2017-05-01

    The vibration of reactors not only produces noise pollution, but also affects the safe operation of reactors. Giant magnetostrictive materials can generate huge expansion and shrinkage deformation in a magnetic field. With the principle of mutual offset between the giant magnetostrictive force produced by the giant magnetostrictive material and the original vibration force of the reactor, the vibration of the reactor can be reduced. In this paper, magnetization and magnetostriction characteristics in silicon steel and the giant magnetostrictive material are measured, respectively. According to the presented magneto-mechanical coupling model including the electromagnetic force and the magnetostrictive force, reactor vibration is calculated. By comparing the vibration of the reactor with different inserted materials in the air gaps between the reactor cores, the vibration reduction effectiveness of the giant magnetostrictive material is validated.

  19. Evolution of Chromospheric Activity: M67 Red Giants

    Science.gov (United States)

    Dupree, A. K.; Whitney, B. A.; Pasquini, L.

    1999-08-01

    Echelle spectra of the Ca II H- and K-line region (λ3950) of 15 red giant stars in the open cluster M67 reveal atmospheric dynamics and determine chromospheric radiative losses in order to assess chromospheric heating requirements and to follow the evolution of chromospheric activity. M67 red giants in conjunction with giants in younger clusters create a continuous group of red giants in the color-magnitude diagram, with 0.1mass motions are well established at these luminosities. Radiative losses, as measured by emission strengths from Ca II, decrease smoothly with decreasing stellar effective temperature in M67 and connect well to a combined sample of warmer cluster giants (NGC 2477, IC 4756, and the Hyades) with Mrelated processes. The relative contribution of each heating mechanism changes with temperature in the stellar atmosphere, and these proportions may change during a star's evolution from the main sequence.

  20. Giant Lobes of Centaurus A Radio Galaxy Observed with the Suzaku X-ray Satellite

    CERN Document Server

    Stawarz, L; Madejski, G; O'Sullivan, S P; Cheung, C C; Feain, I J; Fukazawa, Y; Gandhi, P; Hardcastle, M J; Kataoka, J; Ostrowski, M; Reville, B; Siemiginowska, A; Simionescu, A; Takahashi, T; Takei, Y; Takeuchi, Y; Werner, N

    2012-01-01

    [abridged] We report on Suzaku observations of selected regions within the Southern giant lobe of the radio galaxy Centaurus A. We focus on distinct X-ray features likely associated with fine radio structure of the lobe. We find that the spectral properties of the detected X-ray features are equally consistent with thermal emission from hot gas, or with a power-law radiation continuum. However, the plasma parameters implied by these different models favor a synchrotron origin for the analyzed X-ray spots, indicating that a very efficient acceleration of electrons is taking place within the giant structure of Centaurus A, albeit only in isolated and compact regions. We also present a detailed analysis of the diffuse X-ray emission, resulting in a tentative detection of a soft excess component best fitted by a thermal model with a temperature of 0.5 keV. The exact origin of the observed excess remains uncertain, although energetic considerations point to thermal gas filling the bulk of the volume of the lobe an...

  1. Core merging and stratification following giant impact

    Science.gov (United States)

    Landeau, Maylis; Olson, Peter; Deguen, Renaud; Hirsh, Benjamin H.

    2016-10-01

    A stratified layer below the core-mantle boundary has long been suspected on the basis of geomagnetic and seismic observations. It has been suggested that the outermost core has a stratified layer about 100 km thick that could be due to the diffusion of light elements. Recent seismological evidence, however, supports a layer exceeding 300 km in thickness of enigmatic origin. Here we show from turbulent mixing experiments that merging between projectile and planetary core following a giant impact can lead to a stratified layer at the top of the core. Scaling relationships between post-impact core structure and projectile properties suggest that merging between Earth's protocore and a projectile core that is enriched in light elements and 20 times less massive can produce the thick stratification inferred from seismic data. Our experiments favour Moon-forming impact scenarios involving a projectile smaller than the proto-Earth and suggest that entrainment of mantle silicates into the protocore led to metal-silicate equilibration under extreme pressure-temperature conditions. We conclude that the thick stratified layer detected at the top of Earth's core can be explained as a vestige of the Moon-forming giant impact during the late stages of planetary accretion.

