WorldWideScience

Sample records for jupiter orbiting vehicle

  1. The EJSM Jupiter-Ganymede Orbiter

    Science.gov (United States)

    Blanc, M.; Lebreton, J.-P.; Stankov, A.; Greeley, R.; Pappalardo, R. T.; Fujimoto, M.

    2008-09-01

    The Europa-Jupiter System Mission (EJSM), currently subject of a joint study by NASA, ESA and JAXA, would combine a fleet of three satellites in order to investigate in depth many questions related to the Jupiter System. These investigations are essential for our understanding of the emergence and evolution of habitable worlds, not only within the Solar System, but also for extrasolar planet investigations. Scientific targets of EJSM focus on Europa and Ganymede as a key pair of Galilean satellites, to address the questions on their habitability, formation, and internal structure, as well as the coupling with the whole Jovian system: Jupiter's atmosphere and interior, magnetosphere and magnetodisk.. In combination with a Jupiter Europa Orbiter (JEO that would be provided by NASA) and a Jupiter Magnetospheric Orbiter (JMO that would be provided by JAXA), ESA is studying a Jupiter Ganymede Orbiter (JGO). The mission scenario includes a launch in 2020 with a transfer time to Jupiter of ~6 years. After the orbit insertion around Jupiter, a first phase (~2 years) will be devoted to Jupiter system and Callisto studies, with multiple flybys of Callisto planned at low altitude (~200 km), followed by a Ganymede orbit insertion and extensive study of Ganymede (~1 year). In depth comparative study of inner (Io and Europe) and outer (Ganymede and Callisto) satellites with combined payload of JEO and JGO will address the question of the geologic relative evolution of the satellites. On JGO, the transport phenomena in the magnetosphere of Jupiter will be studied in combination with JMO, and the Ganymede magnetosphere will be observed in situ. Jupiter atmosphere investigations on JGO will focus on coupling phenomena between troposphere, stratosphere and mesosphere, the stratospheric composition and the question of thermospheric heating.

  2. Japanese mission plan for Jupiter system: The Jupiter magnetospheric orbiter and the Trojan asteroid explorer

    Science.gov (United States)

    Sasaki, S.; Fujimoto, M.; Yano, H.; Takashima, T.; Kasaba, Y.; Takahashi, Y.; Kimura, J.; Funase, R.; Mori, O.; Tsuda, Y.; Campagnola, S.; Kawakatsu, Y.

    2011-10-01

    In the future Jupiter system study, Coordinated observation of Jovian magnetosphere is one of the important targets of the mission in addition to icy satellites, atmosphere, and interior of Jupiter. JAXA will take a role on the magnetosphere spinner JMO (Jupiter Magnetospheric Orbiter), in addition to JGO (Jupiter Ganymede Orbiter) by ESA and JEO (Jupiter Europa Orbiter) by NASA. We will combine JMO with a proposed solar sail mission of JAXA for Jupiter and one of Trojan asteroids. Since Trojan asteroids could be representing raw solid materials of Jupiter or at least outer solar system bodies, involvement of Trojan observation should enhance the quality of Jupiter system exploration.

  3. Jumping Jupiter can explain Mercury's orbit

    CERN Document Server

    Roig, Fernando; DeSouza, Sandro Ricardo

    2016-01-01

    The orbit of Mercury has large values of eccentricity and inclination that cannot be easily explained if this planet formed on a circular and coplanar orbit. Here, we study the evolution of Mercury's orbit during the instability related to the migration of the giant planets in the framework of the jumping Jupiter model. We found that some instability models are able to produce the correct values of Mercury's eccentricity and inclination, provided that relativistic effects are included in the precession of Mercury's perihelion. The orbital excitation is driven by the fast change of the normal oscillation modes of the system corresponding to the perihelion precession of Jupiter (for the eccentricity), and the nodal regression of Uranus (for the inclination).

  4. Secular orbital evolution of Jupiter family comets

    Science.gov (United States)

    Rickman, H.; Gabryszewski, R.; Wajer, P.; Wiśniowski, T.; Wójcikowski, K.; Szutowicz, S.; Valsecchi, G. B.; Morbidelli, A.

    2017-02-01

    Context. The issue of the long term dynamics of Jupiter family comets (JFCs) involves uncertain assumptions about the physical evolution and lifetimes of these comets. Contrary to what is often assumed, real effects of secular dynamics cannot be excluded and therefore merit investigation. Aims: We use a random sample of late heavy bombardment cometary projectiles to study the long-term dynamics of JFCs by a Monte Carlo approach. In a steady-state picture of the Jupiter family, we investigate the orbital distribution of JFCs, including rarely visited domains like retrograde orbits or orbits within the outer parts of the asteroid main belt. Methods: We integrate 100 000 objects over a maximum of 100 000 orbital revolutions including the Sun, a comet, and four giant planets. Considering the steady-state number of JFCs to be proportional to the total time spent in the respective orbital domain, we derive the capture rate based on observed JFCs with small perihelia and large nuclei. We consider a purely dynamical model and one where the nuclei are eroded by ice sublimation. Results: The JFC inclination distribution is incompatible with our erosional model. This may imply that a new type of comet evolution model is necessary. Considering that comets may live for a long time, we show that JFCs can evolve into retrograde orbits as well as asteroidal orbits in the outer main belt or Cybele regions. The steady-state capture rate into the Jupiter family is consistent with 1 × 109 scattered disk objects with diameters D > 2 km. Conclusions: Our excited scattered disk makes it difficult to explain the JFC inclination distribution, unless the physical evolution of JFCs is more intricate than assumed in standard, erosional models. Independent of this, the population size of the Jupiter family is consistent with a relatively low-mass scattered disk.

  5. Europa Planetary Protection for Juno Jupiter Orbiter

    Science.gov (United States)

    Bernard, Douglas E.; Abelson, Robert D.; Johannesen, Jennie R.; Lam, Try; McAlpine, William J.; Newlin, Laura E.

    2010-01-01

    NASA's Juno mission launched in 2011 and will explore the Jupiter system starting in 2016. Juno's suite of instruments is designed to investigate the atmosphere, gravitational fields, magnetic fields, and auroral regions. Its low perijove polar orbit will allow it to explore portions of the Jovian environment never before visited. While the Juno mission is not orbiting or flying close to Europa or the other Galilean satellites, planetary protection requirements for avoiding the contamination of Europa have been taken into account in the Juno mission design.The science mission is designed to conclude with a deorbit burn that disposes of the spacecraft in Jupiter's atmosphere. Compliance with planetary protection requirements is verified through a set of analyses including analysis of initial bioburden, analysis of the effect of bioburden reduction due to the space and Jovian radiation environments, probabilistic risk assessment of successful deorbit, Monte-Carlo orbit propagation, and bioburden reduction in the event of impact with an icy body.

  6. The EJSM Jupiter-Europa Orbiter: Mission Overview

    Science.gov (United States)

    Pappalardo, R. T.; Clark, K.; Greeley, R.; Hendrix, A. R.; Tan-Wang, G.; Lock, R.; van Houten, T.; Ludwinski, J.; Petropoulis, A.; Jun, I.; Boldt, J.; Kinnison, J.

    2008-09-01

    Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, Galileo supplied fascinating new insights into that satellite's secrets. The Jupiter Europa Orbiter (JEO) would be the NASA-led portion of the Europa Jupiter System Mission (EJSM), an international mission with orbiters developed by NASA, ESA and possibly JAXA. JEO would address key components of the complete EJSM science objectives and would be designed to function alone or in conjunction with the ESA-led Jupiter Ganymede Orbiter and JAXA-led Jupiter Magnetospheric Orbiter. The JEO mission concept uses a single orbiter flight system which would travel to Jupiter to perform a multi-year study of the Jupiter system and Europa, including 2.5-3 years of Jupiter system science and a comprehensive Europa orbit phase of upt ot a year. This abstract describes the design concept of this mission.

  7. The EJSM Jupiter Europa Orbiter: Planning Payload

    Science.gov (United States)

    Pappalardo, R. T.; Clark, K.; Greeley, R.; Hendrix, A. R.; Boldt, J.; Tan-Wang, G.; Lock, R.; van Houten, T.; Ludwinski, J.

    2008-09-01

    In the decade since the first return of Europa data by the Galileo spacecraft, the scientific understanding of Europa has greatly matured leading to the formulation of sophisticated new science objectives to be addressed through the acquisition of new data. The Jupiter Europa Orbiter (JEO) is one component of the proposed multi-spacecraft Europa Jupiter System Mission (EJSM) designed to obtain data in support of these new science objectives. The JEO planning payload, while notional, is used to quantify engineering aspects of the mission and spacecraft design, and operational scenarios required to obtain the data necessary to meet the science objectives. The instruments were defined to understand the viability of an approach to meet the measurement objectives, perform in the radiation environment and meet the planetary protection requirements. The actual instrument suite would ultimately be the result of an Announcement of Opportunity (AO) selection process carried out by NASA.

  8. Radiation Environment for the Jupiter Europa Orbiter

    Science.gov (United States)

    Jun, Insoo

    2008-09-01

    One of the major challenges for the Jupiter Europa Orbiter (JEO) mission would be that the spacecraft should be designed to survive an intense radiation environment expected at Jupiter and Europa. The proper definition of the radiation environments is the important first step, because it could affect almost every aspects of mission and spacecraft design. These include optimizing the trajectory to minimize radiation exposure, determining mission lifetime, selecting parts, materials, detectors and sensors, shielding design, etc. The radiation environments generated for the 2008 JEO study will be covered, emphasizing the radiation environment mainly responsible for the total ionizing dose (TID) and displacement damage dose (DDD). The latest models developed at JPL will be used to generate the TID and DDD environments. Finally, the major radiation issues will be summarized, and a mitigation plan will be discussed.

  9. Jupiter Magnetospheric Orbiter and Trojan Asteroid Explorer in EJSM (Europa Jupiter System Mission)

    Science.gov (United States)

    Sasaki, Sho; Fujimoto, Masaki; Takashima, Takeshi; Yano, Hajime; Kasaba, Yasumasa; Takahashi, Yukihiro; Kimura, Jun; Tsuda, Yuichi; Funase, Ryu; Mori, Osamu

    2010-05-01

    Europa Jupiter System Mission (EJSM) is an international mission to explore and Jupiter, its satellites and magnetospheric environment in 2020s. EJSM consists of (1) The Jupiter Europa Orbiter (JEO) by NASA, (2) the Jupiter Ganymede Orbiter (JGO) by ESA, and (3) the Jupiter Magnetospheric Orbiter (JMO) studied by JAXA (Japan Aerospace Exploration Agency). In February 2009, NASA and ESA decided to continue the study of EJSM as a candidate of the outer solar system mission. JMO will have magnetometers, low-energy plasma spectrometers, medium energy particle detectors, energetic particle detectors, electric field / plasma wave instruments, an ENA imager, an EUV spectrometer, and a dust detector. Collaborating with plasma instruments on board JEO and JGO, JMO will investigate the fast and huge rotating magnetosphere to clarify the energy procurement from Jovian rotation to the magnetosphere, to clarify the interaction between the solar wind the magnetosphere. Especially when JEO and JGO are orbiting around Europa and Ganymede, respectively, JMO will measure the outside condition in the Jovian magnetosphere. JMO will clarify the characteristics of the strongest accelerator in the solar system with the investigation of the role of Io as a source of heavy ions in the magnetosphere. JAXA started a study of a solar power sail for deep space explorations. Together with a solar sail (photon propulsion), it will have very efficient ion engines where electric power is produced solar panels within the sail. JAXA has already experienced ion engine in the successful Hayabusa mission, which was launched in 2003 and is still in operation in 2010. For the purpose of testing solar power sail technology, an engineering mission IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun) will be launched in 2010 together with Venus Climate Orbiter PLANET-C. The shape of the IKAROS' membrane is square, with a diagonal distance of 20m. It is made of polyimide film only 0.0075mm

  10. Jupiter Europa Orbiter Architecture Definition Process

    Science.gov (United States)

    Rasmussen, Robert; Shishko, Robert

    2011-01-01

    The proposed Jupiter Europa Orbiter mission, planned for launch in 2020, is using a new architectural process and framework tool to drive its model-based systems engineering effort. The process focuses on getting the architecture right before writing requirements and developing a point design. A new architecture framework tool provides for the structured entry and retrieval of architecture artifacts based on an emerging architecture meta-model. This paper describes the relationships among these artifacts and how they are used in the systems engineering effort. Some early lessons learned are discussed.

  11. The Jupiter Ganymede Orbiter : An ESA Contribution to the Europa-Jupiter System Mission

    Science.gov (United States)

    Drossart, Pierre; Blanc, M.; Lebreton, J. P.; Pappalardo, R. T.; Greeley, R.; Fujimoto, M.; EJSM/Jupiter Science Definition Team

    2008-09-01

    In the framework of an outer planets mission, under study after the NASA-Juno mission, the Europa-Jupiter System Mission (EJSM) would combine a fleet of up to three satellites in order to investigate in depth many questions related to the Jupiter System. These investigations are essential for our understanding of the emergence and evolution of habitable worlds, not only within the Solar System, but also for extrasolar planets investigations. Scientific targets of EJSM will focus on Europa and Ganymede as a key pair of Galilean satellites, to address the questions on their habitability, formation, and internal structure, as well as the coupling with the whole Jovian system : Jupiter's atmosphere and interior, magnetosphere and magnetodisk. .In combination with a Jupiter Europa Orbiter (JEO likely provided by NASA) and a Jupiter Magnetospheric Orbiter (JMO likely provided by JAXA), ESA is studying a Jupiter Ganymede Orbiter (JGO). The mission scenario includes a direct launch in 2020 with a transfer time to Jupiter of 6 years. After the orbit insertion around Jupiter, a first phase ( 2 years) will be devoted to Jupiter system and Callisto studies, with multiple flybys of Callisto planned at low altitude ( 200 km), followed by a Ganymede orbit insertion and extensive study of Ganymede ( 1 year). In-depth comparative study of inner (Io and Europa) and outer (Ganymede and Callisto) satellites with combined payload of JEO and JGO will address the question of the relative geological evolution of the satellites. On JGO, the transport phenomena in the magnetosphere of Jupiter will be studied in combination with JMO, and the Ganymede magnetosphere will be observed in situ. Jupiter atmosphere investigations on JGO will focus on coupling phenomena between troposphere, stratosphere and mesosphere, the stratospheric composition and the question of thermospheric heating.

  12. Return to Europa: Overview of the Jupiter Europa Orbiter Mission

    Science.gov (United States)

    Clark, K.; Tan-Wang, G.; Boldt, J.; Greeley, R.; Jun, I.; Lock, R.; Ludwinski, J.; Pappalardo, R.; Van Houten, T.; Yan, T.

    2009-01-01

    Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, Galileo supplied fascinating new insights into that satellite's secrets. The Jupiter Europa Orbiter (JEO) would be the NASA-led portion of the Europa Jupiter System Mission (EJSM), an international mission with orbiters developed by NASA, ESA and possibly JAXA. JEO would address a very important subset of the complete EJSM science objectives and is designed to function alone or in conjunction with ESA's Jupiter Ganymede Orbiter (JGO).

  13. An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design

    Science.gov (United States)

    Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.

    2009-01-01

    Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.

  14. Fitting Orbits to Jupiter's Moons with a Spreadsheet.

    Science.gov (United States)

    Bridges, Richard

    1995-01-01

    Describes how a spreadsheet is used to fit a circular orbit model to observations of Jupiter's moons made with a small telescope. Kepler's Third Law and the inverse square law of gravity are observed. (AIM)

  15. A Transiting Hot Jupiter Orbiting a Metal-Rich Star

    CERN Document Server

    Dunham, Edward W; Koch, David G; Batalha, Natalie M; Buchhave, Lars A; Brown, Timothy M; Caldwell, Douglas A; Cochran, William D; Endl, Michael; Fischer, Debra; Furesz, Gabor; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Gould, Alan; Howell, Steve B; Jenkins, Jon M; Kjeldsen, Hans; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Meibom, Soren; Monet, David G; Rowe, Jason F; Sasselov, Dimitar D

    2010-01-01

    We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a star with unusually high metallicity, [Fe/H] = +0.34 +/- 0.04. The planet's mass is about 2/3 that of Jupiter, Mp = 0.67 Mj, and the radius is thirty percent larger than that of Jupiter, Rp = 1.32 Rj, resulting in a density of 0.35 g/cc, a fairly typical value for such a planet. The orbital period is P = 3.235 days. The host star is both more massive than the Sun, Mstar = 1.21 Msun, and larger than the Sun, Rstar = 1.39 Rsun.

  16. Behavior of Jupiter Non-Trojan Co-Orbitals

    CERN Document Server

    Wajer, Paweł

    2012-01-01

    Searching for the non-Trojan Jupiter co-orbitals we have numerically integrated orbits of 3\\,160 asteroids and 24 comets discovered by October 2010 and situated within and close to the planet co-orbital region. Using this sample we have been able to select eight asteroids and three comets and have analyzed their orbital behavior in a great detail. Among them we have identified five new Jupiter co-orbitals: \\cu, \\sa, \\ql, \\gh, and \\Larsen, as well as we have analyzed six previously identified co-orbitals: \\hr, \\ug, \\qq, \\aee, \\wc\\ and \\ar. \\cu\\ is currently on a quasi-satellite orbit with repeatable transitions into the tadpole state. Similar behavior shows \\gh\\ which additionally librates in a compound tadpole-quasi-satellite orbit. \\ql\\ and \\Larsen\\ are the co-orbitals of Jupiter which are temporarily moving in a horseshoe orbit occasionally interrupted by a quasi-satellite behavior. \\sa\\ is moving in a pure horseshoe orbit. Orbits of the latter three objects are unstable and according to our calculations, t...

  17. Jupiter Magnetospheric Orbiter and Trojan Asteroid Explorer in EJSM

    Science.gov (United States)

    Sasaki, Sho; Fujimoto, Masaki; Yano, Hajime; Takashima, Takeshi; Kasaba, Yasumasa; Funase, Ryu; Tsuda, Yuichi; Kawaguchi, Junichiro; Kawakatsu, Yasuhiro; Mori, Osamu; Morimoto, Mutsuko; Yoshida, Fumi; Takato, Naruhisa

    The international mission to explore the Jovian system is planned as Europa Jupiter System Mission (EJSM) aiming at the launch in 2020. EJSM consists of (1) the Jupiter Europa Orbiter (JEO) by NASA, (2) the Jupiter Ganymede Orbiter (JGO) by ESA, and (3) the Jupiter Magnetospheric Orbiter (JMO) studied by JAXA (Japan Aerospace Exploration Agency). In February 2009, NASA and ESA decided to continue the study of EJSM as a candidate of the outer solar system mission. In JAXA, a mission plan combining Trojan asteroid explorer with JMO started. According to the mission plan, as the main spacecraft flies by Jupiter, it will deploy the JMO satellite around Jupiter. Then the main will target one (or two) Trojan asteroids. JMO is a spin-stabilized satellite which will have magnetometers, low-energy plasma spectrome-ters, medium energy particle detectors, energetic particle detectors, electric field / plasma wave instruments, an ENA imager, an EUV spectrometer, and a dust detector. Collaborating with plasma instruments on board JEO and JGO, JMO will investigate the fast-rotating huge mag-netosphere to clarify the energy procurement from the rotation of Jupiter to the magnetosphere and to clarify the interaction between the solar wind and the magnetosphere. JAXA started the study of a solar power sail for deep space explorations. In addition to the function of a solar sail (photon propulsion), the solar power sail system has very efficient ion engines where electric power is produced solar panels within the sail. Currently we are studying a mission to Jupiter and Trojan asteroids using a large (100m-scale) solar power sail that can transfer large payload as far as Jupiter. Trojan asteroids, which orbit around Jupiter's Lagrangian points, are primitive bodies with information of the early solar system as well as raw solid materials of Jovian system. Proposed instruments for the Trojan spacecraft are cameras, IR spectrometers, XRS, a laser altimeter, and a small surface rover

  18. Return to Europa: Overview of the Jupiter Europa orbiter mission

    Science.gov (United States)

    Clark, K.; Boldt, J.; Greeley, R.; Hand, K.; Jun, I.; Lock, R.; Pappalardo, R.; van Houten, T.; Yan, T.

    2011-08-01

    Missions to explore Europa have been imagined ever since the Voyager mission first suggested that Europa was geologically very young. Subsequently, the Galileo spacecraft supplied fascinating new insights into this satellite of Jupiter. Now, an international team is proposing a return to the Jupiter system and Europa with the Europa Jupiter System Mission (EJSM). Currently, NASA and ESA are designing two orbiters that would explore the Jovian system and then each would settle into orbit around one of Jupiter's icy satellites, Europa and Ganymede. In addition, the Japanese Aerospace eXploration Agency (JAXA) is considering a Jupiter magnetospheric orbiter and the Russian Space Agency is investigating a Europa lander.The Jupiter Europa Orbiter (JEO) would be the NASA-led portion of the EJSM; JEO would address a very important subset of the complete EJSM science objectives and is designed to function alone or in conjunction with ESA's Jupiter Ganymede Orbiter (JGO). The JEO mission concept uses a single orbiter flight system that would travel to Jupiter by means of a multiple-gravity-assist trajectory and then perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months.The JEO mission would investigate various options for future surface landings. The JEO mission science objectives, as defined by the international EJSM Science Definition Team, include:Europa's ocean: Characterize the extent of the ocean and its relation to the deeper interior.Europa's ice shell: Characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange.Europa's chemistry: Determine global surface compositions and chemistry, especially as related to habitability.Europa's geology: Understand the formation of surface features, including sites of recent or current activity, and identify and characterize candidate sites for future in situ

  19. Orbits of the small inner satellites of Jupiter

    Science.gov (United States)

    Synnott, S. P.

    1984-01-01

    Voyager images led to the discovery of the three small inner satellites of Jupiter, Adrastea, Metis, and Thebe. Attention is presently given to orbital parameter estimates and associated uncertainties that have been determined from Voyager imaging data, the achievable angular accuracy of which is about 0.00005 rad.

  20. The EJSM Jupiter-Europa Orbiter: Science Objectives

    Science.gov (United States)

    Pappalardo, R. T.; Blanc, M.; Clark, K.; Greeley, R.; Hendrix, A. R.; Lebreton, J.-P.

    2008-09-01

    Europa is believed to shelter an ocean between its geodynamically active icy shell and its rocky mantle, where the conditions for habitability may be fulfilled. With a warm, salty, water ocean and plausible chemical energy sources, Europa is the astrobiological archetype for icy satellite habitability. It is also a geophysical wonderland of interrelated ice shell processes that are intimately related to the ocean and tides, and of complex interactions among its interior, surface, atmosphere, and magnetospheric environments. The Jupiter-Europa Orbiter (JEO) is one component of the proposed multi-spacecraft Europa Jupiter System Mission (EJSM). We focus here on the science objectives and heritage of JEO.

  1. Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers

    Science.gov (United States)

    Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory

    2013-01-01

    Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.

  2. Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers

    Science.gov (United States)

    Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory

    2013-01-01

    Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.

  3. Jupiter

    CERN Document Server

    Penne, Barbra

    2017-01-01

    Our solar system's largest planet is huge enough that all of the system's other planets could fit inside it. Although Jupiter has been known since ancient times, scientists are still learning exciting new information about the planet and its satellites today. In fact, several of its moons are now believed to have oceans below their icy surfaces. Chapters focus on topics such as Jupiter's orbit and rotation, rings, atmosphere, and moons, as well as on the space missions that have helped us get a closer look at the planet and its moons over the past decades.

  4. A retrograde co-orbital asteroid of Jupiter.

    Science.gov (United States)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2017-03-29

    Recent theoretical work in celestial mechanics has revealed that an asteroid may orbit stably in the same region as a planet, despite revolving around the Sun in the sense opposite to that of the planet itself. Asteroid 2015 BZ509 was discovered in 2015, but with too much uncertainty in its measured orbit to establish whether it was such a retrograde co-orbital body. Here we report observations and analysis that demonstrates that asteroid 2015 BZ509 is indeed a retrograde co-orbital asteroid of the planet Jupiter. We find that 2015 BZ509 has long-term stability, having been in its current, resonant state for around a million years. This is long enough to preclude precise calculation of the time or mechanism of its injection to its present state, but it may be a Halley-family comet that entered the resonance through an interaction with Saturn. Retrograde co-orbital asteroids of Jupiter and other planets may be more common than previously expected.

  5. A retrograde co-orbital asteroid of Jupiter

    Science.gov (United States)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2017-03-01

    Recent theoretical work in celestial mechanics has revealed that an asteroid may orbit stably in the same region as a planet, despite revolving around the Sun in the sense opposite to that of the planet itself. Asteroid 2015 BZ509 was discovered in 2015, but with too much uncertainty in its measured orbit to establish whether it was such a retrograde co-orbital body. Here we report observations and analysis that demonstrates that asteroid 2015 BZ509 is indeed a retrograde co-orbital asteroid of the planet Jupiter. We find that 2015 BZ509 has long-term stability, having been in its current, resonant state for around a million years. This is long enough to preclude precise calculation of the time or mechanism of its injection to its present state, but it may be a Halley-family comet that entered the resonance through an interaction with Saturn. Retrograde co-orbital asteroids of Jupiter and other planets may be more common than previously expected.

  6. The Jupiter Ganymede Orbiter mission and spacecraft architecture

    Science.gov (United States)

    Boulade, Sebastien; Maliet, Eric; Saks, Noah; Lang, Rainer; Kemble, Steve

    2010-05-01

    The Europa Jupiter System Mission (EJSM) is a joint NASA-ESA mission candidate, featuring two planetary orbiters in Jovian environment. It will study Jupiter and its magnetosphere, the diversity of the Galilean satellites, the physical characteristics, composition and geology of their surfaces, with a resolution and coverage far beyond what was achieved by Galileo. It will determine their internal structure and the existence of subsurface oceans. It will study the Laplace resonance and its role in maintaining tidal heating. Constraints for the habitability of Europa over geologic timescales will be inferred from monitoring Io and Europa in the visible and infrared combined with precise determination of the satellites' orbital positions. To meet these science objectives, the EJSM mission will optimize the role of each platform. NASA-supplied Jupiter Europa Orbiter (JEO) will focus on the two "rocky" inner Galilean satellites, Io and Europa. Following a similar approach, ESA-procured Jupiter Ganymede Orbiter (JGO) will focus on the two "icy" outer Galilean satellites, Ganymede and Callisto. With these two orbiters around Europa and Ganymede, it will be possible to perform an in-depth comparison, to understand the origin of their geophysical dichotomy and to better understand the unique characteristics of Europa which may make it habitable. Coordination of observations between JEO and JGO could also bring important synergistic science. As part of this EJSM mission, the JGO spacecraft is now one of the candidates for the "L1" launch slot in the ESA Cosmic Vision 2015/2025 plan, with a foreseen launch in 2020. All studies candidate for this L mission concepts currently undergo parallel assessment studies until end of 2010, when two mission concepts will be selected for definition studies, until 2012. Eventually, the first L mission will be selected for industrial implementation starting in 2013. The mission scenario for JGO is based on a launch in 2020 with Ariane 5

  7. The role of Jupiter in driving Earth's orbital evolution

    CERN Document Server

    Horner, Jonathan; Koch, F Elliot

    2014-01-01

    In coming years, the first truly Earth-like planets will be discovered orbiting other stars, and the search for signs of life on these worlds will begin. However, such observations will be hugely time-consuming and costly, and so it will be important to determine which of those planets represent the best prospects for life elsewhere. One of the key factors in such a decision will be the climate variability of the planet in question - too chaotic a climate might render a planet less promising as a target for our initial search for life elsewhere. On the Earth, the climate of the last few million years has been dominated by a series of glacial and interglacial periods, driven by periodic variations in the Earth's orbital elements and axial tilt. These Milankovitch cycles are driven by the gravitational influence of the other planets, and as such are strongly dependent on the architecture of the Solar system. Here, we present the first results of a study investigating the influence of the orbit of Jupiter on the...

  8. The EJSM Jupiter-Europa Orbiter: Planning Payload

    Science.gov (United States)

    Tan-Wang, G.; Pappalardo, R. T.; Boldt, J.; Clark, K.; Greeley, R.; Hendrix, A. R.; Lock, R. E.; van Houten, T.; Ludwinski, J.

    2008-12-01

    In the decade since the first return of Europa data by the Galileo spacecraft, the scientific understanding of Europa has greatly matured leading to the formulation of sophisticated new science objectives to be addressed through the acquisition of new data. The Jupiter-Europa Orbiter (JEO) is one component of the proposed multi-spacecraft Europa Jupiter System Mission (EJSM) designed to obtain data in support of these new science objectives. The JEO planning payload, while notional, is used to quantify engineering aspects of the mission and spacecraft design, and operational scenarios required to obtain the data necessary to meet the science objectives. The instruments were defined to demonstrate the viability of meeting the measurement objectives, performing while in the background radiation environment, and the ability to meet stringent planetary protection requirements. The actual instrument suite would ultimately be the result of an Announcement of Opportunity (AO) selection process carried out by NASA. The JEO planning payload consists of a notional set of remote sensing instruments, fields-and-plasma instruments, and both X-band and Ka band telecommunications systems which provide Doppler and range data for accurate orbit reconstruction. For JEO, the sensor portions of the instruments are located on the nadir facing deck of the spacecraft while a shared chassis houses the electronics portion of the instruments making optimal use of radiation shielding mass. A spacecraft supplied 10 meter boom is deployed for use by the JEO Magnetometer. All instruments are co-aligned and nominally nadir pointing for simplification of spacecraft operations. Instrument articulation required for target motion compensation, limb viewing or other purposes will be implemented within the instrument. Spacecraft telemetry and telecommand interfaces are nominally Spacewire for high-bandwidth instruments and Mil-Std-1553 for low-bandwidth instruments. Instrument power is provided by a

  9. Jupiter Icy Moons Orbiter (JIMO) Electrical Systems Testbed

    Science.gov (United States)

    Trapp, Scott J.

    2004-01-01

    The Jupiter Icy Moons Orbiter (JIMO) mission will send a spacecraft to explore three of Jupiter s moons (Callisto, Ganymede, and Europa), all of which show evidence of containing vast subterranean oceans beneath their icy surfaces. The evidence of these oceans was discovered by Galileo, and the moons are believed to have the three essential ingredients for life: water, energy, and the necessary chemical elements. Galileo has shown that melted water on Europa has been in contact with the surface of the moon in geologically recent times, and may still lie relatively close to the surface. This project will also introduce a revolutionary new form of electric propulsion powered by a nuclear fission reactor. This electric propulsion is called ion propulsion. It was used on a previous mission called Deep Space 1, proving that ion propulsion works for interplanetary travel. Since JIMO will be traveling farther from the sun, solar power will be difficult to supply the electric energy demanded by the mission. Therefore a nuclear reactor and a thermo-electric converter system will be necessary. Besides making the trip to three of Jupiter's moons - one after the other - a realistic possibility, this new form of power and propulsion opens up the rest of the outer solar system for future exploration. JIMO will fulfill its goals by exploring Europa first, with subsequent trips to the moons Callisto and Ganymede in order to provide comparisons key to understanding the evolution of all three. In order to ensure the stability and proper preparation of the electrical system on JIMO, the High Power AC Power Management and Distribution (PMAD) Test Bed is being developed. The testing on.this AC PMAD will consist of electrical performance verification of candidate power system components. Examples of these components are: high power AC switchgear, high power ACDC converters, AC power distribution units, DC power distribution units, etc. Throughout the course of the summer the over

  10. Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter

    Science.gov (United States)

    2003-01-01

    The papers presented at this conference primarily discuss instruments and techniques for conducting science on Jupiter's icy moons, and geologic processes on the moons themselves. Remote sensing of satellites, cratering on satellites, and ice on the surface of Europa are given particular attention. Some papers discuss Jupiter's atmosphere, or exobiology.

  11. Current Status of the EJSM Jupiter Europa Orbiter Flagship Mission Design

    Science.gov (United States)

    Clark, K.; Pappalardo, R.; Greeley, R.; Hendrix, A.; Boldt, J.; van Houten, T.; Jun, I.; Lock, R.; Ludwinski, J.; Rasmussen, R.; Tan-Wang, G.

    2008-12-01

    NASA and ESA have embarked on a joint study of a mission to Europa and the Jupiter system with orbiters developed by NASA, ESA, and possibly JAXA. An international Joint Jupiter Science Definition Team (JJSDT) is defining the science content for the Jupiter Europa Orbiter (JEO) mission study run by NASA and for the Jupiter Ganymede Orbiter (JGO) mission study run by ESA. Engineering teams for both missions are working closely with the JJSDT to define mission concepts that optimize science, cost, and risk. The NASA-led JEO mission addresses a scientifically rich subset of the complete EJSM science goals and is designed to stand alone or in conjunction with the ESA-led JGO. This paper focuses on the NASA-led JEO mission and will describe the concept in the context of a standalone mission. An orbital mission to Europa is driven by the desire to investigate an astrobiological archetype for icy satellite habitability, with a putative warm, salty, water ocean with plausible energy sources. Additionally, JEO will explore the Jupiter system to better understand how Europa's possible habitability is related to the formation scenario of the other Jovian satellites. The JEO mission will perform 2.5-3 years of Jupiter system science, including encounters with Io, Ganymede and Callisto, before insertion into orbit around Europa for a comprehensive set of science campaigns lasting for up to one year. This paper will highlight the JEO mission design and implementation concept. The work reported was sponsored by the National Aeronautics and Space Administration.

  12. Jupiter - Friend or Foe? IV: The influence of orbital eccentricity and inclination

    CERN Document Server

    Horner, J

    2011-01-01

    For many years, it was assumed that Jupiter prevented the Earth from being subject to a punishing impact regime that would greatly hinder the development of life. Here, we present the 4th in a series of studies investigating this hypothesis. Previously, we examined the effect of Jupiter's mass on the impact rate experienced by Earth. Here, we extend that approach to consider the influence of Jupiter's orbital eccentricity and inclination on the impact rate. We first consider scenarios in which Jupiter's orbital eccentricity was somewhat higher and somewhat lower than that in our Solar System. We find that Jupiter's orbital eccentricity plays a moderate role in determining the impact flux at Earth, with more eccentric orbits resulting in a higher impact rate of asteroids than for more circular orbits. This is particularly pronounced at high "Jupiter" masses. For short-period comets, the same effect is clearly apparent, albeit to a lesser degree. The flux of short-period comets impacting the Earth is slightly h...

  13. Pioneer Jupiter orbiter probe mission 1980, probe description

    Science.gov (United States)

    Defrees, R. E.

    1974-01-01

    The adaptation of the Saturn-Uranus Atmospheric Entry Probe (SUAEP) to a Jupiter entry probe is summarized. This report is extracted from a comprehensive study of Jovian missions, atmospheric model definitions and probe subsystem alternatives.

  14. Power-Conversion Concept Designed for the Jupiter Icy Moons Orbiter

    Science.gov (United States)

    Mason, Lee S.

    2004-01-01

    The Jupiter Icy Moons Orbiter (JIMO) is a bold new mission being developed by NASA's Office of Space Science under Project Prometheus. JIMO is examining the potential of nuclear electric propulsion (NEP) technology to efficiently deliver scientific payloads to three of Jupiter's moons: Callisto, Ganymede, and Europa. A critical element of the NEP spacecraft is the space reactor power system (SRPS), consisting of the nuclear reactor, power conversion, heat rejection, and power management and distribution (PMAD).

  15. Current Status of the EJSM Jupiter Europa Orbiter: Mission Design and Architecture

    Science.gov (United States)

    Grunthaner, Paula; Clark, K.; Pappalardo, R.; Greeley, R.; Hendrix, A.; Boldt, J.; Van Houten, T.; Jun, I.; Lock, R.; Ludwinski, J.; Rasmussen, R.; Tan-Wang, G.

    2008-09-01

    NASA and ESA have embarked on a joint study of a mission to Europa and the Jupiter system with orbiters developed by NASA, ESA, and possibly JAXA. An international Jupiter Joint Science Definition Team (JJSDT) is defining the science content for the Europa Orbiter (JEO) mission study run by NASA and for the Jupiter Ganymede Orbiter (JGO) mission study run by ESA. Engineering teams for both missions are working closely with the JJSDT to define mission concepts that optimize science, cost, and risk. The NASA-led JEO mission addresses a scientifically rich subset of the complete EJSM science goals and is designed to stand alone or in conjunction with the ESA-led JGO. This paper focuses on the NASA-led JEO mission and will describe the concept in the context of a standalone mission. An orbital mission to Europa is driven by the desire to investigate an astrobiological archetype for icy satellite habitability, with a warm, salty, water ocean with plausible energy sources. Additionally, JEO will explore the Jupiter system to better understand how Europa's possible habitability is related to the formation scenario of the other Jovian satellites. The JEO mission will perform 2.5 to 3 years of Jupiter system science, including encounters with Io, Ganymede and Callisto, before insertion into orbit around Europa for a comprehensive set of science campaigns lasting for up to one year. This paper will highlight the JEO mission design and implementation concept. The work reported was sponsored by the National Aeronautics and Space Administration.

  16. Design study for electronic system for Jupiter Orbit Probe (JOP)

    Science.gov (United States)

    Elero, B. P., Jr.; Carignan, G. R.

    1978-01-01

    The conceptual design of the Jupiter probe spectrometer is presented. Block and circuit diagrams are presented along with tabulated parts lists. Problem areas are considered to be (1) the schedule, (2) weight limitations for the electronic systems, and (3) radiation hardness of the electronic devices.

  17. United States orbital transfer vehicle programs

    Science.gov (United States)

    Gunn, Charles R.

    The United States will rely on five orbital transfer vehicles to carry spacecraft to higher energy orbits than achievable by the Space Shuttle or various Expendable Launch Vehicles (ELV). These vehicles are the Payload Assist Module-Delta (PAM-D), an upgraded version designated PAM-DII, the Inertial Upper Stage (IUS), the Transfer Orbit Stage (TOS), and the Orbital Maneuvering Vehicle (OMV). Development of these vehicles have evolved through contrasting cultures of government and commercial management. The spectrum of their capabilities range from providing spacecraft with only a preprogrammed perigee velocity additions to man-in-the-loop remote controlled spacecraft rendezvous, docking, retrieval and return to a space base; either the Shuttle or the Space Station Freedom. The PAM-D, PAM-DII, and IUS are now nearing maturity. Their characteristics, flight record, costs, and projected future uses are defined. The TOS and OMV are currently in development with first uses scheduled in 1992 and 1993, respectively. The TOS is being commercially developed while the OMV is government developed. The TOS and OMV capabilities, constraints, and costs are reviewed.

  18. Improved orbits of Saturn and Jupiter from the Cassini and Juno missions

    Science.gov (United States)

    Folkner, William M.; Jacobson, Robert Arthur; Jones, Dayton

    2015-08-01

    Since entering orbit about Saturn in 2004, radio tracking data of the Cassini spacecraft has provided accurate measurements of its position leading to marked improvement in the Saturn ephemeris. The Cassini spacecraft orbit period has varied between 14 and 30 days as the orbit was changed to provide views of Saturn’s rings and satellites. This relatively large orbit period has required care to separate the spacecraft orbit relative to Saturn from the orbit of Saturn relative to the Sun. The resulting estimates give a series of range measurements of Saturn relative to Earth with accuracy of ~30 m. In addition to improving the Saturn ephemeris, the range measurements have been used to place stringent upper bounds on possible deviation from General Relativity suggested by the theory of Modified Newtonian Dynamics. The Very Large Baseline Array has been used to observe Cassini and determine the right ascension and declination of Saturn approximately every year since entering orbit. The combination of range and VLBA measurements over more than one-quarter of the Saturn orbit period have resulted in Saturn ephemeris accuracy comparable to that of the inner planets.The Juno spacecraft will enter orbit about Jupiter in July 2016. Juno will be the second spacecraft to orbit Jupiter, but the first to provide a time series of ranging measurements since the Galileo spacecraft high-gain antenna failure prevented range measurements from that mission. Ranging measurements to Juno, combined with VLBA observations, will cover less than one-quarter of an orbit period. But, when combined with the accurate measurements of the Ulysses spacecraft during Jupiter flyby in February 1992, the Jupiter ephemeris accuracy is expected to be close to that of Saturn and the inner planets.

  19. A NEARLY POLAR ORBIT FOR THE EXTRASOLAR HOT JUPITER WASP-79b

    Energy Technology Data Exchange (ETDEWEB)

    Addison, B. C.; Tinney, C. G.; Wright, D. J. [Exoplanetary Science Group, School of Physics, University of New South Wales, NSW 2052 (Australia); Bayliss, D.; Zhou, G.; Schmidt, B. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Hartman, J. D.; Bakos, G. A., E-mail: b.addison@unsw.edu.au [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States)

    2013-09-01

    We report the measurement of a spin-orbit misalignment for WASP-79b, a recently discovered, bloated hot Jupiter from the Wide Angle Search for Planets (WASP) survey. Data were obtained using the CYCLOPS2 optical-fiber bundle and its simultaneous calibration system feeding the UCLES spectrograph on the Anglo-Australian Telescope. We have used the Rossiter-McLaughlin effect to determine the sky-projected spin-orbit angle to be {lambda}= -106{sup +19}{sub -13} {sup o}. This result indicates a significant misalignment between the spin axis of the host star and the orbital plane of the planet-the planet being in a nearly polar orbit. WASP-79 is consistent with other stars that have T{sub eff} > 6250 K and host hot Jupiters in spin-orbit misalignment.

  20. Orbital maneuvering vehicle: A new capability

    Science.gov (United States)

    Huber, William G.

    The Orbital Maneuvering Vehicle (OMV) is a reusable, remotely controlled, free-flying vehicle being developed by NASA to perform a wide range of on-orbit missions and services in support of orbiting spacecraft. The OMV is capable of satellite delivery, retrieval, reboost, controlled deorbit, viewing, and subsatellite support missions. It is an important extension to the Space Transportation System and a key element of the Space Station operational scenario. The OMV can operate from the Shuttle, the Space Station, or can be space based. The OMV, being 15 ft in diameter and approximately 4 1/2 thick, mounts directly into the Shuttle payload bay. The vehicle design is highly modular, consisting of a Short Range Vehicle containing both hydrazine and cold gas RCS systems and all the avionics systems for electrical power, communications, data management, guidance, navigation, and 6-degree of freedom control. This vehicle weighs approximately 6,500 lb and can accomplish a high percentage of the project missions. For high delta-velocity missions, a bipropellant Propulsion Module (approximately 11,000lb) is added, giving a total weight of 17,500 lb. This module can be exchanged on orbit to effect bipropellant refueling. All the RCS and avionics modules are replaceable on orbit for maintenance. The OMV development program was initiated in 1986 with the selection of TRW as the prime contractor. The first flight is projected for 1991. An early planned use of OMV is to reboost the Hubble Space Telescope when required because of atmospheric drag. This paper contains details of the program status, vehicle description, and mission capabilities. The purpose of the paper is to acquaint the international space community with OMV capabilities and to stimulate the identification of new and unique mission applications.

  1. Numerical investigation of mapping orbits about Jupiter's icy moons

    Science.gov (United States)

    Aiello, John

    2005-01-01

    A proposed mission that would orbit Callisto, Ganymede, and Europa will require low altitude, high inclination orbits for gravity and surface mapping. This paper explores the dynamics of these orbits by direct propagation against an ephemeris model. Initial conditions within the context of a mapping mission's likely requirements are considered. The results complement the analytical studies and reveal additional dependencies.

  2. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star.

    Science.gov (United States)

    Donati, J F; Moutou, C; Malo, L; Baruteau, C; Yu, L; Hébrard, E; Hussain, G; Alencar, S; Ménard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Collier Cameron, A

    2016-06-30

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions.

  3. Orbit design for a space ambulance vehicle

    Science.gov (United States)

    Nelson, Walter C.

    A number of rendezvous maneuvers between space stations in geocentric orbits at altitudes ranging between 200 km and geosynchronous altitude are examined. Minimum time to complete rendezvous is studied for purposes of expediting crew patient transfer to an orbiting medical base station (MBS) for the stabilization of trauma and definitive care. The vehicle to be used for the crew patient transfer to the MBS is the space ambulance vehicle (SAV). The SAV is assumed to use two velocity impulses to complete rendezvous maneuvers between an SS and the MBS: an accelerating impulse when departing the SS and a second decelerating impulse prior to docking with the MBS. Recommendations are made concerning the planning of space operations which will reduce both time and propulsive energy for rendezvous maneuvers. It is suggested that throttleable engines be used when transferring a crew patient whose trauma could be exacerbated by excessive acceleration of the carrier vehicle.

  4. Space Radiation Effects and Reliability Consideration for the Proposed Jupiter Europa Orbiter

    Science.gov (United States)

    Johnston, Allan

    2011-01-01

    The proposed Jupiter Europa Orbiter (JEO) mission to explore the Jovian moon Europa poses a number of challenges. The spacecraft must operate for about seven years during the transit time to the vicinity of Jupiter, and then endure unusually high radiation levels during exploration and orbiting phases. The ability to withstand usually high total dose levels is critical for the mission, along with meeting the high reliability standards for flagship NASA missions. Reliability of new microelectronic components must be sufficiently understood to meet overall mission requirements.The proposed Jupiter Europa Orbiter (JEO) mission to explore the Jovian moon Europa poses a number of challenges. The spacecraft must operate for about seven years during the transit time to the vicinity of Jupiter, and then endure unusually high radiation levels during exploration and orbiting phases. The ability to withstand usually high total dose levels is critical for the mission, along with meeting the high reliability standards for flagship NASA missions. Reliability of new microelectronic components must be sufficiently understood to meet overall mission requirements.

  5. A hot Jupiter orbiting a 2-Myr-old solar-mass T Tauri star

    CERN Document Server

    Donati, JF; Malo, L; Baruteau, C; Yu, L; Hebrard, E; Hussain, G; Alencar, S; Menard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Cameron, A Collier

    2016-01-01

    Hot Jupiters are giant Jupiter-like exoplanets that orbit 100x closer to their host stars than Jupiter does to the Sun. These planets presumably form in the outer part of the primordial disc from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is however unclear whether this occurs early in the lives of hot Jupiters, when still embedded within protoplanetary discs, or later, once multiple planets are formed and interact. Although numerous hot Jupiters were detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we show that hot Jupiters around young stars can be revealed from extended sets of high-resolution spectra. Once filtered-out from the activity, radial velocities of V830 Tau derived from new data collected in late 2015 exhibit a sine wave of...

  6. Proton radiation testing of laser optical components for NASA Jupiter Europa Orbiter Mission

    Science.gov (United States)

    Thomes, W. Joe, Jr.; Cavanaugh, John F.; Ott, Melanie N.

    2011-09-01

    The Jupiter Europa Orbiter (JEO) is NASA's element of the joint Europa Jupiter System Mission (EJSM). Based on current trajectories, the spacecraft will spend a significant amount of time in the Jovian radiation belts. Therefore, research endeavors are underway to study the radiation effects on the various parts and components needed to implement the instruments. Data from these studies will be used for component selection and system design to ensure reliable operation throughout the mission duration. The radiation environment en route to Jupiter is nothing new for NASA designed systems, however, the long durations orbiting Jupiter and Europa present new challenges for radiation exposure. High-energy trapped electrons and protons at Jupiter dominate the expected radiation environment. Therefore, most of the initial component level radiation testing is being conducted with proton exposure. In this paper we will present in-situ monitoring of the optical transmission of various laser optical components during proton irradiation. Radiation induced optical attenuation of some components is less than would be expected, based on the authors experiences, and is attributed to the interaction of the protons with the materials. The results are an encouraging first step in screening these optical materials for spaceflight in a high radiation environment.

  7. A paucity of proto-hot Jupiters on super-eccentric orbits

    CERN Document Server

    Dawson, Rebekah I; Johnson, John Asher

    2012-01-01

    Gas giant planets orbiting within 0.1 AU of their host stars, unlikely to have formed in situ, are evidence for planetary migration. It is debated whether the typical hot Jupiter smoothly migrated inward from its formation location through the proto-planetary disk or was perturbed by another body onto a highly eccentric orbit, which tidal dissipation subsequently shrank and circularized during close stellar passages. Socrates and collaborators predicted that the latter class of model should produce a population of super-eccentric proto-hot Jupiters readily observable by Kepler. We find a paucity of such planets in the Kepler sample, disagreeing with the theoretical prediction with 98.7% confidence. Observational effects are unlikely to explain this discrepancy. We find that the fraction of hot Jupiters with orbital period P > 3 days produced by the stellar binary Kozai mechanism does not exceed 0.15 +0.29/-0.11. Our results may indicate that disk migration is the dominant channel for producing hot Jupiters wi...

  8. Orbital maneuvering vehicle guidance, navigation and control

    Science.gov (United States)

    Huber, W. G.; Finnell, W., III

    1985-01-01

    This paper describes the Orbital Maneuvering Vehicle (OMV) concept and its intended role. It recaps the past activities leading up to the current concept and summarizes the present status and plans. The various types of missions and operating modes required by the OMV are described as the basis of the guidance, navigation and control (GN&C) requirements. The general GN&C problem is outlined with potential hardware solutions.

  9. Orbital Maneuvering Vehicle (OMV) remote servicing kit

    Science.gov (United States)

    Brown, Norman S.

    1988-01-01

    With the design and development of the Orbital Maneuvering Vehicle (OMV) progressing toward an early 1990 initial operating capability (IOC), a new era in remote space operations will evolve. The logical progression to OMV front end kits would make available in situ satellite servicing, repair, and consummables resupply to the satellite community. Several conceptual design study efforts are defining representative kits (propellant tanks, debris recovery, module servicers); additional focus must also be placed on an efficient combination module servicer and consummables resupply kit. A remote servicer kit of this type would be designed to perform many of the early maintenance/resupply tasks in both nominal and high inclination orbits. The kit would have the capability to exchange Orbital Replacement Units (ORUs), exchange propellant tanks, and/or connect fluid transfer umbilicals. Necessary transportation system functions/support could be provided by interfaces with the OMV, Shuttle (STS), or Expendable Launch Vehicle (ELV). Specific remote servicer kit designs, as well as ground and flight demonstrations of servicer technology are necessary to prepare for the potential overwhelming need. Ground test plans should adhere to the component/system/breadboard test philosophy to assure maximum capability of one-g testing. The flight demonstration(s) would most likely be a short duration, Shuttle-bay experiment to validate servicer components requiring a micro-g environment.

  10. Derivation of the collision probability between orbiting objects The lifetimes of Jupiter's outer moons

    Science.gov (United States)

    Kessler, D. J.

    1981-01-01

    A general form is derived for Opik's equations relating to the probability of collision between two orbiting objects to their orbital elements, and used to determine the collisional lifetime of the eight outer moons of Jupiter. The derivation is based on a concept of spatial density, or average number of objects found in a unit volume, and results in a set of equations that are easily applied to a variety of orbital collision problems. When applied to the outer satellites, which are all in irregular orbits, the equations predict a relatively long collisional lifetime for the four retrograde moons (about 270 billon years on the average) and a shorter time for the four posigrade moons (0.9 billion years). This short time is suggestive of a past collision history, and may account for the orbiting dust detected by Pioneers 10 and 11.

  11. THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. III. A PAUCITY OF PROTO-HOT JUPITERS ON SUPER-ECCENTRIC ORBITS

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Rebekah I. [Department of Astronomy, University of California, Berkeley, Hearst Field Annex B-20, Berkeley, CA 94720-3411 (United States); Murray-Clay, Ruth A.; Johnson, John Asher, E-mail: rdawson@berkeley.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138 (United States)

    2015-01-10

    Gas giant planets orbiting within 0.1 AU of their host stars are unlikely to have formed in situ and are evidence for planetary migration. It is debated whether the typical hot Jupiter smoothly migrated inward from its formation location through the proto-planetary disk, or was perturbed by another body onto a highly eccentric orbit, which tidal dissipation subsequently shrank and circularized during close stellar passages. Socrates and collaborators predicted that the latter model should produce a population of super-eccentric proto-hot Jupiters readily observable by Kepler. We find a paucity of such planets in the Kepler sample, which is inconsistent with the theoretical prediction with 96.9% confidence. Observational effects are unlikely to explain this discrepancy. We find that the fraction of hot Jupiters with an orbital period P > 3 days produced by the star-planet Kozai mechanism does not exceed (at two-sigma) 44%. Our results may indicate that disk migration is the dominant channel for producing hot Jupiters with P > 3 days. Alternatively, the typical hot Jupiter may have been perturbed to a high eccentricity by interactions with a planetary rather than stellar companion, and began tidal circularization much interior to 1 AU after multiple scatterings. A final alternative is that early in the tidal circularization process at high eccentricities tidal circularization occurs much more rapidly than later in the process at low eccentricities, although this is contrary to current tidal theories.

  12. Computational chemistry and aeroassisted orbital transfer vehicles

    Science.gov (United States)

    Cooper, D. M.; Jaffe, R. L.; Arnold, J. O.

    1985-01-01

    An analysis of the radiative heating phenomena encountered during a typical aeroassisted orbital transfer vehicle (AOTV) trajectory was made to determine the potential impact of computational chemistry on AOTV design technology. Both equilibrium and nonequilibrium radiation mechanisms were considered. This analysis showed that computational chemistry can be used to predict (1) radiative intensity factors and spectroscopic data; (2) the excitation rates of both atoms and molecules; (3) high-temperature reaction rate constants for metathesis and charge exchange reactions; (4) particle ionization and neutralization rates and cross sections; and (5) spectral line widths.

  13. A spin-orbit alignment for the hot Jupiter HATS-3b

    Energy Technology Data Exchange (ETDEWEB)

    Addison, B. C.; Tinney, C. G.; Wright, D. J. [Exoplanetary Science Group, School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Bayliss, D., E-mail: b.addison@unsw.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2014-09-10

    We have measured the alignment between the orbit of HATS-3b (a recently discovered, slightly inflated Hot Jupiter) and the spin axis of its host star. Data were obtained using the CYCLOPS2 optical-fiber bundle and its simultaneous calibration system feeding the UCLES spectrograph on the Anglo-Australian Telescope. The sky-projected spin-orbit angle of λ = 3° ± 25° was determined from spectroscopic measurements of the Rossiter-McLaughlin effect. This is the first exoplanet discovered through the HATSouth transit survey to have its spin-orbit angle measured. Our results indicate that the orbital plane of HATS-3b is consistent with being aligned to the spin axis of its host star. The low obliquity of the HATS-3 system, which has a relatively hot mid F-type host star, agrees with the general trend observed for Hot Jupiter host stars with effective temperatures >6250 K to have randomly distributed spin-orbit angles.

  14. HATS-17b: A Transiting Compact Warm Jupiter in a 16.3 Days Circular Orbit

    CERN Document Server

    Brahm, R; Bakos, G Á; Penev, K; Espinoza, N; Rabus, M; Hartman, J D; Bayliss, D; Ciceri, S; Zhou, G; Mancini, L; Tan, T G; de Val-Borro, M; Bhatti, W; Csubry, Z; Bento, J; Henning, T; Schmidt, B; Suc, V; Lázár, J; Papp, I; Sári, P

    2015-01-01

    We report the discovery of HATS-17b, the first transiting warm Jupiter of the HATSouth network. HATS-17b transits its bright (V=12.4) G-type (M$_{\\star}$=1.131 $\\pm$ 0.030 M$_{\\odot}$, R$_{\\star}$=1.091$^{+0.070}_{-0.046}$ R$_{\\star}$) metal-rich ([Fe/H]=+0.3 dex) host star in a circular orbit with a period of P=16.2546 days. HATS-17b has a very compact radius of 0.777 $\\pm$ 0.056 R$_J$ given its Jupiter-like mass of 1.338 $\\pm$ 0.065 M$_J$. Up to 50% of the mass of HATS-17b may be composed of heavy elements in order to explain its high density with current models of planetary structure. HATS-17b is the longest period transiting planet discovered to date by a ground-based photometric survey, and is one of the brightest transiting warm Jupiter systems known. The brightness of HATS-17b will allow detailed follow-up observations to characterize the orbital geometry of the system and the atmosphere of the planet.

  15. Current Status of the Jupiter Europa Orbiter (JEO): Science & Science Implementation

    Science.gov (United States)

    Pappalardo, Robert T.; Blanc, M.; Clark, K.; Greeley, R.; Hendrix, A.; Lebreton, J.; Prockter, L.; Joint Jupiter Science Definition Team

    2008-09-01

    The Jupiter-Europa Orbiter (JEO) is one component of the proposed multi-spacecraft Europa Jupiter System Mission (EJSM). The overarching goal of JEO is to explore Europa to investigate its habitability. Europa is believed to shelter an ocean between its geodynamically active icy shell and its rocky mantle, where the conditions for habitability may be fulfilled. With a warm, salty, water ocean and plausible chemical energy sources, Europa is the astrobiological archetype for icy satellite habitability. It is also a geophysical wonderland of interrelated ice shell processes that are intimately related to the ocean and tides, and of complex interactions among its interior, surface, atmosphere, and magnetospheric environments. A mission to Europa has been studied for a decade and has strong links to and recommendations from NASA reports. The conditions at Europa are well-understood, and JEO is prepared for the radiation environment at Europa. Europa science is mature, and hypotheses are well-formed. Five broad investigations have been defined to address the overarching goal: the Ocean, the Ice Shell, Chemistry, Geology and the Jupiter System. Measuring Europa's tides provides a simple and definitive test of the existence of an internal ocean - and the ocean and ice shell can be studied and characterized. Composition and chemistry form the linkages that enable understanding Europa's potential for life and habitability in the context of geologic processes, probe the interior structure, and record the evolution of the surface under the influence of internal and external processes. The search for recent or current geologic activity is important for understanding the origin of landforms, and especially significant for understanding Europa's potential for habitability. Understanding the Jupiter system as a whole is critical for placing Europa in its context as a member of the Jovian satellite system and for understanding the origin and evolution of the system, including

  16. Current Status of the Jupiter Europa Orbiter (JEO): Science and Science Implementation

    Science.gov (United States)

    Pappalardo, R. T.; Blanc, M.; Clark, K.; Greeley, R.; Hendrix, A. R.; Lebreton, J.; Prockter, L.; JEO Definition Team

    2008-12-01

    The Jupiter-Europa Orbiter (JEO) is one component of the proposed multi-spacecraft Europa Jupiter System Mission (EJSM). The overarching goal of JEO is to explore Europa to investigate its habitability. Europa is believed to shelter an ocean between its geodynamically active icy shell and its rocky mantle, where the conditions for habitability may be fulfilled. With a warm, salty, water ocean and plausible chemical energy sources, Europa is the astrobiological archetype for icy satellite habitability. It is also a geophysical wonderland of interrelated ice shell processes that are intimately related to the ocean and tides, and of complex interactions among its interior, surface, atmosphere, and magnetospheric environments. A mission to Europa has been studied for a decade and has strong links to and recommendations from NASA reports. The conditions at Europa are well-understood, and JEO is prepared for the radiation environment at Europa. Europa science is mature, and hypotheses are well-formed. Five broad investigations have been defined to address the overarching goal: the Ocean, the Ice Shell, Chemistry, Geology and the Jupiter System. Measuring Europa's tides provides a simple and definitive test of the existence of an internal ocean - and the ocean and ice shell can be studied and characterized. Composition and chemistry form the linkages that enable understanding Europa's potential for life and habitability in the context of geologic processes, probe the interior structure, and record the evolution of the surface under the influence of internal and external processes. The search for recent or current geologic activity is important for understanding the origin of landforms, and especially significant for understanding Europa's potential for habitability. Understanding the Jupiter system as a whole is critical for placing Europa in its context as a member of the Jovian satellite system and for understanding the origin and evolution of the system, including

  17. JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system

    OpenAIRE

    Grasset, O.; Dougherty, K; Coustenis, A.; Bunce, J; Erd, C.; Titov, D.; Blanc, M.; Coates, A; Drossart, P.; Fletcher, N; Hussmann, H.; Jaumann, R.; N. Krupp; Lebreton, P; O. Prieto-Ballesteros

    2013-01-01

    Past exploration of Jupiter's diverse satellite system has forever changed our understanding of the unique environments to be found around gas giants, both in our solar system and beyond. The detailed investigation of three of Jupiter's Galilean satellites (Ganymede, Europa, and Callisto), which are believed to harbour subsurface water oceans, is central to elucidating the conditions for habitability of icy worlds in planetary systems in general. The study of the Jupiter system and the possib...

  18. Hot Jupiters with relatives: discovery of additional planets in orbit around WASP-41 and WASP-47

    CERN Document Server

    Neveu-VanMalle, M; Anderson, D R; Brown, D J A; Cameron, A Collier; Delrez, L; Díaz, R F; Gillon, M; Hellier, C; Jehin, E; Lister, T; Pepe, F; Rojo, P; Ségransan, D; Triaud, A H M J; Turner, O D; Udry, S

    2015-01-01

    We report the discovery of two additional planetary companions to WASP-41 and WASP-47. WASP-41 c is a planet of minimum mass 3.18 $\\pm$ 0.20 M$_{\\rm Jup}$, eccentricity 0.29 $\\pm$ 0.02 and orbiting in 421 $\\pm$ 2 days. WASP-47 c is a planet of minimum mass 1.24 $\\pm$ 0.22 M$_{\\rm Jup}$, eccentricity 0.13 $\\pm$ 0.10 and orbiting in 572 $\\pm$ 7 days. Unlike most of the planetary systems including a hot Jupiter, these two systems with a hot Jupiter have a long period planet located at only $\\sim$1 AU from their host star. WASP-41 is a rather young star known to be chromospherically active. To differentiate its magnetic cycle from the radial velocity effect due the second planet, we use the emission in the H$\\alpha$ line and find this indicator well suited to detect the stellar activity pattern and the magnetic cycle. The analysis of the Rossiter-McLaughlin effect induced by WASP-41 b suggests that the planet could be misaligned, though an aligned orbit cannot be excluded. WASP-47 has recently been found to host ...

  19. FRIENDS OF HOT JUPITERS. II. NO CORRESPONDENCE BETWEEN HOT-JUPITER SPIN-ORBIT MISALIGNMENT AND THE INCIDENCE OF DIRECTLY IMAGED STELLAR COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Henry; Knutson, Heather A.; Hinkley, Sasha; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Crepp, Justin R.; Bechter, Eric B. [Department of Physics, University of Notre Dame, Notre Dame, IN (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI (United States); Johnson, John A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Morton, Timothy D. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA (United States); Muirhead, Philip S., E-mail: hngo@caltech.edu [Department of Astronomy, Boston University, Boston, MA (United States)

    2015-02-20

    Multi-star systems are common, yet little is known about a stellar companion's influence on the formation and evolution of planetary systems. For instance, stellar companions may have facilitated the inward migration of hot Jupiters toward to their present day positions. Many observed short-period gas giant planets also have orbits that are misaligned with respect to their star's spin axis, which has also been attributed to the presence of a massive outer companion on a non-coplanar orbit. We present the results of a multi-band direct imaging survey using Keck NIRC2 to measure the fraction of short-period gas giant planets found in multi-star systems. Over three years, we completed a survey of 50 targets ('Friends of Hot Jupiters') with 27 targets showing some signature of multi-body interaction (misaligned or eccentric orbits) and 23 targets in a control sample (well-aligned and circular orbits). We report the masses, projected separations, and confirmed common proper motion for the 19 stellar companions found around 17 stars. Correcting for survey incompleteness, we report companion fractions of 48% ± 9%, 47% ± 12%, and 51% ± 13% in our total, misaligned/eccentric, and control samples, respectively. This total stellar companion fraction is 2.8σ larger than the fraction of field stars with companions approximately 50-2000 AU. We observe no correlation between misaligned/eccentric hot Jupiter systems and the incidence of stellar companions. Combining this result with our previous radial velocity survey, we determine that 72% ± 16% of hot Jupiters are part of multi-planet and/or multi-star systems.

  20. Hot Jupiters with relatives: discovery of additional planets in orbit around WASP-41 and WASP-47

    Science.gov (United States)

    Neveu-VanMalle, M.; Queloz, D.; Anderson, D. R.; Brown, D. J. A.; Collier Cameron, A.; Delrez, L.; Díaz, R. F.; Gillon, M.; Hellier, C.; Jehin, E.; Lister, T.; Pepe, F.; Rojo, P.; Ségransan, D.; Triaud, A. H. M. J.; Turner, O. D.; Udry, S.

    2016-02-01

    We report the discovery of two additional planetary companions to WASP-41 and WASP-47. WASP-41 c is a planet of minimum mass 3.18 ± 0.20 MJup and eccentricity 0.29 ± 0.02, and it orbits in 421 ± 2 days. WASP-47 c is a planet of minimum mass 1.24 ± 0.22 MJup and eccentricity 0.13 ± 0.10, and it orbits in 572 ± 7 days. Unlike most of the planetary systems that include a hot Jupiter, these two systems with a hot Jupiter have a long-period planet located at only ~1 au from their host star. WASP-41 is a rather young star known to be chromospherically active. To differentiate its magnetic cycle from the radial velocity effect induced by the second planet, we used the emission in the Hα line and find this indicator well suited to detecting the stellar activity pattern and the magnetic cycle. The analysis of the Rossiter-McLaughlin effect induced by WASP-41 b suggests that the planet could be misaligned, though an aligned orbit cannot be excluded. WASP-47 has recently been found to host two additional transiting super Earths. With such an unprecedented architecture, the WASP-47 system will be very important for understanding planetary migration. Using data collected at ESO's La Silla Observatory, Chile: HARPS on the ESO 3.6 m (Prog ID 087.C-0649 & 089.C-0151), the Swiss Euler Telescope, TRAPPIST, the 1.54-m Danish telescope (Prog CN2013A-159), and at the LCOGT's Faulkes Telescope South.Photometric lightcurve and RV tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A93

  1. Evidence from the asteroid belt for a violent past evolution of Jupiter's orbit

    CERN Document Server

    Morbidelli, Alessandro; Gomes, Rodney; Levison, Harold F; Tsiganis, Kleomenis

    2010-01-01

    We use the current orbital structure of large (>50km) asteroids in the main asteroid belt to constrain the evolution of the giant planets when they migrated from their primordial orbits to their current ones. Minton & Malhotra (2009) showed that the orbital distribution of large asteroids in the main belt can be reproduced by an exponentially-decaying migration of the giant planets on a time scale of tau ~ 0.5My. However, self-consistent numerical simulations show that the planetesimal-driven migration of the giant planets is inconsistent with an exponential change in their semi major axes on such a short time scale (Hahn & Malhotra, 1999). In fact, the typical time scale is tau > 5My. When giant planet migration on this time scale is applied to the asteroid belt, the resulting orbital distribution is incompatible with the observed one. However, the planet migration can be significantly sped up by planet-planet encounters. Consider an evolution where both Jupiter and Saturn have close encounters with ...

  2. Feasibility Study of Jupiter Icy Moons Orbiter Permanent Magnet Alternator Start Sequence

    Science.gov (United States)

    Kenny, Barbara H.; Tokars, Roger P.

