WorldWideScience

Sample records for jupiter orbiter probe

  1. A retrograde object near Jupiter's orbit

    Science.gov (United States)

    Connors, M.; Wiegert, P.

    2018-02-01

    Asteroid 2007 VW266 is among the rare objects with a heliocentric retrograde orbit, and its semimajor axis is within a Hill sphere radius of that of Jupiter. This raised the interesting possibility that it could be in co-orbital retrograde resonance with Jupiter, a second "counter-orbital" object in addition to recently discovered 2015 BZ509. We find instead that the object is in 13/14 retrograde mean motion resonance (also referred to as 13/-14). The object is shown to have entered its present orbit about 1700 years ago, and it will leave it in about 8000 years, both through close approach to Jupiter. Entry and exit states both avoid 1:1 retrograde resonance, but the retrograde nature is preserved. The temporary stable state is due to an elliptic orbit with high inclination keeping nodal passages far from the associated planet. We discuss the motion of this unusual object based on modeling and theory, and its observational prospects.

  2. Jupiter's Magnetic Field and Magnetosphere after Juno's First 8 Orbits

    Science.gov (United States)

    Connerney, J. E. P.; Oliversen, R. J.; Espley, J. R.; Gruesbeck, J.; Kotsiaros, S.; DiBraccio, G. A.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Denver, T.; Benn, M.; Bjarno, J. B.; Malinnikova Bang, A.; Bloxham, J.; Moore, K.; Bolton, S. J.; Levin, S.; Gershman, D. J.

    2017-12-01

    The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, embarking upon an ambitious mission to map Jupiter's magnetic and gravitational potential fields and probe its deep atmosphere, in search of clues to the planet's formation and evolution. Juno is also instrumented to conduct the first exploration of the polar magnetosphere and to acquire images and spectra of its polar auroras and atmosphere. Juno's 53.5-day orbit trajectory carries her science instruments from pole to pole in approximately 2 hours, with a closest approach to within 1.05 Rj of the center of the planet (one Rj = 71,492 km, Jupiter's equatorial radius), just a few thousand km above the clouds. Repeated periapsis passes will eventually encircle the planet with a dense net of observations equally spaced in longitude (magnetometer sensor suites, located 10 and 12 m from the center of the spacecraft at the end of one of Juno's three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads, providing accurate attitude determination for the FGM sensors. We present an overview of the magnetometer observations obtained during Juno's first year in orbit in context with prior observations and those acquired by Juno's other science instruments.

  3. Jupiter Europa Orbiter Architecture Definition Process

    Science.gov (United States)

    Rasmussen, Robert; Shishko, Robert

    2011-01-01

    The proposed Jupiter Europa Orbiter mission, planned for launch in 2020, is using a new architectural process and framework tool to drive its model-based systems engineering effort. The process focuses on getting the architecture right before writing requirements and developing a point design. A new architecture framework tool provides for the structured entry and retrieval of architecture artifacts based on an emerging architecture meta-model. This paper describes the relationships among these artifacts and how they are used in the systems engineering effort. Some early lessons learned are discussed.

  4. An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design

    Science.gov (United States)

    Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.

    2009-01-01

    Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.

  5. Searching sequences of resonant orbits between a spacecraft and Jupiter

    International Nuclear Information System (INIS)

    Formiga, J K S; Prado, A F B A

    2013-01-01

    This research shows a study of the dynamical behavior of a spacecraft that performs a series of close approaches with the planet Jupiter. The main idea is to find a sequence of resonant orbits that allows the spacecraft to stay in the region of the space near the orbit of Jupiter around the Sun gaining energy from each passage by the planet. The dynamical model considers the existence of only two massive bodies in the systems, which are the Sun and Jupiter. They are assumed to be in circular orbits around their center of mass. Analytical equations are used to obtain the values of the parameters required to get this sequence of close approaches. Those equations are useful, because they show which orbits are physically possible when taking into account that the periapsis distances have to be above the surface of the Sun and that the closest approach distances during the passage by Jupiter have to be above its surface

  6. Exterior Companions to Hot Jupiters Orbiting Cool Stars Are Coplanar

    Science.gov (United States)

    Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta

    2017-12-01

    The existence of hot Jupiters has challenged theories of planetary formation since the first extrasolar planets were detected. Giant planets are generally believed to form far from their host stars, where volatile materials like water exist in their solid phase, making it easier for giant planet cores to accumulate. Several mechanisms have been proposed to explain how giant planets can migrate inward from their birth sites to short-period orbits. One such mechanism, called Kozai-Lidov migration, requires the presence of distant companions in orbits inclined by more than ˜40° with respect to the plane of the hot Jupiter’s orbit. The high occurrence rate of wide companions in hot-Jupiter systems lends support to this theory for migration. However, the exact orbital inclinations of these detected planetary and stellar companions is not known, so it is not clear whether the mutual inclination of these companions is large enough for the Kozai-Lidov process to operate. This paper shows that in systems orbiting cool stars with convective outer layers, the orbits of most wide planetary companions to hot Jupiters must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. For a variety of possible distributions for the inclination of the companion, the width of the distribution must be less than ˜20° to recreate the observations with good fidelity. As a result, the companion orbits are likely well aligned with those of the hot Jupiters, and the Kozai-Lidov mechanism does not enforce migration in these systems.

  7. Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers

    Science.gov (United States)

    Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory

    2013-01-01

    Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.

  8. An interstellar origin for Jupiter's retrograde co-orbital asteroid

    Science.gov (United States)

    Namouni, F.; Morais, M. H. M.

    2018-06-01

    Asteroid (514107) 2015 BZ509 was discovered recently in Jupiter's co-orbital region with a retrograde motion around the Sun. The known chaotic dynamics of the outer Solar system have so far precluded the identification of its origin. Here, we perform a high-resolution statistical search for stable orbits and show that asteroid (514107) 2015 BZ509 has been in its current orbital state since the formation of the Solar system. This result indicates that (514107) 2015 BZ509 was captured from the interstellar medium 4.5 billion years in the past as planet formation models cannot produce such a primordial large-inclination orbit with the planets on nearly coplanar orbits interacting with a coplanar debris disc that must produce the low-inclination small-body reservoirs of the Solar system such as the asteroid and Kuiper belts. This result also implies that more extrasolar asteroids are currently present in the Solar system on nearly polar orbits.

  9. Jupiter

    CERN Document Server

    Penne, Barbra

    2017-01-01

    Our solar system's largest planet is huge enough that all of the system's other planets could fit inside it. Although Jupiter has been known since ancient times, scientists are still learning exciting new information about the planet and its satellites today. In fact, several of its moons are now believed to have oceans below their icy surfaces. Chapters focus on topics such as Jupiter's orbit and rotation, rings, atmosphere, and moons, as well as on the space missions that have helped us get a closer look at the planet and its moons over the past decades.

  10. A retrograde co-orbital asteroid of Jupiter.

    Science.gov (United States)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2017-03-29

    Recent theoretical work in celestial mechanics has revealed that an asteroid may orbit stably in the same region as a planet, despite revolving around the Sun in the sense opposite to that of the planet itself. Asteroid 2015 BZ 509 was discovered in 2015, but with too much uncertainty in its measured orbit to establish whether it was such a retrograde co-orbital body. Here we report observations and analysis that demonstrates that asteroid 2015 BZ 509 is indeed a retrograde co-orbital asteroid of the planet Jupiter. We find that 2015 BZ 509 has long-term stability, having been in its current, resonant state for around a million years. This is long enough to preclude precise calculation of the time or mechanism of its injection to its present state, but it may be a Halley-family comet that entered the resonance through an interaction with Saturn. Retrograde co-orbital asteroids of Jupiter and other planets may be more common than previously expected.

  11. Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Bitsch, Bertram; Johansen, Anders

    2018-01-01

    Jupiter played an important role in determining the structure and configuration of the Solar System. Whereas hot-Jupiter type exoplanets preferentially form around metal-rich stars, the conditions required for the formation of planets with masses, orbits, and eccentricities comparable to Jupiter...... (Jupiter analogs) are unknown. Using spectroscopic metallicities, we show that stars hosting Jupiter analogs have an average metallicity close to solar, in contrast to their hot-Jupiter and eccentric cool-Jupiter counterparts, which orbit stars with super-solar metallicities. Furthermore......, the eccentricities of Jupiter analogs increase with host-star metallicity, suggesting that planet-planet scatterings producing highly eccentric cool Jupiters could be more common in metal-rich environments. To investigate a possible explanation for these metallicity trends, we compare the observations to numerical...

  12. Gravity Probe B orbit determination

    International Nuclear Information System (INIS)

    Shestople, P; Ndili, A; Parkinson, B W; Small, H; Hanuschak, G

    2015-01-01

    The Gravity Probe B (GP-B) satellite was equipped with a pair of redundant Global Positioning System (GPS) receivers used to provide navigation solutions for real-time and post-processed orbit determination (OD), as well as to establish the relation between vehicle time and coordinated universal time. The receivers performed better than the real-time position requirement of 100 m rms per axis. Post-processed solutions indicated an rms position error of 2.5 m and an rms velocity error of 2.2 mm s −1 . Satellite laser ranging measurements provided independent verification of the GPS-derived GP-B orbit. We discuss the modifications and performance of the Trimble Advance Navigation System Vector III GPS receivers. We describe the GP-B precision orbit and detail the OD methodology, including ephemeris errors and the laser ranging measurements. (paper)

  13. Main magnetic field of Jupiter and its implications for future orbiter missions

    Science.gov (United States)

    Acuna, M. H.; Ness, N. F.

    1975-01-01

    A very strong planetary magnetic field and an enormous magnetosphere with extremely intense radiation belts exist at Jupiter. Pioneer 10 and 11 fly-bys confirmed and extended the earlier ground based estimates of many of these characteristics but left unanswered or added to the list of several important and poorly understood features: the source mechanism and location of decametric emissions, and the absorption effects by the natural satellites Amalthea, Io, Europa and Ganymede. High inclination orbits (exceeding 60 deg) with low periapses (less than 2 Jupiter radii) are required to map the radiation belts and main magnetic field of Jupiter accurately so as to permit full investigation of these and associated phenomena.

  14. Probing Signatures of a Distant Planet around the Young T-Tauri Star CI Tau Hosting a Possible Hot Jupiter

    Science.gov (United States)

    Konishi, Mihoko; Hashimoto, Jun; Hori, Yasunori

    2018-06-01

    We search for signatures of a distant planet around the two million-year-old classical T-Tauri star CI Tau hosting a hot-Jupiter candidate ({M}{{p}}\\sin i∼ 8.1 {M}Jupiter}) in an eccentric orbit (e ∼ 0.3). To probe the existence of an outer perturber, we reanalyzed 1.3 mm dust continuum observations of the protoplanetary disk around CI Tau obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). We found a gap structure at ∼0.″8 in CI Tau’s disk. Our visibility fitting assuming an axisymmetric surface brightness profile suggested that the gap is located at a deprojected radius of 104.5 ± 1.6 au and has a width of 36.9 ± 2.9 au. The brightness temperature around the gap was calculated to be ∼2.3 K lower than that of the ambient disk. Gap-opening mechanisms such as secular gravitational instability (GI) and dust trapping can explain the gap morphology in the CI Tau disk. The scenario that an unseen planet created the observed gap structure cannot be ruled out, although the coexistence of an eccentric hot Jupiter and a distant planet around the young CI Tau would be challenging for gravitational scattering scenarios. The mass of the planet was estimated to be between ∼0.25 M Jupiter and ∼0.8 M Jupiter from the gap width and depth ({0.41}-0.06+0.04) in the modeled surface brightness image, which is lower than the current detection limits of high-contrast direct imaging. The young classical T-Tauri CI Tau may be a unique system for exploring the existence of a potential distant planet as well as the origin of an eccentric hot Jupiter.

  15. A New Model of Jupiter's Magnetic Field from Juno's First Nine Orbits

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.

    2018-01-01

    A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter...... currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model (“Juno Reference Model through Perijove 9”) of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed...

  16. The Galileo Probe: How it Has Changed Our Understanding of Jupiter

    Science.gov (United States)

    Young, Richard E.

    2003-01-01

    The Galileo Mission to Jupiter, which arrived in December of 1995, provided the first study by an orbiter, and the first in-situ sampling via an entry probe, of an outer planet atmosphere. The rationale for an entry probe is that, even from an orbiter, remote sensing of the jovian atmosphere could not adequately retrieve the information desired. This paper provides a current summary of the most significant aspects of the data returned from the Galileo entry probe. As a result of the probe measurements, there has been a reassessment of our understanding of outer planet formation and evolution of the solar system. The primary scientific objective of the Galileo probe was to determine the composition of the jovian atmosphere, which from remote sensing remained either very uncertain, or completely unknown, with respect to several key elements. The probe found that the global He mass fraction is. significantly above the value reported from the Voyager Jupiter flybys but is slightly below the protosolar value, implying that there has been some settling of He to the deep jovian interior. The probe He measurements have also led to a reevaluation of the Voyager He mass fraction for Saturn, which is now determined to be much closer to that of Jupiter. The elements C, N, S, Ar, Kr, Xe were all found to have global abundances approximately 3 times their respective solar abundances. This result has raised a number of fundamental issues with regard to properties of planetesimals and the solar nebula at the time of giant planet formation. Ne, on the other hand, was found to be highly depleted, probably as the result of it being carried along with helium as helium settles towards the deep interior. The global abundance of O was not obtained by the probe because of the influence of local processes at the probe entry site (PES), processes which depleted condensible species, in this case H2O, well below condensation levels. Other condensible species, namely NH3 and H2S, were

  17. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star.

    Science.gov (United States)

    Donati, J F; Moutou, C; Malo, L; Baruteau, C; Yu, L; Hébrard, E; Hussain, G; Alencar, S; Ménard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Collier Cameron, A

    2016-06-30

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions.

  18. A New Model of Jupiter's Magnetic Field from Juno's First Nine Orbits

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.

    2018-01-01

    A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter......'s magnetic field with a coarse longitudinal separation of ~45° between perijoves. The magnetic field is represented with a degree 20 spherical harmonic model for the planetary (“internal”) field, combined with a simple model of the magnetodisc for the field (“external”) due to distributed magnetospheric...... currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model (“Juno Reference Model through Perijove 9”) of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed...

  19. EVIDENCE FROM THE ASTEROID BELT FOR A VIOLENT PAST EVOLUTION OF JUPITER'S ORBIT

    International Nuclear Information System (INIS)

    Morbidelli, Alessandro; Brasser, Ramon; Gomes, Rodney; Levison, Harold F.; Tsiganis, Kleomenis

    2010-01-01

    We use the current orbital structure of large (>50 km) asteroids in the main asteroid belt to constrain the evolution of the giant planets when they migrated from their primordial orbits to their current ones. Minton and Malhotra showed that the orbital distribution of large asteroids in the main belt can be reproduced by an exponentially decaying migration of the giant planets on a timescale of τ ∼ 0.5 Myr. However, self-consistent numerical simulations show that the planetesimal-driven migration of the giant planets is inconsistent with an exponential change in their semi-major axes on such a short timescale. In fact, the typical timescale is τ ≥ 5 Myr. When giant planet migration on this timescale is applied to the asteroid belt, the resulting orbital distribution is incompatible with the observed one. However, the planet migration can be significantly sped up by planet-planet encounters. Consider an evolution where both Jupiter and Saturn have close encounters with a Neptune-mass planet (presumably Uranus or Neptune itself) and where this third planet, after being scattered inward by Saturn, is scattered outward by Jupiter. This scenario leads to a very rapid increase in the orbital separation between Jupiter and Saturn which we show here to have only mild effects on the structure of the asteroid belt. This type of evolution is called a 'jumping-Jupiter' case. Our results suggest that the total mass and dynamical excitation of the asteroid belt before migration were comparable to those currently observed. Moreover, they imply that, before migration, the orbits of Jupiter and Saturn were much less eccentric than their current ones.

  20. Hierarchical Bayesian calibration of tidal orbit decay rates among hot Jupiters

    Science.gov (United States)

    Collier Cameron, Andrew; Jardine, Moira

    2018-05-01

    Transiting hot Jupiters occupy a wedge-shaped region in the mass ratio-orbital separation diagram. Its upper boundary is eroded by tidal spiral-in of massive, close-in planets and is sensitive to the stellar tidal dissipation parameter Q_s^'. We develop a simple generative model of the orbital separation distribution of the known population of transiting hot Jupiters, subject to tidal orbital decay, XUV-driven evaporation and observational selection bias. From the joint likelihood of the observed orbital separations of hot Jupiters discovered in ground-based wide-field transit surveys, measured with respect to the hyperparameters of the underlying population model, we recover narrow posterior probability distributions for Q_s^' in two different tidal forcing frequency regimes. We validate the method using mock samples of transiting planets with known tidal parameters. We find that Q_s^' and its temperature dependence are retrieved reliably over five orders of magnitude in Q_s^'. A large sample of hot Jupiters from small-aperture ground-based surveys yields log _{10} Q_s^' }=(8.26± 0.14) for 223 systems in the equilibrium-tide regime. We detect no significant dependence of Q_s^' on stellar effective temperature. A further 19 systems in the dynamical-tide regime yield log _{10} Q_s^' }=7.3± 0.4, indicating stronger coupling. Detection probabilities for transiting planets at a given orbital separation scale inversely with the increase in their tidal migration rates since birth. The resulting bias towards younger systems explains why the surface gravities of hot Jupiters correlate with their host stars' chromospheric emission fluxes. We predict departures from a linear transit-timing ephemeris of less than 4 s for WASP-18 over a 20-yr baseline.

  1. Jupiter

    Science.gov (United States)

    1990-01-01

    This processed color image of Jupiter was produced in 1990 by the U.S. Geological Survey from a Voyager image captured in 1979. The colors have been enhanced to bring out detail. Zones of light-colored, ascending clouds alternate with bands of dark, descending clouds. The clouds travel around the planet in alternating eastward and westward belts at speeds of up to 540 kilometers per hour. Tremendous storms as big as Earthly continents surge around the planet. The Great Red Spot (oval shape toward the lower-left) is an enormous anticyclonic storm that drifts along its belt, eventually circling the entire planet.

  2. A HOT GAP AROUND JUPITER'S ORBIT IN THE SOLAR NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Turner, N. J.; Choukroun, M.; Castillo-Rogez, J.; Bryden, G., E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-04-01

    The Sun was an order of magnitude more luminous during the first few hundred thousand years of its existence, due in part to the gravitational energy released by material accreting from the solar nebula. If Jupiter was already near its present mass, the planet's tides opened an optically thin gap in the nebula. Using Monte Carlo radiative transfer calculations, we show that sunlight absorbed by the nebula and re-radiated into the gap raised temperatures well above the sublimation threshold for water ice, with potentially drastic consequences for the icy bodies in Jupiter's feeding zone. Bodies up to a meter in size were vaporized within a single orbit if the planet was near its present location during this early epoch. Dust particles lost their ice mantles, and planetesimals were partially to fully devolatilized, depending on their size. Scenarios in which Jupiter formed promptly, such as those involving a gravitational instability of the massive early nebula, must cope with the high temperatures. Enriching Jupiter in the noble gases through delivery trapped in clathrate hydrates will be more difficult, but might be achieved by either forming the planet much farther from the star or capturing planetesimals at later epochs. The hot gap resulting from an early origin for Jupiter also would affect the surface compositions of any primordial Trojan asteroids.

  3. Comparison of the orbital properties of Jupiter Trojan asteroids and Trojan dust

    Science.gov (United States)

    Liu, Xiaodong; Schmidt, Jrgen

    2018-06-01

    In a previous paper we simulated the orbital evolution of dust particles from the Jupiter Trojan asteroids ejected by the impacts of interplanetary particles, and evaluated their overall configuration in the form of dust arcs. Here we compare the orbital properties of these Trojan dust particles and the Trojan asteroids. Both Trojan asteroids and most of the dust particles are trapped in the Jupiter 1:1 resonance. However, for dust particles, this resonance is modified because of the presence of solar radiation pressure, which reduces the peak value of the semi-major axis distribution. We find also that some particles can be trapped in the Saturn 1:1 resonance and higher order resonances with Jupiter. The distributions of the eccentricity, the longitude of pericenter, and the inclination for Trojans and the dust are compared. For the Trojan asteroids, the peak in the longitude of pericenter distribution is about 60 degrees larger than the longitude of pericenter of Jupiter; in contrast, for Trojan dust this difference is smaller than 60 degrees, and it decreases with decreasing grain size. For the Trojan asteroids and most of the Trojan dust, the Tisserand parameter is distributed in the range of two to three.

  4. A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits

    Science.gov (United States)

    Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.; Espley, J. R.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Herceg, M.; Bloxham, J.; Moore, K. M.; Bolton, S. J.; Levin, S. M.

    2018-03-01

    A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter's magnetic field with a coarse longitudinal separation of 45° between perijoves. The magnetic field is represented with a degree 20 spherical harmonic model for the planetary ("internal") field, combined with a simple model of the magnetodisc for the field ("external") due to distributed magnetospheric currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model ("Juno Reference Model through Perijove 9") of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed view of a planetary dynamo beyond Earth.

  5. THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. III. A PAUCITY OF PROTO-HOT JUPITERS ON SUPER-ECCENTRIC ORBITS

    International Nuclear Information System (INIS)

    Dawson, Rebekah I.; Murray-Clay, Ruth A.; Johnson, John Asher

    2015-01-01

    Gas giant planets orbiting within 0.1 AU of their host stars are unlikely to have formed in situ and are evidence for planetary migration. It is debated whether the typical hot Jupiter smoothly migrated inward from its formation location through the proto-planetary disk, or was perturbed by another body onto a highly eccentric orbit, which tidal dissipation subsequently shrank and circularized during close stellar passages. Socrates and collaborators predicted that the latter model should produce a population of super-eccentric proto-hot Jupiters readily observable by Kepler. We find a paucity of such planets in the Kepler sample, which is inconsistent with the theoretical prediction with 96.9% confidence. Observational effects are unlikely to explain this discrepancy. We find that the fraction of hot Jupiters with an orbital period P > 3 days produced by the star-planet Kozai mechanism does not exceed (at two-sigma) 44%. Our results may indicate that disk migration is the dominant channel for producing hot Jupiters with P > 3 days. Alternatively, the typical hot Jupiter may have been perturbed to a high eccentricity by interactions with a planetary rather than stellar companion, and began tidal circularization much interior to 1 AU after multiple scatterings. A final alternative is that early in the tidal circularization process at high eccentricities tidal circularization occurs much more rapidly than later in the process at low eccentricities, although this is contrary to current tidal theories

  6. QATAR-2: A K DWARF ORBITED BY A TRANSITING HOT JUPITER AND A MORE MASSIVE COMPANION IN AN OUTER ORBIT

    International Nuclear Information System (INIS)

    Bryan, Marta L.; Alsubai, Khalid A.; Latham, David W.; Quinn, Samuel N.; Carter, Joshua A.; Berlind, Perry; Brown, Warren R.; Calkins, Michael L.; Esquerdo, Gilbert A.; Fűrész, Gábor; Stefanik, Robert P.; Torres, Guillermo; Parley, Neil R.; Collier Cameron, Andrew; Horne, Keith D.; Fulton, Benjamin J.; Street, Rachel A.; Buchhave, Lars A.; Jørgensen, Uffe Gråe; West, Richard G.

    2012-01-01

    We report the discovery and initial characterization of Qatar-2b, a hot Jupiter transiting a V = 13.3 mag K dwarf in a circular orbit with a short period, P b = 1.34 days. The mass and radius of Qatar-2b are M P = 2.49 M J and R P = 1.14 R J , respectively. Radial-velocity monitoring of Qatar-2 over a span of 153 days revealed the presence of a second companion in an outer orbit. The Systemic Console yielded plausible orbits for the outer companion, with periods on the order of a year and a companion mass of at least several M J . Thus, Qatar-2 joins the short but growing list of systems with a transiting hot Jupiter and an outer companion with a much longer period. This system architecture is in sharp contrast to that found by Kepler for multi-transiting systems, which are dominated by objects smaller than Neptune, usually with tightly spaced orbits that must be nearly coplanar.

  7. The Orbital and Planetary Phase Variations of Jupiter-sized Planets: Characterizing Present and Future Giants

    Science.gov (United States)

    Mayorga, Laura C.; Jackiewicz, Jason; Rages, Kathy; West, Robert; Knowles, Ben; Lewis, Nikole K.; Marley, Mark S.

    2018-01-01

    Knowledge of how the brightness and color of a planet varies with viewing angle is essential for the design of future direct imaging missions and deriving constraints on atmospheric properties. However, measuring the phase curves for the solar system gas giants is impossible from the ground. Using data Cassini/ISS obtained during its flyby of Jupiter, I measured Jupiter's phase curve in six bands spanning 400-1000 nm. I found that Jupiter's brightness is less than that of a Lambertian scatterer and that its color varies more with phase angle than predicted by theoretical models. For hot Jupiters, the light from the planet cannot be spatially isolated from that of the star. As a result, determining the planetary phase curve requires removing the phase-dependent contributions from the host star. I consider the effect of varying the stellar model and present a parameterization of the Doppler beaming amplitude that depends upon the planetary mass, orbital period, and the stellar temperature. I consider the detectability of Doppler beaming amplitudes with data from TESS and find that TESS will be less sensitive to this signal than Kepler. This work was supported by the National Science Foundation Graduate Research Fellowship Program and the New Mexico Higher Education Department Graduate Scholarship Program.

  8. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF HOT JUPITERS ON HIGHLY ECCENTRIC ORBITS

    International Nuclear Information System (INIS)

    Kataria, T.; Showman, A. P.; Lewis, N. K.; Fortney, J. J.; Marley, M. S.; Freedman, R. S.