  2. Surgical treatment of giant esophageal leiomyoma

    Institute of Scientific and Technical Information of China (English)

    Bang-Chang Cheng; Sheng Chang; Zhi-Fu Mao; Mao-Jin Li; Jie Huang; Zhi-Wei Wang; Tu-Sheng Wang

    2005-01-01

    AIM: To summarize the operative experiences for giant leiomyoma of esophagus.METHODS: Eight cases of giant esophageal leiomyoma (GEL) whose tumors were bigger than 10 cm were treated surgically in our department from June 1980 to March 2004.and esophagoscopy. Leiomyoma located in upper thirds of the esophagus in one case, middle thirds of the esophagus in five cases, lower thirds of the esophagus in two cases. Resection of tumors was performed successfully in all of these cases. Operative methods included transthoracic extramucosal enucleation and buttressing the muscular defect with pedicled great omental flap (one case), esophagectomy and esophagogastrostomy above the arch of aorta (three cases), total esophagectomy and esophageal replacement with colon (four cases). Histological examination confirmed that all of these cases were leiomyoma.RESULTS: All of the eight patients recovered approvingly with no mortality and resumed normal diet after operation. Vomiting during meals occurred in one patient with esophagogastrostomy, and remained 1 mo. Reflux esophagitis occurred in one patient with esophagogastrostomy and was alleviated with medication. Thoracic colon syndrome (TCS) occurred in one patient with colon replacement at 15 mo postoperatively. No recurrence occurred in follow-up from 6 mo to 8 years.CONCLUSION: Surgical treatment for GEL is both safe and effective. The choices of operative methods mainly depend on the location and range of lesions. We prefer to treat GEL via esophagectomy combined with esophagogastrostomy or esophagus replacement with colon. The long-time quality of life is better in the latter.

  3. Management of a giant perineal condylomata acuminata

    Directory of Open Access Journals (Sweden)

    Hemper, Evelyn

    2016-01-01

    Full Text Available A condylomata acuminata infection is caused by human papillomaviridae (HPV. This sexually transmitted condition most often affects the perineal region. Importantly, infections with types 16 and 18 are associated with an increased risk for anal and cervix cancer. In most cases topical therapy is sufficient for successfully treating condylomata acuminata. Here, we report the case of a 51-year old patient who suffered from a giant perianal located condylomata acuminata which had developed over a period of more than 10 years. Imaging by MRI revealed a possible infiltration of the musculus sphincter ani externus. Because a topical treatment or a radiotherapy was considered unfeasible, a surgical treatment was the only therapeutic option in this unusual case. First, a colostomy was performed and subsequently a resection of the tumor with circular resection of the external portion of the musculus sphincter ani externus was performed. The large skin defect was closed by two gluteus flaps. The rectum wall was reinserted in the remnant of the musculus sphincter ani externus. Postoperatively, parts of the flaps developed necrosis. Therefore, a vacuum sealing therapy was initiated. Subsequently, the remaining skin defects were closed by autologous skin transplantation. Six months later the colostomy could be reversed. To date, one year after first surgery, the patient has still a normal sphincter function and no recurrence of the condylomata acuminata. This case report demonstrates how giant condylomata acuminata can be successfully treated by extended surgical procedures including colostomy and plastic reconstruction of resulting defects upon resection.