    2006-01-01

    The Jupiter Icy Moons Orbiter (JIMO) mission was a proposed, (recently cancelled) long duration science mission to study three moons of Jupiter: Callisto, Ganymede, and Europa. One design of the JIMO spacecraft used a nuclear heat source in conjunction with a Brayton rotating machine to generate electrical power for the electric thrusters and the spacecraft bus. The basic operation of the closed cycle Brayton system was as follows. The working fluid, a heliumxenon gas mixture, first entered a compressor, then went through a recuperator and hot-side heat exchanger, then expanded across a turbine that drove an alternator, then entered the cold-side of the recuperator and heat exchanger and finally returned to the compressor. The spacecraft was to be launched with the Brayton system off-line and the nuclear reactor shut down. Once the system was started, the helium-xenon gas would be circulated into the heat exchangers as the nuclear reactors were activated. Initially, the alternator unit would operate as a motor so as to drive the turbine and compressor to get the cycle started. This report investigated the feasibility of the start up sequence of a permanent magnet (PM) machine, similar in operation to the alternator unit, without any position or speed feedback sensors ("sensorless") and with a variable load torque. It is found that the permanent magnet machine can start with sensorless control and a load torque of up to 30 percent of the rated value.

  3. Friends of Hot Jupiters II: No Correspondence Between Hot-Jupiter Spin-Orbit Misalignment and the Incidence of Directly Imaged Stellar Companions

    CERN Document Server

    Ngo, Henry; Hinkley, Sasha; Crepp, Justin R; Bechter, Eric B; Batygin, Konstantin; Howard, Andrew W; Johnson, John A; Morton, Timothy D; Muirhead, Philip S

    2015-01-01

    Multi-star systems are common, yet little is known about a stellar companion's influence on the formation and evolution of planetary systems. For instance, stellar companions may have facilitated the inward migration of hot Jupiters towards to their present day positions. Many observed short period gas giant planets also have orbits that are misaligned with respect to their star's spin axis, which has also been attributed to the presence of a massive outer companion on a non-coplanar orbit. We present the results of a multi-band direct imaging survey using Keck NIRC2 to measure the fraction of short period gas giant planets found in multi-star systems. Over three years, we completed a survey of 50 targets ("Friends of Hot Jupiters") with 27 targets showing some signature of multi-body interaction (misaligned or eccentric orbits) and 23 targets in a control sample (well-aligned and circular orbits). We report the masses, projected separations, and confirmed common proper motion for the 19 stellar companions fo...

  4. WASP-135b: a highly irradiated, inflated hot Jupiter orbiting a G5V star

    CERN Document Server

    Spake, Jessica J; Doyle, Amanda P; Hébrard, Guillaume; McCormac, James; Armstrong, David J; Pollacco, Don; Chew, Yilen Gómez Maqueo; Anderson, David R; Barros, Susana C C; Bouchy, François; Boumis, Panayotis; Bruno, Giovanni; Cameron, Andrew Collier; Courcol, Bastien; Davies, Guy R; Faedi, Francesca; Hellier, Coel; Kirk, James; Lam, Kristine W F; Liakos, Alexios; Louden, Tom; Maxted, Pierre F L; Osborn, Hugh P; Palle, Enric; Arranz, Jorge Prieto; Udry, Stéphane; Walker, Simon R; West, Richard G; Wheatley, Peter J

    2015-01-01

    We report the discovery of a new transiting planet from the WASP survey. WASP-135b is a hot Jupiter with a radius of 1.30 pm 0.09 Rjup, a mass of 1.90 pm 0.08 Mjup and an orbital period of 1.401 days. Its host is a Sun-like star, with a G5 spectral type and a mass and radius of 0.98 pm 0.06 Msun and 0.96 pm 0.05 Rsun respectively. The proximity of the planet to its host means that WASP-135b receives high levels of insolation, which may be the cause of its inflated radius. Additionally, we find weak evidence of a transfer of angular momentum from the planet to its star.

  5. No large population of unbound or wide-orbit Jupiter-mass planets

    Science.gov (United States)

    Mróz, Przemek; Udalski, Andrzej; Skowron, Jan; Poleski, Radosław; Kozłowski, Szymon; Szymański, Michał K.; Soszyński, Igor; Wyrzykowski, Łukasz; Pietrukowicz, Paweł; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał

    2017-08-01

    Planet formation theories predict that some planets may be ejected from their parent systems as result of dynamical interactions and other processes. Unbound planets can also be formed through gravitational collapse, in a way similar to that in which stars form. A handful of free-floating planetary-mass objects have been discovered by infrared surveys of young stellar clusters and star-forming regions as well as wide-field surveys, but these studies are incomplete for objects below five Jupiter masses. Gravitational microlensing is the only method capable of exploring the entire population of free-floating planets down to Mars-mass objects, because the microlensing signal does not depend on the brightness of the lensing object. A characteristic timescale of microlensing events depends on the mass of the lens: the less massive the lens, the shorter the microlensing event. A previous analysis of 474 microlensing events found an excess of ten very short events (1-2 days)—more than known stellar populations would suggest—indicating the existence of a large population of unbound or wide-orbit Jupiter-mass planets (reported to be almost twice as common as main-sequence stars). These results, however, do not match predictions of planet-formation theories and surveys of young clusters. Here we analyse a sample of microlensing events six times larger than that of ref. 11 discovered during the years 2010-15. Although our survey has very high sensitivity (detection efficiency) to short-timescale (1-2 days) microlensing events, we found no excess of events with timescales in this range, with a 95 per cent upper limit on the frequency of Jupiter-mass free-floating or wide-orbit planets of 0.25 planets per main-sequence star. We detected a few possible ultrashort-timescale events (with timescales of less than half a day), which may indicate the existence of Earth-mass and super-Earth-mass free-floating planets, as predicted by planet-formation theories.

  6. WASP-41b: A Transiting Hot Jupiter Planet Orbiting a Magnetically Active G8V Star

    Science.gov (United States)

    Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A.; Hellier, C.; Queloz, D.; Smalley, B.; Street, R. A.; Triaud, A. H. M. J.; West, R. G.; Gillon, M.; Lister, T. A.; Pepe, F.; Pollacco, D.; Ségransan, D.; Smith, A. M. S.; Udry, S.

    2011-05-01

    We report the discovery of a transiting planet with an orbital period of 3.05 days orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8 V star (V = 11.6) with a metallicity close to solar ([Fe/H] = -0.08 ± 0.09). The star shows evidence of moderate chromospheric activity, both from emission in the cores of the Ca ii H and K ines and photometric variability with a period of 18.4 days and an amplitude of about 1%. We use a new method to show quantitatively that this periodic signal has a low false-alarm probability. The rotation period of the star implies a gyrochronological age for WASP-41 of 1.8 Gyr with an error of about 15%. We have used a combined analysis of the available photometric and spectroscopic data to derive the mass and radius of the planet (0.92 ± 0.06 MJup, 1.20 ± 0.06 RJup). Further observations of WASP-41 can be used to explore the connections between the properties of hot Jupiter planets and the level of chromospheric activity in their host stars.

  7. Why are Jupiter-family comets active and asteroids in cometary-like orbits inactive?

    CERN Document Server

    Gundlach, B

    2016-01-01

    Surveys in the visible and near-infrared spectral range have revealed the presence of low-albedo asteroids in cometary like orbits (ACOs). In contrast to Jupiter family comets (JFCs), ACOs are inactive, but possess similar orbital parameters. In this work, we discuss why ACOs are inactive, whereas JFCs show gas-driven dust activity, although both belong to the same class of primitive solar system bodies. We hypothesize that ACOs and JFCs have formed under the same physical conditions, namely by the gravitational collapse of ensembles of ice and dust aggregates. We use the memory effect of dust-aggregate layers under gravitational compression to discuss under which conditions the gas-driven dust activity of these bodies is possible. Owing to their smaller sizes, JFCs can sustain gas-driven dust activity much longer than the bigger ACOs, whose sub-surface regions possess an increased tensile strength, due to gravitational compression of the material. The increased tensile strength leads to the passivation again...

  8. The Lick-Carnegie Exoplanet Survey: HD32963 -- A New Jupiter Analog Orbiting a Sun-like Star

    CERN Document Server

    Rowan, Dominick; Laughlin, Gregory; Vogt, Steven S; Butler, R Paul; Burt, Jennifer; Wang, Songhu; Holden, Brad; Hanson, Russell; Arriagada, Pamela; Keiser, Sandy; Teske, Johanna; Diaz, Matias

    2015-01-01

    We present a set of 109 new, high-precision Keck/HIRES radial velocity (RV) observations for the solar-type star HD 32963. Our dataset reveals a candidate planetary signal with a period of 6.49 $\\pm$ 0.07 years and a corresponding minimum mass of 0.7 $\\pm$ 0.03 Jupiter masses. Given Jupiter's crucial role in shaping the evolution of the early Solar System, we emphasize the importance of long-term radial velocity surveys. Finally, using our complete set of Keck radial velocities and correcting for the relative detectability of synthetic planetary candidates orbiting each of the 1,122 stars in our sample, we estimate the frequency of Jupiter analogs across our survey at approximately 3%.

  9. Orbital Maneuvering Vehicle (OMV) missions applications and systems requirements

    Science.gov (United States)

    Huber, W. G.; Cramblit, D. C.

    The routine delivery of large payloads to low earth orbit has become a reality with the Space Transportation System (STS). However, once earth orbit has been achieved, orbit transfer operations represent an inefficient use of the Space Shuttle. The Orbital Maneuvering Vehicle (OMV) will add a new and needed dimension to STS capabilities. Utilized in a reusable manner, the OMV is needed to deliver and retrieve satellites to and from orbital altitudes or inclinations beyond the practical limits of the Space Shuttle and to support basic Space Station activities. The initial OMV must also be designed to permit the addition of future mission kits to support the servicing, module changeout, or refueling of satellites in Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO), and the retrieval and deorbit of space debris. This paper addresses the mission needs along with the resulting performance implications, design requirements and operational capabilities imposed on the OMV planned for use in the late 1980s.

  10. The orbital configuration of the two interacting Jupiters in HD 155358 system

    Science.gov (United States)

    Ma, Da-Zhu; Fu, Yan-Ning; Wang, Xiao-Li

    2017-09-01

    Recent observation reveals two interacting Jupiters possibly trapped in a 2:1 mean motion resonance (MMR) around the star HD 155358. For the 2:1 MMR, Beaugé et al. found that as long as the orbital decay was sufficiently slow, the trapped planets should also be in apsidal co-rotation. So it is very interesting to explore whether HD 155358 did undergo such an evolution and presents an apsidal co-rotation. Based on the existing results of spectroscopic orbital determination, the global dynamics of the system shows that the two planets are in an apsidal co-rotation if the eccentricity of the outer planet (ec) takes values very close to the lower limit of its 1σ confidence interval. This makes us conjecture that the globally minimizing solution could be missed in the previous orbital determination. Using an efficient global optimization method, we do find a better solution, reducing χ2 from 1.4 to 1.2. This new solution is significantly different from the previous one, and in particular, with smaller ec. However, the increased possibility for the system to be trapped in a 2:1 MMR with apsidal co-rotation is still not high. A set of simulations of the adiabatic convergent migration process are then performed. The results consistently indicate that the 2:1 MMR forms before apsidal co-rotation. Finally, the long-term stability of the formed system and of its resonant structure is extensively explored, and the resulting statistics are given. A conclusion is that the 2:1 MMR with apsidal co-rotation is a very stable structure.

  11. On the Orbital Evolution of a Giant Planet Pair Embedded in a Gaseous Disk. I. Jupiter-Saturn Configuration

    Science.gov (United States)

    Zhang, Hui; Zhou, Ji-Lin

    2010-05-01

    We carry out a series of high-resolution (1024 × 1024) hydrodynamical simulations to investigate the orbital evolution of Jupiter and Saturn embedded in a gaseous protostellar disk. Our work extends the results in the classical papers of Masset & Snellgrove and Morbidelli & Crida by exploring various surface density profiles (σ), where σ vprop r -α. The stability of the mean motion resonances (MMRs) caused by the convergent migration of the two planets is studied as well. Our results show that (1) the gap formation process of Saturn is greatly delayed by the tidal perturbation of Jupiter. These perturbations cause inward or outward runaway migration of Saturn, depending on the density profiles on the disk. (2) The convergent migration rate increases as α increases and the type of MMRs depends on α as well. When 0 4/3, Saturn passes through the 2:1 MMR with Jupiter and is captured into the 3:2 MMR. (3) The 3:2 MMR turns out to be unstable when the eccentricity of Saturn (es ) increases too high. The critical value above which instability will set in is es ~ 0.15. We also observe that the two planets are trapped into 2:1 MMR after the break of 3:2 MMR. This process may provide useful information for the formation of orbital configuration between Jupiter and Saturn in the solar system.

  12. An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b.

    Science.gov (United States)

    Hellier, Coel; Anderson, D R; Cameron, A Collier; Gillon, M; Hebb, L; Maxted, P F L; Queloz, D; Smalley, B; Triaud, A H M J; West, R G; Wilson, D M; Bentley, S J; Enoch, B; Horne, K; Irwin, J; Lister, T A; Mayor, M; Parley, N; Pepe, F; Pollacco, D L; Segransan, D; Udry, S; Wheatley, P J

    2009-08-27

    The 'hot Jupiters' that abound in lists of known extrasolar planets are thought to have formed far from their host stars, but migrate inwards through interactions with the proto-planetary disk from which they were born, or by an alternative mechanism such as planet-planet scattering. The hot Jupiters closest to their parent stars, at orbital distances of only approximately 0.02 astronomical units, have strong tidal interactions, and systems such as OGLE-TR-56 have been suggested as tests of tidal dissipation theory. Here we report the discovery of planet WASP-18b with an orbital period of 0.94 days and a mass of ten Jupiter masses (10 M(Jup)), resulting in a tidal interaction an order of magnitude stronger than that of planet OGLE-TR-56b. Under the assumption that the tidal-dissipation parameter Q of the host star is of the order of 10(6), as measured for Solar System bodies and binary stars and as often applied to extrasolar planets, WASP-18b will be spiralling inwards on a timescale less than a thousandth that of the lifetime of its host star. Therefore either WASP-18 is in a rare, exceptionally short-lived state, or the tidal dissipation in this system (and possibly other hot-Jupiter systems) must be much weaker than in the Solar System.

  13. Main Power Distribution Unit for the Jupiter Icy Moons Orbiter (JIMO)

    Science.gov (United States)

    Papa, Melissa R.

    2004-01-01

    Around the year 2011, the Jupiter Icy Moons Orbiter (JIMO) will be launched and on its way to orbit three of Jupiter s planet-sized moons. The mission goals for the JIMO project revolve heavily around gathering scientific data concerning ingredients we, as humans, consider essential: water, energy and necessary chemical elements. The JIM0 is an ambitious mission which will implore propulsion from an ION thruster powered by a nuclear fission reactor. Glenn Research Center is responsible for the development of the dynamic power conversion, power management and distribution, heat rejection and ION thrusters. The first test phase for the JIM0 program concerns the High Power AC Power Management and Distribution (PMAD) Test Bed. The goal of this testing is to support electrical performance verification of the power systems. The test bed will incorporate a 2kW Brayton Rotating Unit (BRU) to simulate the nuclear reactor as well as two ION thrusters. The first module of the PMAD Test Bed to be designed is the Main Power Distribution Unit (MPDU) which relays the power input to the various propulsion systems and scientific instruments. The MPDU involves circuitry design as well as mechanical design to determine the placement of the components. The MPDU consists of fourteen relays of four different variations used to convert the input power into the appropriate power output. The three phase system uses 400 Vo1ts(sub L-L) rms at 1000 Hertz. The power is relayed through the circuit and distributed to the scientific instruments, the ION thrusters and other controlled systems. The mechanical design requires the components to be positioned for easy electrical wiring as well as allowing adequate room for the main buss bars, individual circuit boards connected to each component and power supplies. To accomplish creating a suitable design, AutoCAD was used as a drafting tool. By showing a visual layout of the components, it is easy to see where there is extra room or where the

  14. Engine Optimization for a Solar Thermal Powered Orbit Transfer Vehicle

    Science.gov (United States)

    1998-06-01

    Recent technological advancements in solar thermal rocket propulsion and solar orbit transfer vehicles make it critical to perform additional engine performance analyses. Several system level flight demonstrations are imminent. Space flight hardware component testing is being conducted at the Air Force Research Laboratory, Edwards AFB, California. The focus of current research is engine and nozzle configurations for a solar orbit transfer vehicle. The optimal design must produce 1-10 pounds thrust, perform at high lsp and be compatible in a hybrid of spiral, perigee, and apogee (multi-burn) configurations. The nozzle material must not ablate when subjected to extreme thermal loading, yet be durable enough to withstand widely varying temperature differentials during frequent thermal cycling. This paper addresses propulsive needs in the orbit transfer arena and defines governing upper stage vehicle engine equations. These equations are modified versions of rocket engine equations used for chemical systems. The correction factors and modifications are for Solar Thermal Propulsion specific hardware.

  15. Orbital circularization of a planet accreting disk gas: the formation of distant jupiters in circular orbits based on a core accretion model

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Akihiro; Higuchi, Arika [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Ida, Shigeru, E-mail: kikuchi.a@geo.titech.ac.jp, E-mail: higuchia@geo.titech.ac.jp, E-mail: ida@elsi.jp [Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-12-10

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion. Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.

  16. Coupled evolutions of the stellar obliquity, orbital distance, and planet's radius due to the Ohmic dissipation induced in a diamagnetic hot Jupiter around a magnetic T Tauri star

    CERN Document Server

    Chang, Yu-Ling; Gu, Pin-Gao

    2012-01-01

    We revisit the calculation of the Ohmic dissipation in a hot Jupiter presented in Laine et al. (2008) by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modelled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced Ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small co-rotation orbital radius can undergo orbital decay by the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/anti-parallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model in Laine...

  17. WASP-121 b: a hot Jupiter in a polar orbit and close to tidal disruption

    CERN Document Server

    Delrez, L; Almenara, J -M; Anderson, D R; Collier-Cameron, A; Díaz, R F; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; Neveu-VanMalle, M; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smalley, B; Smith, A M S; Triaud, A H M J; Udry, S; Van Grootel, V; West, R G

    2015-01-01

    We present the discovery by the WASP-South survey, in close collaboration with the Euler and TRAPPIST telescopes, of WASP-121 b, a new remarkable short-period transiting hot Jupiter, whose planetary nature has been statistically validated by the PASTIS software. The planet has a mass of $1.183_{-0.062}^{+0.064}$ $M_{\\mathrm{Jup}}$, a radius of 1.865 $\\pm$ 0.044 $R_{\\mathrm{Jup}}$, and transits every $1.2749255_{-0.0000025}^{+0.0000020}$ days an active F6-type main-sequence star ($V$=10.4, $1.353_{-0.079}^{+0.080}$ $M_{\\odot}$, 1.458 $\\pm$ 0.030 $R_{\\odot}$, $T_{\\mathrm{eff}}$ = 6460 $\\pm$ 140 K). A notable property of WASP-121 b is that its orbital semi-major axis is only $\\sim$1.15 times larger than its Roche limit, which suggests that the planet might be close to tidal disruption. Furthermore, its large size and extreme irradiation ($\\sim$$7.1\\:10^{9}$ erg $\\mathrm{s}^{-1} \\mathrm{cm}^{-2}$) make it an excellent target for atmospheric studies via secondary eclipse observations. Using the TRAPPIST telescope,...

  18. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Fortney, Jonathan J., E-mail: showman@lpl.arizona.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-03-10

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets.

  19. Jupiter family comets in near-Earth orbits: Are some of them interlopers from the asteroid belt?

    Science.gov (United States)

    Fernández, Julio A.; Sosa, Andrea

    2015-12-01

    We analyze a sample of 58 Jupiter family comets (JFCs) in near-Earth orbits, defined as those whose perihelion distances at the time of discovery were qdisc newcomers in the near-Earth region. Yet, a minor fraction of JFCs (less than about one third) are found to move on stable orbits for the past ∼ 104 yr, and in some cases are found to continue to be stable at 5 × 104 yr in the past. They also avoid very close encounters with Jupiter. Their orbital behavior is very similar to that of NEAs in cometary orbits. While "typical" JFCs in unstable orbits probably come from the trans-Neptunian region, the minor group of JFCs in asteroidal orbits may come from the main asteroid belt, like the NEAs. The asteroidal JFCs may have a more consolidated structure and a higher mineral content than that of comets coming from the trans-Neptunian belt or the Oort cloud, which could explain their much longer physical lifetimes in the near-Earth region. In particular, we mention comets 66P/du Toit, 162P/Siding Spring, 169P/NEAT, 182P/LONEOS, 189P/NEAT, 249P/LINEAR, 300P/Catalina, and P/2003 T12 (SOHO) as the most likely candidates to have an origin in the main asteroid belt. Another interesting case is 207P/NEAT, which stays near the 3:2 inner mean motion resonance with Jupiter, possibly evolving from the Hilda asteroid zone.

  20. A high obliquity orbit for the hot-Jupiter HATS-14b transiting a 5400K star

    CERN Document Server

    Zhou, G; Hartman, J D; Fulton, B J; Bakos, G Á; Howard, A W; Isaacson, H; Marcy, G W; Schmidt, B P; Brahm, R; Jordán, A

    2015-01-01

    We report a spin-orbit misalignment for the hot-Jupiter HATS-14b, measuring a projected orbital obliquity of |lambda|= 76 -5/+4 deg. HATS-14b orbits a high metallicity, 5400 K G dwarf in a relatively short period orbit of 2.8 days. This obliquity was measured via the Rossiter-McLaughlin effect, obtained with observations from Keck-HIRES. The velocities were extracted using a novel technique, optimised for low signal-to-noise spectra, achieving a high precision of 4 m/s point-to-point scatter. However, we caution that our uncertainties may be underestimated. Due to the low rotational velocity of the star, the detection significance is dependent on the vsini prior that is imposed in our modelling. Based on trends observed in the sample of hot Jupiters with obliquity measurements, it has been suggested that these planets modify the spin axes of their host stars, with an efficiency that depends on the stellar type and orbital period of the system. In this framework, short-period planets around stars with surface ...

  1. Discovery of XO-6b: A Hot Jupiter Transiting a Fast Rotating F5 Star on an Oblique Orbit

    Science.gov (United States)

    Crouzet, N.; McCullough, P. R.; Long, D.; Montanes Rodriguez, P.; Lecavelier des Etangs, A.; Ribas, I.; Bourrier, V.; Hébrard, G.; Vilardell, F.; Deleuil, M.; Herrero, E.; Garcia-Melendo, E.; Akhenak, L.; Foote, J.; Gary, B.; Benni, P.; Guillot, T.; Conjat, M.; Mékarnia, D.; Garlitz, J.; Burke, C. J.; Courcol, B.; Demangeon, O.

    2017-03-01

    Only a few hot Jupiters are known to orbit around fast rotating stars. These exoplanets are harder to detect and characterize and may be less common than around slow rotators. Here, we report the discovery of the transiting hot Jupiter XO-6b, which orbits a bright, hot, and fast rotating star: V = 10.25, T eff⋆ = 6720 ± 100 K, v sin i ⋆ = 48 ± 3 km s‑1. We detected the planet from its transits using the XO instruments and conducted a follow-up campaign. Because of the fast stellar rotation, radial velocities taken along the orbit do not yield the planet’s mass with a high confidence level, but we secure a 3σ upper limit M p orbit with a sky-projected obliquity {\\boldsymbol{λ }}=-20\\buildrel{\\circ}\\over{.} 7+/- 2\\buildrel{\\circ}\\over{.} 3. The rotation period of the star is shorter than the orbital period of the planet: P rot P orb = 3.77 days. Thus, this system stands in a largely unexplored regime of dynamical interactions between close-in giant planets and their host stars.

  2. Stimulated Radiative Molecular Association in the Early Solar System: Orbital Radii of Satellites of Uranus, Jupiter, Neptune, and Saturn

    CERN Document Server

    Lombardi, James C

    2015-01-01

    The present investigation relates the orbital radii of regular satellites of Uranus, Jupiter, Neptune, and Saturn to photon energies in the spectra of atomic and molecular hydrogen. To explain these observations a model is developed involving stimulated radiative molecular association (SRMA) reactions among the photons and atoms in the protosatellite disks of the planets. In this model thermal energy is extracted from each disk due to a resonance at radii where there is a match between the temperature in the disk and a photon energy. Matter accumulates at these radii, and satellites and rings are ultimately formed. Orbital radii of satellites of Uranus, Jupiter, and Neptune are related to photon energies ($E_{PM}$ values) in the spectrum of molecular hydrogen. Orbital radii of satellites of Saturn are related to photon energies ($E_{PA}$ values) in the spectrum of atomic hydrogen. The first hint that such relationships exist is found in the linearity of the graphs of orbital radii of uranian satellites vs. or...

  3. Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Adriani, Alberto; Allegrini, F.

    2017-01-01

    for Juno's passage over the poles and traverse of Jupiter's hazardous inner radiation belts. Juno's energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno...

  4. A Jupiter Ganymede Orbiter for the EJSM mission: the JGO assessment phase study by the Thales Alenia Space consortium

    Science.gov (United States)

    Poncy, Joel; Couzin, Patrice; Mercier, Manuel; Boschetti, Demis

    2010-05-01

    ESA and NASA have undertaken advanced studies of a common mission to Jupiter's system, EJSM (Europa Jupiter System Mission). This mission comprises two spacecrafts launched independently in 2020 and reaching the system in 2026. This is a one-in-a-generation opportunity for Europe to contribute significantly to the science of this part of the Solar System, and as such, all efforts shall subsequently be made to maximize the scientific return without jeopardizing the technical and programmatic feasibility of the mission. A sub-glacial ocean on Europa and potentially two others on Ganymede and Callisto, the monitoring of Io's volcanic activity, the upper atmosphere of Jupiter, its rings, its tens of irregular moons, the tides, the magnetic fields of Jupiter and Ganymede and the behaviour of the plasma, the list of science objectives is not only impressive but also generates enthusiasm in the mission. In this NASA-ESA joint mission, NASA will take charge of both Io and Europa with the Jupiter Europa Orbiter (JEO). Europe will get a fascinating share with the Jupiter Ganymede Orbiter (JGO), which will achieve the close study of the two largest and outermost Galilean moons Ganymede and Callisto and in addition, at-a-distance, the observation of the other targets mentioned above. ESA has awarded three industrial contracts for an assessment phase of JGO. As leader of one of the consortia, Thales Alenia Space is proud to present in this poster its achievements on this exciting mission. The requirements are discussed and the mission drivers identified. The main trades and the resulting architecture are recalled, along with the main selection drivers. The major system interrelated trades have covered the launcher and propulsion type, the number of regulated phases, the strategy for communications and science timeline, the need for HGA pointing, the sizing and configuration of the Solar Array, the accommodation of external appendages, the accommodation of the payload, the

  5. KELT-17b: A hot-Jupiter transiting an A-star in a misaligned orbit detected with Doppler tomography

    CERN Document Server

    Zhou, George; Collins, Karen A; Beatty, Thomas; Oberst, Thomas; Heintz, Tyler M; Stassun, Keivan G; Latham, David W; Kuhn, Rudolf B; Bieryla, Allyson; Lund, Michael B; Labadie-Bartz, Jonathan; Siverd, Robert J; Stevens, Daniel J; Gaudi, B Scott; Pepper, Joshua; Buchhave, Lars A; Eastman, Jason; Colón, Knicole; Cargile, Phillip; James, David; Gregorio, Joao; Reed, Phillip A; Jensen, Eric L N; Cohen, David H; McLeod, Kim K; Tan, T G; Zambelli, Roberto; Bayliss, Daniel; Bento, Joao; Esquerdo, Gilbert A; Berlind, Perry; Calkins, Michael L; Blancato, Kirsten; Manner, Mark; Samulski, Camile; Stockdale, Christopher; Nelson, Peter; Stephens, Denise; Curtis, Ivan; Kielkopf, John; Fulton, Benjamin J; DePoy, D L; Marshall, Jennifer L; Pogge, Richard; Gould, Andy; Trueblood, Mark; Trueblood, Pat

    2016-01-01

    We present the discovery of a hot-Jupiter transiting the V=9.23 mag main-sequence A-star KELT-17 (BD+14 1881). KELT-17b is a 1.31 -0.29/+0.28 Mj, 1.645 -0.055/+0.060 Rj hot-Jupiter in a 3.08 day period orbit misaligned at -115.9 +/- 4.1 deg to the rotation axis of the star. The planet is confirmed via both the detection of the radial velocity orbit, and the Doppler tomographic detection of the shadow of the planet over two transits. The nature of the spin-orbit misaligned transit geometry allows us to place a constraint on the level of differential rotation in the host star; we find that KELT-17 is consistent with both rigid-body rotation and solar differential rotation rates (alpha < 0.30 at 2 sigma significance). KELT-17 is only the fourth A-star with a confirmed transiting planet, and with a mass of 1.635 -0.061/+0.066 Msun, effective temperature of 7454 +/- 49 K, and projected rotational velocity v sin I_* = 44.2 -1.3/+1.5 km/s; it is amongst the most massive, hottest, and most rapidly rotating of know...

  6. KELT-17b: A Hot-Jupiter Transiting an A-star in a Misaligned Orbit Detected with Doppler Tomography

    Science.gov (United States)

    Zhou, George; Rodriguez, Joseph E.; Collins, Karen A.; Beatty, Thomas; Oberst, Thomas; Heintz, Tyler M.; Stassun, Keivan G.; Latham, David W.; Kuhn, Rudolf B.; Bieryla, Allyson; Lund, Michael B.; Labadie-Bartz, Jonathan; Siverd, Robert J.; Stevens, Daniel J.; Gaudi, B. Scott; Pepper, Joshua; Buchhave, Lars A.; Eastman, Jason; Colón, Knicole; Cargile, Phillip; James, David; Gregorio, Joao; Reed, Phillip A.; Jensen, Eric L. N.; Cohen, David H.; McLeod, Kim K.; Tan, T. G.; Zambelli, Roberto; Bayliss, Daniel; Bento, Joao; Esquerdo, Gilbert A.; Berlind, Perry; Calkins, Michael L.; Blancato, Kirsten; Manner, Mark; Samulski, Camile; Stockdale, Christopher; Nelson, Peter; Stephens, Denise; Curtis, Ivan; Kielkopf, John; Fulton, Benjamin J.; DePoy, D. L.; Marshall, Jennifer L.; Pogge, Richard; Gould, Andy; Trueblood, Mark; Trueblood, Pat

    2016-11-01

    We present the discovery of a hot Jupiter transiting the V = 9.23 mag main-sequence A-star KELT-17 (BD+14 1881). KELT-17b is a {1.31}-0.29+0.28 {M}{{J}}, {1.525}-0.060+0.065 {R}{{J}} hot-Jupiter in a 3.08-day period orbit misaligned at ‑115.°9 ± 4.°1 to the rotation axis of the star. The planet is confirmed via both the detection of the radial velocity orbit, and the Doppler tomographic detection of the shadow of the planet during two transits. The nature of the spin–orbit misaligned transit geometry allows us to place a constraint on the level of differential rotation in the host star; we find that KELT-17 is consistent with both rigid-body rotation and solar differential rotation rates (α \\lt 0.30 at 2σ significance). KELT-17 is only the fourth A-star with a confirmed transiting planet, and with a mass of {1.635}-0.061+0.066 {M}ȯ , an effective temperature of 7454 ± 49 K, and a projected rotational velocity of v\\sin {I}* ={44.2}-1.3+1.5 {km} {{{s}}}-1; it is among the most massive, hottest, and most rapidly rotating of known planet hosts.

  7. An Overview of the Jupiter Icy Moons Orbiter (JIMO) Mission, Environments, and Materials Challenges

    Science.gov (United States)

    Edwards, Dave

    2012-01-01

    Congress authorized NASA's Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter with the following main objectives: (1) Develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration. (2) Explore the three icy moons of Jupiter -- Callisto, Ganymede, and Europa -- and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences.

  8. Two-stage earth-to-orbit vehicles with dual-fuel propulsion in the Orbiter

    Science.gov (United States)

    Martin, J. A.

    1982-01-01

    Earth-to-orbit vehicle studies of future replacements for the Space Shuttle are needed to guide technology development. Previous studies that have examined single-stage vehicles have shown advantages for dual-fuel propulsion. Previous two-stage system studies have assumed all-hydrogen fuel for the Orbiters. The present study examined dual-fuel Orbiters and found that the system dry mass could be reduced with this concept. The possibility of staging the booster at a staging velocity low enough to allow coast-back to the launch site is shown to be beneficial, particularly in combination with a dual-fuel Orbiter. An engine evaluation indicated the same ranking of engines as did a previous single-stage study. Propane and RP-1 fuels result in lower vehicle dry mass than methane, and staged-combustion engines are preferred over gas-generator engines. The sensitivity to the engine selection is less for two-stage systems than for single-stage systems.

  9. Spin-orbit alignments for Three Transiting Hot Jupiters: WASP-103b, WASP-87b, & WASP-66b

    CERN Document Server

    Addison, B C; Wright, D J; Bayliss, D

    2016-01-01

    We have measured the sky-projected spin-orbit alignments for three transiting Hot Jupiters, WASP-103b, WASP-87b, and WASP-66b, using spectroscopic measurements of the Rossiter-McLaughlin effect, with the CYCLOPS2 optical-fiber bundle system feeding the UCLES spectrograph on the Anglo-Australian Telescope. The resulting sky projected spin-orbit angles of $\\lambda = 3^{\\circ}\\pm33^{\\circ}$, $\\lambda = -8^{\\circ}\\pm11^{\\circ}$, and $\\lambda = -4^{\\circ}\\pm22^{\\circ}$ for WASP-103b, WASP-87b, and WASP-66b, respectively, suggest that these three planets are likely on nearly aligned orbits with respect to their host star's spin axis. WASP-103 is a particularly interesting system as its orbital distance is only 20% larger than its host star's Roche radius and the planet likely experiences strong tidal effects. WASP-87 and WASP-66 are hot ($T_{eff}=6450\\pm120$ K and $T_{eff}=6600\\pm150$ K, respectively) mid-F stars making them similar to the majority of stars hosting planets on high obliquity orbits. Moderate spin-or...

  10. STS-65 Columbia, Orbiter Vehicle (OV) 102, crew insignia

    Science.gov (United States)

    1994-01-01

    STS-65 Columbia, Orbiter Vehicle (OV) 102, crew insignia (logo), the Official insignia of the NASA STS-65 International Microgravity Laboratory 2 (IML-2) mission. Designed by the crewmembers, the STS-65 insignia features the IML-2 mission and its Spacelab module which will fly aboard the Space Shuttle Columbia. IML-2 is reflected in the emblem by two gold stars shooting toward the heavens behind the IML lettering. The Space Shuttle Columbia is depicted orbiting the logo and reaching off into space, with Spacelab on an international quest for a better understanding of the effects of space flight on materials processing and life sciences. The STS-65 flight crewmembers are Commander Robert D. Cabana, Pilot James D. Halsell, Jr, Mission Specialist (MS) and Payload Commander (PLC) Richard J. Hieb, MS Carl E. Walz, MS Leroy Chiao, MS Donald A. Thomas, and Japanese Payload Specialist Chiaki Mukai.

  11. The Orbital Maneuvering Vehicle Training Facility visual system concept

    Science.gov (United States)

    Williams, Keith

    1989-01-01

    The purpose of the Orbital Maneuvering Vehicle (OMV) Training Facility (OTF) is to provide effective training for OMV pilots. A critical part of the training environment is the Visual System, which will simulate the video scenes produced by the OMV Closed-Circuit Television (CCTV) system. The simulation will include camera models, dynamic target models, moving appendages, and scene degradation due to the compression/decompression of video signal. Video system malfunctions will also be provided to ensure that the pilot is ready to meet all challenges the real-world might provide. One possible visual system configuration for the training facility that will meet existing requirements is described.

  12. OMV: A simplified mathematical model of the orbital maneuvering vehicle

    Science.gov (United States)

    Teoh, W.

    1984-01-01

    A model of the orbital maneuvering vehicle (OMV) is presented which contains several simplications. A set of hand controller signals may be used to control the motion of the OMV. Model verification is carried out using a sequence of tests. The dynamic variables generated by the model are compared, whenever possible, with the corresponding analytical variables. The results of the tests show conclusively that the present model is behaving correctly. Further, this model interfaces properly with the state vector transformation module (SVX) developed previously. Correct command sentence sequences are generated by the OMV and and SVX system, and these command sequences can be used to drive the flat floor simulation system at MSFC.

  13. Manned Mars mission Earth-To-Orbit (ETO) delivery and orbit assembly of the manned Mars vehicle

    Science.gov (United States)

    Barisa, B.; Solmon, G.

    1986-01-01

    The initial concepts developed for the in-orbit assembly of a Manned Mars Vehicle and for the Earth-to-Orbit (ETO) delivery of the required hardware and propellant are presented. Two (2) Mars vehicle concepts (all-propulsive and all-aerobrake) and two (2) ETO Vehicle concepts were investigated. Both Mars Vehicle concepts are described in Reference 1, and both ETO Vehicle concepts are described in Reference 2. The all-aerobrake configuration reduces the number of launches and time required to deliver the necessary hardware/propellent to orbit. Use of the larger of the 2 ETO Vehicles (HLLV) further reduces the number of launches and delivery time; however, this option requires a completely new vehicle and supporting facilities.

  14. Microwave Radiometers from 0.6 to 22 GHz for Juno, A Polar Orbiter Around Jupiter

    Science.gov (United States)

    Pingree, P.; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.

    2008-01-01

    A compact instrument called the MWR (MicroWave Radiometer) is under development at JPL for Juno, the next NASA New Frontiers mission, scheduled to launch in 2011. It's purpose is to measure the thermal emission from Jupiter's atmosphere at six selected frequencies from 0.6 to 22 GHz, operating in direct detection mode, in order to quantify the distributions and abundances of water and ammonia in Jupiter's atmosphere. The goal is to understand the previously unobserved dynamics of the sub-cloud atmosphere, and to discriminate among models for planetary formation in our solar system. As part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The receivers and control electronics are protected by a radiation-shielding enclosure on the Juno spacecraft that would provide a benign and stable operating temperature environment. All antennas and RF transmission lines outside the vault must withstand low temperatures and the harsh radiation environment surrounding Jupiter. This paper describes the concept of the MWR instrument and presents results of one breadboard receiver channel.

  15. WASP-32b: A transiting hot Jupiter planet orbiting a lithium-poor, solar-type star

    CERN Document Server

    Maxted, P F L; Cameron, A Collier; Gillon, M; Hellier, C; Queloz, D; Smalley, B; Triaud, A H M J; West, R G; Enoch, R; Lister, T A; Pepe, F; Pollacco, D L; Ségransan, D; Skillen, I; Udry, S

    2010-01-01

    We report the discovery of a transiting planet orbiting the star TYC 2-1155-1. The star, WASP-32, is a moderately bright (V=11.3) solar-type star (Teff=6100 +- 100K, [Fe/H] = -0.13 +- 0.10). The lightcurve of the star obtained with the WASP-South and WASP-North instruments shows periodic transit-like features with a depth of about 1% and a duration of 0.10d every 2.72d. The presence of a transit-like feature in the lightcurve is confirmed using z-band photometry obtained with Faulkes Telescope North. High resolution spectroscopy obtained with the CORALIE spectrograph confirms the presence of a planetary mass companion. From a combined analysis of the spectroscopic and photometric data, assuming that the star is a typical main-sequence star, we estimate that the planet has a mass M_p = 3.60 +- 0.07 M_Jup and a radius R_p = 1.19 +- 0.06R_Jup. WASP-32 is one of a small group of hot Jupiters with masses M_p > 3M_Jup. We find that some stars with hot Jupiter companions and with masses M_* =~ 1.2M_sun, including WA...

  16. WASP-32b: A Transiting Hot Jupiter Planet Orbiting a Lithium-Poor, Solar-Type Star

    Science.gov (United States)

    Maxted, P. F. L.; Anderson, D. R.; Collier Cameron, A.; Gillon, M.; Hellier, C.; Queloz, D.; Smalley, B.; Triaud, A. H. M. J.; West, R. G.; Enoch, R.; Lister, T. A.; Pepe, F.; Pollacco, D. L.; Ségransan, D.; Skillen, I.; Udry, S.

    2010-12-01

    We report the discovery of a transiting planet orbiting the star TYC 2-1155-1. The star, WASP-32, is a moderately bright (V = 11.3) solar-type star (Teff = 6100 ± 100 K, [Fe/H] = -0.13 ± 0.10). The light curve of the star obtained with the WASP-South and WASP-North instruments shows periodic transitlike features with a depth of about 1% and a duration of 0.10 day every 2.72 days. The presence of a transitlike feature in the light curve is confirmed using z -band photometry obtained with Faulkes Telescope North. High-resolution spectroscopy obtained with the Coralie spectrograph confirms the presence of a planetary mass companion. From a combined analysis of the spectroscopic and photometric data, assuming that the star is a typical main-sequence star, we estimate that the planet has a mass Mp of 3.60 ± 0.07 MJup and a radius Rp = 1.19 ± 0.06 RJup. WASP-32 is one of a small group of hot Jupiters with masses greater than 3 MJup. We find that some stars with hot Jupiter companions and with masses M⋆ ≈ 1.2 M⊙, including WASP-32, are depleted in lithium and that the majority of these stars have lithium abundances similar to field stars.

  17. Coupled Evolutions of the Stellar Obliquity, Orbital Distance, and Planet's Radius due to the Ohmic Dissipation Induced in a Diamagnetic Hot Jupiter around a Magnetic T Tauri Star

    Science.gov (United States)

    Chang, Yu-Ling; Bodenheimer, Peter H.; Gu, Pin-Gao

    2012-10-01

    We revisit the calculation of the ohmic dissipation in a hot Jupiter presented by Laine et al. by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modeled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small corotation orbital radius can undergo orbital decay by the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/antiparallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model of Laine et al. and find that the planet's radius is sustained at a nearly constant value by the ohmic heating, rather than being thermally expanded to the Roche radius as suggested by the authors.

  18. Spin-orbit angle measurements for six southern transiting planets; New insights into the dynamical origins of hot Jupiters

    CERN Document Server

    Triaud, Amaury H M J; Queloz, Didier; Anderson, David R; Gillon, Michaël; Hebb, Leslie; Hellier, Coel; Loeillet, Benoît; Maxted, Pierre F; Mayor, Michel; Pepe, Francesco; Pollacco, Don; Ségransan, Damien; Smalley, Barry; Udry, Stéphane; West, Richard G; Wheatley, Peter J

    2010-01-01

    For transiting planets, the Rossiter-McLaughlin effect allows the measurement of the sky-projected angle beta between the stellar rotation axis and a planet's orbital axis. Using the HARPS spectrograph, we observed the Rossiter-McLaughlin effect for six transiting hot Jupiters found by the WASP consortium. We combine these with long term radial velocity measurements obtained with CORALIE. We found that three of our targets have a projected spin-orbit angle above 90 degrees: WASP-2b: beta = 153 (+11 -15), WASP-15b: beta = 139.6 (+5.2 -4.3) and WASP-17b: beta = 148.5 (+5.1 -4.2); the other three (WASP-4b, WASP-5b and WASP-18b) have angles compatible with 0 degrees. There is no dependence between the misaligned angle and planet mass nor with any other planetary parameter. All orbits are close to circular, with only one firm detection of eccentricity on WASP-18b with e = 0.00848 (+0.00085 -0.00095). No long term radial acceleration was detected for any of the targets. Combining all previous 20 measurements of bet...

  19. Spectroscopic confirmation of KOI-1299b: a massive warm Jupiter in a 52-day eccentric orbit transiting a giant star

    CERN Document Server

    Ortiz, Mauricio; Reffert, Sabine; Quirrenbach, Andreas; Deeg, Hans J; Karjalainen, Raine; Montañes-Rodríguez, Pilar; Nespral, Davide; Nowak, Grzegorz; Osorio, Yeisson; Palle, Enric

    2014-01-01

    Context: Planets around evolved stars exhibit different properties than those orbiting main-sequence stars. One of the most notable differences is the paucity of planets orbiting at short distance from giant stars (a < 0.5 AU). Detecting these rare close-in planets can shed light on planetary system formation and evolution mechanisms. Aims: We study the Kepler object KOI-1299, an evolved star ascending the red giant branch. We aim at confirming the planetary nature of the Jupiter-like transit signal recurring every ~52.5 days, and characterizing the orbital elements of the system. Methods: We derive radial velocities from multi-epoch high-resolution spectra of KOI-1299 acquired with CAFE at the 2.2m telescope of Calar Alto Observatory and FIES at the 2.56m Nordic Optical Telescope of Roque de los Muchachos Observatory. Results: We confirm the planetary nature of the transiting object KOI-1299b. We find a planetary mass of Mp=5.86 +\\- 0.05 Mjup and an eccentricity of e=0.479 +\\- 0.004. With a semi-major axi...

  20. Orbital Maneuvering Vehicle (OMV) plume and plume effects study

    Science.gov (United States)

    Smith, Sheldon D.

    1991-01-01

    The objective was to characterize the Orbital Maneuvering Vehicle (OMV) propulsion and attitude control system engine exhaust plumes and predict the resultant plume impingement pressure, heat loads, forces, and moments. Detailed description is provided of the OMV gaseous nitrogen (GN2) thruster exhaust plume flow field characteristics calculated with the RAMP2 snd SFPGEN computer codes. Brief descriptions are included of the two models, GN2 thruster characteristics and RAMP2 input data files. The RAMP2 flow field could be recalculated by other organizations using the information presented. The GN2 flow field can be readily used by other organizations who are interested in GN2 plume induced environments which require local flow field properties which can be supplied using the SFPGEN GN2 model.

  1. Evaluation and analysis of the orbital maneuvering vehicle video system

    Science.gov (United States)

    Moorhead, Robert J., II

    1989-12-01

    The work accomplished in the summer of 1989 in association with the NASA/ASEE Summer Faculty Research Fellowship Program at Marshall Space Flight Center is summarized. The task involved study of the Orbital Maneuvering Vehicle (OMV) Video Compression Scheme. This included such activities as reviewing the expected scenes to be compressed by the flight vehicle, learning the error characteristics of the communication channel, monitoring the CLASS tests, and assisting in development of test procedures and interface hardware for the bit error rate lab being developed at MSFC to test the VCU/VRU. Numerous comments and suggestions were made during the course of the fellowship period regarding the design and testing of the OMV Video System. Unfortunately from a technical point of view, the program appears at this point in time to be trouble from an expense prospective and is in fact in danger of being scaled back, if not cancelled altogether. This makes technical improvements prohibitive and cost-reduction measures necessary. Fortunately some cost-reduction possibilities and some significant technical improvements that should cost very little were identified.

  2. WASP-104b and WASP-106b: two transiting hot Jupiters in 1.75-day and 9.3-day orbits

    CERN Document Server

    Smith, A M S; Armstrong, D J; Barros, S C C; Bonomo, A S; Bouchy, F; Brown, D J A; Cameron, A Collier; Delrez, L; Faedi, F; Gillon, M; Chew, Y Gómez Maqueo; Hébrard, G; Jehin, E; Lendl, M; Louden, T M; Maxted, P F L; Montagnier, G; Neveu-VanMalle, M; Osborn, H; Pepe, F; Pollacco, D; Queloz, D; Rostron, J W; Segransan, D; Smalley, B; Triaud, A H M J; Turner, O D; Udry, S; Walker, S R; West, R G; Wheatley, P J

    2014-01-01

    We report the discovery from the WASP survey of two exoplanetary systems, each consisting of a Jupiter-sized planet transiting an 11th magnitude (V) main-sequence star. WASP-104b orbits its star in 1.75 d, whereas WASP-106b has the fourth-longest orbital period of any planet discovered by means of transits observed from the ground, orbiting every 9.29 d. Each planet is more massive than Jupiter (WASP-104b has a mass of $1.27 \\pm 0.05~\\mathrm{M_{Jup}}$, while WASP-106b has a mass of $1.93 \\pm 0.08~\\mathrm{M_{Jup}}$). Both planets are just slightly larger than Jupiter, with radii of $1.14 \\pm 0.04$ and $1.09 \\pm 0.04~\\mathrm{R_{Jup}}$ for WASP-104 and WASP-106 respectively. No significant orbital eccentricity is detected in either system, and while this is not surprising in the case of the short-period WASP-104b, it is interesting in the case of WASP-106b, because many otherwise similar planets are known to have eccentric orbits.

  3. WASP-41b: A transiting hot Jupiter planet orbiting a magnetically-active G8V star

    CERN Document Server

    Maxted, P F L; Cameron, A Collier; Hellier, C; Queloz, D; Smalley, B; Street, R A; Triaud, A H M J; West, R G; Gillon, M; Lister, T A; Pepe, F; Pollacco, D; Segransan, D; Smith, A M S; Udry, S

    2010-01-01

    We report the discovery of a transiting planet with an orbital period of 3.05d orbiting the star TYC 7247-587-1. The star, WASP-41, is a moderately bright G8V star (V=11.6) with a metallicity close to solar ([Fe/H]=-0.08+-0.09). The star shows evidence of moderate chromospheric activity, both from emission in the cores of the CaII H and K lines and photometric variability with a period of 18.3d and an amplitude of about 1%. The rotation period of the star implies a gyrochronological age for WASP-41 of 1.8Gyr with an error of about 15%. We have used a combined analysis of the available photometric and spectroscopic data to derive the mass and radius of the planet (0.93+-0.06M_Jup, 1.21+-0.06R_Jup). Further observations of WASP-41 can be used to explore the connections between the properties of hot Jupiter planets and the level of chromospheric activity in their host stars.

  4. The K2-ESPRINT Project IV: A Hot Jupiter in a Prograde Orbit with a Possible Stellar Companion

    CERN Document Server

    Hirano, Teruyuki; Kuzuhara, Masayuki; Palle, Enric; Dai, Fei; Yu, Liang; Van Eylen, Vincent; Takeda, Yoichi; Brandt, Timothy D; Narita, Norio; Velasco, Sergio; Arranz, Jorge Prieto; Sanchis-Ojeda, Roberto; Winn, Joshua N; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Fukui, Akihiko; Sato, Bun'ei; Albrecht, Simon; Ribas, Ignasi; Ryu, Tsuguru; Tamura, Motohide

    2016-01-01

    We report on the detection and early characterization of a hot Jupiter in a 3-day orbit around EPIC 212110888, a metal-rich F-type star located in the K2 Cycle 5 field. Our follow-up campaign involves precise radial velocity (RV) measurements and high-contrast imaging using multiple facilities. The absence of a bright nearby source in our high-contrast data suggests that the transit-like signals are not due to light variations from such a contaminant star. Our intensive RV measurements show that EPIC 212110888b has a mass of $1.726\\pm0.085M_J$, confirming its status as a planet. We also detect the Rossiter-McLaughlin effect for EPIC 212110888b and show that the system has a good spin-orbit alignment ($\\lambda=4_{-10}^{+11}$ degrees). High-contrast images obtained by the HiCIAO camera on the Subaru 8.2-m telescope reveal a faint companion candidate ($\\Delta m_H=6.19\\pm 0.11$) at a separation of $\\sim 0\\farcs36$. Follow-up observations are needed to confirm that the companion candidate is physically associated ...

  5. Two Jupiter-Mass Planets Orbiting HD 154672 and HD 205739

    CERN Document Server

    Lopez-Morales, Mercedes; Fischer, Debra A; Minniti, Dante; Shectman, Stephen A; Takeda, Genya; Adams, Fred C; Wright, Jason T; Arriagada, Pamela

    2008-01-01

    We report the detection of the first two planets from the N2K Doppler planet search program at the Magellan telescopes. The first planet has a mass of M sin i = 4.96 M_Jup and is orbiting the G3 IV star HD154672 with an orbital period of 163.9 days. The second planet is orbiting the F7 V star HD205739 with an orbital period of 279.8 days and has a mass of M sin i = 1.37 M_Jup. Both planets are in eccentric orbits, with eccentricities e = 0.61 and e = 0.27, respectively. Both stars are metal rich and appear to be chromospherically inactive, based on inspection of their Ca II H and K lines. Finally, the best Keplerian model fit to HD205739b shows a trend of 0.0649 m/s/day, suggesting the presence of an additional outer body in that system.

  6. EPIC 204129699b, a grazing transiting hot Jupiter on an 1.26-day orbit around a bright solar like star

    CERN Document Server

    Grziwa, S; Csizmadia, Sz; Fridlund, M; Parviainen, H; Deeg, H J; Cabrera, J; Djupvik, A A; Albrecht, S; Palle, E B; Pätzold, M; Béjar, V J S; Arranz, J P; Eigmüller, P; Erikson, A; Fynbo, J P U; Guenther, E W; Hatzes, A P; Kiilerich, A; Korth, J; Kuutma, T; Montanés-Rodríguez, P; Nespral, D; Nowak, G; Rauer, H; Saario, J; Sebastian, D; Slumstrup, D

    2015-01-01

    We report the discovery of EPIC 204129699b, the first confirmed transiting hot Jupiter detected by the K2 space mission. We combined K2 photometry with FastCam lucky imaging and FIES and HARPS high-resolution spectroscopy to confirm the planetary nature of the transiting object and derived the system parameters. EPIC 204129699b is a 1.8-Jupiter-mass planet on an 1.26-day-orbit around a G7V star (M* = 0.91 Msun, R* = 0.78 Rsun). The planetary radius is poorly constrained (0.7 < Rp < 1.4 RJup ), owing to the grazing transit and the low sampling rate of the K2 photometry. The short orbital period and the brightness of the host star (V = 10.8 mag) make the system amenable to atmospheric characterization.

  7. On-Orbit Engineering and Vehicle Integration Poster Presentation

    Science.gov (United States)

    Heimerdinger, Madison

    2014-01-01

    One of the duties of the MER Managers is getting the consoles to review and sign Electronic Flight Notes (EFN) and Mission Action Requests (Chit) before they are due. Chits and EFNs and are accessible through the Mission Control Center - Houston (MCC-H) Gateway. Chits are the official means of documenting questions and answers, technical direction, real-time changes to Flight Rules (FR) and procedures, request for analysis, etc. between various consoles concerning on-orbit operations. EFNs are documents used by the Flight Control Team (FCT) to communicate precise details between console positions and manage real time changes to FR and Systems Operation Data File (SODF) procedures. On GMT 2013/345 the External Active Thermal Control System (EATCS) on the Columbus (COL) Moderate Temperature Loop (MTL) Interface Heat Exchanger (IFHX) shut down due to low temperatures. Over the next couple of days, the core temperature of COL MT IFHX dropped due to the failure of the Flow Control Valve (FCV). After the temperature drop was discovered, heaters were turned on to bring the temperatures back to nominal. After the incident occurred, a possible freeze threat was discovered that could have ruptured the heat exchanger. The COL MT IFHX rupturing would be considered a catastrophic failure and potentially result in a loss of the vehicle and/or the lives of the International Space Station (ISS) crew members

  8. Formation and stellar spin-orbit misalignment of hot Jupiters from Lidov-Kozai oscillations in stellar binaries

    Science.gov (United States)

    Anderson, Kassandra R.; Storch, Natalia I.; Lai, Dong

    2016-03-01

    Observed hot Jupiter (HJ) systems exhibit a wide range of stellar spin-orbit misalignment angles. This paper investigates the inward migration of giant planets due to Lidov-Kozai (LK) oscillations induced by a distant stellar companion. We conduct a large population synthesis study, including the octupole gravitational potential from the stellar companion, mutual precession of the host stellar spin axis and planet orbital axis, tidal dissipation in the planet and stellar spin-down in the host star due to magnetic braking. We consider a range of planet masses (0.3-5 MJ) and initial semimajor axes (1-5 au), different properties for the host star, and varying tidal dissipation strengths. The fraction of systems that result in HJs depends on planet mass and stellar type, with fHJ = 1-4 per cent (depending on tidal dissipation strength) for Mp = 1 MJ, and larger (up to 8 per cent) for more massive planets. The production efficiency of `hot Saturns' (Mp = 0.3MJ) is much lower, because most migrating planets are tidally disrupted. We find that the fraction of systems that result in either HJ formation or tidal disruption, fmig ≃ 11-14 per cent is roughly constant, having little variation with planet mass, stellar type and tidal dissipation strength. The distribution of final HJ stellar obliquities exhibits a complex dependence on the planet mass and stellar type. For Mp = (1-3)MJ, the distribution is always bimodal, with peaks around 30° and 130°. The distribution for 5MJ planets depends on host stellar type, with a preference for low obliquities for solar-type stars, and higher obliquities for more massive (1.4 M⊙) stars.

  9. On The Orbital Evolution of Jupiter Mass Protoplanet Embedded in A Self-Gravity Disk

    CERN Document Server

    Zhang, Hui; Lin, D N C; Yen, D C C

    2007-01-01

    We performed a series of hydro-dynamic simulations to investigate the orbital migration of a Jovian planet embedded in a proto-stellar disk. In order to take into account of the effect of the disk's self gravity, we developed and adopted an \\textbf{Antares} code which is based on a 2-D Godunov scheme to obtain the exact Reimann solution for isothermal or polytropic gas, with non-reflecting boundary conditions. Our simulations indicate that in the study of the runaway (type III) migration, it is important to carry out a fully self consistent treatment of the gravitational interaction between the disk and the embedded planet. Through a series of convergence tests, we show that adequate numerical resolution, especially within the planet's Roche lobe, critically determines the outcome of the simulations. We consider a variety of initial conditions and show that isolated, non eccentric protoplanet planets do not undergo type III migration. We attribute the difference between our and previous simulations to the con...

  10. The 4.5 μm full-orbit phase curve of the hot Jupiter HD 209458b

    Energy Technology Data Exchange (ETDEWEB)

    Zellem, Robert T.; Griffith, Caitlin A.; Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Knutson, Heather A. [Division of Geological and Planetary Sciences, MC 170-25 1200 East California Boulevard, Pasadena, CA 91125 (United States); Fortney, Jonathan J.; Laughlin, Gregory [Department of Astronomy and Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Cowan, Nicolas B. [Department of Earth and Planetary Sciences, Northwestern University, Technological Institute, 2145 Sheridan Road, Evanston, IL 60208 (United States); Agol, Eric [Astronomy Department, University of Washington, Physics-Astronomy Building, 3910 15th Avenue NE, Seattle, WA 98195 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-16, Cambridge, MA 02138 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Langton, Jonathan, E-mail: rzellem@lpl.arizona.edu [Physics Department, Principia College, 1 Maybeck Place, Elsah, IL 62028 (United States)

    2014-07-20

    The hot Jupiter HD 209458b is particularly amenable to detailed study as it is among the brightest transiting exoplanet systems currently known (V-mag = 7.65; K-mag = 6.308) and has a large planet-to-star contrast ratio. HD 209458b is predicted to be in synchronous rotation about its host star with a hot spot that is shifted eastward of the substellar point by superrotating equatorial winds. Here we present the first full-orbit observations of HD 209458b, in which its 4.5 μm emission was recorded with Spitzer/IRAC. Our study revises the previous 4.5 μm measurement of HD 209458b's secondary eclipse emission downward by ∼35% to 0.1391%{sub −0.0069%}{sup +0.0072%}, changing our interpretation of the properties of its dayside atmosphere. We find that the hot spot on the planet's dayside is shifted eastward of the substellar point by 40.°9 ± 6.°0, in agreement with circulation models predicting equatorial superrotation. HD 209458b's dayside (T{sub bright} = 1499 ± 15 K) and nightside (T{sub bright} = 972 ± 44 K) emission indicate a day-to-night brightness temperature contrast smaller than that observed for more highly irradiated exoplanets, suggesting that the day-to-night temperature contrast may be partially a function of the incident stellar radiation. The observed phase curve shape deviates modestly from global circulation model predictions potentially due to disequilibrium chemistry or deficiencies in the current hot CH{sub 4} line lists used in these models. Observations of the phase curve at additional wavelengths are needed in order to determine the possible presence and spatial extent of a dayside temperature inversion, as well as to improve our overall understanding of this planet's atmospheric circulation.

  11. K2-31B, a Grazing Transiting Hot Jupiter on a 1.26-day Orbit around a Bright G7V Star

    Science.gov (United States)

    Grziwa, Sascha; Gandolfi, Davide; Csizmadia, Szilard; Fridlund, Malcolm; Parviainen, Hannu; Deeg, Hans J.; Cabrera, Juan; Djupvik, Amanda A.; Albrecht, Simon; Palle, Enric B.; Pätzold, Martin; Béjar, Victor J. S.; Prieto-Arranz, Jorge; Eigmüller, Philipp; Erikson, Anders; Fynbo, Johan P. U.; Guenther, Eike W.; Hatzes, Artie P.; Kiilerich, Amanda; Korth, Judith; Kuutma, Teet; Montañés-Rodríguez, Pilar; Nespral, David; Nowak, Grzegorz; Rauer, Heike; Saario, Joonas; Sebastian, Daniel; Slumstrup, Ditte

    2016-11-01

    We report the discovery of K2-31b, the first confirmed transiting hot Jupiter detected by the K2 space mission. We combined K2 photometry with FastCam lucky imaging and FIES and HARPS high-resolution spectroscopy to confirm the planetary nature of the transiting object and derived the system parameters. K2-31b is a 1.8-Jupiter-mass planet on a 1.26-day orbit around a G7 V star ({M}\\star =0.91 M ⊙, {R}\\star =0.78 R ⊙). The planetary radius is poorly constrained (0.7 < R p < 1.4 R Jup),15 owing to the grazing transit and the low sampling rate of the K2 photometry.16

  12. DIFFICULTY IN THE FORMATION OF COUNTER-ORBITING HOT JUPITERS FROM NEAR-COPLANAR HIERARCHICAL TRIPLE SYSTEMS: A SUB-STELLAR PERTURBER

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yuxin; Suto, Yasushi, E-mail: yuxin@utap.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2016-03-20

    Among 100 transiting planets with a measured projected spin–orbit angle λ, several systems are suggested to be counter-orbiting. While these cases may be due to the projection effect, the mechanism that produces a counter-orbiting planet has not been established. A promising scenario for counter-orbiting planets is the extreme eccentricity evolution in near-coplanar hierarchical triple systems with eccentric inner and outer orbits. We examine this scenario in detail by performing a series of systematic numerical simulations, and consider the possibility of forming hot Jupiters (HJs), especially a counter-orbiting one under this mechanism with a distant sub-stellar perturber. We incorporate quadrupole and octupole secular gravitational interaction between the two orbits, and also short-range forces (correction for general relativity, star and inner planetary tide, and rotational distortion) simultaneously. We find that most systems are tidally disrupted and that a small fraction of the surviving planets turn out to be prograde. The formation of counter-orbiting HJs in this scenario is possible only in a very restricted parameter region, and thus is very unlikely in practice.

  13. Difficulty in the Formation of Counter-orbiting Hot Jupiters from Near-coplanar Hierarchical Triple Systems: A Sub-stellar Perturber

    Science.gov (United States)

    Xue, Yuxin; Suto, Yasushi

    2016-03-01

    Among 100 transiting planets with a measured projected spin-orbit angle λ, several systems are suggested to be counter-orbiting. While these cases may be due to the projection effect, the mechanism that produces a counter-orbiting planet has not been established. A promising scenario for counter-orbiting planets is the extreme eccentricity evolution in near-coplanar hierarchical triple systems with eccentric inner and outer orbits. We examine this scenario in detail by performing a series of systematic numerical simulations, and consider the possibility of forming hot Jupiters (HJs), especially a counter-orbiting one under this mechanism with a distant sub-stellar perturber. We incorporate quadrupole and octupole secular gravitational interaction between the two orbits, and also short-range forces (correction for general relativity, star and inner planetary tide, and rotational distortion) simultaneously. We find that most systems are tidally disrupted and that a small fraction of the surviving planets turn out to be prograde. The formation of counter-orbiting HJs in this scenario is possible only in a very restricted parameter region, and thus is very unlikely in practice.

  14. The Disposal of Spacecraft and Launch Vehicle Stages in Low Earth Orbit

    Science.gov (United States)

    Johnson, Nicholas L.

    2007-01-01

    This viewgraph presentation reviews the rationale for disposal of Low Earth Orbit (LEO) satelites and other spacecraft after the operational lifetime for the space craft and launch vehicle stages. It also reviews the National and International Space Debris Mitigation Guidelines, LEO Spacecraft Disposals, and the LEO Launch Vehicle Stage Disposals. Several examples of space craft disposals or passivation are given.

  15. STS-26 Discovery, Orbiter Vehicle (OV) 103, OMS pod leak repair at KSC

    Science.gov (United States)

    1988-01-01

    At the Kennedy Space Center (KSC), Rockwell manufacturing engineering specialist Claude Willis (left) and Rockwell manufacturing supervisor George Gallagher begin installation of a 'clamshell' device in the left orbital maneuvering system (OMS) pod reaction control system (RCS) of Discovery, Orbiter Vehicle (OV) 103. Gallagher performed the OMS pod nitric acid oxidizer leak repair operation using the two newly cut access ports in the Orbiter's aft bulkhead.

  16. Traveling Wave Tube (TVT) RF Power Combining Demonstration for use in the Jupiter Icy Moons Orbiter (JIMO)

    Science.gov (United States)

    Downey, Joseph A.

    2004-01-01

    The Jupiter Icy Moons Orbiter (JIMO) is set to launch between the years 2012 and 2015. It will possibly utilize a nuclear reactor power source and ion engines as it travels to the moons of Jupiter. The nuclear reactor will produce hundreds of kilowatts of power for propulsion, communication and various scientific instruments. Hence, the RF amplification devices aboard will be able to operate at a higher power level and data rate. The initial plan for the communications system is for an output of 1000 watts of RF power, a data rate of at least 10 megabits a second, and a frequency of 32 GHz. A higher data rate would be ideal to fully utilize the instruments aboard JIMO. At NASA Glenn, one of our roles in the JIMO project is to demonstrate RF power combining using multiple traveling wave tubes (TWT). In order for the power of separate TWT s to be combined, the RF output waves from each must be in-phase and have the same amplitude. Since different tubes act differently, we had to characterize each tube using a Network Analyzer. We took frequency sweeps and power sweeps to characterize each tube to ensure that they will behave similarly under the same conditions. The 200 watt Dornier tubes had been optimized to run at a lower power level (120 watts) for their extensive use in the ACTS program, so we also had to experiment with adjusting the voltage settings on several internal components (helix, anode, collector) of the tubes to reach the full 200 watt potential. from the ACTS program. Phase shifters and power attenuators were placed in the waveguide circuit at the inputs to the tubes so that adjustments could be made individually to match them exactly. A magic tee was used to route and combine the amplified electromagnetic RF waves on the tube output side. The demonstration of 200 watts of combined power was successful with efficiencies greater than 90% over a 500 MHz bandwidth. The next step will be to demonstrate the use of three amplifiers using two magic tees by

  17. Synergetic plane-change capability of a conceptual aeromaneuvering-orbital-transfer vehicle

    Science.gov (United States)

    Menees, Gene P.; Wilson, John F.; Adelman, Henry G.

    1987-01-01

    The flight strategy for a general low-earth orbit plane-change is analyzed for a conceptual, high-lift, aeromaneuvering-orbital-transfer vehicle, and applied to the important case of the 45 deg plane-inclination change. The study focuses on two principal methods: (1) the procedure to obtain a change in the inclination of the vehicle's orbital plane, and (2) the full rendezvous procedure. Optimal trajectories for minimal propellant use during the synergetic aerotransit are developed, which incorporate best estimates of constraints imposed by reusable thermal-protection requirements and human tolerance to g-load levels. The performance capability for one-way payload delivery to the target orbit is analyzed in detail and the capability for return to the base orbit demonstrated.