    2013-01-01

    Of the over 800 exoplanets detected to date, over half are on non-circular orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable stellar heating, which has major implications for the planet's atmospheric dynamical regime. However, little is known about the fundamental dynamical regime of such planetary atmospheres, and how it may influence the observations of these planets. Therefore, we present a systematic study of hot Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which couples a three-dimensional general circulation model (the MITgcm) with a plane-parallel, two-stream, non-gray radiative transfer model. In our study, we vary the eccentricity and orbit-average stellar flux over a wide range. We demonstrate that the eccentric hot Jupiter regime is qualitatively similar to that of planets on circular orbits; the planets possess a superrotating equatorial jet and exhibit large day-night temperature variations. As in Showman and Polvani, we show that the day-night heating variations induce momentum fluxes equatorward to maintain the superrotating jet throughout its orbit. We find that as the eccentricity and/or stellar flux is increased (corresponding to shorter orbital periods), the superrotating jet strengthens and narrows, due to a smaller Rossby deformation radius. For a select number of model integrations, we generate full-orbit light curves and find that the timing of transit and secondary eclipse viewed from Earth with respect to periapse and apoapse can greatly affect what we see in infrared (IR) light curves; the peak in IR flux can lead or lag secondary eclipse depending on the geometry. For those planets that have large temperature differences from dayside to nightside and rapid rotation rates, we find that the light curves can exhibit 'ringing' as the planet's hottest region rotates in and out of view from Earth. These results can be used to explain future observations of eccentric transiting exoplanets.

  9. Galileo Probe Doppler Residuals as the Wave-Dynamical Signature of Weakly Stable, Downward-Increasing Stratification in Jupiter's Deep Wind Layer

    Science.gov (United States)

    Allison, Michael; Atkinson, David H.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Doppler radio tracking of the Galileo probe-to-orbiter relay, previously analyzed for its in situ measure of Jupiter's zonal wind at the equatorial entry site, also shows a record of significant residual fluctuations apparently indicative of varying vertical motions. Regular oscillations over pressure depth in the residual Doppler measurements of roughly 1-8 Hz (increasing upward), as filtered over a 134 sec window, are most plausibly interpreted as gravity waves, and imply a weak, but downward increasing static stability within the 5 - 20 bar region of Jupiter's atmosphere. A matched extension to deeper levels of an independent inertial stability constraint from the measured vertical wind shear at 1 - 4 bars is roughly consistent with a static stability of approximately 0.5 K/km near the 20 bar level, as independently detected by the probe Atmospheric Structure Instrument.

  10. Jupiter's Aurora Observed With HST During Juno Orbits 3 to 7

    Science.gov (United States)

    Grodent, Denis; Bonfond, B.; Yao, Z.; Gérard, J.-C.; Radioti, A.; Dumont, M.; Palmaerts, B.; Adriani, A.; Badman, S. V.; Bunce, E. J.; Clarke, J. T.; Connerney, J. E. P.; Gladstone, G. R.; Greathouse, T.; Kimura, T.; Kurth, W. S.; Mauk, B. H.; McComas, D. J.; Nichols, J. D.; Orton, G. S.; Roth, L.; Saur, J.; Valek, P.

    2018-05-01

    A large set of observations of Jupiter's ultraviolet aurora was collected with the Hubble Space Telescope concurrently with the NASA-Juno mission, during an eight-month period, from 30 November 2016 to 18 July 2017. These Hubble observations cover Juno orbits 3 to 7 during which Juno in situ and remote sensing instruments, as well as other observatories, obtained a wealth of unprecedented information on Jupiter's magnetosphere and the connection with its auroral ionosphere. Jupiter's ultraviolet aurora is known to vary rapidly, with timescales ranging from seconds to one Jovian rotation. The main objective of the present study is to provide a simplified description of the global ultraviolet auroral morphology that can be used for comparison with other quantities, such as those obtained with Juno. This represents an entirely new approach from which logical connections between different morphologies may be inferred. For that purpose, we define three auroral subregions in which we evaluate the auroral emitted power as a function of time. In parallel, we define six auroral morphology families that allow us to quantify the variations of the spatial distribution of the auroral emission. These variations are associated with changes in the state of the Jovian magnetosphere, possibly influenced by Io and the Io plasma torus and by the conditions prevailing in the upstream interplanetary medium. This study shows that the auroral morphology evolved differently during the five 2 week periods bracketing the times of Juno perijove (PJ03 to PJ07), suggesting that during these periods, the Jovian magnetosphere adopted various states.

  11. FRIENDS OF HOT JUPITERS. II. NO CORRESPONDENCE BETWEEN HOT-JUPITER SPIN-ORBIT MISALIGNMENT AND THE INCIDENCE OF DIRECTLY IMAGED STELLAR COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Henry; Knutson, Heather A.; Hinkley, Sasha; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Crepp, Justin R.; Bechter, Eric B. [Department of Physics, University of Notre Dame, Notre Dame, IN (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI (United States); Johnson, John A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Morton, Timothy D. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA (United States); Muirhead, Philip S., E-mail: hngo@caltech.edu [Department of Astronomy, Boston University, Boston, MA (United States)

    2015-02-20

    Multi-star systems are common, yet little is known about a stellar companion's influence on the formation and evolution of planetary systems. For instance, stellar companions may have facilitated the inward migration of hot Jupiters toward to their present day positions. Many observed short-period gas giant planets also have orbits that are misaligned with respect to their star's spin axis, which has also been attributed to the presence of a massive outer companion on a non-coplanar orbit. We present the results of a multi-band direct imaging survey using Keck NIRC2 to measure the fraction of short-period gas giant planets found in multi-star systems. Over three years, we completed a survey of 50 targets ('Friends of Hot Jupiters') with 27 targets showing some signature of multi-body interaction (misaligned or eccentric orbits) and 23 targets in a control sample (well-aligned and circular orbits). We report the masses, projected separations, and confirmed common proper motion for the 19 stellar companions found around 17 stars. Correcting for survey incompleteness, we report companion fractions of 48% ± 9%, 47% ± 12%, and 51% ± 13% in our total, misaligned/eccentric, and control samples, respectively. This total stellar companion fraction is 2.8σ larger than the fraction of field stars with companions approximately 50-2000 AU. We observe no correlation between misaligned/eccentric hot Jupiter systems and the incidence of stellar companions. Combining this result with our previous radial velocity survey, we determine that 72% ± 16% of hot Jupiters are part of multi-planet and/or multi-star systems.

  12. Analysis of Periodic Orbits about the Triangular Solutions of the Restricted Sum-Jupiter and Earth-Moon Problem

    Directory of Open Access Journals (Sweden)

    Sang-Young Park

    1988-12-01

    Full Text Available Using the numerical solution in the plane restricted problem of three bodies, about 490 periodic orbits are computed numerically around the L5 of Sun-Jupiter and about 1600 periodic orbits also be done around the L5 of Earth-Moon system. As period increase, the energy and the shape of periodic orbits increase around the L5 of Sun-Jupiter system. But, in Earth-Moon system, the complex shapes and dents appear around the L5 and periodic orbits intersect one another in the place where dents are shown. And there is a region that three different periodic orbits exist with the same period in this region. The regions can exist around the L5 of Sun-Jupiter system where periodic orbit can be unstable by perturbation of other force besides the gravitational force of Jupiter. These regions which is close to L5 are a ~5.12 AU and a ~5.29 AU. The Trojan asteroids that have a small eccentricity and inclination can not exist in this region.

  13. No large population of unbound or wide-orbit Jupiter-mass planets.

    Science.gov (United States)

    Mróz, Przemek; Udalski, Andrzej; Skowron, Jan; Poleski, Radosław; Kozłowski, Szymon; Szymański, Michał K; Soszyński, Igor; Wyrzykowski, Łukasz; Pietrukowicz, Paweł; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał

    2017-08-10

    Planet formation theories predict that some planets may be ejected from their parent systems as result of dynamical interactions and other processes. Unbound planets can also be formed through gravitational collapse, in a way similar to that in which stars form. A handful of free-floating planetary-mass objects have been discovered by infrared surveys of young stellar clusters and star-forming regions as well as wide-field surveys, but these studies are incomplete for objects below five Jupiter masses. Gravitational microlensing is the only method capable of exploring the entire population of free-floating planets down to Mars-mass objects, because the microlensing signal does not depend on the brightness of the lensing object. A characteristic timescale of microlensing events depends on the mass of the lens: the less massive the lens, the shorter the microlensing event. A previous analysis of 474 microlensing events found an excess of ten very short events (1-2 days)-more than known stellar populations would suggest-indicating the existence of a large population of unbound or wide-orbit Jupiter-mass planets (reported to be almost twice as common as main-sequence stars). These results, however, do not match predictions of planet-formation theories and surveys of young clusters. Here we analyse a sample of microlensing events six times larger than that of ref. 11 discovered during the years 2010-15. Although our survey has very high sensitivity (detection efficiency) to short-timescale (1-2 days) microlensing events, we found no excess of events with timescales in this range, with a 95 per cent upper limit on the frequency of Jupiter-mass free-floating or wide-orbit planets of 0.25 planets per main-sequence star. We detected a few possible ultrashort-timescale events (with timescales of less than half a day), which may indicate the existence of Earth-mass and super-Earth-mass free-floating planets, as predicted by planet-formation theories.

  14. Small Probes for Orbital Return of Experiments Mission Design

    Data.gov (United States)

    National Aeronautics and Space Administration — Currently the Georgia Tech Small Probes for Orbital Return of Experiments (SPORE) team is collaborating with Aurora Flight Sciences to provide a launch, re-entry,...

  15. Main Power Distribution Unit for the Jupiter Icy Moons Orbiter (JIMO)

    Science.gov (United States)

    Papa, Melissa R.

    2004-01-01

    Around the year 2011, the Jupiter Icy Moons Orbiter (JIMO) will be launched and on its way to orbit three of Jupiter s planet-sized moons. The mission goals for the JIMO project revolve heavily around gathering scientific data concerning ingredients we, as humans, consider essential: water, energy and necessary chemical elements. The JIM0 is an ambitious mission which will implore propulsion from an ION thruster powered by a nuclear fission reactor. Glenn Research Center is responsible for the development of the dynamic power conversion, power management and distribution, heat rejection and ION thrusters. The first test phase for the JIM0 program concerns the High Power AC Power Management and Distribution (PMAD) Test Bed. The goal of this testing is to support electrical performance verification of the power systems. The test bed will incorporate a 2kW Brayton Rotating Unit (BRU) to simulate the nuclear reactor as well as two ION thrusters. The first module of the PMAD Test Bed to be designed is the Main Power Distribution Unit (MPDU) which relays the power input to the various propulsion systems and scientific instruments. The MPDU involves circuitry design as well as mechanical design to determine the placement of the components. The MPDU consists of fourteen relays of four different variations used to convert the input power into the appropriate power output. The three phase system uses 400 Vo1ts(sub L-L) rms at 1000 Hertz. The power is relayed through the circuit and distributed to the scientific instruments, the ION thrusters and other controlled systems. The mechanical design requires the components to be positioned for easy electrical wiring as well as allowing adequate room for the main buss bars, individual circuit boards connected to each component and power supplies. To accomplish creating a suitable design, AutoCAD was used as a drafting tool. By showing a visual layout of the components, it is easy to see where there is extra room or where the

  16. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Fortney, Jonathan J., E-mail: showman@lpl.arizona.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-03-10

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets.

  17. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF WARM AND HOT JUPITERS: EFFECTS OF ORBITAL DISTANCE, ROTATION PERIOD, AND NONSYNCHRONOUS ROTATION

    International Nuclear Information System (INIS)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.

    2015-01-01

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets

  18. A Physical Model of the Proton Radiation Belts of Jupiter inside Europa's Orbit

    Science.gov (United States)

    Nénon, Q.; Sicard, A.; Kollmann, P.; Garrett, H. B.; Sauer, S. P. A.; Paranicas, C.

    2018-05-01

    A physical model of the Jovian trapped protons with kinetic energies higher than 1 MeV inward of the orbit of the icy moon Europa is presented. The model, named Salammbô, takes into account the radial diffusion process, the absorption effect of the Jovian moons, and the Coulomb collisions and charge exchanges with the cold plasma and neutral populations of the inner Jovian magnetosphere. Preliminary modeling of the wave-particle interaction with electromagnetic ion cyclotron waves near the moon Io is also performed. Salammbô is validated against in situ proton measurements of Pioneer 10, Pioneer 11, Voyager 1, Galileo Probe, and Galileo Orbiter. A prominent feature of the MeV proton intensity distribution in the modeled area is the 2 orders of magnitude flux depletion observed in MeV measurements near the orbit of Io. Our simulations reveal that this is not due to direct interactions with the moon or its neutral environment but results from scattering of the protons by electromagnetic ion cyclotron waves.

  19. Probing clouds in planets with a simple radiative transfer model: the Jupiter case

    International Nuclear Information System (INIS)

    Mendikoa, Iñigo; Pérez-Hoyos, Santiago; Sánchez-Lavega, Agustín

    2012-01-01

    Remote sensing of planets evokes using expensive on-orbit satellites and gathering complex data from space. However, the basic properties of clouds in planetary atmospheres can be successfully estimated with small telescopes even from an urban environment using currently available and affordable technology. This makes the process accessible for undergraduate students while preserving most of the physics and mathematics involved. This paper presents the methodology for carrying out a photometric study of planetary atmospheres, focused on the planet Jupiter. The method introduces the basics of radiative transfer in planetary atmospheres, some notions on inverse problem theory and the fundamentals of planetary photometry. As will be shown, the procedure allows the student to derive the spectral reflectivity and top altitude of clouds from observations at different wavelengths by applying a simple but enlightening ‘reflective layer model’. In this way, the planet's atmospheric structure is estimated by students as an inverse problem from the observed photometry. Web resources are also provided to help those unable to obtain telescopic observations of the planets. (paper)

  20. Probing clouds in planets with a simple radiative transfer model: the Jupiter case

    Science.gov (United States)

    Mendikoa, Iñigo; Pérez-Hoyos, Santiago; Sánchez-Lavega, Agustín

    2012-11-01

    Remote sensing of planets evokes using expensive on-orbit satellites and gathering complex data from space. However, the basic properties of clouds in planetary atmospheres can be successfully estimated with small telescopes even from an urban environment using currently available and affordable technology. This makes the process accessible for undergraduate students while preserving most of the physics and mathematics involved. This paper presents the methodology for carrying out a photometric study of planetary atmospheres, focused on the planet Jupiter. The method introduces the basics of radiative transfer in planetary atmospheres, some notions on inverse problem theory and the fundamentals of planetary photometry. As will be shown, the procedure allows the student to derive the spectral reflectivity and top altitude of clouds from observations at different wavelengths by applying a simple but enlightening ‘reflective layer model’. In this way, the planet's atmospheric structure is estimated by students as an inverse problem from the observed photometry. Web resources are also provided to help those unable to obtain telescopic observations of the planets.

  1. Chemical composition measurements of the atmosphere of Jupiter with the Galileo Probe mass spectrometer

    Science.gov (United States)

    Niemann, H. B.; Atreya, S. K.; Carignan, G. R.; Donahue, T. M.; Haberman, J. A.; Harpold, D. N.; Hartle, R. E.; Hunten, D. M.; Kasprzak, W. T.; Mahaffy, P. R.; hide

    1998-01-01

    The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for 3He/4He, D/H, 13C/12C, 20Ne/22Ne, 38Ar/36Ar and for isotopes of both Kr and Xe.

  2. SPIN–ORBIT ALIGNMENT FOR THREE TRANSITING HOT JUPITERS: WASP-103b, WASP-87b, and WASP-66b

    Energy Technology Data Exchange (ETDEWEB)

    Addison, B. C.; Tinney, C. G.; Wright, D. J. [Exoplanetary Science Group, School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Bayliss, D., E-mail: baddison2005@gmail.com [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2016-05-20

    We have measured the sky-projected spin–orbit alignments for three transiting hot Jupiters, WASP-103b, WASP-87b, and WASP-66b, using spectroscopic measurements of the Rossiter–McLaughlin effect, with the CYCLOPS2 optical fiber bundle system feeding the UCLES spectrograph on the Anglo-Australian Telescope. The resulting sky-projected spin–orbit angles of λ = 3° ± 33°, λ = −8° ± 11°, and λ = −4° ± 22° for WASP-103b, WASP-87b, and WASP-66b, respectively, suggest that these three planets are likely on nearly aligned orbits with respect to their host star’s spin axis. WASP-103 is a particularly interesting system as its orbital distance is only 20% larger than its host star’s Roche radius and the planet likely experiences strong tidal effects. WASP-87 and WASP-66 are hot ( T {sub eff} = 6450 ± 120 K and T {sub eff} = 6600 ± 150 K, respectively) mid-F stars, making them similar to the majority of stars hosting planets on high-obliquity orbits. Moderate spin–orbit misalignments for WASP-103b and WASP-66b are consistent with our data, but polar and retrograde orbits are not favored for these systems.

  3. SPIN–ORBIT ALIGNMENT FOR THREE TRANSITING HOT JUPITERS: WASP-103b, WASP-87b, and WASP-66b

    International Nuclear Information System (INIS)

    Addison, B. C.; Tinney, C. G.; Wright, D. J.; Bayliss, D.

    2016-01-01

    We have measured the sky-projected spin–orbit alignments for three transiting hot Jupiters, WASP-103b, WASP-87b, and WASP-66b, using spectroscopic measurements of the Rossiter–McLaughlin effect, with the CYCLOPS2 optical fiber bundle system feeding the UCLES spectrograph on the Anglo-Australian Telescope. The resulting sky-projected spin–orbit angles of λ = 3° ± 33°, λ = −8° ± 11°, and λ = −4° ± 22° for WASP-103b, WASP-87b, and WASP-66b, respectively, suggest that these three planets are likely on nearly aligned orbits with respect to their host star’s spin axis. WASP-103 is a particularly interesting system as its orbital distance is only 20% larger than its host star’s Roche radius and the planet likely experiences strong tidal effects. WASP-87 and WASP-66 are hot ( T eff = 6450 ± 120 K and T eff = 6600 ± 150 K, respectively) mid-F stars, making them similar to the majority of stars hosting planets on high-obliquity orbits. Moderate spin–orbit misalignments for WASP-103b and WASP-66b are consistent with our data, but polar and retrograde orbits are not favored for these systems.

  4. Evaluation of I and C architecture alternatives required for the jupiter Icy moons orbiter (JIMO) reactor

    International Nuclear Information System (INIS)

    Muhlheim, M. D.; Wood, R. T.; Bryan, W. L.; Wilson Jr, T. L.; Holcomb, D. E.; Korsah, K.; Jagadish, U.

    2006-01-01

    This paper discusses alternative architectural considerations for instrumentation and control (I and C) systems in high-reliability applications to support remote, autonomous, inaccessible nuclear reactors, such as a space nuclear power plant (SNPP) for mission electrical power and space exploration propulsion. This work supported the pre-conceptual design of the reactor control system for the Jupiter Icy Moons Orbiter (JIMO) mission. Long-term continuous operation without intermediate maintenance cycles forces consideration of alternatives to commonly used active, N-multiple redundancy techniques for high-availability systems. Long space missions, where mission duration can exceed the 50% reliability limit of constituent components, can make active, N-multiple redundant systems less reliable than simplex systems. To extend a control system lifetime beyond the 50% reliability limits requires incorporation of passive redundancy of functions. Time-dependent availability requirements must be factored into the use of combinations of active and passive redundancy techniques for different mission phases. Over the course of a 12 to 20-year mission, reactor control, power conversion, and thermal management system components may fail, and the I and C system must react and adjust to accommodate these failures and protect non-failed components to continue the mission. This requires architectural considerations to accommodate partial system failures and to adapt to multiple control schemes according to the state of non-failed components without going through a complete shutdown and restart cycle. Relevant SNPP I and C architecture examples provide insights into real-time fault tolerance and long-term reliability and availability beyond time periods normally associated with terrestrial power reactor I and C systems operating cycles. I and C architectures from aerospace systems provide examples of highly reliable and available control systems associated with short- and long

  5. An Overview of the Jupiter Icy Moons Orbiter (JIMO) Mission, Environments, and Materials Challenges

    Science.gov (United States)

    Edwards, Dave

    2012-01-01

    Congress authorized NASA's Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter with the following main objectives: (1) Develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration. (2) Explore the three icy moons of Jupiter -- Callisto, Ganymede, and Europa -- and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences.

  6. Science Planning and Orbit Classification for Solar Probe Plus

    Science.gov (United States)

    Kusterer, M. B.; Fox, N. J.; Rodgers, D. J.; Turner, F. S.

    2016-12-01

    There are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus (SPP) Mission. Since SPP is using a decoupled payload operations approach, tight coordination between the mission operations and payload teams will be required. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. Making this process more difficult, the geometry of the celestial bodies and the spacecraft during some of the SPP mission orbits cause limited uplink and downlink opportunities. The payload teams will also be required to coordinate power on opportunities, command uplink opportunities, and data transfers from instrument memory to the spacecraft SSR with the operation team. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To solve these challenges, detailed orbit activity planning is required in advance for each orbit. An orbit planning process is being created to facilitate the coordination of spacecraft and payload activities for each orbit. An interactive Science Planning Tool is being designed to integrate the payload data volume and priority allocations, spacecraft ephemeris, attitude, downlink and uplink schedules, spacecraft and payload activities, and other spacecraft ephemeris. It will be used during science planning to select the instrument data priorities and data volumes that satisfy the orbit data volume constraints and power on, command uplink and data transfer time periods. To aid in the initial stages of science planning we have created an orbit classification scheme based on downlink availability and significant science events. Different types of challenges arise in the management of science data driven by orbital geometry and operational constraints, and this scheme attempts to identify the patterns that emerge.

  7. HEAVY-ELEMENT ENRICHMENT OF A JUPITER-MASS PROTOPLANET AS A FUNCTION OF ORBITAL LOCATION

    International Nuclear Information System (INIS)

    Helled, R.; Schubert, G.

    2009-01-01

    One possible mechanism for giant planet formation is disk instability in which the planet is formed as a result of gravitational instability in the protoplanetary disk surrounding the young star. The final composition and core mass of the planet will depend on the planet's mass, environment, and the planetesimal accretion efficiency. We calculate heavy-element enrichment in a Jupiter-mass protoplanet formed by disk instability at various radial distances from the star, considering different disk masses and surface density distributions. Although the available mass for accretion increases with radial distance (a) for disk solid surface density (σ) functions σ = σ 0 a -α with α 5 years of planetary evolution, when the planet is extended and before gap opening and type II migration take place. The accreted mass is calculated for disk masses of 0.01, 0.05, and 0.1 M sun with α = 1/2, 1, and 3/2. We show that a Jupiter-mass protoplanet can accrete 1-110 M + of heavy elements, depending on the disk properties. Due to the limitation on the accretion timescale, our results provide lower bounds on heavy-element enrichment. Our results can explain the large variation in heavy-element enrichment found in extrasolar giant planets. Since higher disk surface density is found to lead to larger heavy-element enrichment, our model results are consistent with the correlation between heavy-element enrichment and stellar metallicity. Our calculations also suggest that Jupiter could have formed at a larger radial distance than its current location while still accreting the mass of heavy elements predicted by interior models. We conclude that in the disk instability model the final composition of a giant planet is strongly determined by its formation environment. The heavy-element abundance of a giant planet does not discriminate between its origin by either disk instability or core accretion.

  8. VizieR Online Data Catalog: The orbits of Jupiter's irregular satellites (Brozovic+, 2017)

    Science.gov (United States)

    Brozovic, M.; Jacobson, R. A.

    2018-05-01

    The large majority of astrometric observations originate from Earth-based telescopes, although there are a handful of observations of Himalia and Callirrhoe from the New Horizons spacecraft flyby of Jupiter. The modern Hipparcos Catalog (Perryman et al. 1997A&A...323L..49P) based astrometry is reported as positions in the ICRF. We convert the older measurements to the ICRF positions. The references to optical observations up to the year 2000 are documented in Jacobson (2000AJ....120.2679J). We continued to use the Jacobson (2000AJ....120.2679J) observational biases for the early measurements. We have since extended the data set with observations published in the Minor Planet Electronic Circulars (MPEC), the International Astronomical Union Circulars (IAUC), the Natural Satellites Data Center (NSDC) database (Arlot & Emelyanov 2009A&A...503..631A), the United States Naval Observatory Flagstaff Station catalog, and the Pulkovo Observatory database. (5 data files).

  9. Transiting exoplanets from the CoRoT space mission . XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit

    DEFF Research Database (Denmark)

    Rouan, D.; Parviainen, H.; Moutou, C.

    2012-01-01

    We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 ± 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric search...... to be 7 Gyr, not far from the transition to subgiant, in agreement with the rather large stellar radius. The two features of a significant eccentricity of the orbit and of a fairly high density are fairly uncommon for a hot Jupiter. The high density is, however, consistent with a model of contraction...... is more than a few 105, a value that is the lower bound of the usually expected range. Even if CoRoT-23b  features a density and an eccentricity that are atypical of a hot Jupiter, it is thus not an enigmatic object....

  10. HAT-P-13b,c: A TRANSITING HOT JUPITER WITH A MASSIVE OUTER COMPANION ON AN ECCENTRIC ORBIT

    International Nuclear Information System (INIS)

    Bakos, G. A.; Noyes, R. W.; Hartman, J.; Torres, G.; Latham, D. W.; Sasselov, D. D.; Stefanik, R. P.; Sipocz, B.; Kovacs, Gabor; Esquerdo, G. A.; Pal, A.; Howard, A. W.; Marcy, G. W.; Kovacs, Geza; Fischer, D. A.; Johnson, J. A.; Lazar, J.; Papp, I.; Sari, P.