  4. How to make a giant bubble

    Science.gov (United States)

    Burton, Justin; Frazier, Stephen

    2016-11-01

    Soap and water solutions can form massive, free floating films encompassing volumes in excess of 50 m3 with thicknesses of only 1-10 microns when mixed with polymeric additives. These films are interesting from a physical standpoint due to their long lifetime and stability in ambient environments. We have investigated a variety of mixtures which are deemed "optimal" for making large bubbles, such as solutions made from guar seeds and polyethylene oxide (PEO). Making a giant bubble requires a balance between viscous and elastic forces. Drawing out a large soap film requires a low-viscosity solution, while elasticity enhances stability. Using a combination of shear rheology, drop-based extensional rheology, and time-dependent thickness measurements, we found that "optimal" solutions showed similar extensional properties even though their shear viscosity differed by more than an order of magnitude. Soap and water solutions with polymers lived 2-3 times longer and drained more slowly than typical soap and water solutions, even though their initial thicknesses were similar. In addition, polymeric bubbles showed increased stability to aging in dry environments. By varying the molecular weight and concentration of PEO in the solutions, we are able to optimize the lifetime of the film and determine the best way to make a giant bubble.

  5. Genomic exploration of individual giant ocean viruses.

    Science.gov (United States)

    Wilson, William H; Gilg, Ilana C; Moniruzzaman, Mohammad; Field, Erin K; Koren, Sergey; LeCleir, Gary R; Martínez Martínez, Joaquín; Poulton, Nicole J; Swan, Brandon K; Stepanauskas, Ramunas; Wilhelm, Steven W

    2017-08-01

    Viruses are major pathogens in all biological systems. Virus propagation and downstream analysis remains a challenge, particularly in the ocean where the majority of their microbial hosts remain recalcitrant to current culturing techniques. We used a cultivation-independent approach to isolate and sequence individual viruses. The protocol uses high-speed fluorescence-activated virus sorting flow cytometry, multiple displacement amplification (MDA), and downstream genomic sequencing. We focused on 'giant viruses' that are readily distinguishable by flow cytometry. From a single-milliliter sample of seawater collected from off the dock at Boothbay Harbor, ME, USA, we sorted almost 700 single virus particles, and subsequently focused on a detailed genome analysis of 12. A wide diversity of viruses was identified that included Iridoviridae, extended Mimiviridae and even a taxonomically novel (unresolved) giant virus. We discovered a viral metacaspase homolog in one of our sorted virus particles and discussed its implications in rewiring host metabolism to enhance infection. In addition, we demonstrated that viral metacaspases are widespread in the ocean. We also discovered a virus that contains both a reverse transcriptase and a transposase; although highly speculative, we suggest such a genetic complement would potentially allow this virus to exploit a latency propagation mechanism. Application of single virus genomics provides a powerful opportunity to circumvent cultivation of viruses, moving directly to genomic investigation of naturally occurring viruses, with the assurance that the sequence data is virus-specific, non-chimeric and contains no cellular contamination.

  6. Giant Radio Galaxies: I. Intergalactic Barometers

    CERN Document Server

    Malarecki, J M; Saripalli, L; Subrahmanyan, R; Jones, D H; Duffy, A R; Rioja, M

    2013-01-01

    We present new wideband radio observations with the Australia Telescope Compact Array of a sample of 12 giant radio galaxies. The radio observations are part of a larger radio-optical study aimed at relating the radio structures with the ambient medium on large scales. With projected linear sizes larger than 0.7 Mpc, these objects are ideal candidates for the study of the Warm-Hot Intergalactic Medium (WHIM). The sample includes sources with sizes spanning 0.8 to 3.2 Mpc and total powers of 1.2*10^24 to 4.0*10^26 W Hz^-1 at 2.1 GHz. Redshifts were limited to z<0.15 to permit spectroscopic observations of the hosts and neighbouring galaxies, which were obtained using the AAOmega spectrograph on the Anglo-Australian Telescope. We derive lobe energy densities from the radio observations via equipartition arguments. The inferred pressures in the lobes of the giant radio sources, which range from 1.1*10^-15 to 2.0*10^-14 Pa (80 to 1500 cm^-3 K), are lower than previously inferred from X-ray observations of dens...