  18. Liaison-Supplemented Navigation of a Crewed Vehicle in a Lunar Halo Orbit

    Science.gov (United States)

    Parker, Jeffrey S.; Leonard, Jason M.; Anderson, Rodney L.; Born, George H.

    2013-01-01

    This paper offers an early examination of the challenges of navigating a crewed vehicle, with all of the associated unmodeled accelerations that arise from the crew's activities, in an orbit about the Earth-Moon L2 point. The combination of the unstable nature of libration orbits with the lack of acceleration knowledge makes the station keeping strategy challenging. It is found that a combination of ground tracking and satellite-to-satellite tracking produces the most favorable navigation accuracy. This paper examines the costs and benefits of applying LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) to a crewed mission in an unstable L2 orbit.

  19. Orbital Maneuvering Vehicle (OMV) three-point docking latch

    Science.gov (United States)

    Myers, W. Neill; Forbes, John C.; Barnes, Wayne L.

    1990-01-01

    The primary purpose of the OMV is to dock with orbiting payloads and then either transfer them to a different orbit or return them to the Space Shuttle for servicing. Some such missions will involve docking with payloads equipped with a Flight Support System (FSS) type of interface; an example is the Hubble Space Telescope (HST). The design and development of a mechanism to be used for testing this docking concept on the NASA-Marshall test beds is described. The test results to date are also presented.

  20. Moons around Jupiter

    Science.gov (United States)

    2007-01-01

    The New Horizons Long Range Reconnaissance Imager (LORRI) took this photo of Jupiter at 20:42:01 UTC on January 9, 2007, when the spacecraft was 80 million kilometers (49.6 million miles) from the giant planet. The volcanic moon Io is to the left of the planet; the shadow of the icy moon Ganymede moves across Jupiter's northern hemisphere. Ganymede's average orbit distance from Jupiter is about 1 million kilometers (620,000 miles); Io's is 422,000 kilometers (262,000 miles). Both Io and Ganymede are larger than Earth's moon; Ganymede is larger than the planet Mercury.

  1. Synerjet propulsion and the trimarket opportunity - Orbital, transglobal and lunar transportation services with one vehicle type

    Science.gov (United States)

    Escher, William J. D.

    1992-01-01

    A proposed aerospace transporter for performing earth-to-orbit/return missions as well as transatmospheric and in-space high-energy missions is argued to be an effective and feasible alternative for development. The vehicles are based on the exploitation of 'synerjet' technologies that use airbreathing/rocket combined-cycle propulsion. The vehicle is shown to be capable of terrestrial-service intercontinental transglobal flight in an 'orbital cruise' mode as well as round trips from low orbits to high orbits and to the moon. The operational flexibility is linked to the development of synerjet propulsion, so directions are proposed for technology development and validation efforts. The development of the NASP X-30 by NASA is shown to be an important initial contribution to the R&D in this direction.

  2. Effects of relaxed static longitudinal stability on a single-stage-to-orbit vehicle design

    Science.gov (United States)

    Freeman, D. C., Jr.; Wilhite, A. W.

    1979-01-01

    The effects of relaxing longitudinal stability requirements on single stage to orbit space vehicles is studied. A comparison of the mass and performance characteristics of two vehicles, one designed for positive levels of longitudinal stability and the other designed with relaxed stability requirements in a computer aided design process is presented. Both vehicles, required to meet the same mission characteristics are described. Wind tunnel tests, conducted over a Mach number range from 0.3 to 4.63 to verify estimated aerodynamic characteristics, are discussed.

  3. Use of the Orbital Maneuvering Vehicle (OMV) for placement and retrieval of spacecraft and platforms

    Science.gov (United States)

    Snoddy, William C.; Galloway, William E.; Young, Archie C.

    This paper describes the Orbital Maneuvering Vehicle (OMV) and its intended role as a key element of NASA's space infrastructure. Status, plans, and operational modes are summarized. Typical mission scenarios supporting the servicing of spacecraft and platforms from both the Shuttle and the Space Station are described. Particular emphasis is placed on the orbital mechanics associated with the placement and retrieval of spacecraft and platforms. For example, the optimum placement of a Space Station co-orbiting spacecraft in order to maximize the time interval during which it can be retrieved by a Space Station based OMV is shown as a function of the ballistic coefficient of the spacecraft.

  4. Coupling of the Matched Gravity and Electromagnetic Fields of the Sun with Jupiter and its Moons Together in Nearest Portion of Jupiter's Orbit to the Sun as the Main Cause of the Peak of Approximately 11 Yearly Solar Cycles and Hazards from Solar Storms

    Science.gov (United States)

    Gholibeigian, Kazem; Gholibeigian, Hassan

    2016-04-01

    On March 13, 1989 the entire province of Quebec Blackout by solar storm during solar cycle 22. The solar storm of 1859, also known as the Carrington event, was a powerful geomagnetic solar storm during solar cycle 10. The solar storm of 2012 during solar cycle 24 was of similar magnitude, but it passed Earth's orbit without striking the plane. All of these solar storms occurred in the peak of 11 yearly solar cycles. In this way, the White House in its project which is focusing on hazards from solar system, in a new strategy and action plan to increase protection from damaging solar emissions, should focus on coupling of the matched Gravity and Electromagnetic Fields)GEFs) of the Sun with Jupiter and its moons together. On the other hand, in solar system, the Jupiter's gravity has largest effect to the Sun's core and its dislocation, because the gravity force between the Jupiter and the Sun is 11.834 times, In addition overlapping of the solar cycles with the Jupiter's orbit period is 11.856 years. These observable factors lead us to the effect of the Jupiter and Sun gravity fields coupling as the main cause of the approximately 11 years duration for solar cycles. Its peak in each cycle is when the Jupiter is in nearest portion to the Sun in its orbit. In this way, the other planets in their coupling with Sun help to the variations and strengthening solar cycles. [Gholibeigian, 7/24/2015http://adsabs.harvard.edu/abs/2014EGU]. In other words, the both matched GEFs are generating by the large scale forced convection system inside the stars and planets [Gholibeigian et. al, AGU Fall Meeting 2015]. These two fields are couple and strengthening each other. The Jupiter with its 67 moons generate the largest coupled and matched GEFs in its core and consequently strongest effect on the Sun's core. Generation and coupling of the Jupiter's GEFs with its moons like Europa, Io and Ganymede make this planet of thousands of times brighter and many times bigger than Earth as the

  5. WASP-78b and WASP-79b: Two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus

    CERN Document Server

    Smalley, B; Collier-Cameron, A; Doyle, A P; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Segransan, D; Smith, A M S; Southworth, J; Triaud, A H M J; Udry, S; West, R G

    2012-01-01

    We report the discovery of WASP-78b and WASP-79b, two highly-bloated Jupiter-mass exoplanets orbiting F-type host stars. WASP-78b orbits its V=12.0 host star (TYC 5889-271-1) every 2.175 days and WASP-79b orbits its V=10.1 host star (CD-30 1812) every 3.662 days. A simultaneous fit to WASP and TRAPPIST transit photometry and CORALIE radial-velocity measurements yields planetary masses of 0.89 +/- 0.08 M_Jup and 0.90 +/- 0.08 M_Jup, and radii of 1.70 +/- 0.11 R_Jup and 2.09 +/- 0.14 R_Jup, for WASP-78b and WASP-79b, respectively. The planetary equilibrium temperature of T_P = 2350 +/- 80 K for WASP-78b makes it one of the hottest of the currently known exoplanets. The radius of WASP-79b suggests that it is potentially the largest known exoplanet.

  6. Static and dynamic stability analysis of the space shuttle vehicle-orbiter

    Science.gov (United States)

    Chyu, W. J.; Cavin, R. K.; Erickson, L. L.

    1978-01-01

    The longitudinal static and dynamic stability of a Space Shuttle Vehicle-Orbiter (SSV Orbiter) model is analyzed using the FLEXSTAB computer program. Nonlinear effects are accounted for by application of a correction technique in the FLEXSTAB system; the technique incorporates experimental force and pressure data into the linear aerodynamic theory. A flexible Orbiter model is treated in the static stability analysis for the flight conditions of Mach number 0.9 for rectilinear flight (1 g) and for a pull-up maneuver (2.5 g) at an altitude of 15.24 km. Static stability parameters and structural deformations of the Orbiter are calculated at trim conditions for the dynamic stability analysis, and the characteristics of damping in pitch are investigated for a Mach number range of 0.3 to 1.2. The calculated results for both the static and dynamic stabilities are compared with the available experimental data.

  7. Protection of Space Vehicles from Micrometeoroid/Orbital Debris (MMOD) Damages

    Science.gov (United States)

    Barr, Stephanie

    2007-01-01

    As the environment that puts space vehicles at risk can never be eliminated, space vehicles must implement protection against the MMOD environment. In general, this protection has been implemented on a risk estimate basis, largely focused on estimates of impactor size and estimated flux. However, there is some uncertainty in applying these methods from data gathered in earth orbit to excursions outside. This paper discusses different past thresholds and processes of the past and suggests additional refinement or methods that could be used for future space endeavors.

  8. A Transiting Jupiter Analog

    CERN Document Server

    Kipping, David M; Henze, Chris; Teachey, Alex; Isaacson, Howard T; Petigura, Erik A; Marcy, Geoffrey W; Buchhave, Lars A; Chen, Jingjing; Bryson, Steve T; Sandford, Emily

    2016-01-01

    Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of $(0.91\\pm0.02)$ $R_{\\mathrm{Jup}}$, a low orbital eccentricity ($0.06_{-0.04}^{+0.10}$) and an equilibrium temperature of $(131\\pm3)$ K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric ...

  9. THE WELL-ALIGNED ORBIT OF WASP-84b: EVIDENCE FOR DISK MIGRATION OF A HOT JUPITER

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D. R.; Triaud, A. H. M. J.; Turner, O. D.; Brown, D. J. A.; Clark, B. J. M.; Smalley, B.; Cameron, A. Collier; Doyle, A. P.; Gillon, M.; Hellier, C.; Lovis, C.; Maxted, P. F. L.; Pollacco, D.; Queloz, D.; Smith, A. M. S., E-mail: d.r.anderson@keele.ac.uk [N. Copernicus Astronomical Centre, Polish Academy of Sciences, Bartycka 18, 00-716, Warsaw (Poland)

    2015-02-10

    We report the sky-projected orbital obliquity (spin–orbit angle) of WASP-84 b, a 0.69M{sub Jup} planet in an 8.52 day orbit around a G9V/K0V star, to be λ = −0.3 ± 1.7°. We obtain a true obliquity of ψ = 17.3 ± 7.7° from a measurement of the inclination of the stellar spin axis with respect to the sky plane. Due to the young age and the weak tidal forcing of the system, we suggest that the orbit of WASP-84b is unlikely to have both realigned and circularized from the misaligned and/or eccentric orbit likely to have arisen from high-eccentricity migration. Therefore we conclude that the planet probably migrated via interaction with the protoplanetary disk. This would make it the first “hot Jupiter” (P<10 d) to have been shown to have migrated via this pathway. Further, we argue that the distribution of obliquities for planets orbiting cool stars (T{sub eff} < 6250 K) suggests that high-eccentricity migration is an important pathway for the formation of short-orbit, giant planets.

  10. Catalytic surface effect on ceramic coatings for an aeroassisted orbital transfer vehicle

    Science.gov (United States)

    Steward, D. A.; Leiser, D. B.

    1984-01-01

    Surface catalytic efficiencies of glassy coatings were determined from a reaction boundary layer computation and arc-jet data. The catalytic efficiencies of the various coatings examined are discussed in terms of their reaction-rate constants. These constants are a function of the wall temperature (1290 K to 2000 K). In addition, the advantage of a thermal protection system for a bent biconic, aeroassisted orbital transfer vehicle with a low surface catalytic efficiency is discussed.

  11. Literature concerning control and display technology applicable to the Orbital Maneuvering Vehicle (OMV)

    Science.gov (United States)

    1990-01-01

    A review is presented of the literature concerning control and display technology that is applicable to the Orbital Maneuvering Vehicle (OMV), a system being developed by NASA that will enable the user to remotely pilot it during a mission in space. In addition to the general review, special consideration is given to virtual image displays and their potential for use in the system, and a preliminary partial task analysis of the user's functions is also presented.

  12. Doppler tomography of transiting exoplanets: A prograde, low-inclined orbit for the hot Jupiter CoRoT-11b

    CERN Document Server

    Gandolfi, Davide; Endl, Michael; Lanza, Antonino F; Damiani, Cilia; Alonso, Roi; Cochran, William D; Deleuil, Magali; Fridlund, Malcolm; Hatzes, Artie P; Guenther, Eike W

    2012-01-01

    We report the detection of the Doppler shadow of the transiting hot Jupiter CoRoT-11b. Our analysis is based on line-profile tomography of time-series, Keck/HIRES high-resolution spectra acquired during the transit of the planet. We measured a sky-projected, spin-orbit angle of 0.1 +/- 2.6 degrees, which is consistent with a very low-inclined orbit with respect to the stellar rotation axis. We refined the physical parameters of the system using a Markov chain Monte Carlo simultaneous fitting of the available photometric and spectroscopic data. An analysis of the tidal evolution of the system shows how the currently measured obliquity and its uncertainty translate into an initial absolute value of less than about 10 degrees on the zero-age main sequence, for an expected average modified tidal quality factor of the star Q'* > 4 x 10^6. This is indicative of an inward migration scenario that would not have perturbed the primordial low obliquity of CoRoT-11b. Taking into account the effective temperature and mass...

  13. WASP-20b and WASP-28b: a hot Saturn and a hot Jupiter in near-aligned orbits around solar-type stars

    Science.gov (United States)

    Anderson, D. R.; Collier Cameron, A.; Hellier, C.; Lendl, M.; Lister, T. A.; Maxted, P. F. L.; Queloz, D.; Smalley, B.; Smith, A. M. S.; Triaud, A. H. M. J.; Brown, D. J. A.; Gillon, M.; Neveu-VanMalle, M.; Pepe, F.; Pollacco, D.; Ségransan, D.; Udry, S.; West, R. G.; Wheatley, P. J.

    2015-03-01

    We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31 MJup; 1.46 RJup) in a 4.9-day, near-aligned (λ = 12.7 ± 4.2°) orbit around CD-24 102 (V = 10.7; F9). Due to the low density of the planet and the apparent brightness of the host star, WASP-20 is a good target for atmospheric characterisation via transmission spectroscopy. WASP-28b is an inflated, Jupiter-mass planet (0.91 MJup; 1.21 RJup) in a 3.4-day, near-aligned (λ = 8 ± 18°) orbit around a V = 12, F8 star. As intermediate-mass planets in short orbits around aged, cool stars (7+ 2-1 Gyr and 6000 ± 100 K for WASP-20; 5+ 3-2 Gyr and 6100 ± 150 K for WASP-28), their orbital alignment is consistent with the hypothesis that close-in giant planets are scattered into eccentric orbits with random alignments, which are then circularised and aligned with their stars' spins via tidal dissipation. Based on observations made with: the WASP-South (South Africa) and SuperWASP-North (La Palma) photometric survey instruments; the C2 and EulerCam cameras and the CORALIE spectrograph, all mounted on the 1.2-m Euler-Swiss telescope (La Silla); the HARPS spectrograph on the ESO 3.6-m telescope (La Silla) under programs 072.C-0488, 082.C-0608, 084.C-0185, and 085.C-0393; and LCOGT's Faulkes Telescope North (Maui) and Faulkes Telescope South (Siding Spring).Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A61

  14. Transiting exoplanets from the CoRoT space mission. XVIII. CoRoT-18b: a massive hot Jupiter on a prograde, nearly aligned orbit

    Science.gov (United States)

    Hébrard, G.; Evans, T. M.; Alonso, R.; Fridlund, M.; Ofir, A.; Aigrain, S.; Guillot, T.; Almenara, J. M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Cabrera, J.; Carone, L.; Carpano, S.; Cavarroc, C.; Csizmadia, Sz.; Deeg, H. J.; Deleuil, M.; Díaz, R. F.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Gandolfi, D.; Gibson, N.; Gillon, M.; Guenther, E.; Hatzes, A.; Havel, M.; Jorda, L.; Lammer, H.; Léger, A.; Llebaria, A.; Mazeh, T.; Moutou, C.; Ollivier, M.; Parviainen, H.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Tingley, B.; Wuchterl, G.

    2011-09-01

    We report the detection of CoRoT-18b, a massive hot Jupiter transiting in front of its host star with a period of 1.9000693 ± 0.0000028 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite combined with spectroscopic and photometric ground-based follow-up observations. The planet has a mass Mp = 3.47 ± 0.38 MJup, a radius Rp = 1.31 ± 0.18 RJup, and a density ρp = 2.2 ± 0.8 g cm-3. It orbits a G9V star with a mass M⋆ = 0.95 ± 0.15 M⊙, a radius R⋆ = 1.00 ± 0.13 R⊙, and arotation period Prot = 5.4 ± 0.4 days. The age of the system remains uncertain, with stellar evolution models pointing either to a few tens Ma or several Ga, while gyrochronology and lithium abundance point towards ages of a few hundred Ma. This mismatch potentially points to a problem in our understanding of the evolution of young stars, with possibly significant implications for stellar physics and the interpretation of inferred sizes of exoplanets around young stars. We detected the Rossiter-McLaughlin anomaly in the CoRoT-18 system thanks to the spectroscopic observation of a transit. We measured the obliquity ψ = 20° ± 20° (sky-projected value λ = -10° ± 20°), indicating that the planet orbits in the same way as the star is rotating and that this prograde orbit is nearly aligned with the stellar equator. The CoRoT space mission, launched on 2006 December 27, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain.Table 2 is available in electronic form at http://www.aanda.org

  15. WASP-78b and WASP-79b: two highly-bloated hot Jupiter-mass exoplanets orbiting F-type stars in Eridanus

    Science.gov (United States)

    Smalley, B.; Anderson, D. R.; Collier-Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Hellier, , C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G.

    2012-11-01

    We report the discovery of WASP-78b and WASP-79b, two highly-bloated Jupiter-mass exoplanets orbiting F-type host stars. WASP-78b orbits its V = 12.0 host star (TYC 5889-271-1) every 2.175 days and WASP-79b orbits its V = 10.1 host star (CD-30 1812) every 3.662 days. Planetary parameters have been determined using a simultaneous fit to WASP and TRAPPIST transit photometry and CORALIE radial-velocity measurements. For WASP-78b a planetary mass of 0.89 ± 0.08 MJup and a radius of 1.70 ± 0.11 RJup is found. The planetary equilibrium temperature of TP = 2350 ± 80 K for WASP-78b makes it one of the hottest of the currently known exoplanets. WASP-79b its found to have a planetary mass of 0.90 ± 0.08 MJup, but with a somewhat uncertain radius due to lack of sufficient TRAPPIST photometry. The planetary radius is at least 1.70 ± 0.11 RJup, but could be as large as 2.09 ± 0.14 RJup, which would make WASP-79b the largest known exoplanet. Photometric data is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/547/A61Table 1 is available in electronic form at http://www.aanda.org

  16. Possible Outcomes of Coplanar High-eccentricity Migration: Hot Jupiters, Close-in Super-Earths, and Counter-orbiting Planets

    Science.gov (United States)

    Xue, Yuxin; Masuda, Kento; Suto, Yasushi

    2017-02-01

    We investigate the formation of close-in planets in near-coplanar eccentric hierarchical triple systems via the secular interaction between an inner planet and an outer perturber (Coplanar High-eccentricity Migration; CHEM). We generalize the previous work on the analytical condition for successful CHEM for point masses interacting only through gravity by taking into account the finite mass effect of the inner planet. We find that efficient CHEM requires that the systems should have m1 ≪ m0 and m1 ≪ m2. In addition to the gravity for point masses, we examine the importance of the short-range forces, and provide an analytical estimate of the migration timescale. We perform a series of numerical simulations in CHEM for systems consisting of a Sun-like central star, giant gas inner planet, and planetary outer perturber, including the short-range forces and stellar and planetary dissipative tides. We find that most of such systems end up with a tidal disruption; a small fraction of the systems produce prograde hot Jupiters (HJs), but no retrograde HJ. In addition, we extend CHEM to super-Earth mass range, and show that the formation of close-in super-Earths in prograde orbits is also possible. Finally, we carry out CHEM simulation for the observed hierarchical triple and counter-orbiting HJ systems. We find that CHEM can explain a part of the former systems, but it is generally very difficult to reproduce counter-orbiting HJ systems.

  17. Jupiter - friend or foe?

    Science.gov (United States)

    Horner, J.; Jones, B. W.

    2007-08-01

    Throughout both popular science and academia, there is a pervasive belief that Jupiter has acted as a celestial shield, reducing the impact rate on the Earth, and making the planet a significantly more conducive site for the evolution and survival of life. This old idea has, however, undergone little detailed scrutiny. In the first of a series of studies aimed at a better understanding of this idea, we examine the variation in the impact rate on the Earth which results from bodies moving inwards from the Edgeworth- Kuiper belt as a function of the mass of a giant planet in Jupiter's orbit. The results are not entirely what would be expected under the "Jupiter Shield" paradigm.

  18. Understanding Jupiter's Interior

    CERN Document Server

    Militzer, Burkhard; Wahl, Sean M; Hubbard, William

    2016-01-01

    This article provides an overview of how models of giant planet interiors are constructed. We review measurements from past space missions that provide constraints for the interior structure of Jupiter. We discuss typical three-layer interior models that consist of a dense central core and an inner metallic and an outer molecular hydrogen-helium layer. These models rely heavily on experiments, analytical theory, and first-principle computer simulations of hydrogen and helium to understand their behavior up to the extreme pressures ~10 Mbar and temperatures ~10,000 K. We review the various equations of state used in Jupiter models and compare them with shock wave experiments. We discuss the possibility of helium rain, core erosion and double diffusive convection may have important consequences for the structure and evolution of giant planets. In July 2016 the Juno spacecraft entered orbit around Jupiter, promising high-precision measurements of the gravitational field that will allow us to test our understandi...

  19. Jupiter's Rings: Sharpest View

    Science.gov (United States)

    2007-01-01

    The New Horizons spacecraft took the best images of Jupiter's charcoal-black rings as it approached and then looked back at Jupiter. The top image was taken on approach, showing three well-defined lanes of gravel- to boulder-sized material composing the bulk of the rings, as well as lesser amounts of material between the rings. New Horizons snapped the lower image after it had passed Jupiter on February 28, 2007, and looked back in a direction toward the sun. The image is sharply focused, though it appears fuzzy due to the cloud of dust-sized particles enveloping the rings. The dust is brightly illuminated in the same way the dust on a dirty windshield lights up when you drive toward a 'low' sun. The narrow rings are confined in their orbits by small 'shepherding' moons.

  20. A Preliminary Jupiter Model

    CERN Document Server

    Hubbard, W B

    2016-01-01

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen-helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses, and a hydrogen-helium-rich envelope with...

  1. A Preliminary Jupiter Model

    Science.gov (United States)

    Hubbard, W. B.; Militzer, B.

    2016-03-01

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen-helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen-helium-rich envelope with approximately three times solar metallicity.

  2. Small Friends of Hot Jupiters

    Science.gov (United States)

    Nunez, Luis Ernesto; Johnson, John A.

    2017-01-01

    Hot Jupiters are Jupiter-sized gas giant exoplanets that closely orbit their host star in periods of about 10 days or less. Early models hypothesized that these exoplanets formed away from the star, then over time drifted to their characteristically closer locations. However, new theories predict that Hot Jupiters form at their close proximity during the process of core accretion (Batygin et al. 2015). In fact, a super-Earth and a Neptune-sized exoplanet have already been detected in the Hot Jupiter-hosting star WASP-47 (Becker et al. 2015). We will present our analysis of radial velocity time series plots to determine whether low-mass, short-period planets have been previously overlooked in systems of stars which host Hot Jupiters.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851.

  3. Warm Jupiters are less lonely than hot Jupiters: close neighbours

    CERN Document Server

    Huang, Chelsea X; Triaud, Amaury H M J

    2016-01-01

    Exploiting the Kepler transit data, we uncover a dramatic distinction in the prevalence of sub-Jovian companions, between systems that contain hot Jupiters (periods inward of 10 days) and those that host warm Jupiters (periods between 10 and 200 days). Hot Jupiters as a whole, with the singular exception of WASP-47b, do not have any detectable inner or outer planetary companions (with periods inward of 50 days and sizes down to $2 R_{\\rm Earth}$). Restricting ourselves to inner companions, our limits reach down to $1 R_{\\rm Earth}$. In stark contrast, half of the warm Jupiters are closely flanked by small companions. Statistically, the companion fractions for hot and warm Jupiters are mutually exclusive, in particular in regard to inner companions. The high companion fraction of warm Jupiters also yields clue to their formation. The warm Jupiters that have close-by siblings should have low orbital eccentricities and low mutual inclinations. The orbital configurations of these systems are reminiscent of those ...

  4. Transiting exoplanets from the CoRoT space mission - XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit

    CERN Document Server

    Rouan, D; Moutou, C; Deleuil, M; Fridlund, M; Ofir, A; Havel, M; Aigrain, S; Alonso, R; Auvergne, M; Baglin, A; Barge, P; Bonomo, A; Bordé, P; Bouchy, F; Cabrera, J; Cavarroc, C; Csizmadia, Sz; Deeg, H; Diaz, R F; Dvorak, R; Erikson, A; Ferraz-Mello, S; Gandolfi, D; Gillon, M; Guillot, T; Hatzes, A; Hébrard, G; Jorda, L; Léger, A; Llebaria, A; Lammer, H; Lovis, C; Mazeh, T; Ollivier, M; Pätzold, M; Queloz, D; Rauer, H; Samuel, B; Santerne, A; Schneider, J; Tingley, B; Wuchterl, G

    2011-01-01

    We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 \\pm 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric search for possible background eclipsing binaries conducted at CFHT and OGS concluded with a very low risk of false positives. The usual techniques of combining RV and transit data simultaneously were used to derive stellar and planetary parameters. The planet has a mass of Mp = 2.8 \\pm 0.3 MJup, a radius of Rpl = 1.05 \\pm 0.13 RJup, a density of \\approx 3 g cm-3. RV data also clearly reveal a non zero eccentricity of e = 0.16 \\pm 0.02. The planet orbits a mature G0 main sequence star of V =15.5 mag, with a mass M\\star = 1.14 \\pm 0.08 M\\odot, a radius R\\star = 1. 61 \\pm 0.18 R\\odot and quasi-solar abundances. The age of the system is evaluated to be 7 Gyr, not far from the transition to subgiant, in agreement with the r...

  5. The first planet detected in the WTS: an inflated hot-Jupiter in a 3.35 day orbit around a late F-star

    CERN Document Server

    Cappetta, M; Birkby, J L; Koppenhoefer, J; Pinfield, D J; Hodgkin, S T; Cruz, P; Kovács, G; Sipöcz, B; Barrado, D; Nefs, B; Pavlenko, Y V; Fossati, L; del Burgo, C; Martín, E L; Snellen, I; Barnes, J; Bayo, A M; Campbell, D A; Catalan, S; Gálvez-Ortiz, M C; Goulding, N; Haswell, C; Ivanyuk, O; Jones, H; Kuznetsov, M; Lodieu, N; Marocco, F; Mislis, D; Murgas, F; Napiwotzki, R; Palle, E; Pollacco, D; Baro, L Sarro; Solano, E; Steele, P; Stoev, H; Tata, R; Zendejas, J

    2012-01-01

    We report the discovery of WTS-1b, the first extrasolar planet found by the WFCAM Transit Survey, which began observations at the 3.8-m United Kingdom Infrared Telescope. Light curves comprising almost 1200 epochs with a photometric precision of better than 1 per cent to J=16 were constructed for 60000 stars and searched for periodic transit signals. For one of the most promising transiting candidates, high-resolution spectra taken at the Hobby-Eberly Telescope allowed us to estimate the spectroscopic parameters of the host star, a late-F main sequence dwarf (V=16.13) with possibly slightly subsolar metallicity, and to measure its radial velocity variations. The combined analysis of the light curves and spectroscopic data resulted in an orbital period of the substellar companion of 3.35 days, a planetary mass of 4.01+-0.35 Mj and a planetary radius of 1.49+-0.17 Rj. WTS-1b has one of the largest radius anomalies among the known hot Jupiters in the mass range 3-5 Mj.

  6. The first planet detected in the WTS: an inflated hot-Jupiter in a 3.35 day orbit around a late F-star [ERRATUM

    CERN Document Server

    Cappetta, M; Birkby, J L; Koppenhoefer, J; Pinfield, D J; Hodgkin, S T; Cruz, P; Kovacs, G; Sipocz, B; Barrado, D; Nefs, B; Pavlenko, Y V; Fossati, L; del Burgo, C; Martin, E L; Snellen, I; Barnes, J; Campbell, D A; Catalan, S; Galvez-Ortiz, M C; Goulding, N; Haswell, C; Ivanyuk, O; Jones, H; Kuznetsov, M; Lodieu, N; Marocco, F; Mislis, D; Murgas, F; Napiwotzki, R; Palle, E; Pollacco, D; Baro, L Sarro; Solano, E; Steele, P; Stoev, H; Tata, R; Zendejas, J

    2014-01-01

    We report the discovery of WTS-1b, the first extrasolar planet found by the WFCAM Transit Survey, which began observations at the 3.8-m United Kingdom Infrared Telescope (UKIRT) in August 2007. Light curves comprising almost 1200 epochs with a photometric precision of better than 1 per cent to J ~ 16 were constructed for ~60000 stars and searched for periodic transit signals. For one of the most promising transiting candidates, high-resolution spectra taken at the Hobby-Eberly Telescope (HET) allowed us to estimate the spectroscopic parameters of the host star, a late-F main sequence dwarf (V=16.13) with possibly slightly subsolar metallicity, and to measure its radial velocity variations. The combined analysis of the light curves and spectroscopic data resulted in an orbital period of the substellar companion of 3.35 days, a planetary mass of 4.01 +- 0.35 Mj and a planetary radius of 1.49+0.16-0.18 Rj. WTS-1b has one of the largest radius anomalies among the known hot Jupiters in the mass range 3-5 Mj. The h...

  7. HAT-P-34b-HAT-P-37b: Four Transiting Planets More Massive than Jupiter Orbiting Moderately Bright Stars

    Science.gov (United States)

    Bakos, G. Á.; Hartman, J. D.; Torres, G.; Béky, B.; Latham, D. W.; Buchhave, L. A.; Csubry, Z.; Kovács, G.; Bieryla, A.; Quinn, S.; Szklenár, T.; Esquerdo, G. A.; Shporer, A.; Noyes, R. W.; Fischer, D. A.; Johnson, J. A.; Howard, A. W.; Marcy, G. W.; Sato, B.; Penev, K.; Everett, M.; Sasselov, D. D.; Fűrész, G.; Stefanik, R. P.; Lázár, J.; Papp, I.; Sári, P.

    2012-07-01

    We report the discovery of four transiting extrasolar planets (HAT-P-34b-HAT-P-37b) with masses ranging from 1.05 to 3.33 M J and periods from 1.33 to 5.45 days. These planets orbit relatively bright F and G dwarf stars (from V = 10.16 to V = 13.2). Of particular interest is HAT-P-34b which is moderately massive (3.33 M J), has a high eccentricity of e = 0.441 ± 0.032 at a period of P = 5.452654 ± 0.000016 days, and shows hints of an outer component. The other three planets have properties that are typical of hot Jupiters. Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology. Keck time has been granted by NOAO (A289Hr) and NASA (N167Hr and N029Hr). Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based in part on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  8. Transiting exoplanets from the CoRoT space mission. XX. CoRoT-18b: a massive hot jupiter on a prograde, nearly aligned orbit

    CERN Document Server

    Hebrard, G; Alonso, R; Fridlund, M; Ofir, A; Aigrain, S; Guillot, T; Almenara, J M; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Borde, P; Bouchy, F; Cabrera, J; Carone, L; Carpano, S; Cavarroc, C; Csizmadia, Sz; Deeg, H J; Deleuil, M; Diaz, R F; Dvorak, R; Erikson, A; Ferraz-Mello, S; Gandolfi, D; Gibson, N; Gillon, M; Guenther, E; Hatzes, A; Havel, M; Jorda, L; Lammer, H; Leger, A; Llebaria, A; Mazeh, T; Moutou, C; Ollivier, M; Parviainen, H; Patzold, M; Queloz, D; Rauer, H; Rouan, D; Santerne, A; Schneider, J; Tingley, B; Wuchterl, G

    2011-01-01

    We report the detection of CoRoT-18b, a massive hot jupiter transiting in front of its host star with a period of 1.9000693 +/- 0.0000028 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite combined with spectroscopic and photometric follow-up ground-based observations. The planet has a mass M_p = 3.47 +/- 0.38 M_Jup, a radius R_p = 1.31 +/- 0.18 R_Jup, and a density rho_p = 2.2 +/- 0.8 g/cm3. It orbits a G9V star with a mass M_* = 0.95 +/- 0.15 M_Sun, a radius R_* = 1.00 +/- 0.13 R_Sun, and a rotation period P_rot = 5.4 +/- 0.4 days. The age of the system remains uncertain, stellar evolution models pointing either to a few tens Ma or several Ga, while gyrochronology and lithium abundance point towards ages of a few hundred Ma. This mismatch potentially points to a problem in our understanding of the evolution of young stars, with possible significant implications for stellar physics and the interpretation of inferred sizes of exoplanets around young stars. We detected...

  9. Jupiter Eruptions

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers. This visible-light image is from NASA's Hubble Space Telescope taken on May 11, 2007. It shows the turbulent pattern generated by the two plumes on the upper left part of Jupiter. Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena. According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vi gorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  10. Optical and thermal characterization of membrane reflector materials for solar orbit transfer vehicles

    Science.gov (United States)

    Farmer, Gregory D.; McGee, Jennie K.; Partch, Russell; Lester, Dean M.

    2002-01-01

    The Air Force Research Laboratory (AFRL), is advancing technologies to enable greater mobility for future AF spacecraft. The Solar Orbit Transfer Vehicle (SOTV) program is developing components for a concept based on a solar thermal rocket and solar thermal power generation. The program is performing ground testing of a thin film membrane concentrator concept. To better understand system performance, a series of optical characterization tests of the membrane material were performed. The objective was to quantify the relationship between membrane optical properties and the concentrator on-orbit transmission performance and thermal profile. During testing we collected reflectivity, absorptivity, transmissivity, and emissivity data for un-coated and coated membrane material. The membrane material tested was fabricated using a flight-qualified polyimide material and proven manufacturing processes. The test results, and system thermal analysis are presented in this paper. The results of this research will be used to refine hardware performance predictions and improve sizing for flight demonstration. .

  11. A Super-Jupiter orbiting a late-type star: A refined analysis of microlensing event OGLE-2012-BLG-0406

    CERN Document Server

    Tsapras, Y; Street, R A; Han, C; Bozza, V; Gould, A; Dominik, M; Beaulieu, J -P; Udalski, A; Jørgensen, U G; Sumi, T; Bramich, D M; Browne, P; Horne, K; Hundertmark, M; Ipatov, S; Kains, N; Snodgrass, C; Steele, I A; Alsubai, K A; Andersen, J M; Novati, S Calchi; Damerdji, Y; Diehl, C; Elyiv, A; Giannini, E; Hardis, S; Harpsøe, K; Hinse, T C; Juncher, D; Kerins, E; Korhonen, H; Liebig, C; Mancini, L; Mathiasen, M; Penny, M T; Rabus, M; Rahvar, S; Scarpetta, G; Skottfelt, J; Southworth, J; Surdej, J; Tregloan-Reed, J; Vilela, C; Kozłowski, J Wambsganss S; Kubiak, M; Pietrukowicz, P; Pietrzyński, G; Poleski, R; Skowron, J; Soszyński, I; Szymański, M K; Ulaczyk, K; Albrow, Łukasz Wyrzykowski M D; Bachelet, E; Barry, R; Batista, V; Bhattacharya, A; Brillant, S; Caldwell, J A R; Cassan, A; Cole, A; Corrales, E; Coutures, Ch; Dieters, S; Prester, D Dominis; Donatowicz, J; Fouqué, P; Greenhill, J; Kane, S R; Kubas, D; Marquette, J -B; Martin, R; Menzies, J; Pollard, K R; Williams, A; Wouters, D; Christie, G; DePoy, D L; Dong, S; Drummond, J; Gaudi, B S; Henderson, C B; Hwang, K H; Jung, Y K; Kavka, A; Koo, J -R; Lee, C -U; Maoz, D; Monard, L A G; Natusch, T; Ngan, H; Park, H; Pogge, R W; Porritt, I; Shin, I -G; Shvartzvald, Y; Tan, T G; Yee, J C; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Koshimoto, N; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Sweatman, W L; Suzuki, D; Tristram, P J; Tsurumi, N; Wada, K; Yamai, N; Yonehara, P C M Yock A

    2013-01-01

    We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the lightcurve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a $2.73\\pm 0.43\\ M_{\\rm J}$ planet orbiting a $0.44\\pm 0.07\\ M_{\\odot}$ early M-type star. The distance to the lens is $4.97\\pm 0.29$\\ kpc and the projected separation between the host star and its planet at the time of the event is $3.45\\pm 0.26$ AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens.

  12. A super-jupiter orbiting a late-type star: A refined analysis of microlensing event OGLE-2012-BLG-0406

    Energy Technology Data Exchange (ETDEWEB)

    Tsapras, Y.; Street, R. A. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Choi, J.-Y.; Han, C. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Bozza, V. [Dipartimento di Fisica " E. R. Caianiello," Università di Salerno, Via Giovanni Paolo II n. 132, I-84084 Fisciano (Italy); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Dominik, M.; Browne, P.; Horne, K.; Hundertmark, M. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom); Beaulieu, J.-P. [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, 98bis boulevard Arago, F-75014 Paris (France); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Jørgensen, U. G. [Niels Bohr Institute, Astronomical Observatory, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Bramich, D. M.; Kains, N. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Ipatov, S.; Alsubai, K. A. [Qatar Foundation, P.O. Box 5825, Doha (Qatar); Snodgrass, C. [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau (Germany); Steele, I. A. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool CH41 1LD (United Kingdom); Collaboration: RoboNet Collaboration; MiNDSTEp Collaboration; OGLE Collaboration; PLANET Collaboration; μFUN Collaboration; MOA Collaboration; and others

    2014-02-10

    We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the light curve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a 2.73 ± 0.43 M {sub J} planet orbiting a 0.44 ± 0.07 M {sub ☉} early M-type star. The distance to the lens is 4.97 ± 0.29 kpc and the projected separation between the host star and its planet at the time of the event is 3.45 ± 0.26 AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens.

  13. EPIC 212803289: a subgiant hosting a transiting warm Jupiter in an eccentric orbit and a long-period companion

    CERN Document Server

    Smith, A M S; Barragán, O; Bowler, B; Csizmadia, Sz; Endl, M; Fridlund, M C V; Grziwa, S; Guenther, E; Hatzes, A P; Nowak, G; Albrecht, S; Alonso, R; Cabrera, J; Cochran, W D; Deeg, H J; Eigmüller, Ph; Erikson, A; Hidalgo, D; Hirano, T; Johnson, M C; Korth, J; Mann, A; Narita, N; Nespral, D; Palle, E; Pätzold, M; Prieto-Arranz, J; Rauer, H; Ribas, I; Tingley, B; Wolthoff, V

    2016-01-01

    We report the discovery from K2 of a transiting planet in an 18.25-d, eccentric (0.19$\\pm$ 0.04) orbit around EPIC 212803289, an 11th magnitude subgiant in Virgo. We confirm the planetary nature of the companion with radial velocities, and determine that the star is a metal-rich ([Fe/H] = 0.20$\\pm$0.05) subgiant, with mass $1.60^{+0.14}_{-0.10}~M_\\odot$ and radius $3.1\\pm 0.1~R_\\odot$. The planet has a mass of $0.97\\pm0.09~M_{\\rm Jup}$ and a radius $1.29\\pm0.05~R_{\\rm Jup}$. A measured systemic radial acceleration of $-2.12\\pm0.04~{\\rm m s^{-1} d^{-1}}$ offers compelling evidence for the existence of a third body in the system, perhaps a brown dwarf orbiting with a period of several hundred days.

  14. SMART-OLEV—An orbital life extension vehicle for servicing commercial spacecrafts in GEO

    Science.gov (United States)

    Kaiser, Clemens; Sjöberg, Fredrik; Delcura, Juan Manuel; Eilertsen, Baard

    2008-07-01

    Orbital Satellite Services Limited (OSSL) is a satellite servicing company that is developing an orbit life extension vehicle (OLEV) to extend the operational lifetime of geostationary satellites. The industrial consortium of SSC (Sweden), Kayser-Threde (Germany) and Sener (Spain) is in charge to develop and industrialize the space and ground segment. It is a fully commercial program with support of several space agencies during the development phase. The business plan is based on life extension for high value commercial satellites while also providing the satellite operators with various fleet management services such as graveyard burns, slot transfers and on orbit protection against replacement satellite or launch failures. The OLEV spacecraft will be able to dock with a geostationary satellite and uses an electrical propulsion system to extend its life by taking over the attitude control and station keeping functions. The OLEV system is building on the SMART-1 platform developed by Swedish Space Corporation. It was developed for ESA as a technology test-bed to demonstrate the use of electrical propulsion for interplanetary orbit transfer manoeuvres. The concept is called SMART-OLEV and takes advantage of the low cost, low mass SMART-1 platform by a maximum use of recurrent platform technology.

  15. Featured Image: Mapping Jupiter with Hubble

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    Zonal wind profile for Jupiter, describing the speed and direction of its winds at each latitude. [Simon et al. 2015]This global map of Jupiters surface (click for the full view!) was generated by the Hubble Outer Planet Atmospheres Legacy (OPAL) program, which aims to createnew yearly global maps for each of the outer planets. Presented in a study led by Amy Simon (NASA Goddard Space Flight Center), the map above is the first generated for Jupiter in the first year of the OPAL campaign. It provides a detailed look at Jupiters atmospheric structure including the Great Red Spot and allowed the authors to measure the speed and direction of the wind across Jupiters latitudes, constructing an updated zonal wind profile for Jupiter.In contrast to this study, the Juno mission (which will be captured into Jupiters orbit today after a 5-year journey to Jupiter!) will be focusing more on the features below Jupiters surface, studying its deep atmosphere and winds. Some of Junos primary goals are to learn about Jupiters composition, gravitational field, magnetic field, and polar magnetosphere. You can follow along with the NASATV livestream as Juno arrives at Jupiter tonight; orbit insertion coverage starts at 10:30 EDT.CitationAmy A. Simon et al 2015 ApJ 812 55. doi:10.1088/0004-637X/812/1/55

  16. HATS-11b AND HATS-12b: Two Transiting Hot Jupiters Orbiting Subsolar Metallicity Stars Selected for the K2 Campaign 7

    Science.gov (United States)

    Rabus, M.; Jordán, A.; Hartman, J. D.; Bakos, G. Á.; Espinoza, N.; Brahm, R.; Penev, K.; Ciceri, S.; Zhou, G.; Bayliss, D.; Mancini, L.; Bhatti, W.; de Val-Borro, M.; Csbury, Z.; Sato, B.; Tan, T.-G.; Henning, T.; Schmidt, B.; Bento, J.; Suc, V.; Noyes, R.; Lázár, J.; Papp, I.; Sári, P.

    2016-10-01

    We report the discovery of two transiting extrasolar planets from the HATSouth survey. HATS-11, a V = 14.1 G0-star shows a periodic 12.9 mmag dip in its light curve every 3.6192 days and a radial velocity variation consistent with a Keplerian orbit. HATS-11 has a mass of 1.000+/- 0.060 {M}⊙ , a radius of 1.444+/- 0.057 {R}⊙ and an effective temperature of 6060+/- 150 K, while its companion is a 0.85+/- 0.12 {M}{{J}}, 1.510+/- 0.078 {R}{{J}} planet in a circular orbit. HATS-12 shows a periodic 5.1 mmag flux decrease every 3.1428 days and Keplerian RV variations around a V = 12.8 F-star. HATS-12 has a mass of 1.489+/- 0.071 {M}⊙ , a radius of 2.21+/- 0.21 {R}⊙ , and an effective temperature of 6408+/- 75 K. For HATS-12b, our measurements indicate that this is a 2.38+/- 0.11 {M}{{J}}, 1.35+/- 0.17 {R}{{J}} planet in a circular orbit. Both host stars show subsolar metallicities of -0.390+/- 0.060 dex and -0.100+/- 0.040 dex, respectively, and are (slightly) evolved stars. In fact, HATS-11 is among the most metal-poor and, HATS-12, with a {log}{g}\\star of 3.923+/- 0.065, is among the most evolved stars hosting a hot-Jupiter planet. Importantly, HATS-11 and HATS-12 have been observed in long cadence by Kepler as part of K2 campaign 7 (EPIC216414930 and EPIC218131080 respectively). The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based in part on

  17. Neighboring optimum guidance of a Space-Shuttle-orbiter-type vehicle

    Science.gov (United States)

    Pesch, H. J.

    1980-10-01

    A new numerical method for the computation of optimal flight path corrections is used to study the guidance behavior of a Space-Shuttle-orbiter-type vehicle. This method is based on a modification of well-known neighboring optimum feedback control schemes and includes a specialization of the multiple shooting algorithm for the solution of two-point boundary value problems. With the Space Shuttle, atmospheric entry by lifting vehicles capable of considerable lateral range will become of practical interest. Increased range capacity will allow more frequent returns from orbit. After investigating the neighboring optimum guidance of the Shuttle, controllability regions are obtained, which characterize the range of the successfully correctable deviations. Enlargements and contractions of this multidimensional tube surrounding the reference trajectory correspond in some sense to the oscillatory behavior of the flight path typical for range optimal nonquasisteady glide. Guidance rules are established indicating the best times for the correction of realistic deviations of each flight coordinate to preserve optimality. The efficiency of the guidance method is demonstrated by studying the size of those deviations which can be compensated during the flight in a time interval small enough for real-time computations on modern onboard computers.

  18. Raven: An On-Orbit Relative Navigation Demonstration Using International Space Station Visiting Vehicles

    Science.gov (United States)

    Strube, Matthew; Henry, Ross; Skeleton, Eugene; Eepoel, John Van; Gill, Nat; McKenna, Reed

    2015-01-01

    Since the last Hubble Servicing Mission five years ago, the Satellite Servicing Capabilities Office (SSCO) at the NASA Goddard Space Flight Center (GSFC) has been focusing on maturing the technologies necessary to robotically service orbiting legacy assets-spacecraft not necessarily designed for in-flight service. Raven, SSCO's next orbital experiment to the International Space Station (ISS), is a real-time autonomous non-cooperative relative navigation system that will mature the estimation algorithms required for rendezvous and proximity operations for a satellite-servicing mission. Raven will fly as a hosted payload as part of the Space Test Program's STP-H5 mission, which will be mounted on an external ExPRESS Logistics Carrier (ELC) and will image the many visiting vehicles arriving and departing from the ISS as targets for observation. Raven will host multiple sensors: a visible camera with a variable field of view lens, a long-wave infrared camera, and a short-wave flash lidar. This sensor suite can be pointed via a two-axis gimbal to provide a wide field of regard to track the visiting vehicles as they make their approach. Various real-time vision processing algorithms will produce range, bearing, and six degree of freedom pose measurements that will be processed in a relative navigation filter to produce an optimal relative state estimate. In this overview paper, we will cover top-level requirements, experimental concept of operations, system design, and the status of Raven integration and test activities.

  19. Jupiter's Grand Attack

    Science.gov (United States)

    Batygin, Konstantin

    2017-06-01

    The statistics of extrasolar planetary systems indicate that the default mode of planetary formation generates planets with orbital periods shorter than 100 days, and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System, which contains no planets interior to Mercury's 88-day orbit, is unusual. Extra-solar planetary detection surveys also suggest that planets with masses and periods broadly similar to Jupiter's are somewhat uncommon, with occurrence fraction of less than ~ 10%. In this talk, I will present calculations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5AU to a ˜ 1.5 AU and then reverses direction, can explain the low overall mass of the Solar System's terrestrial planets, as well as the absence of planets with a 10 - 100 km planetesimals into low- order mean-motion resonances, shepherding of order 10 Earth masses of this material into the a ˜ 1 AU region while exciting substantial orbital eccentricity (e ˜ 0.2 - 0.4). We argue that under these conditions, a collisional cascade will ensue, generating a planetesimal disk that would have flushed any preexisting short-period super-Earth-like planets into the Sun. In this scenario, the Solar System's terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution.

  20. Transiting exoplanets from the CoRoT space mission IX. CoRoT-6b: a transiting `hot Jupiter' planet in an 8.9d orbit around a low-metallicity star

    CERN Document Server

    Fridlund, M; Alonso, R; Deleuil, M; Gandolfi, D; Gillon, M; Bruntt, H; Alapini, A; Csizmadia, Sz; Guillot, T; Lammer, H; Aigrain, S; Almenara, J M; Auvergne, M; Baglin, A; Barge, P; Borde, P; Bouchy, F; Cabrera, J; Carone, L; Carpano, S; Deeg, H J; De la Reza, R; Dvorak, R; Erikson, A; Ferraz-Mello, S; Guenther, E; Gondoin, P; Hartog, R den; Hatzes, A; Jorda, L; Leger, A; Llebaria, A; Magain, P; Mazeh, T; Moutou, C; Ollivier, M; Patzold, M; Queloz, D; Rauer, H; Rouan, D; Samuel, B; Schneider, J; Shporer, A; Stecklum, B; Tingley, B; Weingrill, J; Wuchterl, G

    2010-01-01

    The CoRoT satellite exoplanetary team announces its sixth transiting planet in this paper. We describe and discuss the satellite observations as well as the complementary ground-based observations - photometric and spectroscopic - carried out to assess the planetary nature of the object and determine its specific physical parameters. The discovery reported here is a `hot Jupiter' planet in an 8.9d orbit, 18 stellar radii, or 0.08 AU, away from its primary star, which is a solar-type star (F9V) with an estimated age of 3.0 Gyr. The planet mass is close to 3 times that of Jupiter. The star has a metallicity of 0.2 dex lower than the Sun, and a relatively high $^7$Li abundance. While thelightcurveindicatesamuchhigherlevelof activity than, e.g., the Sun, there is no sign of activity spectroscopically in e.g., the [Ca ] H&K lines.

  1. Sharpening Up Jupiter

    Science.gov (United States)

    2008-10-01

    New image-correction technique delivers sharpest whole-planet ground-based picture ever A record two-hour observation of Jupiter using a superior technique to remove atmospheric blur has produced the sharpest whole-planet picture ever taken from the ground. The series of 265 snapshots obtained with the Multi-Conjugate Adaptive Optics Demonstrator (MAD) prototype instrument mounted on ESO's Very Large Telescope (VLT) reveal changes in Jupiter's smog-like haze, probably in response to a planet-wide upheaval more than a year ago. Sharpening Up Jupiter ESO PR Photo 33/08 Sharpening Up Jupiter Being able to correct wide field images for atmospheric distortions has been the dream of scientists and engineers for decades. The new images of Jupiter prove the value of the advanced technology used by MAD, which uses two or more guide stars instead of one as references to remove the blur caused by atmospheric turbulence over a field of view thirty times larger than existing techniques [1]. "This type of adaptive optics has a big advantage for looking at large objects, such as planets, star clusters or nebulae," says lead researcher Franck Marchis, from UC Berkeley and the SETI Institute in Mountain View, California, USA. "While regular adaptive optics provides excellent correction in a small field of view, MAD provides good correction over a larger area of sky. And in fact, were it not for MAD, we would not have been able to perform these amazing observations." MAD allowed the researchers to observe Jupiter for almost two hours on 16 and 17 August 2008, a record duration, according to the observing team. Conventional adaptive optics systems using a single Jupiter moon as reference cannot monitor Jupiter for so long because the moon moves too far from the planet. The Hubble Space Telescope cannot observe Jupiter continuously for more than about 50 minutes, because its view is regularly blocked by the Earth during Hubble's 96-minute orbit. Using MAD, ESO astronomer Paola Amico

  2. Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles

    Science.gov (United States)

    Riedell, James A.; Easler, Timothy E.

    2013-01-01

    This adhesive is capable of repairing damaged leading edge components of reentry vehicles while in space, and is novel with regard to its ability to be applied in the vacuum of space, and in a microgravity environment. Once applied, the adhesive provides thermal and oxidation protection to the substrate (in this case, reinforced carbon/carbon composites, RCCs) during re-entry of a space vehicle. Although there may be many formulations for repair adhesives, at the time of this reporting, this is the first known adhesive capable of an on-orbit repair. The adhesive is an engineered ceramic material composed of a pre-ceramic polymer and refractory powders in the form of a paste or putty that can be applied to a scratched, cracked, or fractured composite surface, covering and protecting the damaged area. The adhesive is then "cured" with a heat cycle, thereby cross-linking the polymer into a hardened material and bonding it to the substrate. During the heat of reentry, the material is converted to a ceramic coating that provides thermal and oxidative stability to the repaired area, thus allowing the vehicle to pass safely from space into the upper atmosphere. Ceramic powders such as SiC, ZrB2 and Y2O3 are combined with allylhydridopolycarbosilane (AHPCS) resin, and are mixed to form a paste adhesive. The material is then applied to the damaged area by brush, spatula, trowel, or other means to fill cracks, gaps, and holes, or used to bond patches onto the damaged area. The material is then cured, in a vacuum, preferably at 250F (approximately equal to 121C) for two hours. The re-entry heating of the vehicle at temperatures in excess of 3,000F (approximately equal to 1,650C) then converts this material into a ceramic coating. This invention has demonstrated advantages in resistance to high temperatures, as was demonstrated in more than 100 arc-jet tests in representative environments at NASA. Extensive testing verified oxidation protection for the repaired substrate (RCC

  3. rosuvastatin (JUPITER)

    DEFF Research Database (Denmark)

    Nordestgaard, Børge; Ridker, Paul M; MacFadyen, Jean G;

    2009-01-01

    were calculated across a range of end points, timeframes, and subgroups using data from Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER), a randomized evaluation of rosuvastatin 20 mg versus placebo conducted among 17 802 apparently healthy men...... infarction, stroke, revascularization, or death, the 5-year NNT within JUPITER was 20 (95% CI, 14 to 34). All subgroups had 5-year NNT values for this end point below 50; as examples, 5-year NNT values were 17 for men and 31 for women, 21 for whites and 19 for nonwhites, 18 for those with body mass index 300...

  4. Electron-impact vibrational excitation rates in the flow field of aeroassisted orbital transfer vehicles

    Science.gov (United States)

    Lee, J.-H.

    1985-01-01

    This paper examines the vibrational excitation rate processes expected in the flow field of aeroassisted orbital transfer vehicles (AOTVs). An analysis of the multiple-quantum vibrational excitation processes by electron impact is made to predict the vibrational excitation cross sections, rate coefficients, and relaxation times which control vibrational temperature. The expression for the rate of electron-vibration energy transfer is derived by solving the system of master equations which account for the multiple-level transitions. The vibrational excitation coefficients, which are the prerequisite physical quantities in solving the obtained vibrational equation, are calculated based on the theoretically predicted cross sections. These cross sections are obtained from quantum mechanical calculations, based on the concept that vibrational excitation of molecules by electron impact occurs through formation of an intermediate negative ion state. Finally, the modified Landau-Teller-type rate equation, which is suitable for the numerical calculations for the AOTV flow fields, is suggested.

  5. Super-Eccentric Migrating Jupiters

    CERN Document Server

    Socrates, Aristotle; Dong, Subo; Tremaine, Scott

    2011-01-01

    An important class of formation theories for hot Jupiters involves the excitation of extreme orbital eccentricity (e=0.99 or even larger) followed by tidal dissipation at periastron passage that eventually circularizes the planetary orbit at a period less than 10 days. In a steady state, this mechanism requires the existence of a significant population of super-eccentric (e>0.9) migrating Jupiters with long orbital periods and periastron distances of only a few stellar radii. For these super-eccentric planets, the periastron is fixed due to conservation of orbital angular momentum and the energy dissipated per orbit is constant, implying that the rate of change in semi-major axis a is \\dot a \\propto a^0.5 and consequently the number distribution satisfies dN/dlog a\\propto a^0.5. If this formation process produces most hot Jupiters, Kepler should detect several super-eccentric migrating progenitors of hot Jupiters, allowing for a test of high-eccentricity migration scenarios.

  6. SUPER-ECCENTRIC MIGRATING JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Socrates, Aristotle; Katz, Boaz; Dong Subo; Tremaine, Scott [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2012-05-10

    An important class of formation theories for hot Jupiters involves the excitation of extreme orbital eccentricity (e = 0.99 or even larger) followed by tidal dissipation at periastron passage that eventually circularizes the planetary orbit at a period less than 10 days. In a steady state, this mechanism requires the existence of a significant population of super-eccentric (e > 0.9) migrating Jupiters with long orbital periods and periastron distances of only a few stellar radii. For these super-eccentric planets, the periastron is fixed due to conservation of orbital angular momentum and the energy dissipated per orbit is constant, implying that the rate of change in semi-major axis a is a-dot {proportional_to}a{sup 1/2} and consequently the number distribution satisfies dN/d log a{proportional_to}a{sup 1/2}. If this formation process produces most hot Jupiters, Kepler should detect several super-eccentric migrating progenitors of hot Jupiters, allowing for a test of high-eccentricity migration scenarios.

  7. Astronomers find distant planet like Jupiter

    CERN Multimedia

    2003-01-01

    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  8. Evaluation of reliability, availability, maintainability and safety requirements for manned space vehicles with extended on-orbit stay time

    Science.gov (United States)

    Carlier, S.; Coindoz, M.; Deneuville, L.; Garbellini, L.; Altavilla, A.

    1996-01-01

    The recent manned space transportation vehicles studies performed by ESA and European Industry, investigate the possibility of extended on-orbit stay time. From the RAMS (Reliability, Availability, Maintainability, Safety) point of view, these vehicles will have to meet, in addition to the multi-phase mission safety and reliability constraints, stringent on-orbit availability levels which will be among the most important design and operations drivers. The objective of the paper is to derive the lessons learnt from the Assured Crew Return Vehicle (ACRV) feasibility phase study, in terms of RAMS requirements specification. The paper briefly assesses the deterministic RAMS requirements derived from ESA and NASA applicable standards and focuses on the probabilistic requirements which were the subject of numerous interpretations. Different approaches are presented together with their impacts on the design (maintainability, testability, on-orbit replaceable units concept,…) and on the operations (check-out frequency, logistics,…). The main uncertainties are also assessed. In conclusion, recommendations are made for the specification of RAMS requirements for manned space vehicles with extended on-orbit stay time.

  9. Juno at Jupiter: Mission and Science

    Science.gov (United States)

    Bolton, Scott

    2016-07-01

    The Juno mission is the second mission in NASA's New Frontiers program. Launched in August 2011, Juno arrives at Jupiter in July 2016. Juno science goals include the study of Jupiter's origin, interior structure, deep atmosphere, aurora and magnetosphere. Jupiter's formation is fundamental to the evolution of our solar system and to the distribution of volatiles early in the solar system's history. Juno's measurements of the abundance of Oxygen and Nitrogen in Jupiter's atmosphere, and the detailed maps of Jupiter's gravity and magnetic field structure will constrain theories of early planetary development. Juno's orbit around Jupiter is a polar elliptical orbit with perijove approximately 5000 km above the visible cloud tops. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, electric and magnetic field radio and plasma wave experiment, ultraviolet imaging spectrograph, infrared imager and a visible camera. The Juno design enables the first detailed investigation of Jupiter's interior structure, and deep atmosphere as well as the first in depth exploration of Jupiter's polar magnetosphere. The Juno mission design, science goals, and measurements related to the atmosphere of Jupiter will be presented.

  10. Jupiter small satellite montage

    Science.gov (United States)

    2000-01-01

    A montage of images of the small inner moons of Jupiter from the camera onboard NASA's Galileo spacecraft shows the best views obtained of these moons during Galileo's 11th orbit around the giant planet in November 1997. At that point, Galileo was completing its first two years in Jupiter orbit--known as the Galileo 'prime mission'--and was about to embark on a successful two-year extension, called the Galileo Europa Mission. The top two images show the moon Thebe. Thebe rotates by approximately 50 degrees between the time these two images were taken, so that the same prominent impact crater is seen in both views; this crater, which has been given the provisional name Zethus, is near the point on Thebe that faces permanently away from Jupiter. The next two images show the moon Amalthea; they were taken with the Sun directly behind the observer, an alignment that emphasizes patterns of intrinsically bright or dark surface material. The third image from the top is a view of Amalthea's leading side, the side of the moon that 'leads' as Amalthea moves in its orbit around Jupiter. This image looks 'noisy' because it was obtained serendipitously during an observation of the Jovian satellite Io (Amalthea and Io shared the same camera frame but the image was exposed for bright Io rather than for the much darker Amalthea). The fourth image from the top emphasizes prominent 'spots' of relatively bright material that are located near the point on Amalthea that faces permanently away from Jupiter. The bottom image is a view of the tiny moon Metis. In all the images, north is approximately up, and the moons are shown in their correct relative sizes. The images are, from top to bottom: Thebe taken on November 7, 1997 at a range of 504,000 kilometers (about 313,000 miles); Thebe on November 7, 1997 at a range of 548,000 kilometers (about 340,000 miles); Amalthea on November 6, 1997 at a range of about 650,000 kilometers (about 404,000 miles); Amalthea on November 7, 1997 at a

  11. Dual-fuel propulsion - Why it works, possible engines, and results of vehicle studies. [on earth-to-orbit Space Shuttle flights

    Science.gov (United States)

    Martin, J. A.; Wilhite, A. W.

    1979-01-01

    The reasons why dual-fuel propulsion works are discussed. Various engine options are discussed, and vehicle mass and cost results are presented for earth-to-orbit vehicles. The results indicate that dual-fuel propulsion is attractive, particularly with the dual-expander engine. A unique orbit-transfer vehicle is described which uses dual-fuel propulsion. One Space Shuttle flight and one flight of a heavy-lift Shuttle derivative are used for each orbit-transfer vehicle flight, and the payload capability is quite attractive.

  12. Orbits

    CERN Document Server

    Xu, Guochang

    2008-01-01

    This is the first book of the satellite era which describes orbit theory with analytical solutions of the second order with respect to all possible disturbances. Based on such theory, the algorithms of orbits determination are completely revolutionized.

  13. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    Science.gov (United States)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i

  14. Overview of Juno Results at Jupiter

    Science.gov (United States)

    Bolton, Scott; Connerney, Jack; Levin, Steve

    2017-04-01

    Juno is the first mission to investigate Jupiter using a close polar orbit. The Juno science goals include the study of Jupiter interior composition and structure, deep atmosphere and its polar magnetosphere. All orbits have peri-jove at approximately 5000 km above Jupiter's visible cloud tops. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, plasma wave antennas, ultraviolet imaging spectrograph, infrared imager and spectrometer and a visible camera. The Juno mission design, an overview of the early science results from Juno, and a description of the collaborative Earth based campaign will be presented.

  15. Engineering a Solution to Jupiter Exploration

    Science.gov (United States)

    Clark, Karla; Magner, Thomas; Lisano, Michael; Pappalardo, Robert

    2010-01-01

    The Europa Jupiter System Mission (EJSM) would be an international mission with the overall theme of investigating the emergence of habitable worlds around gas giants. Its goals are to (1) explore Europa to investigate its habitability, (2) characterize Ganymede as a planetary object including its potential habitability and (3) explore the Jupiter system as an archetype for gas giants. NASA and ESA have concluded a detailed joint study of a mission to Europa, Ganymede, and the Jupiter system with conceptual orbiters developed by NASA and ESA. The baseline EJSM architecture consists of two primary elements operating simultaneously in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. EJSM would directly address themes concerning the origin and evolution of satellite systems and water-rich environments in icy satellites. The potential habitability of the ocean-bearing moons Europa and Ganymede would be investigated, by characterizing the geophysical, compositional, geological, and external processes that affect these icy worlds. EJSM would also investigate Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the formation and evolution of gas giant planets and their satellites would be better known. Most importantly, EJSM would shed new light on the potential for the emergence of life in the celestial neighborhood and beyond. The EJSM baseline architecture would provide opportunities for coordinated synergistic observations by JEO and JGO of the Jupiter and Ganymede magnetospheres, the volcanoes and torus of Io, the atmosphere of Jupiter, and comparative planetology of icy satellites. Each spacecraft would conduct both synergistic dual-spacecraft investigations and stand

  16. The Origin of Retrograde Hot Jupiters

    Science.gov (United States)

    Naoz, Smadar; Farr, W.; Lithwick, Y.; Rasio, F.; Teyssandier, J.

    2011-09-01

    The search for extra-solar planets has led to the surprising discovery of many Jupiter-like planets in very close proximity to their host star, the so-called ``hot Jupiters'' (HJ). Even more surprisingly, many of these HJs have orbits that are eccentric or highly inclined with respect to the equator of the star, and some (about 25%) even orbiting counter to the spin direction of the star. This poses a unique challenge to all planet formation models. We show that secular interactions between Jupiter-like planet and another perturber in the system can easily produce retrograde HJ orbits. We show that in the frame of work of secular hierarchical triple system (the so-called Kozai mechanism) the inner orbit's angular momentum component parallel to the total angular momentum (i.e., the z-component of the inner orbit angular momentum) need not be constant. In fact, it can even change sign, leading to a retrograde orbit. A brief excursion to very high eccentricity during the chaotic evolution of the inner orbit allows planet-star tidal interactions to rapidly circularize that orbit, decoupling the planets and forming a retrograde hot Jupiter. We estimate the relative frequencies of retrograde orbits and counter to the stellar spin orbits using Monte Carlo simulations, and find that the they are consistent with the observations. The high observed incidence of planets orbiting counter to the stellar spin direction may suggest that planet--planet secular interactions are an important part of their dynamical history.

  17. A PRELIMINARY JUPITER MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, W. B. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Militzer, B. [Department of Earth and Planetary Science, Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2016-03-20

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity.

  18. Transiting exoplanets from the CoRoT space mission . XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit

    DEFF Research Database (Denmark)

    Rouan, D.; Parviainen, H.; Moutou, C.

    2012-01-01

    We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 ± 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric sear...

  19. Transiting exoplanets from the CoRoT space mission . XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit

    DEFF Research Database (Denmark)

    Rouan, D.; Parviainen, H.; Moutou, C.

    2012-01-01

    We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 ± 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric sear...

  20. Micrometeoroid and Orbital Debris Threat Assessment: Mars Sample Return Earth Entry Vehicle

    Science.gov (United States)

    Christiansen, Eric L.; Hyde, James L.; Bjorkman, Michael D.; Hoffman, Kevin D.; Lear, Dana M.; Prior, Thomas G.