    2009-01-01

    We report on the discovery of a planetary system with a close-in transiting hot Jupiter on a near circular orbit and a massive outer planet on a highly eccentric orbit. The inner planet, HAT-P-13b, transits the bright V = 10.622 G4 dwarf star GSC 3416 - 00543 every P = 2.916260 ± 0.000010 days, with transit epoch T c = 2454779.92979 ± 0.00038 (BJD) and duration 0.1345 ± 0.0017 days. The outer planet HAT-P-13c orbits the star every P 2 = 428.5 ± 3.0 days with a nominal transit center (assuming zero impact parameter) of T 2c = 2454870.4 ± 1.8 (BJD) or time of periastron passage T 2,peri = 2454890.05 ± 0.48 (BJD). Transits of the outer planet have not been observed, and may not be present. The host star has a mass of 1.22 +0.05 -0.10 M sun , radius of 1.56 ± 0.08 R sun , effective temperature of 5653 ± 90 K, and is rather metal-rich with [Fe/H] = +0.41 ± 0.08. The inner planetary companion has a mass of 0.853 +0.029 -0.046 M J , and radius of 1.281 ± 0.079 R J , yielding a mean density of 0.498 +0.103 -0.069 g cm -3 . The outer companion has m 2 sin i 2 = 15.2 ± 1.0 M J , and orbits on a highly eccentric orbit of e 2 = 0.691 ± 0.018. While we have not detected significant transit timing variations of HAT-P-13b, due to gravitational and light-travel time effects, future observations will constrain the orbital inclination of HAT-P-13c, along with its mutual inclination to HAT-P-13b. The HAT-P-13 (b, c) double-planet system may prove extremely valuable for theoretical studies of the formation and dynamics of planetary systems.

  11. A physical model of the proton radiation belts of Jupiter inside Europa’s orbit

    DEFF Research Database (Denmark)

    Nénon, Quentin; Sicard, Angelica; Kollmann, Peter

    2018-01-01

    A physical model of the Jovian trapped protons with kinetic energies higher than 1 MeV inward of the orbit of the icy moon Europa is presented. The model, named Salammbô, takes into account the radial diffusion process, the absorption effect of the Jovian moons, and the Coulomb collisions and cha...

  12. Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Adriani, Alberto; Allegrini, F.

    2017-01-01

    The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno's capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context...

  13. Seth Nicholson's First Satellite Discovery: Jupiter IX and His Orbit for It

    Science.gov (United States)

    Osterbrock, Donald E.

    2006-12-01

    Seth B. Nicholson was a graduate astronomy student at the University of California in Berkeley when he discovered his first satellite in 1914. He was later to discover three more, after he had joined the Mount Wilson Observatory staff following his PhD in 1915. Nicholson had begun his thesis on the problem of computing an improved orbit for J VIII, which had been discovered by Melotte in England in 1908, a distant irregular satellite like J VI and J VII. Nicholson was taking photographic plates to measure the position of J VIII in the summer of 1914 with the Crossley 36-inch reflector of Lick Observatory. He was a teaching assistant at Berkeley that summer, but would go up to Mount Hamilton to observe on weekends in the dark of the moon, traveling by rail, stage (an automobile on a regular schedule between San Jose and the observatory) and interurban trolley car, and sleeping in a shed near the Crossley dome. He first saw J IX as a much fainter object with the same motion as J VIII on a plate he took in late July 1914, and realized it must be another satellite of the giant planet. Nicholson obtained his first orbit of J IX, which had by then become his new thesis topic, in September, and published a paper on it in early 1915. Its orbit, like that of J VIII, was retrograde and irregular, but it was considerably fainter. Nicholson, a loyal student of Armin O. Leuschner, the head of the Berkeley Astronomy Division, used his teacher's "short method" (or analytic method) to calculate the orbit.

  14. Probing Clouds in Planets with a Simple Radiative Transfer Model: The Jupiter Case

    Science.gov (United States)

    Mendikoa, Inigo; Perez-Hoyos, Santiago; Sanchez-Lavega, Agustin

    2012-01-01

    Remote sensing of planets evokes using expensive on-orbit satellites and gathering complex data from space. However, the basic properties of clouds in planetary atmospheres can be successfully estimated with small telescopes even from an urban environment using currently available and affordable technology. This makes the process accessible for…

  15. The EBLM Project. IV. Spectroscopic orbits of over 100 eclipsing M dwarfs masquerading as transiting hot Jupiters

    Science.gov (United States)

    Triaud, Amaury H. M. J.; Martin, David V.; Ségransan, Damien; Smalley, Barry; Maxted, Pierre F. L.; Anderson, David R.; Bouchy, François; Collier Cameron, Andrew; Faedi, Francesca; Gómez Maqueo Chew, Yilen; Hebb, Leslie; Hellier, Coel; Marmier, Maxime; Pepe, Francesco; Pollacco, Don; Queloz, Didier; Udry, Stéphane; West, Richard

    2017-12-01

    We present 2271 radial velocity measurements taken on 118 single-line binary stars, taken over eight years with the CORALIE spectrograph. The binaries consist of F/G/K primaries and M dwarf secondaries. They were initially discovered photometrically by the WASP planet survey, as their shallow eclipses mimic a hot Jupiter transit. The observations we present permit a precise characterisation of the binary orbital elements and mass function. With modelling of the primary star, this mass function is converted to a mass of the secondary star. In the future, this spectroscopic work will be combined with precise photometric eclipses to draw an empirical mass/radius relation for the bottom of the mass sequence. This has applications in both stellar astrophysics and the growing number of exoplanet surveys around M dwarfs. In particular, we have discovered 34 systems with a secondary mass below 0.2 M⊙, and so we will ultimately double the number of known very low-mass stars with well-characterised masses and radii. The quality of our data combined with the amplitude of the Doppler variations mean that we are able to detect eccentricities as small as 0.001 and orbital periods to sub-second precision. Our sample can revisit some earlier work on the tidal evolution of close binaries, extending it to low mass ratios. We find some exceptional binary systems that are eccentric at orbital periods below three days, while our longest circular orbit has a period of 10.4 days. Amongst our systems, we note one remarkable architecture in J1146-42 that boasts three stars within one astronomical unit. By collating the EBLM binaries with published WASP planets and brown dwarfs, we derive a mass spectrum with twice the resolution of previous work. We compare the WASP/EBLM sample of tightly bound orbits with work in the literature on more distant companions up to 10 AU. We note that the brown dwarf desert appears wider, as it carves into the planetary domain for our short-period orbits

  16. K2-139 b: a low-mass warm Jupiter on a 29-d orbit transiting an active K0 V star

    Science.gov (United States)

    Barragán, O.; Gandolfi, D.; Smith, A. M. S.; Deeg, H. J.; Fridlund, M. C. V.; Persson, C. M.; Donati, P.; Endl, M.; Csizmadia, Sz; Grziwa, S.; Nespral, D.; Hatzes, A. P.; Cochran, W. D.; Fossati, L.; Brems, S. S.; Cabrera, J.; Cusano, F.; Eigmüller, Ph; Eiroa, C.; Erikson, A.; Guenther, E.; Korth, J.; Lorenzo-Oliveira, D.; Mancini, L.; Pätzold, M.; Prieto-Arranz, J.; Rauer, H.; Rebollido, I.; Saario, J.; Zakhozhay, O. V.

    2018-04-01

    We announce the discovery of K2-139 b (EPIC 218916923 b), a transiting warm-Jupiter (Teq = 547 ± 25 K) on a 29-d orbit around an active (log R^' _HK = -4.46 ± 0.06) K0 V star in K2 Campaign 7. We derive the system's parameters by combining the K2 photometry with ground-based follow-up observations. With a mass of 0.387 _{ - 0.075 } ^ {+ 0.083 }MJ and radius of 0.808 _{ - 0.033 } ^ {+ 0.034 }RJ, K2-139 b is one of the transiting warm Jupiters with the lowest mass known to date. The planetary mean density of 0.91 _{ - 0.20} ^ { + 0.24 } g cm-3can be explained with a core of ˜50 M⊕. Given the brightness of the host star (V = 11.653 mag), the relatively short transit duration (˜5 h), and the expected amplitude of the Rossiter-McLaughlin effect (˜25m s-1), K2-139 is an ideal target to measure the spin-orbit angle of a planetary system hosting a warm Jupiter.

  17. The 4.5 μm full-orbit phase curve of the hot Jupiter HD 209458b

    Energy Technology Data Exchange (ETDEWEB)

    Zellem, Robert T.; Griffith, Caitlin A.; Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Knutson, Heather A. [Division of Geological and Planetary Sciences, MC 170-25 1200 East California Boulevard, Pasadena, CA 91125 (United States); Fortney, Jonathan J.; Laughlin, Gregory [Department of Astronomy and Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Cowan, Nicolas B. [Department of Earth and Planetary Sciences, Northwestern University, Technological Institute, 2145 Sheridan Road, Evanston, IL 60208 (United States); Agol, Eric [Astronomy Department, University of Washington, Physics-Astronomy Building, 3910 15th Avenue NE, Seattle, WA 98195 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-16, Cambridge, MA 02138 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Langton, Jonathan, E-mail: rzellem@lpl.arizona.edu [Physics Department, Principia College, 1 Maybeck Place, Elsah, IL 62028 (United States)

    2014-07-20

    The hot Jupiter HD 209458b is particularly amenable to detailed study as it is among the brightest transiting exoplanet systems currently known (V-mag = 7.65; K-mag = 6.308) and has a large planet-to-star contrast ratio. HD 209458b is predicted to be in synchronous rotation about its host star with a hot spot that is shifted eastward of the substellar point by superrotating equatorial winds. Here we present the first full-orbit observations of HD 209458b, in which its 4.5 μm emission was recorded with Spitzer/IRAC. Our study revises the previous 4.5 μm measurement of HD 209458b's secondary eclipse emission downward by ∼35% to 0.1391%{sub −0.0069%}{sup +0.0072%}, changing our interpretation of the properties of its dayside atmosphere. We find that the hot spot on the planet's dayside is shifted eastward of the substellar point by 40.°9 ± 6.°0, in agreement with circulation models predicting equatorial superrotation. HD 209458b's dayside (T{sub bright} = 1499 ± 15 K) and nightside (T{sub bright} = 972 ± 44 K) emission indicate a day-to-night brightness temperature contrast smaller than that observed for more highly irradiated exoplanets, suggesting that the day-to-night temperature contrast may be partially a function of the incident stellar radiation. The observed phase curve shape deviates modestly from global circulation model predictions potentially due to disequilibrium chemistry or deficiencies in the current hot CH{sub 4} line lists used in these models. Observations of the phase curve at additional wavelengths are needed in order to determine the possible presence and spatial extent of a dayside temperature inversion, as well as to improve our overall understanding of this planet's atmospheric circulation.

  18. The 4.5 μm full-orbit phase curve of the hot Jupiter HD 209458b

    International Nuclear Information System (INIS)

    Zellem, Robert T.; Griffith, Caitlin A.; Showman, Adam P.; Lewis, Nikole K.; Knutson, Heather A.; Fortney, Jonathan J.; Laughlin, Gregory; Cowan, Nicolas B.; Agol, Eric; Burrows, Adam; Charbonneau, David; Deming, Drake; Langton, Jonathan

    2014-01-01

    The hot Jupiter HD 209458b is particularly amenable to detailed study as it is among the brightest transiting exoplanet systems currently known (V-mag = 7.65; K-mag = 6.308) and has a large planet-to-star contrast ratio. HD 209458b is predicted to be in synchronous rotation about its host star with a hot spot that is shifted eastward of the substellar point by superrotating equatorial winds. Here we present the first full-orbit observations of HD 209458b, in which its 4.5 μm emission was recorded with Spitzer/IRAC. Our study revises the previous 4.5 μm measurement of HD 209458b's secondary eclipse emission downward by ∼35% to 0.1391% −0.0069% +0.0072% , changing our interpretation of the properties of its dayside atmosphere. We find that the hot spot on the planet's dayside is shifted eastward of the substellar point by 40.°9 ± 6.°0, in agreement with circulation models predicting equatorial superrotation. HD 209458b's dayside (T bright = 1499 ± 15 K) and nightside (T bright = 972 ± 44 K) emission indicate a day-to-night brightness temperature contrast smaller than that observed for more highly irradiated exoplanets, suggesting that the day-to-night temperature contrast may be partially a function of the incident stellar radiation. The observed phase curve shape deviates modestly from global circulation model predictions potentially due to disequilibrium chemistry or deficiencies in the current hot CH 4 line lists used in these models. Observations of the phase curve at additional wavelengths are needed in order to determine the possible presence and spatial extent of a dayside temperature inversion, as well as to improve our overall understanding of this planet's atmospheric circulation.

  19. MASCARA-1 b. A hot Jupiter transiting a bright mV = 8.3 A-star in a misaligned orbit

    Science.gov (United States)

    Talens, G. J. J.; Albrecht, S.; Spronck, J. F. P.; Lesage, A.-L.; Otten, G. P. P. L.; Stuik, R.; Van Eylen, V.; Van Winckel, H.; Pollacco, D.; McCormac, J.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Snellen, I. A. G.

    2017-10-01

    We report the discovery of MASCARA-1 b, which is the first exoplanet discovered with the Multi-site All-Sky CAmeRA (MASCARA). This exoplanet is a hot Jupiter orbiting a bright mV = 8.3, rapidly rotating (vsini⋆ > 100 km s-1) A8 star with a period of 2.148780 ± 8 × 10-6 days. The planet has a mass and radius of 3.7 ± 0.9 MJup and 1.5 ± 0.3 RJup, respectively. As with most hot Jupiters transiting early-type stars, we find a misalignment between the planet orbital axis and the stellar spin axis, which may be a signature of the formation and migration histories of this family of planets. MASCARA-1 b has a mean density of 1.5 ± 0.9 g cm-3 and an equilibrium temperature of 2570+50-30K, that is one of the highest temperatures known for a hot Jupiter to date. The system is reminiscent of WASP-33, but the host star lacks apparent delta-scuti variations, making the planet an ideal target for atmospheric characterization. We expect this to be the first of a series of hot Jupiters transiting bright early-type stars that will be discovered by MASCARA. Tables of the photometry and the reduced spectra as FITS files are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A73

  20. Teetering Stars: Resonant Excitation of Stellar Obliquities by Hot and Warm Jupiters with External Companions

    Science.gov (United States)

    Anderson, Kassandra; Lai, Dong

    2018-04-01

    Stellar spin-orbit misalignments (obliquities) in hot Jupiter systems have been extensively probed in recent years thanks to Rossiter-McLaughlin observations. Such obliquities may reveal clues about hot Jupiter dynamical and migration histories. Common explanations for generating stellar obliquities include high-eccentricity migration, or primordial disk misalignment. This talk investigates another mechanism for producing stellar spin-orbit misalignments in systems hosting a close-in giant planet with an external, inclined planetary companion. Spin-orbit misalignment may be excited due to a secular resonance, occurring when the precession rate of the stellar spin axis (due to the inner orbit) becomes comparable to the precession rate of the inner orbital axis (due to the outer companion). Due to the spin-down of the host star via magnetic braking, this resonance may be achieved at some point during the star's main sequence lifetime for a wide range of giant planet masses and orbital architectures. We focus on both hot Jupiters (with orbital periods less than ten days) and warm Jupiters (with orbital periods around tens of days), and identify the outer perburber properties needed to generate substantial obliquities via resonant excitation, in terms of mass, separation, and inclination. For hot Jupiters, the stellar spin axis is strongly coupled to the orbital axis, and resonant excitation of obliquity requires a close perturber, located within 1-2 AU. For warm Jupiters, the spin and orbital axes are more weakly coupled, and the resonance may be achieved for more distant perturbers (at several to tens of AU). Resonant excitation of the stellar obliquity is accompanied by a decrease in the planets' mutual orbital inclination, and can thus erase high mutual inclinations in two-planet systems. Since many warm Jupiters are known to have outer planetary companions at several AU or beyond, stellar obliquities in warm Jupiter systems may be common, regardless of the

  1. Validation of double Langmuir probe in-orbit performance onboard a nano-satellite

    Science.gov (United States)

    Tejumola, Taiwo Raphael; Zarate Segura, Guillermo Wenceslao; Kim, Sangkyun; Khan, Arifur; Cho, Mengu

    2018-03-01

    Many plasma measurement systems have been proposed and used onboard different satellites to characterize space plasma. Most of these systems employed the technique of Langmuir probes either using the single or double probes methods. Recent growth of lean satellites has positioned it on advantage to be used for space science missions using Langmuir probes because of its simplicity and convenience. However, single Langmuir probes are not appropriate to be used on lean satellites because of their limited conducting area which leads to spacecraft charging and drift of the instrument's electrical ground during measurement. Double Langmuir probes technique can overcome this limitation, as a measurement reference in relation to the spacecraft is not required. A double Langmuir probe measurement system was designed and developed at Kyushu Institute of Technology for HORYU-IV satellite, which is a 10 kg, 30 cm cubic class lean satellite launched into Low Earth Orbit on 17th February 2016. This paper presents the on-orbit performance and validation of the double Langmuir probe measurement using actual on-orbit measured data and computer simulations.

  2. Autonomous determination of orbit for probe around asteroids using unscented Kalman filter

    Institute of Scientific and Technical Information of China (English)

    崔平远; 崔祜涛; 黄翔宇; 栾恩杰

    2003-01-01

    The observed images of the asteroid and the asteroid reference images are used to obtain the probe-to-asteroid direction and the location of the limb features of the asteroid in the inertial coordinate. These informa-tion in combination with the shape model of the asteroid and attitude information of the probe are utilized to ob-tain the position of the probe. The position information is then input to the UKF which determines the real-timeorbit of the probe. Finally, the autonomous orbit determination algorithm is validated using digital simulation.The determination of orbit using UKF is compared with that using extended Kalman filter (EKF), and the resultshows that UKF is superior to EKF.

  3. Probing in-medium spin–orbit interaction with intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xu, Jun; Li, Bao-An

    2013-01-01

    Incorporating for the first time both the spin and isospin degrees of freedom explicitly in transport model simulations of intermediate-energy heavy-ion collisions, we observe that a local spin polarization appears during collision process. Most interestingly, it is found that the nucleon spin up–down differential transverse flow is a sensitive probe of the spin–orbit interaction, providing a novel approach to probe both the density and isospin dependence of the in-medium spin–orbit coupling that is important for understanding the structure of rare isotopes and synthesis of superheavy elements

  4. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DEFF Research Database (Denmark)

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina

    2017-01-01

    We probe the dynamics of valence electrons in photoexcited [Fe(terpy)2]2+ in solution to gain deeper insight into the Fe ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making...... valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitals directly involved in the light-driven dynamics; a change in the metal ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations...... and more subtle features at the highest energies reflect changes in the frontier orbital populations....

  5. JUICE space mission to Jupiter

    CERN Document Server

    CERN. Geneva

    2018-01-01

    JUICE - JUpiter ICy moons Explorer - is the first large-class mission in ESA's Cosmic Vision 2015-2025 programme. Planned for launch in 2022 and arrival at Jupiter in 2029, it will spend at least three years making detailed observations of the giant gaseous planet Jupiter and three of its largest moons, Ganymede, Callisto and Europa. JUICE will perform detailed investigations of Jupiter and its system in all their inter-relations and complexity with particular emphasis on Ganymede as a planetary body and potential habitat. Investigations of Europa and Callisto would complete a comparative picture of the Galilean moons. Jupiter is the archetype for the giant planets of the Solar System and for the numerous giant planets now known to orbit other stars. Moreover, Jupiter's diverse Galilean satellites - three of which are believed to harbour internal oceans - are central to understanding the habitability of icy worlds. JUICE spacecraft will carry the most powerful remote sensing, geophysical, and in situ paylo...

  6. A new look at Jupiter: results at the now frontier

    International Nuclear Information System (INIS)

    1975-01-01

    Pioneer 10's encounter with Jupiter is discussed along with the interplanetary space beyond the orbit of Mars. Other topics discussed include the size of Jupiter, the Galilean satellites, the magnetic field of Jupiter, radiation belts, Jupiter's weather and interior, and future exploration possibilities. Educational projects are also included

  7. Probing SU(N)-symmetric orbital interactions with ytterbium Fermi gases in optical lattices

    International Nuclear Information System (INIS)

    Scazza, Francesco

    2015-01-01

    This thesis reports on the creation and investigation of interacting two-orbital quantum gases of ytterbium in optical lattices. Degenerate fermionic gases of ytterbium or other alkaline-earth-like atoms have been recently proposed as model systems for orbital phenomena in condensed matter, such as Kondo screening, heavy-Fermi behaviour and colossal magnetoresistance. Such gases are moreover expected to obey a high SU(N) symmetry, owing to their highly decoupled nuclear spin, for which the emergence of novel, exotic phases of matter has been predicted. With the two lowest (meta-) stable electronic states mimicking electrons in distinct orbitals of solid materials, the two-orbital SU(N) Hubbard model and its spin-exchange inter-orbital interactions are realised. The interactions in two-orbital degenerate mixtures of different nuclear spin states of 173 Yb are probed by addressing the transition to the metastable state in a state-independent optical lattice. The complete characterisation of the two-orbital scattering channels and the demonstration of the SU(N=6) symmetry within the experimental uncertainty are presented. Most importantly, a strong spin- exchange coupling between the two orbitals is identified and the associated exchange process is observed through the dynamic equilibration of spin imbalances between ensembles in different orbitals. These findings are enabled by the implementation of high precision spectroscopic techniques and of full coherent control of the metastable state population. The realisation of SU(N)-symmetric gases with spin-exchange interactions, the elementary building block of orbital quantum magnetism, represents an important step towards the simulation of paradigmatic many-body models, such as the Kondo lattice model.

  8. Radio Remote Sensing of Coronal Mass Ejections: Implications for Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Kooi, J. E.; Thomas, N. C.; Guy, M. B., III; Spangler, S. R.

    2017-12-01

    Coronal mass ejections (CMEs) are fast-moving magnetic field structures of enhanced plasma density that play an important role in space weather. The Solar Orbiter and Parker Solar Probe will usher in a new era of in situ measurements, probing CMEs within distances of 60 and 10 solar radii, respectively. At the present, only remote-sensing techniques such as Faraday rotation can probe the plasma structure of CMEs at these distances. Faraday rotation is the change in polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma (e.g. a CME) and is proportional to the path integral of the electron density and line-of-sight magnetic field. In conjunction with white-light coronagraph measurements, Faraday rotation observations have been used in recent years to determine the magnetic field strength of CMEs. We report recent results from simultaneous white-light and radio observations made of a CME in July 2015. We made radio observations using the Karl G. Jansky Very Large Array (VLA) at 1 - 2 GHz frequencies of a set of radio sources through the solar corona at heliocentric distances that ranged between 8 - 23 solar radii. These Faraday rotation observations provide a priori estimates for comparison with future in situ measurements made by the Solar Orbiter and Parker Solar Probe. Similar Faraday rotation observations made simultaneously with observations by the Solar Orbiter and Parker Solar Probe in the future could provide information about the global structure of CMEs sampled by these probes and, therefore, aid in understanding the in situ measurements.

  9. Occultations of Astrophysical Radio Sources as Probes of Planetary Environments: A Case Study of Jupiter and Possible Applications to Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Withers, Paul [Astronomy Department, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Vogt, Marissa F. [Center for Space Physics, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2017-02-10

    Properties of planetary atmospheres, ionospheres, and magnetospheres are difficult to measure from Earth. Radio occultations are a common method for measuring these properties, but they traditionally rely on radio transmissions from a spacecraft near the planet. Here, we explore whether occultations of radio emissions from a distant astrophysical radio source can be used to measure magnetic field strength, plasma density, and neutral density around planets. In a theoretical case study of Jupiter, we find that significant changes in polarization angle due to Faraday rotation occur for radio signals that pass within 10 Jupiter radii of the planet and that significant changes in frequency and power occur from radio signals that pass through the neutral atmosphere. There are sufficient candidate radio sources, such as pulsars, active galactic nuclei, and masers, that occultations are likely to occur at least once per year. For pulsars, time delays in the arrival of their emitted pulses can be used to measure plasma density. Exoplanets, whose physical properties are very challenging to observe, may also occult distant astrophysical radio sources, such as their parent stars.

  10. Possible Outcomes of Coplanar High-eccentricity Migration: Hot Jupiters, Close-in Super-Earths, and Counter-orbiting Planets

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yuxin; Masuda, Kento; Suto, Yasushi, E-mail: yuxin@utap.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2017-02-01

    We investigate the formation of close-in planets in near-coplanar eccentric hierarchical triple systems via the secular interaction between an inner planet and an outer perturber (Coplanar High-eccentricity Migration; CHEM). We generalize the previous work on the analytical condition for successful CHEM for point masses interacting only through gravity by taking into account the finite mass effect of the inner planet. We find that efficient CHEM requires that the systems should have m {sub 1}≪m {sub 0} and m {sub 1} ≪ m {sub 2}. In addition to the gravity for point masses, we examine the importance of the short-range forces, and provide an analytical estimate of the migration timescale. We perform a series of numerical simulations in CHEM for systems consisting of a Sun-like central star, giant gas inner planet, and planetary outer perturber, including the short-range forces and stellar and planetary dissipative tides. We find that most of such systems end up with a tidal disruption; a small fraction of the systems produce prograde hot Jupiters (HJs), but no retrograde HJ. In addition, we extend CHEM to super-Earth mass range, and show that the formation of close-in super-Earths in prograde orbits is also possible. Finally, we carry out CHEM simulation for the observed hierarchical triple and counter-orbiting HJ systems. We find that CHEM can explain a part of the former systems, but it is generally very difficult to reproduce counter-orbiting HJ systems.

  11. NASA's Parker Solar Probe and Solar Orbiter Missions: Discovering the Secrets of our Star

    Science.gov (United States)

    Zurbuchen, T.

    2017-12-01

    This session will explore the importance of the Parker Solar Probe and Solar Orbiter missions to NASA Science, and the preparations for discoveries from these missions. NASA's Parker Solar Probe and Solar Orbiter Missions have complementary missions and will provide unique and unprecedented contributions to heliophysics and astrophysics overall. These inner heliospheric missions will also be part of the Heliophysics System Observatory which includes an increasing amount of innovative new technology and architectures to address science and data in an integrated fashion and advance models through assimilation and system-level tests. During this talk, we will briefly explore how NASA Heliophysics research efforts not only increase our understanding and predictive capability of space weather phenomena, but also provide key insights on fundamental processes important throughout the universe.