  7. Interacting giant gravitons from spin matrix theory

    Science.gov (United States)

    Harmark, Troels

    2016-09-01

    Using the non-Abelian Dirac-Born-Infeld action we find an effective matrix model that describes the dynamics of weakly interacting giant gravitons wrapped on three-spheres in the anti-de Sitter (AdS) part of AdS5×S5 at high energies with two angular momenta on the S5. In parallel we consider the limit of N =4 super Yang-Mills theory near a certain unitarity bound where it reduces to the quantum mechanical theory called S U (2 ) spin matrix theory. We show that the exact same matrix model that describes the giant gravitons on the string theory side also provides the effective description in the strong coupling and large energy limit of the spin matrix theory. Thus, we are able to match nonsupersymmetric dynamics of D-branes on AdS5×S5 to a finite-N regime in N =4 super Yang-Mills theory near a unitarity bound.

  8. Giant arachnoid granulation mimicking dural sinus thrombosis.

    Science.gov (United States)

    Ayaz, Ercan; Atalay, Basak; Baysal, Begumhan; Senturk, Senem; Aslan, Ahmet

    2017-01-01

    Arachnoid granulations (AG) are composed of dense, collagenous connective tissue that includes clusters of arachnoid cells. They tend to invaginate into the dural sinuses, through which cerebrospinal fluid enters the venous system. AG are most commonly seen at the junction between the middle and lateral thirds of the transverse sinuses near the entry sites of the superficial veins. Presently described is the case of a 21-year-old female who presented at the clinic with recurrent headaches. Magnetic resonance (MR) imaging revealed a 3.5-cm lesion, which extended from confluens sinuum through the superior sagittal sinus. The lesion had created a scallop-shaped area of erosion in the neighboring occipital bone. To exclude sinus thrombosis, MR venography was performed, which displayed a maintained venous flow around the lesion. Headaches were treated symptomatically with medical therapy. Giant AG can be misdiagnosed as dural sinus thrombosis. MR imaging combined with MR venography is the most useful diagnostic tool to differentiate giant AG from dural sinus thrombosis.

  9. The composition of transiting giant extrasolar planets

    Energy Technology Data Exchange (ETDEWEB)

    Guillot, T [Laboratoire Cassiopee, CNRS UMR 6202, Observatoire de la Cote d' Azur, BP4229, 06304 Nice Cedex 4 (France)], E-mail: guillot@obs-nice.fr

    2008-08-15

    In principle, the combined measurements of the mass and radius of a giant exoplanet allow one to determine the relative fraction of hydrogen and helium and of heavy elements in the planet. However, uncertainties on the underlying physics imply that some known transiting planets appear anomalously large, and this generally prevents any firm conclusion when a planet is considered on an individual basis. On the basis of a sample of nine transiting planets known at that time, Guillot et al (1996 Astron. Astrophys.453 L21) concluded that all planets could be explained with the same set of hypotheses, either by large but plausible modifications of the equations of state, opacities, or by the addition of an energy source, probably related to the dissipation of kinetic energy by tides. On this basis, they concluded that the amount of heavy elements in close-in giant planets is correlated with the metallicity of the parent star. Furthermore, they showed that planets around metal-rich stars can possess large amounts of heavy elements, up to 100 Earth masses. These results are confirmed by studying the present sample of 18 transiting planets with masses between that of Saturn and twice the mass of Jupiter.

  10. Recurrent giant fibrovascular polyp of the esophagus

    Institute of Scientific and Technical Information of China (English)

    Ser Yee Lee; Weng Hoong Chan; Ranjiv Sivanandan; Dennis Teck Hock Lim; Wai Keong Wong

    2009-01-01

    Giant fibrovascular polyps of the esophagus and hypopharynx are rare benign esophageal tumors. They arise most commonly in the upper esophagus and may, rarely, originate in the hypopharynx. They can vary significantly in size. Even though they are benign, they may be lethal due to either bleeding or, rarely, asphyxiation if a large polyp is regurgitated. Patients commonly present with dysphagia or hematemesis. The polyps may not be well visualized on endoscopy and imaging plays a vital role in aiding diagnosis as well as providing important information for preoperative planning, such as the location of the pedicle, the vascularity of the polyp and the tissue elements of the mass. They can also be recurrent in rare cases, especially if the resection margins of the base are involved. We review the recent literature and report a case of a 61-year-old man with a recurrent giant esophageal fibrovascular polyp with illustrative contrast barium swallow, CT and intra-operative images, who required several surgeries via a combination of endoscopic, trans-oral, trans-cervical, trans-thoracic and trans-abdominal approaches.