    2011-01-01

    This report provides results of a Micrometeoroid and Orbital Debris (MMOD) risk assessment of the Mars Sample Return Earth Entry Vehicle (MSR EEV). The assessment was performed using standard risk assessment methodology illustrated in Figure 1-1. Central to the process is the Bumper risk assessment code (Figure 1-2), which calculates the critical penetration risk based on geometry, shielding configurations and flight parameters. The assessment process begins by building a finite element model (FEM) of the spacecraft, which defines the size and shape of the spacecraft as well as the locations of the various shielding configurations. This model is built using the NX I-deas software package from Siemens PLM Software. The FEM is constructed using triangular and quadrilateral elements that define the outer shell of the spacecraft. Bumper-II uses the model file to determine the geometry of the spacecraft for the analysis. The next step of the process is to identify the ballistic limit characteristics for the various shield types. These ballistic limits define the critical size particle that will penetrate a shield at a given impact angle and impact velocity. When the finite element model is built, each individual element is assigned a property identifier (PID) to act as an index for its shielding properties. Using the ballistic limit equations (BLEs) built into the Bumper-II code, the shield characteristics are defined for each and every PID in the model. The final stage of the analysis is to determine the probability of no penetration (PNP) on the spacecraft. This is done using the micrometeoroid and orbital debris environment definitions that are built into the Bumper-II code. These engineering models take into account orbit inclination, altitude, attitude and analysis date in order to predict an impacting particle flux on the spacecraft. Using the geometry and shielding characteristics previously defined for the spacecraft and combining that information with the

  1. Kepler constraints on planets near hot Jupiters

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab; Ragozzine, Darin; /Harvard-Smithsonian Ctr. Astrophys.; Fabrycky, Daniel C.; /UC, Santa Cruz, Astron. Astrophys.; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Holman, Matthew J.; /Harvard-Smithsonian Ctr. Astrophys.; Rowe, Jason F.; /NASA, Ames; Welsh, William F.; /San Diego State U., Astron. Dept.; Borucki, William J.; /NASA, Ames; Boss, Alan P.; /Carnegie Inst., Wash., D.C., DTM; Ciardi, David R.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.

    2012-05-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  2. Kepler constraints on planets near hot Jupiters

    CERN Document Server

    Steffen, Jason H; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-01-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 days) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly 2/3 to 5 times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations or TTVs) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  3. Kepler constraints on planets near hot Jupiters.

    Science.gov (United States)

    Steffen, Jason H; Ragozzine, Darin; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-05-22

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 21 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  4. The Europa Jupiter System Mission

    Science.gov (United States)

    Hendrix, A. R.; Clark, K.; Erd, C.; Pappalardo, R.; Greeley, R. R.; Blanc, M.; Lebreton, J.; van Houten, T.

    2009-05-01

    Europa Jupiter System Mission (EJSM) will be an international mission that will achieve Decadal Survey and Cosmic Vision goals. NASA and ESA have concluded a joint study of a mission to Europa, Ganymede and the Jupiter system with orbiters developed by NASA and ESA; contributions by JAXA are also possible. The baseline EJSM architecture consists of two primary elements operating in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). The JEO mission has been selected by NASA as the next Flagship mission to the out solar system. JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. JEO and JGO would carry eleven and ten complementary instruments, respectively, to monitor dynamic phenomena (such as Io's volcanoes and Jupiter's atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. EJSM will fully addresses high priority science objectives identified by the National Research Council's (NRC's) Decadal Survey and ESA's Cosmic Vision for exploration of the outer solar system. The Decadal Survey recommended a Europa Orbiter as the highest priority outer planet flagship mission and also identified Ganymede as a highly desirable mission target. EJSM would uniquely address several of the central themes of ESA's Cosmic Vision Programme, through its in-depth exploration of the Jupiter system and its evolution from origin to habitability. EJSM will investigate the potential habitability of the active ocean-bearing moons Europa and Ganymede, detailing the geophysical, compositional, geological and external processes that affect these icy worlds. EJSM would also explore Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the

  5. Juno's first glimpse of Jupiter's complexity

    Science.gov (United States)

    Bolton, Scott; Levin, Steven; Bagenal, Fran

    2017-08-01

    Preliminary results from NASA's Juno mission are presented in this special issue of Geophysical Research Letters. The data were gathered by nine scientific instruments as the Juno spacecraft approached Jupiter on the dawn flank, was inserted into Jupiter orbit on 4 July 2016, and made the first polar passes close to the planet. The first results hint that Jupiter may not have a distinct core, indicate puzzling deep atmospheric convection, and reveal complex small-scale structure in the magnetic field and auroral processes that are distinctly different from those at Earth.

  6. Jupiter: Cosmic Jekyll and Hyde.

    Science.gov (United States)

    Grazier, Kevin R

    2016-01-01

    It has been widely reported that Jupiter has a profound role in shielding the terrestrial planets from comet impacts in the Solar System, and that a jovian planet is a requirement for the evolution of life on Earth. To evaluate whether jovians, in fact, shield habitable planets from impacts (a phenomenon often referred to as the "Jupiter as shield" concept), this study simulated the evolution of 10,000 particles in each of the jovian inter-planet gaps for the cases of full-mass and embryo planets for up to 100 My. The results of these simulations predict a number of phenomena that not only discount the "Jupiter as shield" concept, they also predict that in a Solar System like ours, large gas giants like Saturn and Jupiter had a different, and potentially even more important, role in the evolution of life on our planet by delivering the volatile-laden material required for the formation of life. The simulations illustrate that, although all particles occupied "non-life threatening" orbits at their onset of the simulations, a significant fraction of the 30,000 particles evolved into Earth-crossing orbits. A comparison of multiple runs with different planetary configurations revealed that Jupiter was responsible for the vast majority of the encounters that "kicked" outer planet material into the terrestrial planet region, and that Saturn assisted in the process far more than has previously been acknowledged. Jupiter also tends to "fix" the aphelion of planetesimals at its orbit irrespective of their initial starting zones, which has the effect of slowing their passages through the inner Solar System, and thus potentially improving the odds of accretion of cometary material by terrestrial planets. As expected, the simulations indicate that the full-mass planets perturb many objects into the deep outer Solar System, or eject them entirely; however, planetary embryos also did this with surprising efficiency. Finally, the simulations predict that Jupiter's capacity to

  7. Io in Front of Jupiter

    Science.gov (United States)

    2000-01-01

    Jupiter's four largest satellites, including Io, the golden ornament in front of Jupiter in this image from NASA's Cassini spacecraft, have fascinated Earthlings ever since Galileo Galilei discovered them in 1610 in one of his first astronomical uses of the telescope.Images from Cassini that will be released over the next several days capture each of the four Galilean satellites in their orbits around the giant planet.This true-color composite frame, made from narrow angle images taken on Dec. 12, 2000, captures Io and its shadow in transit against the disk of Jupiter. The distance of the spacecraft from Jupiter was 19.5 million kilometers (12.1 million miles). The image scale is 117 kilometers (73 miles) per pixel.The entire body of Io, about the size of Earth's Moon, is periodically flexed as it speeds around Jupiter and feels, as a result of its non-circular orbit, the periodically changing gravitational pull of the planet. The heat arising in Io's interior from this continual flexure makes it the most volcanically active body in the solar system, with more than 100 active volcanoes. The white and reddish colors on its surface are due to the presence of different sulfurous materials. The black areas are silicate rocks.Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  8. Computer program determines thermal environment and temperature history of lunar orbiting space vehicles

    Science.gov (United States)

    Head, D. E.; Mitchell, K. L.

    1967-01-01

    Program computes the thermal environment of a spacecraft in a lunar orbit. The quantities determined include the incident flux /solar and lunar emitted radiation/, total radiation absorbed by a surface, and the resulting surface temperature as a function of time and orbital position.

  9. Warm Jupiters from Secular Planet–Planet Interactions

    Science.gov (United States)

    Petrovich, Cristobal; Tremaine, Scott

    2016-10-01

    Most warm Jupiters (gas-giant planets with 0.1 {{au}}≲ a≲ 1 au) have pericenter distances that are too large for significant orbital migration by tidal friction. We study the possibility that the warm Jupiters are undergoing secular eccentricity oscillations excited by an outer companion (a planet or star) in an eccentric and/or mutually inclined orbit. In this model, the warm Jupiters migrate periodically, in the high-eccentricity phase of the oscillation, but are typically observed at lower eccentricities. We show that in this model the steady-state eccentricity distribution of the warm Jupiters is approximately flat, which is consistent with the observed distribution if we restrict the sample to warm Jupiters with detected outer planetary companions. The eccentricity distribution of warm Jupiters without companions exhibits a peak at e≲ 0.2 that must be explained by a different formation mechanism. Based on a population synthesis study, we find that high-eccentricity migration excited by an outer planetary companion (1) can account for ∼ 20 % of the warm Jupiters and most of the warm Jupiters with e≳ 0.4; and (2) can produce most of the observed population of hot Jupiters, with a semimajor axis distribution that matches the observations, but fails to account adequately for ∼ 60 % of hot Jupiters with projected obliquities ≲ 20^\\circ . Thus ∼ 20 % of the warm Jupiters and ∼ 60 % of the hot Jupiters can be produced by high-eccentricity migration. We also provide predictions for the expected mutual inclinations and spin-orbit angles of the planetary systems with hot and warm Jupiters produced by high-eccentricity migration.

  10. Improving of technical characteristics of launch vehicles with liquid rocket engines using active onboard de-orbiting systems

    Science.gov (United States)

    Trushlyakov, V.; Shatrov, Ya.

    2017-09-01

    In this paper, the analysis of technical requirements (TR) for the development of modern space launch vehicles (LV) with main liquid rocket engines (LRE) is fulfilled in relation to the anthropogenic impact decreasing. Factual technical characteristics on the example of a promising type of rocket ;Soyuz-2.1.v.; are analyzed. Meeting the TR in relation to anthropogenic impact decrease based on the conventional design approach and the content of the onboard system does not prove to be efficient and leads to depreciation of the initial technical characteristics obtained at the first design stage if these requirements are not included. In this concern, it is shown that the implementation of additional active onboard de-orbiting system (AODS) of worked-off stages (WS) into the onboard LV stages systems allows to meet the TR related to the LV environmental characteristics, including fire-explosion safety. In some cases, the orbital payload mass increases.

  11. The issue of ensuring the safe explosion of the spent orbital stages of a launch vehicle with propulsion rocket engine

    Directory of Open Access Journals (Sweden)

    Trushlyakov Valeriy I.

    2017-01-01

    Full Text Available A method for increasing the safe explosion of the spent orbital stages of a space launch vehicle (SLV with a propulsion rocket engine (PRE based on the gasification of unusable residues propellant and venting fuel tanks. For gasification and ventilation the hot gases used produced by combustion of the specially selected gas generating composition (GGC with a set of physical and chemical properties. Excluding the freezing of the drainage system on reset gasified products (residues propellant+pressurization gas+hot gases in the near-Earth space is achieved by selecting the physical-chemical characteristics of the GGC. Proposed steps to ensure rotation of gasified products due to dumping through the drainage system to ensure the most favorable conditions for propellant gasification residues. For example, a tank with liquid oxygen stays with the orbital spent second stage of the SLV “Zenit”, which shows the effectiveness of the proposed method.

  12. The meteorology of Jupiter

    Science.gov (United States)

    Ingersoll, A. P.

    1976-01-01

    From the point of view of meteorology the most important differences between Jupiter and the earth are related to the fact that Jupiter has an appreciable internal energy source and probably lacks a solid surface. The composition and vertical structure of the Jovian atmosphere is considered along with the composition of Jovian cloud particles, turbulence in Jupiter's atmosphere, data on the horizontal structure and motions of the atmosphere, and questions related to the longevity of Jupiter's clouds. Attention is given to the barotropic characteristics of Jupiter's atmosphere, the radiation balance in the atmosphere of the earth and of Jupiter, and studies of the Great Red Spot.

  13. NOFBX Single-Stage-to-Orbit Mars Ascent Vehicle Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the continuation of our research and development of a Nitrous Oxide Fuel Blend (NOFBXTM) Single-Stage-to-Orbit (SSTO) monopropellant propulsion system for...

  14. Transiting exoplanets from the CoRoT space mission XIV. CoRoT-11b: a transiting massive "hot-Jupiter" in a prograde orbit around a rapidly rotating F-type star

    CERN Document Server

    Gandolfi, D; Alonso, R; Deleuil, M; Guenther, E W; Fridlund, M; Endl, M; Eigmüller, P; Csizmadia, Sz; Havel, M; Aigrain, S; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Bordé, P; Bouchy, F; Bruntt, H; Cabrera, J; Carpano, S; Carone, L; Cochran, W D; Deeg, H J; Dvorak, R; Eislöffel, J; Erikson, A; Ferraz-Mello, S; Gazzano, J -C; Gibson, N P; Gillon, M; Gondoin, P; Guillot, T; Hartmann, M; Hatzes, A; Jorda, L; Kabath, P; Léger, A; Llebaria, A; Lammer, H; MacQueen, P J; Mayor, M; Mazeh, T; Moutou, C; Ollivier, M; Pätzold, M; Pepe, F; Queloz, D; Rauer, H; Rouan, D; Samuel, B; Schneider, J; Stecklum, B; Tingley, B; Udry, S; Wuchterl, G; 10.1051/0004-6361/201015132

    2010-01-01

    The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V=12.9 mag F6 dwarf star (M*=1.27 +/- 0.05 Msun, R*=1.37 +/- 0.03 Rsun, Teff=6440 +/- 120 K), with an orbital period of P=2.994329 +/- 0.000011 days and semi-major axis a=0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (vsini=40+/-5 km/s) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of mp=2.33+/-0.34 Mjup and radius rp=1.43+/-0.03 Rjup, the resulting mean density of CoRoT-11b (rho=0.99+/-0.15 g/cm^3) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.

  15. A study of flight control requirements for advanced, winged, earth-to-orbit vehicles with far-aft center-of-gravity locations

    Science.gov (United States)

    Hepler, A. K.; Zeck, H.; Walker, W. H.; Polack, A.

    1982-01-01

    Control requirements of Controlled Configured Design Approach vehicles with far-aft center of gravity locations are studied. The baseline system investigated is a fully reusable vertical takeoff/horizontal landing single stage-to-orbit vehicle with mission requirements similar to that of the space shuttle vehicle. Evaluations were made to determine dynamic stability boundaries, time responses, trim control, operational center-of-gravity limits, and flight control subsystem design requirements. Study tasks included a baseline vehicle analysis, an aft center of gravity study, a payload size study, and a technology assessment.

  16. The Pan-Pacific Planet Search. IV. Two super-Jupiters in a 3:5 resonance orbiting the giant star HD33844

    CERN Document Server

    Wittenmyer, Robert A; Butler, R P; Horner, Jonathan; Wang, Liang; Robertson, Paul; Jones, M I; Jenkins, J S; Brahm, R; Tinney, C G; Mengel, M W; Clark, J

    2015-01-01

    We report the discovery of two giant planets orbiting the K giant HD 33844 based on radial velocity data from three independent campaigns. The planets move on nearly circular orbits with semimajor axes $a_b=1.60\\pm$0.02 AU and $a_c=2.24\\pm$0.05 AU, and have minimum masses (m sin $i$) of $M_b=1.96\\pm$0.12 Mjup and $M_c=1.76\\pm$0.18 Mjup. Detailed N-body dynamical simulations show that the two planets remain on stable orbits for more than $10^6$ years for low eccentricities, and are most likely trapped in a mutual 3:5 mean-motion resonance.

  17. A Low-Cost Launch Assistance System for Orbital Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Oleg Nizhnik

    2012-01-01

    Full Text Available The author reviews the state of art of nonrocket launch assistance systems (LASs for spaceflight focusing on air launch options. The author proposes an alternative technologically feasible LAS based on a combination of approaches: air launch, high-altitude balloon, and tethered LAS. Proposed LAS can be implemented with the existing off-the-shelf hardware delivering 7 kg to low-earth orbit for the 5200 USD per kg. Proposed design can deliver larger reduction in price and larger orbital payloads with the future advances in the aerostats, ropes, electrical motors, and terrestrial power networks.

  18. Capture of Trojans by Jumping Jupiter

    CERN Document Server

    Nesvorny, David; Morbidelli, Alessandro

    2013-01-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ~5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the ...

  19. Capture of Irregular Satellites at Jupiter

    CERN Document Server

    Nesvorny, D; Deienno, R

    2014-01-01

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early Solar System instability when encounters between the outer planets occurred (Nesvorny, Vokrouhlicky & Morbidelli 2007, AJ 133; hereafter NVM07). NVM07 already showed that the irregular satellites of Saturn, Uranus and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary d...

  20. K2-99: a subgiant hosting a transiting warm Jupiter in an eccentric orbit and a long-period companion

    Science.gov (United States)

    Smith, A. M. S.; Gandolfi, D.; Barragán, O.; Bowler, B.; Csizmadia, Sz.; Endl, M.; Fridlund, M. C. V.; Grziwa, S.; Guenther, E.; Hatzes, A. P.; Nowak, G.; Albrecht, S.; Alonso, R.; Cabrera, J.; Cochran, W. D.; Deeg, H. J.; Cusano, F.; Eigmüller, Ph.; Erikson, A.; Hidalgo, D.; Hirano, T.; Johnson, M. C.; Korth, J.; Mann, A.; Narita, N.; Nespral, D.; Palle, E.; Pätzold, M.; Prieto-Arranz, J.; Rauer, H.; Ribas, I.; Tingley, B.; Wolthoff, V.

    2017-01-01

    We report the discovery from K2 of a transiting planet in an 18.25-d, eccentric (0.19 ± 0.04) orbit around K2-99, an 11th magnitude subgiant in Virgo. We confirm the planetary nature of the companion with radial velocities, and determine that the star is a metal-rich ([Fe/H] = 0.20 ± 0.05) subgiant, with mass 1.60^{+0.14}_{-0.10} M⊙ and radius 3.1 ± 0.1 R⊙. The planet has a mass of 0.97 ± 0.09 MJup and a radius 1.29 ± 0.05 RJup. A measured systemic radial acceleration of -2.12 ± 0.04 ms-1 d-1 offers compelling evidence for the existence of a third body in the system, perhaps a brown dwarf orbiting with a period of several hundred days.

  1. ELODIE metallicity-biased search for transiting Hot Jupiters. IV. Intermediate period planets orbiting the stars HD 43691 and HD 132406

    Science.gov (United States)

    da Silva, R.; Udry, S.; Bouchy, F.; Moutou, C.; Mayor, M.; Beuzit, J.-L.; Bonfils, X.; Delfosse, X.; Desort, M.; Forveille, T.; Galland, F.; Hébrard, G.; Lagrange, A.-M.; Loeillet, B.; Lovis, C.; Pepe, F.; Perrier, C.; Pont, F.; Queloz, D.; Santos, N. C.; Ségransan, D.; Sivan, J.-P.; Vidal-Madjar, A.; Zucker, S.

    2007-10-01

    We report here the discovery of two planet candidates as a result of our planet-search programme biased in favour of high-metallicity stars, using the ELODIE spectrograph at the Observatoire de Haute Provence. One candidate has a minimum mass m_2 sin i = 2.5 M_Jup and is orbiting the metal-rich star HD 43691 with period P = 40 days and eccentricity e=0.14. The other planet has a minimum mass m_2 sin{i} = 5.6 M_Jup and orbits the slightly metal-rich star HD 132406 with period P=974 days and eccentricity e = 0.34. Additional observations for both stars were performed using the new SOPHIE spectrograph that replaces the ELODIE instrument, allowing an improved orbital solution for the systems. Based on radial velocities collected with the ELODIE spectrograph mounted on the 193-cm telescope at the Observatoire de Haute Provence, France. Additional observations were made using the new SOPHIE spectrograph (run 06B.PNP.CONS) that replaces ELODIE.

  2. HATS-11b and HATS-12b: Two transiting Hot Jupiters orbiting sub-solar metallicity stars selected for the K2 Campaign 7

    CERN Document Server

    Rabus, M; Hartman, J D; Bakos, G Á; Espinoza, N; Brahm, R; Penev, K; Ciceri, S; Zhou, G; Bayliss, D; Mancini, L; Bhatti, W; de Val-Borro, M; Csbury, Z; Sato, B; Tan, T -G; Henning, T; Schmidt, B; Bento, J; Suc, V; Noyes, R; Lázár, J; Papp, I; Sári, P

    2016-01-01

    We report the discovery of two transiting extrasolar planets from the HATSouth survey. HATS-11, a V=14.1 G0-star shows a periodic 12.9 mmag dip in its light curve every 3.6192 days and a radial velocity variation consistent with a Keplerian orbit. HATS-11 has a mass of 1.000 $\\pm$ 0.060 M$_{\\odot}$, a radius of 1.444 $\\pm$ 0.057 M$_{\\odot}$ and an effective temperature of 6060 $\\pm$ 150 K, while its companion is a 0.85 $\\pm$ 0.12 M$_J$, 1.510 $\\pm$ 0.078 R$_J$ planet in a circular orbit. HATS-12 shows a periodic 5.1 mmag flux decrease every 3.1428 days and Keplerian RV variations around a V=12.8 F-star. HATS-12 has a mass of 1.489 $\\pm$ 0.071 M$_{\\odot}$, a radius of 2.21 $\\pm$ 0.21 R$_{\\odot}$, and an effective temperature of 6408 $\\pm$ 75 K. For HATS-12, our measurements indicate that this is a 2.38 $\\pm$ 0.11 M$_J$, 1.35 $\\pm$ 0.17 R$_J$ planet in a circular orbit. Both host stars show sub-solar metallicity of -0.390 $\\pm$ 0.060 dex and -0.100 $\\pm$ 0.040 dex, respectively and are (slightly) evolved stars....

  3. A nonlinear programming approach for optimizing two-stage lifting vehicle ascent to orbit

    Science.gov (United States)

    Kamm, J. L.; Johnson, I. L.

    1973-01-01

    An optimal atmospheric flight branched trajectory-shaping capability is presented based on the Davidon-Fletcher-Powell variable metric parameter optimization technique. Gradient information is generated using finite difference methods. A typical atmospheric flight branched optimization problem is analyzed which requires the determination of 31 parameters. This parameter set includes the three-dimensional description of vehicle attitude control angles for three branches of flight: first-stage ascent, second-stage ascent, and first-stage flyback. The important inflight inequality contraints required to maintain the integrity of the vehicles are considered. Some of the numerical methods employed are discussed, along with several new auxiliary techniques developed to improve the compatibility of the numerical gradient and iterator.

  4. General Purpose Satellites: a concept for affordable low earth orbit vehicles

    OpenAIRE

    Boyd, Austin W.; Fuhs, Allen E.

    1997-01-01

    A general purpose satellite has been designed which will be launched from the Space Shuttle using a NASA Get-Away-Special (GAS) canister. The design is based upon the use of a new extended GAS canister and a low profile launch mechanism. The satellite is cylindrical. measuring 19 inches in diameter and 35 inches long. The maximum vehicle weight is 250 pounds, of which 50 pounds is dedicated to user payloads. The remaining 200 pounds encompasses the satellite structure and support ...

  5. Rapid near-optimal trajectory generation and guidance law development for single-stage-to-orbit airbreathing vehicles

    Science.gov (United States)

    Calise, A. J.; Flandro, G. A.; Corban, J. E.

    1990-01-01

    General problems associated with on-board trajectory optimization, propulsion system cycle selection, and with the synthesis of guidance laws were addressed for an ascent to low-earth-orbit of an air-breathing single-stage-to-orbit vehicle. The NASA Generic Hypersonic Aerodynamic Model Example and the Langley Accelerator aerodynamic sets were acquired and implemented. Work related to the development of purely analytic aerodynamic models was also performed at a low level. A generic model of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and rocket engine cycles. Provisions were made in the dynamic model for a component of thrust normal to the flight path. Computational results, which characterize the nonlinear sensitivity of scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the engine model. Additional trajectory constraints were introduced: maximum dynamic pressure; maximum aerodynamic heating rate per unit area; angle of attack and lift limits; and limits on acceleration both along and normal to the flight path. The remainder of the effort focused on required modifications to a previously derived algorithm when the model complexity cited above was added. In particular, analytic switching conditions were derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another for two cases: the case in which engine cycle operations can overlap, and the case in which engine cycle operations are mutually exclusive. The resulting guidance algorithm was implemented in software and exercised extensively. It was found that the approximations associated with the assumed time scale separation employed in this work are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for ascent to orbit. By accounting for flight path

  6. Analytical Equations for Orbital Transfer Maneuvers of a Vehicle Using Constant Low Thrust

    Science.gov (United States)

    1981-12-01

    136auks" ,b , .. .. a. AFIT/GA/AA/81D -3 ANALITICAL EQUATIOIS FOR OR.BITAL TRASFER MANIUVRS OF A V 1CI, USING CONSTANT LOW THRUST THESIS AFIT/GA/AA...conventional chemical propulsion system- (Ref 1). Changing the velocity of a satellite such as described above can be used to boost a satellite into...taneously. This is a valid assumption for high thrust chemical propulsion, but not for low thrust electric propulsion. Therefore, a set of equations

  7. Investigation of Advanced Propellants to Enable Single Stage to Orbit Launch Vehicles

    Science.gov (United States)

    2006-10-30

    Jeigh Shelley Department of Mechanical Engineering Raymond Moszée Air Force Research Laboratory ABSTRACT INVESTIGATION OF ADVANCED...Engineering Raymond Moszée Air Force Research Laboratory For the University Graduate Committee: Dean, Division of Graduate Studies...September 2005. 33. Bayer , M.J., “Comparative Assessment of Rocket-Propelled Single-Stage-to- Orbit Concepts,” Journal of Spacecraft and Rockets, Vol. 40

  8. Towards Chemical Constraints on Hot Jupiter Migration

    CERN Document Server

    Madhusudhan, Nikku; Kennedy, Grant M

    2014-01-01

    The origin of hot Jupiters -- gas giant exoplanets orbiting very close to their host stars -- is a long-standing puzzle. Planet formation theories suggest that such planets are unlikely to have formed in-situ but instead may have formed at large orbital separations beyond the snow line and migrated inward to their present orbits. Two competing hypotheses suggest that the planets migrated either through interaction with the protoplanetary disk during their formation, or by disk-free mechanisms such as gravitational interactions with a third body. Observations of eccentricities and spin-orbit misalignments of hot Jupiter systems have been unable to differentiate between the two hypotheses. In the present work, we suggest that chemical depletions in hot Jupiter atmospheres might be able to constrain their migration mechanisms. We find that sub-solar carbon and oxygen abundances in Jovian-mass hot Jupiters around Sun-like stars are hard to explain by disk migration. Instead, such abundances are more readily expla...

  9. Rocket nozzle expansion ratio analysis for dual-fuel earth-to-orbit vehicles

    Science.gov (United States)

    Martin, James A.

    1989-01-01

    Results are reported from a recent study of the effects of Space Shuttle Main Engine expansion ratio modifications, in the cases of both single-stage and two-stage systems. Two-position nozzles were employed; after varying the lower expansion ratio while the higher was held constant at 120, the lower expansion ratio was held constant at 40 or 60 while the higher expansion ratio was varied. The expansion ratios for minimum vehicle dry mass are different for single-stage and two-stage systems. For two-stage systems, a single expansion ratio of 77.5 provides a lower dry mass than any two-position nozzle.

  10. Rocket nozzle expansion ratio analysis for dual-fuel earth-to-orbit vehicles

    Science.gov (United States)

    Martin, James A.

    1989-01-01

    Results are reported from a recent study of the effects of Space Shuttle Main Engine expansion ratio modifications, in the cases of both single-stage and two-stage systems. Two-position nozzles were employed; after varying the lower expansion ratio while the higher was held constant at 120, the lower expansion ratio was held constant at 40 or 60 while the higher expansion ratio was varied. The expansion ratios for minimum vehicle dry mass are different for single-stage and two-stage systems. For two-stage systems, a single expansion ratio of 77.5 provides a lower dry mass than any two-position nozzle.

  11. High Latitude Mottling on Jupiter

    Science.gov (United States)

    2000-01-01

    The familiar banded appearance of Jupiter at low and middle latitudes gradually gives way to a more mottled appearance at high latitudes in this striking true color image taken Dec. 13, 2000, by NASA's Cassini spacecraft.The intricate structures seen in the polar region are clouds of different chemical composition, height and thickness. Clouds are organized by winds, and the mottled appearance in the polar regions suggests more vortex-type motion and winds of less vigor at higher latitudes.The cause of this difference is not understood. One possible contributor is that the horizontal component of the Coriolis force, which arises from the planet's rotation and is responsible for curving the trajectories of ocean currents and winds on Earth, has its greatest effect at high latitudes and vanishes at the equator. This tends to create small, intense vortices at high latitudes on Jupiter. Another possibility may lie in that fact that Jupiter overall emits nearly as much of its own heat as it absorbs from the Sun, and this internal heat flux is very likely greater at the poles. This condition could lead to enhanced convection at the poles and more vortex-type structures. Further analysis of Cassini images, including analysis of sequences taken over a span of time, should help us understand the cause of equator-to-pole differences in cloud organization and evolution.By the time this picture was taken, Cassini had reached close enough to Jupiter to allow the spacecraft to return images with more detail than what's possible with the planetary camera on NASA's Earth-orbiting Hubble Space Telescope. The resolution here is 114 kilometers (71 miles) per pixel. This contrast-enhanced, edge-sharpened frame was composited from images take at different wavelengths with Cassini's narrow-angle camera, from a distance of 19 million kilometers (11.8 million miles). The spacecraft was in almost a direct line between the Sun and Jupiter, so the solar illumination on Jupiter is almost full

  12. Plans and Combined Operations of the Flight Elements of the Europa Jupiter System Mission (EJSM)

    Science.gov (United States)

    Erd, Christian; Clark, K.; Ejsm System Teams

    2010-05-01

    The Europa Jupiter System Mission (EJSM) is a joint NASA-ESA mission candidate, where ESA would provide the Jupiter Ganymede Orbiter (JGO) and NASA would provide the Jupiter Europa Orbiter (JEO). Both spacecraft are foreseen to be launched in 2020, allowing for a joint exploration of the Jovian system, and the Galilean moons. The planning of the development, implementation and combined science phase will be described in the poster.

  13. Influence of the Atmospheric Refraction on the Time Delay of Signals from Global Navigation Systems for Independent Navigation of High-Orbit Space Vehicles

    Science.gov (United States)

    Sharygin, G. S.; Meshcheryakov, A. A.; Korolev, D. O.

    2016-11-01

    Excess delay time of signals from global navigation systems used for coordinate-time support of high-orbit space vehicles caused by the refraction during sliding radio-wave propagation in the Earth's atmosphere is estimated. Conclusions obtained are compared with the data of experimental analysis of observable GPS signals.

  14. Longitudinal control effectiveness and entry dynamics of a single-stage-to-orbit vehicle

    Science.gov (United States)

    Vinh, N. X.; Lin, C. F.

    1982-01-01

    The classical theory of flight dynamics for airplane longitudinal stability and control analysis was extended to the case of a hypervelocity reentry vehicle. This includes the elements inherent in supersonic and hypersonic flight such as the influence of the Mach number on aerodynamic characteristics, and the effect of the reaction control system and aerodynamic controls on the trim condition through a wide range of speed. Phugoid motion and angle of attack oscillation for typical cases of cruising flight, ballistic entry, and glide entry are investigated. In each case, closed form solutions for the variations in altitude, flight path angle, speed and angle of attack are obtained. The solutions explicitly display the influence of different regions design parameters and trajectory variables on the stability of the motion.

  15. Jupiter System Observer

    Science.gov (United States)

    Senske, Dave; Kwok, Johnny

    2008-01-01

    This slide presentation reviews the proposed mission for the Jupiter System Observer. The presentation also includes overviews of the mission timeline, science goals, and spacecraftspecifications for the satellite.

  16. Jupiter Icy Moons Explorer (JUICE): Science Objectives, Mission and Instruments (abstract)

    NARCIS (Netherlands)

    Gurvits, L.; Plaut, J.J.; Barabash, S.; Bruzzone, L.; Dougherty, M.; Erd, C.; Fletcher, L.; Gladstone, R.; Grasset, O.; Hartogh, P.; Hussmann, H.; Iess, L.; Jaumann, R.; Langevin, Y.; Palumbo, P.; Piccioni, G...; Titov, D.; Wahlund, J.E.

    2014-01-01

    The JUpiter ICy Moons Explorer (JUICE) is a European Space Agency mission that will fly by and observe the Galilean satellites Europa, Ganymede and Callisto, characterize the Jovian system in a lengthy Jupiter-orbit phase, and ultimately orbit Ganymede for in-depth studies of habitability, evolution

  17. Warm Jupiters Are Less Lonely than Hot Jupiters: Close Neighbors

    Science.gov (United States)

    Huang, Chelsea; Wu, Yanqin; Triaud, Amaury H. M. J.

    2016-07-01

    Exploiting the Kepler transit data, we uncover a dramatic distinction in the prevalence of sub-Jovian companions between systems that contain hot Jupiters (HJs) (periods inward of 10 days) and those that host warm Jupiters (WJs) (periods between 10 and 200 days). HJs, with the singular exception of WASP-47b, do not have any detectable inner or outer planetary companions (with periods inward of 50 days and sizes down to 2 R Earth). Restricting ourselves to inner companions, our limits reach down to 1 R Earth. In stark contrast, half of the WJs are closely flanked by small companions. Statistically, the companion fractions for hot and WJs are mutually exclusive, particularly in regard to inner companions. The high companion fraction of WJs also yields clues to their formation. The WJs that have close-by siblings should have low orbital eccentricities and low mutual inclinations. The orbital configurations of these systems are reminiscent of those of the low-mass close-in planetary systems abundantly discovered by the Kepler mission. This, and other arguments, lead us to propose that these WJs are formed in situ. There are indications that there may be a second population of WJs with different characteristics. In this picture, WASP-47b could be regarded as the extending tail of the in situ WJs into the HJ region and does not represent the generic formation route for HJs.

  18. The Capture of Jupiter Trojans

    Science.gov (United States)

    Morbidelli, A.; Nesvorny, D.; Vokrouhlicky, D.

    2013-09-01

    The origin of Jupiter Trojans remained mysterious for decades. Particularly, it was difficult to explain the excitation of the inclinations of the Trojan population [1]. In 2005, Morbidelli et al. [2] proposed a scenario of capture from the trans-Neptunian disk, in the framework of the so-called "Nice model" [3,4]. This scenario explained in a natural way the observed orbital distribution of Trojans. The Nice model, however, evolved in the years, in order to satisfy an increasingly large number of constraints. It now appears that the dynamical evolution of the giant planets was different from that envisioned in [2]. Here, we assess again the process of capture of Trojans within this new evolution. We show that (6-8)×10 - 7 of the original trans-Neptunian planetesimals are captured in the Trojan region, with an orbital distribution consistent with the one observed. Relative to [2], the new capture mechanism has the potential of explaining the asymmetry between the L4 and L5 populations. Moreover, the resulting population of Trojans is consistent with that of the Irregular Satellites of Jupiter, which are captured in the same process; a few bodies from the main asteroid belt could also be captured in the Trojan cloud.

  19. Voyage to Jupiter.

    Science.gov (United States)

    Morrison, David; Samz, Jane

    This publication illustrates the features of Jupiter and its family of satellites pictured by the Pioneer and the Voyager missions. Chapters included are: (1) "The Jovian System" (describing the history of astronomy); (2) "Pioneers to Jupiter" (outlining the Pioneer Mission); (3) "The Voyager Mission"; (4)…

  20. Electrodynamic tethers for exploration of Jupiter and its icy moons

    OpenAIRE

    Sanmartín Losada, Juan Ramón

    2006-01-01

    Use of electrodynamic bare tethers in exploring the Jovian system by tapping its rotational energy for power and propulsion is studied. The position of perijove and apojove in elliptical orbits, relative to the synchronous orbit at 2.24 times Jupiter’s radius, is exploited to conveniently make the induced Lorentz force to be drag or thrust, while generating power, and navigating the system. Capture and evolution to a low elliptical orbit near Jupiter, and capture into low circular orbits at m...

  1. Strong tidal dissipation in Io and Jupiter from astrometric observations.

    Science.gov (United States)

    Lainey, Valéry; Arlot, Jean-Eudes; Karatekin, Ozgür; Van Hoolst, Tim

    2009-06-18

    Io is the volcanically most active body in the Solar System and has a large surface heat flux. The geological activity is thought to be the result of tides raised by Jupiter, but it is not known whether the current tidal heat production is sufficiently high to generate the observed surface heat flow. Io's tidal heat comes from the orbital energy of the Io-Jupiter system (resulting in orbital acceleration), whereas dissipation of energy in Jupiter causes Io's orbital motion to decelerate. Here we report a determination of the tidal dissipation in Io and Jupiter through its effect on the orbital motions of the Galilean moons. Our results show that the rate of internal energy dissipation in Io (k(2)/Q = 0.015 +/- 0.003, where k(2) is the Love number and Q is the quality factor) is in good agreement with the observed surface heat flow, and suggest that Io is close to thermal equilibrium. Dissipation in Jupiter (k(2)/Q = (1.102 +/- 0.203) x 10(-5)) is close to the upper bound of its average value expected from the long-term evolution of the system, and dissipation in extrasolar planets may be higher than presently assumed. The measured secular accelerations indicate that Io is evolving inwards, towards Jupiter, and that the three innermost Galilean moons (Io, Europa and Ganymede) are evolving out of the exact Laplace resonance.

  2. SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars

    CERN Document Server

    Almenara, J M; Bouchy, F; Havel, M; Bruno, G; Hébrard, G; Diaz, R F; Deleuil, M; Barros, S C C; Boisse, I; Bonomo, A; Montagnier, G; Santerne, A

    2015-01-01

    We report the validation and characterization of three new transiting exoplanets using SOPHIE radial velocities: KOI-614b, KOI-206b, and KOI-680b. KOI-614b has a mass of $2.86\\pm0.35~{\\rm M_{Jup}}$ and a radius of $1.13^{+0.26}_{-0.18}~{\\rm R_{Jup}}$, and it orbits a G0, metallic ([Fe/H]=$0.35\\pm0.15$) dwarf in 12.9 days. Its mass and radius are familiar and compatible with standard planetary evolution models, so it is one of the few known transiting planets in this mass range to have an orbital period over ten days. With an equilibrium temperature of $T_{eq}=1000 \\pm 45$ K, this places KOI-614b at the transition between what is usually referred to as "hot" and "warm" Jupiters. KOI-206b has a mass of $2.82\\pm 0.52~{\\rm M_{Jup}}$ and a radius of $1.45\\pm0.16~{\\rm R_{Jup}}$, and it orbits a slightly evolved F7-type star in a 5.3-day orbit. It is a massive inflated hot Jupiter that is particularly challenging for planetary models because it requires unusually large amounts of additional dissipated energy in the ...

  3. A Collaborative Analysis Tool for Integrating Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles

    Science.gov (United States)

    Stanley, Thomas Troy; Alexander, Reginald

    1999-01-01

    Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. The deficiencies in the scramjet powered concept led to a revival of interest in Rocket-Based Combined-Cycle (RBCC) propulsion systems. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. At this point the transitions to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scram4jet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance.

  4. Periodic changes of the activity of processes in Jupiter's atmosphere

    Science.gov (United States)

    Vidmachenko, A. P.

    2016-10-01

    Variations of the Earth jovimagnetic latitude on Jupiter are preferred in solar-driven changes of reflective properties of clouds and haze on Jupiter. Because of the orbit eccentricity (e=0,048450) the northern hemisphere receives 21% greater solar energy flow to the atmosphere, because Jupiter is in the perihelia near the time of the summer solstice. Results of our studies showed that the ratio of the brightness of the northern and southern tropical and temperate regions is evident factor of the photometric activity of the Jupiter's atmospheric processes. The obtained from the analysis of observational data for the period from 1962 to 2015 existence of variations of activity factor of the planet hemispheres with a period of 11.86 years has allowed us to talk about an existence of the seasonal reconstruction of the physical parameters of Jupiter's atmosphere.

  5. Definition, technology readiness, and development cost of the orbit transfer vehicle engine integrated control and health monitoring system elements

    Science.gov (United States)

    Cannon, I.; Balcer, S.; Cochran, M.; Klop, J.; Peterson, S.

    1991-01-01

    An Integrated Control and Health Monitoring (ICHM) system was conceived for use on a 20 Klb thrust baseline Orbit Transfer Vehicle (OTV) engine. Considered for space used, the ICHM was defined for reusability requirements for an OTV engine service free life of 20 missions, with 100 starts and a total engine operational time of 4 hours. Functions were derived by flowing down requirements from NASA guidelines, previous OTV engine or ICHM documents, and related contracts. The elements of an ICHM were identified and listed, and these elements were described in sufficient detail to allow estimation of their technology readiness levels. These elements were assessed in terms of technology readiness level, and supporting rationale for these assessments presented. The remaining cost for development of a minimal ICHM system to technology readiness level 6 was estimated. The estimates are within an accuracy range of minus/plus 20 percent. The cost estimates cover what is needed to prepare an ICHM system for use on a focussed testbed for an expander cycle engine, excluding support to the actual test firings.

  6. Orbital transfer vehicle concept definition and system analysis study, 1985. Volume 5: Work breakdown structure and dictionary

    Science.gov (United States)

    Nelson, James H.; Callan, Daniel R.

    1985-01-01

    To establish consistency and visibility within the Orbital Transfer Vehicle (OTV) program, a preliminary work breakdown structure (WBS) and dictionary were developed. The dictionary contains definitions of terms to be used in conjunction with the WBS so that a clear understanding of the content of the hardware, function, and cost elements may be established. The OTV WBS matrix is a two-dimensional structure which shows the interrelationship of these dimensions: the hardware elements dimension and the phase and function dimension. The dimension of time cannot be shown graphically, but must be considered. Each cost entry varies with time so that it is necessary to know these cost values by year for budget planning and approval as well as for establishing cost streams for discounting purposes in the economic analysis. While a multiple dimensional approach may at first appear complex, it actually provides benefits which outweigh any concern. This structural interrelationship provides the capability to view and analyze the OTV costs from a number of different financial and management aspects. Cost may be summed by hardware groupings, phases, or functions. The WBS may be used in a number of dimensional or single listing format applications.

  7. Directly Imaging Tidally Powered Migrating Jupiters

    CERN Document Server

    Dong, Subo; Socrates, Aristotle

    2012-01-01

    We show that ongoing direct imaging experiments may detect a new class of long-period, highly luminous, tidally powered extrasolar gas giants. Even though they are hosted by Gyr-"old" main-sequence stars, they can be as "hot" as young Jupiters at ~100 Myr, the prime targets of direct imaging surveys. These planets, with years-long orbits, are presently migrating to "feed" the "hot Jupiters" in steady state. Their existence is expected from a class of "high-e" migration mechanisms, in which gas giants are excited to highly eccentric orbits and then shrink their semi-major axis by factor of ~ 10-100 due to tidal dissipation at successive close periastron passages. The dissipated orbital energy is converted to heat, and if it is deposited deep enough into the planet atmosphere, the planet likely radiates steadily at luminosity ~2-3 orders of magnitude larger than that of our Jupiter during a typical Gyr migration time scale. Their large orbital separations and expected high planet-to-star flux ratios in IR make ...

  8. Results of Long-Duration Simulation of Distant Retrograde Orbits

    Directory of Open Access Journals (Sweden)

    Gary Turner

    2016-11-01

    Full Text Available Distant Retrograde Orbits in the Earth–Moon system are gaining in popularity as stable “parking” orbits for various conceptual missions. To investigate the stability of potential Distant Retrograde Orbits, simulations were executed, with propagation running over a thirty-year period. Initial conditions for the vehicle state were limited such that the position and velocity vectors were in the Earth–Moon orbital plane, with the velocity oriented such that it would produce retrograde motion about Moon. The resulting trajectories were investigated for stability in an environment that included the eccentric motion of Moon, non-spherical gravity of Earth and Moon, gravitational perturbations from Sun, Jupiter, and Venus, and the effects of radiation pressure. The results indicate that stability may be enhanced at certain resonant states within the Earth–Moon system.

  9. Jupiter Environment Tool

    Science.gov (United States)

    Sturm, Erick J.; Monahue, Kenneth M.; Biehl, James P.; Kokorowski, Michael; Ngalande, Cedrick,; Boedeker, Jordan

    2012-01-01

    The Jupiter Environment Tool (JET) is a custom UI plug-in for STK that provides an interface to Jupiter environment models for visualization and analysis. Users can visualize the different magnetic field models of Jupiter through various rendering methods, which are fully integrated within STK s 3D Window. This allows users to take snapshots and make animations of their scenarios with magnetic field visualizations. Analytical data can be accessed in the form of custom vectors. Given these custom vectors, users have access to magnetic field data in custom reports, graphs, access constraints, coverage analysis, and anywhere else vectors are used within STK.

  10. Dynamical Interactions Make Hot Jupiters in Open Star Clusters

    CERN Document Server

    Shara, Michael M; Mardling, Rosemary A

    2014-01-01

    Explaining the origin and evolution of exoplanetary "hot Jupiters" remains a significant challenge. One possible mechanism for their production is planet-planet interactions, which produces hot Jupiters from planets born far from their host stars but near their dynamical stability limits. In the much more likely case of planets born far from their dynamical stability limits, can hot Jupiters can be formed in star clusters? Our N-body simulations of planetary systems inside star clusters answer this question in the affirmative, and show that hot Jupiter formation is not a rare event. We detail three case studies of the dynamics-induced births of hot Jupiters on highly eccentric orbits that can only occur inside star clusters. The hot Jupiters' orbits bear remarkable similarities to those of some of the most extreme exoplanets known: HAT-P-32 b, HAT-P-2 b, HD 80606 b and GJ 876 d. If stellar perturbations formed these hot Jupiters then our simulations predict that these very hot, inner planets are sometimes acc...

  11. New Views of Jupiter's Rings

    Science.gov (United States)

    Burns, J. A.

    1998-09-01

    Jupiter's rings are the archetype of ethereal planetary rings (very-low optical-depth bands containing micron-sized "dust"). As a result of much improved observations by Galileo (Ockert-Bell* -- most citations are et al. and Icarus in press* or this meeting) and Keck (de Pater*), we now understand the nature of such rings. The ring has three components: a 104 km-thick toroidal halo (1.4-1.7 RJ; normal optical depth t = 10-6), a thin main ring (1.7-1.8 RJ; t = 10-6), and a pair of exterior gossamer rings (1.8-3.5RJ; t = 10-7). The main ring has patchy ( 20-30 percent) brightness. The ring is reddish and its particles satisfy a -2.5 differential power-law size distribution. Because particle lifetimes are brief, the rings must be continually regenerated, by collisions into parent bodies, which may be unseen or may be the known small ring-moons (Thomas*, Simonelli). The gossamer ring seems to be collisional ejecta derived from the ring-moons Amalthea and Thebe, and evolving inward by Poynting-Robertson drag (Burns). The particles drift through many electromagnetic resonances, clustering around synchronous orbit, which produce jumps in the particles' inclinations (Hamilton). The main ring is probably debris from Adrastea and Metis, which orbit in the equatorial plane. The halo particles are driven vertically by electromagnetic forces, which may be resonant (Schaffer & Burns) or not (Horanyi & Cravens). When halo orbits become highly distorted, particles are lost into Jupiter. Similar faint rings may be attendant to all small, close-in satellites (Showalter).

  12. A Look Inside the Juno Mission to Jupiter

    Science.gov (United States)

    Grammier, Richard S.

    2008-01-01

    Juno, the second mission within the New Frontiers Program, is a Jupiter polar orbiter mission designed to return high-priority science data that spans across multiple divisions within NASA's Science Mission Directorate. Juno's science objectives, coupled with the natural constraints of a cost-capped, PI-led mission and the harsh environment of Jupiter, have led to a very unique mission and spacecraft design.

  13. The Escaping Upper Atmospheres of Hot Jupiters

    Science.gov (United States)

    Davidson, Eric; Jones, Gabrielle; Uribe, Ana; Carson, Joseph

    2017-01-01

    Hot Jupiters are massive gaseous planets which orbit closely to their parent star. The strong stellar irradiation at these small orbital separations causes the temperature of the upper atmosphere of the planet to rise. This can cause the planet's atmosphere to escape into space, creating an exoplanet outflow. We ascertained which factors determine the presence and structure of these outflows by creating one dimensional simulations of the density, pressure, velocity, optical depth, and neutral fraction of hot Jupiter atmospheres. This was done for planets of masses and radii ranging from 0.5-1.5 Mj and 0.5-1.5 Rj. We found the outflow rate to be highest for a planet of 0.5 Mj and 1.5 Rj at 5.3×10-14 Mj/Yr. We also found that the higher the escape velocity, the lower the chance of the planet having an outflow.

  14. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  15. Inferno on Jupiter

    Institute of Scientific and Technical Information of China (English)

    诸葛勤

    1994-01-01

    The initial sketchy reports began filtering into the U. S. by E-maillate Saturday afternoon. First a Spanish observatory announced that it hadspotted a plume of gas billowing up from the edge of Jupiter. Then a

  16. Modelling of Jupiter's Innermost Radiation Belt

    Science.gov (United States)

    Mihalov, J. D.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    In order to understand better source and loss processes for energetic trapped protons near Jupiter, a modification of de Pater and Goertz' finite difference diffusion calculations for Jovian equatorial energetic electrons is made to apply to the case of protons inside the orbit of Metis. Explicit account is taken of energy loss in the Jovian ring. Comparison of the results is made with Galileo Probe measurements.

  17. DIRECTLY IMAGING TIDALLY POWERED MIGRATING JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Dong Subo; Katz, Boaz; Socrates, Aristotle [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2013-01-10

    Upcoming direct-imaging experiments may detect a new class of long-period, highly luminous, tidally powered extrasolar gas giants. Even though they are hosted by {approx} Gyr-'old' main-sequence stars, they can be as 'hot' as young Jupiters at {approx}100 Myr, the prime targets of direct-imaging surveys. They are on years-long orbits and presently migrating to 'feed' the 'hot Jupiters'. They are expected from 'high-e' migration mechanisms, in which Jupiters are excited to highly eccentric orbits and then shrink semimajor axis by a factor of {approx}10-100 due to tidal dissipation at close periastron passages. The dissipated orbital energy is converted to heat, and if it is deposited deep enough into the atmosphere, the planet likely radiates steadily at luminosity L {approx} 100-1000 L{sub Jup}(2 Multiplication-Sign 10{sup -7}-2 Multiplication-Sign 10{sup -6} L{sub Sun }) during a typical {approx} Gyr migration timescale. Their large orbital separations and expected high planet-to-star flux ratios in IR make them potentially accessible to high-contrast imaging instruments on 10 m class telescopes. {approx}10 such planets are expected to exist around FGK dwarfs within {approx}50 pc. Long-period radial velocity planets are viable candidates, and the highly eccentric planet HD 20782b at maximum angular separation {approx}0.''08 is a promising candidate. Directly imaging these tidally powered Jupiters would enable a direct test of high-e migration mechanisms. Once detected, the luminosity would provide a direct measurement of the migration rate, and together with mass (and possibly radius) estimate, they would serve as a laboratory to study planetary spectral formation and tidal physics.

  18. Exploration of the Jovian System by EJSM (Europa Jupiter System Mission): Origin of Jupiter and Evolution of Satellites

    Science.gov (United States)

    Sasaki, Sho; Fujimoto, Masaki; Takashima, Takeshi; Yano, Hajime; Kasaba, Yasumasa; Takahashi, Yukihiro; Kimura, Jun; Okada, Tatsuaki; Kawakatsu, Yasuhiro; Tsuda, Yuichi; Kawaguchi, Jun-Ichiro; Funase, Ryu; Mori, Osamu; Morimoto, Mutsuko; Ikoma, Masahiro; Naganuma, Takeshi; Yamaji, Atsushi; Hussmann, Hauke; Kurita, Kei; Working Group, Jupiter

    EJSM (Europa Jupiter System Mission) is a planned Jovian system mission with three spacecraft aiming at coordinated observations of the Jovian satellites especially Europa and the magnetosphere, atmosphere and interior of Jupiter. It was formerly called "Laplace" mission. In October 2007, it was selected as one of future ESA scientific missions Cosmic Vision (2015-2025). From the beginning, Japanese group is participating in the discussion process of the mission. JAXA will take a role on the magnetosphere spinner JMO (Jupiter Magnetosphere Orbiter). On the other hand, ESA will take charge of JGO (Jupiter Ganymede Orbiter) and NASA will be responsible for JEO (Jupiter Europa Orbiter). In February 2009, EJSM is prioritized as the first candidate of outer planet flagship mission and mission study continues in the course of Cosmic Vision. The expected launch time of EJSM will be expected in 2020. Currently we are seeking a possibility to combine JMO with a proposed solar sail mission of JAXA for Jupiter and one of Trojan asteroids.

  19. A Collaborative Analysis Tool for Integrated Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles

    Science.gov (United States)

    Stanley, Thomas Troy; Alexander, Reginald; Landrum, Brian

    2000-01-01

    Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. Then there is a transition to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scramjet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance. To adequately determine the performance of the engine/vehicle, the Hypersonic Flight Inlet Model (HYFIM) module was designed to interface with the RBCC

  20. Tilting Saturn without tilting Jupiter: Constraints on giant planet migration

    CERN Document Server

    Brasser, R

    2015-01-01

    The migration and encounter histories of the giant planets in our Solar System can be constrained by the obliquities of Jupiter and Saturn. We have performed secular simulations with imposed migration and N-body simulations with planetesimals to study the expected obliquity distribution of migrating planets with initial conditions resembling those of the smooth migration model, the resonant Nice model and two models with five giant planets initially in resonance (one compact and one loose configuration). For smooth migration, the secular spin-orbit resonance mechanism can tilt Saturn's spin axis to the current obliquity if the product of the migration time scale and the orbital inclinations is sufficiently large (exceeding 30 Myr deg). For the resonant Nice model with imposed migration, it is difficult to reproduce today's obliquity values, because the compactness of the initial system raises the frequency that tilts Saturn above the spin precession frequency of Jupiter, causing a Jupiter spin-orbit resonance...

  1. JunoCam's Imaging of Jupiter

    Science.gov (United States)

    Orton, Glenn; Hansen, Candice; Momary, Thomas; Caplinger, Michael; Ravine, Michael; Atreya, Sushil; Ingersoll, Andrew; Bolton, Scott; Rogers, John; Eichstaedt, Gerald

    2017-04-01

    Juno's visible imager, JunoCam, is a wide-angle camera (58° field of view) with 4 color filters: red, green and blue (RGB) and methane at 889 nm, designed for optimal imaging of Jupiter's poles. Juno's elliptical polar orbit offers unique views of Jupiter's polar regions with spatial scales as good as 50 km/pixel. At closest approach ("perijove") the images have spatial scale down to ˜3 km/pixel. As a push-frame imager on a rotating spacecraft, JunoCam uses time-delayed integration to take advantage of the spacecraft spin to extend integration time to increase signal. Images of Jupiter's poles reveal a largely uncharted region of Jupiter, as nearly all earlier spacecraft except Pioneer 11 have orbited or flown by close to the equatorial plane. Poleward of 64-68° planetocentric latitude, Jupiter's familiar east-west banded structure breaks down. Several types of discrete features appear on a darker, bluish-cast background. Clusters of circular cyclonic spirals are found immediately around the north and south poles. Oval-shaped features are also present, ranging in size down to JunoCam's resolution limits. The largest and brightest features usually have chaotic shapes; animations over ˜1 hour can reveal cyclonic motion in them. Narrow linear features traverse tens of degrees of longitude and are not confined in latitude. JunoCam also detected optically thin clouds or hazes that are illuminated beyond the nightside ˜1-bar terminator; one of these detected at Perijove lay some 3 scale heights above the main cloud deck. Tests have been made to detect the aurora and lightning. Most close-up images of Jupiter have been acquired at lower latitudes within 2 hours of closest approach. These images aid in understanding the data collected by other instruments on Juno that probe deeper in the atmosphere. When Jupiter was too close to the sun for ground-based observers to collect data between perijoves 1 and 2, JunoCam took a sequence of routine images to monitor large

  2. Hot Jupiters and Super-Earths

    CERN Document Server

    Mustill, Alexander James; Johansen, Anders

    2016-01-01

    We explore the role of dynamics in shaping planetary system multiplicities, focussing on two particular problems. (1) We propose that the lack of close-in super-Earths in hot Jupiter systems is a signature of the migration history of the hot Jupiters and helps to discriminate between different mechanisms of migration. We present N-body simulations of dynamical migration scenarios where proto-hot Jupiters are excited to high eccentricities prior to tidal circularisation and orbital decay. We show that in this scenario, the eccentric giant planet typically destroys planets in the inner system, in agreement with the observed lack of close super-Earth companions to hot Jupiters. (2) We explore the role of the dynamics of outer systems in affecting the multiplicities of close-in systems such as those discovered by Kepler. We consider specifically the effects of planet--planet scattering and Kozai perturbations on an exterior giant planet on the architecture of the inner system, and evaluate the ability of such sce...

  3. Jupiter's Dynamic Magnetosphere

    Science.gov (United States)

    Vogt, M. F.; Bunce, E. J.; Kronberg, E. A.; Jackman, C. M.

    2014-12-01

    Jupiter's magnetosphere is a highly dynamic environment. Hundreds of reconnection events have been identified in Jupiter's magnetotail through analysis of magnetic field and particle measurements collected by the Galileo spacecraft. Quasi-periodic behavior, suggestive of reconnection, has been intermittently observed on a ~2-3 day time scale in several data sets, including magnetic field dipolarizations, flow bursts, auroral polar dawn spots, and the hectometric radio emission. In this paper we review the present state of knowledge of Jovian magnetospheric dynamics. Throughout the discussion, we highlight similarities and differences to Saturn's magnetosphere. For example, recent analysis of plasmoid signatures at both Jupiter and Saturn has established the role of tail reconnection in the overall mass and flux transport in the outer planet magnetospheres. The results for both Jupiter and Saturn suggest that the observed mass loss rate due to tail reconnection and plasmoid release is insufficient to account for the mass input rate from the moons Io and Enceladus, respectively. We also present new analysis in which we use the Michigan mSWiM propagated solar wind MHD model to estimate the solar wind conditions upstream of Jupiter. This information allows us to determine whether reconnection events occur preferentially during certain solar wind conditions, or whether there is evidence that the solar wind modulates the quasi-periodicity seen in the field dipolarizations and flow bursts.

  4. THE JOINT ESA-NASA EUROPA JUPITER SYSTEM MISSION (EJSM)

    Science.gov (United States)

    Lebreton, J.; Pappalardo, R. T.; Blanc, M.; Bunce, E. J.; Dougherty, M. K.; Erd, C.; Grasset, O.; Greeley, R.; Johnson, T. V.; Clark, K. B.; Prockter, L. M.; Senske, D. A.

    2009-12-01

    The joint "Europa Jupiter System Mission" (EJSM) is an international mission under study in collaboration between NASA and ESA. Its goal is to study Jupiter and its magnetosphere, the diversity of the Galilean satellites, the physical characteristics, composition and geology of their surfaces. Europa and Ganymede are two primary targets of the mission. The reference mission architecture consists of the NASA-led Jupiter Europa Orbiter (JEO) and the ESA-led Jupiter Ganymede Orbiter (JGO). The two primary goals of the mission are i) to determine whether the Jupiter system harbors habitable worlds and ii) to characterize the processes within the Jupiter system. The science objectives addressing the first goal are to: i) characterize and determine the extent of subsurface oceans and their relations to the deeper interior, ii) characterize the ice shells and any subsurface water, including the heterogeneity of the ice, and the nature of surface-ice-ocean exchange; iii) characterize the deep internal structure, differentiation history, and (for Ganymede) the intrinsic magnetic field; iv) compare the exospheres, plasma environments, and magnetospheric interactions; v) determine global surface composition and chemistry, especially as related to habitability; vi) understand the formation of surface features, including sites of recent or current activity, and identify and characterize candidate sites for future in situ exploration. The science objectives for addressing the second goal are to: i) understand the Jovian satellite system, especially as context for Europa and Ganymede; ii) evaluate the structure and dynamics of the Jovian atmosphere; iii) characterize processes of the Jovian magnetodisk/magnetosphere; iv) determine the interactions occurring in the Jovian system; and v) constrain models for the origin of the Jupiter system. Both spacecraft would carry a complement of 11-12 instruments launch separately in 2020 and use a Venus-Earth-Earth Gravity Assist (VEEGA

  5. TARGET/CRYOCHIL - THERMODYNAMIC ANALYSIS AND SUBSCALE MODELING OF SPACE-BASED ORBIT TRANSFER VEHICLE CRYOGENIC PROPELLANT RESUPPLY

    Science.gov (United States)

    Defelice, D. M.

    1994-01-01

    The resupply of the cryogenic propellants is an enabling technology for space-based transfer vehicles. As part of NASA Lewis's ongoing efforts in micro-gravity fluid management, thermodynamic analysis and subscale modeling techniques have been developed to support an on-orbit test bed for cryogenic fluid management technologies. These efforts have been incorporated into two FORTRAN programs, TARGET and CRYOCHIL. The TARGET code is used to determine the maximum temperature at which the filling of a given tank can be initiated and subsequently filled to a specified pressure and fill level without venting. The main process is the transfer of the energy stored in the thermal mass of the tank walls into the inflowing liquid. This process is modeled by examining the end state of the no-vent fill process. This state is assumed to be at thermal equilibrium between the tank and the fluid which is well mixed and saturated at the tank pressure. No specific assumptions are made as to the processes or the intermediate thermodynamic states during the filling. It is only assumed that the maximum tank pressure occurs at the final state. This assumption implies that, during the initial phases of the filling, the injected liquid must pass through the bulk vapor in such a way that it absorbs a sufficient amount of its superheat so that moderate tank pressures can be maintained. It is believed that this is an achievable design goal for liquid injection systems. TARGET can be run with any fluid for which the user has a properties data base. Currently it will only run for hydrogen, oxygen, and nitrogen since pressure-enthalpy data sets have been included for these fluids only. CRYOCHIL's primary function is to predict the optimum liquid charge to be injected for each of a series of charge-hold-vent chilldown cycles. This information can then be used with specified mass flow rates and valve response times to control a liquid injection system for tank chilldown operations. This will

  6. Colors and Properties of Jupiter's Greeks and Trojans

    Science.gov (United States)

    Chatelain, Joseph; Henry, Todd J.; French, Linda M.; Trilling, David E.

    2016-10-01

    In this Ph.D. talk, I will present the colors and properties of Jupiter Trojan asteroids examined in my dissertation research. The Jupiter Trojan asteroids are minor bodies that orbit 60 degrees in front and 60 degrees behind Jupiter. Because these orbits are stable over the lifetime of the Solar System, the properties of these objects may inform us about the conditions under which the Solar System formed. We present BVRKCIKC photometry for over 100 of the intrinsically brightest and presumably largest members of the L4 and L5 Jupiter Trojans. We use a new principal color component derived by Chatelain et al. 2016 that is indicative of taxonomic types relevant to the Jupiter Trojan asteroids. We previously found that 76% of the largest L5 Jupiter Trojans are consistent with a D-type classification, while 24% show shallower slopes more consistent with X-type and C-type classifications. Here we extend this study to the L4 cloud and compare the two populations, as well as include findings about specific objects that have resulted from these data. Specifically, multiple photometric observations hint at color variation in some objects, and our richest datasets allow for the determination of phase curves and shapes for a handful of the most compelling asteroids including a new shape model and pole solution for 1173 Anchises. Our goal is to use this study to shed light on these fascinating objects and to place the Trojans in context in the larger Solar System.

  7. Warm Jupiters from secular planet-planet interactions

    CERN Document Server

    Petrovich, Cristobal

    2016-01-01

    Most warm Jupiters (gas-giant planets with $0.1~{\\rm AU}\\lesssim a \\lesssim1$ AU) have pericenter distances that are too large for significant orbital migration by tidal friction. We study the possibility that the warm Jupiters are undergoing secular eccentricity oscillations excited by an outer companion (a planet or star) in an eccentric and/or mutually inclined orbit. In this model the warm Jupiters migrate periodically, in the high-eccentricity phase of the oscillation when the pericenter distance is small, but are typically observed at much lower eccentricities. We show that the steady-state eccentricity distribution of the warm Jupiters migrating by this mechanism is approximately flat, which is consistent with the observed distribution if and only if we restrict the sample to warm Jupiters that have outer companions detected by radial-velocity surveys. The eccentricity distribution of warm Jupiters without companions exhibits a peak at low eccentricities ($e\\lesssim 0.2$) that must be explained by a di...

  8. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter

    Science.gov (United States)

    Cecconi, B.; Hess, S.; Hérique, A.; Santovito, M. R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J.-L.; Bruzzone, L.; Kofman, W.

    2012-02-01

    Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA-led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are under study for radar, which ranges between 5 and 50 MHz. Part of this frequency range overlaps with that of the natural jovian radio emissions, which are very intense in the decametric range, below 40 MHz. Radio observations above 40 MHz are free of interferences, whereas below this threshold, careful observation strategies have to be investigated. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emissions are strongly beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. We also review the radiation belts synchrotron emission characteristics. We present radio sources visibility products (dynamic spectra and radio source location maps, on still frames or movies), which can be used for operation planning. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation. We show that this radio noise has to be taken into account very early in the observation planning and strategies for both JGO and JEO. We also point out possible synergies with RPW (Radio and Plasma Waves) instrumentations.

  9. Capture of irregular satellites at Jupiter

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2014-03-20

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10{sup –8}. This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.

  10. Illuminating Hot Jupiters in caustic crossing

    CERN Document Server

    Sajadian, Sedighe

    2010-01-01

    In recent years a large number of Hot Jupiters orbiting in a very close orbit around the parent stars have been explored with the transit and doppler effect methods. Here in this work we study the gravitational microlensing effect of a binary lens on a parent star with a Hot Jupiter revolving around it. Caustic crossing of the planet makes enhancements on the light curve of the parent star in which the signature of the planet can be detected by high precision photometric observations. We use the inverse ray shooting method with tree code algorithm to generate the combined light curve of the parent star and the planet. In order to investigate the probability of observing the planet signal, we do a Monte-Carlo simulation and obtain the observational optical depth of $\\tau \\sim 10^{-8}$. We show that about ten years observations of Galactic Bulge with a network of telescopes will enable us detecting about ten Hot Jupiter with this method. Finally we show that the observation of the microlensing event in infra-re...

  11. Europa Jupiter System Mission (EJSM): Exploration Of The Jovian System And Its Icy Satellites

    Science.gov (United States)

    Grasset, Olivier; Pappalardo, R.; Greeley, R.; Blanc, M.; Dougherty, M.; Bunce, E.; Lebreton, J.; Prockter, L.; Senske, D.; EJSM Joint Science Definition Team

    2009-09-01

    The Europa Jupiter System Mission (EJSM) would be an international mission with the overall theme of investigating the emergence of habitable worlds around gas giants. Its goals are to (1) Determine whether the Jupiter system harbors habitable worlds and (2) Characterize the processes that are operating within the Jupiter system. NASA and ESA have concluded a detailed joint study of a mission to Europa, Ganymede, and the Jupiter system with orbiters developed by NASA and ESA (future contributions by JAXA and Russia are also possible). The baseline EJSM architecture consists of two primary elements operating in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. EJSM would directly address themes concerning the origin and evolution of satellite systems and water-rich environments in icy satellites. The potential habitability of the ocean-bearing moons Europa and Ganymede would be investigated, by characterizing the geophysical, compositional, geological, and external processes that affect these icy worlds. EJSM would also investigate Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the formation and evolution of gas giant planets and their satellites would be better known. Most important, EJSM would shed new light on the potential for the emergence of life in the celestial neighborhood and beyond. The EJSM architecture provides opportunities for coordinated synergistic observations by JEO and JGO of the Jupiter and Ganymede magnetospheres, the volcanoes and torus of Io, the atmosphere of Jupiter, and comparative planetology of icy satellites. Each spacecraft would conduct both synergistic dual-spacecraft investigations and "stand-alone” measurements.