  12. Probing deformed orbitals with vector A( vector e, e' N)B reactions

    International Nuclear Information System (INIS)

    Garrido, E.; Caballero, J.A.; Moya de Guerra, E.; Sarriguren, P.; Udias, J.M.

    1995-01-01

    We present results for response functions and asymmetries in the nuclear reactions 37 vector Ar( vector e, e' n) 36 Ar and 37 vector K( vector e,e' p) 36 Ar at quasifree kinematics. We compare PWIA results obtained using deformed HF wave functions with PWIA and DWIA results obtained assuming a spherical mean field. We show that the complex structure of the deformed orbitals can be probed by coincidence measurements with polarized beam and targets. ((orig.))

  13. Cassini-VIMS at Jupiter: Solar occultation measurements using Io

    Science.gov (United States)

    Formisano, V.; D'Aversa, E.; Bellucci, G.; Baines, K.H.; Bibring, J.-P.; Brown, R.H.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Chamberlain, M.C.; Hansen, G.; Hibbits, K.; Showalter, M.; Filacchione, G.

    2003-01-01

    We report unusual and somewhat unexpected observations of the jovian satellite Io, showing strong methane absorption bands. These observations were made by the Cassini VIMS experiment during the Jupiter flyby of December/January 2000/2001. The explanation is straightforward: Entering or exiting from Jupiter's shadow during an eclipse, Io is illuminated by solar light which has transited the atmosphere of Jupiter. This light, therefore becomes imprinted with the spectral signature of Jupiter's upper atmosphere, which includes strong atmospheric methane absorption bands. Intercepting solar light refracted by the jovian atmosphere, Io essentially becomes a "miffor" for solar occultation events of Jupiter. The thickness of the layer where refracted solar light is observed is so large (more than 3000 km at Io's orbit), that we can foresee a nearly continuous multi-year period of similar events at Saturn, utilizing the large and bright ring system. During Cassini's 4-year nominal mission, this probing tecnique should reveal information of Saturn's atmosphere over a large range of southern latitudes and times. ?? 2003 Elsevier Inc. All rights reserved.

  14. Ulysses dust measurements near Jupiter.

    Science.gov (United States)

    Grün, E; Zook, H A; Baguhl, M; Fechtig, H; Hanner, M S; Kissel, J; Lindblad, B A; Linkert, D; Linkert, G; Mann, I B

    1992-09-11

    Submicrometer- to micrometer-sized particles were recorded by the Ulysses dust detector within 40 days of the Jupiter flyby. Nine impacts were recorded within 50 Jupiter radii with most of them recorded after closest approach. Three of these impacts are consistent with particles on prograde orbits around Jupiter and the rest are believed to have resulted from gravitationally focused interplanetary dust. From the ratio of the impact rate before the Jupiter flyby to the impact rate after the Jupiter flyby it is concluded that interplanetary dust particles at the distance of Jupiter move on mostly retrograde orbits. On 10 March 1992, Ulysses passed through an intense dust stream. The dust detector recorded 126 impacts within 26 hours. The stream particles were moving on highly inclined and apparently hyperbolic orbits with perihelion distances of >5 astronomical units. Interplanetary dust is lost rather quickly from the solar system through collisions and other mechanisms and must be almost continuously replenished to maintain observed abundances. Dust flux measurements, therefore, give evidence of the recent rates of production from sources such as comets, asteroids, and moons, as well as the possible presence of interstellar grains.

  15. Preentry communication design elements for outer planets atmospheric entry probe

    Science.gov (United States)

    1976-01-01

    Four related tasks are discussed for data transmission from a probe prior to entering the atmosphere of Jupiter to an orbiting spacecraft in a trajectory past the planet: (1) link analysis and design; (2) system conceptual design; (3) Doppler measurement analysis; and (4) an electronically despun antenna. For tasks 1, 3, and 4, an analytical approach was developed and combined with computational capability available to produce quantitative results corresponding to requirements and constraints given by NASA, ARC. One constraint having a major impact on the numerical results of the link analysis was the assumption of a nonsteerable antenna on a spinning orbiter. Other constraints included the interplanetary trajectory and the approach trajectory. Because the Jupiter Orbiter Probe (JOP) program is currently in a state of evolution, all requirements and constraints applied during this study are subject to change. However, the relationships of parameters as developed will remain valid and will aid in planning Jupiter missions.

  16. Jupiter: as a planet

    International Nuclear Information System (INIS)

    1975-01-01

    The planet Jupiter, its planetary mass and atmosphere, radio waves emitted from Jupiter, thermal radiation, internal structure of Jupiter, and the possibility of life on Jupiter are discussed. Educational study projects are included

  17. Coordinated science with the Solar Orbiter, Solar Probe Plus, Interhelioprobe and SPORT missions

    Science.gov (United States)

    Maksimovic, Milan; Vourlidas, Angelos; Zimovets, Ivan; Velli, Marco; Zhukov, Andrei; Kuznetsov, Vladimir; Liu, Ying; Bale, Stuart; Ming, Xiong

    The concurrent science operations of the ESA Solar Orbiter (SO), NASA Solar Probe Plus (SPP), Russian Interhelioprobe (IHP) and Chinese SPORT missions will offer a truly unique epoch in heliospheric science. While each mission will achieve its own important science objectives, taken together the four missions will be capable of doing the multi-point measurements required to address many problems in Heliophysics such as the coronal origin of the solar wind plasma and magnetic field or the way the Solar transients drive the heliospheric variability. In this presentation, we discuss the capabilities of the four missions and the Science synergy that will be realized by concurrent operations

  18. The first planet detected in the WTS: an inflated hot Jupiter in a 3.35 d orbit around a late F star

    Science.gov (United States)

    Cappetta, M.; Saglia, R. P.; Birkby, J. L.; Koppenhoefer, J.; Pinfield, D. J.; Hodgkin, S. T.; Cruz, P.; Kovács, G.; Sipőcz, B.; Barrado, D.; Nefs, B.; Pavlenko, Y. V.; Fossati, L.; del Burgo, C.; Martín, E. L.; Snellen, I.; Barnes, J.; Bayo, A.; Campbell, D. A.; Catalan, S.; Gálvez-Ortiz, M. C.; Goulding, N.; Haswell, C.; Ivanyuk, O.; Jones, H. R.; Kuznetsov, M.; Lodieu, N.; Marocco, F.; Mislis, D.; Murgas, F.; Napiwotzki, R.; Palle, E.; Pollacco, D.; Sarro Baro, L.; Solano, E.; Steele, P.; Stoev, H.; Tata, R.; Zendejas, J.

    2012-12-01

    We report the discovery of WTS-1b, the first extrasolar planet found by the WFCAM Transit Survey, which began observations at the 3.8-m United Kingdom Infrared Telescope (UKIRT) in 2007 August. Light curves comprising almost 1200 epochs with a photometric precision of better than 1 per cent to J ˜ 16 were constructed for ˜60 000 stars and searched for periodic transit signals. For one of the most promising transiting candidates, high-resolution spectra taken at the Hobby-Eberly Telescope (HET) allowed us to estimate the spectroscopic parameters of the host star, a late-F main-sequence dwarf (V = 16.13) with possibly slightly subsolar metallicity, and to measure its radial velocity variations. The combined analysis of the light curves and spectroscopic data resulted in an orbital period of the substellar companion of 3.35 d, a planetary mass of 4.01 ± 0.35 MJ and a planetary radius of 1.49-0.18+0.16 RJ. WTS-1b has one of the largest radius anomalies among the known hot Jupiters in the mass range 3-5 MJ. The high irradiation from the host star ranks the planet in the pM class. Based on observations collected at the 3.8-m United Kingdom Infrared Telescope (Hawaii, USA), the Hobby-Eberly Telescope (Texas, USA), the 2.5-m Isaac Newton Telescope (La Palma, Spain), the William Herschel Telescope (La Palma, Spain), the German-Spanish Astronomical Centre (Calar Alto, Spain), the Kitt Peak National Observatory (Arizona, USA) and the Hertfordshire's Bayfordbury Observatory.

  19. Sharpening Up Jupiter

    Science.gov (United States)

    2008-10-01

    New image-correction technique delivers sharpest whole-planet ground-based picture ever A record two-hour observation of Jupiter using a superior technique to remove atmospheric blur has produced the sharpest whole-planet picture ever taken from the ground. The series of 265 snapshots obtained with the Multi-Conjugate Adaptive Optics Demonstrator (MAD) prototype instrument mounted on ESO's Very Large Telescope (VLT) reveal changes in Jupiter's smog-like haze, probably in response to a planet-wide upheaval more than a year ago. Sharpening Up Jupiter ESO PR Photo 33/08 Sharpening Up Jupiter Being able to correct wide field images for atmospheric distortions has been the dream of scientists and engineers for decades. The new images of Jupiter prove the value of the advanced technology used by MAD, which uses two or more guide stars instead of one as references to remove the blur caused by atmospheric turbulence over a field of view thirty times larger than existing techniques [1]. "This type of adaptive optics has a big advantage for looking at large objects, such as planets, star clusters or nebulae," says lead researcher Franck Marchis, from UC Berkeley and the SETI Institute in Mountain View, California, USA. "While regular adaptive optics provides excellent correction in a small field of view, MAD provides good correction over a larger area of sky. And in fact, were it not for MAD, we would not have been able to perform these amazing observations." MAD allowed the researchers to observe Jupiter for almost two hours on 16 and 17 August 2008, a record duration, according to the observing team. Conventional adaptive optics systems using a single Jupiter moon as reference cannot monitor Jupiter for so long because the moon moves too far from the planet. The Hubble Space Telescope cannot observe Jupiter continuously for more than about 50 minutes, because its view is regularly blocked by the Earth during Hubble's 96-minute orbit. Using MAD, ESO astronomer Paola Amico

  20. rosuvastatin (JUPITER)

    DEFF Research Database (Denmark)

    Ridker, Paul M; MacFadyen, Jean G; Fonseca, Francisco A H

    2009-01-01

    were calculated across a range of end points, timeframes, and subgroups using data from Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER), a randomized evaluation of rosuvastatin 20 mg versus placebo conducted among 17 802 apparently healthy men...... infarction, stroke, revascularization, or death, the 5-year NNT within JUPITER was 20 (95% CI, 14 to 34). All subgroups had 5-year NNT values for this end point below 50; as examples, 5-year NNT values were 17 for men and 31 for women, 21 for whites and 19 for nonwhites, 18 for those with body mass index 300...

  1. RESONANT X-RAY SCATTERING AS A PROBE OF ORBITAL AND CHARGE ORDERING

    International Nuclear Information System (INIS)

    NELSON, C.S.; HILL, J.P.; GIBBS, D.

    2002-01-01

    Resonant x-ray scattering is a powerful experimental technique for probing orbital and charge ordering. It involves tuning the incident photon energy to an absorption edge of the relevant ion and observing scattering at previously 'forbidden' Bragg peaks, and it allows high-resolution, quantitative studies of orbital and charge order--even from small samples. Further, resonant x-ray scattering from orbitally ordered systems exhibits polarization- and azimuthal-dependent properties that provide additional information about the details of the orbital order that is difficult, or impossible, to obtain with any other technique. In the manganites, the sensitivity to charge and orbital ordering is enhanced when the incident photon energy is tuned near the Mn K absorption edge (6.539 keV), which is the lowest energy at which a 1s electron can be excited into an unoccupied state. In this process, the core electron is promoted to an intermediate excited state, which decays with the emission of a photon. The sensitivity to charge ordering is believed to be due to the small difference in K absorption edges of the Mn 3+ and Mn 4+ sites. For orbital ordering, the sensitivity arises from a splitting--or difference in the weight of the density of states [239]--of the orbitals occupied by the excited electron in the intermediate state. In the absence of such a splitting, there is no resonant enhancement of the scattering intensity. In principle, other absorption edges in which the intermediate state is anisotropic could be utilized, but the strong dipole transition to the Mn 4p levels--and their convenient energies for x-ray diffraction--make the K edge well-suited to studies of manganites. The Mn 4p levels are affected by the symmetry of the orbital ordering, which makes the technique sensitive to the orbital degree of freedom. Therefore resonant x-ray scattering can be used to obtain important quantitative information concerning the details of this electronic order. Two

  2. Astronomers find distant planet like Jupiter

    CERN Multimedia

    2003-01-01

    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  3. HATS-50b through HATS-53b: Four Transiting Hot Jupiters Orbiting G-type Stars Discovered by the HATSouth Survey

    Science.gov (United States)

    Henning, Th.; Mancini, L.; Sarkis, P.; Bakos, G. Á.; Hartman, J. D.; Bayliss, D.; Bento, J.; Bhatti, W.; Brahm, R.; Ciceri, S.; Csubry, Z.; de Val-Borro, M.; Espinoza, N.; Fulton, B. J.; Howard, A. W.; Isaacson, H. T.; Jordán, A.; Marcy, G. W.; Penev, K.; Rabus, M.; Suc, V.; Tan, T. G.; Tinney, C. G.; Wright, D. J.; Zhou, G.; Durkan, S.; Lazar, J.; Papp, I.; Sari, P.

    2018-02-01

    We report the discovery of four close-in transiting exoplanets (HATS-50b through HATS-53b), discovered using the HATSouth three-continent network of homogeneous and automated telescopes. These new exoplanets belong to the class of hot Jupiters and orbit G-type dwarf stars, with brightness in the range V = 12.5–14.0 mag. While HATS-53 has many physical characteristics similar to the Sun, the other three stars appear to be metal-rich ([{Fe}/{{H}}]=0.2{--}0.3), larger, and more massive. Three of the new exoplanets, namely HATS-50b, HATS-51b, and HATS-53b, have low density (HATS-50b: 0.39+/- 0.10 {M}{{J}}, 1.130+/- 0.075 {R}{{J}}; HATS-51b: 0.768+/- 0.045 {M}{{J}}, 1.41+/- 0.19 {R}{{J}}; HATS-53b: 0.595+/- 0.089 {M}{{J}}, 1.340+/- 0.056 {R}{{J}}) and similar orbital periods (3.8297 days, 3.3489 days, 3.8538 days, respectively). Instead, HATS-52b is more dense (mass 2.24+/- 0.15 {M}{{J}} and radius 1.382+/- 0.086 {R}{{J}}) and has a shorter orbital period (1.3667 days). It also receives an intensive radiation from its parent star and, consequently, presents a high equilibrium temperature ({T}{eq}=1834+/- 73 K). HATS-50 shows a marginal additional transit feature consistent with an ultra-short-period hot super Neptune (upper mass limit 0.16 {M}{{J}}), which will be able to be confirmed with TESS photometry. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. Based in part on observations made with the ESO 3.6 m, the NTT, the MPG 2.2 m and Euler 1.2 m Telescopes at the ESO Observatory in

  4. A PRELIMINARY JUPITER MODEL

    International Nuclear Information System (INIS)

    Hubbard, W. B.; Militzer, B.

    2016-01-01

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity

  5. A PRELIMINARY JUPITER MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, W. B. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Militzer, B. [Department of Earth and Planetary Science, Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2016-03-20

    In anticipation of new observational results for Jupiter's axial moment of inertia and gravitational zonal harmonic coefficients from the forthcoming Juno orbiter, we present a number of preliminary Jupiter interior models. We combine results from ab initio computer simulations of hydrogen–helium mixtures, including immiscibility calculations, with a new nonperturbative calculation of Jupiter's zonal harmonic coefficients, to derive a self-consistent model for the planet's external gravity and moment of inertia. We assume helium rain modified the interior temperature and composition profiles. Our calculation predicts zonal harmonic values to which measurements can be compared. Although some models fit the observed (pre-Juno) second- and fourth-order zonal harmonics to within their error bars, our preferred reference model predicts a fourth-order zonal harmonic whose absolute value lies above the pre-Juno error bars. This model has a dense core of about 12 Earth masses and a hydrogen–helium-rich envelope with approximately three times solar metallicity.

  6. Kepler constraints on planets near hot Jupiters

    Science.gov (United States)

    Steffen, Jason H.; Ragozzine, Darin; Fabrycky, Daniel C.; Carter, Joshua A.; Ford, Eric B.; Holman, Matthew J.; Rowe, Jason F.; Welsh, William F.; Borucki, William J.; Boss, Alan P.; Ciardi, David R.; Quinn, Samuel N.

    2012-01-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2∶1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history. PMID:22566651

  7. Kepler constraints on planets near hot Jupiters.

    Science.gov (United States)

    Steffen, Jason H; Ragozzine, Darin; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-05-22

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 21 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  8. Orbits

    CERN Document Server

    Xu, Guochang

    2008-01-01

    This is the first book of the satellite era which describes orbit theory with analytical solutions of the second order with respect to all possible disturbances. Based on such theory, the algorithms of orbits determination are completely revolutionized.

  9. 3D Visualization of Solar Data: Preparing for Solar Orbiter and Parker Solar Probe

    Science.gov (United States)

    Mueller, D.; Nicula, B.; Felix, S.; Verstringe, F.; Bourgoignie, B.; Csillaghy, A.; Berghmans, D.; Jiggens, P.; Ireland, J.; Fleck, B.

    2017-12-01

    Solar Orbiter and Parker Solar Probe will focus on exploring the linkage between the Sun and the heliosphere. These new missions will collect unique data that will allow us to study, e.g., the coupling between macroscopic physical processes to those on kinetic scales, the generation of solar energetic particles and their propagation into the heliosphere and the origin and acceleration of solar wind plasma. Combined with the several petabytes of data from NASA's Solar Dynamics Observatory, the scientific community will soon have access to multi­dimensional remote-sensing and complex in-situ observations from different vantage points, complemented by petabytes of simulation data. Answering overarching science questions like "How do solar transients drive heliospheric variability and space weather?" will only be possible if the community has the necessary tools at hand. In this contribution, we will present recent progress in visualizing the Sun and its magnetic field in 3D using the open-source JHelioviewer framework, which is part of the ESA/NASA Helioviewer Project.

  10. Orbital

    OpenAIRE

    Yourshaw, Matthew Stephen

    2017-01-01

    Orbital is a virtual reality gaming experience designed to explore the use of traditional narrative structure to enhance immersion in virtual reality. The story structure of Orbital was developed based on the developmental steps of 'The Hero's Journey,' a narrative pattern identified by Joseph Campbell. Using this standard narrative pattern, Orbital is capable of immersing the player quickly and completely for the entirety of play time. MFA

  11. Jupiter: Cosmic Jekyll and Hyde.

    Science.gov (United States)

    Grazier, Kevin R

    2016-01-01

    It has been widely reported that Jupiter has a profound role in shielding the terrestrial planets from comet impacts in the Solar System, and that a jovian planet is a requirement for the evolution of life on Earth. To evaluate whether jovians, in fact, shield habitable planets from impacts (a phenomenon often referred to as the "Jupiter as shield" concept), this study simulated the evolution of 10,000 particles in each of the jovian inter-planet gaps for the cases of full-mass and embryo planets for up to 100 My. The results of these simulations predict a number of phenomena that not only discount the "Jupiter as shield" concept, they also predict that in a Solar System like ours, large gas giants like Saturn and Jupiter had a different, and potentially even more important, role in the evolution of life on our planet by delivering the volatile-laden material required for the formation of life. The simulations illustrate that, although all particles occupied "non-life threatening" orbits at their onset of the simulations, a significant fraction of the 30,000 particles evolved into Earth-crossing orbits. A comparison of multiple runs with different planetary configurations revealed that Jupiter was responsible for the vast majority of the encounters that "kicked" outer planet material into the terrestrial planet region, and that Saturn assisted in the process far more than has previously been acknowledged. Jupiter also tends to "fix" the aphelion of planetesimals at its orbit irrespective of their initial starting zones, which has the effect of slowing their passages through the inner Solar System, and thus potentially improving the odds of accretion of cometary material by terrestrial planets. As expected, the simulations indicate that the full-mass planets perturb many objects into the deep outer Solar System, or eject them entirely; however, planetary embryos also did this with surprising efficiency. Finally, the simulations predict that Jupiter's capacity to

  12. Structure and orbital ordering of ultrathin LaVO{sub 3} probed by atomic resolution electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors-Vrejoiu, Ionela; Engelmayer, Johannes; Loosdrecht, Paul H.M. van [II. Physikalisches Institut, Koeln Univ. (Germany); Jin, Lei; Jia, Chun-Lin [Peter Gruenberg Institut (PGI-5) and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH (Germany); Himcinschi, Cameliu [Institut fuer Theoretische Physik, TU Bergakademie Freiberg (Germany); Hensling, Felix; Waser, Rainer; Dittmann, Regina [Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH (Germany)

    2017-03-15

    Orbital ordering has been less investigated in epitaxial thin films, due to the difficulty to evidence directly the occurrence of this phenomenon in thin film samples. Atomic resolution electron microscopy enabled us to observe the structural details of the ultrathin LaVO{sub 3} films. The transition to orbital ordering of epitaxial layers as thin as ∼4 nm was probed by temperature-dependent Raman scattering spectroscopy of multilayer samples. From the occurrence and temperature dependence of the 700 cm{sup -1} Raman active mode it can be inferred that the structural phase transition associated with orbital ordering takes place in ultrathin LaVO{sub 3} films at about 130 K. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. ICARUS Mission, Next Step of Coronal Exploration after Solar Orbiter and Solar Probe Plus

    Science.gov (United States)

    Krasnoselskikh, V.; Tsurutani, B.; Velli, M.; Maksimovic, M.; Balikhin, M. A.; Dudok de Wit, T.; Kretzschmar, M.

    2017-12-01

    The primary scientific goal of ICARUS, a mother-daughter satellite mission, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind and the heliosphere. Reaching this goal will be a Rosetta-stone step, with results broadly applicable in the fields of space plasma and astrophysics. Within ESA's Cosmic Vision roadmap, these goals address Theme 2: How does the solar system work ?" Investigating basic processes occurring from the Sun to the edge of the Solar System". ICARUS will not only advance our understanding of the plasma environment around the Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the firstever direct in situ measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution and flows directly in the regions where the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion at 1 Solar radius from its surface, it will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow wind are generated. It will probe local characteristics of the plasma and provide unique information about the processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will provide bridges for understanding the magnetic links between heliosphere and solar atmosphere. Such information is crucial to understanding of the physics and electrodynamics of the solar atmosphere. ICARUS II will also play an important relay role, enabling the radio-link with ICARUS I. It will receive, collect and store information transmitted from ICARUS I during its closest approach to the Sun. It will perform preliminary data processing and

  14. Analysis of Hot Ions Detected during Equatorial Orbits of the Cassini Spacecraft at Saturn using the Convected Kappa Distribution Function and a Comparison to Voyager and Galileo Measurements at Jupiter

    Science.gov (United States)

    Kane, M.; Mitchell, D. G.; Carbary, J. F.; Hill, M. E.; Dialynas, K.; Mauk, B.; Krimigis, S. M.

    2017-12-01

    An extensive analysis of Cassini INCA and CHEMS measurements of 5-149 keV ions acquired during all equatorial orbits has been completed using a 3-D convected kappa distribution model. The computed plasma azimuthal speed, expressed as a fraction of the local corotation speed, decreases sharply with increasing distance from Saturn. The oxygen ion profile follows the hydrogen ion trend. For both species, the polar convection speed is the smallest of the 3 velocity components, and is centered about zero, but the radial speed has a significant radially outward component. Further, the radial component is enhanced in the pre-dawn sector. The hydrogen and oxygen temperatures increase with decreasing distance to Saturn. The calculated pattern of convection is consistent with an empirical model of plasma convection that includes outward radial transport and escape of plasma in a dawnside boundary layer of plasma entrained by the dawn magnetosheath flow. When the model convection pattern is scaled to the sub-solar magnetopause distance and to the sizes of Jupiter and Saturn, the pattern agrees with that derived from analysis of hot ions detected by the LECP detector on Voyager and the EPD instrument on Galileo. This and previous analysis of hot ion distributions has shown that the convected kappa distribution, with isotropy assumed in the plasma rest frame, has well described hot ion observed fluxes within a limited range of ion energies and has produced meaningful and ordered physical plasma parameters including plasma bulk velocity vectors, kappa distribution temperature profiles, and the general magnetospheric convection pattern at Jupiter and Saturn.

  15. GO JUPITER PWS EDITED EDR 10KHZ WAVEFORM RECEIVER V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes wideband waveform measurements from the Galileo plasma wave receiver obtained during Jupiter orbital operations. These data were obtained...

  16. GO JUPITER PWS EDITED EDR 1KHZ WAVEFORM RECEIVER V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes wideband waveform measurements from the Galileo plasma wave receiver obtained during Jupiter orbital operations. These data were obtained...

  17. ISO celebrates its prolonged life with a video of Jupiter

    Science.gov (United States)

    1997-07-01

    the results so far. "By observing Jupiter with ISO we can build up a 3-D picture of the peculiar weather on this giant planet," Encrenaz comments. "We can also fit into our big picture the local results coming from NASA's Galileo spacecraft. For example, it sent a probe into Jupiter and scientists were puzzled by the results, and now we know that the probe plunged by chance into one of the dry, cloud-free anticyclones seen clearly by ISO at 5 microns. ISO's perspective links the winds, clouds, temperatures and chemistry of Jupiter's atmosphere in fascinating ways." Notes about the ISO Jupiter video The video is available to broadcasters on request, in Betacam form. Please contact ESTEC (Tel :+31.71.565.3429) or ESA HQ (Tel: +33 (0)1.53.69.7155). The video consists of 86 frames shown at a rate of 2.5 frames per second. Each frame is at a different wavelength between 2.3 and 11.6 microns, as indicated by the moving pointer. North is at the top. The images were obtained sequentially over 35 minutes. During that time the Great Red Spot, seen conspicuously bright below the equatorial at the outset moves a little to the right. At the outset and in other early frames ISO sees the cloudy zones of Jupiter and the Great Red Spot. Around 3.3 microns the planet goes dramatically dark because methane gas in the atmosphere absorbs all the infrared radiation. At 5 microns, ISO sees deep into the atmosphere, in the belts between the cloud zones. The bright spots conspicuous north of the equator are hot dry regions, similar to the one visited by the Galileo probe. Around 7.7 microns, ISO is looking at the upper atmosphere (stratosphere) of Jupiter. The south polar region glows bright. In the last images, Jupiter is becoming too hot for the camera The rate of frequency change is not constant. Thus 3 microns is attained at frames 15-16, 4 microns at 31-32, 5 microns at 44-47, 6 microns at 54-55, 7 microns at 63-64, 8 microns at 69-70, 9 microns at 74-75, 10 microns at 82-83, and 11

  18. Juno's first peek at Jupiter's interior

    Science.gov (United States)

    Guillot, Tristan; Miguel, Yamila; Hubbard, William B.; Kaspi, Yohai; Reese, Daniel; Helled, Ravit; Galanti, Eli; Militzer, Burkhard; Wahl, Sean; Folkner, William M.; Anderson, John; Iess, Luciano; Durante, Daniele; Parisi, Marzia; Stevenson, David J.