  11. Giant magnetoresistance in organic spin-valves.

    Science.gov (United States)

    Xiong, Z H; Wu, Di; Vardeny, Z Valy; Shi, Jing

    2004-02-26

    A spin valve is a layered structure of magnetic and non-magnetic (spacer) materials whose electrical resistance depends on the spin state of electrons passing through the device and so can be controlled by an external magnetic field. The discoveries of giant magnetoresistance and tunnelling magnetoresistance in metallic spin valves have revolutionized applications such as magnetic recording and memory, and launched the new field of spin electronics--'spintronics'. Intense research efforts are now devoted to extending these spin-dependent effects to semiconductor materials. But while there have been noteworthy advances in spin injection and detection using inorganic semiconductors, spin-valve devices with semiconducting spacers have not yet been demonstrated. pi-conjugated organic semiconductors may offer a promising alternative approach to semiconductor spintronics, by virtue of their relatively strong electron-phonon coupling and large spin coherence. Here we report the injection, transport and detection of spin-polarized carriers using an organic semiconductor as the spacer layer in a spin-valve structure, yielding low-temperature giant magnetoresistance effects as large as 40 per cent.

  12. Giant dendritic carbonaceous particles in Soweto aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Wentzel, M.; Annegarn, H.J.; Helas, G.; Weinbruch, S.; Balogh, A.G.; Sithole, J.S. [Max Planck Institute of Chemistry, Mainz (Germany). Biogeochemistry Dept.

    1999-03-01

    Gravimetric analyses of aerosol filter samples from Soweto, southwest of Johannesburg, have revealed an anomalous mass-size distribution. Instead of the coal fire generated aerosol forming sub-micron aerosols as expected, most of the mass of the winter smoke is in particles greater than 3{mu}m aerodynamic diameter. A high-resolution scanning electron microscope was used to examine coarse and fine-mode aerosol fractions from two contrasting sites in the conurbation. Unanticipated giant carbonaceous conglomerates (10-100 {mu}m diameter), which comprise the bulk of the aerosol mass on the filters examined, were found. The outer shape of the conglomerates tends towards spherical, rather than the branched, chain-like structures of high-temperature soot. Internal structure varies from highly dendritic with 20-nm-wide branches, through a coarser sponge-like structure to an almost solid `melted toffee` irregular surface. Possible modes of formation of these conglomerates are discussed in terms of condensation aerosols conglomeration, and subsequent partial melting or solvent condensation. The occurrence of the giant carbonaceous conglomerates as a general feature of the Soweto winter atmosphere explains the anomalous size-mass distribution results from bulk filter analyses.

  13. Giant renal artery aneurysm: A case report.

    Science.gov (United States)

    Cindolo, Luca; Ingrosso, Manuela; De Francesco, Piergustavo; Castellan, Pietro; Berardinelli, Francesco; Fiore, Franco; Schips, Luigi

    2015-07-07

    A case of a 12 cm giant renal artery aneurysm (RAA) in an 59-year-old woman is reported. The patient was referred to our hospital for flank pain and spot hematuria. Ultrasonography (US) revealed some wide lacunar areas in her right kidney and a thin cortex. Three-dimensional computed tomography (3D-CT) revealed a giant right renal arteriovenous malformation (AVM). AngioCT scan showed a pervious right renal artery. The cavities of the right kidney were dilated and the parenchyma was markedly reduced. Two months later the patient underwent an open resection of the aneurysm and a right nephrectomy. She had an uneventful recovery and a healthy status (last follow-up: 9 month). In this particular case, a safe approach is the transabdominal approach since the aneurysm was very large, friable, and located on the right side. This report confirms the opportunity of a planned nephrectomy once there is adequate renal reserve in the opposite kidney using a midline approach.