  12. Orbit Control Scheme of Automated Transfer Vehicle%自动转移飞行器的轨控总体方案

    Institute of Scientific and Technical Information of China (English)

    靳永强; 毕雨雯

    2011-01-01

    The orbit control scheme and technology of the automated transfer vehicle (ATV) of ESA were discussed in this paper. The flying scheme, the configuration of the sensor system and actuators, and the different orbit control strategies during the phasing, homing, approaching and final approaching were analyzed.%介绍了欧空局的自动转移飞行器(ATV)的轨道控制方案和技术。给出了ATV的飞行方案、测量敏感器和执行机构的配置,以及在空间站调相段、寻的段、接近段和最终逼近段的轨控策略。

  13. Hot Jupiters and cool stars

    Energy Technology Data Exchange (ETDEWEB)

    Villaver, Eva; Mustill, Alexander J. [Department of Theoretical Physics, Universidad Autónoma de Madrid, Módulo 8, 28049 Madrid (Spain); Livio, Mario [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Siess, Lionel, E-mail: eva.villaver@uam.es [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles, B-1050 Bruxelles (Belgium)

    2014-10-10

    Close-in planets are in jeopardy, as their host stars evolve off the main sequence (MS) to the subgiant and red giant phases. In this paper, we explore the influences of the stellar mass (in the range 1.5-2 M {sub ☉}), mass-loss prescription, planet mass (from Neptune up to 10 Jupiter masses), and eccentricity on the orbital evolution of planets as their parent stars evolve to become subgiants and red giants. We find that planet engulfment along the red giant branch is not very sensitive to the stellar mass or mass-loss rates adopted in the calculations, but quite sensitive to the planetary mass. The range of initial separations for planet engulfment increases with decreasing mass-loss rates or stellar masses and increasing planetary masses. Regarding the planet's orbital eccentricity, we find that as the star evolves into the red giant phase, stellar tides start to dominate over planetary tides. As a consequence, a transient population of moderately eccentric close-in Jovian planets is created that otherwise would have been expected to be absent from MS stars. We find that very eccentric and distant planets do not experience much eccentricity decay, and that planet engulfment is primarily determined by the pericenter distance and the maximum stellar radius.

  14. HUBBLE PROVIDES COMPLETE VIEW OF JUPITER'S AURORAS

    Science.gov (United States)

    2002-01-01

    . Scientists are comparing the Hubble telescope images with measurements taken by NASA's Galileo spacecraft of Jupiter's magnetic field and co-rotating charged particles. They believe the data will help them understand the production of Jupiter's auroras. Both auroras clearly show vapor trails of light left by Io. These vapor trails are the white, comet-shaped streaks just outside both auroral ovals. These streaks are not part of the auroral ovals. They are caused when an invisible electrical current of charged particles (equal to about 1 million amperes), ejected from Io, flow along Jupiter's magnetic field lines to the planets north and south magnetic poles. This enormous current produces a bright but localized aurora where it enters Jupiter's atmosphere at both magnetic poles. The brightest part of both emissions (on the left in both images) pinpoints where Io's magnetic field lines leave its footprint on the planet. The trail of light following both emissions extends to the right all the way to Jupiter's edge and represents the most sensitive detection of ultraviolet emissions from Jupiter to date. These emissions are related to magnetically trapped ions and electrons that are carried by Jupiter's magnetic field along Io's orbital path, and some of these charged particles continue to be driven down into Jupiter's atmosphere for several hours after Io has passed by. The images were taken Sept. 20, 1997. The artificial colors used here have been constructed by combining images taken in two different ultraviolet band passes, with one ultraviolet color presented as blue and the other as red. In this color representation, the planet's reflected sunlight appears brown, while the auroral emissions appear white or shades of blue or red. Credits: John Clarke (University of Michigan), and NASA Co-investigators: Joe Ajello, Kent Tobiska, and John Trauger (NASA's Jet Propulsion Laboratory) Gilda Ballester (University of Michigan) Lotfi Ben jaffel (IAP Paris) Jack Connerney (NASA

  15. Jupiter's Big Bang.

    Science.gov (United States)

    McDonald, Kim A.

    1994-01-01

    Collision of a comet with Jupiter beginning July 16, 1994 will be observed by astronomers worldwide, with computerized information relayed to a center at the University of Maryland, financed by the National Aeronautics and Space Administration and National Science Foundation. Geologists and paleontologists also hope to learn more about earth's…

  16. Radiation belts of jupiter.

    Science.gov (United States)

    Stansberry, K G; White, R S

    1973-12-07

    Predictions of Jupiter's electron and proton radiation belts are based mainly on decimeter observations of 1966 and 1968. Extensive calculations modeling radial diffusion of particles inward from the solar wind and electron synchrotron radiation are used to relate the predictions and observations.

  17. Early Results from the Juno Mission at Jupiter

    Science.gov (United States)

    Bolton, Scott; Juno Science Team

    2016-10-01

    The Juno mission is the second mission in NASA's New Frontiers program. Launched in August 2011, Juno arrived at Jupiter July 4, 2016. Juno science goals include the study of Jupiter's origin, interior structure, deep atmosphere, aurora and magnetosphere. Juno's orbit around Jupiter is a polar elliptical orbit with perijove approximately 5000 km above the visible cloud tops. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, electric and magnetic field radio and plasma wave experiment, ultraviolet imaging spectrograph, infrared imager and a visible camera. Early results from the mission will be presented as well as an overview of planned observations.

  18. Design of human missions to Mars and robotic missions to Jupiter

    Science.gov (United States)

    Okutsu, Masataka

    We consider human missions to Mars and robotic missions to Jupiter for launch dates in the near- and far-future. For the near-future, we design trajectories for currently proposed space missions that have well-defined spacecraft and mission requirements. For example, for early human missions to Mars we assume that the constraints used in NASA's design reference missions are indicative of current and near-future technologies, which of course limit our capabilities to explore Mars--and these limits make the problem challenging. Similarly, in the case of robotic exploration of Jupiter, we consider that the technology levels assumed for the proposed Europa Orbiter mission represent reasonable limits. For the far-future (two to three decades from now), we take the best estimates from current literature about the capabilities that may be available in nuclear-powered electric propulsion. We consider hardware capabilities (in terms of specific mass, specific impulse, thrust, power, etc.) for low-thrust trajectories, which range froth near-term to far-future technologies. In designing such missions, several techniques are found useful. For example, the Tisserand Graph, which tracks the changes in orbital shapes and energies, provides insight in designing Jovian tours for the Europa Orbiter mission. The graph is also useful in analyzing abort trajectories for human missions to Mars. Furthermore, a patched-conic propagator, which can generate thousands of potential trajectories, plays a vital role in three of four chapters of this thesis. For launches in the next three decades, we discovered a class of Earth- Mars-Venus-Earth free returns (which appear only four times in the 100-year period), Jovian tours involving ten to twenty flybys of the Galilean satellites, and low-thrust trajectories to Jupiter via gravity assists from Venus, Earth, and Mars. In addition, our continuation method, in which a solution for a conic trajectory is gradually converted into that for a low

  19. SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars

    Science.gov (United States)

    Almenara, J. M.; Damiani, C.; Bouchy, F.; Havel, M.; Bruno, G.; Hébrard, G.; Diaz, R. F.; Deleuil, M.; Barros, S. C. C.; Boisse, I.; Bonomo, A. S.; Montagnier, G.; Santerne, A.

    2015-03-01

    We report the validation and characterization of three new transiting exoplanets using SOPHIE radial velocities: KOI-614b, KOI-206b, and KOI-680b. KOI-614b has a mass of 2.86 ± 0.35 MJup and a radius of 1.13 +0.26-0.18 RJup, and it orbits a G0, metallic ([ Fe/H ] = 0.35 ± 0.15) dwarf in 12.9 days. Its mass and radius are familiar and compatible with standard planetary evolution models, so it is one of the few known transiting planets in this mass range to have an orbital period over ten days. With an equilibrium temperature of Teq = 1000 ± 45 K, this places KOI-614b at the transition between what is usually referred to as "hot" and "warm" Jupiters. KOI-206b has a mass of 2.82 ± 0.52 MJup and a radius of 1.45 ± 0.16 RJup, and it orbits a slightly evolved F7-type star in a 5.3-day orbit. It is a massive inflated hot Jupiter that is particularly challenging for planetary models because it requires unusually large amounts of additional dissipated energy in the planet. On the other hand, KOI-680b has a much lower mass of 0.84 ± 0.15 MJup and requires less extra-dissipation to explain its uncommonly large radius of 1.99 ± 0.18 RJup. It is one of the biggest transiting planets characterized so far, and it orbits a subgiant F9-star well on its way to the red giant stage, with an orbital period of 8.6 days. With host stars of masses of 1.46 ± 0.17 M⊙ and 1.54 ± 0.09 M⊙, respectively, KOI-206b, and KOI-680b are interesting objects for theories of formation and survival of short-period planets around stars more massive than the Sun. For those two targets, we also find signs of a possible distant additional companion in the system. Based on observations made with SOPHIE on the 1.93-m telescope at the Observatoire de Haute-Provence (CNRS), France.Figures 11-14 are available in electronic form at http://www.aanda.org

  20. Tidal Dissipation and Obliquity Evolution in Hot Jupiter Systems

    CERN Document Server

    Valsecchi, Francesca

    2014-01-01

    Two formation scenarios have been proposed to explain the tight orbits of hot Jupiters. These giant planets could be formed in low-obliquity orbits via disk migration or in high-obliquity orbits via high-eccentricity migration, where gravitational interactions with a companion are at play, together with tidal dissipation. Here we target the observed misaligned hot Jupiter systems to investigate whether their current properties are consistent with high-eccentricity migration. Specifically, we study whether tidal dissipation in the star can be responsible for the observed distribution of misalignments and orbital separations. Improving on previous studies, we use detailed models for the stellar component, thus accounting for how convection (and thus tidal dissipation) depends on the host star properties. We find that the currently observed degree of misalignment increases as the amount of surface convection in the host star decreases. This trend supports the hypothesis that tides are the mechanism shaping the o...

  1. Where is the main source of Jupiter family comets situated?

    CERN Document Server

    Kazantsev, A M

    2012-01-01

    An attempt to determine spatial location of the main source of short-period comet nuclei was made. There were carried out numerical calculations for orbit evolution of Jupiter family comets, comets with middle-period orbits and bodies of Centaur group. On the basis of the calculations it was shown, that orbital evolution of the solar system small bodies is mainly going in the direction of the semi-major axes increase. It belongs to the bodies which can undergo approaches the planets, and orbital evolution of which is mainly going due to the gravitational forces. Such result is confirmed by qualitative analysis of changes of small body semi-major axes under approaches the planets. The conclusion was drawn that the main source of nuclei of Jupiter family comets is apparently situated at distances from the Sun not more than 6 AU.

  2. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems

    CERN Document Server

    Lithwick, Yoram

    2013-01-01

    In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit, and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. But in the case of the hot Jupiter, the innermost planet was Jupiter- (rather than Mercury-) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present new results comparing the inclinations of hot Jupiters thus produced with observations.

  3. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems.

    Science.gov (United States)

    Lithwick, Yoram; Wu, Yanqin

    2014-09-02

    In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations.

  4. The Photoeccentric Effect and Proto-Hot-Jupiters I. Measuring photometric eccentricities of individual transiting planets

    CERN Document Server

    Dawson, Rebekah I

    2012-01-01

    Exoplanet orbital eccentricities offer valuable clues about the origins and orbital evolution of planetary systems. Eccentric, Jupiter-sized planets are particularly interesting: they may link the "cold" Jupiters beyond the ice line to hot Jupiters at a fraction of an AU, where they are unlikely to have formed in situ. To date, all eccentricities of individual planets come from radial velocity measurements. Kepler has discovered hundreds of transiting Jupiters spanning a range of periods, but the faintness of the host stars precludes radial velocity follow-up of most. Here we demonstrate a Bayesian method of measuring an individual planet's eccentricity solely from its transit light curve using prior knowledge of its host star's density. We show that eccentric Jupiters are readily identified by their short ingress/egress/total transit durations --- the "photoeccentric effect" --- even with long-cadence Kepler photometry and loosely-constrained stellar parameters. A Markov Chain Monte Carlo exploration of para...

  5. Jupiter and Super-Earth embedded in a gaseous disc

    CERN Document Server

    Podlewska, E

    2007-01-01

    In this paper we investigate the evolution of a pair of interacting planets - a Jupiter mass planet and a Super-Earth with the 5.5 Earth masses - orbiting a Solar type star and embedded in a gaseous protoplanetary disc. We focus on the effects of type I and II orbital migrations, caused by the planet-disc interaction, leading to the Super-Earth capture in first order mean motion resonances by the Jupiter. The stability of the resulting resonant system in which the Super-Earth is on the internal orbit relatively to the Jupiter has been studied numerically by means of full 2D hydrodynamical simulations. Our main motivation is to determine the Super-Earth behaviour in the presence of the gas giant in the system. It has been found that the Jupiter captures the Super-Earth into the interior 3:2 or 4:3 mean motion resonances and the stability of such configurations depends on the initial planet positions and eccentricity evolution. If the initial separation of planet orbits is larger or close to that required for t...

  6. The results of studies to determine the impact of far-aft center-of-gravity locations on the design of a single-stage-to-orbit vehicle system

    Science.gov (United States)

    Freeman, D. C., Jr.; Powell, R. W.

    1979-01-01

    Aft center-of-gravity locations dictated by the large number of rocket engines required has been a continuing problem of single-stage-to-orbit vehicles. Recent work at Langley has demonstrated that these aft center-of-gravity problems become more pronounced for the proposed heavy-lift mission, creating some unique design problems for both the SSTO and staged vehicle systems. During the course of this study, an effort was made to bring together automated vehicle design, wind-tunnel tests, and flight control analyses to assess the impact of longitudinal and lateral-directional instability, and control philosophy on entry vehicle design technology.

  7. Small Inner Companions of Warm Jupiters: Lifetimes and Legacies

    CERN Document Server

    Van Laerhoven, Christa

    2014-01-01

    Although warm jupiters are generally too far from their stars for tides to be important, the presence of an inner planetary companion to a warm jupiter can result in tidal evolution of the system. Insight into the process and its effects comes form classical secular theory of planetary perturbations. The lifetime of the inner planet may be shorter than the age of the system, because the warm jupiter maintains its eccentricity and hence promotes tidal migration into the star. Thus a warm jupiter observed to be alone in its system might have previously cleared away any interior planets. Before its demise, even if an inner planet is of terrestrial scale, it may promote damping of the warm jupiter's eccentricity. Thus any inferences of the initial orbit of an observed warm jupiter must include the possibility of a greater initial eccentricity than would be estimated by assuming it had always been alone. Tidal evolution involving multiple planets also enhances the internal heating of the planets, which readily exc...

  8. ECCENTRIC JUPITERS VIA DISK–PLANET INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Duffell, Paul C.; Chiang, Eugene, E-mail: duffell@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley (United States)

    2015-10-20

    Numerical hydrodynamics calculations are performed to determine the conditions under which giant planet eccentricities can be excited by parent gas disks. Unlike in other studies, Jupiter-mass planets are found to have their eccentricities amplified—provided their orbits start off as eccentric. We disentangle the web of co-rotation, co-orbital, and external resonances to show that this finite-amplitude instability is consistent with that predicted analytically. Ellipticities can grow until they reach of order of the disk's aspect ratio, beyond which the external Lindblad resonances that excite eccentricity are weakened by the planet's increasingly supersonic epicyclic motion. Forcing the planet to still larger eccentricities causes catastrophic eccentricity damping as the planet collides into gap walls. For standard parameters, the range of eccentricities for instability is modest; the threshold eccentricity for growth (∼0.04) is not much smaller than the final eccentricity to which orbits grow (∼0.07). If this threshold eccentricity can be lowered (perhaps by non-barotropic effects), and if the eccentricity driving documented here survives in 3D, it may robustly explain the low-to-moderate eccentricities ≲0.1 exhibited by many giant planets (including Jupiter and Saturn), especially those without planetary or stellar companions.

  9. Polarized Light from Jupiter

    Science.gov (United States)

    2001-01-01

    These images taken through the wide angle camera near closest approach in the deep near-infrared methane band, combined with filters which sense electromagnetic radiation of orthogonal polarization, show that the light from the poles is polarized. That is, the poles appear bright in one image, and dark in the other. Polarized light is most readily scattered by aerosols. These images indicate that the aerosol particles at Jupiter's poles are small and likely consist of aggregates of even smaller particles, whereas the particles at the equator and covering the Great Red Spot are larger. Images like these will allow scientists to ascertain the distribution, size and shape of aerosols, and consequently, the distribution of heat, in Jupiter's atmosphere.

  10. Jupiter's Water Worlds

    Science.gov (United States)

    Pappalardo, R. T.

    2004-01-01

    When the twin Voyager spacecraft cruised past Jupiter in 1979, they did more than rewrite the textbooks on the giant planet. Their cameras also unveiled the astounding diversity of the four planet-size moons of ice and stone known as the Galilean satellites. The Voyagers revealed the cratered countenance of Callisto, the valleys and ridges of Ganymede, the cracked face of Europa, and the spewing volcanoes of Io. But it would take a spacecraft named for Italian scientist Galileo, who discovered the moons in 1610, to reveal the true complexity of these worlds and to begin to divulge their interior secrets. Incredibly, the Galileo data strongly suggest that Jupiter's three large icy moons (all but rocky Io) hide interior oceans.

  11. First Results of the Juno Magnetometer Investigation in Jupiter's Magnetosphere

    Science.gov (United States)

    Connerney, Jack; Oliversen, Ronald; Espley, Jared; Kotsiaros, Stavros; Joergensen, John; Joergensen, Peter; Merano, Jose; Denver, Troelz; Benn, Mathias; Bloxham, Jeremy; Bolton, Scott; Levin, Steve

    2017-04-01

    The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, after a Jupiter Orbit Insertion (JOI) main engine burn lasting 35 minutes. Juno's science instruments were not powered during the critical maneuver sequence ( 5 days) but were fully operational shortly afterward. The 53.5-day capture orbit provides Juno's science instruments with the opportunity to sample the Jovian environment close up (to 1.06 Jovian radii, Rj) and in polar orbit extending to the outer reaches of the Jovian magnetosphere. Jupiter's gravity and magnetic fields will be globally mapped with unprecedented accuracy as Juno conducts a study of Jupiter's interior structure and composition, as well as the first comprehensive exploration of the polar magnetosphere. The magnetic field investigation onboard Juno is equipped with two magnetometer sensor suites, located at 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads which provide accurate attitude determination for the FGM sensors. The first few periapsis passes available to date revealed an extraordinary spatial variation of the magnetic field close to the planet's surface, suggesting that Juno may be sampling the field closer to the dynamo region than widely anticipated, i.e., portending a dynamo surface extending to relatively large radial distance ( 0.9Rj?). We present the first observations of Jupiter's magnetic field obtained in close proximity to the planet, and speculate on what wonders await as more longitudes are drawn across the global map (32 polar orbits separated by designed to acquire.

  12. Voyager picture of Jupiter

    Science.gov (United States)

    1998-01-01

    NASA's Voyager 1 took this picture of the planet Jupiter on Saturday, Jan. 6, the first in its three-month-long, close-up investigation of the largest planet. The spacecraft, flying toward a March 5 closest approach, was 35.8 million miles (57.6 million kilometers) from Jupiter and 371.7 million miles (598.2 million kilometers) from Earth when the picture was taken. As the Voyager cameras begin their meteorological surveillance of Jupiter, they reveal a dynamic atmosphere with more convective structure than had previously been thought. While the smallest atmospheric features seen in this picture are still as large as 600 miles (1,000 kilometers) across, Voyager will be able to detect individual storm systems as small as 3 miles (5 kilometers) at closest approach. The Great Red Spot can be seen near the limb at the far right. Most of the other features are too small to be seen in terrestrial telescopes. This picture was transmitted to the Jet Propulsion Laboratory through the Deep Space Network's tracking station at Madrid, Spain. The Voyager Project is managed for NASA by Caltech's Jet Propulsion Laboratory.

  13. Himalia, a Small Moon of Jupiter

    Science.gov (United States)

    2001-01-01

    NASA's Cassini spacecraft captured images of Himalia, the brightest of Jupiter's outer moons, on Dec. 19, 2000, from a distance of 4.4 million kilometers (2.7 million miles).This near-infrared image, with a resolution of about 27 kilometers (17 miles) per pixel, indicates that the side of Himalia facing the spacecraft is roughly 160 kilometers (100 miles) in the up-down direction. Himalia probably has a non-spherical shape. Scientists believe it is a body captured into orbit around Jupiter, most likely an irregularly shaped asteroid.In the main frame, an arrow indicates Himalia. North is up. The inset shows the little moon magnified by a factor of 10, plus a graphic indicating Himalia's size and the direction of lighting (with sunlight coming from the left). Cassini's pictures of Himalia were taken during a brief period when Cassini's attitude was stabilized by thrusters instead of by a steadier reaction-wheel system. No spacecraft or telescope had previously shown any of Jupiter's outer moons as more than a star-like single dot.Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  14. Absorption of trapped particles by Jupiter's moons

    Science.gov (United States)

    Hess, W. N.; Birmingham, T. J.; Mead, G. D.

    1974-01-01

    Inclusion of absorption effects of the four innermost moons in the radial transport equations for electrons and protons in Jupiter's magnetosphere. It is found that the phase space density n at 2 Jupiter radii for electrons with equatorial pitch angles less than 69 deg is reduced by a factor of 42,000 when lunar absorption is included in the calculation. For protons with equatorial pitch angles less than 69 deg the corresponding reduction factor is 2,300,000. The effect of the satellites becomes progressively weaker for both electrons and protons as equatorial pitch angles of 90 deg are approached, because the likelihood of impacting a satellite becomes progressively smaller. The large density decreases found at the orbits of Io, Europa, and Ganymede result in corresponding particle flux decreases that should be observed by spacecraft making particle measurements in Jupiter's magnetosphere. The characteristic signature of satellite absorption should be a downward-pointing vertex in the flux versus radius curve at the L value corresponding to each satellite.

  15. Voyager 2 Jupiter Eruption Movie

    Science.gov (United States)

    2000-01-01

    This movie records an eruptive event in the southern hemisphere of Jupiter over a period of 8 Jupiter days. Prior to the event, an undistinguished oval cloud mass cruised through the turbulent atmosphere. The eruption occurs over avery short time at the very center of the cloud. The white eruptive material is swirled about by the internal wind patterns of the cloud. As a result of the eruption, the cloud then becomes a type of feature seen elsewhere on Jupiter known as 'spaghetti bowls'.As Voyager 2 approached Jupiter in 1979, it took images of the planet at regular intervals. This sequence is made from 8 images taken once every Jupiter rotation period (about 10 hours). These images were acquired in the Violet filter around May 6, 1979. The spacecraft was about 50 million kilometers from Jupiter at that time.This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1979.

  16. A Day on Jupiter (Animation)

    Science.gov (United States)

    2007-01-01

    This 'movie' strings 11 images of Jupiter captured by the New Horizons Long Range Reconnaissance Imager (LORRI) on January 9, 2007, when the spacecraft was about 80 million kilometers (49.6 million miles) from the giant planet. The sequence covers a full 10-hour rotation of Jupiter, during which the moons Ganymede and Io -- as well as the shadows they cast on Jupiter -- move across the camera's field of view.

  17. Recent Simulations of the Late Stages Growth of Jupiter

    Science.gov (United States)

    Lissauer, Jack J.; D'Angelo, Gennaro; Hubickyj, Olenka

    2012-01-01

    Presented by Lissauer et al. (2009, Icarus 199, 338) are used to test the model of capture of Jupiter's irregular satellites within proto-Jupiter's distended and thermally-supported envelope. We find such capture highly unlikely, since the envelope shrinks too slowly for a large number of moons to be retained, and many of those that would be retained would orbit closer to the planet than do the observed Jovian irregulars. Our calculations do not address (and therefore do not exclude) the possibility that the irregular satellites were captured as a result of gas drag within a circumjovian disk. Support for this research from NASA Outer Planets Research Program is gratefully acknowledged.

  18. EJSM Radar instruments: Natural radio noise from Jupiter

    Science.gov (United States)

    Cecconi, Baptiste; Hess, Sébastien; Zarka, Philippe; Blankenship, Donald; Bruzzone, Lorenzo; Santos-Costa, Daniel; Bougeret, Jean-Louis

    2010-05-01

    Radar instruments are part of the core payload of the Europa Jupiter System Mission (EJSM) spacecraft: NASA- led JEO (Jupiter Europa Orbiter) and ESA-led JGO (Jupiter Ganymede Orbiter). At this point of the project, several frequency bands are foreseen for radar studies between 5MHz and 50MHz. While the high frequencies (40 to 50 MHz) are clean bands since natural jovian radio emissions show a high frequency cutoff at about 40 MHz, lower frequencies are right in the middle of the intense decametric (DAM) radio emissions. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emission are beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. One result from these simulations is that some portion of the orbit of Europa is clean from Non-Io DAM emissions above 22 MHz. We also review the radiation belts synchrotron emission characteristics. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation.

  19. Orbital transfer vehicle concept definition and system analysis study, 1985. Volume 2: OTV concept definition and evaluation. Book 4: Operations

    Science.gov (United States)

    Mitchell, Jack C.; Keeley, J. T.

    1985-01-01

    The benefits of the reusable Space Shuttle and the advent of the new Space Station hold promise for increasingly effective utilization of space by the scientific and commercial as well as military communities. A high energy reusable oribital transfer vehicle (OTV) represents an additional capability which also exhibits potential for enhancing space access by allowing more ambitious missions and at the same time reducing launch costs when compared to existing upper stages. This section, Vol. 2: Book 4, covers launch operations and flight operations. The launch operations section covers analyses of ground based and space based vehicles, launch site facilities, logistics requirements, propellant loading, space based maintenance and aft cargo carrier access options. The flight operations sections contain summary descriptions of ground based and space based OTV missions, operations and support requirements, and a discussion of fleet implications.

  20. CAPTURE OF TROJANS BY JUMPING JUPITER

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorny, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302 (United States); Vokrouhlicky, David [Institute of Astronomy, Charles University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Morbidelli, Alessandro [Departement Cassiopee, University of Nice, CNRS, Observatoire de la Cote d' Azur, Nice, F-06304 (France)

    2013-05-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to {approx}5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) Multiplication-Sign 10{sup -7} for each particle in the original transplanetary disk, implying that the disk contained (3-4) Multiplication-Sign 10{sup 7} planetesimals with absolute magnitude H < 9 (corresponding to diameter D = 80 km for a 7% albedo). The disk mass inferred from this work, M{sub disk} {approx} 14-28 M{sub Earth}, is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  1. Hot Jupiters Aren't As Lonely As We Thought

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    The Friends of Hot Jupiters (FOHJ) project is a systematic search for planetary- and stellar-mass companions in systems that have known hot Jupiters short-period, gas-giant planets. This survey has discovered that many more hot Jupiters may have companions than originally believed.Missing FriendsFOHJ was begun with the goal of better understanding the systems that host hot Jupiters, in order to settle several longstanding issues.The first problem was one of observational statistics. We know that roughly half of the Sun-like stars nearby are in binary systems, yet weve only discovered a handful of hot Jupiters around binaries. Are binary systems less likely to host hot Jupiters? Or have we just missed the binary companions in the hot-Jupiter-hosting systems weve seen so far?An additional issue relates to formation mechanisms. Hot Jupiters probably migrated inward from where they formed out beyond the ice lines in protoplanetary disks but how?This median-stacked image, obtained with adaptive optics, shows one of the newly-discovered stellar companions to a star hosting a hot Jupiter. The projected separation is ~180 AU. [Ngo et al. 2015]Observations reveal two populations of hot Jupiters: those with circular orbits aligned with their hosts spins, and those with eccentric, misaligned orbits. The former population support a migration model dominated by local planet-disk interactions, whereas the latter population suggest the hot Jupiters migrated through dynamical interactions with distant companions. A careful determination of the companion rate in hot-Jupiter-hosting systems could help establish the ability of these two models to explain the observed populations.Search for CompanionsThe FOHJ project began in 2012 and studied 51 systems hosting known, transiting hot Jupiters with roughly half on circular, aligned orbits and half on eccentric, misaligned orbits. The survey consisted of three different, complementary components:Study 1Lead author: Heather Knutson

  2. Studies of an extensively axisymmetric rocket based combined cycle (RBCC) engine powered single-stage-to-orbit (SSTO) vehicle

    Science.gov (United States)

    Foster, Richard W.; Escher, William J. D.; Robinson, John W.

    1989-01-01

    The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems.

  3. Jupiter: Lord of the Planets.

    Science.gov (United States)

    Kaufmann, William

    1984-01-01

    Presents a chapter from an introductory college-level astronomy textbook in which full-color photographs and numerous diagrams highlight an extensive description of the planet Jupiter. Topics include Jupiter's geology, rotation, magnetic field, atmosphere (including clouds and winds), and the Great Red Spot. (DH)

  4. Processing tools refinement for the JIRAM arrival to Jupiter

    Science.gov (United States)

    Moriconi, Maria L.; Noschese, R.; Adriani, A.

    2017-05-01

    The JUNO mission, launched on August 2011 with the goal of investigating the origin and evolution of Jupiter, reached Jupiter in July 2016. The months preceding the JUNO orbit insertion have been crucial for all the instrument teams to check the status and working abilities of the respective experiments. JIRAM (Jupiter Infrared Auroral Mapper), with its imager and slit spectrometer operating over the 2-5μm spectral range will attempt to reveal the deep atmospheric composition -3 to 7 bars- in hot spots, to analyze the infrared auroral emissions of the H3 + molecules ionized by the Jovian magnetosphere currents and to detect the morphology and vertical structure of the clouds. Many different processing tools are in preparation to exploit the incoming JIRAM data. Here some results pertaining to the image quality optimization and the visualizations that can be obtained from the spectrometer data management are reported.

  5. In Situ Formation and Dynamical Evolution of Hot Jupiter Systems

    Science.gov (United States)

    Batygin, Konstantin; Bodenheimer, Peter H.; Laughlin, Gregory P.

    2016-10-01

    Hot Jupiters, giant extrasolar planets with orbital periods shorter than ˜10 days, have long been thought to form at large radial distances, only to subsequently experience long-range inward migration. Here, we offer the contrasting view that a substantial fraction of the hot Jupiter population formed in situ via the core-accretion process. We show that under conditions appropriate to the inner regions of protoplanetary disks, rapid gas accretion can be initiated by super-Earth-type planets, comprising 10-20 Earth masses of refractory material. An in situ formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional low-mass planets with periods shorter than ˜100 days. Our calculations further demonstrate that dynamical interactions during the early stages of planetary systems’ lifetimes should increase the inclinations of such companions, rendering transits rare. High-precision radial velocity monitoring provides the best prospect for their detection.

  6. In Situ Formation and Dynamical Evolution of Hot Jupiter Systems

    CERN Document Server

    Batygin, Konstantin; Laughlin, Gregory P

    2015-01-01

    Hot Jupiters, giant extrasolar planets with orbital periods shorter than ~10 days, have long been thought to form at large radial distances, only to subsequently experience long-range inward migration. Here, we propose that in contrast with this picture, a substantial fraction of the hot Jupiter population formed in situ via the core accretion process. We show that under conditions appropriate to the inner regions of protoplanetary disks, rapid gas accretion can be initiated by Super-Earth type planets, comprising 10-20 Earth masses of refractory composition material. An in situ formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional low-mass planets with periods shorter than ~100 days. Our calculations further demonstrate that dynamical interactions during the early stages of planetary systems' lifetimes should increase the inclinations of such companions, rendering transits rare. High-precision radial velocity monitoring p...

  7. Three spacecraft observe Jupiter's glowing polar regions

    Science.gov (United States)

    1996-09-01

    again in 1994, when the fragments of Comet Shoemaker-Levy 9 hit Jupiter in a spectacular series of events. The explosive impacts appeared to repress the auroral activity at the time, suggesting a remarkable effect of comet dust on the charged particles creating the aurorae in Jupiter's atmosphere. The new results on variability due to other causes will help astronomers to assess that effect more confidently. They will also compare the 1994 and 1996 IUE data to see how the atmosphere of Jupiter has recovered from the impacts. In Jupiter's vicinity IUE registered ultraviolet emissions from oxygen and sulphur atoms littering the orbit of Io, and probably released by volcanic emissions from that peculiar moon. This Io Torus is highly variable too. The record of its ultraviolet emissions, both within the 1996 campaign and in comparison with earlier observations, will help the astronomers to understand the reasons for the variations. A remarkable history The close scrutiny of Jupiter and its moons was the final astronomical task of IUE, before the termination of space operations on 30 September 1996. Over the past few months the IUE science team and collaborating astronomers in Europe have fulfilled a wish-list of important observations precluded by the intense demands on their ultraviolet space observatory throughout its life of nearly nineteen years. The observations in the final science programme confirmed and extended IUE's record, as the most reliable and productive astronomical satellite that ever flew. In March of this year the spacecraft was ailing, with only one of its six gyros still functioning, which severely limited the scope of its original mission. By skillful control and spacecraft engineering it went on harvesting new data, including prolonged observations of Comet Hyakutake. The concluding campaigns that began in April targeted the gamma-ray emitting "blazar" Markarian 421, various other active galaxies, and stellar winds, as well as Jupiter. "I am sad but

  8. Atmospheric Circulation on Hot Jupiters: Modeling and Observable Signatures

    Science.gov (United States)

    Rauscher, Emily Christine

    2010-12-01

    Hot Jupiters are unlike any planets in our Solar System and yet one of the most common types of extrasolar planet discovered. These gas giants orbit their parent stars with periods of a few days. Expected to be tidally locked into synchronous rotation, hot Jupiters experience intense, asymmetric heating from stellar irradiation, such that day-night temperature contrasts could reach hundreds of degrees Kelvin. This unique state of radiative forcing, as well as the slow rotation rates of these planets, places hot Jupiters within a new regime of atmospheric circulation. Hot Jupiters have also been the first type of extrasolar planet with direct detections of their atmospheres, through measurements of emitted, reflected, and transmitted light. This thesis investigates observational methods to distinguish between various atmospheric models, observational signatures of potential atmospheric variability, and presents a three dimensional model with which to study hot Jupiter circulation patterns. First, we find that eclipse mapping is a technique that can be used to image the day sides of these planets and although this is beyond the ability of current instruments, it will be achievable with future missions, such as the James Webb Space Telescope. Second, we consider the signatures of large-scale atmospheric variability in measurements of secondary eclipses and thermal orbital phase curves. For various models we predict the amount of variation in eclipse depth, and the amplitudes and detailed shapes of phase curves. Lastly, we develop a three-dimensional model of hot Jupiter atmospheric dynamics with simplified forcing and adopt a set-up nearly identical to work by another group to facilitate code inter-comparison. Our results are broadly consistent with theirs, with a transonic flow and the hottest region of the atmosphere advected eastward of the substellar point. However, we note important differences and identify areas of concern for future modeling efforts.

  9. Tilting Jupiter (a bit) and Saturn (a lot) During Planetary Migration

    CERN Document Server

    Vokrouhlicky, David

    2015-01-01

    We study the effects of planetary late migration on the gas giants obliquities. We consider the planetary instability models from Nesvorny & Morbidelli (2012), in which the obliquities of Jupiter and Saturn can be excited when the spin-orbit resonances occur. The most notable resonances occur when the $s_7$ and $s_8$ frequencies, changing as a result of planetary migration, become commensurate with the precession frequencies of Jupiter's and Saturn's spin vectors. We show that Jupiter may have obtained its present obliquity by crossing of the $s_8$ resonance. This would set strict constrains on the character of migration during the early stage. Additional effects on Jupiter's obliquity are expected during the last gasp of migration when the $s_7$ resonance was approached. The magnitude of these effects depends on the precise value of the Jupiter's precession constant. Saturn's large obliquity was likely excited by capture into the $s_8$ resonance. This probably happened during the late stage of planetary ...

  10. Jupiter's Moons: Family Portrait

    Science.gov (United States)

    2007-01-01

    This montage shows the best views of Jupiter's four large and diverse 'Galilean' satellites as seen by the Long Range Reconnaissance Imager (LORRI) on the New Horizons spacecraft during its flyby of Jupiter in late February 2007. The four moons are, from left to right: Io, Europa, Ganymede and Callisto. The images have been scaled to represent the true relative sizes of the four moons and are arranged in their order from Jupiter. Io, 3,640 kilometers (2,260 miles) in diameter, was imaged at 03:50 Universal Time on February 28 from a range of 2.7 million kilometers (1.7 million miles). The original image scale was 13 kilometers per pixel, and the image is centered at Io coordinates 6 degrees south, 22 degrees west. Io is notable for its active volcanism, which New Horizons has studied extensively. Europa, 3,120 kilometers (1,938 miles) in diameter, was imaged at 01:28 Universal Time on February 28 from a range of 3 million kilometers (1.8 million miles). The original image scale was 15 kilometers per pixel, and the image is centered at Europa coordinates 6 degrees south, 347 degrees west. Europa's smooth, icy surface likely conceals an ocean of liquid water. New Horizons obtained data on Europa's surface composition and imaged subtle surface features, and analysis of these data may provide new information about the ocean and the icy shell that covers it. New Horizons spied Ganymede, 5,262 kilometers (3,268 miles) in diameter, at 10:01 Universal Time on February 27 from 3.5 million kilometers (2.2 million miles) away. The original scale was 17 kilometers per pixel, and the image is centered at Ganymede coordinates 6 degrees south, 38 degrees west. Ganymede, the largest moon in the solar system, has a dirty ice surface cut by fractures and peppered by impact craters. New Horizons' infrared observations may provide insight into the composition of the moon's surface and interior. Callisto, 4,820 kilometers (2,995 miles) in diameter, was imaged at 03:50 Universal Time on

  11. Northern Belt of Jupiter

    Science.gov (United States)

    2000-01-01

    [figure removed for brevity, see original site] A four-panel frame shows a section of Jupiter's north equatorial belt viewed by NASA's Cassini spacecraft at four different wavelengths, and a separate reference frame shows the location of the belt on the planet.A fascinating aspect of the images in the four-panel frame is the small bright spot in the center of each. The images come from different layers of the atmosphere, so the spot appears to be a storm penetrating upward through several layers. This may in fact be a 'monster' thunderstorm, penetrating all the way into the stratosphere, as do some summer thunderstorms in the midwestern United States. These images were taken on Nov. 27, 2000, at a resolution of 192 kilometers (119 miles) per pixel. They have been contrast-enhanced to highlight features in the atmosphere.The top panel of the four-panel frame is an image taken in a near-infrared wavelength at which the gases in Jupiter's atmosphere are relatively non-absorbing. Sunlight can penetrate deeply into the atmosphere at this wavelength and be reflected back out, providing a view of an underlying region of the atmosphere, the lower troposphere.The second panel was taken in the blue portion of wavelengths detected by the human eye. At these wavelengths, gases in the atmosphere scatter a modest amount of sunlight, so the clouds we see tend to be at somewhat higher altitudes than in the top panel.The third panel shows near-infrared reflected sunlight at a wavelength where the gas methane, an important constituent of Jupiter's atmosphere, absorbs strongly. Dark places are regions without high-level clouds and consequently large amounts of methane accessible to sunlight. Bright regions are locations with high clouds in the upper troposphere shielding the methane below.The bottom panel was taken in the ultraviolet. At these very short wavelengths, the clear atmosphere scatters sunlight, and hazes in the stratosphere, above the troposphere, absorb sunlight. That

  12. The Photoeccentric Effect and Proto Hot Jupiters II. KOI-1474.01, an eccentric planet perturbed by an unseen companion

    CERN Document Server

    Dawson, Rebekah I; Morton, Timothy D; Crepp, Justin R; Fabrycky, Daniel C; Murray-Clay, Ruth A; Howard, Andrew W

    2012-01-01

    The exoplanets known as hot Jupiters---Jupiter-sized planets with periods less than 10 days---likely are relics of dynamical processes that shape all planetary system architectures. Socrates et al. (2012) argued that high eccentricity migration (HEM) mechanisms proposed for situating these close-in planets should produce an observable population of highly eccentric proto hot Jupiters that have not yet tidally circularized. HEM should also create failed hot Jupiters, with periapses just beyond the influence of fast circularization. Using the technique we previously presented for measuring eccentricities from photometry (the "photoeccentric effect"), we are distilling a collection of eccentric proto and failed hot Jupiters from the Kepler Objects of Interest (KOI). Here we present the first, KOI-1474.01, which has a long orbital period (69.7340 days) and a large eccentricity e = 0.81 +0.10/-0.07, skirting the proto hot Jupiter boundary. Combining Keplerphotometry, ground-based spectroscopy, and stellar evolutio...

  13. Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Gaudi, B; Bennett, D; Udalski, A; Gould, A; Christie, G; Maoz, D; Dong, S; McCormick, J; Szymanski, M; Tristram, P; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; DePoy, D; Han, C; Kaspi, S; Lee, C; Mallia, F; Natusch, T; Pogge, R; Park, B; Abe, F; Bond, I; Botzler, C; Fukui, A; Hearnshaw, J; Itow, Y; Kamiya, K; Korpela, A; Kilmartin, P; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N; Sako, T; Saito, T; Sato, S; Skuljan, L; Sullivan, D; Sumi, T; Sweatman, W; Yock, P; Albrow, M; Beaulieu, J; Burgdorf, M; Cook, K; Coutures, C; Dominik, M; Dieters, S; Fouque, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; Macintosh, B

    2007-11-08

    Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the first detection of a multiple-planet system with microlensing. We identify two planets with masses of {approx} 0.71 and {approx} 0.27 times the mass of Jupiter and orbital separations of {approx} 2.3 and {approx} 4.6 astronomical units orbiting a primary of mass {approx} 0.50 solar masses. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only 6 confirmed microlensing planet detections suggests that solar system analogs may be common.

  14. Hot-Jupiter Breakfasts Realign Stars

    Science.gov (United States)

    Kohler, Susanna

    2015-08-01

    Two researchers at the University of Chicago have recently developed a new theory to explain an apparent dichotomy in the orbits of planets around cool vs. hot stars. Their model proposes that the spins of cool stars are affected when they ingest hot Jupiters (HJs) early in their stellar lifetimes. A Puzzling Dichotomy: In exoplanet studies, there is a puzzling difference observed between planet orbits around cool and hot (those with Teff ≥ 6250 K) stars: the orbital planes of planets around cool stars are primarily aligned with the host star's spin, whereas the orbital planes of planets around hot stars seem to be randomly distributed. Previous attempts to explain this dichotomy have focused on tidal interactions between the host star and the planets observed in the system. Now Titos Matsakos and Arieh Königl have taken these models a step further — by including in their calculations not only the effects of observed planets, but also those of HJs that may have been swallowed by the star long before we observed the systems. Modeling Meals: Plots of the distribution of the obliquity λ for hot Jupiters around cool hosts (upper plot) and hot hosts (lower plot). The dashed line shows the initial distribution, the bins show the model prediction for the final distribution after the systems evolve, and the black dots show the current observational data. [Matsakos & Königl, 2015]" class="size-thumbnail wp-image-223" height="386" src="http://aasnova.org/wp-content/uploads/2015/08/fig22-260x386.png" width="260" /> Plots of the distribution of the obliquity λ for hot Jupiters around cool hosts (upper plot) and hot hosts (lower plot). The dashed line shows the initial distribution, the bins show the model prediction for the final distribution after the systems evolve, and the black dots show the current observational data. [Matsakos & Königl, 2015] The authors' model assumes that as HJs are formed and migrate inward through the protoplanetary disk, they stall out near

  15. K2 Warm Jupiters with the LCOGT TECH collaboration

    Science.gov (United States)

    Shporer, Avi; Bayliss, Daniel; Cochran, William D.; Colón, Knicole D.; Dragomir, Diana; Palle, Enric; Potter, Stephen; Siverd, Robert; LCOGT TECH Collaboration

    2016-06-01

    Many transiting gas giant planets on short orbital periods (so called hot Jupiters) have larger radii than theoretically expected. Although several explanations have been proposed, none have completely solved this puzzle. As the number of known transiting planets grew a correlation was identified between gas giant radius and the stellar incident flux. Still, it is not clear whether this correlation is causation. Several questions remain and answering them will characterize in more detail this observed correlation and in turn the process responsible for the inflated radii, such as: Is the lack of inflated warm Jupiters a robust feature? What is the incident flux below which there are no inflated gas giants? How low in incident flux does this correlation stretch? These questions arise since there are only a small number of transiting gas giants with low incident flux, below about 108 erg/s/cm2, corresponding to orbital periods of about 10 days and longer for a Sun-like host star. Discovering and confirming more transiting warm Jupiters is the goal of this project, undertaken by the LCOGT Transiting Exoplanet CHaracterization (TECH) team. We are using K2 as our main source of transiting warm Jupiter candidates, with a few candidates discovered in each K2 campaign. LCOGT telescopes are being used for obtaining additional ground-based transit light curves, which are critical for confirming and refining the K2 transit ephemeris as outliers during ingress or egress of the few transit events observed by K2 can bias the measured ephemeris. Further ground-based follow-up data, including spectroscopy, radial velocities, and high angular resolution imaging, are obtained by facilities directly accessible by LCOGT TECH team members. In addition, once LCOGT’s Network of Robotic Echelle Spectrographs (NRES) are deployed in the near future they will allow obtaining spectroscopy and radial velocities with LCOGT facilities. On top of studying the inflated hot Jupiter conundrum

  16. Jupiter Clouds in Depth

    Science.gov (United States)

    2000-01-01

    [figure removed for brevity, see original site] 619 nm [figure removed for brevity, see original site] 727 nm [figure removed for brevity, see original site] 890 nmImages from NASA's Cassini spacecraft using three different filters reveal cloud structures and movements at different depths in the atmosphere around Jupiter's south pole.Cassini's cameras come equipped with filters that sample three wavelengths where methane gas absorbs light. These are in the red at 619 nanometer (nm) wavelength and in the near-infrared at 727 nm and 890 nm. Absorption in the 619 nm filter is weak. It is stronger in the 727 nm band and very strong in the 890 nm band where 90 percent of the light is absorbed by methane gas. Light in the weakest band can penetrate the deepest into Jupiter's atmosphere. It is sensitive to the amount of cloud and haze down to the pressure of the water cloud, which lies at a depth where pressure is about 6 times the atmospheric pressure at sea level on the Earth). Light in the strongest methane band is absorbed at high altitude and is sensitive only to the ammonia cloud level and higher (pressures less than about one-half of Earth's atmospheric pressure) and the middle methane band is sensitive to the ammonia and ammonium hydrosulfide cloud layers as deep as two times Earth's atmospheric pressure.The images shown here demonstrate the power of these filters in studies of cloud stratigraphy. The images cover latitudes from about 15 degrees north at the top down to the southern polar region at the bottom. The left and middle images are ratios, the image in the methane filter divided by the image at a nearby wavelength outside the methane band. Using ratios emphasizes where contrast is due to methane absorption and not to other factors, such as the absorptive properties of the cloud particles, which influence contrast at all wavelengths.The most prominent feature seen in all three filters is the polar stratospheric haze that makes Jupiter bright near the pole

  17. Jupiter Eruptions Captured in Infrared

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers. This infrared image shows two bright plume eruptions obtained by the NASA Infrared Telescope Facility on April 5, 2007. Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena. According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vigorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  18. Elliptical instability in hot Jupiter systems

    CERN Document Server

    Cébron, David; Gal, Patrice Le; Moutou, Claire; Leconte, J; Sauret, Alban

    2013-01-01

    Several studies have already considered the influence of tides on the evolution of systems composed of a star and a close-in companion to tentatively explain different observations such as the spin-up of some stars with hot Jupiters, the radius anomaly of short orbital period planets and the synchronization or quasi-synchronization of the stellar spin in some extreme cases. However, the nature of the mechanism responsible for the tidal dissipation in such systems remains uncertain. In this paper, we claim that the so-called elliptical instability may play a major role in these systems, explaining some systematic features present in the observations. This hydrodynamic instability, arising in rotating flows with elliptical streamlines, is suspected to be present in both planet and star of such systems, which are elliptically deformed by tides. The presence and the influence of the elliptical instability in gaseous bodies, such as stars or hot Jupiters, are most of the time neglected. In this paper, using numeri...

  19. Thermal Processes Governing Hot-Jupiter Radii

    CERN Document Server

    Spiegel, David S

    2013-01-01

    There have been many proposed explanations for the larger-than-expected radii of some transiting hot Jupiters, including either stellar or orbital energy deposition deep in the atmosphere or deep in the interior. In this paper, we explore the important influences on hot-Jupiter radius evolution of (i) additional heat sources in the high atmosphere, the deep atmosphere, and deep in the convective interior; (ii) consistent cooling of the deep interior through the planetary dayside, nightside, and poles; (iii) the degree of heat redistribution to the nightside; and (iv) the presence of an upper atmosphere absorber inferred to produce anomalously hot upper atmospheres and inversions in some close-in giant planets. In particular, we compare the radius expansion effects of atmospheric and deep-interior heating at the same power levels and derive the power required to achieve a given radius increase when night-side cooling is incorporated. We find that models that include consistent day/night cooling are more simila...

  20. Broadband Linear Polarization of Jupiter Trojans

    CERN Document Server

    Bagnulo, S; Stinson, A; Christou, A; Borisov, G B

    2016-01-01

    Trojan asteroids orbit in the Lagrange points of the system Sun-planet-asteroid. Their dynamical stability make their physical properties important proxies for the early evolution of our solar system. To study their origin, we want to characterize the surfaces of Jupiter Trojan asteroids and check possible similarities with objects of the main belt and of the Kuiper Belt. We have obtained high-accuracy broad-band linear polarization measurements of six Jupiter Trojans of the L4 population and tried to estimate the main features of their polarimetric behaviour. We have compared the polarimetric properties of our targets among themselves, and with those of other atmosphere-less bodies of our solar system. Our sample show approximately homogeneous polarimetric behaviour, although some distinct features are found between them. In general, the polarimetric properties of Trojan asteroids are similar to those of D- and P-type main-belt asteroids. No sign of coma activity is detected in any of the observed objects. A...

  1. Hermes vehicle

    Science.gov (United States)

    Cretenet, J. C.

    1985-11-01

    The presence of Europe in the future developments of spatial programs, which are foreseen, for the 1990s and further, needs the availability of vehicles, modules and all related technologies adapted to operational use of low earth orbit station. The manned HERMES vehicle shall be part of the in-orbit infrastructure realized either in the European context or in cooperation between Europe and the United States. The main mission for this vehicle will be to run a shuttle with the station that means transport and change of the crews, its safe return in abort condition and cargo transport of consumable and experimental equipment. Secondary missions could be servicing on automatic platform, making autonomous scientific experiments. Lastly, the vehicle, by means of its on-board propulsion capability, could be used to accomplish in-orbit tow and assembly missions. Studies which are undertaken now about the vehicle are devoted to the aerodynamic shape (research of a compromise between aerothermic and overall fitting), the system (functional architecture, ground and flight configuration); further works dealing with technology are presently on hand in the field of thermal protection, aerodynamics, power generation with a high massic yield.

  2. Equatorial Oscillations in Jupiter's and Saturn's Atmospheres

    Science.gov (United States)

    Flasar, F. Michael; Guerlet, S.; Fouchet, T.; Schinder, P. J.

    2011-01-01

    Equatorial oscillations in the zonal-mean temperatures and zonal winds have been well documented in Earth's middle atmosphere. A growing body of evidence from ground-based and Cassini spacecraft observations indicates that such phenomena also occur in the stratospheres of Jupiter and Saturn. Earth-based midinfrared measurements spanning several decades have established that the equatorial stratospheric temperatures on Jupiter vary with a cycle of 4-5 years and on Saturn with a cycle of approximately 15 years. Spectra obtained by the Composite Infrared Spectrometer (CIRS) during the Cassini swingby at the end of 2000, with much better vertical resolution than the ground-based data, indicated a series of vertically stacked warm and cold anomalics at Jupiter's equator; a similar structurc was seen at Saturn's equator in CIRS limb measurements made in 2005, in the early phase of Cassini's orbital tour. The thermal wind equation implied similar patterns of mean zonal winds increasing and decreasing with altitude. On Saturn the peak-to-pcak amplitude of this variation was nearly 200 meters per second. The alternating vertical pattern of wanner and colder cquatorial tcmperatures and easterly and westerly tendencies of the zonal winds is seen in Earth's equatorial oscillations, where the pattern descends with time, The Cassini Jupiter and early Saturn observations were snapshots within a limited time interval, and they did not show the temporal evolution of the spatial patterns. However, more recent Saturn observations by CIRS (2010) and Cassini radio-occultation soundings (2009-2010) have provided an opportunity to follow the change of the temperature-zonal wind pattern, and they suggest there is descent, at a rate of roughly one scale height over four years. On Earth, the observed descent in the zonal-mean structure is associated with the absorption of a combination of vertically propagating waves with easlerly and westerly phase velocities. The peak-to-peak zonal wind

  3. Extended duration orbiter (EDO) insignia

    Science.gov (United States)

    1990-01-01

    Extended duration orbiter (EDO) insignia incorporates a space shuttle orbiter with payload bay doors (PLBDs) open and a spacelab module inside. Trailing the orbiter are the initials EDO. The EDO-modified Columbia, Orbiter Vehicle (OV) 102, will be flown for the first EDO mission, STS-50.

  4. Friends of Hot Jupiters I: A Radial Velocity Search for Massive, Long-Period Companions in Hot Jupiter Systems

    CERN Document Server

    Knutson, Heather A; Montet, Benjamin T; Kao, Melodie; Ngo, Henry; Howard, Andrew W; Crepp, Justin R; Hinkley, Sasha; Bakos, Gaspar A; Batygin, Konstantin; Johnson, John Asher; Morton, Timothy D; Muirhead, Philip S

    2013-01-01

    In this paper we search for distant massive companions to known transiting hot Jupiters that may have influenced the dynamical evolution of these systems. We present new radial velocity observations for a sample of 51 hot Jupiters obtained using the Keck HIRES instrument, and use these observations to search for long-term radial velocity accelerations. We find new, statistically significant accelerations in seven systems, including: HAT-P-10, HAT-P-20, HAT-P-22, HAT-P-29, HAT-P-32, WASP-10, and XO-2. We combine our radial velocity fits with Keck NIRC2 AO imaging data to place constraints on the allowed masses and orbital periods of the companions. The estimated masses of the companions range between 1-500 M_Jup, with orbital semi-major axes typically between 1-75 AU. A significant majority of the companions detected by our survey are constrained to have minimum masses comparable to or larger than those of the short-period hot Jupiters in these systems, making them candidates for influencing the orbital evolut...

  5. Jupiter's moon Io

    Science.gov (United States)

    1979-01-01

    This picture shows a special color reconstruction of one of the erupting volcanos on Io discovered by Voyager 1 during its encounter with Jupiter on the 4th and 5th of March. The picture was taken March 4 about 5:00 p.m. from a range of about half a million kilometers showing an eruption region on the horizon. This method of color analysis allows scientists to combine data from four pictures, taken in ultraviolet, blue, green and orange light. In this picture one can see the strong change in color of the erupting plume. The region that is brighter in ultraviolet light (blue in this image) is much more extensive than the denser, bright yellow region near the center of the eruption. Scientists will use data of this type to study the amount of gas and dust in the eruption and the size of dust particles. Preliminary analysis suggests that the bright ultraviolet part of the cloud may be due to scattered light from very fine particles (the same effect which makes smoke appear bluish).

  6. Jupiter's Hot, Mushy Moon

    Science.gov (United States)

    Taylor, G. Jeffrey

    2003-01-01

    Jupiter's moon Io is the most volcanically active body in the Solar System. Observations by instruments on the Galileo spacecraft and on telescopes atop Mauna Kea in Hawai'i indicate that lava flows on Io are surprisingly hot, over 1200 oC and possibly as much as 1300 oC; a few areas might have lava flows as hot as 1500 oC. Such high temperatures imply that the lava flows are composed of rock that formed by a very large amount of melting of Io's mantle. This has led Laszlo Keszthelyi and Alfred S. McEwen of the University of Arizona and me to reawaken an old hypothesis that suggests that the interior of Io is a partially-molten mush of crystals and magma. The idea, which had fallen out of favor for a decade or two, explains high-temperature hot spots, mountains, calderas, and volcanic plains on Io. If correct, Io gives us an opportunity to study processes that operate in huge, global magma systems, which scientists believe were important during the early history of the Moon and Earth, and possibly other planetary bodies as well. Though far from proven, the idea that Io has a ocean of mushy magma beneath its crust can be tested with measurements by future spacecraft.

  7. Radio observations of Jupiter-family comets

    CERN Document Server

    Crovisier, J; Bockelée-Morvan, D; Colom, P

    2008-01-01

    Radio observations from decimetric to submillimetric wavelengths are now a basic tool for the investigation of comets. Spectroscopic observations allow us i) to monitor the gas production rate of the comets, by directly observing the water molecule, or by observing secondary products (e.g., the OH radical) or minor species (e.g., HCN); ii) to investigate the chemical composition of comets; iii) to probe the physical conditions of cometary atmospheres: kinetic temperature and expansion velocity. Continuum observations probe large-size dust particles and (for the largest objects) cometary nuclei. Comets are classified from their orbital characteristics into two separate classes: i) nearly-isotropic, mainly long-period comets and ii) ecliptic, short-period comets, the so-called Jupiter-family comets. These two classes apparently come from two different reservoirs, respectively the Oort cloud and the trans-Neptunian scattered disc. Due to their different history and - possibly - their different origin, they may h...

  8. Rotational Properties of Jupiter Trojan 1173 Anchises

    Science.gov (United States)

    Chatelain, Joseph; Henry, Todd; French, Linda; Trilling, David

    2015-11-01

    Anchises (1173) is a large Trojan asteroid librating about Jupiter’s L5 Lagrange point. Here we examine its rotational and lightcurve properties by way of data collected over a 3.5 year observing campaign. The length of the campaign means that data were gathered for more than a quarter of Anchises' full orbital revolution which allows for accurate determinations of pole orientation and bulk shape properties for the asteroid that can then be compared to results of previous work (i.e. French 1987, Horner et al. 2012). In addition to light curves, photometric data taken during this campaign could potentially detect color differences between hemispheres as the viewing geometry changes over time. Understanding these details about a prominent member of the Jupiter Trojans may help us better understand the history of this fascinating and important group of asteroids.

  9. The Occurrence Rate of Hot Jupiters in the Kepler Field

    Science.gov (United States)

    Sinukoff, Evan; Howard, Andrew

    2013-07-01

    Using the latest Kepler data, we employ Bayesian statistical methods to measure an overall Hot Jupiter (HJ) occurrence rate of 5.8 ± 0.6 per thousand stars. We look for a deficit of HJs around cool stars with convective envelopes. Winn et al. (2010) suggest that HJs orbiting cool stars should be lost to tidal interactions with the stellar convective envelope. However, we find a slight decrease in occurrence rate around hotter stars, which have less massive convection zones. This suggests that orbital decay caused by tidal interactions with stellar convective envelopes does not typically lead to the destruction of HJs over stellar main sequence lifetimes.

  10. Migration of Jupiter-family comets and resonant asteroids to near-Earth space

    CERN Document Server

    Ipatov, S I

    2003-01-01

    We estimated the rate of comet and asteroid collisions with the terrestrial planets by calculating the orbits of 13000 Jupiter-crossing objects (JCOs) and 1300 resonant asteroids and computing the probabilities of collisions based on random-phase approximations and the orbital elements sampled with a 500 yr step. The Bulirsh-Stoer and a symplectic orbit integrator gave similar results for orbital evolution, but sometimes give different collision probabilities with the Sun. A small fraction of former JCOs reached orbits with aphelia inside Jupiter's orbit, and some reached Apollo orbits with semi-major axes less than 2 AU, Aten orbits, and inner-Earth orbits (with aphelia less than 0.983 AU) and remained there for millions of years. Though less than 0.1% of the total, these objects were responsible for most of the collision probability of former JCOs with Earth and Venus. Some Jupiter-family comets can reach inclinations i>90 deg. We conclude that a significant fraction of near-Earth objects could be extinct c...

  11. Temperature Swings in a Hot Jupiter's Atmosphere

    Science.gov (United States)

    Kohler, Susanna

    2016-04-01

    Weather variations in the atmosphere of a planet on a highly eccentric orbit are naturally expected to be extreme. Now, a study has directly measured the wild changes in the atmosphere of a highly eccentric hot Jupiter as it passes close to its host star.Diagram of the HD 80606 system. The inset images labeled AH show the temperature distribution of the planet at different stages as it swings around its star. [de Wit et al. 2016]Eccentric OpportunityFor a hot Jupiter a gas giant that orbits close to its host star the exoplanet HD 80606 b exhibits a fairly unusual path. Rather than having a circularized orbit, HD 80606 b travels on an extremely elliptic 111-day orbit, with an eccentricity of e ~ 0.93. Since the amount of flux HD 80606 b receives from its host varies by a factor of ~850 over the course of its orbit, it stands to reason that this planet must have extreme weather swings!Now a team of scientists led by Julien de Wit (Massachusetts Institute of Technology) has reanalyzed old observations of HD 80606 and obtained new ones using the Spitzer Space Telescope. The longer observing time and new data analysis techniques allowed the team to gain new insights into how the exoplanets atmosphere responds to changes in the stellar flux it receives during its orbit.Extreme VariationsBy measuring the infrared light coming from HD 80606, de Wit and collaborators modeled the planets temperature during 80 hours of its closest approach to its host star. This period of time included the ~20 hours in which most of the planets temperature change is expected to occur, as it approaches to a distance a mere 6 stellar radii from its host.The authors find that the layer of the atmosphere probed by Spitzer heats rapidly from 500K to 1400K (thats ~440F to a scalding 2000+F!) as the planet approaches periastron.The atmosphere then cools similarly quickly as the planet heads away from the star once more.Relative infrared brightness of HD 80606 b at 4.5 and 8 m. The dip marks where

  12. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D. [Institute for Astronomy, Royal Observatory Edinburgh, University of Edinburgh, Blackford Hill, Edinburgh (United Kingdom); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.

  13. Science of the Joint ESA-NASA Europa Jupiter System Mission (EJSM)

    Science.gov (United States)

    Blanc, Michel; Greeley, Ron

    2010-05-01

    The Europa Jupiter System Mission (EJSM), an international joint mission under study by NASA and ESA, has the overarching theme to investigate the emergence of habitable worlds around gas giants. Jupiter's diverse Galilean satellites—three of which are believed to harbor internal oceans—are the key to understanding the habitability of icy worlds. To this end, the reference mission architecture consists of the NASA-led Jupiter Europa Orbiter (JEO) and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO will execute a coordinated exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. JEO and JGO carry sets of complementary instruments, to monitor dynamic phenomena (such as Io's volcanoes and Jupiter's atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. Encompassed within the overall mission theme are two science goals, (1) Determine whether the Jupiter System harbors habitable worlds and (2) Characterize the processes within the Jupiter System. The science objectives addressed by the first goal are to: i) characterize and determine the extent of subsurface oceans and their relations to the deeper interior, ii) characterize the ice shells and any subsurface water, including the heterogeneity of the ice, and the nature of surface-ice-ocean exchange; iii) characterize the deep internal structure, differentiation history, and (for Ganymede) the intrinsic magnetic field; iv) compare the exospheres, plasma environments, and magnetospheric interactions; v) determine global surface composition and chemistry, especially as related to habitability; vi) understand the formation of surface features, including sites of recent or current activity, and identify and characterize candidate sites for future in situ exploration. The science objectives for addressed by the second goal are to: i) understand the

  14. Encouragement from Jupiter for Europe's Titan Probe

    Science.gov (United States)

    1996-04-01

    Huygens will transmit scientific information for 150 minutes, from the outer reaches of Titan's cold atmosphere and all the way down to its enigmatic surface. For comparison, the Jupiter Probe radioed scientific data for 58 minutes as it descended about 200 kilometres into the outer part of the atmosphere of the giant planet. The parachutes controlling various stages of Huygens' descent will rely upon a system for deployment designed and developed in Europe that is nevertheless similar to that used by the Jupiter Probe. The elaborate sequence of operations in Huygens worked perfectly during a dramatic drop test from a stratospheric balloon over Sweden in May 1995, which approximated as closely as possible to events on Titan. The performance of the American Probe at Jupiter renews the European engineers' confidence in their own descent control system, and also in the lithium sulphur-dioxide batteries which were chosen to power both Probes. "The systems work after long storage in space," comments Hamid Hassan, ESA's Project Manager for Huygens. "Huygens will spend seven years travelling to Saturn's vicinity aboard the Cassini Orbiter. The Jupiter Probe was a passenger in Galileo for six years before its release, so there is no reason to doubt that Huygens will work just as well." Huygens will enter the outer atmosphere of Titan at 20,000 kilometres per hour. A heat shield 2.7 metres in diameter will withstand the friction and slow the Probe to a speed at which parachutes can be deployed. The size of the parachute for the main phase of the descent is chosen to allow Huygens to reach the surface in about 2 hours. The batteries powering Huygens will last for about 21/2 hours. Prepared for surprises A different perspective on the Jupiter Probe comes from Jean-Pierre Lebreton, ESA's Project Scientist for Huygens. The results contradicted many preconceptions of the Galileo scientists, particularly about the abundance of water and the structure of cloud layers. Arguments

  15. Types of Hot Jupiter Atmospheres

    Science.gov (United States)

    Bisikalo, Dmitry V.; Kaygorodov, Pavel V.; Ionov, Dmitry E.; Shematovich, Valery I.

    Hot Jupiters, i.e. exoplanet gas giants, having masses comparable to the mass of Jupiter and semimajor axes shorter than 0.1 AU, are a unique class of objects. Since they are so close to the host stars, their atmospheres form and evolve under the action of very active gas dynamical processes caused by the gravitational field and irradiation of the host star. As a matter of fact, the atmospheres of several of these planets fill their Roche lobes , which results in a powerful outflow of material from the planet towards the host star. The energy budget of this process is so important that it almost solely governs the evolution of hot Jupiters gaseous envelopes. Based on the years of experience in the simulations of gas dynamics in mass-exchanging close binary stars, we have investigated specific features of hot Jupiters atmospheres. The analytical estimates and results of 3D numerical simulations, discussed in this Chapter, show that the gaseous envelopes around hot Jupiters may be significantly non-spherical and, at the same time, stationary and long-lived. These results are of fundamental importance for the interpretation of observational data.