    2017-04-01

    The first orbits of Juno around Jupiter have led to a considerable improvement in the measurement of the planet's even gravitational moments. We will discuss how this leads to better constraints on jovian interior models, and how internal differential rotation and equations of state play an important part in the analysis.

  19. Probing evolution of binaries influenced by the spin–orbit resonances

    International Nuclear Information System (INIS)

    Gupta, A; Gopakumar, A

    2014-01-01

    We evolve isolated comparable mass spinning compact binaries experiencing Schnittman’s post-Newtonian spin–orbit resonances in an inertial frame associated with j 0 , the initial direction of the total angular momentum. We argue that accurate gravitational wave (GW) measurements of the initial orientations of the two spins and orbital angular momentum from j 0 should allow us to distinguish between the two possible families of spin–orbit resonances. Therefore, these measurements have the potential to provide direct observational evidence of possible binary formation scenarios. The above statements should also apply for binaries that do not remain in a resonant plane when they become detectable by GW interferometers. The resonant plane, characterized by the vanishing scalar triple product involving the two spins and the orbital angular momentum, naturally appears in the one parameter family of equilibrium solutions, discovered by Schnittman. We develop a prescription to compute the time-domain inspiral templates for binaries residing in these resonant configurations and explore their preliminary data analysis consequences. (paper)

  20. Strange Isotope Ratios in Jupiter

    Science.gov (United States)

    Manuel, O.; Ragland, D.; Windler, K.; Zirbel, J.; Johannes, L.; Nolte, A.

    1998-05-01

    At the January AAS meeting, Dr. Daniel Goldin ordered the release of isotopic data from the 1995 Galileo probe into Jupiter. This probe took mass readings for mass numbers 2-150, which includes all of the noble gas isotopes. A certain few noble gas isotopes, specifically those at mass/charge = 21, 40, 78, 124, and 126, are difficult to distinguish from background, while interference causes some variation in signals for noble gas isotopes at mass/charge = 20, 22, 36, 38, 40, 80, 82, 83, 84 and 86. Some contamination was caused by incomplete adsorption of low mass hydrocarbons by Carbosieve, the material used in the concentration cells [Space Sci. Rev. 60, 120 (1992)]. Thus, preliminary results are most reliable in the high mass region that includes xenon. The Galileo Probe provided the first direct measurements from a planet with a chemical composition drastically different from Earth. Our preliminary analyses indicate that Jupiter contains Xe-X [Nature 240, 99 (1972)], which differs significantly from Earth's xenon. Xe-X and primordial He are tightly coupled on the microscopic scale of meteorite minerals [Science 195, 208 (1977); Meteoritics 15, 117 (1980)]. The presence today of Xe-X in the He-rich atmosphere of Jupiter suggests that the primordial linkage of Xe-X with He extended across the protosolar nebula, on a planetary scale [Comments Astrophys. 18, 335 (1997)]. Contamination by hydrocarbons and other gases does not necessarily remove light noble gases from further consideration. Currently, isolation of signals of these elements from interference continues and may result in the presentation of many other interesting observations at the conference.

  1. Lucy: Navigating a Jupiter Trojan Tour

    Science.gov (United States)

    Stanbridge, Dale; Williams, Ken; Williams, Bobby; Jackman, Coralie; Weaver, Hal; Berry, Kevin; Sutter, Brian; Englander, Jacob

    2017-01-01

    In January 2017, NASA selected the Lucy mission to explore six Jupiter Trojan asteroids. These six bodies, remnants of the primordial material that formed the outer planets, were captured in the Sun-Jupiter L4 and L5 Lagrangian regions early in the solar system formation. These particular bodies were chosen because of their diverse spectral properties and the chance to observe up close for the first time two orbiting approximately equal mass binaries, Patroclus and Menoetius. KinetX, Inc. is the primary navigation supplier for the Lucy mission. This paper describes preliminary navigation analyses of the approach phase for each Trojan encounter.

  2. Probing low noise at the MOS interface with a spin-orbit qubit.

    Energy Technology Data Exchange (ETDEWEB)

    Jock, Ryan Michael; Jacobson, Noah Tobias; Harvey-Collard, Patrick; Mounce, Andrew; Srinivasa, Vanita; Ward, Daniel Robert; Anderson, John Moses; Manginell, Ronald P.; Wendt, Joel R.; Rudolph, Martin; Pluym, Tammy; Gamble, John King,; Baczewski, Andrew David; Witzel, Wayne; Carroll, Malcolm S.

    2017-07-01

    The silicon metal-oxide-semiconductor (MOS) material system is technologically important for the implementation of electron spin-based quantum information technologies. Researchers predict the need for an integrated platform in order to implement useful computation, and decades of advancements in silicon microelectronics fabrication lends itself to this challenge. However, fundamental concerns have been raised about the MOS interface (e.g. trap noise, variations in electron g-factor and practical implementation of multi-QDs). Furthermore, two-axis control of silicon qubits has, to date, required the integration of non-ideal components (e.g. microwave strip-lines, micro-magnets, triple quantum dots, or introduction of donor atoms). In this paper, we introduce a spin-orbit (SO) driven singlet- triplet (ST) qubit in silicon, demonstrating all-electrical two-axis control that requires no additional integrated elements and exhibits charge noise properties equivalent to other more model, but less commercially mature, semiconductor systems. We demonstrate the ability to tune an intrinsic spin-orbit interface effect, which is consistent with Rashba and Dresselhaus contributions that are remarkably strong for a low spin-orbit material such as silicon. The qubit maintains the advantages of using isotopically enriched silicon for producing a quiet magnetic environment, measuring spin dephasing times of 1.6 μs using 99.95% 28Si epitaxy for the qubit, comparable to results from other isotopically enhanced silicon ST qubit systems. This work, therefore, demonstrates that the interface inherently provides properties for two-axis control, and the technologically important MOS interface does not add additional detrimental qubit noise. isotopically enhanced silicon ST qubit systems

  3. Jupiter Icy Moons Explorer (JUICE) : Science Objectives, Mission and Instruments (abstract)

    NARCIS (Netherlands)

    Gurvits, L.; Plaut, J.J.; Barabash, S.; Bruzzone, L.; Dougherty, M.; Erd, C.; Fletcher, L.; Gladstone, R.; Grasset, O.; Hartogh, P.; Hussmann, H.; Iess, L.; Jaumann, R.; Langevin, Y.; Palumbo, P.; Piccioni, G.; Titov, D.; Wahlund, J.E.

    2014-01-01

    The JUpiter ICy Moons Explorer (JUICE) is a European Space Agency mission that will fly by and observe the Galilean satellites Europa, Ganymede and Callisto, characterize the Jovian system in a lengthy Jupiter-orbit phase, and ultimately orbit Ganymede for in-depth studies of habitability, evolution

  4. Voyage to Jupiter.

    Science.gov (United States)

    Morrison, David; Samz, Jane

    This publication illustrates the features of Jupiter and its family of satellites pictured by the Pioneer and the Voyager missions. Chapters included are: (1) "The Jovian System" (describing the history of astronomy); (2) "Pioneers to Jupiter" (outlining the Pioneer Mission); (3) "The Voyager Mission"; (4)…

  5. Probing collective oscillation of d-orbital electrons at the nanoscale

    Science.gov (United States)

    Dhall, Rohan; Vigil-Fowler, Derek; Houston Dycus, J.; Kirste, Ronny; Mita, Seiji; Sitar, Zlatko; Collazo, Ramon; LeBeau, James M.

    2018-02-01

    Here, we demonstrate that high energy electrons can be used to explore the collective oscillation of s, p, and d orbital electrons at the nanometer length scale. Using epitaxial AlGaN/AlN quantum wells as a test system, we observe the emergence of additional features in the loss spectrum with the increasing Ga content. A comparison of the observed spectra with ab-initio theory reveals that the origin of these spectral features lies in excitations of 3d-electrons contributed by Ga. We find that these modes differ in energy from the valence electron plasmons in Al1-xGaxN due to the different polarizabilities of the d electrons. Finally, we study the dependence of observed spectral features on the Ga content, lending insights into the origin of these spectral features, and their coupling with electron-hole excitations.

  6. Probing collective oscillation of d -orbital electrons at the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Dhall, Rohan [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA; Vigil-Fowler, Derek [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Houston Dycus, J. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA; Kirste, Ronny [Adroit Materials, Inc., Cary, North Carolina 27518, USA; Mita, Seiji [Adroit Materials, Inc., Cary, North Carolina 27518, USA; Sitar, Zlatko [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA; Collazo, Ramon [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA; LeBeau, James M. [Adroit Materials, Inc., Cary, North Carolina 27518, USA

    2018-02-05

    Here, we demonstrate that high energy electrons can be used to explore the collective oscillation of s, p, and d orbital electrons at the nanometer length scale. Using epitaxial AlGaN/AlN quantum wells as a test system, we observe the emergence of additional features in the loss spectrum with the increasing Ga content. A comparison of the observed spectra with ab-initio theory reveals that the origin of these spectral features lies in excitations of 3d-electrons contributed by Ga. We find that these modes differ in energy from the valence electron plasmons in Al1-xGaxN due to the different polarizabilities of the d electrons. Finally, we study the dependence of observed spectral features on the Ga content, lending insights into the origin of these spectral features, and their coupling with electron-hole excitations.

  7. Cold Hole Over Jupiter's Pole

    Science.gov (United States)

    2002-01-01

    polar haze were taken at frequent intervals from June to October 1999. They show that the quasi-hexagonal structure rotates slowly eastward at 1.2 degrees of longitude per day, a rate consistent with the average wind speeds measured from movement of visible clouds.Scientists studying the Earth's atmosphere are interested in these results because Jupiter's atmosphere provides a natural laboratory in which models of the polar vortex phenomenon can be studied under different conditions - for example, without the interference of topography. Of particular interest but yet unknown is how deep into Jupiter's troposphere the phenomenon extends. The answer to this question might be supplied by instrumentation on a polar orbiter mission at Jupiter.These images were taken as part of a program to support NASA's Galileo spacecraft reconnaissance of Jupiter. The Infrared Telescope Facility is on the summit of Hawaii's Mauna Kea and is operated by the University of Hawaii under a cooperative agreement with NASA. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. The telescope is managed by the Space Telescope Science Institute, Baltimore, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The California Institute of Technology, Pasadena manages JPL for NASA.

  8. Strong tidal dissipation in Io and Jupiter from astrometric observations.

    Science.gov (United States)

    Lainey, Valéry; Arlot, Jean-Eudes; Karatekin, Ozgür; Van Hoolst, Tim

    2009-06-18

    Io is the volcanically most active body in the Solar System and has a large surface heat flux. The geological activity is thought to be the result of tides raised by Jupiter, but it is not known whether the current tidal heat production is sufficiently high to generate the observed surface heat flow. Io's tidal heat comes from the orbital energy of the Io-Jupiter system (resulting in orbital acceleration), whereas dissipation of energy in Jupiter causes Io's orbital motion to decelerate. Here we report a determination of the tidal dissipation in Io and Jupiter through its effect on the orbital motions of the Galilean moons. Our results show that the rate of internal energy dissipation in Io (k(2)/Q = 0.015 +/- 0.003, where k(2) is the Love number and Q is the quality factor) is in good agreement with the observed surface heat flow, and suggest that Io is close to thermal equilibrium. Dissipation in Jupiter (k(2)/Q = (1.102 +/- 0.203) x 10(-5)) is close to the upper bound of its average value expected from the long-term evolution of the system, and dissipation in extrasolar planets may be higher than presently assumed. The measured secular accelerations indicate that Io is evolving inwards, towards Jupiter, and that the three innermost Galilean moons (Io, Europa and Ganymede) are evolving out of the exact Laplace resonance.

  9. CDPP supporting tools to Solar Orbiter and Parker Solar Probe data exploitation

    Science.gov (United States)

    Genot, V. N.; Cecconi, B.; Dufourg, N.; Gangloff, M.; André, N.; Bouchemit, M.; Jacquey, C.; Pitout, F.; Rouillard, A.; Nathanaël, J.; Lavraud, B.; Durand, J.; Tao, C.; Buchlin, E.; Witasse, O. G.

    2017-12-01

    In recent years the French Centre de Données de la Physique des Plasmas (CDPP) has extended its data analysis capability by designing a number of new tools. In the solar and heliospheric contexts, and in direct support to the forthcoming solar ESA and NASA missions in these fields, these tools comprise of the Propagation Tool which helps linking solar perturbations observed both in remote and in-situ data; this is achieved through direct connection to the companion solar database MEDOC and the CDPP AMDA database. More recently, in the frame of Europlanet 2020 RI, a 1D MHD solar wind propagation code (Tao et al., 2005) has been interfaced to provide real time solar wind monitors at cruising probes and planetary environments using ACE real time data as inputs (Heliopropa service). Finally, simulations, models and data may be combined and visualized in a 3D context with 3DView. This presentation will overview the various functionalities of these tools and provide examples, in particular a 'CME tracking' case recently published (Witasse et al., 2017). Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.

  10. Jupiter Environment Tool

    Science.gov (United States)

    Sturm, Erick J.; Monahue, Kenneth M.; Biehl, James P.; Kokorowski, Michael; Ngalande, Cedrick,; Boedeker, Jordan

    2012-01-01

    The Jupiter Environment Tool (JET) is a custom UI plug-in for STK that provides an interface to Jupiter environment models for visualization and analysis. Users can visualize the different magnetic field models of Jupiter through various rendering methods, which are fully integrated within STK s 3D Window. This allows users to take snapshots and make animations of their scenarios with magnetic field visualizations. Analytical data can be accessed in the form of custom vectors. Given these custom vectors, users have access to magnetic field data in custom reports, graphs, access constraints, coverage analysis, and anywhere else vectors are used within STK.

  11. Radio emission from Jupiter

    International Nuclear Information System (INIS)

    Velusamy, T.

    1976-01-01

    The basic features of the different radio emissions from the planet Jupiter are reviewed. These radio emissions characterized into three types as thermal, decimetric and decametric, are discussed. The coherent emission mechanism for the origin of the decametric bursts and the acceleration mechanism for relativistic electrons in the decimetric radiation have not been properly understood. The emissions are much related to the magnetic field of Jupiter. The system III rotation period for Jupiter has been calculated as 092 55 m 29.74 S. (A.K.)

  12. Loss and source mechanisms of Jupiter's radiation belts near the inner boundary of trapping regions

    Science.gov (United States)

    Santos-Costa, Daniel; Bolton, Scott J.; Becker, Heidi N.; Clark, George; Kollmann, Peter; Paranicas, Chris; Mauk, Barry; Joergensen, John L.; Adriani, Alberto; Thorne, Richard M.; Bagenal, Fran; Janssen, Mike A.; Levin, Steve M.; Oyafuso, Fabiano A.; Williamson, Ross; Adumitroaie, Virgil; Ingersoll, Andrew P.; Kurth, Bill; Connerney, John E. P.

    2017-04-01

    We have merged a set of physics-based and empirical models to investigate the energy and spatial distributions of Jupiter's electron and proton populations in the inner and middle magnetospheric regions. Beyond the main source of plasma (> 5 Rj) where interchange instability is believed to drive the radial transport of charged particles, the method originally developed by Divine and Garrett [J. Geophys. Res., 88, 6889-6903, 1983] has been adapted. Closer to the planet where field fluctuations control the radial transport, a diffusion theory approach is used. Our results for the equatorial and mid-latitude regions are compared with Pioneer and Galileo Probe measurements. Data collected along Juno's polar orbit allow us to examine the features of Jupiter's radiation environment near the inner boundary of trapping regions. Significant discrepancies between Juno (JEDI keV energy particles and high energy radiation environment measurements made by Juno's SRU and ASC star cameras and the JIRAM infrared imager) and Galileo Probe data sets and models are observed close to the planet. Our simulations of Juno MWR observations of Jupiter's electron-belt emission confirm the limitation of our model to realistically depict the energy and spatial distributions of the ultra-energetic electrons. In this paper, we present our modeling approach, the data sets and resulting data-model comparisons for Juno's first science orbits. We describe our effort to improve our models of electron and proton belts. To gain a physical understanding of the dissimilarities with observations, we revisit the magnetic environment and the mechanisms of loss and source in our models.

  13. Why Are Hot Jupiters So Lonely?

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Jupiter-like planets with blisteringly close-in orbits are generally friendless, with no nearbyplanets transiting along with them. Giant planets with orbits a little further out, on the other hand, often have at least one companion. A new study examines the cause of hot Jupiters loneliness.Forming Close-In GiantsArtists impression of a planet forming within a protoplanetary disk. [NAOJ]Though weve studied close-in giant planets for decades now, we still dont fully understand how these objects form and evolve. Jupiter-like giant planets could form in situ next to their host stars, or they could form further out in the system beyond the ice line and then migrate inwards. And if they do migrate, this migration could occur early, while the protoplanetary disk still exists, or long after, via excitation of large eccentricities.We can try to resolve this mystery by examining the statistics of the close-in giant planets weve observed, but this often raises more questions than it answers. A prime example: the properties of close-in giants that have close-in companion planets orbiting in the same plane (i.e., co-transiting).About half of warm Jupiters Jupiter-like planets with periods of 1030 days appear to have close-in, co-transiting companions. In contrast, almost no hot Jupiters Jupiter-like planets with periods of less than 10 days have such companions. What causes this dichotomy?Schematic of the authors model, in which the close-in giant (m1) encounters a resonance with its host star, causing the orbit of the exterior companion (m2) to become tilted. [Spalding Batygin 2017]Friendless Hot JupitersWhile traditional models have argued that the two types of planets form via different pathways warm Jupiters form in situ, or else migrate inward early and smoothly, whereas hot Jupiters migrate inward late and violently, losing their companions in the process a new study casts doubt on this picture.Two scientists from the California Institute of Technology, Christopher

  14. JUICE: A European Mission to Jupiter and its Icy Moons

    Science.gov (United States)

    Grasset, Olivier; Witasse, Olivier; Barabash, Stas; Brandt, Pontus; Bruzzone, Lorenzo; Bunce, Emma; Cecconi, Baptiste; Cavalié, Thibault; Cimo, Giuseppe; Coustenis, Athena; Cremonese, Gabriele; Dougherty, Michele; Fletcher, Leigh N.; Gladstone, Randy; Gurvits, Leonid; Hartogh, Paul; Hoffmann, Holger; Hussmann, Hauke; Iess, Luciano; Jaumann, Ralf; Kasaba, Yasumasa; Kaspi, Yohai; Krupp, Norbert; Langevin, Yves; Mueller-Wodarg, Ingo; Palumbo, Pasquale; Piccioni, Giuseppe; Plaut, Jeffrey; Poulet, Francois; Roatsch, Thomas; Retherford, Kurt D.; Rothkaehl, Hanna; Stevenson, David J.; Tosi, Federico; Van Hoolst, Tim; Wahlund, Jan-Erik; Wurz, Peter; Altobelli, Nicolas; Accomazzo, A.; Boutonnet, Arnaud; Erd, Christian; Vallat, Claire

    2016-10-01

    JUICE - JUpiter ICy moons Explorer - is the first large mission in the ESA Cosmic Vision programme [1]. The implementation phase started in July 2015. JUICE will arrive at Jupiter in October 2029, and will spend 3 years characterizing the Jovian system, the planet itself, its giant magnetosphere, and the giant icy moons: Ganymede, Callisto and Europa. JUICE will then orbit Ganymede.The first goal of JUICE is to explore the habitable zone around Jupiter [2]. Ganymede is a high-priority target because it provides a unique laboratory for analyzing the nature, evolution and habitability of icy worlds, including the characteristics of subsurface oceans, and because it possesses unique magnetic fields and plasma interactions with the environment. On Europa, the focus will be on recently active zones, where the composition, surface and subsurface features (including putative water reservoirs) will be characterized. Callisto will be explored as a witness of the early Solar System.JUICE will also explore the Jupiter system as an archetype of gas giants. The circulation, meteorology, chemistry and structure of the Jovian atmosphere will be studied from the cloud tops to the thermosphere and ionosphere. JUICE will investigate the 3D properties of the magnetodisc, and study the coupling processes within the magnetosphere, ionosphere and thermosphere. The mission also focuses on characterizing the processes that influence surface and space environments of the moons.The payload consists of 10 instruments plus a ground-based experiment (PRIDE) to better constrain the S/C position. A remote sensing package includes imaging (JANUS) and spectral-imaging capabilities from UV to sub-mm wavelengths (UVS, MAJIS, SWI). A geophysical package consists of a laser altimeter (GALA) and a radar sounder (RIME) for exploring the moons, and a radio science experiment (3GM) to probe the atmospheres and to determine the gravity fields. The in situ package comprises a suite to study plasma and

  15. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  16. The Jupiter program

    International Nuclear Information System (INIS)

    Ramirez, J.J.

    1995-01-01

    Jupiter is a Sandia initiative to develop the next generation of fast Z-pinch drivers for applications to high energy density physics, inertial confinement fusion, and radiation effects simulation. Jupiter will also provide unique capabilities for science research in a broad spectrum of areas involving ultra high magnetic fields, hot/dense plasmas, x-ray physics, intense neutron sources, etc. The program is based on the premise that a single facility using magnetically driven implosions can meet the needs in these multiple program areas. Jupiter requires a 450-500 TW, 8-10 MV, ∼ 100 ns pulsed power generator to impart - 15 MJ kinetic energy to an imploding plasma load. The baseline concept uses a highly modular, robust architecture with demonstrated performance reliability. The design also has the flexibility to drive longer implosion times. This paper describes the Jupiter accelerator concept, and the research underway to establish the technological readiness to proceed with construction of the facility

  17. Jupiter and planet Earth

    International Nuclear Information System (INIS)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included

  18. Seismology of the Jupiter

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Gudkova, T.V.; Zharkov, V.N.

    1989-01-01

    The structure and diagnostic properties of the spectrum of free oscillations of the models of the Jupiter are discussed. The spectrum is very sensitive to the properties of the inner core and density discontinuities in the interior of the planet. It is shown that in seismology of the Jupiter unlike to solar seismology, it is not possible to use the asymptotic theory for investigation of the high-frequency part of the acoustic spectrum

  19. A Secular Resonant Origin for the Loneliness of Hot Jupiters

    Science.gov (United States)

    Spalding, Christopher; Batygin, Konstantin

    2017-09-01

    Despite decades of inquiry, the origin of giant planets residing within a few tenths of an astronomical unit from their host stars remains unclear. Traditionally, these objects are thought to have formed further out before subsequently migrating inwards. However, the necessity of migration has been recently called into question with the emergence of in situ formation models of close-in giant planets. Observational characterization of the transiting subsample of close-in giants has revealed that “warm” Jupiters, possessing orbital periods longer than roughly 10 days more often possess close-in, co-transiting planetary companions than shorter period “hot” Jupiters, that are usually lonely. This finding has previously been interpreted as evidence that smooth, early migration or in situ formation gave rise to warm Jupiter-hosting systems, whereas more violent, post-disk migration pathways sculpted hot Jupiter-hosting systems. In this work, we demonstrate that both classes of planet may arise via early migration or in situ conglomeration, but that the enhanced loneliness of hot Jupiters arises due to a secular resonant interaction with the stellar quadrupole moment. Such an interaction tilts the orbits of exterior, lower-mass planets, removing them from transit surveys where the hot Jupiter is detected. Warm Jupiter-hosting systems, in contrast, retain their coplanarity due to the weaker influence of the host star’s quadrupolar potential relative to planet-disk interactions. In this way, hot Jupiters and warm Jupiters are placed within a unified theoretical framework that may be readily validated or falsified using data from upcoming missions, such as TESS.

  20. Current-Voltage and Floating-Potential characteristics of cylindrical emissive probes from a full-kinetic model based on the orbital motion theory

    Science.gov (United States)

    Chen, Xin; Sánchez-Arriaga, Gonzalo

    2018-02-01

    To model the sheath structure around an emissive probe with cylindrical geometry, the Orbital-Motion theory takes advantage of three conserved quantities (distribution function, transverse energy, and angular momentum) to transform the stationary Vlasov-Poisson system into a single integro-differential equation. For a stationary collisionless unmagnetized plasma, this equation describes self-consistently the probe characteristics. By solving such an equation numerically, parametric analyses for the current-voltage (IV) and floating-potential (FP) characteristics can be performed, which show that: (a) for strong emission, the space-charge effects increase with probe radius; (b) the probe can float at a positive potential relative to the plasma; (c) a smaller probe radius is preferred for the FP method to determine the plasma potential; (d) the work function of the emitting material and the plasma-ion properties do not influence the reliability of the floating-potential method. Analytical analysis demonstrates that the inflection point of an IV curve for non-emitting probes occurs at the plasma potential. The flat potential is not a self-consistent solution for emissive probes.

  1. Status of JUPITER Program

    International Nuclear Information System (INIS)

    Inoue, Teruji; Shirakata, Keisho; Kinjo, Katsuya; Ikegami, Tetsuo; Yamamoto, Masaaki.