  14. Giant renal artery aneurysm: A case report

    Directory of Open Access Journals (Sweden)

    Luca Cindolo

    2015-07-01

    Full Text Available A case of a 12 cm giant renal artery aneurysm (RAA in an 59-year-old woman is reported. The patient was referred to our hospital for flank pain and spot hematuria. Ultrasonography (US revealed some wide lacunar areas in her right kidney and a thin cortex. Three-dimensional computed tomography (3D-CT revealed a giant right renal arteriovenous malformation (AVM. AngioCT scan showed a pervious right renal artery. The cavities of the right kidney were dilated and the parenchyma was markedly reduced. Two months later the patient underwent an open resection of the aneurysm and a right nephrectomy. She had an uneventful recovery and a healthy status (last follow-up: 9 month. In this particular case, a safe approach is the transabdominal approach since the aneurysm was very large, friable, and located on the right side. This report confirms the opportunity of a planned nephrectomy once there is adequate renal reserve in the opposite kidney using a midline approach.

  15. Literature review of giant gartersnake (Thamnophis gigas) biology and conservation

    Science.gov (United States)

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2015-08-03

    This report reviews the available literature on giant gartersnakes (Thamnophis gigas) to compile existing information on this species and identify knowledge gaps that, if addressed, would help to inform conservation efforts for giant gartersnakes.  Giant gartersnakes comprise a species of semi-aquatic snake precinctive to wetlands in the Central Valley of California.  The diversion of surface water and conversion of wetlands to agricultural and other land uses resulted in the loss of more than 90 percent of natural giant gartersnake habitats.  Because of this habitat loss, giant gartersnakes are now listed by the United States and California Endangered Species Acts as Threatened.  Most extant populations occur in the rice-growing regions of the Sacramento Valley, which comprises the northern portion of the giant gartersnake’s former range.  The huge demand for water in California for agriculture, industry, recreation, and other human consumption, combined with periodic severe drought, places remaining giant gartersnake habitats at increased risk of degradation and loss.  This literature review summarizes the available information on giant gartersnake distribution, habitat relations, behavior, demography, and other aspects of its biology relevant to conservation.  This information is then compiled into a graphical conceptual model that indicates the importance of different aspects of giant gartersnake biology for maintaining positive population growth, and identifies those areas for which important information relevant for conservation is lacking.  Directing research efforts toward these aspects of giant gartersnake ecology will likely result in improvements to conserving this unique species while meeting the high demands for water in California.

  16. Sizing Up Red-Giant Twins

    Science.gov (United States)

    Kohler, Susanna

    2016-02-01

    In KIC 9246715, two red-giant stars twins in nearly every way circle each other in a 171-day orbit. This binary pair may be a key to learning about masses and radii of stars with asteroseismology, the study of oscillations in the interiors of stars.Two Ways to MeasureIn order to understand a stars evolution, it is critical that we know its mass and radius. Unfortunately, these quantities are often difficult to pin down!One of the few cases in which we can directly measure stars masses and radii is in eclipsing binaries, wherein two stars eclipse each other as they orbit. If we have a well-sampled light curve for the binary, as well as radial velocities for both stars, then we can determine the stars complete orbital information, including their masses and radii.But there may be another way to obtain stellar mass and radius: asteroseismology. In asteroseismology, oscillations inside stars are used to characterize the stellar interiors. Conveniently, if a star with a convective envelope exhibits solar-like oscillations, these oscillations can be directly compared to those of the Sun. Mass and radius scaling relations which use the Sun as a benchmark and scale based on the stars temperature can then be used to derive the mass and radius of the star.Test Subjects from KeplerSolar-like oscillations from KIC 9246715 are shown in red across different resonant frequencies. The oscillations of a single red-giant star with similar properties are shown upside down in grey for reference. [Rawls et al. 2016]Of course, scaling relations are only useful if we can test them! A team of scientists including Meredith Rawls (New Mexico State University) has identified 18 red-giant eclipsing binaries in the Kepler field of view that also exhibit solar-like oscillations perfect for testing the scaling relations.In a recent study led by Rawls, the team analyzed the first of these binaries, KIC 9246715. Using the Kepler light curves in addition to radial velocity measurements from high