  16. Jupiter and Saturn Rotation Periods

    CERN Document Server

    Helled, Ravit; Anderson, John D

    2009-01-01

    Anderson & Schubert (2007, Science,317,1384) proposed that Saturn's rotation period can be ascertained by minimizing the dynamic heights of the 100 mbar isosurface with respect to the geoid; they derived a rotation period of 10h 32m 35s. We investigate the same approach for Jupiter to see if the Jovian rotation period is predicted by minimizing the dynamical heights of its isobaric (1 bar pressure level) surface using zonal wind data. A rotation period of 9h 54m 29s is found. Further, we investigate the minimization method by fitting Pioneer and Voyager occultation radii for both Jupiter and Saturn. Rotation periods of 9h 55m 30s and 10h 32m 35s are found to minimize the dynamical heights for Jupiter and Saturn, respectively. Though there is no dynamical principle requiring the minimization of the dynamical heights of an isobaric surface, the successful application of the method to Jupiter lends support to its relevance for Saturn. We derive Jupiter and Saturn rotation periods using equilibrium theory in ...

  17. Could Jupiter or Saturn Have Ejected a Fifth Giant Planet?

    CERN Document Server

    Cloutier, Ryan; Valencia, Diana

    2015-01-01

    Models of the dynamical evolution of the early solar system following the dispersal of the gaseous protoplanetary disk have been widely successful in reconstructing the current orbital configuration of the giant planets. Statistically, some of the most successful dynamical evolution simulations have initially included a hypothetical fifth giant planet, of ice giant mass, which gets ejected by a gas giant during the early solar system's proposed instability phase. We investigate the likelihood of an ice giant ejection event by either Jupiter or Saturn through constraints imposed by the current orbits of their wide-separation regular satellites Callisto and Iapetus respectively. We show that planetary encounters that are sufficient to eject an ice giant, often provide excessive perturbations to the orbits of Callisto and Iapetus making it difficult to reconcile a planet ejection event with the current orbit of either satellite. Quantitatively, we compute the likelihood of reconciling a regular Jovian satellite ...

  18. Mitigating bias in testing the origins of warm Jupiters via constraints on transit duration variations

    Science.gov (United States)

    Dawson, Rebekah Ilene

    2017-01-01

    Warm Jupiters are a mysterious class of giant planet in ~10-100 day orbits whose origins are debated. Many have intermediate eccentricities too high to have been excited by planet-disk interactions or planet-planet scattering following in situ formation or disk migration but too low for the warm Jupiter to be currently undergoing high eccentricity tidal migration. Nearby planets on mutually inclined orbits can cause modulated eccentricity oscillations that periodically drive these warm Jupiters to eccentricities large enough for tidal migration. For transiting warm Jupiters, we can place constraints on the presence of such nearby, mutually inclined perturbers from detection of or limits on transit duration variations. The transit duration variation is caused by precession of the warm Jupiter's longitude of ascending node that changes the impact parameter from transit to transit. I show that such changes are commonly of the magnitude to be detectable in the Kepler data. However, I demonstrate that allowing the impact parameter to vary from transit to transit while keeping the planet-star separation constant biases the change in impact parameter to larger values and also results in underestimated uncertainties in the planet's eccentricity via the photoeccentric effect. I present an approach for mitigating this bias when assessing constraints on transit duration variations for individual systems and statistically for the entire population of warm Jupiters to test theories for their origins.

  19. Gravimetry, rotation and angular momentum of Jupiter from the Juno Radio Science experiment

    Science.gov (United States)

    Serra, D.; Dimare, L.; Tommei, G.; Milani, A.

    2016-12-01

    Juno is a NASA space mission to Jupiter, arriving at the planet in July 2016. Through accurate Doppler tracking in X and Ka-band, the Radio Science experiment will allow to map Jupiter's gravity field, crucial for the study of the interior structure of the planet. In this paper we describe the results of numerical simulations of this experiment, performed with the ORBIT14 orbit determination software, developed by the Department of Mathematics of the University of Pisa and by the spin-off Space Dynamics Services srl. Our analysis included the determination of Jupiter's gravity field, the Love numbers, the direction of the rotation axis and the angular momentum magnitude, the latter by measuring the Lense-Thirring effect on the spacecraft. As far as the gravity field is concerned, the spherical harmonics coefficients of Jupiter's gravitational potential are highly correlated and the accuracy in the determination of the zonal coefficients of degree ℓ is degraded for ℓ > 15 . We explore the possibility of using a local model, introducing ring-shaped mascons, so as to determine the gravity field of the portion of the spherical surface bounded by latitudes 6°N and 35°N, the latitude belt observed during Juno's pericenter passes. Finally, the determination of Jupiter's angular momentum magnitude turned out to be compromised by the impossibility of separating the effects of the Lense-Thirring acceleration and of a change in Jupiter's rotation axis direction.

  20. Comet Shoemaker-Levy 9/Jupiter collision observed with a high resolution speckle imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Gravel, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    During the week of July 16, 1994, comet Shoemaker-Levy 9, broken into 20 plus pieces by tidal forces on its last orbit, smashed into the planet Jupiter, releasing the explosive energy of 500 thousand megatons. A team of observers from LLNL used the LLNL Speckle Imaging Camera mounted on the University of California`s Lick Observatory 3 Meter Telescope to capture continuous sequences of planet images during the comet encounter. Post processing with the bispectral phase reconstruction algorithm improves the resolution by removing much of the blurring due to atmospheric turbulence. High resolution images of the planet surface showing the aftermath of the impact are probably the best that were obtained from any ground-based telescope. We have been looking at the regions of the fragment impacts to try to discern any dynamic behavior of the spots left on Jupiter`s cloud tops. Such information can lead to conclusions about the nature of the comet and of Jupiter`s atmosphere. So far, the Hubble Space Telescope has observed expanding waves from the G impact whose mechanism is enigmatic since they appear to be too slow to be sound waves and too fast to be gravity waves, given the present knowledge of Jupiter`s atmosphere. Some of our data on the G and L impact region complements the Hubble observations but, so far, is inconclusive about spot dynamics.

  1. I0-Jupiter system A unique case of Moon-Planet interaction

    CERN Document Server

    Bhardwaj, A I

    2002-01-01

    Io and Jupiter constitute a moon-planet system that is unique in our solar system. Io is the most volcanically active planetary body, while Jupiter is the first among the planets in terms of size, mass, magnetic field strength, spin rate, and volume of the magnetosphere. That Io is electrodynamically linked to Jupiter is known for nearly four decades from the radio emissions. Io influences Jupiter by supplying heavy ions to its magnetosphere, which dominates its energetic and dynamics. Jupiter influences Io by tidally heating its interior, which in turn drives the volcanic activity on Io. The role of Io and Jupiter in their mutual interaction and the nature of their coupling were first elaborated in greater detail by the two Voyagers flybys in 1979. Subsequent exploration of this system by ground-based and Earth-satellite-borne observatories and by the Galileo orbiter mission has improved our understanding of the highly complex electrodynamical interaction between Io and Jupiter many fold. A distinct feature ...

  2. The Europa Jupiter System Mission: Synergistic Science Enabled by JEO and JGO

    Science.gov (United States)

    Senske, D. A.; Pappalardo, R. T.; Prockter, L. M.; Lebreton, J.; Greeley, R.; Bunce, E. J.; Dougherty, M. K.; Grasset, O.; Titov, D.

    2010-12-01

    The Europa Jupiter System Mission (EJSM), a joint mission under study by NASA and ESA, has the overarching theme: The emergence of habitable worlds around gas giants. This mission would consist of two major flight elements, the NASA-led Jupiter Europa Orbiter (JEO) and the ESA-led Jupiter Ganymede Orbiter (JGO). The science which could be achieved by EJSM centers around three goals: (1) Explore Europa to investigate its habitability (JEO-focus); (2) Characterize Ganymede as a planetary object including its potential habitability (JGO-focus) and (3) Explore the Jupiter system as an archetype for gas giants (JEO + JGO). The last goal would be addressed primarily during the tour phase of the mission, lasting upwards of 2.5-years, whereby each spacecraft would perform multiple, Galilean satellite fly-bys and make measurements of Jupiter and the Jupiter system. The EJSM Jupiter baseline tour would provide abundant opportunities to perform coordinated Jupiter system science, including fields and particles/magnetometer observations; Jupiter atmosphere monitoring; Io monitoring; spacecraft-to-spacecraft radio occultations of various targets; Galilean satellite flybys; and distant observations of the Galilean moons, small moons, and rings. In realm of understanding the Jovian environment, fields and particles/magnetometer measurements could be carried out nearly continuously, providing unique multipoint measurements of the time-dependent three-dimensional structure of the magnetosphere. In terms of understanding the structure and dynamics of the Jupiter atmosphere, it would be possible to perform coordinated, long-duration (20+ hours), observations over regular periods to monitor weather and understand the behavior of individual storm systems. In a similar manner, regular monitoring of volcanic activity at Io would make it possible to assess the variability in levels of volcanic activity, characterize plume structure, and aid in determining heat flow and transport. Unique

  3. The Solar Twin Planet Search II. A Jupiter twin around a solar twin

    CERN Document Server

    Bedell, M; Bean, J L; Ramirez, I; Asplund, M; Alves-Brito, A; Casagrande, L; Dreizler, S; Monroe, T; Spina, L; Maia, M Tucci

    2015-01-01

    Through our HARPS radial velocity survey for planets around solar twin stars, we have identified a promising Jupiter twin candidate around the star HIP11915. We characterize this Keplerian signal and investigate its potential origins in stellar activity. Our analysis indicates that HIP11915 hosts a Jupiter-mass planet with a 3600-day orbital period and low eccentricity. Although we cannot definitively rule out an activity cycle interpretation, we find that a planet interpretation is more likely based on a joint analysis of RV and activity index data. The challenges of long-period radial velocity signals addressed in this paper are critical for the ongoing discovery of Jupiter-like exoplanets. If planetary in nature, the signal investigated here represents a very close analog to the solar system in terms of both Sun-like host star and Jupiter-like planet.

  4. Re-inflated Warm Jupiters Around Red Giants

    CERN Document Server

    Lopez, Eric D

    2015-01-01

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general however, these models can be grouped into two broad categories: 1) models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and 2) models that simply slow a planet's radiative cooling allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post main sequence stars will experience enormous increases their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupite...

  5. The Effect of Stellar Evolution on Migrating Warm Jupiters

    CERN Document Server

    Frewen, Shane

    2015-01-01

    Warm jupiters are an unexpected population of extrasolar planets that are too near to their host to have formed in situ, but distant enough to retain a significant eccentricity in the face of tidal damping. These planets are curiously absent around stars larger than two solar radii. We hypothesize that the warm jupiters are migrating due to Kozai-Lidov oscillations, which leads to transient episodes of high eccentricity and a consequent tidal decay. As their host evolves, such planets would be rapidly dragged in or engulfed at minimum periapse, leading to a rapid depletion of the population with increasing stellar radius, as is observed. Using numerical simulations, we determine the relationship between periapse distance and orbital migration rate for planets 0.1 to 10 Jupiter masses and with orbital periods between 10 and 100 days. We find that Kozai-Lidov oscillations effectively result in planetary removal early in the evolution of the host star, possibly accounting for the observed deficit. While the obse...

  6. ON THE FORMATION OF HOT JUPITERS IN STELLAR BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Naoz, Smadar [Harvard Smithsonian Center for Astrophysics, Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States); Farr, Will M.; Rasio, Frederic A. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208 (United States)

    2012-08-01

    We study the production of hot Jupiters (HJs) in stellar binaries. We show that the 'eccentric Kozai-Lidov' (EKL) mechanism can play a key role in the dynamical evolution of a star-planet-star triple system. We run a large set of Monte Carlo simulations including the secular evolution of the orbits, general relativistic precession, and tides, and we determine the semimajor axis, eccentricity, inclination, and spin-orbit angle distributions of the HJs that are produced. We explore the effect of different tidal friction parameters on the results. We find that the efficiency of forming HJs when taking the EKL mechanism into account is higher then previously estimated. Accounting for the frequency of stellar binaries, we find that this production mechanism can account for about 30% of the observed HJ population. Current observations of spin-orbit angles are consistent with this mechanism producing {approx}30% of all HJs, and up to 100% of the misaligned systems. Based on the properties of binaries without an HJ in our simulations, we predict the existence of many Jupiter-like planets with moderately eccentric and inclined orbits and semimajor axes of several AU.

  7. On the Formation of Hot Jupiters in Stellar Binaries

    Science.gov (United States)

    Naoz, Smadar; Farr, Will M.; Rasio, Frederic A.

    2012-08-01

    We study the production of hot Jupiters (HJs) in stellar binaries. We show that the "eccentric Kozai-Lidov" (EKL) mechanism can play a key role in the dynamical evolution of a star-planet-star triple system. We run a large set of Monte Carlo simulations including the secular evolution of the orbits, general relativistic precession, and tides, and we determine the semimajor axis, eccentricity, inclination, and spin-orbit angle distributions of the HJs that are produced. We explore the effect of different tidal friction parameters on the results. We find that the efficiency of forming HJs when taking the EKL mechanism into account is higher then previously estimated. Accounting for the frequency of stellar binaries, we find that this production mechanism can account for about 30% of the observed HJ population. Current observations of spin-orbit angles are consistent with this mechanism producing ~30% of all HJs, and up to 100% of the misaligned systems. Based on the properties of binaries without an HJ in our simulations, we predict the existence of many Jupiter-like planets with moderately eccentric and inclined orbits and semimajor axes of several AU.

  8. The sculpting of Jupiter's gossamer rings by its shadow.

    Science.gov (United States)

    Hamilton, Douglas P; Krüger, Harald

    2008-05-01

    Dust near Jupiter is produced when interplanetary impactors collide energetically with small inner moons, and is organized into a main ring, an inner halo, and two fainter and more distant gossamer rings. Most of these structures are constrained by the orbits of the moons Adrastea, Metis, Amalthea and Thebe, but a faint outward protrusion called the Thebe extension behaves differently and has eluded understanding. Here we report on dust impacts detected during the Galileo spacecraft's traversal of the outer ring region: we find a gap in the rings interior to Thebe's orbit, grains on highly inclined paths, and a strong excess of submicrometre-sized dust just inside Amalthea's orbit. We present detailed modelling that shows that the passage of ring particles through Jupiter's shadow creates the Thebe extension and fully accounts for these Galileo results. Dust grains alternately charge and discharge when traversing shadow boundaries, allowing the planet's powerful magnetic field to excite orbital eccentricities and, when conditions are right, inclinations as well.

  9. The STARE Project A Transit Search for Hot Jupiters

    CERN Document Server

    Brown, T M; Brown, Timothy M.; Charbonneau, David

    2000-01-01

    The STARE instrument is a small aperture, wide-field, CCD-based telescope that delivers high cadence time series photometry on roughly 40,000 stars in a typical field centered on the galactic plane. In a two-month observing run on a field, we obtain sufficient precision on roughly 4,000 stars to detect a close-in Jupiter-sized companion in an edge-on orbit. We also used this instrument to detect the planetary transits across the Sun-like star HD209458. The project is now in its third season, and we have acquired a large dataset on several fields. Given the frequency of close-in extrasolar planets found by the radial velocity surveys, and the recent confirmation that at least some of these are indeed gas giants, the STARE project should be able to detect roughly a dozen Jupiter-sized planets in its existing dataset.

  10. Secular Chaos and the Production of Hot Jupiters

    CERN Document Server

    Wu, Yanqin

    2010-01-01

    In a planetary system with two or more well-spaced, eccentric, inclined planets, secular interactions may lead to chaos. The innermost planet may gradually become very eccentric and/or inclined, as a result of the secular degrees of freedom drifting towards equipartition of angular momentum deficit. Secular chaos is known to be responsible for the eventual destabilization of Mercury in our own Solar System. Here we focus on systems with three giant planets. We characterize the secular chaos and demonstrate the criterion for it to occur, but leave a detailed understanding of secular chaos to a companion paper (Lithwick & Wu, 2010). After an extended period of eccentricity diffusion, the inner planet's pericentre can approach the star to within a few stellar radii. Strong tidal interactions and ensuing tidal dissipation extracts orbital energy from the planet and pulls it inward, creating a hot Jupiter. In contrast to other proposed channels for the production of hot Jupiters, such a scenario (which we term...

  11. Models of Warm Jupiter Atmospheres: Observable Signatures of Obliquity

    Science.gov (United States)

    Rauscher, Emily

    2017-09-01

    We present three-dimensional atmospheric circulation models of a hypothetical “warm Jupiter” planet, for a range of possible obliquities from 0° to 90°. We model a Jupiter-mass planet on a 10 day orbit around a Sun-like star, since this hypothetical planet sits at the boundary between planets for which we expect that tidal forces should have aligned their rotation axes with their orbital axes (i.e., ones with zero obliquity) and planets whose timescale for tidal alignment is longer than the typical age of an exoplanet system. In line with observational progress, which is pushing atmospheric characterization for planets on longer orbital periods, we calculate the observable signatures of obliquity for a transiting warm Jupiter: in orbital phase curves of thermal emission and in the hemispheric flux gradients that could be measured by eclipse mapping. For both of these predicted measurements, the signal that we would see depends strongly on our viewing geometry relative to the orientation of the planet’s rotation axis, and we thoroughly identify the degeneracies that result. We compare these signals to the predicted sensitivities of current and future instruments and determine that the James Webb Space Telescope should be able to constrain the obliquities of nearby warm Jupiters to be small (if ≤slant 10^\\circ ) or to directly measure them if significantly non-zero (≥slant 30^\\circ ) using the technique of eclipse mapping. For a bright target and assuming photon-limited precision, this could be done with a single secondary eclipse observation.

  12. Stability of Frozen Orbits Around Europa

    Science.gov (United States)

    Cardoso Dos Santos, Josué; Vilhena de Moraes, R.; Carvalho, J. S.

    2013-05-01

    Abstract (2,250 Maximum Characters): A planetary satellite of interest at the present moment for the scientific community is Europa, one of the four largest moons of Jupiter. There are some missions planned to visit Europa in the next years, for example, Jupiter Europa Orbiter (JEO, NASA) and Jupiter IcyMoon Explorer (JUICE, ESA). In this work we are formulating theories and constructing computer programs to be used in the design of aerospace tasks as regards the stability of artificial satellite orbits around planetary satellites. The studies are related to translational motion of orbits around planetary satellites considering polygenic perturbations due to forces, such as the nonspherical shape of the central body and the perturbation of the third body. The equations of motion will be developed in closed form to avoid expansions in eccentricity and inclination. For a description of canonical formalism are used the Delaunay canonical variables. The canonical set of equations, which are nonlinear differential equations, will be used to study the stability of orbits around Europa. We will use a simplified dynamic model, which considers the effects caused by non-uniform distribution of mass of Europa (J2, J3 and C22) and the gravitational attraction of Jupiter. Emphasis will be given to the case of frozen orbits, defined as having almost constant values of eccentricity, inclination, and argument of pericentre. An approach will be used to search for frozen orbits around planetary satellites and study their stability by applying a process of normalization of Hamiltonian. Acknowledges: FAPESP

  13. On the Behavior of the Galilean Satellites in the Jumping Jupiter Scenario

    Science.gov (United States)

    Deienno, Rogerio; Nesvorný, D.; Yokoyama, T.

    2013-10-01

    The Nice model of the dynamical instability and migration of the giant planets can explain many properties of our present Solar System, and can be used to constrain its early architecture. In the jumping Jupiter version of the Nice model, required from the terrestrial planet constrains, Jupiter is involved in encounters with an ice giant. Here we study the survival of the Galilean satellites in the jumping Jupiter model. This is an important concern because the ice giant encounters, if deep enough, could dynamically interfere with the orbits of the Galilean satellites, and lead to implausible results. The jumping Jupiter models are taken from Nesvorný and Morbidelli 2012 (NM12). Our metodology in this study take into account the effects of the Sun, Jupiter's oblateness and obliquity, as well as the planetary close encounters tracked in NM12 upon the Galilean moons. We considered three instability cases that differed in the number and distribution of ice giant encounters with Jupiter. In each case, we considered 1000 realizations of the Galilean satellite system before the instability, and integrated the dynamical response of satellite orbits to ice giant encounters. We found that in one of the considered cases, where the number of close encounters was relatively small, the Galilean satellite orbits were not significantly disturbed. In the other two, the final orbital eccentricities were [0-0.2], and Callisto's semi-major axis ended within [22-30]Rj, while the other satellites kept their semi-major axis nearly constant. As Callisto's semi-major axis may vary as much, we also hint on the possibility that all four Galilean satellites were originally formed in a Laplace resonance, and Callisto was kicked out of it by encounters. These results: i) show that Galilean satellites are an important constrain on the planetary instability; ii) can check on the possibility to the Galilean system have been formed in a different configuration of seen today. Acknowledgement

  14. Warm Jupiters Need Close "Friends" for High-Eccentricity Migration -- A Stringent Upper Limit on the Perturber's Separation

    CERN Document Server

    Dong, Subo; Socrates, Aristotle

    2013-01-01

    We propose a stringent observational test on the formation of warm Jupiters (gas-giant planets with 10d ~ 50% of those with large eccentricities (e>0.4) have known close Jovian companions satisfying the constraint required for high-e migration. In contrast, <~ 20% of the low-e (e<0.2) warm Jupiters have detected additional Jovian companions, implying that high-e migration with planetary perturbers is not the dominant channel in forming such planets. Complete, long-term RV follow-ups of the warm-Jupiter population will allow a firm upper limit to be put on the fraction of these planets formed by high-e migration. In the future, transiting warm Jupiters suitable for spin-orbit alignment measurements are expected to be discovered, and mis-aligned warm Jupiters will be particularly interesting candidates to apply our observational test. If the spin-orbit misalignments detected for transiting hot Jupiters are solely due to high-e migration as commonly suggested, we expect that the majority of warm Jupiters w...

  15. Survey of Galileo Plasma Observations in Jupiter's Plasma Sheet

    Science.gov (United States)

    Bagenal, Fran; Wilson, Robert J.; Siler, Scott; Paterson, William R.; Kurth, William S.

    2016-01-01

    The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from approx. 2 to 3000 cm(exp.-3) at 6R(sub j) to approx. 0.05cm(sub -3) at 30 R(sub j). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where TI is approx.60-80 eV) at approx. 6R(sub j) to a few keV at 30R(sub j).There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System Ill variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R(sub j).

  16. Visible spectral slope survey of Jupiter Trojans

    Science.gov (United States)

    Erasmus, Nicolas; Rivkin, Andrew S.; Sickafoose, Amanda A.

    2016-10-01

    Jupiter's Trojans are predicted by the Nice Model [1,2] to be Trans-Neptunian Objects (TNOs) that moved from 30+ AU to 5.2 AU during the early evolution period of the Solar System. This model, predicting giant planet migration and widespread transport of material throughout the Solar System, is however still lacking important constraints. Correlations between the composition, size, and orbital geometry of Jupiter's Trojans can provide additional information to test predicted migration and evolution models.Two main colour groups have been observed, roughly equivalent to the C (plus low-albedo X) and D classes with distinguishable spectral slopes, and one interpretation is that the two groups have different compositions [3]. Independent compositions together with hints of differing orbital inclination distributions could imply separate formation locations; therefore, determining the relative fractions of C and D asteroids at different sizes would provide a key test for Solar System dynamical models. However, there is a caveat: the distinct colour groups could also arise by other means. Regolith processes or "space weathering" such as micrometeorite impacts and UV irradiation of ice are also plausible explanations for a range of spectrographic slopes from C-like to D-like [4].Here we report on our latest survey observations at Sutherland, South Africa of approximately 50 Trojan targets using the Sutherland High Speed Optical Camera (SHOC) [5] on the 74" telescope. These observations are part of a larger multi-telescope survey to determine the spectral slopes (C-like or D-like) for multiple Trojans, focusing on those of small size. These slopes can be used to determine the relative fraction of C+X and D asteroids at different sizes to determine whether what is seen is more consistent with regolith processes or different compositions.References:[1] A. Morbidelli, et al. Nature, 435, 462-465, (2005)[2] R. Gomes, et al. Nature 435, 466-469 (2005)[3] J.P. Emery, et al. The

  17. Observing Strategies for the Detection of Jupiter Analogs

    CERN Document Server

    Wittenmyer, Robert A; Butler, R P; Jones, H R A; O'Toole, S J; Bailey, J; Carter, B D; Salter, G S; Wright, D

    2013-01-01

    To understand the frequency, and thus the formation and evolution, of planetary systems like our own solar system, it is critical to detect Jupiter-like planets in Jupiter-like orbits. For long-term radial-velocity monitoring, it is useful to estimate the observational effort required to reliably detect such objects, particularly in light of severe competition for limited telescope time. We perform detailed simulations of observational campaigns, maximizing the realism of the sampling of a set of simulated observations. We then compute the detection limits for each campaign to quantify the effect of increasing the number of observational epochs and varying their time coverage. We show that once there is sufficient time baseline to detect a given orbital period, it becomes less effective to add further time coverage -- rather, the detectability of a planet scales roughly as the square root of the number of observations, independently of the number of orbital cycles included in the data string. We also show tha...

  18. Tidal dissipation within hot Jupiters: a new appraisal

    CERN Document Server

    Levrard, B; Chabrier, G; Baraffe, I; Selsis, F; Laskar, J; Levrard, Benjamin; Correia, Alexandre Morgado; Chabrier, Gilles; Baraffe, Isabelle; Selsis, Franck; Laskar, Jacques

    2006-01-01

    Eccentricity or obliquity tides have been proposed as the missing energy source that may explain the anomalously large radius of some transiting ``hot Jupiters''. To maintain a non-zero and large obliquity, it was argued that the planets can be locked in a Cassini state, i.e. a resonance between spin and orbital precessions. We compute the tidal heating within ``inflated'' close-in giant planets with a non-zero eccentricity or obliquity. We further inspect whether the spin of a ``hot Jupiter'' could have been trapped and maintained in a Cassini state during its early despinning and migration. We estimate the capture probability in a spin-orbit resonance between $\\sim$ 0.5 AU (a distance where tidal effects become significant) and 0.05 AU for a wide range of secular orbital frequencies and amplitudes of gravitational perturbations. Numerical simulations of the spin evolution are performed to explore the influence of tidal despinning and migration processes on the resonance stability. We find that tidal heating...

  19. Jupiter's Role in Sculpting the Early Solar System

    Science.gov (United States)

    Naoz, Smadar

    2015-03-01

    Recent observations made by the Kepler space mission, combined with statistical analysis of existing ground and space-based data, have shown that planets somewhat bigger than the Earth - but substantially smaller than Jupiter - ;are extremely common in our Galaxy (1-4). These systems are typically found to be tightly packed, nearly coplanar, and have nearly circular orbits. Furthermore, these planets tend to have very short-period orbits, ranging from days to months. In contrast, our innermost planet, Mercury, orbits the Sun once every 88 d. Thus, taken at face value, these observations imply that the architecture of our Solar System is unique compared with the galactic population. In other words, why are there no short-period planets in our Solar System? In PNAS, Batygin and Laughlin (5) demonstrate that Jupiter is to blame. In particular, Jupiter's inward-followed-by-outward migration during the Solar System's early evolution could have driven a collisional cascade that would grind planetesimals to smaller size. Gas drag, which dominates these small planetesimals, may then have driven preexisting short-period planets into the Sun. Thus, Batygin and Laughlin (5) suggest that the terrestrial planets in our Solar System are in fact "second-generation planets," which formed after the first short-period planets were destroyed, in mass-dispersed, gas-depleted conditions (see Fig. 1 for the description of the scenario). The developed model suggests that systems with short-period Earth and super-Earth planets are anticorrelated with the existence of giant planets within the same system.

  20. A fireball in Jupiter's atmosphere

    Science.gov (United States)

    Cook, A. F.; Duxbury, T. C.

    1981-01-01

    One fireball was photographed during two encounters with Jupiter. Its total luminosity was 120,000 0 mag s (at standard range 100 km). If the luminous efficiency proposed by Cook et al. (1981) for slip flow of a meteoroid in its own vapors is employed, an estimated mass of 11 kg is obtained. A rough absolute magnitude is -12.5. If it is noted that the search was conducted for a total of 223 s during two exposures, a number density near Jupiter of 10 to the -28th/cu cm is estimated for masses of meteoroids of 3 kg and greater. This value is about a factor of six smaller than a rough upper limit reached from an extrapolation from terrestrial observations of meteors and comets.

  1. Thermometric Soots on Hot Jupiters?

    CERN Document Server

    Zahnle, K; Fortney, J J

    2009-01-01

    We use a 1D thermochemical and photochemical kinetics model to predict that the stratospheric chemistry of hot Jupiters should change dramatically as temperature drops from 1200 to 1000 K. At 1200 K methane is too unstable to reach the stratosphere in significant quantities, while thermal decomposition of water is a strong source of OH radicals that oxidize any hydrocarbons that do form to CO and CO$_2$. At 1000 K methane, although very reactive, survives long enough to reach the lower stratosphere, and the greater stability of water coupled with efficient scavenging of OH by H$_2$ raise the effective C/O ratio in the reacting gases above unity. Reduced products such as ethylene, acetylene, and hydrogen cyanide become abundant; such conditions favor polymerization and possible formation of PAHs and soots. Although low temperature is the most important factor favoring hydrocarbons in hot Jupiters, higher rates of vertical mixing and generally lower metallicities also favor organic synthesis. The peculiar prope...

  2. A Study of Jupiter Trojans

    OpenAIRE

    Karlsson, Ola

    2012-01-01

    Jupiter Trojan asteroid dynamics have been studied for a long time but it is only within the last decades that the known population has become large enough to make other studies meaningful. In four articles I have been scratching the surface of the unknown Trojan knowledge space. Paper I presents photometric observations confirming a larger variety in surface redness for the smaller Trojans compared to the larger ones, in line with the groups in the outer main asteroid belt. However, the larg...

  3. Trapped particle absorption by the ring of Jupiter

    Science.gov (United States)

    Fillius, W.

    1985-01-01

    The ring systems of Jupiter and Saturn, and their interaction with the magnetosphere were studied. Opportunities to improve the understanding of the sweeping effect of orbiting material on trapped radiation, and the use of this process to gain insight on both the trapped radiation and the target material are outlined. Within the cosmogony of Hannes Alfven, this mechanism is also the key to understanding the formation of many of the features of the Saturnian rings. A better understanding of the sweeping effect would also help to clarify this process.

  4. System technology analysis of aeroassisted orbital transfer vehicles: Moderate lift/drag (0.75-1.5). Volume 3: Cost estimates and work breakdown structure/dictionary, phase 1 and 2

    Science.gov (United States)

    1985-01-01

    Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. A narrative summary of the cost estimates and work breakdown structure/dictionary for both study phases is presented. Costs were estimated using the Grumman Space Programs Algorithm for Cost Estimating (SPACE) computer program and results are given for four AOTV configurations. The work breakdown structure follows the standard of the joint government/industry Space Systems Cost Analysis Group (SSCAG). A table is provided which shows cost estimates for each work breakdown structure element.

  5. Architectural and chemical insights into the origin of hot Jupiters

    Science.gov (United States)

    Schlaufman, Kevin C.

    2015-10-01

    The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. This problem has been with us for 20 years, long enough for significant progress to have been made, and also for a great deal of ``lore" to have accumulated about the properties of these planets. Among this lore is the widespread belief that hot Jupiters are less likely to be in multiple giant planet systems than longer-period giant planets. I will show that in this case the lore is not supported by the best data available today: hot Jupiters are not lonely. I will also show that stellar sodium abundance is inversely proportional to the probability that a star hosts a short-period giant planet. This observation is best explained by the effect of decreasing sodium abundance on protoplanetary disk structure and reveals that planetesimal-disk or planet-disk interactions are critical for the existence of short-period giant planets.

  6. The Collision of Comet Shoemaker-Levy 9 and Jupiter

    Science.gov (United States)

    Noll, Keith S.; Weaver, Harold A.; Feldman, Paul D.

    2006-11-01

    Participants; Preface; 1. The orbital motion and impact circumstances of Comet Shoemaker-Levy 9 Paul W. Chodas and Donald K. Yeomans; 2. Observational constraints on the composition and nature of Comet D/Shoemaker-Levy 9 Jacques Crovisier; 3. Tidal breakup of the nucleus of Comet Shoemaker-Levy 9 Zdenek Sekanina; 4. Earth-based observations of impact phenomena Philip D. Nicholson; 5. HST imaging of Jupiter shortly after each impact: plumes and fresh sites Heidi B. Hammel; 6. Galileo observations of the impacts Clark R. Chapman; 7. Models of fragment penetration and fireball evolution David A. Crawford; 8. Entry and fireball models vs. observations: what have we learned? Mordecai-Mark Mac Low; 9. Dynamics and chemistry of SL9 plumes Kevin Zahnle; 10. Chemistry induced by the impacts: observations Emmanuel Lellouch; 11. SL9 impact chemistry: long-term photochemical evolution Julianne I. Moses; 12. Particulate matter in Jupiter's atmosphere from the impacts of Comet P/Shoemaker-Levy 9 Robert A. West; 13. Jupiter's post-impact atmospheric thermal response Barney J. Conrath; 14. Growth and dispersion of the Shoemaker-Levy 9 impact features from HST imaging Reta F. Beebe; 15. Waves from the Shoemaker-Levy 9 impacts Andrew P. Ingersoll and Hiroo Kanamori; 16. Jovian magnetospheric and auroral effects of the SL9 impacts Wing-Huen Ip.

  7. Kepler-6b: A transiting Hot Jupitere Orbiting a Metal-rich Star

    DEFF Research Database (Denmark)

    Dunham, E.W.; Borucki, W.J.; Koch, D.G.

    2010-01-01

    We announce the discovery of Kepler-6b, a transiting hot Jupiter orbiting a star with unusually high metallicity, . The planet's mass is about 2/3 that of Jupiter, M P = 0.67 M J, and the radius is 30% larger than that of Jupiter, R P = 1.32 R J, resulting in a density of ¿P = 0.35 g cm–3, a fairly...

  8. Two Moons Meet over Jupiter

    Science.gov (United States)

    2007-01-01

    This beautiful image of the crescents of volcanic Io and more sedate Europa was snapped by New Horizons' color Multispectral Visual Imaging Camera (MVIC) at 10:34 UT on March 2, 2007, about two days after New Horizons made its closest approach to Jupiter. The picture was one of a handful of the Jupiter system that New Horizons took primarily for their artistic, rather than scientific value. This particular scene was suggested by space enthusiast Richard Hendricks of Austin, Texas, in response to an Internet request by New Horizons scientists for evocative, artistic imaging opportunities at Jupiter. This image was taken from a range of 4.6 million kilometers (2.8 million miles) from Io and 3.8 million kilometers (2.4 million miles) from Europa. Although the moons appear close in this view, a gulf of 790,000 kilometers (490,000 miles) separates them. The night side of Io is illuminated here by light reflected from Jupiter, which is out of the frame to the right. Europa's night side is completely dark, in contrast to Io, because that side of Europa faces away from Jupiter. Here, Io steals the show with its beautiful display of volcanic activity. Three volcanic plumes are visible. Most conspicuous is the enormous 300-kilometer (190-mile) -high plume from the Tvashtar volcano at the 11 o'clock position on Io's disk. Two much smaller plumes are barely visible: one from the volcano Prometheus, at the 9 o'clock position on the edge of Io's disk, and one from the volcano Amirani, seen between Prometheus and Tvashtar along Io's terminator (the line dividing day and night). The plumes appear blue because of the scattering of light by tiny dust particles ejected by the volcanoes, similar to the blue appearance of smoke. In addition, the contrasting red glow of hot lava can be seen at the source of the Tvashtar plume. The images are centered at 1 degree north, 60 degrees west on Io, and 0 degrees north, 149 degrees west on Europa. The color in this image was generated using

  9. An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter

    Science.gov (United States)

    Wurz, P.; Lasi, D.; Thomas, N.; Piazza, D.; Galli, A.; Jutzi, M.; Barabash, S.; Wieser, M.; Magnes, W.; Lammer, H.; Auster, U.; Gurvits, L. I.; Hajdas, W.

    2017-08-01

    We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (return to a mission at a low extra level of complexity, engineering effort, and risk. This study builds upon earlier studies for a Callisto Descent Probe for the former Europa-Jupiter System Mission of ESA and NASA, and extends them with a detailed assessment of a descent probe designed to be an additional science payload for the NASA Europa Mission.

  10. Survival of water ice in Jupiter Trojans

    CERN Document Server

    Guilbert-Lepoutre, Aurélie

    2014-01-01

    Jupiter Trojans appear to be a key population of small bodies to study and test the models of the Solar System formation and evolution. Because understanding the evolution of Trojans can bring strong and unique constraints on the origins of our planetary system, a significant observational effort has been undertaken to unveil their physical characteristics. The data gathered so far are consistent with Trojans having volatile-rich interiors (possibly water ice) and volatile-poor surfaces (fine grained silicates). Since water ice is not thermodynamically stable against sublimation at the surface of an object located at ~5 AU, such layering seems consistent with past outgassing. In this work, we study the thermal history of Trojans after the formation of a dust mantle by possible past outgassing, so as to constrain the depth at which water ice could be stable. We find that it could have survived 100 m below the surface, even if Trojans orbited close to the Sun for ~10,000 years, as suggested by the most recent d...

  11. Kepler-424 b: A "Lonely" Hot Jupiter That Found A Companion

    CERN Document Server

    Endl, Michael; Barclay, Thomas; Huber, Daniel; Isaacson, Howard; Buchhave, Lars A; Brugamyer, Erik; Robertson, Paul; Cochran, William D; MacQueen, Phillip J; Havel, Mathieu; Lucas, Phillip; Howell, Steve B; Fischer, Debra; Quintana, Elisa; Ciardi, David R

    2014-01-01

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31-d orbit accompanied by a more massive outer companion in an eccentric (e=0.3) 223-d orbit. The outer giant planet, Kepler-424c, is not detected to transit the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets, the appear to be "lonely" (e.g. Steffen et al.~2012). This might be a consequence of a highly dynamical past of these systems. The Kepler-424 planetary system is a system with a hot Jupiter in a multiple system, similar to upsilon Andromedae. We also pres...

  12. Potential Jupiter-Family Comet Contamination of the Main Asteroid Belt

    CERN Document Server

    Hsieh, Henry H

    2016-01-01

    We present the results of "snapshot" numerical integrations of test particles representing comet-like and asteroid-like objects in the inner solar system aimed at investigating the short-term dynamical evolution of objects close to the dynamical boundary between asteroids and comets as defined by the Tisserand parameter with respect to Jupiter, T_J (i.e., T_J=3). As expected, we find that T_J for individual test particles is not always a reliable indicator of initial orbit types. Furthermore, we find that a few percent of test particles with comet-like starting elements (i.e., similar to Jupiter-family comets) reach main-belt-like orbits (at least temporarily) during our 2 Myr integrations, even without the inclusion of non-gravitational forces, apparently via a combination of gravitational interactions with the terrestrial planets and temporary trapping by mean-motion resonances with Jupiter. We estimate that the fraction of real Jupiter-family comets occasionally reaching main-belt-like orbits on Myr timesc...

  13. Making Space Travel to Jupiter Possible

    Science.gov (United States)

    Barker, Samuel P.

    2004-01-01

    From man landing on the moon to a simple satellite being launched into orbit, many incredible space accomplishments have been witnessed by us all. However, what goes un-noticed to the common man is the extensive research and testing that lasts months, years, and even decades. Much of this required research just so happens to take place in the corridors of the Glen Research Center building number 49. In the Advanced Materials division of G.R.C., a number of researchers have the responsibility of discovering which metal, ceramic, or polymer is best for a specific application. Under the guidance of mentor extraordinaire Frank Ritzert, I am involved in many critical projects dealing with refractory metals, two of which I will mention in this report. The Jupiter Icy Moons Orbiter (JIMO) project actually was under full swing back in the 50's and early 60's. To enable the 14 year trek to the icy moons of Europa, Callisto, and Ganymede, nuclear propulsion methods were selected. Due to the extreme temperature of the reactor and the extended time period, a refractory metal would need to be implemented. After years of research and progress, the program was suddenly canceled. About a decade ago, the JIMO project was re-instated and now has a goal for departure around 2014. However, a few obstacles lie in our way concerning the use of refractory metals. In certain areas of the orbiter a joint is required between the refractories and other less dense metals. Two of these joints are with nickel based super alloys. Being an intern for Frank Ritzert, the refractory metals expert, I have the opportunity to develop the best method to braze refractory metals to Nickel 201. This involves the actual brazing, electron microscopy and reporting the results. My second project involves a certain part of the orbiter where Niobium 1Zirconium, a refractory metal, is joined with Hastelloy-X a Ni based metal. Small quantities of oxygen, helium and other impurities in the Ni alloy could diffuse

  14. Seven transiting hot Jupiters from WASP-South, Euler and TRAPPIST: WASP-47b, WASP-55b, WASP-61b, WASP-62b, WASP-63b, WASP-66b and WASP-67b

    Science.gov (United States)

    Hellier, Coel; Anderson, D. R.; Collier Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G.

    2012-10-01

    We present seven new transiting hot Jupiters from the WASP-South survey. The planets are all typical hot Jupiters orbiting stars from F4 to K0 with magnitudes of V = 10.3-12.5. The orbital periods are all in the range of 3.9-4.6 d, the planetary masses range from 0.4 to 2.3 MJup and the radii from 1.1 to 1.4 RJup. In line with known hot Jupiters, the planetary densities range from Jupiter-like to inflated (ρ = 0.13-1.07ρJup). We use the increasing numbers of known hot Jupiters to investigate the distribution of their orbital periods and the 3-4 d 'pile-up'.

  15. Seven transiting hot-Jupiters from WASP-South, Euler and TRAPPIST: WASP-47b, WASP-55b, WASP-61b, WASP-62b, WASP-63b, WASP-66b & WASP-67b

    CERN Document Server

    Hellier, Coel; Cameron, A Collier; Doyle, A P; Gillon, M; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Segransan, D; Smalley, B; Smith, A M S; Southworth, J; Triaud, A H M J; Udry, S; West, R G

    2012-01-01

    We present seven new transiting hot Jupiters from the WASP-South survey. The planets are all typical hot Jupiters orbiting stars from F4 to K0 with magnitudes of V = 10.3 to 12.5. The orbital periods are all in the range 3.9--4.6 d, the planetary masses range from 0.4--2.3 Mjup and the radii from 1.1--1.4 Mjup. In line with known hot Jupiters, the planetary densities range from Jupiter-like to inflated (rho = 0.13--1.07 rho_jup). We use the increasing numbers of known hot Jupiters to investigate the distribution of their orbital periods and the 3--4-d "pile-up".

  16. ISO celebrates its prolonged life with a video of Jupiter

    Science.gov (United States)

    1997-07-01

    This is excellent news for astronomers and especially for the multinational teams, with leaders in France, Germany, the Netherlands and the United Kingdom, who spent many years devising the four instruments served by ISO's telescope. The camera ISOCAM, the photometer ISOPHOT, the Short Wavelength Spectrometer and the Long Wavelength Spectrometer span between them an unprecedented range of infrared wavelengths from 2 to 200 microns. The atmosphere of Jupiter is one of the cool and cloudy places attracting ISO's attention, and ESA today releases a video of unprecedented images of Jupiter. The planet changes its appearance drastically as the camera ISOCAM scans a range of 90 different infrared wavelengths. Picture by picture, ISOCAM picks out different features of the atmosphere's composition and behaviour. These and other results from ISO will enable scientists to sharpen their ideas about how Jupiter's weather works. "ISO is giving us a new impression of the giant planets of the Solar System," comments Roger Bonnet, ESA's director of science. "Not just Jupiter, but Saturn, Uranus and Neptune too. By observing the planets across its very wide range of infrared wavelengths, ISO can see features overlooked even by spacecraft visiting the planets. The remarkable movie of Jupiter released today represents only a few per cent of ISO's wavelength range, yet every image tells its own story." More information about the Jupiter video appears later in this Information Note. How ISO's cold telescope beat the calendar The need to keep ISO's telescope and instruments chilled to a very low temperature sets a limit to their useful operating life. ISO was supplied with more than 2000 litres of superfluid helium to cool it. Slow evaporation maintains key parts of the spacecraft at temperatures close to absolute zero, below minus 271 degrees C. The rate of loss of helium was expected to be about 3 litres a day, but the cryogenic system could not be tested in exactly the conditions

  17. Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing

    CERN Document Server

    Gaudi, B S; Udalski, A; Gould, A; Christie, G W; Maoz, D; Dong, S; McCormick, J; Szymanski, M K; Tristram, P J; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; De Poy, D L; Han, C; Kaspi, S; Lee, C -U; Mallia, F; Natusch, T; Pogge, R W; Park, B -G; Abe, F; Bond, I A; Botzler, C S; Fukui, A; Hearnshaw, J B; Itow, Y; Kamiya, K; Korpela, A V; Kilmartin, P M; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N J; Sako, T; Saito, To; Sato, S; Skuljan, L; Sullivan, D J; Sumi, T; Sweatman, W L; Yock, P C M; Albrow, M D; Allan, A; Beaulieu, J -P; Burgdorf, M J; Cook, K H; Coutures, C; Dominik, M; Dieters, S; Fouqué, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; MacIntosh, B

    2008-01-01

    Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of ~0.71 and ~0.27 times the mass of Jupiter and orbital separations of ~2.3 and ~4.6 astronomical units orbiting a primary star of mass ~0.50 solar masses at a distance of ~1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.

  18. Discovery of a Jupiter/Saturn analog with gravitational microlensing.

    Science.gov (United States)

    Gaudi, B S; Bennett, D P; Udalski, A; Gould, A; Christie, G W; Maoz, D; Dong, S; McCormick, J; Szymanski, M K; Tristram, P J; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; Depoy, D L; Han, C; Kaspi, S; Lee, C-U; Mallia, F; Natusch, T; Pogge, R W; Park, B-G; Abe, F; Bond, I A; Botzler, C S; Fukui, A; Hearnshaw, J B; Itow, Y; Kamiya, K; Korpela, A V; Kilmartin, P M; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N J; Sako, T; Saito, To; Sato, S; Skuljan, L; Sullivan, D J; Sumi, T; Sweatman, W L; Yock, P C M; Albrow, M D; Allan, A; Beaulieu, J-P; Burgdorf, M J; Cook, K H; Coutures, C; Dominik, M; Dieters, S; Fouqué, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; Macintosh, B

    2008-02-15

    Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.

  19. The Anglo-Australian Planet Search XXIV: The Frequency of Jupiter Analogs

    CERN Document Server

    Wittenmyer, Robert A; Tinney, C G; Horner, Jonathan; Carter, B D; Wright, D J; Jones, H R A; Bailey, J; O'Toole, Simon J

    2016-01-01

    We present updated simulations of the detectability of Jupiter analogs by the 17-year Anglo-Australian Planet Search. The occurrence rate of Jupiter-like planets that have remained near their formation locations beyond the ice line is a critical datum necessary to constrain the details of planet formation. It is also vital in our quest to fully understand how common (or rare) planetary systems like our own are in the Galaxy. From a sample of 202 solar-type stars, and correcting for imperfect detectability on a star-by-star basis, we derive a frequency of $6.2^{+2.8}_{-1.6}$% for giant planets in orbits from 3-7 AU. When a consistent definition of "Jupiter analog" is used, our results are in agreement with those from other legacy radial velocity surveys.

  20. HAT-P-55b: A Hot Jupiter Transiting a Sun-like Star

    CERN Document Server

    Juncher, D; Hartman, J D; Bakos, G Á; Bieryla, A; Kovács, T; Boisse, I; Latham, D W; Kovács, G; Bhatti, W; Csubry, Z; Penev, K; de Val-Borro, M; Falco, E; Torres, G; Noyes, R W; Lázár, J; Papp, I; Sári, P

    2015-01-01

    We report the discovery of a new transiting extrasolar planet, HAT-P-55b. The planet orbits a V = 13.207 +/- 0.039 sun-like star with a mass of 1.013 +/- 0.037 solar masses, a radius of 1.011 +/- 0.036 solar radii and a metallicity of -0.03 +/- 0.08. The planet itself is a typical hot Jupiter with a period of 3.5852467 +/- 0.0000064 days, a mass of 0.582 +/- 0.056 Jupiter masses and a radius of 1.182 +/- 0.055 Jupiter radii. This discovery adds to the increasing sample of transiting planets with measured bulk densities, which is needed to put constraints on models of planetary structure and formation theories.

  1. Quantifying Jupiter's influence on the Earth's impact flux: Implications for planetary habitability

    CERN Document Server

    Horner, J

    2012-01-01

    It has long been thought that the presence of a giant planet is a pre-requisite for the development of life on potentially habitable planets. Without Jupiter, it was argued, the Earth would have been subject to a punishing impact regime, which would have significantly retarded or outright prevented the development of life on our planet. Although this idea is widely embraced, little research has previously been carried out to support it. Here, we present the results of several suites of dynamical integrations used to model the influence of Jupiter's mass and orbit on the impact rate that would be experienced by the Earth. We find that, far from being a simple shield, Jupiter's role in determining the terrestrial impact flux is significantly more complicated than previously thought. Far from being a simple friend, such giant planets are perhaps more likely to imperil the development of life on otherwise habitable planets.

  2. Longitudinal Variations in Jupiter's Winds

    Science.gov (United States)

    Simon-Miller, Amy A.; Gierasch, P. J.; Tierney, G.

    2010-01-01

    Long-term studies of Jupiter's zonal wind field revealed temporal variations on the order of 20 to 40 m/s at many latitudes, greater than the typical data uncertainties of 1 to 10 m/s. No definitive periodicities were evident, however, though some latitudinally-confined signals did appear at periods relevant to the Quasi- Quadrennial Oscillation (Simon-Miller & Gierasch, Icarus, in press). As the QQO appears, from vertical temperature profiles, to propagate downward, it is unclear why a signal is not more obvious, unless other processes dominate over possibly weaker forcing from the QQO. An additional complication is that zonal wind profiles represent an average over some particular set of longitudes for an image pair and most data sets do not offer global wind coverage. Lien avoiding known features, such as the large anticyclonic vortices especially prevalent in the south, there can be distinct variations in longitude. We present results on the full wind field from Voyager and Cassini data, showing apparent longitudinal variations of up to 60 m/s or more. These are particularly obvious near disruptions such as the South Equatorial Disturbance, even when the feature itself is not clearly visible. These two dates represent very different states of the planet for comparison: Voyagers 1 & 2 flew by Jupiter shortly after a global upheaval, while many regions were in a disturbed state, while the Cassini view is typical of a more quiescent period present during much of the 1990s and early 2000s.

  3. Jupiter's magnetosphere and radiation belts

    Science.gov (United States)

    Kennel, C. F.; Coroniti, F. V.

    1979-01-01

    Radioastronomy and Pioneer data reveal the Jovian magnetosphere as a rotating magnetized source of relativistic particles and radio emission, comparable to astrophysical cosmic ray and radio sources, such as pulsars. According to Pioneer data, the magnetic field in the outer magnetosphere is radially extended into a highly time variable disk-shaped configuration which differs fundamentally from the earth's magnetosphere. The outer disk region, and the energetic particles confined in it, are modulated by Jupiter's 10 hr rotation period. The entire outer magnetosphere appears to change drastically on time scales of a few days to a week. In addition to its known modulation of the Jovian decametric radio bursts, Io was found to absorb some radiation belt particles and to accelerate others, and most importantly, to be a source of neutral atoms, and by inference, a heavy ion plasma which may significantly affect the hydrodynamic flow in the magnetosphere. Another important Pioneer finding is that the Jovian outer magnetosphere generates, or permits to escape, fluxes of relativistic electrons of such intensities that Jupiter may be regarded as the dominant source of 1 to 30 MeV cosmic ray electrons in the heliosphere.

  4. Atmospheric Escape from Hot Jupiters

    CERN Document Server

    Murray-Clay, Ruth; Murray, Norman

    2008-01-01

    Photoionization heating from UV radiation incident on the atmospheres of hot Jupiters may drive planetary mass loss. We construct a model of escape that includes realistic heating and cooling, ionization balance, tidal gravity, and pressure confinement by the host star wind. We show that mass loss takes the form of a hydrodynamic ("Parker") wind, emitted from the planet's dayside during lulls in the stellar wind. When dayside winds are suppressed by the confining action of the stellar wind, nightside winds might pick up if there is sufficient horizontal transport of heat. A hot Jupiter loses mass at maximum rates of ~2 x 10^12 g/s during its host star's pre-main-sequence phase and ~2 x10^10 g/s during the star's main sequence lifetime, for total maximum losses of ~0.06% and ~0.6% of the planet's mass, respectively. For UV fluxes F_UV < 10^4 erg/cm^2/s, the mass loss rate is approximately energy-limited and is proportional to F_UV^0.9. For larger UV fluxes, such as those typical of T Tauri stars, radiative ...

  5. Light curves, Spherical and Bond albedos of Jupiter, Saturn, and exoplanets.

    Science.gov (United States)

    Dyudina, U.

    2015-12-01

    We estimate how the light curve and stellar light reflection of a planet depends on forward and backward scattering, which was observed on Jupiter and Saturn. We fit analytical scattering phase function to Pioneer 10 and 11 spacecraft observations of Jupiter at 0.64 μm and Saturn at 0.64 and 0.44 μm and to Cassini spacecraft observations of Jupiter at 0.938 μm atmospheric window, 0.889 μm CH4 absorption band, and 0.258 μm UV filter. Using scattering ray-tracing model of a planet by Dyudina et al. (2005)*, the images of the planets with different scattering properties are simulated to calculate the reflected luminosity as it varies with scattering phase to produce full-orbit light curves. We compare the light curve shapes and total reflection integrated in all directions (spherical albedos) for Jupiter and Saturn with the ones for planets with Lambertian and semi-infinite Rayleigh-scattering atmosphere. Saturn-like and especially Jupiter-like atmosphere produces light curves that are several times fainter at half-phase than does a Lambertian planet, given the same brightness at transit. The spherical albedo (and hence the wavelengh-integrated Bond albedo) is lower than for a Lambertian planet. Corresponding absorption of the stellar light and planet's heating rate would be higher than estimated for Lambertian planets, especially for bright planets. In extreme case of Jupiter-like scattering at 0.64 μm Lambertian assumption can overestimate spherical albedo by a factor of ˜1.5. We will discuss how the light curves and absorption for planets covered by atmospheres would differ from the light curves of rocky planet without atmosphere. * Dyudina, U. A., et al., Phase Light Curves for Extrasolar Jupiters and Saturns. ApJ, 618, 973-986, 2005

  6. Transiting exoplanets from the CoRoT space mission: XIII. CoRoT-14b: an unusually dense very hot Jupiter

    CERN Document Server

    Tingley, B; Gazzano, J -C; Alonso, R; Mazeh, T; Jorda, L; Aigrain, S; Almenara, J -M; Auvergne, M; Baglin, A; Barge, P; Bonomo, A S; Bordé, P; Bouchy, F; Bruntt, H; Cabrera, J; Carpano, S; Carone, L; Cochran, W D; Csizmadia, Sz; Deleuil, M; Deeg, H J; Dvorak, R; Erikson, A; Ferraz-Mello, S; Fridlund, M; Gandolfi, D; Gillon, M; Guenther, E W; Guillot, T; Hatzes, A; Hébrard, G; Léger, A; Llebaria, A; Lammer, H; Lovis, C; MacQueen, P J; Moutou, C; Ollivier, M; Ofir, A; Pätzold, M; Pepe, F; Queloz, D; Rauer, H; Rouan, D; Samuel, B; Schneider, J; Shporer, A; Wuchterl, G

    2011-01-01

    In this paper, the CoRoT Exoplanet Science Team announces its 14th discovery. Herein, we discuss the observations and analyses that allowed us to derive the parameters of this system: a hot Jupiter with a mass of $7.6 \\pm 0.6$ Jupiter masses orbiting a solar-type star (F9V) with a period of only 1.5 d, less than 5 stellar radii from its parent star. It is unusual for such a massive planet to have such a small orbit: only one other known exoplanet with a higher mass orbits with a shorter period.

  7. Kepler-424 b: A 'lonely' hot Jupiter that found A companion

    Energy Technology Data Exchange (ETDEWEB)

    Endl, Michael [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States); Caldwell, Douglas A.; Barclay, Thomas; Huber, Daniel; Havel, Mathieu; Howell, Steve B.; Quintana, Elisa [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Isaacson, Howard [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Buchhave, Lars A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Brugamyer, Erik [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Robertson, Paul [Department of Astronomy and Astrophysics, Center for Exoplanets and Habitable Worlds, Pennsylvania State University (United States); Cochran, William D.; MacQueen, Phillip J. [McDonald Observatory and Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Lucas, Phillip [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Fischer, Debra [Department of Astronomy, Yale University (United States); Ciardi, David R. [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-11-10

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be {sup l}onely{sup .} This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to υ Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M {sub ⊕}.

  8. Orbital transfer vehicle concept definition and system analysis study. Volume 2: OTV concept definition and evaluation. Book 3: Subsystem trade studies

    Science.gov (United States)

    Dickman, Glen J.

    1987-01-01

    The technical trade studies and analyses reported in this book represent the accumulated work of the technical staff for the contract period. The general disciplines covered are as follows: (1) Guidance, Navigation, and Control; (2) Avionics Hardware; (3) Aeroassist Technology; (4) Propulsion; (5) Structure and Materials; and (6) Thermal Control Technology. The objectives in each of these areas were to develop the latest data, information, and analyses in support of the vehicle design effort.

  9. Influence of solar flares and CME on the gaseous envelopes of hot Jupiter exoplanets

    Science.gov (United States)

    Bisikalo, Dmitry; Cherenkov, Alexander

    2015-08-01

    Hot Jupiters, i.e. exoplanets having masses comparable to the mass of Jupiter and semimajor axes shorter than 0.1~AU, have a number of outstanding features, caused mostly by their proximity to the host star. As a matter of fact, the atmospheres of several dozens of these planets fill their Roche lobes, which results in a powerful outflow of material from the planet toward the host star. In addition, since the planet orbits at a short distance, its orbital velocity is supersonic, which causes the formation of a bow shock ahead of the planet. These effects substantially change the mechanism of interaction between the planet's gaseous envelope (atmosphere) and the stellar wind. In this paper, we investigate the flow pattern in the vicinity of a typical hot Jupiter by using 3D gas dynamic simulations. By considering the star-planet interaction we study variations in the structure of the hot Jupiter's envelope and estimate the variations of atmosphere’s mass-loss rate caused by the influence of typical solar flares and coronal mass ejections.

  10. On the Detection of Non-Transiting Hot Jupiters in Multiple-Planet Systems

    CERN Document Server

    Millholland, Sarah; Laughlin, Gregory

    2016-01-01

    We outline a photometric method for detecting the presence of a non-transiting short-period giant planet in a planetary system harboring one or more longer period transiting planets. Within a prospective system of the type that we consider, a hot Jupiter on an interior orbit inclined to the line-of-sight signals its presence through approximately sinusoidal full-phase photometric variations in the stellar light curve, correlated with astrometrically induced transit timing variations for exterior transiting planets. Systems containing a hot Jupiter along with a low-mass outer planet or planets on inclined orbits are a predicted hallmark of in situ accretion for hot Jupiters, and their presence can thus be used to test planetary formation theories. We outline the prospects for detecting non-transiting hot Jupiters using photometric data from typical Kepler objects of interest (KOIs). As a demonstration of the technique, we perform a brief assessment of Kepler candidates and identify a potential non-transiting h...

  11. Minimal Prospects for Radio Detection of Extensive Air Showers in the Atmosphere of Jupiter

    Science.gov (United States)

    Bray, J. D.; Nelles, A.

    2016-07-01

    One possible approach for detecting ultra-high-energy cosmic rays and neutrinos is to search for radio emission from extensive air showers created when they interact in the atmosphere of Jupiter, effectively utilizing Jupiter as a particle detector. We investigate the potential of this approach. For searches with current or planned radio telescopes we find that the effective area for detection of cosmic rays is substantial (˜3 × 107 km2), but the acceptance angle is so small that the typical geometric aperture (˜103 km2 sr) is less than that of existing terrestrial detectors, and cosmic rays also cannot be detected below an extremely high threshold energy (˜1023 eV). The geometric aperture for neutrinos is slightly larger, and greater sensitivity can be achieved with a radio detector on a Jupiter-orbiting satellite, but in neither case is this sufficient to constitute a practical detection technique. Exploitation of the large surface area of Jupiter for detecting ultra-high-energy particles remains a long-term prospect that will require a different technique, such as orbital fluorescence detection.

  12. Strong Langmuir turbulence at Jupiter?

    Science.gov (United States)

    Cairns, Iver H.; Robinson, P. A.

    1992-01-01

    Langmuir wave packets with short scale lengths less than an approximately equal to 100 lambda e have been observed in Jupiter's foreshock. Theoretical constraints on the electric fields and scale sizes of collapsing wave packets are summarized, extended and placed in a form suitable for easy comparison with Voyager and Ulysses data. The published data are reviewed and possible instrumental underestimation of fields discussed. New upper limits for the fields of the published wave packets are estimated. Wave packets formed at the nucleation scale from the observed large-scale fields cannot collapse because they are disrupted before collapse occurs. The published wave packets are quantitatively inconsistent with strong turbulence collapse. Strict constraints exist for more intense wave packets to be able to collapse: E greater than or approximately equals to 1-8 mV/m for scales less than or approximately equal to 100 lambda e. Means for testing these conclusions using Voyager and Ulysses data are suggested.

  13. Orbital Fluid Resupply Assessment

    Science.gov (United States)

    Eberhardt, Ralph N.

    1989-01-01

    Orbital fluid resupply can significantly increase the cost-effectiveness and operational flexibility of spacecraft, satellites, and orbiting platforms and observatories. Reusable tankers are currently being designed for transporting fluids to space. A number of options exist for transporting the fluids and propellant to the space-based user systems. The fluids can be transported to space either in the Shuttle cargo bay or using expendable launch vehicles (ELVs). Resupply can thus be accomplished either from the Shuttle bay, or the tanker can be removed from the Shuttle bay or launched on an ELV and attached to a carrier such as the Orbital Maneuvering Vehicle (OMV) or Orbital Transfer Vehicle (OTV) for transport to the user to be serviced. A third option involves locating the tanker at the space station or an unmanned platform as a quasi-permanent servicing facility or depot which returns to the ground for recycling once its tanks are depleted. Current modular tanker designs for monopropellants, bipropellants, and water for space station propulsion are discussed. Superfluid helium tankers are addressed, including trade-offs in tanker sizes, shapes to fit the range of ELVs currently available, and boil-off losses associated with longer-term (greater than 6-month) space-basing. It is concluded that the mixed fleet approach to on-orbit consumables resupply offers significant advantages to the overall logistics requirements.

  14. Shoemaker-Levy 9/JUPITER Collision Update

    Science.gov (United States)

    1994-05-01

    There are many signs that the upcoming collision between comet Shoemaker-Levy 9 and giant planet Jupiter is beginning to catch the imagination of the public. Numerous reports in the various media describe the effects expected during this unique event which according to the latest calculations will start in the evening of July 16 and end in the morning of July 22, 1994. (The times in this Press Release are given in Central European Summer Time (CEST), i.e., Universal Time (UT) + 2 hours. The corresponding local time in Chile is CEST - 6 hours.) Astronomers all over the world are now preparing to observe the associated phenomena with virtually all major telescopes. There will be no less than 12 different investigations at the ESO La Silla observatory during this period. This Press Release updates the information published in ESO PR 02/94 (27 January 1994) and provides details about the special services which will be provided by ESO to the media around this rare astronomical event. SCIENTIFIC EXPECTATIONS The nucleus of comet Shoemaker-Levy 9 broke into many smaller pieces during a near passage of Jupiter in July 1992. They are now moving in parallel orbits around this planet and recent calculations show with close to 100 % certainty that they will all collide with it, just two months from now. At some time, more than 20 individual nuclei were observed. This Press Release is accompanied by a photo that shows this formation, the famous "string of pearls", as it looked like in early May 1994. Both Jupiter and these nuclei have been extensively observed during the past months. A large, coordinated observing programme at La Silla has been active since early April and the first results have become available. However, while we now possess more accurate information about the comet's motion and the times of impact, there is still great uncertainty about the effects which may actually be observed at the time of the impacts. This is first of all due to the fact that it has not

  15. WARM JUPITERS NEED CLOSE ''FRIENDS'' FOR HIGH-ECCENTRICITY MIGRATION—A STRINGENT UPPER LIMIT ON THE PERTURBER'S SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Subo [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Road 5, Hai Dian District, Beijing 100871 (China); Katz, Boaz; Socrates, Aristotle [Institute for Advanced Study, 1 Einstein Dr., Princeton, NJ 08540 (United States)

    2014-01-20

    We propose a stringent observational test on the formation of warm Jupiters (gas-giant planets with 10 days ≲ P ≲ 100 days) by high-eccentricity (high-e) migration mechanisms. Unlike hot Jupiters, the majority of observed warm Jupiters have pericenter distances too large to allow efficient tidal dissipation to induce migration. To access the close pericenter required for migration during a Kozai-Lidov cycle, they must be accompanied by a strong enough perturber to overcome the precession caused by general relativity, placing a strong upper limit on the perturber's separation. For a warm Jupiter at a ∼ 0.2 AU, a Jupiter-mass (solar-mass) perturber is required to be ≲ 3 AU (≲ 30 AU) and can be identified observationally. Among warm Jupiters detected by radial velocities (RVs), ≳ 50% (5 out of 9) with large eccentricities (e ≳ 0.4) have known Jovian companions satisfying this necessary condition for high-e migration. In contrast, ≲ 20% (3 out of 17) of the low-e (e ≲ 0.2) warm Jupiters have detected additional Jovian companions, suggesting that high-e migration with planetary perturbers may not be the dominant formation channel. Complete, long-term RV follow-ups of the warm-Jupiter population will allow a firm upper limit to be put on the fraction of these planets formed by high-e migration. Transiting warm Jupiters showing spin-orbit misalignments will be interesting to apply our test. If the misalignments are solely due to high-e migration as commonly suggested, we expect that the majority of warm Jupiters with low-e (e ≲ 0.2) are not misaligned, in contrast with low-e hot Jupiters.

  16. Main methods of trajectory synthesis for scenarios of space missions with gravity assist maneuvers in the system of Jupiter and with landing on one of its satellites

    Science.gov (United States)

    Golubev, Yu. F.; Tuchin, A. G.; Grushevskii, A. V.; Koryanov, V. V.; Tuchin, D. A.; Morskoy, I. M.; Simonov, A. V.; Dobrovolskii, V. S.

    2016-12-01

    The development of a methodology for designing trajectories of spacecraft intended for the contact and remote studies of Jupiter and its natural satellites is considered. This methodology should take into account a number of specific features. Firstly, in order to maintain the propellant consumption at an acceptable level, the flight profile, ensuring the injection of the spacecraft into orbit around the Jovian moon, should include a large number of gravity assist maneuvers both in the interplanetary phase of the Earth-to-Jupiter flight and during the flight in the system of the giant planet. Secondly, the presence of Jupiter's powerful radiation belts also imposes fairly strict limitations on the trajectory parameters.