    1981-01-01

    The criticality experiment program for large fast reactors by the joint research of the Power Reactor and Nuclear Fuel Development Corp. and the Department of Energy, USA, is called JUPITER Program. The experiment was carried out from April, 1978, to August, 1979, using the zero power plutonium reactor in ANL, and the analysis is carried out independently in Japan and USA. The experiment this time was carried out with two assemblies, ZPPR-9 and 10, and it is called JUPITER Phase 1. Two engineers were dispatched from PNC to ANL-Idaho for two years from August, 1978, and they took part in the planning, execution and analysis of the experiment to obtain the informations. The FBR Core Design Committee was installed in PNC, and has studied the core plan, experimental plan and the course of analysis. The JUPITER Phase 1 is the bench mark experiment to obtain the informations required at the initial stage of the nuclear design of demonstration reactor cores. The rating, object and progress of the JUPITER Phase 1, the outline of experiment, and the present state of the analysis of experiment are described. Hereafter, the general evaluation of the JUPITER Phase 1 will be carried out to clarify the problems when the present method of analysis is applied to large homogeneous reactors. Also the bench mark experiment on large heterogeneous reactors will be planned. (Kako, I.)

  2. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. V. A Massive Jupiter orbiting the very-low-metallicity giant star BD+03 2562 and a possible planet around HD 103485

    Science.gov (United States)

    Villaver, E.; Niedzielski, A.; Wolszczan, A.; Nowak, G.; Kowalik, K.; Adamów, M.; Maciejewski, G.; Deka-Szymankiewicz, B.; Maldonado, J.

    2017-10-01

    Context. Evolved stars with planets are crucial to understanding the dependency of the planet formation mechanism on the mass and metallicity of the parent star and to studying star-planet interactions. Aims: We present two evolved stars (HD 103485 and BD+03 2562) from the Tracking Advanced PlAnetary Systems (TAPAS) with HARPS-N project devoted to RV precision measurements of identified candidates within the PennState - Toruń Centre for Astronomy Planet Search. Methods: The paper is based on precise radial velocity (RV) measurements. For HD 103485 we collected 57 epochs over 3317 days with the Hobby-Eberly Telescope (HET) and its high-resolution spectrograph and 18 ultra-precise HARPS-N data over 919 days. For BD+03 2562 we collected 46 epochs of HET data over 3380 days and 19 epochs of HARPS-N data over 919 days. Results: We present the analysis of the data and the search for correlations between the RV signal and stellar activity, stellar rotation, and photometric variability. Based on the available data, we interpret the RV variations measured in both stars as Keplerian motion. Both stars have masses close to Solar (1.11 M⊙ HD 103485 and 1.14 M⊙ BD+03 2562), very low metallicities ([Fe/H] = - 0.50 and - 0.71 for HD 103485 and BD+03 2562), and both have Jupiter planetary mass companions (m2sini = 7 and 6.4 MJ for HD 103485 and BD+03 2562 resp.) in close to terrestrial orbits (1.4 au HD 103485 and 1.3 au BD+03 2562) with moderate eccentricities (e = 0.34 and 0.2 for HD 103485 and BD+03 2562). However, we cannot totally rule-out the possibility that the signal in the case of HD 103485 is due to rotational modulation of active regions. Conclusions: Based on the current data, we conclude that BD+03 2562 has a bona fide planetary companion while for HD 103485 we cannot totally exclude the possibility that the best explanation for the RV signal modulations is not the existence of a planet but stellar activity. If the interpretation remains that both stars have

  3. Probing the spin-orbit Mott state in Sr3Ir2O7 by electron doping

    Science.gov (United States)

    Hogan, Thomas C.

    Iridium-based members of the Ruddlesden-Popper family of oxide compounds are characterized by a unique combination of energetically comparable effects: crystal-field splitting, spin-orbit coupling, and electron-electron interactions are all present, and the combine to produce a Jeff = 1/2 ground state. In the bilayer member of this series, Sr3Ir2O7, this state manifests as electrically insulating, with unpaired Ir4+ spins aligned along the long axis of the unit cell to produce a G-type antiferromagnet with an ordered moment of 0.36 uB. In this work, this Mott state is destabilized by electron doping via La3+ substitution on the Sr-site to produce (Sr1-x Lax)3Ir2O7. The introduction of carriers initially causes nano-scale phase-separated regions to develop before driving a global insulator-to-metal transition at x=0.04. Coinciding with this transition is the disappearance of evidence of magnetic order in the system in either bulk magnetization or magnetic scattering experiments. The doping also enhances a structural order parameter observed in the parent compound at forbidden reciprocal lattice vectors. A more complete structural solution is proposed to account for this previously unresolved distortion, and also offers an explanation as to the anomalous net ferromagnetism seen prior in bulk measurements. Finally, spin dynamics are probed via a resonant x-ray technique to reveal evidence of spin-dimer-like behavior dominated by inter-plane interactions. This result supports a bond-operator treatment of the interaction Hamiltonian, and also explains the doping dependence of high temperature magnetic susceptibility.

  4. The Solar Wind from Pseudostreamers and their Environs: Opportunities for Observations with Parker Solar Probe and Solar Orbiter

    Science.gov (United States)

    Panasenco, O.; Velli, M.; Panasenco, A.; Lionello, R.

    2017-12-01

    may be observed by Parker Solar Probe and Solar Orbiter.

  5. Small inner companions of warm Jupiters: Lifetimes and legacies

    International Nuclear Information System (INIS)

    Van Laerhoven, Christa; Greenberg, Richard

    2013-01-01

    Although warm Jupiters are generally too far from their stars for tides to be important, the presence of an inner planetary companion to a warm Jupiter can result in tidal evolution of the system. Insight into the process and its effects comes form classical secular theory of planetary perturbations. The lifetime of the inner planet may be shorter than the age of the system, because the warm Jupiter maintains its eccentricity and hence promotes tidal migration into the star. Thus a warm Jupiter observed to be alone in its system might have previously cleared away any interior planets. Before its demise, even if an inner planet is of terrestrial scale, it may promote damping of the warm Jupiter's eccentricity. Thus any inferences of the initial orbit of an observed warm Jupiter must include the possibility of a greater initial eccentricity than would be estimated by assuming it had always been alone. Tidal evolution involving multiple planets also enhances the internal heating of the planets, which readily exceeds that of stellar radiation for the inner planet, and may be great enough to affect the internal structure of warm Jupiters. Secular theory gives insight into the tidal processes, providing, among other things, a way to constrain eccentricities of transiting planets based on estimates of the tidal parameter Q.

  6. Capture of irregular satellites at Jupiter

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio

    2014-01-01

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10 –8 . This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.

  7. CAPTURE OF TROJANS BY JUMPING JUPITER

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro

    2013-01-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ∼5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) × 10 –7 for each particle in the original transplanetary disk, implying that the disk contained (3-4) × 10 7 planetesimals with absolute magnitude H disk ∼ 14-28 M Earth , is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  8. Occupied and unoccupied orbitals of C{sub 60} and C{sub 70} probed with C 1s emission and absorption

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, J.A.; Terminello, L.J.; Hudson, E.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The aim of this work is to characterize the orbital structure of the fullerenes, and to pursue its evolution from a cluster to the infinite solid. For obtaining a complete picture of the electronic structure the authors compare a variety of experimental techniques, i.e. photoemission and core level emission for occupied orbitals and inverse photoemission and core level absorption for unoccupied orbitals. Their experimental results focus on optical probes involving the C 1s core level, i.e. absorption via transitions from the C 1s level into unoccupied {pi}* and {sigma}* orbitals and emission involving transitions from occupied orbitals into a C 1s hole. Due to the simplicity of the C 1s level there exist clear selection rules. For example, only transitions to and from orbitals with p-character are dipole-allowed. These results on the p-projected density of states are compared with inverse photoemission and photoemission results, where the selection rules are less definitive. In addition, a first-principles quasiparticle calculation of the density of states is used to assign the orbital features. The spectra from C{sub 60} and C{sub 70} are still far from their infinite analog, i.e., graphite, which is also measured with the same techniques. In order to determine the effect of electron transfer onto C{sub 60}, as in superconducting alkali fullerides, the authors are studying resonant emission of C{sub 60}. An electron is placed in the lowest unoccupied molecular orbital (LUMO) by optical absorption from the C 1s level and the C 1s emission detected in the presence of this spectator electron.

  9. Jupiter's Big Bang.

    Science.gov (United States)

    McDonald, Kim A.

    1994-01-01

    Collision of a comet with Jupiter beginning July 16, 1994 will be observed by astronomers worldwide, with computerized information relayed to a center at the University of Maryland, financed by the National Aeronautics and Space Administration and National Science Foundation. Geologists and paleontologists also hope to learn more about earth's…

  10. Hot Jupiters and cool stars

    International Nuclear Information System (INIS)

    Villaver, Eva; Mustill, Alexander J.; Livio, Mario; Siess, Lionel

    2014-01-01

    Close-in planets are in jeopardy, as their host stars evolve off the main sequence (MS) to the subgiant and red giant phases. In this paper, we explore the influences of the stellar mass (in the range 1.5-2 M ☉ ), mass-loss prescription, planet mass (from Neptune up to 10 Jupiter masses), and eccentricity on the orbital evolution of planets as their parent stars evolve to become subgiants and red giants. We find that planet engulfment along the red giant branch is not very sensitive to the stellar mass or mass-loss rates adopted in the calculations, but quite sensitive to the planetary mass. The range of initial separations for planet engulfment increases with decreasing mass-loss rates or stellar masses and increasing planetary masses. Regarding the planet's orbital eccentricity, we find that as the star evolves into the red giant phase, stellar tides start to dominate over planetary tides. As a consequence, a transient population of moderately eccentric close-in Jovian planets is created that otherwise would have been expected to be absent from MS stars. We find that very eccentric and distant planets do not experience much eccentricity decay, and that planet engulfment is primarily determined by the pericenter distance and the maximum stellar radius.

  11. ESO Observations of New Moon of Jupiter

    Science.gov (United States)

    2000-08-01

    Two astronomers, both specialists in minor bodies in the solar system, have performed observations with ESO telescopes that provide important information about a small moon, recently discovered in orbit around the solar system's largest planet, Jupiter. Brett Gladman (of the Centre National de la Recherche Scientifique (CNRS) and working at Observatoire de la Cote d'Azur, France) and Hermann Boehnhardt ( ESO-Paranal) obtained detailed data on the object S/1999 J 1 , definitively confirming it as a natural satellite of Jupiter. Seventeen Jovian moons are now known. The S/1999 J 1 object On July 20, 2000, the Minor Planet Center (MPC) of the International Astronomical Union (IAU) announced on IAU Circular 7460 that orbital computations had shown a small moving object, first seen in the sky in 1999, to be a new candidate satellite of Jupiter. The conclusion was based on several positional observations of that object made in October and November 1999 with the Spacewatch Telescope of the University of Arizona (USA). In particular, the object's motion in the sky was compatible with that of an object in orbit around Jupiter. Following the official IAU procedure, the IAU Central Bureau for Astronomical Telegrams designated the new object as S/1999 J 1 (the 1st candidate Satellite of Jupiter to be discovered in 1999). Details about the exciting detective story of this object's discovery can be found in an MPC press release and the corresponding Spacewatch News Note. Unfortunately, Jupiter and S/1999 J 1 were on the opposite side of the Sun as seen from the Earth during the spring of 2000. The faint object remained lost in the glare of the Sun in this period and, as expected, a search in July 2000 through all available astronomical data archives confirmed that it had not been seen since November 1999, nor before that time. With time, the extrapolated sky position of S/1999 J 1 was getting progressively less accurate. New observations were thus urgently needed to "recover

  12. Periodicity in changes of Jupiter's hemispheres activity factor is continues to recover in 2018

    Science.gov (United States)

    Vidmachenko, A. P.

    2018-05-01

    From the mid-1990s to 2013 that there was a maximum mismatch between the time of Jupiter's passage at orbit at perihelion and aphelion, and the moments of minima and maxima of Solar activity. In 1963-1995 the correlation between the changes in factor AJ, Solar activity and the moments of passage of perihelion and aphelion of the orbit - was high, and the nature of the changes was synchronized. After 1995, inconsistency in the supply of Solar energy to northern and southern hemispheres of Jupiter and its movement in orbit - has become significant. But after 2014, the periodicity in the change of photometric characteristics of the northern and southern hemispheres of Jupiter, again becomes coordinated. And the data for 2017 and 2018 confirm the improvement of the matching of the course of the Aj(T) dependence, SA index and the regime irradiation by the Sun of Jupiter at it moves along the orbit.

  13. Tilting Saturn without Tilting Jupiter: Constraints on Giant Planet Migration

    Science.gov (United States)

    Brasser, R.; Lee, Man Hoi

    2015-11-01

    The migration and encounter histories of the giant planets in our solar system can be constrained by the obliquities of Jupiter and Saturn. We have performed secular simulations with imposed migration and N-body simulations with planetesimals to study the expected obliquity distribution of migrating planets with initial conditions resembling those of the smooth migration model, the resonant Nice model and two models with five giant planets initially in resonance (one compact and one loose configuration). For smooth migration, the secular spin-orbit resonance mechanism can tilt Saturn’s spin axis to the current obliquity if the product of the migration timescale and the orbital inclinations is sufficiently large (exceeding 30 Myr deg). For the resonant Nice model with imposed migration, it is difficult to reproduce today’s obliquity values, because the compactness of the initial system raises the frequency that tilts Saturn above the spin precession frequency of Jupiter, causing a Jupiter spin-orbit resonance crossing. Migration timescales sufficiently long to tilt Saturn generally suffice to tilt Jupiter more than is observed. The full N-body simulations tell a somewhat different story, with Jupiter generally being tilted as often as Saturn, but on average having a higher obliquity. The main obstacle is the final orbital spacing of the giant planets, coupled with the tail of Neptune’s migration. The resonant Nice case is barely able to simultaneously reproduce the orbital and spin properties of the giant planets, with a probability ˜ 0.15%. The loose five planet model is unable to match all our constraints (probability <0.08%). The compact five planet model has the highest chance of matching the orbital and obliquity constraints simultaneously (probability ˜0.3%).

  14. SECULAR CHAOS AND THE PRODUCTION OF HOT JUPITERS

    International Nuclear Information System (INIS)

    Wu Yanqin; Lithwick, Yoram

    2011-01-01

    In a planetary system with two or more well-spaced, eccentric, inclined planets, secular interactions may lead to chaos. The innermost planet may gradually become very eccentric and/or inclined as a result of the secular degrees of freedom drifting toward equipartition of angular momentum deficit. Secular chaos is known to be responsible for the eventual destabilization of Mercury in our own solar system. Here we focus on systems with three giant planets. We characterize the secular chaos and demonstrate the criterion for it to occur, but leave a detailed understanding of secular chaos to a companion paper. After an extended period of eccentricity diffusion, the inner planet's pericenter can approach the star to within a few stellar radii. Strong tidal interactions and ensuing tidal dissipation extract orbital energy from the planet and pull it inward, creating a hot Jupiter. In contrast to other proposed channels for the production of hot Jupiters, such a scenario (which we term 'secular migration') explains a range of observations: the pile-up of hot Jupiters at 3 day orbital periods, the fact that hot Jupiters are in general less massive than other radial velocity planets, that they may have misaligned inclinations with respect to stellar spin, and that they have few easily detectable companions (but may have giant companions in distant orbits). Secular migration can also explain close-in planets as low in mass as Neptune; and an aborted secular migration can explain the 'warm Jupiters' at intermediate distances. In addition, the frequency of hot Jupiters formed via secular migration increases with stellar age. We further suggest that secular chaos may be responsible for the observed eccentricities of giant planets at larger distances and that these planets could exhibit significant spin-orbit misalignment.

  15. MULTIPLE-PLANET SCATTERING AND THE ORIGIN OF HOT JUPITERS

    International Nuclear Information System (INIS)

    Beaugé, C.; Nesvorný, D.

    2012-01-01

    Doppler and transit observations of exoplanets show a pile-up of Jupiter-size planets in orbits with a 3 day period. A fraction of these hot Jupiters have retrograde orbits with respect to the parent star's rotation, as evidenced by the measurements of the Rossiter-McLaughlin effect. To explain these observations we performed a series of numerical integrations of planet scattering followed by the tidal circularization and migration of planets that evolved into highly eccentric orbits. We considered planetary systems having three and four planets initially placed in successive mean-motion resonances, although the angles were taken randomly to ensure orbital instability in short timescales. The simulations included the tidal and relativistic effects, and precession due to stellar oblateness. Our results show the formation of two distinct populations of hot Jupiters. The inner population (Population I) is characterized by semimajor axis a 1 Gyr and fits nicely the observed 3 day pile-up. A comparison between our three-planet and four-planet runs shows that the formation of hot Jupiters is more likely in systems with more initial planets. Due to the large-scale chaoticity that dominates the evolution, high eccentricities and/or high inclinations are generated mainly by close encounters between the planets and not by secular perturbations (Kozai or otherwise). The relative proportion of retrograde planets seems of be dependent on the stellar age. Both the distribution of almost aligned systems and the simulated 3 day pile-up also fit observations better in our four-planet simulations. This may suggest that the planetary systems with observed hot Jupiters were originally rich in the number of planets, some of which were ejected. In a broad perspective, our work therefore hints on an unexpected link between the hot Jupiters and recently discovered free floating planets.

  16. Forming Hot Jupiters: Observational Constraints on Gas Giant Formation and migration

    Science.gov (United States)

    Becker, Juliette; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta

    2018-04-01

    Since the first extrasolar planets were detected, the existence of hot Jupiters has challenged prevailing theories of planet formation. The three commonly considered pathways for hot Jupiter formation are in situ formation, runaway accretion in the outer disk followed by disk migration, and tidal migration (occurring after the disk has dissipated). None of these explains the entire observed sample of hot Jupiters, suggesting that different selections of systems form via different pathways. The way forward is to use observational data to constrain the migration pathways of particular classes of systems, and subsequently assemble these results into a coherent picture of hot Jupiter formation. We present constraints on the migratory pathway for one particular type of system: hot Jupiters orbiting cool stars (T< 6200 K). Using the full observational sample, we find that the orbits of most wide planetary companions to hot Jupiters around these cool stars must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. The population of systems containing both a hot Jupiter and an exterior companion around a cool star thus generally exist in roughly coplanar configurations, consistent with the idea that disk-driven migratory mechanisms have assembled most of this class of systems. We then discuss the overall applicability of this result to a wider range of systems and the broader implications on planet formation.

  17. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems.

    Science.gov (United States)

    Lithwick, Yoram; Wu, Yanqin

    2014-09-02

    In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations.

  18. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems

    Science.gov (United States)

    Lithwick, Yoram; Wu, Yanqin

    2014-01-01

    In the inner solar system, the planets’ orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations. PMID:24367108

  19. Multi-band characterization of the hot Jupiters

    DEFF Research Database (Denmark)

    Moyano, M.; Almeida, L. A.; von Essen, C.

    2017-01-01

    We have carried out a campaign to characterize the hot Jupiters WASP-5b, WASP-44b and WASP-46b using multiband photometry collected at the Observatorio do Pico Dos Dias in Brazil. We have determined the planetary physical properties and new transit ephemerides for these systems. The new orbital...

  20. Estimating the Magnetic Field Strength in Hot Jupiters

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Rakesh K. [Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138 (United States); Thorngren, Daniel P., E-mail: rakesh_yadav@fas.harvard.edu [Department of Physics, University of California, Santa Cruz, CA (United States)

    2017-11-01

    A large fraction of known Jupiter-like exoplanets are inflated as compared to Jupiter. These “hot” Jupiters orbit close to their parent star and are bombarded with intense starlight. Many theories have been proposed to explain their radius inflation and several suggest that a small fraction of the incident starlight is injected into the planetary interior, which helps to puff up the planet. How will such energy injection affect the planetary dynamo? In this Letter, we estimate the surface magnetic field strength of hot Jupiters using scaling arguments that relate energy available in planetary interiors to the dynamo-generated magnetic fields. We find that if we take into account the energy injected in the planetary interior that is sufficient to inflate hot Jupiters to observed radii, then the resulting dynamo should be able generate magnetic fields that are more than an order of magnitude stronger than the Jovian values. Our analysis highlights the potential fundamental role of the stellar light in setting the field strength in hot Jupiters.

  1. ECCENTRIC JUPITERS VIA DISK–PLANET INTERACTIONS

    International Nuclear Information System (INIS)

    Duffell, Paul C.; Chiang, Eugene

    2015-01-01

    Numerical hydrodynamics calculations are performed to determine the conditions under which giant planet eccentricities can be excited by parent gas disks. Unlike in other studies, Jupiter-mass planets are found to have their eccentricities amplified—provided their orbits start off as eccentric. We disentangle the web of co-rotation, co-orbital, and external resonances to show that this finite-amplitude instability is consistent with that predicted analytically. Ellipticities can grow until they reach of order of the disk's aspect ratio, beyond which the external Lindblad resonances that excite eccentricity are weakened by the planet's increasingly supersonic epicyclic motion. Forcing the planet to still larger eccentricities causes catastrophic eccentricity damping as the planet collides into gap walls. For standard parameters, the range of eccentricities for instability is modest; the threshold eccentricity for growth (∼0.04) is not much smaller than the final eccentricity to which orbits grow (∼0.07). If this threshold eccentricity can be lowered (perhaps by non-barotropic effects), and if the eccentricity driving documented here survives in 3D, it may robustly explain the low-to-moderate eccentricities ≲0.1 exhibited by many giant planets (including Jupiter and Saturn), especially those without planetary or stellar companions

  2. Chemical fingerprints of hot Jupiter planet formation

    Science.gov (United States)

    Maldonado, J.; Villaver, E.; Eiroa, C.

    2018-05-01

    Context. The current paradigm to explain the presence of Jupiter-like planets with small orbital periods (P involves their formation beyond the snow line following inward migration, has been challenged by recent works that explore the possibility of in situ formation. Aims: We aim to test whether stars harbouring hot Jupiters and stars with more distant gas-giant planets show any chemical peculiarity that could be related to different formation processes. Methods: Our methodology is based on the analysis of high-resolution échelle spectra. Stellar parameters and abundances of C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, and Zn for a sample of 88 planet hosts are derived. The sample is divided into stars hosting hot (a 0.1 au) Jupiter-like planets. The metallicity and abundance trends of the two sub-samples are compared and set in the context of current models of planet formation and migration. Results: Our results show that stars with hot Jupiters have higher metallicities than stars with cool distant gas-giant planets in the metallicity range +0.00/+0.20 dex. The data also shows a tendency of stars with cool Jupiters to show larger abundances of α elements. No abundance differences between stars with cool and hot Jupiters are found when considering iron peak, volatile elements or the C/O, and Mg/Si ratios. The corresponding p-values from the statistical tests comparing the cumulative distributions of cool and hot planet hosts are 0.20, products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 072.C-0033(A), 072.C-0488(E), 074.B-0455(A), 075.C-0202(A), 077.C-0192(A), 077.D-0525(A), 078.C-0378(A), 078.C-0378(B), 080.A-9021(A), 082.C-0312(A) 082.C-0446(A), 083.A-9003(A), 083.A-9011(A), 083.A-9011(B), 083.A-9013(A), 083.C-0794(A), 084.A-9003(A), 084.A-9004(B), 085.A-9027(A), 085.C-0743(A), 087.A-9008(A), 088.C-0892(A), 089.C-0440(A), 089.C-0444(A), 089.C-0732(A), 090.C-0345(A), 092.A-9002(A), 192.C-0852

  3. NGTS-1b: a hot Jupiter transiting an M-dwarf

    Science.gov (United States)

    Bayliss, Daniel; Gillen, Edward; Eigmüller, Philipp; McCormac, James; Alexander, Richard D.; Armstrong, David J.; Booth, Rachel S.; Bouchy, François; Burleigh, Matthew R.; Cabrera, Juan; Casewell, Sarah L.; Chaushev, Alexander; Chazelas, Bruno; Csizmadia, Szilard; Erikson, Anders; Faedi, Francesca; Foxell, Emma; Gänsicke, Boris T.; Goad, Michael R.; Grange, Andrew; Günther, Maximilian N.; Hodgkin, Simon T.; Jackman, James; Jenkins, James S.; Lambert, Gregory; Louden, Tom; Metrailler, Lionel; Moyano, Maximiliano; Pollacco, Don; Poppenhaeger, Katja; Queloz, Didier; Raddi, Roberto; Rauer, Heike; Raynard, Liam; Smith, Alexis M. S.; Soto, Maritza; Thompson, Andrew P. G.; Titz-Weider, Ruth; Udry, Stéphane; Walker, Simon R.; Watson, Christopher A.; West, Richard G.; Wheatley, Peter J.

    2018-04-01

    We present the discovery of NGTS-1b, a hot Jupiter transiting an early M-dwarf host (Teff,* = 3916 ^{+71}_{-63} K) in a P = 2.647 d orbit discovered as part of the Next Generation Transit Survey (NGTS). The planet has a mass of 0.812 ^{+0.066}_{-0.075} MJ, making it the most massive planet ever discovered transiting an M-dwarf. The radius of the planet is 1.33 ^{+0.61}_{-0.33} RJ. Since the transit is grazing, we determine this radius by modelling the data and placing a prior on the density from the population of known gas giant planets. NGTS-1b is the third transiting giant planet found around an M-dwarf, reinforcing the notion that close-in gas giants can form and migrate similar to the known population of hot Jupiters around solar-type stars. The host star shows no signs of activity, and the kinematics hint at the star being from the thick disc population. With a deep (2.5 per cent) transit around a K = 11.9 host, NGTS-1b will be a strong candidate to probe giant planet composition around M-dwarfs via James Webb Space Telescope transmission spectroscopy.

  4. Recent Simulations of the Late Stages Growth of Jupiter

    Science.gov (United States)

    Lissauer, Jack J.; D'Angelo, Gennaro; Hubickyj, Olenka

    2012-01-01

    Presented by Lissauer et al. (2009, Icarus 199, 338) are used to test the model of capture of Jupiter's irregular satellites within proto-Jupiter's distended and thermally-supported envelope. We find such capture highly unlikely, since the envelope shrinks too slowly for a large number of moons to be retained, and many of those that would be retained would orbit closer to the planet than do the observed Jovian irregulars. Our calculations do not address (and therefore do not exclude) the possibility that the irregular satellites were captured as a result of gas drag within a circumjovian disk. Support for this research from NASA Outer Planets Research Program is gratefully acknowledged.