  17. PetroChina, Sinopec Invest for Development Northeastern Sichuan Gas Field

    Institute of Scientific and Technical Information of China (English)

    Zhu Jun

    2003-01-01

    @@ PetroChina and Sinopec Corp, China's two oil giants, have planned to invest 10 billion yuan for development of the large gas field in the northeastern part of Sichuan Basin where the natural gas reserves are estimated to exceeded 1.6 trillion cubic meters. With the unique geographic advantages, the gas field is located on the borders of Sichuan Province, Chongqing Municipality and Shaanxi Province.

  18. Giants among larges: how gigantism impacts giant virus entry into amoebae.

    Science.gov (United States)

    Rodrigues, Rodrigo Araújo Lima; Abrahão, Jônatas Santos; Drumond, Betânia Paiva; Kroon, Erna Geessien

    2016-06-01

    The proposed order Megavirales comprises the nucleocytoplasmic large DNA viruses (NCLDV), infecting a wide range of hosts. Over time, they co-evolved with different host cells, developing various strategies to penetrate them. Mimiviruses and other giant viruses enter cells through phagocytosis, while Marseillevirus and other large viruses explore endocytosis and macropinocytosis. These differing strategies might reflect the evolution of those viruses. Various scenarios have been proposed for the origin and evolution of these viruses, presenting one of the most enigmatic issues to surround these microorganisms. In this context, we believe that giant viruses evolved independently by massive gene/size gain, exploring the phagocytic pathway of entry into amoebas. In response to gigantism, hosts developed mechanisms to evade these parasites.

  19. AB initio free energy calculations of the solubility of silica in metallic hydrogen and application to giant planet cores

    Energy Technology Data Exchange (ETDEWEB)

    González-Cataldo, F. [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Wilson, Hugh F.; Militzer, B., E-mail: fgonzalez@lpmd.cl [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720 (United States)

    2014-05-20

    By combining density functional molecular dynamics simulations with a thermodynamic integration technique, we determine the free energy of metallic hydrogen and silica, SiO{sub 2}, at megabar pressures and thousands of degrees Kelvin. Our ab initio solubility calculations show that silica dissolves into fluid hydrogen above 5000 K for pressures from 10 and 40 Mbars, which has implications for the evolution of rocky cores in giant gas planets like Jupiter, Saturn, and a substantial fraction of known extrasolar planets. Our findings underline the necessity of considering the erosion and redistribution of core materials in giant planet evolution models, but they also demonstrate that hot metallic hydrogen is a good solvent at megabar pressures, which has implications for high-pressure experiments.

  20. Observations of Giant Pulses of the Crab Pulsar

    Institute of Scientific and Technical Information of China (English)

    Ling-Jun Kong; Ali Esamdin; Cheng-Shi Zhao; Zhi-Yong Liu; Jian-Ping Yuan

    2008-01-01

    The Crab Pulsar was observed at 1540 MHz with the 25m radio telescope at Urumqi with a filterbank de-dispersion backend. A total of 2436 giant pulses with pulse energies larger than 4300 Jy μs were detected in two observing sets. All of these giant pulses are located in the main pulse (MP) and inter pulse (IP) windows of the average profile of the Crab Pulsar. The ratio of the numbers of giant pulses detected in the IP and MP windows is about 0.05. Our results show that, at 1540 MHz, the emission in the IP is contributed by giant and normal pulses, while that in the MP is almost dominated by giant pulses. The distribution of energy of the 2436 giant pulses at 1540 MHz can be described by a power-law with index α=3.13±0.09. The intrinsic threshold of giant pulse energy in the MP window is about 1400 Jy μs at 1540 MHz.