  17. Stellar Spin-Orbit Misalignment in a Multiplanet System

    CERN Document Server

    Huber, Daniel; Barbieri, Mauro; Miglio, Andrea; Deck, Katherine M; Fabrycky, Daniel C; Montet, Benjamin T; Buchhave, Lars A; Chaplin, William J; Hekker, Saskia; Montalbán, Josefina; Sanchis-Ojeda, Roberto; Basu, Sarbani; Bedding, Timothy R; Campante, Tiago L; Christensen-Dalsgaard, J\\orgen; Elsworth, Yvonne P; Stello, Dennis; Arentoft, Torben; Ford, Eric B; Gilliland, Ronald L; Handberg, Rasmus; Howard, Andrew W; Isaacson, Howard; Johnson, John Asher; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Latham, David W; Lund, Mikkel N; Lundkvist, Mia; Marcy, Geoffrey W; Metcalfe, Travis S; Winn, Joshua N

    2013-01-01

    Stars hosting hot Jupiters are often observed to have high obliquities, whereas stars with multiple co-planar planets have been seen to have low obliquities. This has been interpreted as evidence that hot-Jupiter formation is linked to dynamical disruption, as opposed to planet migration through a protoplanetary disk. We used asteroseismology to measure a large obliquity for Kepler-56, a red giant star hosting two transiting co-planar planets. These observations show that spin-orbit misalignments are not confined to hot-Jupiter systems. Misalignments in a broader class of systems had been predicted as a consequence of torques from wide-orbiting companions, and indeed radial-velocity measurements revealed a third companion in a wide orbit in the Kepler-56 system.

  18. Potential Jupiter-Family comet contamination of the main asteroid belt

    Science.gov (United States)

    Hsieh, Henry H.; Haghighipour, Nader

    2016-10-01

    We present the results of "snapshot" numerical integrations of test particles representing comet-like and asteroid-like objects in the inner Solar System aimed at investigating the short-term dynamical evolution of objects close to the dynamical boundary between asteroids and comets as defined by the Tisserand parameter with respect to Jupiter, TJ (i.e., TJ = 3). As expected, we find that TJ for individual test particles is not always a reliable indicator of initial orbit types. Furthermore, we find that a few percent of test particles with comet-like starting elements (i.e., similar to those of Jupiter-family comets) reach main-belt-like orbits (at least temporarily) during our 2 Myr integrations, even without the inclusion of non-gravitational forces, apparently via a combination of gravitational interactions with the terrestrial planets and temporary trapping by mean-motion resonances with Jupiter. We estimate that the fraction of real Jupiter-family comets occasionally reaching main-belt-like orbits on Myr timescales could be on the order of ∼ 0.1-1%, although the fraction that remain on such orbits for appreciable lengths of time is certainly far lower. For this reason, the number of JFC-like interlopers in the main-belt population at any given time is likely to be small, but still non-zero, a finding with significant implications for efforts to use apparently icy yet dynamically asteroidal main-belt comets as tracers of the primordial distribution of volatile material in the inner Solar System. The test particles with comet-like starting orbital elements that transition onto main-belt-like orbits in our integrations appear to be largely prevented from reaching low eccentricity, low inclination orbits, suggesting that the real-world population of main-belt objects with both low eccentricities and inclinations may be largely free of this potential occasional Jupiter-family comet contamination. We therefore find that low-eccentricity, low-inclination main

  19. Bow Shock Leads the Way for a Speeding Hot Jupiter

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    important for modeling their interiors, their mass loss rates, and their interactions with their host stars. Current models of exoplanets often assume low-value fields similar to those of planets within our solar system. But if the field strength estimated for HD 189733bs field is common for hot Jupiters, it may be time to update our models!BonusCheck out this video from Cauleys website, which provides an action view of the transit data for HD 189733b and the possible bow shock leading it. The upper panel shows the transit as viewed from the side, the right panel shows a top-down view of the orbit, and the plot shows the transmission data (points) and model (solid lines) for the three hydrogen lines monitored. All sizes and distances are to scale.http://aasnova.org/wp-content/uploads/2015/09/tran_movie_final.m4vCitationP. Wilson Cauley et al 2015 ApJ 810 13. doi:10.1088/0004-637X/810/1/13

  20. Size and Fraction of Active Surface Area of Some Jupiter Family Comets: Implications with Respect to their Physical Evolution

    Directory of Open Access Journals (Sweden)

    Julio A. Fernández

    2001-01-01

    Full Text Available We analyze the sample of measured nuclear magnitudes of the observed Jupiter Family comets (taken as those with orbital periods P 2 to derive sizes of comet nuclei, fraction of active surface areas, as well as to try to gain insight about their physical lifetimes and end states.

  1. Orbital cellulitis

    Science.gov (United States)

    ... hemolytic streptococci may also cause orbital cellulitis. Orbital cellulitis infections in children may get worse very quickly and ... in the space around the eye. An orbital cellulitis infection can get worse very quickly. A person with ...

  2. Wind tunnel test of the 0.015-scale Rockwell International space shuttle vehicle orbiter in the Ames 6 by 6 foot supersonic wind tunnel. [to determine longitudinal and lateral-directional characteristics

    Science.gov (United States)

    Milam, M. D.; Dziubala, T. J.

    1973-01-01

    Experimental investigations were performed in a 6- by 6-Foot Supersonic wind tunnel on a 0.015-scale model of the Rockwell International space shuttle vehicle (SSV) 2A orbiter. The purpose of the test was to investigate the longitudinal and lateral-directional characteristics of the vehicle. In addition, hinge moments were measured on the rudder and elevons. Buffet onset was investigated using wing trailing edge pressures and a strain gauge instrumented panel mounted in the wing. The model was tested through a Mach range from 0.6 to 2.0 at a constant unit Reynolds number of 2.5 million. Pitch runs were made at angles of attack from minus 2 deg to +26 deg with beta = 0 deg and 5 deg; yaw runs were made in the range from minus 5 deg to 10 deg of sideslip at angles of attack of 0 deg and 10 deg. Static pressures were measured at the fuselage base and the trailing edges of the wing and rudder. Boundary layer transition was fixed for some runs using distributed roughness strips.

  3. Analysis of JUPITER experiment in ZPPR-9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-09-15

    Information and data from the ZPPR-9 reactor JUPITER experiment are presented concerning a general description of data and methods; criticality; reaction rate ratio and reaction rate distribution; Doppler and sample reactivity worth; sodium void worth; and control rod worth.

  4. Far infrared spectrophotometry of Jupiter and Saturn

    Science.gov (United States)

    Erickson, E. F.; Goorvitch, D.; Simpson, J. P.; Strecker, D. W.

    1978-01-01

    Infrared spectral measurements of Mars, Jupiter, and Saturn were obtained from 100 to 470 kaysers and, by taking Mars as a calibration source, brightness temperatures of Jupiter and Saturn were determined with approximately 5 kayser resolution. Internal luminosities were determined from the data and are reported to be approximately 8 times 10 to the minus tenth power of the sun's luminosity for Jupiter and approximately 3.6 times 10 to the minus tenth power of the sun's luminosity for Saturn. Comparison of data with spectra predicted by models suggests the need for an opacity source in addition to gaseous hydrogen and ammonia to help explain Jupiter's observed spectrum in the vicinity of 250 kaysers.

  5. Jupiter Great Red Spot and White Ovals

    Science.gov (United States)

    1979-01-01

    This photo of Jupiter was taken by Voyager 1 on March 1, 1979. The spacecraft was 3 million miles (5 million kilometers) from Jupiter at the time. The photo shows Jupiter's Great Red Spot (upper right) and the turbulent region immediately to the west. At the middle right of the frame is one of several white ovals seen on Jupiter from Earth. The structure in every feature here is far better than has ever been seen from any telescopic observations. The Red Spot and the white oval both reveal intricate and involved structure. The smallest details that can be seen in this photo are about 55 miles (95 kilometers) across. JPL manages and controls the Voyager project for NASA's Office of Space Science.

  6. Tidal Response of Preliminary Jupiter Model

    CERN Document Server

    Wahl, Sean M; Militzer, Burkhard

    2016-01-01

    In anticipation of improved observational data for Jupiter's gravitational field from the Juno spacecraft, we predict the static tidal response for a variety of Jupiter interior models based on ab initio computer simulations of hydrogen-helium mixtures. We calculate hydrostatic-equilibrium gravity terms using the non-perturbative concentric Maclaurin Spheroid (CMS) method that eliminates lengthy expansions used in the theory of figures. Our method captures terms arising from the coupled tidal and rotational perturbations, which we find to be important for a rapidly-rotating planet like Jupiter. Our predicted static tidal Love number $k_2 = 0.5900$ is $\\sim$10\\% larger than previous estimates. The value is, as expected, highly correlated with the zonal harmonic coefficient $J_2$, and is thus nearly constant when plausible changes are made to interior structure while holding $J_2$ fixed at the observed value. We note that the predicted static $k_2$ might change due to Jupiter's dynamical response to the Galilea...

  7. An Exo-Jupiter Candidate in the Eclipsing Binary FL Lyr

    CERN Document Server

    Kozyreva, V S; Demkov, B P; Zotov, L V; Tutukov, A V

    2015-01-01

    Light curves of the eclipsing binary FL Lyr acquired by the Kepler space telescope are analyzed. Eclipse timing measurements for FL Lyr testify to the presence of a third body in the system. Preliminary estimates of its mass and orbital period are > 2M_Jupiter and > 7 yrs. The times of primary minimum in the light curve of FL Lyr during the operation of the Kepler mission are presented.

  8. A Hot Jupiter for Breakfast? Early Stellar Ingestion of Planets May Be Common

    Science.gov (United States)

    Matsakos, Titos; Königl, Arieh

    2015-08-01

    Models of planet formation and evolution predict that giant planets form efficiently in protoplanetary disks, that most of these migrate rapidly to the disk’s inner edge, and that, if the arriving planet’s mass is ≲ Jupiter’s mass, then it could remain stranded near that radius. We argue that such planets would be ingested by tidal interaction with the host star on a timescale ≲ 1 Gyr, and that, in the case of a solar-type host, this would cause the stellar spin to approach the direction of the ingested planet’s orbital axis even if the two were initially highly misaligned. Primordially misaligned stars whose effective temperatures are ≳ 6250 K cannot be realigned in this way because, in contrast with solar-type hosts, their angular momenta are typically higher than the orbital angular momentum of the ingested planet as a result of inefficient magnetic braking and of a comparatively large moment of inertia. Hot Jupiters located farther out from the star can contribute to this process, but their effect is weaker because the tidal interaction strength decreases rapidly with increasing semimajor axis. We demonstrate that, if ∼ 50% of planetary systems harbored a stranded hot Jupiter, this scenario can in principle account for (1) the good alignment exhibited by planets around cool stars irrespective of the planet’s mass or orbital period, (2) the prevalence of misaligned planets around hot stars, (3) the apparent upper bound on the mass of hot Jupiters on retrograde orbits, and (4) the inverse correlation between stellar spin periods and hot-Jupiter masses.

  9. Voyager-Jupiter radio science data papers

    Science.gov (United States)

    Levy, G. S.; Wood, G. E.

    1980-01-01

    The reduction and interpretation of the radio science data from the Voyager 1 and 2 encounters of the planet Jupiter and its satellites resulted in the preparation of several papers for publication in the special Voyager-Jupiter issue of the Journal of Geophysical Research. The radio science and tracking systems of the Deep Space Network provide the data which makes this research possible. This article lists submitted papers by title, with their authors and with abstracts of their contents.

  10. Jupiter's Radiation Belts: Can Pioneer 10 Survive?

    Science.gov (United States)

    Hess, W N; Birmingham, T J; Mead, G D

    1973-12-07

    Model calculations of Jupiter's electron and proton radiation belts indicate that the Galilean satellites can reduce particle fluxes in certain regions of the inner magnetosphere by as much as six orders of magnitude. Average fluxes should be reduced by a factor of 100 or more along the Pioneer 10 trajectory through the heart of Jupiter's radiation belts in early December. This may be enough to prevent serious radiation damage to the spacecraft.

  11. Tidal Response of Preliminary Jupiter Model

    OpenAIRE

    Wahl, Sean M; Hubbard, Willam B.; Militzer, Burkhard

    2016-01-01

    In anticipation of improved observational data for Jupiter's gravitational field from the Juno spacecraft, we predict the static tidal response for a variety of Jupiter interior models based on ab initio computer simulations of hydrogen-helium mixtures. We calculate hydrostatic-equilibrium gravity terms using the non-perturbative concentric Maclaurin Spheroid (CMS) method that eliminates lengthy expansions used in the theory of figures. Our method captures terms arising from the coupled tidal...

  12. Tidal Response of Jupiter and Saturn from CMS calculationsTidal Response of Jupiter and Saturn from CMS calculations

    Science.gov (United States)

    Wahl, Sean; Hubbard, William B.; Militzer, Burkhard

    2016-10-01

    The Juno gravity science system promises to provide observational data from Jupiter's gravitational field at an unprecedented precision. Meanwhile, recent ab-initio simulations on mixtures of hydrogen and helium allow for the construction of realistic interior models. The concentric Maclaurin spheroid (CMS) numerical method has been developed for efficient, non-perturbative, self-consistent calculations of shape and gravitational field of a rotating liquid body to this desired precision. Here we present a generalization of the CMS method to three dimensions and included the effect of tides from a satellite. We have identified a number of unexpected features of the static tidal response in the case where a planet's shape is dominated by the rotational bulge. In the general case, there is state mixing of the spherical-harmonic components of the response to the corresponding components of the rotational and tidal excitations. This breaks the degeneracy of the tidal love numbers knm with m, and introduces a dependence of knm on the orbital distance of the satellite. Notably for Jupiter and Saturn, the predicted value of k2 is significantly higher when the planet's high rotation rates are taken into account: k2=0.413 for Saturn and k2=0.590 for Jupiter, accounting for an ~13% and 10% increase over the non-rotating case respectively. We have also done preliminary estimates for the off-resonance dynamic response, which may lead to an additional significant increase in k2. Accurate models of tidal response will be essential for interpreting gravity observations from Juno and future studies, particularly for when filtering for signals from interior dynamics in the observed field. This work was supported by NASA's Juno project. Sean Wahl and Burkhard Militzer acknowledge the support of the National Science Foundation (astronomy and astrophysics research grant 1412646).

  13. Orbital Evolution of 4179 Toutatis

    CERN Document Server

    Siregar, Suryadi

    2013-01-01

    Asteroid 1934 CT;1989 AC, well known as 4179 Toutatis, is an Apollo and Mars-crosser asteroid with a chaotic orbit produced by a 3:1 resonance with Jupiter and a 1:4 resonance with the Earth, and frequent close approaches to the Earth. It is listed as a potential hazardous object (PHA). The aim of this study is to investigate the possibility of 4179 Toutatis to be ejected from the Solar System. This paper presents an orbital evolution of 4179 Toutatis in time interval of ~300 kyr. Investigation of its orbital evolution is conducted by using the Mercury subroutine package, where the gravitational perturbations of eight major planets in the Solar System are considered. Over very short time scales (~300 kyr) relative to the Solar System life time (~10 Gyr), the asteroid 4179 Toutatis gave an example of chaotic motion that can cause asteroid to move outward and may be followed by escaping from the Solar System.

  14. On the formation of hot and warm Jupiters via secular high-eccentricity migration in stellar triples

    Science.gov (United States)

    Hamers, Adrian S.

    2017-01-01

    Hot Jupiters (HJs) are Jupiter-like planets orbiting their host star in tight orbits of a few days. They are commonly believed not to have formed in situ, requiring inwards migration towards the host star. One of the proposed migration scenarios is secular high-eccentricity or high-e migration, in which the orbit of the planet is perturbed to high eccentricity by secular processes, triggering strong tidal evolution and orbital migration. Previous theoretical studies have considered secular excitation in stellar binaries. Recently, a number of HJs have been observed in stellar triple systems. In the latter, the secular dynamics are much richer compared to stellar binaries, and HJs could potentially be formed more efficiently. Here, we investigate this possibility by modeling the secular dynamical and tidal evolution of planets in two hierarchical configurations in stellar triple systems. We find that the HJ formation efficiency is higher compared to stellar binaries, but only by at most a few tens of per cent. The orbital properties of the HJs formed in the simulations are very similar to HJs formed in stellar binaries, and similarly to studies of the latter we find no significant number of warm Jupiters. HJs are only formed in our simulations for triples with specific orbital configurations, and our constraints are approximately consistent with current observations. In future, this allows to rule out high-e migration in stellar triples if a HJ is detected in a triple grossly violating these constraints.

  15. On the formation of hot and warm Jupiters via secular high-eccentricity migration in stellar triples

    Science.gov (United States)

    Hamers, Adrian S.

    2017-04-01

    Hot Jupiters (HJs) are Jupiter-like planets orbiting their host star in tight orbits of a few days. They are commonly believed not to have formed in situ, requiring inwards migration towards the host star. One of the proposed migration scenarios is secular high-eccentricity or high-e migration, in which the orbit of the planet is perturbed to high eccentricity by secular processes, triggering strong tidal evolution and orbital migration. Previous theoretical studies have considered secular excitation in stellar binaries. Recently, a number of HJs have been observed in stellar triple systems. In the latter, the secular dynamics are much richer compared to stellar binaries, and HJs could potentially be formed more efficiently. Here, we investigate this possibility by modelling the secular dynamical and tidal evolution of planets in two hierarchical configurations in stellar triple systems. We find that the HJ formation efficiency is higher compared to stellar binaries, but only by at most a few tens of per cent. The orbital properties of the HJs formed in the simulations are very similar to HJs formed in stellar binaries, and similarly to studies of the latter we find no significant number of warm Jupiters. HJs are only formed in our simulations for triples with specific orbital configurations, and our constraints are approximately consistent with current observations. In future, this allows us to rule out high-e migration in stellar triples if a HJ is detected in a triple grossly violating these constraints.

  16. Tidal and Magnetic Interactions between a Hot Jupiter and its Host Star in the Magnetospheric Cavity of a Protoplanetary Disk

    CERN Document Server

    Chang, Shih-Hsin; Bodenheimer, Peter

    2009-01-01

    We present a simplified model to study the orbital evolution of a young hot Jupiter inside the magnetospheric cavity of a proto-planetary disk. The model takes into account the disk locking of stellar spin as well as the tidal and magnetic interactions between the star and the planet. We focus on the orbital evolution starting from the orbit in the 2:1 resonance with the inner edge of the disk, followed by the inward and then outward orbital migration driven by the tidal and magnetic torques as well as the Roche-lobe overflow of the tidally inflated planet. The goal in this paper is to study how the orbital evolution inside the magnetospheric cavity depends on the cavity size, planet mass, and orbital eccentricity. In the present work, we only target the mass range from 0.7 to 2 Jupiter masses. In the case of the large cavity corresponding to the rotational period ~ 7 days, the planet of mass >1 Jupiter mass with moderate initial eccentricities (>~ 0.3) can move to the region < 0.03 AU from its central sta...

  17. Family Portrait of the Small Inner Satellites of Jupiter

    Science.gov (United States)

    1997-01-01

    These images, taken by Galileo's solid state imaging system between November 1996 and June 1997, provide the first ever 'family portrait' of the four small, irregularly shaped moons that orbit Jupiter in the zone between the planet's ring and the larger Galilean satellites. The moons are shown in their correct relative sizes, with north approximately up in all cases. From left to right, arranged in order of increasing distance from Jupiter, are Metis (longest dimension is approximately 60 kilometers or 37 miles across), Adrastea (20 kilometers or 12 miles across), Amalthea (247 kilometers or 154 miles across), and Thebe (116 kilometers or 72 miles across). While Amalthea, the largest of these four tiny moons, was imaged by NASA's two Voyager spacecraft in 1979 with a resolution comparable to what is shown here, the new Galileo observations represent the first time that Metis, Adrastea, and Thebe have been seen as more than points of light.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  18. Magnetotail Reconnection and Flux Circulation: Jupiter and Saturn Compared

    Science.gov (United States)

    Jackman, C. M.; Vogt, M. F.; Slavin, J. A.; Cowley, S. W. H.; Boardsen, S. A.

    2011-01-01

    The Jovian magnetosphere has been visited by eight spacecraft, and the magnetometer data have been used to identify dozens of plasmoids and 250 field dipolarizations associated with magnetic reconnection in the tail [e.g. Vogt et al., 2010]. Since the arrival of the Cassini spacecraft at Saturn in 2004, the magnetometer instrument has also been used to identify reconnection signatures. The deepest magnetotail orbits were in 2006, and during this time 34 signatures of plasmoids were identified. In this study we compare the statistical properties of plasmoids at Jupiter and Saturn such as duration, size, location, and recurrence period. Such parameters can be influenced by many factors, including the different Dungey cycle timescales and cross-magnetospheric potential drops at the two planets. We present superposed epoch analyses of plasmoids at the two planets to determine their average properties and to infer their role in the reconfiguration of the nightside of the magnetosphere. We examine the contributions of plasmoids to the magnetic flux transfer cycle at both planets. At Jupiter, there is evidence of an extended interval after reconnection where the field remains northward (analogous to the terrestrial post-plasmoid plasma sheet). At Saturn we see a similar feature, and calculate the amount of flux closed on average in reconnection events, leading us to an estimation of the recurrence rate of plasmoid release.

  19. Diurnal Thermal Tides in a Non-synchronized Hot Jupiter

    CERN Document Server

    Gu, Pin-Gao

    2009-01-01

    We perform a linear analysis to investigate the dynamical response of a non-synchronized hot Jupiter to stellar irradiation. In this work, we consider the diurnal Fourier harmonic of the stellar irradiation acting at the top of a radiative layer of a hot Jupiter with no clouds and winds. In the absence of the Coriolis force, the diurnal thermal forcing can excite internal waves propagating into the planet's interior when the thermal forcing period is longer than the sound crossing time of the planet's surface. When the Coriolis effect is taken into consideration, the latitude-dependent stellar heating can excite weak internal waves (g modes) and/or strong baroclinic Rossby waves (buoyant r modes) depending on the asynchrony of the planet. When the planet spins faster than its orbital motion (i.e. retrograde thermal forcing), these waves carry negative angular momentum and are damped by radiative loss as they propagate downwards from the upper layer of the radiative zone. As a result, angular momentum is trans...

  20. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550 (Japan); Spiegel, David S. [Analytics and Algorithms, Stitch Fix, San Francisco, CA 94103 (United States); Mroczkowski, Tony [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Nordhaus, Jason [Department of Science and Mathematics, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Zimmerman, Neil T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Parsons, Aaron R. [Astronomy Department, University of California, Berkeley, CA (United States); Mirbabayi, Mehrdad [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Madhusudhan, Nikku, E-mail: yuka.fujii@elsi.jp [Astronomy Department, University of Cambridge (United Kingdom)

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  1. Confirmation of Two Hot Jupiters from K2 Campaign 4

    CERN Document Server

    Johnson, Marshall C; Fridlund, Malcolm; Csizmadia, Szilard; Endl, Michael; Cabrera, Juan; Cochran, William D; Deeg, Hans J; Grziwa, Sascha; Ramírez, Ivan; Hatzes, Artie P; Eigmüller, Philipp; Barragán, Oscar; Erikson, Anders; Guenther, Eike W; Korth, Judith; Kuutma, Teet; Nespral, David; Pätzold, Martin; Palle, Enric; Prieto-Arranz, Jorge; Rauer, Heike; Saario, Joonas

    2016-01-01

    We confirm the planetary nature of two transiting hot Jupiters discovered by the Kepler spacecraft's K2 extended mission in its Campaign 4, using precise radial velocity measurements from FIES@NOT, HARPS-N@TNG, and the coud\\'e spectrograph on the McDonald Observatory 2.7 m telescope. EPIC 211089792 b transits a K1V star with a period of $3.2589263\\pm0.0000015$ days; its orbit is slightly eccentric ($e=0.086_{-0.025}^{+0.035}$). It has a radius of $R_P=0.998_{-0.066}^{+0.072}$ $R_J$ and a mass of $M_P=0.613_{-0.027}^{+0.028}$ $M_J$. Its host star exhibits significant rotational variability, and we measure a rotation period of $P_{\\mathrm{rot}}=10.777 \\pm 0.031$ days. EPIC 210957318 b transits a G6V star with a period of $4.098503\\pm0.000011$ days. It has a radius of $R_P=1.039_{-0.051}^{+0.050}$ $R_J$ and a mass of $M_P=0.579_{-0.027}^{+0.028}$ $M_J$. The star has a low metallicity for a hot Jupiter host, $[\\mathrm{Fe}/\\mathrm{H}]=-0.15 \\pm 0.05$.

  2. The Jupitor icy moons orbiter project: The scientific rationale

    Science.gov (United States)

    Creely, Ronald; Johnson, Torrence

    The Jupiter Icy Moons Orbiter (JIMO) is proposed by NASA as the next step in the exploration of the Jovian system following the successful Galileo project. JIMO would use nuclear-electric propulsion to deliver a highly capable scientific payload to Jupiter and go into orbit around Europa, Ganymede, and Callisto, and to conduct investigations of the Jovian system. In early 2003, a NASA Science Definition Team (SDT) was appointed to develop the scientific rationale and priorities for JIMO. The SDT, co-chaired by T. Johnson and R. Greeley, consisted of 38 scientists representing the broad scientific potential afforded by JIMO.This article summarizes the principal findings of the SDT.

  3. Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier vehicle configuration to establish a free-stream data base for ALT separation investigations, utilizing a 0.0125-scale model (48-0/AX1318I-1) in the ARC 14-foot wind tunnel (CA23A)

    Science.gov (United States)

    Gillins, R. L.

    1975-01-01

    Force and moment data are presented which were obtained for each vehicle separately at a Mach number of 0.6, and for the mated orbiter/747 configuration at Mach numbers of 0.3, 0.5, 0.6, and 0.7. Orbiter angles of attack from 0 degrees to +12 degrees and 747/Carrier angles of attack from -3 degrees to +7 degrees were investigated at angles of sideslip of 0 degrees and -5 degrees. Model variables include orbiter elevon and rudder deflections, orbiter tail cone-on and off, various orbiter/747 attach structure configurations, 747 stabilizer and rudder deflections, and 747 CAM modification components-on and off. Photographs of test configurations are included.

  4. X-Ray Probes of Jupiter's Auroral Zones, Galilean Moons, and the Io Plasma Torus

    Science.gov (United States)

    Elsner, R. F.; Ramsey, B. D.; Swartz, D. A.; Rehak, P.; Waite, J. H., Jr.; Cooper, J. F.; Johnson, R. E.

    2005-01-01

    Remote observations from the Earth orbiting Chandra X-ray Observatory and the XMM-Newton Observatory have shown the the Jovian system is a rich and complex source of x-ray emission. The planet's auroral zones and its disk are powerful sources of x-ray emission, though with different origins. Chandra observations discovered x-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions, producing fluorescent x-ray emission lines from the elements in their surfaces against an intense background continuum. Although very faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around the icy Galilean moons would provide a detail mapping of the elemental composition in their surfaces. Here we review the results of Chandra and XMM-Newton observations of the Jovian system and describe the characteristics of X-MIME, an imaging x-ray spectrometer undergoing study for possible application to future missions to Jupiter such as JIMO. X-MIME has the ultimate goal of providing detailed high-resolution maps of the elemental abundances of the surfaces of Jupiter's icy moons and Io, as well as detailed study of the x-ray mission from the Io plasma torus, Jupiter's auroral zones, and the planetary disk.

  5. THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. I. MEASURING PHOTOMETRIC ECCENTRICITIES OF INDIVIDUAL TRANSITING PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Rebekah I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138 (United States); Johnson, John Asher, E-mail: rdawson@cfa.harvard.edu [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States)

    2012-09-10

    Exoplanet orbital eccentricities offer valuable clues about the history of planetary systems. Eccentric, Jupiter-sized planets are particularly interesting: they may link the 'cold' Jupiters beyond the ice line to close-in hot Jupiters, which are unlikely to have formed in situ. To date, eccentricities of individual transiting planets primarily come from radial-velocity measurements. Kepler has discovered hundreds of transiting Jupiters spanning a range of periods, but the faintness of the host stars precludes radial-velocity follow-up of most. Here, we demonstrate a Bayesian method of measuring an individual planet's eccentricity solely from its transit light curve using prior knowledge of its host star's density. We show that eccentric Jupiters are readily identified by their short ingress/egress/total transit durations-part of the 'photoeccentric' light curve signature of a planet's eccentricity-even with long-cadence Kepler photometry and loosely constrained stellar parameters. A Markov Chain Monte Carlo exploration of parameter posteriors naturally marginalizes over the periapse angle and automatically accounts for the transit probability. To demonstrate, we use three published transit light curves of HD 17156 b to measure an eccentricity of e = 0.71{sup +0.16}{sub -0.09}, in good agreement with the discovery value e = 0.67 {+-} 0.08 based on 33 radial-velocity measurements. We present two additional tests using Kepler data. In each case, the technique proves to be a viable method of measuring exoplanet eccentricities and their confidence intervals. Finally, we argue that this method is the most efficient, effective means of identifying the extremely eccentric, proto-hot Jupiters predicted by Socrates et al.

  6. Stability of orbits around planetary satellites considering a disturbing body in an elliptical orbit: Applications to Europa and Ganymede

    Science.gov (United States)

    Cardoso dos Santos, Josué; Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho

    Europa and Ganymede are two of the four Jupiter’s moons which compose the Galilean satellite. These ones are planetary satellites of greater interest at the present moment among the scientific community. There are some missions being planned to visit them and and the Jovian system. One of them is the cooperation between NASA and ESA for the Europa Jupiter System Mission (EJSM). In this mission are planned the insertion of the spacecrafts JEO (Jupiter Europa Orbiter) and JGO (Jupiter Ganymede Orbiter) into Europa and Ganymede’s orbit. Thus, there is a great necessity for having a better comprehension of the dynamics of the orbits around this planetary satellite. This comprehension is essential for the success of this type of mission. In this context, this work aims to perform a search for low-altitude orbits around these planetary satellites. An emphasis is given in polar orbits. These orbits can be useful in the planning of aerospace activities to be conducted around this planetary satellite, with respect to the stability of orbits of artificial satellites. The study considers orbits of an artificial satellite around Europa and Ganymede under the influence of the third-body perturbation (the gravitational attraction of Jupiter) and the polygenic perturbations. These last ones occur due to forces such as the non-uniform distribution of mass (J2 and J3) of the main (central) body. A simplified dynamic model for polygenic perturbations is used. A new model for the third-body disturbance is presented considering it in an elliptical orbit. The Lagrange planetary equations, which compose a system of nonlinear differential equations, are used to describe the orbital motion of the artificial satellite around Ganymede. The equations showed here are developed in closed form to avoid expansions in inclination and eccentricity.

  7. Horseshoe orbits in the Earth-Moon system

    Science.gov (United States)

    Kreisman, B. B.

    2016-11-01

    Horseshoe orbits in the restricted three-body problem have been mostly considered in the Sun-Jupiter system and, in recent years, in the Sun-Earth system. Here, these orbits have been used to find asteroids that have orbits of this kind. We have built a planar family of horseshoe orbits in the Earth-Moon system and determined the points of planar and 1/1 vertical resonances on this family. We have presented examples of orbits generated by these spatial families.

  8. JUICE: A European Mission to Jupiter and its Icy Moons

    Science.gov (United States)

    Grasset, Olivier; Witasse, Olivier; Barabash, Stas; Brandt, Pontus; Bruzzone, Lorenzo; Bunce, Emma; Cecconi, Baptiste; Cavalié, Thibault; Cimo, Giuseppe; Coustenis, Athena; Cremonese, Gabriele; Dougherty, Michele; Fletcher, Leigh N.; Gladstone, Randy; Gurvits, Leonid; Hartogh, Paul; Hoffmann, Holger; Hussmann, Hauke; Iess, Luciano; Jaumann, Ralf; Kasaba, Yasumasa; Kaspi, Yohai; Krupp, Norbert; Langevin, Yves; Mueller-Wodarg, Ingo; Palumbo, Pasquale; Piccioni, Giuseppe; Plaut, Jeffrey; Poulet, Francois; Roatsch, Thomas; Retherford, Kurt D.; Rothkaehl, Hanna; Stevenson, David J.; Tosi, Federico; Van Hoolst, Tim; Wahlund, Jan-Erik; Wurz, Peter; Altobelli, Nicolas; Accomazzo, A.; Boutonnet, Arnaud; Erd, Christian; Vallat, Claire

    2016-10-01

    JUICE - JUpiter ICy moons Explorer - is the first large mission in the ESA Cosmic Vision programme [1]. The implementation phase started in July 2015. JUICE will arrive at Jupiter in October 2029, and will spend 3 years characterizing the Jovian system, the planet itself, its giant magnetosphere, and the giant icy moons: Ganymede, Callisto and Europa. JUICE will then orbit Ganymede.The first goal of JUICE is to explore the habitable zone around Jupiter [2]. Ganymede is a high-priority target because it provides a unique laboratory for analyzing the nature, evolution and habitability of icy worlds, including the characteristics of subsurface oceans, and because it possesses unique magnetic fields and plasma interactions with the environment. On Europa, the focus will be on recently active zones, where the composition, surface and subsurface features (including putative water reservoirs) will be characterized. Callisto will be explored as a witness of the early Solar System.JUICE will also explore the Jupiter system as an archetype of gas giants. The circulation, meteorology, chemistry and structure of the Jovian atmosphere will be studied from the cloud tops to the thermosphere and ionosphere. JUICE will investigate the 3D properties of the magnetodisc, and study the coupling processes within the magnetosphere, ionosphere and thermosphere. The mission also focuses on characterizing the processes that influence surface and space environments of the moons.The payload consists of 10 instruments plus a ground-based experiment (PRIDE) to better constrain the S/C position. A remote sensing package includes imaging (JANUS) and spectral-imaging capabilities from UV to sub-mm wavelengths (UVS, MAJIS, SWI). A geophysical package consists of a laser altimeter (GALA) and a radar sounder (RIME) for exploring the moons, and a radio science experiment (3GM) to probe the atmospheres and to determine the gravity fields. The in situ package comprises a suite to study plasma and

  9. Three 2012 Transits of Venus: From Earth, Jupiter, and Saturn

    Science.gov (United States)

    Pasachoff, Jay M.; Schneider, G.; Babcock, B. A.; Lu, M.; Edelman, E.; Reardon, K.; Widemann, T.; Tanga, P.; Dantowitz, R.; Silverstone, M. D.; Ehrenreich, D.; Vidal-Madjar, A.; Nicholson, P. D.; Willson, R. C.; Kopp, G. A.; Yurchyshyn, V. B.; Sterling, A. C.; Scherrer, P. H.; Schou, J.; Golub, L.; McCauley, P.; Reeves, K.

    2013-01-01

    We observed the 2012 June 6/5 transit seen from Earth (E/ToV), simultaneously with Venus Express and several other spacecraft not only to study the Cytherean atmosphere but also to provide an exoplanet-transit analog. From Haleakala, the whole transit was visible in coronal skies; among our instruments was one of the world-wide Venus Twilight Experiment's nine coronagraphs. Venus's atmosphere became visible before first contact. SacPeak/IBIS provided high-resolution images at Hα/carbon-dioxide. Big Bear's NST also provided high-resolution observations of the Cytherean atmosphere and black-drop evolution. Our liaison with UH's Mees Solar Observatory scientists provided magneto-optical imaging at calcium and potassium. Solar Dynamics Observatory's AIA and HMI, and the Solar Optical Telescope (SOT) and X-ray Telescope (XRT) on Hinode, and total-solar-irradiance measurements with ACRIMSAT and SORCE/TIM, were used to observe the event as an exoplanet-transit analog. On September 20, we imaged Jupiter for 14 Hubble Space Telescope orbits, centered on a 10-hour ToV visible from Jupiter (J/ToV), as an exoplanet-transit analog in our own solar system, using Jupiter as an integrating sphere. Imaging was good, although much work remains to determine if we can detect the expected 0.01% solar irradiance decrease at Jupiter and the even slighter differential effect between our violet and near-infrared filters caused by Venus's atmosphere. We also give a first report on our currently planned December 21 Cassini UVIS observations of a transit of Venus from Saturn (S/ToV). Our E/ToV expedition was sponsored by the Committee for Research and Exploration/National Geographic Society; supplemented: NASA/AAS's Small Research Grant Program. We thank Rob Ratkowski, Stan Truitt, Rob Lucas, Aram Friedman, and Eric Pilger '82 at Haleakala, and Joseph Gangestad '06 at Big Bear for assistance, and Lockheed Martin Solar and Astrophysics Lab and Hinode science and operations teams for support

  10. Using Jupiter's Synchrotron Radiation as a Probe into Jupiter's Inner Radiation Belts

    Science.gov (United States)

    Bolton, S. J.; Gulkis, S.; Klein, M. J.; Thorne, R. M.

    1995-01-01

    The Jovian decimetric emission is caused by the combined emission of synchrotron radiation originating from the relativistic electrons trapped in Jupiter's 'Van Allen radiation belts' and thermal emission from the planet's atmosphere. Synchrotron radiation characteristics and variations (which provides insight into the physical properties of Jupiter's inner radiation belts) will be amplified and discussed.

  11. Space Shuttle Orbiter auxiliary power unit status

    Science.gov (United States)

    Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.

    An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.

  12. Temporal Variations in Jupiter's Atmosphere

    Science.gov (United States)

    Simon-Miller, Amy A.; Chanover, N. J.; Yanamandra-Fisher, P.; Hammel, H. B.; dePater, I.; Noll, K.; Wong, M.; Clarke, J.; Sanchez-Levega, A.; Orton, G. S.; Gonzaga, S.

    2009-01-01

    In recent years, Jupiter has undergone many atmospheric changes from storms turning red to global. cloud upheavals, and most recently, a cornet or asteroid impact. Yet, on top of these seemingly random changes events there are also periodic phenomena, analogous to observed Earth and Saturn atmospheric oscillations. We will present 15 years of Hubble data, from 1994 to 2009, to show how the equatorial tropospheric cloud deck and winds have varied over that time, focusing on the F953N, F41 ON and F255W filters. These filters give leverage on wind speeds plus cloud opacity, cloud height and tropospheric haze thickness, and stratospheric haze, respectively. The wind data consistently show a periodic oscillation near 7-8 S latitude. We will discuss the potential for variations with longitude and cloud height, within the calibration limits of those filters. Finally, we will discuss the role that large atmospheric events, such as the impacts in 1994 and 2009, and the global upheaval of 2007, have on temporal studies, This work was supported by a grant from the NASA Planetary Atmospheres Program. HST observational support was provided by NASA through grants from Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract NAS5-26555.

  13. The possible contamination of Jupiter

    Science.gov (United States)

    Garcia, Joe

    1988-01-01

    The Galileo probe, though at present its future is uncertain, would, if not sterilized, represent a good chance of contaminating Jupiter. Most scientists opposed to sterilizing the probe argue that to order the probe sterilized would be the death of the project, since sterilization would entail a reconstruction of the probe, and there are not enough funds to accomplish this. These scientists, however, are ignoring a relatively simple and inexpensive alternative to the traditional heat sterilization method. The main threat of contamination comes from Galileo's exterior surfaces: the shell of the probe and its parachute. The probe innermost components would not represent a threat since the probe is sealed. In light of the fact that only the exterior of Galileo would have to be sterilized, heat would not have to be used as a method of sterilization. Instead, various gas mixtures could be sprayed entirely over the probe and its parachute, gases which would kill any and all bacteria. This idea is more thoroughly examined.

  14. Jupiter's radiation belts and atmosphere

    Science.gov (United States)

    De Pater, I.; Dames, H. A. C.

    1979-01-01

    Maps and stripscans of the radio emission from Jupiter were made during the Pioneer 10 flyby in December 1973 at wavelengths of 6 cm, 21 cm, and 50 cm using the Westerbork telescope in the Netherlands. With this instrument the disk of the planet was resolved at 6 and 21 cm. The pictures are averaged over 15 deg of Jovian longitude. At 21 cm the stripscans clearly show the existence of a 'hot region' in the radiation belts at a System III longitude (1965.0) of 255 + or - 10 deg. Its flux is about 9% of the total nonthermal flux, and it has a volume emissivity enhanced by a factor of about 1.6 with respect to the general radiation belts. The temperature of the thermal disk at 21 cm appears to be 290 + or - 20 K. This is likely due to a high ammonia mixing ratio in the atmosphere, a factor of 4-5 larger than the expected solar value of 0.00015.

  15. Extended Heat Deposition in Hot Jupiters: Application to Ohmic Heating

    CERN Document Server

    Ginzburg, Sivan

    2015-01-01

    Many giant exoplanets in close orbits have observed radii which exceed theoretical predictions. One suggested explanation for this discrepancy is heat deposited deep inside the atmospheres of these "hot Jupiters". Here, we study extended power sources which distribute heat from the photosphere to the deep interior of the planet. Our analytical treatment is a generalization of a previous analysis of localized "point sources". We model the deposition profile as a power law in the optical depth and find that planetary cooling and contraction halt when the internal luminosity (i.e. cooling rate) of the planet drops below the heat deposited in the planet's convective region. A slowdown in the evolutionary cooling prior to equilibrium is possible only for sources which do not extend to the planet's center. We estimate the Ohmic dissipation resulting from the interaction between the atmospheric winds and the planet's magnetic field, and apply our analytical model to Ohmically heated planets. Our model can account fo...

  16. Ohmic Inflation of Hot Jupiters: an Analytical Approach

    Science.gov (United States)

    Ginzburg, Sivan; Sari, Re'em

    2015-12-01

    Many giant exoplanets in close orbits have observed radii which exceed theoretical predictions.One suggested explanation for this discrepancy is heat deposited deep inside the atmospheres of these hot Jupiters.We present an analytical model for the evolution of such irradiated, and internally heated gas giants, and derive scaling laws for their cooling rates and radii.We estimate the Ohmic dissipation resulting from the interaction between the atmospheric winds and the planet's magnetic field, and apply our model to Ohmically heated planets.Our model can account for the observed radii of many inflated planets, but not the most extreme ones.We show that Ohmically heated planets have already reached their equilibrium phase and they no longer contract.We show that it is possible to re-inflate planets, but we confirm that re-heating timescales are longer by about a factor of 30 than cooling times.

  17. Three irradiated and bloated hot Jupiters: WASP-76b, WASP-82b & WASP-90b

    CERN Document Server

    West, R G; Anderson, D R; Bouchy, F; Brown, D J A; Cameron, A Collier; Deleuil, M; Delrez, L; Doyle, A P; Faedi, F; Fumel, A; Gillon, M; Hebrard, G; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; Pepe, F; Pollacco, D; Queloz, D; Segransan, D; Smalley, B; Smith, A M S; Triaud, A H M J; Udry, S

    2016-01-01

    We report three new transiting hot-Jupiter planets discovered from the WASP surveys combined with radial velocities from OHP/SOPHIE and Euler/CORALIE and photometry from Euler and TRAPPIST. All three planets are inflated, with radii 1.7-1.8 Rjup. All orbit hot stars, F5-F7, and all three stars have evolved, post-MS radii (1.7-2.2 Rsun). Thus the three planets, with orbits of 1.8-3.9 d, are among the most irradiated planets known. This reinforces the correlation between inflated planets and stellar irradiation.

  18. Hot-Jupiter Core Mass from Roche-lobe Overflow

    CERN Document Server

    Ginzburg, Sivan

    2016-01-01

    The orbits of many observed hot Jupiters are decaying rapidly due to tidal interaction, eventually reaching the Roche limit. We analytically study the ensuing coupled mass loss and orbital evolution during the Roche-lobe overflow and find two possible scenarios. Planets with light cores $M_c\\lesssim 6M_\\oplus$ (assuming a nominal tidal dissipation factor $Q\\sim 10^6$ for the host star) are transformed into Neptune-mass gas planets, orbiting at a separation (relative to the stellar radius) $a/R_\\star\\approx 3.5$. Planets with heavier cores $M_c\\gtrsim 6M_\\oplus$ plunge rapidly until they are destroyed at the stellar surface. Remnant gas-Neptunes, which are stable to photo-evaporation, are absent from the observations, despite their unique transit radius ($5-10R_\\oplus$). This result suggests that $M_c\\gtrsim 6M_\\oplus$, providing a useful constraint on the poorly-known core mass that may distinguish between different formation theories of gas giants. Alternatively, given a prior estimate of $M_c\\approx 6 M_\\op...

  19. A Correlation Between Stellar Activity and Hot Jupiter Emission Spectra

    CERN Document Server

    Knutson, Heather A; Isaacson, Howard

    2010-01-01

    We present evidence for a correlation between the observed properties of hot Jupiter emission spectra and the activity levels of the host stars measured using Ca II H & K emission lines. We find that planets with dayside emission spectra that are well-described by standard, non-inverted 1D atmosphere models with water in absorption (HD 189733, TrES-1, TrES-3) orbit chromospherically active stars, while planets with emission spectra that are consistent with the presence of a high-altitude temperature inversion and water in emission orbit quieter stars. We propose that the increased UV flux received by planets orbiting active stars destroys the compounds responsible for the formation of the observed temperature inversions. We also derive a model-independent method for differentiating between these two atmosphere types using the secondary eclipse depths measured in the 3.6 and 4.5 micron bands on the Spitzer Space Telescope, and argue that the observed correlation is independent of the inverted/non-inverted ...

  20. A Primordial Origin for Misalignments Between Stellar Spin Axes and Planetary Orbits

    CERN Document Server

    Batygin, Konstantin

    2013-01-01

    The presence of gaseous giant planets whose orbits lie in extreme proximity to their host stars ("hot Jupiters"), can largely be accounted for by planetary migration, associated with viscous evolution of proto-planetary nebulae. Recently, observations of the Rossiter-McLaughlin effect during planetary transits have revealed that a considerable fraction of detected hot Jupiters reside on orbits that are misaligned with respect to the spin-axes of their host stars. This observational fact has cast significant doubts on the importance of disk-driven migration as a mechanism for production of hot Jupiters, thereby reestablishing the origins of close-in planetary orbits as an open question. Here we show that misaligned orbits can be a natural consequence of disk migration. Our argument rests on an enhanced abundance of binary stellar companions in star formation environments, whose orbital plane is uncorrelated with the spin axes of the individual stars. We analyze the dynamical evolution of idealized proto-planet...

  1. Jupiter Icy Moons Explorer: mission status after the Definition Phase

    Science.gov (United States)

    Titov, Dmitri; Barabash, Stas; Bruzzone, Lorenzo; Dougherty, Michele; Erd, Christian; Fletcher, Leigh; Gare, Philippe; Gladstone, Randall; Grasset, Olivier; Gurvits, Leonid; Hartogh, Paul; Hussmann, Hauke; Iess, Luciano; Jaumann, Ralf; Langevin, Yves; Palumbo, Pasquale; Piccioni, Giuseppe; Sarri, Giuseppe; Wahlund, Jan-Erik; Witasse, Olivier

    2015-04-01

    ultraviolet to the sub-millimetre wavelengths (MAJIS, UVS, SWI). A geophysical package consists of a laser altimeter (GALA) and a radar sounder (RIME) for exploring the surface and subsurface of the moons, and a radio science experiment (3GM) to probe the atmospheres of Jupiter and its satellites and to perform measurements of the gravity fields. An in situ package comprises a powerful particle environment package (PEP), a magnetometer (J-MAG) and a radio and plasma wave instrument (RPWI), including electric fields sensors and a Langmuir probe. An experiment (PRIDE) using ground-based Very-Long-Baseline Interferometry (VLBI) will provide precise determination of the moons ephemerides. The mission scenario will include a Jovian tour with multiple flybys of Callisto and Ganymede, the phase with more than 20 degrees inclination orbits, and two Europa flybys. The Ganymede tour will include high (5000 km) and low (500 km) almost polar orbits around the moon. The mission scenario has evolved slightly during the definition phase, reassuring that the mission will still be able to fulfil all major science objectives. The talk will give an overview of the mission status at the end of the definition phase, focusing on the evolution of science performance and payload synergies in achieving the mission goals.

  2. An independent discovery of two hot Jupiters from the K2 mission

    CERN Document Server

    Brahm, Rafael; Espinoza, Néstor; Jordán, Andrés; Rabus, Markus; Rojas, Felipe; Jenkins, James S; Cortés, Cristián; Drass, Holger; Pantoja, Blake; Soto, Maritza G; Vučković, Maja

    2016-01-01

    We report the discovery of two hot Jupiters using photometry from Campaigns 4 and 5 of the two-wheeled Kepler (K2) mission. EPIC210957318b has a mass of $ 0.65 \\pm 0.14 M_J$, a radius of $1.070 \\pm 0.018 R_J$ and transits its G dwarf ($T_{eff} = 5675 \\pm 50$ K), slightly metal rich ([Fe/H]$=+0.06\\pm0.04$ dex) host star in a 4.1 days circular orbit. EPIC212110888b has a mass of $ 1.63 \\pm 0.12 M_J$, a radius of $1.38 \\pm 0.014 R_J$ and has an orbital period of 3.0 days in which it orbits a late F dwarf ($T_{eff} = 6149 \\pm 55$ K) solar metallicity star. Both planets were validated probabilistically and confirmed via precision radial velocity (RV) measurements. They have physical and orbital properties similar to the ones of the already uncovered population of hot Jupiters and are well-suited candidates for further orbital and atmospheric characterization via detailed follow-up observations.

  3. HATS-31b Through HATS-35b: Five Transiting Hot Jupiters Discovered by the HATSouth Survey

    CERN Document Server

    de Val-Borro, M; Brahm, R; Hartman, J D; Espinoza, N; Penev, K; Ciceri, S; Jordán, A; Bhatti, W; Csubry, Z; Bayliss, D; Bento, J; Zhou, G; Rabus, M; Mancini, L; Henning, T; Schmidt, B; Tan, T G; Tinney, C G; Wright, D J; Kedziora-Chudczer, L; Bailey, J; Suc, V; Lázár, J; Papp, I; Sári, P

    2016-01-01

    We report the discovery of five new transiting hot Jupiter planets discovered by the HATSouth survey: HATS-31b through HATS-35b. These planets orbit moderately bright stars with V magnitudes within the range 11.9-14.4mag while the planets span a range of masses 0.88-1.22MJ, and have somewhat inflated radii between 1.23-1.64RJ.These planets can be classified as typical hot Jupiters, with HATS-31b and HATS-35b being moderately inflated gas giant planets with radii of $1.64 \\pm 0.22$ RJ and 1.464+0.069-0.044RJ, respectively, that can be used to constrain inflation mechanisms. All five systems present a higher Bayesian evidence for a fixed circular orbit model than for an eccentric orbit. The orbital periods range from $1.8209993 \\pm 0.0000016$ day for HATS-35b) to $3.377960 \\pm 0.000012$ day for HATS-31b. Additionally, HATS-35b orbits a relatively young F star with an age of $2.13 \\pm 0.51$ Gyr. We discuss the analysis to derive the properties of these systems and compare them in the context of the sample of wel...

  4. A 'Moving' Jupiter Global Map (Animation)

    Science.gov (United States)

    2007-01-01

    The Long Range Reconnaissance Imager (LORRI) on New Horizons has acquired six global maps of Jupiter as the spacecraft approaches the giant planet for a close encounter at the end of February. The high-resolution camera acquired each of six observation 'sets' as a series of individual pictures taken one hour apart, covering a full 10-hour rotation of Jupiter. The LORRI team at the Johns Hopkins University Applied Physics Laboratory (APL) reduced the sets to form six individual maps in a simple rectangular projection. These six maps were then combined to make the movie. The table below shows the dates and the ranges from Jupiter at which these six sets of observations were acquired. Even for the latest set of images taken January 21-22, from 60.5 million kilometers (37.6 million miles), New Horizons was still farther from Jupiter than the average distance of Mercury from the Sun. At that distance from Jupiter, a single LORRI picture resolution element amounts to 300 kilometers (186 miles) on Jupiter. Many features seen in Jupiter's atmosphere are giant storm clouds. The Little Red Spot, which LORRI will image close-up on February 27, is the target-like feature located near 30 degrees South and 230 degrees West; this storm is larger than the Earth. The even larger Great Red Spot is seen near 20 degrees South and 320 degrees West. The counterclockwise rotation of the clouds within the Great Red Spot can be seen. The westward drift of the Great Red Spot is easily seen in the movie, as is the slower drift, in the opposite direction, of the Little Red Spot. The storms of Jupiter are not fixed in location relative to each other or relative to any solid surface below, because Jupiter is a fluid planet without a solid surface. Also, dramatic changes are seen in the series of bright plume-like clouds encircling the planet between 0 and 10 degrees North. Scientists believe these result from an enormous atmospheric wave with rising air, rich in ammonia that condenses to form

  5. Dynamical Constraints on the Origin of Hot and Warm Jupiters with Close Friends

    Science.gov (United States)

    Antonini, Fabio; Hamers, Adrian S.; Lithwick, Yoram

    2016-12-01

    Gas giants orbiting their host star within the ice line are thought to have migrated to their current locations from farther out. Here we consider the origin and dynamical evolution of observed Jupiters, focusing on hot and warm Jupiters with outer friends. We show that the majority of the observed Jupiter pairs (20 out of 24) are dynamically unstable if the inner planet is placed at ≳1 au distance from the stellar host. This finding is at odds with formation theories that invoke the migration of such planets from semimajor axes ≳1 au due to secular dynamical processes (e.g., secular chaos, Lidov-Kozai [LK] oscillations) coupled with tidal dissipation. In fact, the results of N-body integrations show that the evolution of dynamically unstable systems does not lead to tidal migration but rather to planet ejections and collisions with the host star. This and other arguments lead us to suggest that most of the observed planets with a companion could not have been transported from farther out through secular migration processes. More generally, by using a combination of numerical and analytic techniques, we show that the high-e LK migration scenario can only account for less than 10% of all gas giants observed between 0.1 and 1 au. Simulations of multiplanet systems support this result. Our study indicates that rather than starting on highly eccentric orbits with orbital periods above 1 yr, these “warm” Jupiters are more likely to have reached the region where they are observed today without having experienced significant tidal dissipation.

  6. Minimal prospects for radio detection of extensive air showers in the atmosphere of Jupiter

    CERN Document Server

    Bray, J D

    2016-01-01

    One possible approach for detecting ultra-high-energy cosmic rays and neutrinos is to search for radio emission from extensive air showers created when they interact in the atmosphere of Jupiter, effectively utilizing Jupiter as a particle detector. We investigate the potential of this approach. For searches with current or planned radio telescopes we find that the effective area for detection of cosmic rays is substantial (~3*10^7 km^2), but the acceptance angle is so small that the typical geometric aperture (~10^3 km^2 sr) is less than that of existing terrestrial detectors, and cosmic rays also cannot be detected below an extremely high threshold energy (~10^23 eV). The geometric aperture for neutrinos is slightly larger, and greater sensitivity can be achieved with a radio detector on a Jupiter-orbiting satellite, but in neither case is this sufficient to constitute a practical detection technique. Exploitation of the large surface area of Jupiter for detecting ultra-high-energy particles remains a long-...

  7. Dynamical analysis on the transitivity of Jupiter Family Comets to Near-Earth Asteroids

    Science.gov (United States)

    Erece, Orhan; Aslan, Gürkan; Eker, Zeki; Kaplan, Murat

    2016-07-01

    The purpose of this research is to identify the contribution of JFC (Jupiter Family Comet) population to NEA (Near-Earth Asteroid) region by integrating their orbits forward in time. To test and compare the statistics we also integrated NEAs having Tisserand parameters from 2 to 3 and their clones backward in time. As a result, 31.9% of orbits turned out to be Earth-crossing orbits for forward integrations while 66.7% of NEAs reached JFC region for backward integrations. From another point of view, when the number of chosen body population is considered; 304 JFC region body is possibly going to reach NEA orbits, 254 NEA region body look like come from JFC region in a comparable time interval. These results substantially support each other.

  8. JUNO Photovoltaic Power at Jupiter

    Science.gov (United States)

    Dawson, Stephen F.; Stella, Paul; McAlpine, William; Smith, Brian

    2012-01-01

    This paper summarizes the Juno modeling team work on predicting the Juno solar array performance at critical mission points including Juno Orbit Insertion (JOI) and End of Mission (EOM). This report consists of background on Juno solar array design, a summary of power estimates, an explanation of the modeling approach used by Aerospace, a detailed discussion of loss factors and performance predictions, a thermal analysis, and a review of risks to solar array performance

  9. Orbital Perturbations of the Galilean Satellites During Planetary Encounters

    CERN Document Server

    Deienno, R; Vokrouhlicky, D; Yokoyama, T

    2014-01-01

    The Nice model of the dynamical instability and migration of the giant planets can explain many properties of the present Solar System, and can be used to constrain its early architecture. In the jumping-Jupiter version of the Nice model, required from the terrestrial planet constraint and dynamical structure of the asteroid belt, Jupiter has encounters with an ice giant. Here we study the survival of the Galilean satellites in the jumping-Jupiter model. This is an important concern because the ice-giant encounters, if deep enough, could dynamically perturb the orbits of the Galilean satellites, and lead to implausible results. We performed numerical integrations where we tracked the effect of planetary encounters on the Galilean moons. We considered three instability cases from Nesvorny & Morbidelli (2012) that differed in the number and distribution of encounters. We found that in one case, where the number of close encounters was relatively small, the Galilean satellite orbits were not significantly af...

  10. Detection and analysis of Jupiter's decametric micropulses

    Science.gov (United States)

    Lebo, G. R.

    1972-01-01

    The occurrence of Jupiter's decametric radio emission can be correlated with the central meridian longitude of Jupiter as if the active regions were radio transmitters placed at fixed longitudes on its surface. These active regions are commonly called sources and are labelled Source A, Jovian longitude = 200 deg, Source B = 100 deg and Source C =300 deg. These sources are not always active. However, they can be turned-on if Jupiter's innermost Galilean moon, Io, is in the right phase. In fact, if Io is found 90 deg from superior geocentric conjunction (maximum eastern elongation) and if source B is simultaneously on the central meridian, source B radiation is almost guaranteed, whereas source C radiation is highly likely when Io is found 240 deg from superior geocentric conjunction. Source A radiation is largely independent of Io's position. Interestingly, the Io-related radio storms contain unusually rapid events that can only be properly studied using wide-band techniques.

  11. Radiation-Hydrodynamics of Hot Jupiter Atmospheres

    CERN Document Server

    Menou, Kristen

    2009-01-01

    Radiative transfer in planetary atmospheres is usually treated in the static limit, i.e., neglecting atmospheric motions. We argue that hot Jupiter atmospheres, with possibly fast (sonic) wind speeds, may require a more strongly coupled treatment, formally in the regime of radiation-hydrodynamics. To lowest order in v/c, relativistic Doppler shifts distort line profiles along optical paths with finite wind velocity gradients. This leads to flow-dependent deviations in the effective emission and absorption properties of the atmospheric medium. Evaluating the overall impact of these distortions on the radiative structure of a dynamic atmosphere is non-trivial. We present transmissivity and systematic equivalent width excess calculations which suggest possibly important consequences for radiation transport in hot Jupiter atmospheres. If winds are fast and bulk Doppler shifts are indeed important for the global radiative balance, accurate modeling and reliable data interpretation for hot Jupiter atmospheres may p...

  12. Principal components analysis of Jupiter VIMS spectra

    Science.gov (United States)

    Bellucci, G.; Formisano, V.; D'Aversa, E.; Brown, R.H.; Baines, K.H.; Bibring, J.-P.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Chamberlain, M.C.; Hansen, G.; Hibbits, K.; Showalter, M.; Filacchione, G.

    2004-01-01

    During Cassini - Jupiter flyby occurred in December 2000, Visual-Infrared mapping spectrometer (VIMS) instrument took several image cubes of Jupiter at different phase angles and distances. We have analysed the spectral images acquired by the VIMS visual channel by means of a principal component analysis technique (PCA). The original data set consists of 96 spectral images in the 0.35-1.05 ??m wavelength range. The product of the analysis are new PC bands, which contain all the spectral variance of the original data. These new components have been used to produce a map of Jupiter made of seven coherent spectral classes. The map confirms previously published work done on the Great Red Spot by using NIMS data. Some other new findings, presently under investigation, are presented. ?? 2004 Published by Elsevier Ltd on behalf of COSPAR.

  13. Jupiter's Great Red Spot and White Ovals

    Science.gov (United States)

    1979-01-01

    This photo of Jupiter was taken by Voyager 1 on the evening of March 1, 1979, from a distance of 2.7 million miles (4.3 million kilometers). The photo shows Jupiter's Great Red Spot (top) and one of the white ovals than can be seen in Jupiter's atmosphere from Earth. The white ovals were seen to form in 1939, and 1940, and have remained more or less constant ever since. None of the structure and detail evident in these features have ever been seen from Earth. The Great Red Spot is three times as large as Earth. Also evident in the picture is a great deal of atmospheric detail that will require further study for interpretation. The smallest details that can be seen in this picture are about 45 miles (80 kilometers across. JPL manages and controls the Voyager project for NASA's Office of Space Science.

  14. UV emissions of Jupiter: exploration of the high-latitude regions through the UV spectrograph on NASA's Juno mission

    Science.gov (United States)

    Hue, Vincent; Gladstone, Randy; Versteeg, Maarten; Greathouse, Thomas K.; Davis, Michael; Gerard, Jean-Claude; Grodent, Denis; Bonfond, Bertrand

    2016-10-01

    The Juno mission offers the opportunity to study Jupiter, from its inner structure to its magnetospheric environment. Juno was launched on August 2011 and its Jupiter orbit insertion (JOI) planned for July 4th 2016, will place Juno in a 53.5 days capture orbit. A period reduction maneuver will be performed two orbits later to place Juno into 14-days elliptical orbits for the duration of the nominal mission, which includes 36 orbits. Juno-UVS is a UV spectrograph with a bandpass of 70 ≤ λ ≤ 205 nm, designed to characterize Jupiter UV emissions. One of the main additions of UVS compared to its predecessors is a 2.54 mm tantalum shielding, to protect it from the harsh radiation environment at Jupiter, and a scan mirror, to allow for targeting specific auroral regions during perijove passes. The scan mirror is located at the front end of the instrument and will be used to look at +/- 30° perpendicular to the Juno spin plane. The entrance slit of UVS has a dog-bone shape composed by three sections with field of views of 0.2°x2.5°, 0.025°x2.0° and 0.2°x2.5°, as projected onto the sky. It will provide new constraints on Jupiter's auroral nightside morphology and spectral features as well as the vertical structure of these emissions. It will bring remote-sensing constraints for the onboard waves and particle instruments (JADE, JEDI, Waves and MAG). The ability to change the pointing will allow relating the observed UV brightness of the regions magnetically connected to where Juno flies with the particles and waves measurements. We will discuss the planned observations and scientific targets for the nominal mission orbital sequence, which will consist of three UV datasets per orbit. We will present the results from the first orbit. As Juno orbit evolves during the mission, we will also present how these objectives evolve over time.

  15. Thermal tides on a hot Jupiter

    Directory of Open Access Journals (Sweden)

    Hsieh H.-F.

    2011-07-01

    Full Text Available Following the linear analysis laid out by Gu & Ogilvie 2009 (hereafter GO09, we investigate the dynamical response of a non-synchronized hot Jupiter to stellar irradiation. Besides the internal and Rossby waves considered by GO09, we study the Kelvin waves excited by the diurnal Fourier harmonic of the prograde stellar irradiation. We also present a 2-dimensional plot of internal waves excited by the semi-diurnal component of the stellar irradiation and postulate that thermal bulges may arise in a hot Jupiter. Whether our postulation is valid and is consistent with the recent results from Arras & Socrates (2009b requires further investigation.

  16. Jupiter after Pioneer - A progress report

    Science.gov (United States)

    Mcdonough, T. R.

    1974-01-01

    In December 1973, Pioneer 10 became the first spacecraft to reach the vicinity of Jupiter. The spacecraft passed through the Jovian magnetosphere in two weeks and sent back more than 300 pictures of the big planet. Measurements were conducted of EM fields, energetic particles, and micrometeoroids. Radio occultations observed are discussed along with observations in the infrared and ultraviolet range, magnetic measurements, questions of trajectory analysis, and data obtained with the aid of a plasma analyzer. Pioneer 10 has confirmed as inescapable the fact that Jupiter radiates more energy than it receives from the sun.

  17. Radiation belts of jupiter: a second look.

    Science.gov (United States)

    Fillius, R W; McIlwain, C E; Mogro-Campero, A

    1975-05-02

    The outbound leg of the Pioneer 11 Jupiter flyby explored a region farther from the equator than that traversed by Pioneer 10, and the new data require modification or augmentation of the magnetodisk model based on the Pioneer 10 flyby. The inner moons of Jupiter are sinks of energetic particles and sometimes sources. A large spike of particles was found near lo. Multiple peaks occurred in the particle fluxes near closest approach to the planet; this structure may be accounted for by a complex magnetic field configuration. The decrease in proton flux observed near minimum altitude on the Pioneer 10 flyby appears attributable to particle absorption by Amalthea.

  18. TrES-5: A Massive Jupiter-sized Planet Transiting A Cool G-dwarf

    CERN Document Server

    Mandushev, Georgi; Buchhave, Lars A; Dunham, Edward W; Rabus, Markus; Oetiker, Brian; Latham, David W; Charbonneau, David; Brown, Timothy M; Belmonte, Juan A; O'Donovan, Francis T

    2011-01-01

    We report the discovery of TrES-5, a massive hot Jupiter that transits the star GSC 03949-00967 every 1.48 days. From spectroscopy of the star we estimate a stellar effective temperature of$5171 +/- 36 K, and from high-precision B, R and I photometry of the transit we constrain the ratio of the semi-major axis and the stellar radius to be 6.07 +/- 0.14. We compare these values to model stellar isochrones to obtain a stellar mass of 0.893 +/- 0.024 solar masses. Based on this estimate and the photometric time series, we constrain the stellar radius to be 0.866 +/- 0.013 solar radii, and the planet radius to be 1.209 +/- 0.021 Jupiter radii. We model our radial-velocity data assuming a circular orbit and find a planetary mass of 1.778 +/- 0.063 Jupiter masses. Our radial-velocity observations rule out line-bisector variations that would indicate a specious detection resulting from a blend of an eclipsing binary system. TrES-5 orbits one of the faintest stars with transiting planets found to date from the ground...

  19. The evolution of asteroids in the jumping-Jupiter migration model

    CERN Document Server

    Roig, Fernando

    2015-01-01

    In this work, we investigate the evolution of a primordial belt of asteroids, represented by a large number of massless test particles, under the gravitational effect of migrating Jovian planets in the framework of the jumping-Jupiter model. We perform several simulations considering test particles distributed in the Main Belt, as well as in the Hilda and Trojan groups. The simulations start with Jupiter and Saturn locked in the mutual 3:2 mean motion resonance plus 3 Neptune-mass planets in a compact orbital configuration. Mutual planetary interactions during migration led one of the Neptunes to be ejected in less than 10 Myr of evolution, causing Jupiter to jump by about 0.3 au in semi-major axis. This introduces a large scale instability in the studied populations of small bodies. After the migration phase, the simulations are extended over 4 Gyr, and we compare the final orbital structure of the simulated test particles to the current Main Belt of asteroids with absolute magnitude $H<9.7$. The results ...