  5. Jupiter's Multi-level Clouds

    Science.gov (United States)

    1997-01-01

    Clouds and hazes at various altitudes within the dynamic Jovian atmosphere are revealed by multi-color imaging taken by the Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft. These images were taken during the second orbit (G2) on September 5, 1996 from an early-morning vantage point 2.1 million kilometers (1.3 million miles) above Jupiter. They show the planet's appearance as viewed at various near-infrared wavelengths, with distinct differences due primarily to variations in the altitudes and opacities of the cloud systems. The top left and right images, taken at 1.61 microns and 2.73 microns respectively, show relatively clear views of the deep atmosphere, with clouds down to a level about three times the atmospheric pressure at the Earth's surface.By contrast, the middle image in top row, taken at 2.17 microns, shows only the highest altitude clouds and hazes. This wavelength is severely affected by the absorption of light by hydrogen gas, the main constituent of Jupiter's atmosphere. Therefore, only the Great Red Spot, the highest equatorial clouds, a small feature at mid-northern latitudes, and thin, high photochemical polar hazes can be seen. In the lower left image, at 3.01 microns, deeper clouds can be seen dimly against gaseous ammonia and methane absorption. In the lower middle image, at 4.99 microns, the light observed is the planet's own indigenous heat from the deep, warm atmosphere.The false color image (lower right) succinctly shows various cloud and haze levels seen in the Jovian atmosphere. This image indicates the temperature and altitude at which the light being observed is produced. Thermally-rich red areas denote high temperatures from photons in the deep atmosphere leaking through minimal cloud cover; green denotes cool temperatures of the tropospheric clouds; blue denotes cold of the upper troposphere and lower stratosphere. The polar regions appear purplish, because small-particle hazes allow leakage and reflectivity

  6. Jupiter: Lord of the Planets.

    Science.gov (United States)

    Kaufmann, William

    1984-01-01

    Presents a chapter from an introductory college-level astronomy textbook in which full-color photographs and numerous diagrams highlight an extensive description of the planet Jupiter. Topics include Jupiter's geology, rotation, magnetic field, atmosphere (including clouds and winds), and the Great Red Spot. (DH)

  7. The Jovian rings as observed from Jupiter.

    Science.gov (United States)

    Malinnikova Bang, A.; Joergensen, J. L.; Joergensen, P. S.; Denver, T.; Connerney, J. E. P.; Bolton, S. J.; Levin, S.

    2017-12-01

    Juno entered a highly eliptic orbit around Jupiter on the 4. July 2016. Since then, it has completed 8 perijove passages. The Magnetometer experiment consists of two measurement platforms mounted 10m and 12m from the spacecraft spin axis, on one of three large solar panels. Each magnetometer platform is equipped with two star trackers to provide accurate attitude information to the vector magnetometers. The star trackers are pointed 13deg from the (anti) spin vector, and clocked 180deg to avoid simultaneous blinding effects from bright Jupiter only 6000km away, during perijove. This brings Juno well inside the innermost known satellite, Metis. The star trackers pointing close to, and above the Jovian horizon for most of each rotation of Juno, has an excellent view of the Jovian ring systems with a beta-angle close to 180deg. We report on the ring imaging performed during the first 8 orbits, discuss the structure, optical depth and moon sheparding of the inner rings as measured so far.

  8. Shock Synthesis in the Atmosphere of Jupiter

    Science.gov (United States)

    Khare, B. N.; Sagan, C.; McDonald, G. D.; de Vanssay, E.; Borucki, W. J.; McKay, C. P.; Bernstein, M. P.; Hartman, T. G.; Lech, J.

    1996-09-01

    We have previously investigated an approximate simulation of the Jupiter troposphere at the 1 bar NH_3 cloud level using Laser Induced Plasma (LIP) for shock synthesis in a 84.62:13.3:1.07:1.01 H_2:He:CH_4:NH_3 gas mixture, and found by GC/MS that HCN is the most abundant product, more abundant than all the major product hydrocarbons (C_2H_6, C_2H_2, C_3H_8, and C_4H10) combined. Using purge and trap isolation techniques on the LIP gas mixture using two absorbent traps in tandem, thermal desorption GC/MS has revealed a large array of product molecules starting from simple hydrocarbons such as C_2H_2, C_2H_4, etc., simple nitriles such as HCN, CH_3CN, etc., to molecules up to C13 (e.g. C13H23N). Here we report the results of our more accurate simulation of Jupiter at the 5 bar level using LIP with a 88:11.7:0.2:0.1 H_2:He:CH_4:NH_3 mixture, for comparison with mass spectral data from the Galileo probe. We detect in this more acurate simulation of Jupiter many of the same compounds, such as HCN, dimethylaminoacetonitrile, and dimethylcyanamide, as in the previous lower dilution experiment. We will compare the present results with those from low-pressure continuous flow plasma discharge experiments (McDonald et al. 1992, al Icarus 99, 131). We will also discuss the relevance of our data in light of the significant discrepancies between standard models of the jovian atmosphere and the compositional data returned by the Galileo entry probe.

  9. Hot Jupiters around M dwarfs

    Directory of Open Access Journals (Sweden)

    Murgas F.

    2013-04-01

    Full Text Available The WFCAM Transit Survey (WTS is a near-infrared transit survey running on the United Kingdom Infrared Telescope (UKIRT. We conduct Monte Carlo transit injection and detection simulations for short period (<10 day Jupiter-sized planets to characterize the sensitivity of the survey. We investigate the recovery rate as a function of period and magnitude in 2 hypothetical star-planet cases: M0–2 + hot Jupiter, M2–4 + hot Jupiter. We find that the WTS lightcurves are very sensitive to the presence of Jupiter-sized short-period transiting planets around M dwarfs. The non-detection of a hot-Jupiter around an M dwarf by the WFCAM Transit Survey allows us to place a firm upper limit of 1.9 per cent (at 95 per cent confidence on the planet occurrence rate.

  10. Hot Jupiters Aren't As Lonely As We Thought

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    The Friends of Hot Jupiters (FOHJ) project is a systematic search for planetary- and stellar-mass companions in systems that have known hot Jupiters short-period, gas-giant planets. This survey has discovered that many more hot Jupiters may have companions than originally believed.Missing FriendsFOHJ was begun with the goal of better understanding the systems that host hot Jupiters, in order to settle several longstanding issues.The first problem was one of observational statistics. We know that roughly half of the Sun-like stars nearby are in binary systems, yet weve only discovered a handful of hot Jupiters around binaries. Are binary systems less likely to host hot Jupiters? Or have we just missed the binary companions in the hot-Jupiter-hosting systems weve seen so far?An additional issue relates to formation mechanisms. Hot Jupiters probably migrated inward from where they formed out beyond the ice lines in protoplanetary disks but how?This median-stacked image, obtained with adaptive optics, shows one of the newly-discovered stellar companions to a star hosting a hot Jupiter. The projected separation is ~180 AU. [Ngo et al. 2015]Observations reveal two populations of hot Jupiters: those with circular orbits aligned with their hosts spins, and those with eccentric, misaligned orbits. The former population support a migration model dominated by local planet-disk interactions, whereas the latter population suggest the hot Jupiters migrated through dynamical interactions with distant companions. A careful determination of the companion rate in hot-Jupiter-hosting systems could help establish the ability of these two models to explain the observed populations.Search for CompanionsThe FOHJ project began in 2012 and studied 51 systems hosting known, transiting hot Jupiters with roughly half on circular, aligned orbits and half on eccentric, misaligned orbits. The survey consisted of three different, complementary components:Study 1Lead author: Heather Knutson

  11. Search for the radio occulation flash at Jupiter

    International Nuclear Information System (INIS)

    Martin, J.M.; Tyler, G.L.; Eshleman, V.R.; Wood, G.E.; Lindall, G.F.

    1981-01-01

    The 'evolute flash' a focusing effect caused by the curvature of a planet's limb, was sought in the radio data taken during the occulation of Voyager 1 by Jupiter, using a modified matched-filter technique. The expected frequency structure of the flash signal is double branched, while the intensity structure is highly localized in time. The search for the signal was carried out over a 6.4 s period. The signal parameters were varied to span the uncertainties introduced by imperfect knowledge of the orbit of the spacecraft and the shape of Jupiter. Several peaks at the 8 standard deviation level were present in the filter output. However, these peaks were separated in time by up to 3.3 s, and none could be identified as the flash. From this negative result a lower bound on the absorption along a ray with periapsis near the 4 bar level in Jupiter's atmosphere can be established at 25 dB. Employing the new Voyager results on the structure of the atmosphere of Jupiter and the mixing ratio of the absorbent ammonia, as well as the improved knowledge of flash characteristics resulting from this study, we estimate that the flash would have been detected if the distance behind the planet where the spacecraft trajectory crossed the evolute were at least 20 Jupiter radii, as compared with a value near 7 in the experiment. For focusing at this greater distance, the atmospheric pressure at the ray periapsis would be between 1.5 and 2 bar

  12. Conformational study of sarcosine as probed by matrix-isolation FT-IR spectroscopy and molecular orbital calculations

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, R.

    2003-01-01

    Sarcosine (N-methylglycine) has been studied by matrix-isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the DFT/B3LYP and MP2 levels of theory with the 6-311++G(d, p) and 6-31++G(d, p) basis set, respectively. Eleven different conformers were located in the potential energy surface (PES) of sarcosine, with the ASC conformer being the ground conformational state. This form is analogous to the glycine most stable conformer and is characterized by a NH...O= intramole...

  13. Lightning activity on Jupiter

    Science.gov (United States)

    Borucki, W. J.; Bar-Nun, A.; Scarf, F. L.; Look, A. F.; Hunt, G. E.

    1982-01-01

    Photographic observations of the nightside of Jupiter by the Voyager 1 spacecraft show the presence of extensive lightning activity. Detection of whistlers by the plasma wave analyzer confirms the optical observations and implies that many flashes were not recorded by the Voyager camera because the intensity of the flashes was below the threshold sensitivity of the camera. Measurements of the optical energy radiated per flash indicate that the observed flashes had energies similar to that for terrestrial superbolts. The best estimate of the lightning energy dissipation rate of 0.0004 W/sq m was derived from a consideration of the optical and radiofrequency measurements. The ratio of the energy dissipated by lightning compared to the convective energy flux is estimated to be between 0.000027 and 0.00005. The terrestrial value is 0.0001.

  14. Radiation analysis for manned missions to the Jupiter system.

    Science.gov (United States)

    De Angelis, G; Clowdsley, M S; Nealy, J E; Tripathi, R K; Wilson, J W

    2004-01-01

    An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  15. Jupiter and the Voyager mission

    Science.gov (United States)

    Soderblom, L.; Spall, Henry

    1980-01-01

    In 1977, the United States launched two unmanned Voyager spacecraft that were to take part in an extensive reconnaissance of the outer planets over a 12-year period visiting the environs of Jupiter, Saturn, Uranus, and Neptune. Their first encounter was with the complex Jupiter planetary system 400 million miles away. Sweeping by Jupiter and its five moons in 1979, the two spacecraft have sent back to Earth an enormous amount of data that will prove to be vital in understanding our solar system. Voyager 1 is scheduled to fly past Saturn on November 13 of this year; Voyager 2, in August of the following year. 

  16. Gas flow in the solar nebula leading to the formation of Jupiter

    International Nuclear Information System (INIS)

    Sekiya, Minoru; Miyama, Shoken M.; Hayashi, Chushiro.

    1987-01-01

    The three-dimensional gas flow in the solar nebula, which is subject to the gravity of the Sun and proto-Jupiter, is numerically calculated using a three-dimensional hydrodynamic code i.e., the so-called smoothed-particle method. The flow is circulating around the Sun as well as falling into the potential well of proto-Jupiter. The results for various masses of proto-Jupiter show that the e-folding growth time of proto-Jupiter by accretion of the nebular gas is as short as about 300 years in stages where the mass of proto-Jupiter is 0.2 ∼ 0.5 times the present Jovian mass and that proto-Jupiter begins to push away the nebular gas from the orbit of proto-Jupiter and form a gap around the orbit, when its mass is about 0.7 times the present Jovian mass. It is possible that this pushing-away process determined the present Jovian mass

  17. Proposed alteration of images of molecular orbitals obtained using a scanning tunneling microscope as a probe of electron correlation.

    Science.gov (United States)

    Toroz, Dimitrios; Rontani, Massimo; Corni, Stefano

    2013-01-04

    Scanning tunneling spectroscopy (STS) allows us to image single molecules decoupled from the supporting substrate. The obtained images are routinely interpreted as the square moduli of molecular orbitals, dressed by the mean-field electron-electron interaction. Here we demonstrate that the effect of electron correlation beyond the mean field qualitatively alters the uncorrelated STS images. Our evidence is based on the ab initio many-body calculation of STS images of planar molecules with metal centers. We find that many-body correlations alter significantly the image spectral weight close to the metal center of the molecules. This change is large enough to be accessed experimentally, surviving to molecule-substrate interactions.

  18. On internal constitution of Jupiter

    International Nuclear Information System (INIS)

    Kozyrev, N.A.

    1977-01-01

    Jupiter internal construction is considered. The density and pressure inside a cosmic body can be calculated from the known values of the mass and radius. For Jupiter, the inertia moment calculated from the motion of the satellites permits to determine the degree of uniformity of its structure and to find more precise values of density and pressure in the center of the planet. In assumption that the matter of Jupiter consists of hydrogen only, the dependence of pressure on temperature was calculated with accounting for the degeneracy of gas and electrostatic interactions. Hence the central temperature, calculated from pressure and density, appears to be equal to 165.000 deg K. At the thermal conductivity by free electrons such a temperature at the center is to result in a thermal flux of about 1.0x10 4 erg/cm 2 from Jupiter's surface, which was observed during the flights of the ''Pioneer'' stations

  19. A reassessment of Galileo radiation exposures in the Jupiter magnetosphere.

    Science.gov (United States)

    Atwell, William; Townsend, Lawrence; Miller, Thomas; Campbell, Christina

    2005-01-01

    Earlier particle experiments in the 1970s on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al. have developed an updated Galileo Interim Radiation Environment (GIRE) model based on Galileo electron data. In this paper, we have used the GIRE model to reassess the computed radiation exposures and dose effects for Galileo. The 34-orbit 'as flown' Galileo trajectory data and the updated GIRE model were used to compute the electron and proton spectra for each of the 34 orbits. The total ionisation doses of electrons and protons have been computed based on a parametric shielding configuration, and these results are compared with previously published results.

  20. A reassessment of Galileo radiation exposures in the Jupiter magnetosphere

    International Nuclear Information System (INIS)

    Atwell, W.; Townsend, L.; Miller, T.; Campbell, C.

    2005-01-01

    Earlier particle experiments in the 1970's on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al. have developed an updated Galileo Interim Radiation Environment (GIRE) model based on Galileo electron data. In this paper, we have used the GIRE model to reassess the computed radiation exposures and dose effects for Galileo. The 34-orbit 'as flown' Galileo trajectory data and the updated GIRE model were used to compute the electron and proton spectra for each of the 34 orbits. The total ionisation doses of electrons and protons have been computed based on a parametric shielding configuration, and these results are compared with previously published results. Published by Oxford Univ. Press. All right reserved. (authors)

  1. The Occurrence Rate of Hot Jupiters

    Science.gov (United States)

    Rampalli, Rayna; Catanzarite, Joseph; Batalha, Natalie M.

    2017-01-01

    As the first kind of exoplanet to be discovered, hot Jupiters have always been objects of interest. Despite being prevalent in radial velocity and ground-based surveys, they were found to be much rarer based on Kepler observations. These data show a pile-up at radii of 9-22 Rearth and orbital periods of 1-10 days. Computing accurate occurrence rates can lend insight into planet-formation and migration-theories. To get a more accurate look, the idea of reliability was introduced. Each hot Jupiter candidate was assigned a reliability based on its location in the galactic plane and likelihood of being a false positive. Numbers were updated if ground-based follow-up indicated a candidate was indeed a false positive. These reliabilities were introduced into an occurrence rate calculation and yielded about a 12% decrease in occurrence rate for each period bin examined and a 25% decrease across all the bins. To get a better idea of the cause behind the pileup, occurrence rates based on parent stellar metallicity were calculated. As expected from previous work, higher metallicity stars yield higher occurrence rates. Future work includes examining period distributions in both the high metallicity and low metallicity sample for a better understanding and confirmation of the pile-up effect.

  2. Tidal formation of Hot Jupiters in binary star systems

    Science.gov (United States)

    Bataille, M.; Libert, A.-S.; Correia, A. C. M.

    2015-10-01

    More than 150 Hot Jupiters with orbital periods less than 10 days have been detected. Their in-situ formation is physically unlikely. We need therefore to understand the migration of these planets from high distance (several AUs). Three main models are currently extensively studied: disk-planet interactions (e.g. [3]), planet-planet scattering (e.g. [4]) and Kozai migration (e.g. [2]). Here we focus on this last mechanism, and aim to understand which dynamical effects are the most active in the accumulation of planetary companions with low orbital periods in binary star systems. To do so, we investigate the secular evolution of Hot Jupiters in binary star systems. Our goal is to study analytically the 3-day pile-up observed in their orbital period. Our framework is the hierarchical three-body problem, with the effects of tides, stellar oblateness, and general relativity. Both the orbital evolution and the spin evolution are considered. Using the averaged equations of motion in a vectorial formalism of [1], we have performed # 100000 numerical simulations of well diversified three-body systems, reproducing and generalizing the numerical results of [2]. Based on a thorough analysis of the initial and final configurations of the systems, we have identified different categories of secular evolutions present in the simulations, and proposed for each one a simplified set of equations reproducing the evolution. Statistics about spin-orbit misalignements and mutual inclinations between the orbital planes of the Hot Jupiter and the star companion are also provided. Finally, we show that the extent of the 3 day pile-up is very dependent on the initial parameters of the simulations.

  3. The Interiors of Jupiter and Saturn

    Science.gov (United States)

    Helled, Ravit

    2018-05-01

    Probing the interiors of the giant planets in our Solar System is not an easy task. This requires a set of observations combined with theoretical models that are used to infer the planetary composition and its depth dependence. The masses of Jupiter and Saturn are 318 and 96 Earth masses, respectively, and since a few decades, we know that they mostly consist of hydrogen and helium. It is the mass of heavy elements (all elements heavier than helium) that is not well determined, as well as its distribution within the planets. While the heavy elements are not the dominating materials in Jupiter and Saturn, they are the key for our understanding of their formation and evolution histories. The planetary internal structure is inferred to fit the available observational constraints including the planetary masses, radii, 1-bar temperatures, rotation rates, and gravitational fields. Then, using theoretical equations of states (EOSs) for hydrogen, helium, their mixtures, and heavier elements (typically rocks and/or ices), a structure model is developed. However, there is no unique solution for the planetary structure, and the results depend on the used EOSs and the model assumptions imposed by the modeler. Standard interior models of Jupiter and Saturn include three main regions: (1) the central region (core) that consists of heavy elements, (2) an inner metallic hydrogen envelope that is helium rich, and (3) an outer molecular hydrogen envelope depleted with helium. The distribution of heavy elements can be either homogenous or discontinuous between the two envelopes. Major model assumptions that can affect the derived internal structure include the number of layers, the heat transport mechanism within the planet (and its entropy), the nature of the core (compact vs. diluted), and the location/pressure where the envelopes are divided. Alternative structure models assume a less distinct division between the layers and/or a less non-homogenous distribution of the heavy

  4. Generation of a Circumstellar Gas Disk by Hot Jupiter WASP-12b

    Science.gov (United States)

    Debrecht, Alex; Carroll-Nellenback, Jonathan; Frank, Adam; Fossati, Luca; Blackman, Eric G.; Dobbs-Dixon, Ian

    2018-05-01

    Observations of transiting extra-solar planets provide rich sources of data for probing the in-system environment. In the WASP-12 system, a broad depression in the usually-bright MgII h&k lines has been observed, in addition to atmospheric escape from the extremely hot Jupiter WASP-12b. It has been hypothesized that a translucent circumstellar cloud is formed by the outflow from the planet, causing the observed signatures. We perform 3D hydrodynamic simulations of the full system environment of WASP-12, injecting a planetary wind and stellar wind from their respective surfaces. We find that a torus of density high enough to account for the lack of MgII h&k line core emission in WASP-12 can be formed in approximately 13 years. We also perform synthetic observations of the Lyman-alpha spectrum at different points in the planet's orbit, which demonstrate that significant absorption occurs at all points in the orbit, not just during transits, as suggested by the observations.

  5. Hubble Images Reveal Jupiter's Auroras

    Science.gov (United States)

    1996-01-01

    These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.This image and other images and data

  6. Galileo's Telescopy and Jupiter's Tablet

    Science.gov (United States)

    Usher, P. D.

    2003-12-01

    A previous paper (BAAS 33:4, 1363, 2001) reported on the dramatic scene in Shakespeare's Cymbeline that features the descent of the deity Jupiter. The paper suggested that the four ghosts circling the sleeping Posthumus denote the four Galilean moons of Jupiter. The god Jupiter commands the ghosts to lay a tablet upon the prone Posthumus, but says that its value should not be overestimated. When Posthumus wakens he notices the tablet, which he calls a "book." Not only has the deity's "tablet" become the earthling's "book," but it appears that the book has covers which Posthumus evidently recognizes because without even opening the book he ascribes two further properties to it: rarity, and the very property that Jupiter had earlier attributed, viz. that one must not read too much into it. The mystery deepens when the Jovian gift undergoes a second metamorphosis, to "label." With the help of the OED, the potentially disparate terms "tablet," "book," and "label," may be explained by terms appropriate either to supernatural or worldly beings. "Tablet" may recognize the Mosaic artifact, whereas "book" and "label" are probably mundane references to Galileo's Sidereus Nuncius which appeared shortly before Cymbeline. The message of the Olympian god indicates therefore that the book is unique even as its contents have limited value. The first property celebrates the fact that Galileo's book is the first of its kind, and the second advises that all results except the discovery of Jupiter's moons have been reported earlier, in Hamlet.

  7. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D. [Institute for Astronomy, Royal Observatory Edinburgh, University of Edinburgh, Blackford Hill, Edinburgh (United Kingdom); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.

  8. Scientists Revise Thinking on Comets, Planet Jupiter

    Science.gov (United States)

    Chemical and Engineering News, 1974

    1974-01-01

    Discusses scientific information obtained from Pioneer 10's Jupiter flyby and the comet Kohoutek's first trip around the sun, including the high hydrogen emission of Jupiter's principal moon, Io. (CC)

  9. Jupiter radiation belt models (July 1974)

    International Nuclear Information System (INIS)

    Divine, N.

    1974-01-01

    Flux profiles which were derived from data returned by Pioneer 10 during Jupiter encounter, form the basis for a new set of numerical models for the energy spectra of electrons and protons in Jupiter's inner magnetosphere

  10. Comet Shoemaker-Levy 9/Jupiter collision observed with a high resolution speckle imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Gravel, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    During the week of July 16, 1994, comet Shoemaker-Levy 9, broken into 20 plus pieces by tidal forces on its last orbit, smashed into the planet Jupiter, releasing the explosive energy of 500 thousand megatons. A team of observers from LLNL used the LLNL Speckle Imaging Camera mounted on the University of California`s Lick Observatory 3 Meter Telescope to capture continuous sequences of planet images during the comet encounter. Post processing with the bispectral phase reconstruction algorithm improves the resolution by removing much of the blurring due to atmospheric turbulence. High resolution images of the planet surface showing the aftermath of the impact are probably the best that were obtained from any ground-based telescope. We have been looking at the regions of the fragment impacts to try to discern any dynamic behavior of the spots left on Jupiter`s cloud tops. Such information can lead to conclusions about the nature of the comet and of Jupiter`s atmosphere. So far, the Hubble Space Telescope has observed expanding waves from the G impact whose mechanism is enigmatic since they appear to be too slow to be sound waves and too fast to be gravity waves, given the present knowledge of Jupiter`s atmosphere. Some of our data on the G and L impact region complements the Hubble observations but, so far, is inconclusive about spot dynamics.

  11. Kepler-424 b: A 'lonely' hot Jupiter that found A companion

    International Nuclear Information System (INIS)

    Endl, Michael; Caldwell, Douglas A.; Barclay, Thomas; Huber, Daniel; Havel, Mathieu; Howell, Steve B.; Quintana, Elisa; Isaacson, Howard; Buchhave, Lars A.; Brugamyer, Erik; Robertson, Paul; Cochran, William D.; MacQueen, Phillip J.; Lucas, Phillip; Fischer, Debra; Ciardi, David R.

    2014-01-01

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be l onely . This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to υ Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M ⊕ .

  12. Results of an air data probe investigation utilizing a 0.10 scale orbiter forebody (model 57-0) in the Ames Research Center 14-foot wind tunnel (OA220)

    Science.gov (United States)

    Esparza, V.; Thornton, D. E.

    1976-01-01

    Results are presented of a 0.10 scale orbiter forebody test with left and right mounted air data probes (ADP) as well as a flight test probe (nose boom). Left and right ADP data were obtained at Mach numbers of .3, .4, .5, .6, .7, .8, .85, .9, .95, .98, 1.05 and 1.1 through a Reynolds number range of 1.3 to 4.4 million. Nose boom data were obtained at Mach numbers of .3, .4, .5, .6, .7, .9 and .98.

  13. Study of Jupiter polarization properties

    International Nuclear Information System (INIS)

    Bolkvadze, O.R.