  20. Three irradiated and bloated hot Jupiters:. WASP-76b, WASP-82b, and WASP-90b

    Science.gov (United States)

    West, R. G.; Hellier, C.; Almenara, J.-M.; Anderson, D. R.; Barros, S. C. C.; Bouchy, F.; Brown, D. J. A.; Collier Cameron, A.; Deleuil, M.; Delrez, L.; Doyle, A. P.; Faedi, F.; Fumel, A.; Gillon, M.; Gómez Maqueo Chew, Y.; Hébrard, G.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.

    2016-01-01

    We report on three new transiting hot Jupiter planets, discovered from the WASP surveys, which we combine with radial velocities from OHP/SOPHIE and Euler/CORALIE and photometry from Euler and TRAPPIST. The planets WASP-76b, WASP-82b, and WASP-90b are all inflated, with radii of 1.7-1.8 RJup. All three orbit hot stars, of type F5-F7, with orbits of 1.8-3.9 d, and all three stars have evolved, post-main-sequence radii (1.7-2.2 R⊙). Thus the three planets fit a known trend of hot Jupiters that receive high levels of irradiation being highly inflated. We caution, though, about the presence of a selection effect, in that non-inflated planets around ~2 R⊙ post-MS stars can often produce transits too shallow to be detected by the ground-based surveys that have found the majority of transiting hot Jupiters. Tables of the photometry and radial velocity are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A126

  1. Embryo impacts and gas giant mergers - II. Diversity of hot Jupiters' internal structure

    Science.gov (United States)

    Liu, Shang-Fei; Agnor, Craig B.; Lin, D. N. C.; Li, Shu-Lin

    2015-01-01

    We consider the origin of compact, short-period, Jupiter-mass planets. We propose that their diverse structure is caused by giant impacts of embryos and super-Earths or mergers with other gas giants during the formation and evolution of these hot Jupiters. Through a series of numerical simulations, we show that typical head-on collisions generally lead to total coalescence of impinging gas giants. Although extremely energetic collisions can disintegrate the envelope of gas giants, these events seldom occur. During oblique and moderately energetic collisions, the merger products retain higher fraction of the colliders' cores than their envelopes. They can also deposit considerable amount of spin angular momentum to the gas giants and desynchronize their spins from their orbital mean motion. We find that the oblateness of gas giants can be used to infer the impact history. Subsequent dissipation of stellar tide inside the planets' envelope can lead to runaway inflation and potentially a substantial loss of gas through Roche lobe overflow. The impact of super-Earths on parabolic orbits can also enlarge gas giant planets' envelope and elevates their tidal dissipation rate over ˜100 Myr time scale. Since giant impacts occur stochastically with a range of impactor sizes and energies, their diverse outcomes may account for the dispersion in the mass-radius relationship of hot Jupiters.

  2. Extreme Environments Technologies for Probes to Venus and Jupiter

    Science.gov (United States)

    Balint, Tibor S.; Kolawa, Elizabeth A.; Peterson, Craig E.; Cutts, James A.; Belz, Andrea P.

    2007-01-01

    This viewgraph presentation reviews the technologies that are used to mitigate extreme environments for probes at Venus and Jupiter. The contents include: 1) Extreme environments at Venus and Jupiter; 2) In-situ missions to Venus and Jupiter (past/present/future); and 3) Approaches to mitigate conditions of extreme environments for probes with systems architectures and technologies.

  3. Video Orbits of the Geminids

    Science.gov (United States)

    Hajdukova, M.

    2014-07-01

    meteoroids, with aphelia far inside the orbit of Jupiter, indicate that the gravitational effects of the other outer planets are negligible. Therefore, the structure of the Geminid meteoroid stream is dominated by the initial spread of meteoroid orbits. The deviations which may have accumulated since the formation of the stream can hardly exceed a few thousandths in 1/a (Kresakova, 1974). This study demonstrates that the original orbital dispersion can be smeared by larger observational and measurement errors. This fact has to be taken into consideration when studying the fine structure of the stream.

  4. OMV--Short Range Vehicle Concept

    Science.gov (United States)

    1986-01-01

    In this 1986 artist's concept, the Orbital Maneuvering Vehicle (OMV), is shown without its main propulsion module. Essentially two propulsion vehicles in one, the OMV could be powered by a main propulsion module , or, in its short range vehicle configuration shown here, use its own hydrazine and cold gas thrusters. As envisioned by Marshall Space Flight Center plarners, the OMV would be a remotely-controlled free-flying space tug which would place, rendezvous, dock, and retrieve orbital payloads.

  5. Tidally-driven Roche-Lobe Overflow of Hot Jupiters with MESA

    CERN Document Server

    Valsecchi, Francesca; Rasio, Frederic A; Marchant, Pablo; Rogers, Leslie A

    2015-01-01

    Many exoplanets have now been detected in orbits with ultra-short periods, very close to the Roche limit. Building upon our previous work, we study the possibility that mass loss through Roche lobe overflow (RLO) may affect the evolution of these planets, and could possibly transform a hot Jupiter into a lower-mass planet (hot Neptune or super-Earth). We focus here on systems in which the mass loss occurs slowly ("stable mass transfer" in the language of binary star evolution) and we compute their evolution in detail with the binary evolution code MESA. We include the effects of tides, RLO, irradiation and photo-evaporation of the planet, as well as the stellar wind and magnetic braking. Our calculations all start with a hot Jupiter close to its Roche limit, in orbit around a sun-like star. The initial orbital decay and onset of RLO are driven by tidal dissipation in the star. We confirm that such a system can indeed evolve to produce lower-mass planets in orbits of a few days. The RLO phase eventually ends a...

  6. Reflected Light Curves, Spherical and Bond Albedos of Jupiter- and Saturn-like Exoplanets

    Science.gov (United States)

    Dyudina, Ulyana A.; Zhang, Xi; Li, Liming; Kopparla, Pushkar; Ingersoll, Andrew P.; Dones, Henry C. Luke; Verbiscer, Anne J.; Yung, Yuk

    2016-10-01

    Reflected light curves observed for exoplanets indicate that a few of them host bright clouds. We estimate how the light curve and total stellar heating of a planet depends on forward and backward scattering in the clouds based on Pioneer and Cassini spacecraft images of Jupiter and Saturn. We fit analytical functions to the local reflected brightnesses of Jupiter and Saturn depending on the planet's phase. These observations cover broad bands at 0.59-0.72 and 0.39-0.5 μm, and narrow bands at 0.938 (atmospheric window), 0.889 (CH4 absorption band), and 0.24-0.28 μm. We simulate the images of the planets with a ray-tracing model, and disk-integrate them to produce the full-orbit light curves. For Jupiter, we also fit the modeled light curves to the observed full-disk brightness. We derive spherical albedos for Jupiter and Saturn, and for planets with Lambertian and Rayleigh-scattering atmospheres. Jupiter-like atmospheres can produce light curves that are a factor of two fainter at half-phase than the Lambertian planet, given the same geometric albedo at transit. The spherical albedo is typically lower than for a Lambertian planet by up to a factor of ˜1.5. The Lambertian assumption will underestimate the absorption of the stellar light and the equilibrium temperature of the planetary atmosphere. We also compare our light curves with the light curves of solid bodies: the moons Enceladus and Callisto. Their strong backscattering peak within a few degrees of opposition (secondary eclipse) can lead to an even stronger underestimate of the stellar heating. This work is published: Dyudina, U.,et al., 2016: ApJ, 822, 76, http://arxiv.org/abs/1511.04415.

  7. Preliminary aerothermodynamic design method for hypersonic vehicles

    Science.gov (United States)

    Harloff, G. J.; Petrie, S. L.

    1987-01-01

    Preliminary design methods are presented for vehicle aerothermodynamics. Predictions are made for Shuttle orbiter, a Mach 6 transport vehicle and a high-speed missile configuration. Rapid and accurate methods are discussed for obtaining aerodynamic coefficients and heat transfer rates for laminar and turbulent flows for vehicles at high angles of attack and hypersonic Mach numbers.

  8. On the influence of the plasma generated by comet Shoemaker-Levy 9 on Jupiter`s magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Stabile, F.; Zimbardo, G. [Arcavacata di Rende, Cosenza, Univ. della Calabria (Italy). Dipt. di Fisica

    1997-11-01

    The impact of comet Shoemaker-Levy 9 with Jupiter has created a variety of magnetospheric plasmas which were detected by their electromagnetic emissions. By means of the Dessler-Parker-Sckopke relation we estimate the perturbation of Jupiter`s magnetic field. It appears that the produced plasma may explain the observed decrease of UV lines in Io`s torus.

  9. Capture Probability in the 3:1 Mean Motion Resonance with Jupiter

    CERN Document Server

    Folonier, H; Beaugé, C

    2014-01-01

    We study the capture and crossing probabilities into the 3:1 mean motion resonance with Jupiter for a small asteroid that migrates from the inner to the middle Main Belt under the action of the Yarkovsky effect. We use an algebraic mapping of the averaged planar restricted three-body problem based on the symplectic mapping of Hadjidemetriou (1993), adding the secular variations of the orbit of Jupiter and non-symplectic terms to simulate the migration. We found that, for fast migration rates, the captures occur at discrete windows of initial eccentricities whose specific locations depend on the initial resonant angles, indicating that the capture phenomenon is not probabilistic. For slow migration rates, these windows become narrower and start to accumulate at low eccentricities, generating a region of mutual overlap where the capture probability tends to 100%, in agreement with the theoretical predictions for the adiabatic regime. Our simulations allow to predict the capture probabilities in both the adiabat...

  10. Scaling the V& V mountain: Proving Juno will succeed at Jupiter

    Science.gov (United States)

    Rocca, J.; Lord, N.; Johnson, M.; Bone, B.

    Juno is a NASA New Frontiers mission managed and operated by the NASA Jet Propulsion Laboratory (JPL), commissioned to explore the origin, interior, atmosphere, and polar magnetosphere of Jupiter. The spacecraft was developed and built by Lockheed Martin Space Systems, and its nine science instruments were developed by JPL and six national and international partner institutions. Juno launched on August 5th, 2011 starting its 5 year cruise to Jupiter and will enter an ~11 day polar orbit that will allow for science measurements while minimizing radiation. Juno is a spin-stabilized, solar-powered spacecraft with a challenging and complex mission, which included over 7,500 requirements and 900 verification activities to be completed during the integration and test campaign.

  11. Embryo impacts and gas giant mergers II: Diversity of Hot Jupiters' internal structure

    CERN Document Server

    Liu, Shang-Fei; Lin, D N C; Li, Shu-Lin

    2014-01-01

    We consider the origin of compact, short-period, Jupiter-mass planets. We propose that their diverse structure is caused by giant impacts of embryos and super-Earths or mergers with other gas giants during the formation and evolution of these hot Jupiters. Through a series of numerical simulations, we show that typical head-on collisions generally lead to total coalescence of impinging gas giants. Although extremely energetic collisions can disintegrate the envelope of gas giants, these events seldom occur. During oblique and moderately energetic collisions, the merger products retain higher fraction of the colliders' cores than their envelopes. They can also deposit considerable amount of spin angular momentum to the gas giants and desynchronize their spins from their orbital mean motion. We find that the oblateness of gas giants can be used to infer the impact history. Subsequent dissipation of stellar tide inside the planets' envelope can lead to runaway inflation and potentially a substantial loss of gas ...

  12. Meteoritical and dynamical constraints on the growth mechanisms and formation times of asteroids and Jupiter

    CERN Document Server

    Scott, E R D

    2006-01-01

    Peak temperatures inside meteorite parent bodies are closely linked to accretion times. Most iron meteorites come from bodies that accreted 3-5 Myr after CAIs formed. This precludes formation of Jupiter via a gravitational instability <1 Myr after the solar nebula formed, and strongly favors core accretion. Shocks formed by gravitational instabilities in the disk, proto-Jupiter, or by planetary embryos may have produced some chondrules. The minimum lifetime for the solar nebula of 3-5 Myr inferred from CAI and chondrule ages may exceed the median 3 Myr lifetime for protoplanetary disks, but is well within the total 1-10 Myr range. Shorter formation times for extrasolar planets may help to explain why their orbits are unlike those of solar giant planets.

  13. A Low Frequency Radio and Radar Instrument to Explore Jupiter's Icy Moons

    Science.gov (United States)

    Kurth, W. S.; Gurnett, D. A.; Plaut, J.; Bolton, S. J.; Farrell, W. M.; Desch, M. D.; Kaiser, M. L.; Zarka, P.; Lecacheux, A.; Bale, S. D.

    2003-01-01

    The addition of a comprehensive wave investigation to the Jupiter Icy Moons Orbiter (JIMO) science payload will provide a broad range of information on the icy moons of Jupiter including the detection of subsurface liquid oceans; mapping of their ionospheres; their interaction with the magnetospheric environment; and on the Jovian magnetosphere. These measurements are obtained through the use of both passive and active (sounding) means over broad frequency ranges. The frequency range of interest extends from less than 1 Hz to 40 MHz for passive measurements, from approximately 1 kHz to a few MHz for magnetospheric and ionospheric sounding, and between 1 and approximately 10 MHz for subsurface radar sounding. An instrument to detect subsurface radar sounding, magnetospheric interactions, and ionospheric sounding is discussed.

  14. MAJIS (Moons and Jupiter Imaging Spectrometer): the VIS-NIR imaging spectrometer of the JUICE mission

    Science.gov (United States)

    Langevin, Yves; Piccioni, Giuseppe; Dumesnil, Cydalise; Filacchione, Gianrico; Poulet, Francois; MAJIS Team

    2016-10-01

    MAJIS is the VIS-NIR imaging spectrometer of JUICE. This ambitious mission of ESA's « cosmic vision » program will investigate Jupiter and its system with a specific focus on Ganymede. After a tour of more than 3 years including 2 fly-bys of Europa and up to 20 flybys of Ganymede and Callisto, the end of the nominal mission will be dedicated to an orbital phase around Ganymede with 120 days in a near-circular, near-polar orbit at an altitude of 5000 km and 130 days in a circular near-polar orbit at an altitude of 500 km. MAJIS will adress 17 of the 19 primary science objectives of JUICE, investigating the surface and exosphere of the Galilean satellites (Ganymede during the orbital phase, Europa and Callisto during close flybys, Io from a minimum distance of 570,000 km), the atmosphere / exosphere of Jupiter, small satellites and rings, and their role as sources and sinks of particles in the Jupiter magnetosphere.The main technical characteristics are the following:Spectral range : 0.5 - 5.7 µm with two overlapping channels (VIS-NIR : 0.5 - 2.35 µm ; IR : 2.25 - 5.7 µm)Spatial resolution : 0.125 to 0.15 mradSpectral sampling (VIS-NIR channel) : 2.9 to 3.45 nmSpectral sampling (IR channel) : 5.4 to 6.45 nmThe spectral and spatial resolution will be finalized in october 2016 after the selection of the MAJIS detectors.Passive cooling will provide operating temperatures noise model will be larger than 100 over most of the spectral range except for high resolution observations of icy moons at low altitude due to limitations on the integration time even with motion compensation provided by a scanner and for exospheric observations due to intrinsic low signal levels.

  15. Hubble Space Telescope On-orbit Transfer Function Test

    Science.gov (United States)

    Vadlamudi, N.; Blair, M. A.; Clapp, B. R.

    1992-01-01

    The paper describes the On-orbit Transfer Function Test (TFT) designed for on-orbit vibration testing of the Hubble Space Telescope (HST). The TFT provides means for extracting accurate on-orbit characteristics of HST flexible body dynamics, making it possible to check periodically the state of the vehicle on-orbit and to assess changes in modal parameters.

  16. Secular dynamics of multiplanet systems: implications for the formation of hot and warm Jupiters via high-eccentricity migration

    Science.gov (United States)

    Hamers, Adrian S.; Antonini, Fabio; Lithwick, Yoram; Perets, Hagai B.; Portegies Zwart, Simon F.

    2017-01-01

    Hot Jupiters (HJs) are Jupiter-like planets that reside very closely to their host star, within ˜0.1 au. Their formation is not well understood. It is generally believed that they cannot have formed in situ, implying that some form of migration must have occurred after their initial formation. We study the production of HJs through secular evolution in multiplanet systems with three to five planets. In this variant of high-e migration, the eccentricity of the orbit of the innermost planet is excited on secular time-scales, triggering orbital migration due to tidal dissipation. We use a secular dynamics code and carry out a population synthesis study. We find that HJs are only produced if the viscous time-scale is short (≈0.014 yr). In contrast, in up to ≈0.3 of systems, the innermost planet is tidally disrupted. The orbital period distribution is peaked around 5 d, consistent with observations. The median HJ mass is 1 MJ with a maximum of ≈2 MJ, similar to observed HJs. Approximately 0.1 of the HJs have retrograde orbits with respect to the stellar spin. We do not find a significant population of warm Jupiters in our simulations, i.e. planets with semimajor axes between 0.1 and 1 au.

  17. HATS-25b through HATS-30b: A Half-dozen New Inflated Transiting Hot Jupiters from the HATSouth Survey

    CERN Document Server

    Espinoza, N; Hartman, J D; Bakos, G Á; Jordán, A; Zhou, G; Mancini, L; Brahm, R; Ciceri, S; Bhatti, W; Csubry, Z; Rabus, M; Penev, K; Bento, J; de Val-Borro, M; Henning, T; Schmidt, B; Suc, V; Wright, D J; Tinney, C G; Tan, T G; Noyes, R

    2016-01-01

    We report six new inflated hot Jupiters (HATS-25b through HATS-30b) discovered using the HATSouth global network of automated telescopes. The planets orbit stars with $V$ magnitudes in the range $\\sim 12-14$ and have masses in the largely populated $0.5M_J-0.7M_J$ region of parameter space but span a wide variety of radii, from $1.17R_J$ to $1.75 R_J$. HATS-25b, HATS-28b, HATS-29b and HATS-30b are typical inflated hot Jupiters ($R_p = 1.17-1.26R_J$) orbiting G-type stars in short period ($P=3.2-4.6$ days) orbits. However, HATS-26b ($R_p = 1.75R_J$, $P = 3.3024$ days) and HATS-27b ($R_p=1.50R_J$, $P=4.6370$ days) stand out as highly inflated planets orbiting slightly evolved F stars just after and in the turn-off points, respectively, which are among the least dense hot Jupiters, with densities of $0.153$ g cm$^{-3}$ and $0.180$ g cm$^{-3}$, respectively. All the presented exoplanets but HATS-27b are good targets for future atmospheric characterization studies, while HATS-27b is a prime target for Rossiter-McL...

  18. Tidally-driven Roche-lobe Overflow of Hot Jupiters with MESA

    Science.gov (United States)

    Valsecchi, Francesca; Rappaport, Saul; Rasio, Frederic A.; Marchant, Pablo; Rogers, Leslie A.

    2015-11-01

    Many exoplanets have now been detected in orbits with ultra-short periods very close to the Roche limit. Building upon our previous work, we study the possibility that mass loss through Roche lobe overflow (RLO) may affect the evolution of these planets, and could possibly transform a hot Jupiter into a lower-mass planet (hot Neptune or super-Earth). We focus here on systems in which the mass loss occurs slowly (“stable mass transfer” in the language of binary star evolution) and we compute their evolution in detail with the binary evolution code Modules for Experiments in Stellar Astrophysics. We include the effects of tides, RLO, irradiation, and photo-evaporation (PE) of the planet, as well as the stellar wind and magnetic braking. Our calculations all start with a hot Jupiter close to its Roche limit, in orbit around a Sun-like star. The initial orbital decay and onset of RLO are driven by tidal dissipation in the star. We confirm that such a system can indeed evolve to produce lower-mass planets in orbits of a few days. The RLO phase eventually ends and, depending on the details of the mass transfer and on the planetary core mass, the orbital period can remain around a few days for several Gyr. The remnant planets have rocky cores and some amount of envelope material, which is slowly removed via PE at a nearly constant orbital period; these have properties resembling many of the observed super-Earths and sub-Neptunes. For these remnant planets, we also predict an anti-correlation between mass and orbital period; very low-mass planets (Mpl ≲ 5 M⊕) in ultra-short periods (Porb < 1 day) cannot be produced through this type of evolution.

  19. TIDALLY DRIVEN ROCHE-LOBE OVERFLOW OF HOT JUPITERS WITH MESA

    Energy Technology Data Exchange (ETDEWEB)

    Valsecchi, Francesca; Rasio, Frederic A. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), and Northwestern University, Department of Physics and Astronomy, Evanston, IL 60208 (United States); Rappaport, Saul [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Marchant, Pablo [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hgel 71, D-53121 Bonn (Germany); Rogers, Leslie A., E-mail: francesca@u.northwestern.edu, E-mail: rasio@northwestern.edu, E-mail: sar@mit.edu, E-mail: pablo@astro.uni-bonn.de, E-mail: larogers@caltech.edu [Department of Astronomy and Department of Geophysics and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-11-10

    Many exoplanets have now been detected in orbits with ultra-short periods very close to the Roche limit. Building upon our previous work, we study the possibility that mass loss through Roche lobe overflow (RLO) may affect the evolution of these planets, and could possibly transform a hot Jupiter into a lower-mass planet (hot Neptune or super-Earth). We focus here on systems in which the mass loss occurs slowly (“stable mass transfer” in the language of binary star evolution) and we compute their evolution in detail with the binary evolution code Modules for Experiments in Stellar Astrophysics. We include the effects of tides, RLO, irradiation, and photo-evaporation (PE) of the planet, as well as the stellar wind and magnetic braking. Our calculations all start with a hot Jupiter close to its Roche limit, in orbit around a Sun-like star. The initial orbital decay and onset of RLO are driven by tidal dissipation in the star. We confirm that such a system can indeed evolve to produce lower-mass planets in orbits of a few days. The RLO phase eventually ends and, depending on the details of the mass transfer and on the planetary core mass, the orbital period can remain around a few days for several Gyr. The remnant planets have rocky cores and some amount of envelope material, which is slowly removed via PE at a nearly constant orbital period; these have properties resembling many of the observed super-Earths and sub-Neptunes. For these remnant planets, we also predict an anti-correlation between mass and orbital period; very low-mass planets (M{sub pl} ≲ 5 M{sub ⊕}) in ultra-short periods (P{sub orb} < 1 day) cannot be produced through this type of evolution.

  20. JUPITER PROJECT - MERGING INVERSE PROBLEM FORMULATION TECHNOLOGIES

    Science.gov (United States)

    The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project seeks to enhance and build on the technology and momentum behind two of the most popular sensitivity analysis, data assessment, calibration, and uncertainty analysis programs used in envi...

  1. Dramatic Change in Jupiter's Great Red Spot

    Science.gov (United States)

    Simon, A. A.; Wong, M. H.; Rogers, J. H.; Orton, G. S.; de Pater, I.; Asay-Davis, X.; Carlson, R. W.; Marcus, P. S.

    2015-01-01

    Jupiter's Great Red Spot (GRS) is one of its most distinct and enduring features, having been continuously observed since the 1800's. It currently spans the smallest latitude and longitude size ever recorded. Here we show analyses of 2014 Hubble spectral imaging data to study the color, structure and internal dynamics of this long-live storm.

  2. Jupiter as a Giant Cosmic Ray Detector

    CERN Document Server

    Rimmer, Paul B; Helling, Christiane

    2014-01-01

    We explore the feasibility of using the atmosphere of Jupiter to detect Ultra-High-Energy Cosmic Rays (UHECR's). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmic ray "detector" area of $3.3 \\times 10^7$ km$^2$. We predict that Fermi-LAT should be able to detect events of energy $>10^{21}$ eV with fluence $10^{-7}$ erg cm$^{-2}$ at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays $\\gtrsim 10^{20}$ eV. Extensive air showers also produce a synchrotron signature that may ...

  3. Europa--Jupiter's Icy Ocean Moon

    Science.gov (United States)

    Lowes, L.

    1999-01-01

    Europa is a puzzle. The sixth largest moon in our solar system, Europa confounds and intrigues scientists. Few bodies in the solar system have attracted as much scientific attention as this moon of Jupiter because of its possible subsurface ocean of water. The more we learn about this icy moon, the more questions we have.

  4. 木星探测轨道分析与设计%Jupiter Exploration Mission Analysis and Trajectory Design

    Institute of Scientific and Technical Information of China (English)

    陈杨; 宝音贺西; 李俊峰

    2012-01-01

    The trajectory design for Jupiter exploration mission is investigated in this paper. The differences between Jupiter exploration trajectory and Mars or Venus exploration trajectory are mainly concerned about. Firstly, the selection of the Jupiter-centered orbit is analyzed based on the Galileo Jupiter mission. As for the Earth-Jupiter transfer orbit, the fuel consumption of the direct transfer is too large. So the energy-saving technologies such as the planetary gravity assist should be used for the trajectory to the Jupiter. The different sequences of planetary gravity assist for the trajectory from the Earth to the Jupiter are examined by applying the Particle Swarm Optimization (PSO). According to the searching results, Venus-Earth-Earth gravity assist (VEEGA) is the most effective gravity-assist sequence for the Jupiter mission. During the Jupiter mission, the spacecraft will pass though the main asteroid belt which is between the orbits of Mars and Jupiter, and may encounter several asteroids. The Jupiter mission is able to combine with the main-belt asteroid flyby missions. The design method of the intermediate asteroid flyby trajectory is also considered. At last, an entire designed trajectory for the Jupiter mission launched in 2023 is presented.%研究了与木星探测相关的轨道设计问题.重点关注木星探测轨道与火星、金星等类地行星探测轨道的不同及由此带来的轨道设计难点.首先分析了绕木星探测任务轨道的选择.建立近似模型讨论了向木星飞行需要借助多颗行星的多次引力辅助,对地木转移的多种行星引力辅助序列,使用粒子群算法搜索了2020年至2025年之间的燃料最省飞行方案并对比得到了向木星飞行较好的引力辅助方式为金星-地球-地球引力辅助.结合多任务探测,研究了航天器在飞向木星途中穿越主小行星带飞越探测小行星的轨道设计.最后,给出2023年发射完整的结合引力辅助与小行星

  5. Vehicle to Vehicle Services

    DEFF Research Database (Denmark)

    Brønsted, Jeppe Rørbæk

    2008-01-01

    , mobility, and availability of services. The dissertation consists of two parts. Part I gives an overview of service oriented architecture for pervasive computing systems and describes the contributions of the publications listed in part II. We investigate architecture for vehicular technology applications......As computing devices, sensors, and actuators pervade our surroundings, new applications emerge with accompanying research challenges. In the transportation domain vehicles are being linked by wireless communication and equipped with an array of sensors and actuators that make is possible to provide...... location aware infotainment, increase safety, and lessen environmental strain. This dissertation is about service oriented architecture for pervasive computing with an emphasis on vehicle to vehicle applications. If devices are exposed as services, applications can be created by composing a set of services...

  6. Hilda family contribution to the Jupiter Family Comets (JFC)

    Science.gov (United States)

    di Sisto, R. P.; Brunini, A.; Dirani, L. D.; Orellana, R. B.

    The distinction between asteroids and comets, is based in their observational qualities rather than in their orbital characteristics. Comets show activity when they reach the interior Solar System. Asteroids from the outer Belt, may have compound of the same volatile material, dust and organic molecules than comets, but they didn't approach enough to the Sun, to show activity. From the compositional point of view, it is a bit arbitrary or at least difficult to distinguish between asteroids from the external main belt and comets. The firsts may be very similar to comets, or at least be objects of intermediate characteristics. The Hildas asteroids, in 3:2 mean motion with Jupiter, have great quantity of volatiles. The main source of Jupiter Family Comets (JFC) is the transneptunian region, but less than 10 % of them comes from the Troyan swarms. In this article we study the Hilda family as another probable source of JFC. We perform numerical simulations and follow the dynamical evolution of Hildas escaped from the resonance. From the 391 particles that escaped from the resonance, 386 (98.7 %) live at least for 1000 years as JFC. The mean life time in this zone is 1.4 × 106 years. The escape rate of an Hilda asteroid, with diameter D greater than 1 km. Is 1.1 × 10-4, so, there is 65 Hildas with D > 1km. (the typical size of a comet) in the JFC region. Therefore, the contribution of Hilda asteroids to the population of comets is important.

  7. Studying the Atmospheres of the Most Intriguing WASP Hot Jupiters

    Science.gov (United States)

    Lendl, M.; Delrez, L.; Gillon, M.; Queloz, D.

    2013-09-01

    Among the over 300 transiting planets confirmed to date, approximately 130 have been found by groundbased wide angle transit surveys such asWASP. While these surveys are not sensitive enough to detect lowmass planets, they excel at picking out rare hot- Jupiters orbiting reasonably bright stars (V mag = 9 - 11) across the sky. These planets occupy a favorable region in parameter space, as they show frequent and deep transits. Due to the proximity to their host stars these gas giants possess hot extended atmospheres making them ideal targets for the study of their atmospheres via transmission and occultation spectrophotometry. During occultation, the flux emerging from the planetary dayside is eliminated. By comparing the flux in- and out-of occultation, the planet-to-star brightness ratio can be measured. Observations in different passbands yield a measure of the planetary spectral energy distribution and thereby allow to determine the atmospheric temperature structure, heat redistribution efficiency, albedo, and to place constraints on the atmospheric composition. From the spectro-photometric observation of transits, we can measure wavelength dependencies in the effective planetary radius that are sensitive to signatures of chemical elements in the planetary atmosphere. We present results of ongoing observing campaigns employing these methods to study the atmospheres of hot Jupiters discovered by the WASP survey. In particular we show results for the very short-period planet WASP-19b based on data from the 1m-class Euler-Swiss and TRAPPIST telescopes, as well as a transmission spectrum of the low-density hot Saturn WASP-49b obtained from FORS2 at the VLT/UT1.

  8. Surface Penetrating Radar Simulations for Jupiter's Icy Moons

    Science.gov (United States)

    Markus, Thorsten; Gogineni, S. P.; Green, J. L.; Reinisch, B. W.; Song, P.; Fung, S. F.; Benson, R. F.; Taylor, W. W. L.; Cooper, F.

    2003-01-01

    The icy moons of Jupiter (Europa, Callisto, and Ganymede) are of similar overall composition but show different surface features as a result of different sub-surface processes. Furthermore, each of these moons could have a liquid ocean of water buried underneath the icy crust, but their depth can only be speculated. For Europa, estimates put the thickness of the ice shell anywhere between 2-30 km, with'a few models predicting up to 100 km. Much of the uncertainties are due to the largely unknown temperature gradients and levels of water impurities across different surface layers. One of the most important geological processes is the possible transportation of heat by ice convection. If the ice is convecting, then an upper limit of about 20 km is set for the depth of the ocean underneath. Convection leads to a sharp increase in temperature followed by a thick region of nearly constant temperature. If ice is not convecting, then an exponentially increasing temperature profile is expected. The crust is thought to be a mixture of ice and rock, and although the exact percentage of rock is not known, it is expected to be low. Additionally, the ice crust could contain salt, similar to sea ice on Earth. The exact amount of salt and how that amount changes with depth is also unknown. In preparation for the Jupiter Icy Moons Orbiter (JIMO) mission, we performed simulations for a surface-penetrating radar investigating signatures for different possible surface and sub-surface structures of these moons in order to estimate the applicability of using radar with a frequency range between 1 and 50 MHz. This includes simulations of power requirements, attenuation losses, layer resolutions for scenarios with and without the presence of a liquid ocean underneath the ice, cases of convecting and non-convecting ice, different impurities within the ice, and different surface roughnesses.

  9. Jupiter internal structure: the effect of different equations of state

    CERN Document Server

    Miguel, Yamila; Fayon, Lucile

    2016-01-01

    Heavy elements, even though its smaller constituent, are crucial to understand Jupiter formation history. Interior models are used to determine the amount of heavy elements in Jupiter interior, nevertheless this range is still subject to degeneracies due to uncertainties in the equations of state. Prior to Juno mission data arrival, we present Jupiter optimized calculations exploring the effect of different model parameters in the determination of Jupiter's core and heavy element's mass. We perform comparisons between equations of state published recently. The interior model of Jupiter is calculated from the equations of hydrostatic equilibrium, mass and energy conservation, and energy transport. The mass of the core and heavy elements is adjusted to match Jupiter's observational constrains radius and gravitational moments. We show that the determination of Jupiter interior structure is tied to the estimation of its gravitational moments and the accuracy of equations of state of hydrogen, helium and heavy ele...

  10. Stellar Scattering and the Formation of Hot-Jupiters in Binary Systems

    CERN Document Server

    Martí, J G

    2014-01-01

    Hot Jupiters (HJs) are usually defined as giant Jovian-size planets with orbital periods $P \\le 10$ days. Although they lie close to the star, several have finite eccentricities and significant misalignment angle with respect to the stellar equator. Two mechanisms have been proposed to explain the excited and misaligned sub-population of HJs: Lidov-Kozai migration and planet-planet scattering. Although both are based on completely different dynamical phenomena, they appear to be equally effective in generating hot planets. Nevertheless, there has been no detailed analysis comparing the predictions of both mechanisms. In this paper we present numerical simulations of Lidov-Kozai trapping of single planets in compact binary systems. Both the planet and the binary are initially placed in coplanar orbits, although the inclination of the impactor is assumed random. After the passage of the third star, we follow the orbital and spin evolution of the planet using analytical models based on the octupole expansion of ...

  11. The Occurrence of Additional Giant Planets Inside the Water-Ice Line in Systems with Hot Jupiters: Evidence Against High-Eccentricity Migration

    CERN Document Server

    Schlaufman, Kevin C

    2016-01-01

    The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. It is widely believed that these planets formed near the water-ice line of the protoplanetary disk, and subsequently migrated into much smaller orbits. Most of the proposed migration mechanisms can be classified either as disk-driven migration, or as excitation of a very high eccentricity followed by tidal circularization. In the latter scenario, the giant planet that is destined to become a hot Jupiter spends billions of years on a highly-eccentric orbit, with apastron near the water-ice line. Eventually, tidal dissipation at periastron shrinks and circularizes the orbit. If this is correct, then it should be especially rare for hot Jupiters to be accompanied by another giant planet interior to the water-ice line. Using the current sample of giant planets discovered with the Doppler technique, we find that hot Jupiters with P_orb = 10 days. This result holds for exterior companions both inside and outside of the ap...

  12. Hot Jupiters from Coplanar High-eccentricity Migration

    Science.gov (United States)

    Petrovich, Cristobal

    2015-05-01

    We study the possibility that hot Jupiters (HJs) are formed through the secular gravitational interactions between two planets in eccentric orbits with relatively low mutual inclinations (≲ 20{}^\\circ ) and friction due to tides raised on the planet by the host star. We term this migration mechanism Coplanar High-eccentricity Migration (CHEM) because, like disk migration, it allows for migration to occur on the same plane in which the planets formed. CHEM can operate from the following typical initial configurations: (i) the inner planet in a circular orbit and the outer planet with an eccentricity ≳ 0.67 for {{m}in}/{{m}out}{{({{a}in}/{{a}out})}1/2}≲ 0.3; (ii) two eccentric (≳ 0.5) orbits for {{m}in}/{{m}out}{{({{a}in}/{{a}out})}1/2}≲ 0.16. A population synthesis study of hierarchical systems of two giant planets using the observed eccentricity distribution of giant planets shows that CHEM produces HJs with low stellar obliquities (≲ 30{}^\\circ ), with a semi-major axis distribution that matches the observations, and at a rate that can account for their observed occurrence. A different mechanism is needed to create large obliquity HJs, either a different migration channel or a mechanism that tilts the star or the protoplanetary disk. CHEM predicts that HJs should have distant (a≳ 5 AU) and massive (most likely ˜1-3 times more massive than the HJ) companions with relatively low mutual inclinations (≲ 20{}^\\circ ) and moderately high eccentricities (e˜ 0.2-0.5).

  13. Orbital Evolution of Impact Ejecta from Ganymede

    Science.gov (United States)

    Alvarellos, Jose Luis; Zahnle, Kevin J.; Dobrovolskis, Anthony R.; Hamill, Patrick

    2002-11-01

    We have numerically computed the orbital evolution of ˜10 3 particles representing high-speed ejecta from Gilgamesh, the largest impact basin on Ganymede. The integration includes the four Galilean satellites, Jupiter (including J2 and J4), Saturn, and the Sun. The integrations last 100,000 years. The particles are ejected at a variety of speeds and directions, with the fastest particles ejected at 1.4 times the escape speed vesc≡ 2GM G/R G of Ganymede. Ejecta with speeds v0.96 vesc, most particles escape Ganymede and achieve orbits about Jupiter. Eventually most (˜71%) of the jovicentric particles hit Ganymede, with 92% of these hitting within 1000 years. The accretion rate scales as 1/ t. Their impact sites are randomly distributed, as expected for planetocentric debris. We estimate that most of the resulting impact craters are a few kilometers across and smaller. The rest of the escaping ejecta are partitioned as follows: ˜3% hit Io; ˜10% hit Europa; ˜13% hit Callisto; 2% reach heliocentric space; and less than ˜1% hit Jupiter. Only two particles survived the entire 10 5-year integration. Ejecta from large impact events do not appear to be a plausible source of large craters on the Galilean satellites; however, such ejecta may account for the majority of small craters.

  14. Affordable Vehicle Avionics Overview

    Science.gov (United States)

    Cockrell, James J.

    2015-01-01

    Public and private launch vehicle developers are reducing the cost of propulsion for small commercial launchers, but conventional high-performance, high-reliability avionics remain the disproportionately high cost driver for launch. AVA technology performs as well or better than conventional launch vehicle avionics, but with a fraction of the recurring costs. AVA enables small launch providers to offer affordable rides to LEO to nano-satellites as primary payloads meaning, small payloads can afford to specify their own launch and orbit parameters

  15. TILTING JUPITER (A BIT) AND SATURN (A LOT) DURING PLANETARY MIGRATION

    Energy Technology Data Exchange (ETDEWEB)

    Vokrouhlický, David [Institute of Astronomy, Charles University, V Holešovičkách 2, Prague 8, CZ-18000 (Czech Republic); Nesvorný, David, E-mail: vokrouhl@cesnet.cz, E-mail: davidn@boulder.swri.edu [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2015-06-10

    We study the effects of planetary late migration on the gas giants’ obliquities. We consider the planetary instability models from Nesvorný and Morbidelli, in which the obliquities of Jupiter and Saturn can be excited when spin–orbit resonances occur. The most notable resonances occur when the s{sub 7} and s{sub 8} frequencies, changing as a result of planetary migration, become commensurate with the precession frequencies of Jupiter’s and Saturn’s spin vectors. We show that Jupiter may have obtained its present obliquity by crossing of the s{sub 8} resonance. This would set strict constraints on the character of migration during the early stage. Additional effects on Jupiter’s obliquity are expected during the last gasp of migration when the s{sub 7} resonance was approached. The magnitude of these effects depends on the precise value of the Jupiter’s precession constant. Saturn’s large obliquity was likely excited by capture into the s{sub 8} resonance. This probably happened during the late stage of planetary migration when the evolution of the s{sub 8} frequency was very slow, and the conditions for capture into the spin–orbit resonance with s{sub 8} were satisfied. However, whether or not Saturn is in the spin–orbit resonance with s{sub 8} at the present time is not clear because the existing observations of Saturn’s spin precession and internal structure models have significant uncertainties.

  16. Constraints on the atmospheric circulation and variability of the eccentric hot Jupiter XO-3b

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Ian; Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Astrophysics (CIERA), Department of Earth and Planetary Sciences, Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Agol, Eric [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Fortney, Jonathan J.; Laughlin, Gregory [Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95604 (United States); Fulton, Benjamin J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P., E-mail: iwong@caltech.edu [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2014-10-20

    We report secondary eclipse photometry of the hot Jupiter XO-3b in the 4.5 μm band taken with the Infrared Array Camera on the Spitzer Space Telescope. We measure individual eclipse depths and center of eclipse times for a total of 12 secondary eclipses. We fit these data simultaneously with two transits observed in the same band in order to obtain a global best-fit secondary eclipse depth of 0.1580% ± 0.0036% and a center of eclipse phase of 0.67004 ± 0.00013. We assess the relative magnitude of variations in the dayside brightness of the planet by measuring the size of the residuals during ingress and egress from fitting the combined eclipse light curve with a uniform disk model and place an upper limit of 0.05%. The new secondary eclipse observations extend the total baseline from one and a half years to nearly three years, allowing us to place an upper limit on the periastron precession rate of 2.9 × 10{sup –3} deg day{sup –1}— the tightest constraint to date on the periastron precession rate of a hot Jupiter. We use the new transit observations to calculate improved estimates for the system properties, including an updated orbital ephemeris. We also use the large number of secondary eclipses to obtain the most stringent limits to date on the orbit-to-orbit variability of an eccentric hot Jupiter and demonstrate the consistency of multiple-epoch Spitzer observations.

  17. Getting a Crew into Orbit

    Science.gov (United States)

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  18. Multi-Body Capture to Low-altitude Circular Orbits at Europa

    Science.gov (United States)

    Grebow, Daniel J.; Petropoulos, Anastassios E.; Finlayson, Paul A.

    2011-01-01

    For capture to a 200-km circular orbit around Europa, millions of different points along the orbit are simulated in the Jupiter-Europa Restricted 3-Body Problem. The transfers exist as members of families of trajectories, where certain families consistently outperform the others. The trajectories are not sensitive to changes in inclination for the final circular orbit. The top performing trajectories appear to follow the invariant manifolds of L2 Lyapunov orbits for capture into a retrograde orbit, and in some cases saving up to 40% of the from the patched 2-body problem. Transfers are attached to the current nominal mission for NASA's Jupiter-Europa Orbiter, where the total cost is roughly 100 m/s less than the baseline mission.

  19. Planets in Spin-Orbit Misalignment and the Search for Stellar Companions

    CERN Document Server

    Addison, Brett C; Wright, Duncan J; Salter, Graeme; Bayliss, Daniel; Zhou, George

    2014-01-01

    The discovery of giant planets orbiting close to their host stars was one of the most unexpected results of early exoplanetary science. Astronomers have since found that a significant fraction of these 'Hot Jupiters' move on orbits substantially misaligned with the rotation axis of their host star. We recently reported the measurement of the spin-orbit misalignment for WASP-79b by using data from the 3.9 m Anglo-Australian Telescope. Contemporary models of planetary formation produce planets on nearly coplanar orbits with respect to their host star's equator. We discuss the mechanisms which could drive planets into spin-orbit misalignment. The most commonly proposed being the Kozai mechanism, which requires the presence of a distant, massive companion to the star-planet system. We therefore describe a volume-limited direct-imaging survey of Hot Jupiter systems with measured spin-orbit angles, to search for the presence of stellar companions and test the Kozai hypothesis.

  20. Direct imaging of multiple planets orbiting the star HR 8799

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C; Macintosh, B; Barman, T; Zuckerman, B; Song, I; Patience, J; Lafreniere, D; Doyon, R

    2008-10-14

    Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step towards imaging Earth-like planets. Imaging detections are challenging due to the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter-clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our Solar System.

  1. Broad search for trajectories from Earth to Callisto-Ganymede-JOI double-satellite-aided capture at Jupiter from 2020 to 2060

    Science.gov (United States)

    Lynam, Alfred E.

    2016-01-01

    Employing multiple gravity-assist flybys of Jupiter's Galilean moons can save a substantial amount of \\varDelta V when capturing into orbit about Jupiter. Using Callisto and Ganymede, the most massive and distant of the Galilean moons, as gravity-assist bodies reduces the Jupiter orbit insertion \\varDelta V cost, while allowing the spacecraft to remain above the worst of Jupiter's radiation belts. A phase-angle approach is used to find initial guesses for a Lambert targeter to find patched-conic Callisto-Ganymede transfers. A B-plane targeter using grid search methodology is used to backward target Earth to find launch conditions. Twenty-nine distinct patched-conic trajectories were found from Earth to Callisto-Ganymede-JOI capture throughout the search space from 2020-2060. Five promising trajectories were found that launch from Earth between July 11, 2023 and July 20, 2023, and arrive at Jupiter between February and September 2026. These trajectories were numerically integrated using GMAT and, in the author's opinion, are excellent candidates for use on NASA's planned Europa Clipper mission.

  2. KELT-14b and KELT-15b: An Independent Discovery of WASP-122b and a New Hot Jupiter

    CERN Document Server

    Rodriguez, Joseph E; Stassun, Keivan G; Wright, Duncan; Cargile, Phillip A; Bayliss, Daniel; Pepper, Joshua; Collins, Karen A; Kuhn, Rudolf B; Lund, Michael B; Siverd, Robert J; Zhou, George; Gaudi, B Scott; Tinney, C G; Penev, Kaloyan; Tan, T G; Stockdale, Chris; Curtis, Ivan A; James, David; Udry, Stephane; Segransan, Damien; Bieryla, Allyson; Latham, David W; Beatty, Thomas G; Eastman, Jason D; Myers, Gordon; Bartz, Jonathan; Bento, Joao; Jensen, Eric L N; Oberst, Thomas E; Stevens, Daniel J

    2015-01-01

    We report the discovery of KELT-14b and KELT-15b, two hot Jupiters from the KELT-South survey. KELT-14b, an independent discovery of the recently announced WASP-122b, is an inflated Jupiter mass planet that orbits a $\\sim5.0^{+0.3}_{-0.7}$ Gyr, $V$ = 11.0, G2 star that is near the main sequence turnoff. The host star, KELT-14 (TYC 7638-981-1), has an inferred mass $M_{*}$=$1.18_{-0.07}^{+0.05}$ M$_{\\odot}$ and radius $R_{*}$=$1.37\\pm{-0.08}$ R$_{\\odot}$, and has T$_{eff}$=$5802_{-92}^{+95}$ K, $\\log{g}$ = $4.23_{-0.04}^{+0.05}$ and [Fe/H] = $0.33\\pm{-0.09}$. The planet orbits with a period of $1.7100588 \\pm 0.0000025$ days ($T_{0}$=2457091.02863$\\pm$0.00047) and has a radius R$_{P}$=$1.52_{-0.11}^{+0.12}$ R$_{J}$ and mass M$_{P}$ = $1.196\\pm0.072$ M$_{J}$, and the eccentricity is consistent with zero. KELT-15b is another inflated Jupiter mass planet that orbits a $\\sim$ $4.6^{+0.5}_{-0.4}$ Gyr, $V$ = 11.2, G0 star (TYC 8146-86-1) that is near the "blue hook" stage of evolution prior to the Hertzsprung gap, an...

  3. Orbital perturbations of the Galilean satellites during planetary encounters

    Energy Technology Data Exchange (ETDEWEB)

    Deienno, Rogerio; Nesvorný, David [Southwest Research Institute, Boulder, CO (United States); Vokrouhlický, David [Institute of Astronomy, Charles University, Prague (Czech Republic); Yokoyama, Tadashi, E-mail: rogerio.deienno@gmail.com [Universidade Estadual Paulista, Rio Claro, SP (Brazil)

    2014-08-01

    The Nice model of the dynamical instability and migration of the giant planets can explain many properties of the present solar system, and can be used to constrain its early architecture. In the jumping-Jupiter version of the Nice model, required from the terrestrial planet constraint and dynamical structure of the asteroid belt, Jupiter has encounters with an ice giant. Here, we study the survival of the Galilean satellites in the jumping-Jupiter model. This is an important concern because the ice-giant encounters, if deep enough, could dynamically perturb the orbits of the Galilean satellites and lead to implausible results. We performed numerical integrations where we tracked the effect of planetary encounters on the Galilean moons. We considered three instability cases from Nesvorný and Morbidelli that differed in the number and distribution of encounters. We found that in one case, where the number of close encounters was relatively small, the Galilean satellite orbits were not significantly affected. In the other two, the orbital eccentricities of all moons were excited by encounters, Callisto's semimajor axis changed, and, in a large fraction of trials, the Laplace resonance of the inner three moons was disrupted. The subsequent evolution by tides damps eccentricities and can recapture the moons in the Laplace resonance. A more important constraint is represented by the orbital inclinations of the moons, which can be excited during the encounters and not appreciably damped by tides. We find that one instability case taken from Nesvorný and Morbidelli clearly does not meet this constraint. This shows how the regular satellites of Jupiter can be used to set limits on the properties of encounters in the jumping-Jupiter model, and help us to better understand how the early solar system evolved.

  4. Orbital Perturbations of the Galilean Satellites during Planetary Encounters

    Science.gov (United States)

    Deienno, Rogerio; Nesvorný, David; Vokrouhlický, David; Yokoyama, Tadashi

    2014-08-01

    The Nice model of the dynamical instability and migration of the giant planets can explain many properties of the present solar system, and can be used to constrain its early architecture. In the jumping-Jupiter version of the Nice model, required from the terrestrial planet constraint and dynamical structure of the asteroid belt, Jupiter has encounters with an ice giant. Here, we study the survival of the Galilean satellites in the jumping-Jupiter model. This is an important concern because the ice-giant encounters, if deep enough, could dynamically perturb the orbits of the Galilean satellites and lead to implausible results. We performed numerical integrations where we tracked the effect of planetary encounters on the Galilean moons. We considered three instability cases from Nesvorný & Morbidelli that differed in the number and distribution of encounters. We found that in one case, where the number of close encounters was relatively small, the Galilean satellite orbits were not significantly affected. In the other two, the orbital eccentricities of all moons were excited by encounters, Callisto's semimajor axis changed, and, in a large fraction of trials, the Laplace resonance of the inner three moons was disrupted. The subsequent evolution by tides damps eccentricities and can recapture the moons in the Laplace resonance. A more important constraint is represented by the orbital inclinations of the moons, which can be excited during the encounters and not appreciably damped by tides. We find that one instability case taken from Nesvorný & Morbidelli clearly does not meet this constraint. This shows how the regular satellites of Jupiter can be used to set limits on the properties of encounters in the jumping-Jupiter model, and help us to better understand how the early solar system evolved.

  5. Three Temperate Neptunes Orbiting Nearby Stars

    CERN Document Server

    Fulton, Benjamin J; Weiss, Lauren M; Sinukoff, Evan; Petigura, Erik A; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W; Henry, Gregory W; Grunblatt, Samuel K; Huber, Daniel; von Braun, Kaspar; Boyajian, Tabetha S; Kane, Stephen R; Wittrock, Justin; Horch, Elliott P; Ciardi, David R; Howell, Steve B; Wright, Jason T; Ford, Eric B

    2016-01-01

    We present the discovery of three modestly-irradiated, roughly Neptune-mass planets orbiting three nearby Solar-type stars. HD 42618 b has a minimum mass of $15.4 \\pm 2.4$ M$_{\\oplus}$, a semi-major axis of 0.55 AU, an equilibrium temperature of 337 K, and is the first planet discovered to orbit the solar analogue host star, HD 42618. We also discover new planets orbiting the known exoplanet host stars HD 164922 and HD 143761 ($\\rho$ CrB). The new planet orbiting HD 164922 has a minimum mass of $12.9 \\pm 1.6$ M$_{\\oplus}$ and orbits interior to the previously known Jovian mass planet orbiting at 2.1 AU. HD 164922 c has a semi-major axis of 0.34 AU and an equilibrium temperature of 418 K. HD 143761 c orbits with a semi-major axis of 0.44 AU, has a minimum mass of $25 \\pm 2$ M$_{\\oplus}$, and is the warmest of the three new planets with an equilibrium temperature of 445 K. It orbits exterior to the previously known warm Jupiter in the system. A transit search using space-based CoRoT data and ground-based photom...

  6. Solar wind influence on Jupiter's aurora

    Science.gov (United States)

    Gyalay, Szilard; Vogt, Marissa F.; Withers, Paul; Bunce, Emma J.

    2016-10-01

    Jupiter's main auroral emission is driven by a system of corotation enforcement currents that arises to speed up outflowing Iogenic plasma and is not due to the magnetosphere-solar wind interaction like at Earth. The solar wind is generally expected to have only a small influence on Jupiter's magnetosphere and aurora compared to the influence of rotational stresses due to the planet's rapid rotation. However, there is considerable observational evidence that the solar wind does affect the magnetopause standoff distance, auroral radio emissions, and the position and brightness of the UV auroral emissions. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter we have identified intervals of high and low solar wind dynamic pressure in the Galileo dataset, and use this information to quantify how a magnetospheric compression affects the magnetospheric field configuration. We have developed separate spatial fits to the compressed and nominal magnetic field data, accounting for variations with radial distance and local time. These two fits can be used to update the flux equivalence mapping model of Vogt et al. (2011), which links auroral features to source regions in the middle and outer magnetosphere. The updated version accounts for changing solar wind conditions and provides a way to quantify the expected solar wind-induced variability in the ionospheric mapping of the main auroral emission, satellite footprints, and other auroral features. Our results are highly relevant to interpretation of the new auroral observations from the Juno mission.

  7. Hubble Gallery of Jupiter's Galilean Satellites

    Science.gov (United States)

    1995-01-01

    This is a Hubble Space Telescope 'family portrait' of the four largest moons of Jupiter, first observed by the Italian scientist Galileo Galilei nearly four centuries ago. Located approximately one-half billion miles away, the moons are so small that, in visible light, they appear as fuzzy disks in the largest ground-based telescopes. Hubble can resolve surface details seen previously only by the Voyager spacecraft in the early 1980s. While the Voyagers provided close-up snapshots of the satellites, Hubble can now follow changes on the moons and reveal other characteristics at ultraviolet and near-infrared wavelengths.Over the past year Hubble has charted new volcanic activity on Io's active surface, found a faint oxygen atmosphere on the moon Europa, and identified ozone on the surface of Ganymede. Hubble ultraviolet observations of Callisto show the presence of fresh ice on the surface that may indicate impacts from micrometeorites and charged particles from Jupiter's magnetosphere.Hubble observations will play a complementary role when the Galileo spacecraft arrives at Jupiter in December of this year.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  8. Structures of the Planets Jupiter and Saturn

    CERN Document Server

    Kerley, Gerald I

    2013-01-01

    New equations of state (EOS) for hydrogen, helium, and compounds containing heavier elements are used to construct models for the structures of the planets Jupiter and Saturn. Good agreement with the gravitational moments J2 and J4 is obtained with a model that uses a two-layer gas envelope, in which the inner region is denser than the outer one, together with a small, dense core. It is possible to match J2 with a homogeneous envelope, but an envelope with a denser inner region is needed to match both moments. The two-layer envelope also gives good agreement with the global oscillation data for Jupiter. In Jupiter, the boundary between the inner and outer envelopes occurs at 319 GPa, with an 8% density increase. In Saturn, it occurs at 227 GPa, with a 69% density increase. The differences between the two planets show that the need for a density increase is not due to EOS errors. It is also shown that helium enrichment cannot be the cause of the density increase. The phenomenon can be explained as the result o...

  9. New Horizons Imaging of Jupiter's Main Ring

    Science.gov (United States)

    Throop, Henry B.; Showalter, Mark Robert; Dones, Henry C. Luke; Hamilton, D. P.; Weaver, Harold A.; Cheng, Andrew F.; Stern, S. Alan; Young, Leslie; Olkin, Catherine B.; New Horizons Science Team

    2016-10-01

    New Horizons took roughly 520 visible-light images of Jupiter's ring system during its 2007 flyby, using the spacecraft's Long-Range Reconnaissance Imager (LORRI). These observations were taken over nine days surrounding Jupiter close-approach. They span a range in distance of 30 - 100 RJ, and a phase angle range of 20 - 174 degrees. The highest resolution images -- more than 200 frames -- were taken at a resolution approaching 20 km/pix.We will present an analysis of this dataset, much of which has not been studied in detail before. Our results include New Horizons' first quantitative measurements of the ring's intrinsic brightness and variability. We will also present results on the ring's azimuthal and radial structure. Our measurements of the ring's phase curve will be used to infer properties of the ring's dust grains.Our results build on the only previous analysis of the New Horizons Jupiter ring data set, presented in Showalter et al (2007, Science 318, 232-234), which detected ring clumps and placed a lower limit on the population of undetected ring-moons.This work was supported by NASA's OPR program.

  10. The Impact of a Large Object on Jupiter in 2009 July

    Science.gov (United States)

    Sanchez-Lavega, A.; Wesley, A.; Orton, G.; Hueso, R.; Perez-Hoyos, S.; Fletcher, L. N.; Yanamandra-Fisher, P.; Legarreta, J.; de Pater, I.; Hammel, H.; Simon-Miller, A.; Gomez-Forrellad, J. M.; Ortiz, J. L.; Garcia-Melendo, E.; Puetter, R. C.; Chodas, P.

    2010-01-01

    On 2009 July 19, we observed a single, large impact on Jupiter at a planetocentric latitude of 55 S. This and the Shoemaker-Levy 9 (SL9) impacts on Jupiter in 1994 are the only planetary-scale impacts ever observed. The 2009 impact had an entry trajectory in the opposite direction and with a Tower incidence angle than that of SL9. Comparison of the initial aerosol cloud debris properties, spanning 4800 km east west and 2500 km north south, with those produced by the SL9 fragments and dynamical calculations of pre-impact orbit indicates that the impactor was most probably an icy body with a size of 0.5-1 km. The collision rate of events of this magnitude may be five to ten times more frequent than previously thought. The search for unpredicted impacts, such as the current one, could be best performed in 890 nm and K (2.03--2.36 micrometer) filters in strong gaseous absorption, where the high-altitude aerosols are more reflective than Jupiter's primary clouds.

  11. Dynamical constraints on the origin of hot and warm Jupiters with close friends

    CERN Document Server

    Antonini, Fabio; Lithwick, Yoram

    2016-01-01

    Gas giants orbiting their host star within the ice line are thought to have migrated to their current locations from farther out. Here we consider the origin and dynamical evolution of observed Jupiters, focusing on hot and warm Jupiters with outer friends. We show that the majority of the observed Jupiter pairs (twenty out of twenty-four) will be dynamically unstable if the inner planet was placed at >~1AU distance from the stellar host. This finding is at odds with formation theories that invoke the migration of such planets from semi-major axes >~1AU due to secular dynamical processes (e.g., secular chaos, Lidov-Kozai oscillations) coupled with tidal dissipation. In fact, the results of N-body integrations show that the evolution of dynamically unstable systems does not lead to tidal migration but rather to planet ejections and collisions with the host star. This and other arguments lead us to suggest that most of the observed planets with a companion could not have been transported from further out throug...

  12. Jupiter and Mutual Satellite Occultations of Io from 1985 to 2015

    Science.gov (United States)

    Howell, Robert R.; Rathbun, Julie A.; Spencer, John R.

    2016-10-01

    Occultations of Io by Jupiter and by other satellites provide a long-term record of the brightness of individual volcanic hotspots. They also provide our highest spatial resolution observations of individual volcanic centers such as Loki. We are in the process of reanalyzing observations spanning the years 1985 through 2015 for submission to the NASA Planetary Data System. The Jupiter occultation observations have spatial resolution limited to roughly the Jupiter atmospheric scale height (22 km) but as these events occur every Io orbit we have data on over 100. They include observations from the NASA-IRTF, WIRO, Lowell, and other telescopes on Mauna Kea. Part of this data set originally revealed the semi-periodic nature of the activity at Loki (Rathbun et al. 2002). A series of mutual satellite occultations occurs only every six years but the sharp limb of the other satellite allows for much higher spatial resolution. The original analysis was limited by inaccuracies in the satellite ephemerides but improvements now allow us to more reliably assign brightnesses to individual hotspots. They also allow improved image reconstructions of individual spots from mutual events. We will report on our tests of that better ephemeris, the improved assignment of hotspot brightnesses, and the reconstructed mutual event images.

  13. The Anglo-Australian Planet Search. XXIII. Two New Jupiter Analogs

    CERN Document Server

    Wittenmyer, Robert A; Tinney, C G; Butler, R P; Jones, H R A; Tuomi, Mikko; Salter, G S; Carter, B D; Koch, F Elliott; O'Toole, S J; Bailey, J; Wright, D

    2014-01-01

    We report the discovery of two long-period giant planets from the Anglo-Australian Planet Search. HD 154857c is in a multiple-planet system, while HD 114613b appears to be solitary. HD 114613b has an orbital period P=10.5 years, and a minimum mass m sin i of 0.48 Jupiter masses; HD 154857c has P=9.5 years and m sin i=2.6 Jupiter masses. These new data confirm the planetary nature of the previously unconstrained long-period object in the HD 154857 system. We have performed detailed dynamical stability simulations which show that the HD 154857 two-planet system is stable on timescales of at least 100 million years. These results highlight the continued importance of "legacy" surveys with long observational baselines; these ongoing campaigns are critical for determining the population of Jupiter analogs, and hence of those planetary systems with architectures most like our own Solar system.

  14. A Low Mass for Mars from Jupiter's Early Gas-Driven Migration

    Science.gov (United States)

    Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; O'Brien, David P.; Mandell, Avi M.

    2011-01-01

    Jupiter and Saturn formed in a few million years from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only approximately 100,000 years. Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.

  15. Reflected Light Curves, Spherical and Bond Albedos of Jupiter- and Saturn-like Exoplanets

    CERN Document Server

    Dyudina, Ulyana; Li, Liming; Kopparla, Pushkar; Yung, Yuk L; Ingersoll, Andrew P; Dones, Luke

    2015-01-01

    We estimate how the light curve and total stellar heating of a planet depend on forward and backward scattering clouds. To do that, we construct light curves for Jupiter- and Saturn-like planet based on observations. We fit analytical functions to the reflected brightness of Jupiter's and Saturn's surface versus planet's phase. We use Pioneer and Cassini spacecraft images to estimate these functions. These observations cover broad bands at 0.59-0.72 microns and 0.39-0.5 microns, and narrow bands at 0.938 microns (atmospheric window), 0.889 microns (CH4 absorption band), and 0.24-0.28 microns. We simulate the images of the planets at different phases with ray-tracing model of a planet by Dyudina et al. (2005). The full-disk luminosity of these simulated images changes with planet's phase producing the full-orbit light curves. We also derive total planet's reflection integrated in all directions (spherical albedos) for Jupiter, Saturn, and for planets with Lambertian and Rayleigh-scattering atmosphere. For Jupi...

  16. The Juno and Cassini gravity measurements: probing the interior dynamics of Jupiter and Saturn

    Science.gov (United States)

    Kaspi, Y.; Galanti, E.; Hubbard, W. B.; Davighi, J. E.

    2015-10-01

    During 2016-2017 both the Juno and Cassini spacecraft will enter into close-by polar orbits of Jupiter and Saturn, respectively. Using Doppler tracking from Earth these flybys will allow high precision gravity measurements of these planets [1]. These will include high order gravity harmonics (at least up to J10), and the yet to be measured odd gravity spectrum. As the dynamics of deep flows relate to perturbations in the density of the planets, this data can be used to probe for the first time the atmospheric and interior flows on these planets [4, 5, 8]. Particularly, this may allow addressing one of the longest-standing questions in planetary atmospheric dynamics regarding the depth of the observed strong east-west jets-streams on Jupiter and Saturn. In this talk we review different approaches to analyze the gravity measurements, discuss the proposed models relating the gravity fields to the dynamics, and the implications of the results for understanding the mechanisms governing the interiors and atmospheres of Jupiter and Saturn.

  17. The impact of a large object with Jupiter in July 2009

    CERN Document Server

    Sánchez-Lavega, A; Orton, G; Hueso, R; Perez-Hoyos, S; Fletcher, L N; Yanamandra-Fisher, P; Legarreta, J; de Pater, I; Hammel, H; Simon-Miller, A; Gomez-Forrellad, J M; Ortiz, J L; García-Melendo, E; Puetter, R C; Chodas, P; 10.1088/2041-8205/715/2/L155

    2010-01-01

    On 2009 July 19, we observed a single, large impact on Jupiter at a planetocentric latitude of 55^{\\circ}S. This and the Shoemaker-Levy 9 (SL9) impacts on Jupiter in 1994 are the only planetary-scale impacts ever observed. The 2009 impact had an entry trajectory opposite and with a lower incidence angle than that of SL9. Comparison of the initial aerosol cloud debris properties, spanning 4,800 km east-west and 2,500 km north-south, with those produced by the SL9 fragments, and dynamical calculations of pre-impact orbit, indicate that the impactor was most probably an icy body with a size of 0.5-1 km. The collision rate of events of this magnitude may be five to ten times more frequent than previously thought. The search for unpredicted impacts, such as the current one, could be best performed in 890-nm and K (2.03-2.36 {\\mu}m) filters in strong gaseous absorption, where the high-altitude aerosols are more reflective than Jupiter's primary cloud.

  18. Spectroscopic observations of Hot-Jupiters with the Hubble WFC3 camera

    Science.gov (United States)

    Damiano, Mario; Morello, Giuseppe; Tsiaras, Angelos; Zingales, Tiziano; Tinetti, Giovanna; ExoLights, ExoMol

    2016-10-01

    Thousands of exoplanets have been discovered with a huge range of masses, sizes and orbits. The next step to characterize them is to study their atmosphere. The atmospheres of giant planets are mostly made of hydrogen and helium. The relevant questions therefore concern the amounts of all elements other than hydrogen and helium, i.e. the heavy elements, that are present.The atmospheres of hot Jupiters present a critical advantage compared to the planets of the Solar System: their high temperature.Unlike Jupiter and Saturn, there is no cold trap in their atmosphere for species such as H2O, CH4, NH3, CO2 etc., which condense at much colder temperatures. Observations of hot gaseous exoplanets can therefore provide a unique access to their elementary composition (especially C, O, N, S) and enable the understanding of the early stage of planetary and atmospheric formation during the nebular phase and the following few millions years.Here we present new spectroscopic observations of hot-Jupiters' atmospheres obtained with the WFC3 camera. In our presentation we will focus on the data reduction method used and on the interpretation of the results through state of the art spectral retrieval models.

  19. Energy management and vehicle synthesis

    Science.gov (United States)

    Czysz, P.; Murthy, S. N. B.

    1995-01-01

    The major drivers in the development of launch vehicles for the twenty-first century are reduction in cost of vehicles and operations, continuous reusability, mission abort capability with vehicle recovery, and readiness. One approach to the design of such vehicles is to emphasize energy management and propulsion as being the principal means of improvements given the available industrial capability and the required freedom in selecting configuration concept geometries. A methodology has been developed for the rational synthesis of vehicles based on the setting up and utilization of available data and projections, and a reference vehicle. The application of the methodology is illustrated for a single stage to orbit (SSTO) with various limits for the use of airbreathing propulsion.

  20. The asteroid belt outer region under jumping-Jupiter migration

    Science.gov (United States)

    Gaspar, H. S.; Winter, O. C.; Vieira Neto, E.

    2017-09-01

    The radial configuration of the outer region of the main asteroid belt is quite peculiar, and has much to say about the past evolution of Jupiter. In this work, we investigate the dynamical effects of a jumping-Jupiter-like migration over a more extended primordial asteroid belt. Jupiter's migrations are simulated using a fast jumping-Jupiter synthesizer. Among the results, we highlight non-negligible fractions of primordial objects trapped in 3:2 and 4:3 mean motion resonances (MMRs) with Jupiter. They survived the whole truculent phase of migration and originated populations that are like Hildas and Thules. Fractions ranging from 3 to 6 per cent of the initial distribution remained trapped in 3:2 MMR, and at least 0.05 per cent in 4:3. These results show that the resonance trapping of primordial objects may have originated these resonant populations. This theory is consistent even for Jupiter's truculent evolution.