    1980-01-01

    Investigations into polarization properties of the Jupiter reflected light were carried on at the Abastumani astrophysical observatory in 1967, 1968 and 1969 in the four spectral ranges: 4000, 4800, 5400 and 6600 A deg. Data on light polarization in different parts of the Jupiter visible disk are given. Curves of dependence of the planet light polarization degree on a phase angle are plotted. It is shown that in the central part of the visible planet disk the polarization degree is low. Atmosphere is in a stable state in this part of Jupiter. Mean radius of particles of a cloud layer is equal to 0.26μ, and optical thickness of overcloud atmosphere tau=0.05. Height of transition boundary of the cloud layer into overcloud gas atmosphere changes from year to year at the edges of the equatorial zone. Optical thickness of overcloud atmosphere changes also with changing height of a transient layer. The polar Jupiter regions possess a high degree of polarization which depends on a latitude. Polarization increases monotonously with the latitude and over polar regions accepts a maximum value [ru

  14. Inferring Temperature Inversions in Hot Jupiters Via Spitzer Emission Spectroscopy

    Science.gov (United States)

    Garhart, Emily; Deming, Drake; Mandell, Avi

    2016-10-01

    We present a systematic study of 35 hot Jupiter secondary eclipses, including 16 hot Jupiters never before characterized via emission, observed at the 3.6 μm and 4.5 μm bandpasses of Warm Spitzer in order to classify their atmospheric structure, namely, the existence of temperature inversions. This is a robust study in that these planets orbit stars with a wide range of compositions, temperatures, and activity levels. This diverse sample allows us to investigate the source of planetary temperature inversions, specifically, its correlation with stellar irradiance and magnetic activity. We correct for systematic and intra-pixel sensitivity effects with a pixel level decorrelation (PLD) method described in Deming et al. (2015). The relationship between eclipse depths and a best-fit blackbody function versus stellar activity, a method described in Knutson et al. (2010), will ultimately enable us to appraise the current hypotheses of temperature inversions.

  15. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

    International Nuclear Information System (INIS)

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher

    2010-01-01

    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T eff > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  16. Stable low-altitude orbits around Ganymede considering a disturbing body in a circular orbit

    Science.gov (United States)

    Cardoso dos Santos, J.; Carvalho, J. P. S.; Vilhena de Moraes, R.

    2014-10-01

    Some missions are being planned to visit Ganymede like the Europa Jupiter System Mission that is a cooperation between NASA and ESA to insert the spacecraft JGO (Jupiter Ganymede Orbiter) into Ganymedes orbit. This comprehension of the dynamics of these orbits around this planetary satellite is essential for the success of this type of mission. Thus, this work aims to perform a search for low-altitude orbits around Ganymede. An emphasis is given in polar orbits and it can be useful in the planning of space missions to be conducted around, with respect to the stability of orbits of artificial satellites. The study considers orbits of artificial satellites around Ganymede under the influence of the third-body (Jupiter's gravitational attraction) and the polygenic perturbations like those due to non-uniform distribution of mass (J_2 and J_3) of the main body. A simplified dynamic model for these perturbations is used. The Lagrange planetary equations are used to describe the orbital motion of the artificial satellite. The equations of motion are developed in closed form to avoid expansions in eccentricity and inclination. The results show the argument of pericenter circulating. However, low-altitude (100 and 150 km) polar orbits are stable. Another orbital elements behaved variating with small amplitudes. Thus, such orbits are convenient to be applied to future space missions to Ganymede. Acknowledgments: FAPESP (processes n° 2011/05671-5, 2012/12539-9 and 2012/21023-6).

  17. Transiting exoplanets from the CoRoT space mission. XXIII. CoRoT-21b: a doomed large Jupiter around a faint subgiant star

    DEFF Research Database (Denmark)

    Pätzold, M.; Endl, M.; Csizmadia, Sz.

    2012-01-01

    -up observations, however, were performed mainly by the 10-m Keck telescope in January 2010. The companion CoRoT-21b is a Jupiter-like planet of 2.26 ± 0.33 Jupiter masses and 1.30 ± 0.14 Jupiter radii in an circular orbit of semi-major axis 0.0417 ± 0.0011 AU and an orbital period of 2.72474 ± 0.00014 days....... The planetary bulk density is (1.36   ±   0.48) × 103 kg m-3, very similar to the bulk density of Jupiter, and follows an M1/3 − R relation like Jupiter. The F8IV star is a sub-giant star of 1.29 ± 0.09 solar masses and 1.95 ± 0.2 solar radii. The star and the planet exchange extremetidal forces that will lead...

  18. Survey of Galileo Plasma Observations in Jupiter's Plasma Sheet

    Science.gov (United States)

    Bagenal, Fran; Wilson, Robert J.; Siler, Scott; Paterson, William R.; Kurth, William S.

    2016-01-01

    The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from approx. 2 to 3000 cm(exp.-3) at 6R(sub j) to approx. 0.05cm(sub -3) at 30 R(sub j). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where TI is approx.60-80 eV) at approx. 6R(sub j) to a few keV at 30R(sub j).There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System Ill variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R(sub j).

  19. Atmospheres of Jupiter and Saturn

    International Nuclear Information System (INIS)

    Hunt, G.E.

    1981-01-01

    In this paper the current knowledge of the atmospheres of Jupiter and Saturn are reviewed making use of the extensive telescopic studies, International Ultraviolet Explorer Satellite observations and the measurements made during the recent Pioneer and Voyager flybys which have been supported by detailed theoretical studies. A detailed discussion is given of the composition of these atmospheres and the abundance ratios which provide insight into their original state and their evolution. The Voyager observations indicate a surprisingly close similarity between the weather systems of the Earth and the giant planets. Although both Jupiter and Saturn have internal heat sources, and are therefore star-like in their interiors, they appear to produce terrestrial-style weather systems. A detailed discussion is given of this work, which forms a major study of the Laboratory for Planetary Atmospheres at University College London. (author)

  20. Radio Emission from Red-Giant Hot Jupiters

    Science.gov (United States)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  1. Architectural and chemical insights into the origin of hot Jupiters

    Science.gov (United States)

    Schlaufman, Kevin C.

    2015-10-01

    The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. This problem has been with us for 20 years, long enough for significant progress to have been made, and also for a great deal of ``lore" to have accumulated about the properties of these planets. Among this lore is the widespread belief that hot Jupiters are less likely to be in multiple giant planet systems than longer-period giant planets. I will show that in this case the lore is not supported by the best data available today: hot Jupiters are not lonely. I will also show that stellar sodium abundance is inversely proportional to the probability that a star hosts a short-period giant planet. This observation is best explained by the effect of decreasing sodium abundance on protoplanetary disk structure and reveals that planetesimal-disk or planet-disk interactions are critical for the existence of short-period giant planets.

  2. HUBBLE CLICKS IMAGES OF IO SWEEPING ACROSS JUPITER

    Science.gov (United States)

    2002-01-01

    While hunting for volcanic plumes on Io, NASA's Hubble Space Telescope captured these images of the volatile moon sweeping across the giant face of Jupiter. Only a few weeks before these dramatic images were taken, the orbiting telescope snapped a portrait of one of Io's volcanoes spewing sulfur dioxide 'snow.' These stunning images of the planetary duo are being released to commemorate the ninth anniversary of the Hubble telescope's launch on April 24, 1990. All of these images were taken with the Wide Field and Planetary Camera 2. The three overlapping snapshots show in crisp detail Io passing above Jupiter's turbulent clouds. The close-up picture of Io (bottom right) reveal a 120-mile-high (200-kilometer) plume of sulfur dioxide 'snow' emanating from Pillan, one of the moon's active volcanoes. 'Other observations have inferred sulfur dioxide 'snow' in Io's plumes, but this image offers direct observational evidence for sulfur dioxide 'snow' in an Io plume,' explains John R. Spencer of Lowell Observatory in Flagstaff, Ariz. A Trip Around Jupiter The three snapshots of the volcanic moon rounding Jupiter were taken over a 1.8-hour time span. Io is roughly the size of Earth's moon but 2,000 times farther away. In two of the images, Io appears to be skimming Jupiter's cloud tops, but it's actually 310,000 miles (500,000 kilometers) away. Io zips around Jupiter in 1.8 days, whereas the moon circles Earth every 28 days. The conspicuous black spot on Jupiter is Io's shadow and is about the size of the moon itself (2,262 miles or 3,640 kilometers across). This shadow sails across the face of Jupiter at 38,000 mph (17 kilometers per second). The smallest details visible on Io and Jupiter measure 93 miles (150 kilometers) across, or about the size of Connecticut. These images were further sharpened through image reconstruction techniques. The view is so crisp that one would have to stand on Io to see this much detail on Jupiter with the naked eye. The bright patches on Io

  3. Variability of ethane on Jupiter

    Science.gov (United States)

    Kostiuk, Theodor; Espenak, Fred; Mumma, Michael J.; Deming, Drake; Zipoy, David

    1987-01-01

    Varying stratospheric temperature profiles and C2H6 altitude distributions furnish contexts for the evaluation of ethane abundances and distributions in the Jupiter stratosphere. Substantial ethane line emission and retrieved mole fraction variability is noted near the footprint of Io's flux tube, as well as within the auroral regions. It is suggested that this and other observed phenomena are due to the modification of local stratospheric chemistry by higher-order effects, which are in turn speculated to be due to the precipitation of charged particles along magnetic field lines.

  4. Features of Jupiter's Great Red Spot

    Science.gov (United States)

    1996-01-01

    This montage features activity in the turbulent region of Jupiter's Great Red Spot (GRS). Four sets of images of the GRS were taken through various filters of the Galileo imaging system over an 11.5 hour period on 26 June, 1996 Universal Time. The sequence was designed to reveal cloud motions. The top and bottom frames on the left are of the same area, northeast of the GRS, viewed through the methane (732 nm) filter but about 70 minutes apart. The top left and top middle frames are of the same area and at the same time, but the top middle frame is taken at a wavelength (886 nm) where methane absorbs more strongly. (Only high clouds can reflect sunlight in this wavelength.) Brightness differences are caused by the different depths of features in the two images. The bottom middle frame shows reflected light at a wavelength (757 nm) where there are essentially no absorbers in the Jovian atmosphere. The white spot is to the northwest of the GRS; its appearance at different wavelengths suggests that the brightest elements are 30 km higher than the surrounding clouds. The top and bottom frames on the right, taken nine hours apart and in the violet (415 nm) filter, show the time evolution of an atmospheric wave northeast of the GRS. Visible crests in the top right frame are much less apparent 9 hours later in the bottom right frame. The misalignment of the north-south wave crests with the observed northwestward local wind may indicate a shift in wind direction (wind shear) with height. The areas within the dark lines are 'truth windows' or sections of the images which were transmitted to Earth using less data compression. Each of the six squares covers 4.8 degrees of latitude and longitude (about 6000 square kilometers). North is at the top of each frame.Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The

  5. Solar Probe Plus: Mission design challenges and trades

    Science.gov (United States)

    Guo, Yanping

    2010-11-01

    NASA plans to launch the first mission to the Sun, named Solar Probe Plus, as early as 2015, after a comprehensive feasibility study that significantly changed the original Solar Probe mission concept. The original Solar Probe mission concept, based on a Jupiter gravity assist trajectory, was no longer feasible under the new guidelines given to the mission. A complete redesign of the mission was required, which called for developing alternative trajectories that excluded a flyby of Jupiter. Without the very powerful gravity assist from Jupiter it was extremely difficult to get to the Sun, so designing a trajectory to reach the Sun that is technically feasible under the new mission guidelines became a key enabler to this highly challenging mission. Mission design requirements and challenges unique to this mission are reviewed and discussed, including various mission scenarios and six different trajectory designs utilizing various planetary gravity assists that were considered. The V 5GA trajectory design using five Venus gravity assists achieves a perihelion of 11.8 solar radii ( RS) in 3.3 years without any deep space maneuver (DSM). The V 7GA trajectory design reaches a perihelion of 9.5 RS using seven Venus gravity assists in 6.39 years without any DSM. With nine Venus gravity assists, the V 9GA trajectory design shows a solar orbit at inclination as high as 37.9° from the ecliptic plane can be achieved with the time of flight of 5.8 years. Using combined Earth and Venus gravity assists, as close as 9 RS from the Sun can be achieved in less than 10 years of flight time at moderate launch C3. Ultimately the V 7GA trajectory was chosen as the new baseline mission trajectory. Its design allowing for science investigation right after launch and continuing for nearly 7 years is unprecedented for interplanetary missions. The redesigned Solar Probe Plus mission is not only feasible under the new guidelines but also significantly outperforms the original mission concept

  6. Discovery of a Jupiter/Saturn analog with gravitational microlensing.

    Science.gov (United States)

    Gaudi, B S; Bennett, D P; Udalski, A; Gould, A; Christie, G W; Maoz, D; Dong, S; McCormick, J; Szymanski, M K; Tristram, P J; Nikolaev, S; Paczynski, B; Kubiak, M; Pietrzynski, G; Soszynski, I; Szewczyk, O; Ulaczyk, K; Wyrzykowski, L; Depoy, D L; Han, C; Kaspi, S; Lee, C-U; Mallia, F; Natusch, T; Pogge, R W; Park, B-G; Abe, F; Bond, I A; Botzler, C S; Fukui, A; Hearnshaw, J B; Itow, Y; Kamiya, K; Korpela, A V; Kilmartin, P M; Lin, W; Masuda, K; Matsubara, Y; Motomura, M; Muraki, Y; Nakamura, S; Okumura, T; Ohnishi, K; Rattenbury, N J; Sako, T; Saito, To; Sato, S; Skuljan, L; Sullivan, D J; Sumi, T; Sweatman, W L; Yock, P C M; Albrow, M D; Allan, A; Beaulieu, J-P; Burgdorf, M J; Cook, K H; Coutures, C; Dominik, M; Dieters, S; Fouqué, P; Greenhill, J; Horne, K; Steele, I; Tsapras, Y; Chaboyer, B; Crocker, A; Frank, S; Macintosh, B

    2008-02-15

    Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of approximately 0.71 and approximately 0.27 times the mass of Jupiter and orbital separations of approximately 2.3 and approximately 4.6 astronomical units orbiting a primary star of mass approximately 0.50 solar mass at a distance of approximately 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.

  7. Precise VLA positions and flux-density measurements of the Jupiter system

    International Nuclear Information System (INIS)

    Muhleman, D.O.; Berge, G.L.; Rudy, D.; Niell, A.E.

    1986-01-01

    VLA C array configuration observations at 2 and 6 cm are presented for Europa, Ganymede, and Callisto at eastern and western elongations with respect to Jupiter, which allowed measurements in right ascension and declination of the satellites with an rms precision of about + or - 0.03 arcsec. The transfer of the mean offsets of Ganymede to Jupiter yields offsets of -0.185 + or - 0.03 arcsec and -0.06 + or - 0.03 arcsec, with respect to JPL-DE-200, at the mean epoch of April 28, 1983; the large offset in right ascension is a combination of the Jupiter ephemeris error and the error in the frame tie of the Jovian planets with the VLBI system of precise positions which was used as the absolute reference frame for the observations. A significant error is noted in the orbital position of Callisto with respect to Ganymede. 12 references

  8. Jupiter's magnetosphere and radiation belts

    Science.gov (United States)

    Kennel, C. F.; Coroniti, F. V.

    1979-01-01

    Radioastronomy and Pioneer data reveal the Jovian magnetosphere as a rotating magnetized source of relativistic particles and radio emission, comparable to astrophysical cosmic ray and radio sources, such as pulsars. According to Pioneer data, the magnetic field in the outer magnetosphere is radially extended into a highly time variable disk-shaped configuration which differs fundamentally from the earth's magnetosphere. The outer disk region, and the energetic particles confined in it, are modulated by Jupiter's 10 hr rotation period. The entire outer magnetosphere appears to change drastically on time scales of a few days to a week. In addition to its known modulation of the Jovian decametric radio bursts, Io was found to absorb some radiation belt particles and to accelerate others, and most importantly, to be a source of neutral atoms, and by inference, a heavy ion plasma which may significantly affect the hydrodynamic flow in the magnetosphere. Another important Pioneer finding is that the Jovian outer magnetosphere generates, or permits to escape, fluxes of relativistic electrons of such intensities that Jupiter may be regarded as the dominant source of 1 to 30 MeV cosmic ray electrons in the heliosphere.

  9. Jupiter cloud composition, stratification, convection, and wave motion: a view from new horizons.

    Science.gov (United States)

    Reuter, D C; Simon-Miller, A A; Lunsford, A; Baines, K H; Cheng, A F; Jennings, D E; Olkin, C B; Spencer, J R; Stern, S A; Weaver, H A; Young, L A

    2007-10-12

    Several observations of Jupiter's atmosphere made by instruments on the New Horizons spacecraft have implications for the stability and dynamics of Jupiter's weather layer. Mesoscale waves, first seen by Voyager, have been observed at a spatial resolution of 11 to 45 kilometers. These waves have a 300-kilometer wavelength and phase velocities greater than the local zonal flow by 100 meters per second, much higher than predicted by models. Additionally, infrared spectral measurements over five successive Jupiter rotations at spatial resolutions of 200 to 140 kilometers have shown the development of transient ammonia ice clouds (lifetimes of 40 hours or less) in regions of strong atmospheric upwelling. Both of these phenomena serve as probes of atmospheric dynamics below the visible cloud tops.

  10. Probing the Solar System

    Science.gov (United States)

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  11. Spin transport in intermediate-energy heavy-ion collisions as a probe of in-medium spin–orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Jun, E-mail: xujun@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Bao-An [Department of Physics and Astronomy, Texas A& M University-Commerce, Commerce, TX 75429-3011 (United States); Department of Applied Physics, Xi' an Jiao Tong University, Xi' an 710049 (China); Shen, Wen-Qing [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-11-15

    The spin up-down splitting of collective flows in intermediate-energy heavy-ion collisions as a result of the nuclear spin–orbit interaction is investigated within a spin- and isospin-dependent Boltzmann–Uehling–Uhlenbeck transport model SIBUU12. Using a Skyrme-type spin–orbit coupling quadratic in momentum, we found that the spin splittings of the directed flow and elliptic flow are largest in peripheral Au+Au collisions at beam energies of about 100–200 MeV/nucleon, and the effect is considerable even in smaller systems especially for nucleons with high transverse momenta. The collective flows of light clusters of different spin states are also investigated using an improved dynamical coalescence model with spin. Our study can be important in understanding the properties of in-medium nuclear spin–orbit interactions once the spin-dependent observables proposed in this work can be measured.

  12. Jupiter's evolution with primordial composition gradients

    Science.gov (United States)

    Vazan, Allona; Helled, Ravit; Guillot, Tristan

    2018-02-01

    Recent formation and structure models of Jupiter suggest that the planet can have composition gradients and not be fully convective (adiabatic). This possibility directly affects our understanding of Jupiter's bulk composition and origin. In this Letter we present Jupiter's evolution with a primordial structure consisting of a relatively steep heavy-element gradient of 40 M⊕. We show that for a primordial structure with composition gradients, most of the mixing occurs in the outer part of the gradient during the early evolution (several 107 yr), leading to an adiabatic outer envelope (60% of Jupiter's mass). We find that the composition gradient in the deep interior persists, suggesting that 40% of Jupiter's mass can be non-adiabatic with a higher temperature than the one derived from Jupiter's atmospheric properties. The region that can potentially develop layered convection in Jupiter today is estimated to be limited to 10% of the mass. Movies associated to Figs. 1-3 are available at http://https://www.aanda.org

  13. Kepler-424 b: A "Lonely" Hot Jupiter that Found a Companion

    Science.gov (United States)

    Endl, Michael; Caldwell, Douglas A.; Barclay, Thomas; Huber, Daniel; Isaacson, Howard; Buchhave, Lars A.; Brugamyer, Erik; Robertson, Paul; Cochran, William D.; MacQueen, Phillip J.; Havel, Mathieu; Lucas, Phillip; Howell, Steve B.; Fischer, Debra; Quintana, Elisa; Ciardi, David R.

    2014-11-01

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be "lonely". This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to \\upsilon Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M ⊕. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  14. Kepler-424 b: A 'lonely' hot Jupiter that found A companion

    Energy Technology Data Exchange (ETDEWEB)

    Endl, Michael [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States); Caldwell, Douglas A.; Barclay, Thomas; Huber, Daniel; Havel, Mathieu; Howell, Steve B.; Quintana, Elisa [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Isaacson, Howard [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Buchhave, Lars A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Brugamyer, Erik [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Robertson, Paul [Department of Astronomy and Astrophysics, Center for Exoplanets and Habitable Worlds, Pennsylvania State University (United States); Cochran, William D.; MacQueen, Phillip J. [McDonald Observatory and Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Lucas, Phillip [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Fischer, Debra [Department of Astronomy, Yale University (United States); Ciardi, David R. [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-11-10

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be {sup l}onely{sup .} This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to υ Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M {sub ⊕}.

  15. The infrared spectrum of Jupiter

    Science.gov (United States)

    Ridgway, S. T.; Larson, H. P.; Fink, U.

    1976-01-01

    The principal characteristics of Jupiter's infrared spectrum are reviewed with emphasis on their significance for our understanding of the composition and temperature structure of the Jovian upper atmosphere. The spectral region from 1 to 40 microns divides naturally into three regimes: the reflecting region, thermal emission from below the cloud deck (5-micron hot spots), and thermal emission from above the clouds. Opaque parts of the Jovian atmosphere further subdivide these regions into windows, and each is discussed in the context of its past or potential contributions to our knowledge of the planet. Recent results are incorporated into a table of atmospheric composition and abundance which includes positively identified constituents as well as several which require verification. The limited available information about spatial variations of the infrared spectrum is presented

  16. Comparison of high-energy trapped particle environments at the Earth and Jupiter.

    Science.gov (United States)

    Jun, Insoo; Garrett, Henry B

    2005-01-01

    The 'Van Allen belts' of the trapped energetic particles in the Earth's magnetosphere were discovered by the Explorer I satellite in 1958. In addition, in 1959, it was observed that UHF radio emissions from Jupiter probably had a similar source--the Jovian radiation belts. In this paper, the global characteristics of these two planets' trapped radiation environments and respective magnetospheres are compared and state-of-the-art models used to generate estimates of the high-energy electron (> or = 100 keV) and proton (> or = 1 MeV) populations--the dominant radiation particles in these environments. The models used are the AP8/AE8 series for the Earth and the Divine-Garrett/GIRE model for Jupiter. To illustrate the relative magnitude of radiation effects at each planet, radiation transport calculations were performed to compute the total ionising dose levels at the geosynchronous orbit for the Earth and at Europa (Jupiter's 4th largest moon) for Jupiter. The results show that the dose rates are -0.1 krad(Si) d(-1) at the geosynchronous orbit and -30 krad(Si) d((-1) at Europa for a 2.5 mm spherical shell aluminium shield--a factor of -300 between the two planets.

  17. Comparison of high-energy trapped particle environments at the earth and jupiter

    International Nuclear Information System (INIS)

    Jun, I.; Garrett, H. B.

    2005-01-01

    The 'Van Allen belts' of the trapped energetic particles in the Earth's magnetosphere were discovered by the Explorer I satellite in 1958. In addition, in 1959, it was observed that UHF radio emissions from Jupiter probably had a similar source - The Jovian radiation belts. In this paper, the global characteristics of these two planets' trapped radiation environments and respective magnetospheres are compared and state-of-the-art models used to generate estimates of the high-energy electron (≥100 keV) and proton ≥1 MeV) populations - The dominant radiation particles in these environments. The models used are the AP8/ AE8 series for the Earth and the Divine-Garrett/GIRE model for Jupiter. To illustrate the relative magnitude of radiation effects at each planet, radiation transport calculations were performed to compute the total ionising dose levels at the geosynchronous orbit for the Earth and at Europa (Jupiter's 4. largest moon) for Jupiter. The results show that the dose rates are ∼0.1 krad(Si) d -1 at the geosynchronous orbit and ∼30 krad(Si) d -1 at Europa for a 2.5 mm spherical shell aluminium shield - a factor of ∼300 between the two planets. (authors)

  18. Detection of water vapor on Jupiter

    Science.gov (United States)

    Larson, H. P.; Fink, U.; Treffers, R.; Gautier, T. N., III

    1975-01-01

    High-altitude (12.4 km) spectroscopic observations of Jupiter at 5 microns from the NASA 91.5 cm airborne infrared telescope have revealed 14 absorptions assigned to the rotation-vibration spectrum of water vapor. Preliminary analysis indicates a mixing ratio about 1 millionth for the vapor phase of water. Estimates of temperature (greater than about 300 K) and pressure (less than 20 atm) suggest observation of water deep in Jupiter's hot spots responsible for its 5 micron flux. Model-atmosphere calculations based on radiative-transfer theory may change these initial estimates and provide a better physical picture of Jupiter's atmosphere below the visible cloud tops.

  19. Shoemaker-Levy 9/JUPITER Collision Update

    Science.gov (United States)

    1994-05-01

    There are many signs that the upcoming collision between comet Shoemaker-Levy 9 and giant planet Jupiter is beginning to catch the imagination of the public. Numerous reports in the various media describe the effects expected during this unique event which according to the latest calculations will start in the evening of July 16 and end in the morning of July 22, 1994. (The times in this Press Release are given in Central European Summer Time (CEST), i.e., Universal Time (UT) + 2 hours. The corresponding local time in Chile is CEST - 6 hours.) Astronomers all over the world are now preparing to observe the associated phenomena with virtually all major telescopes. There will be no less than 12 different investigations at the ESO La Silla observatory during this period. This Press Release updates the information published in ESO PR 02/94 (27 January 1994) and provides details about the special services which will be provided by ESO to the media around this rare astronomical event. SCIENTIFIC EXPECTATIONS The nucleus of comet Shoemaker-Levy 9 broke into many smaller pieces during a near passage of Jupiter in July 1992. They are now moving in parallel orbits around this planet and recent calculations show with close to 100 % certainty that they will all collide with it, just two months from now. At some time, more than 20 individual nuclei were observed. This Press Release is accompanied by a photo that shows this formation, the famous "string of pearls", as it looked like in early May 1994. Both Jupiter and these nuclei have been extensively observed during the past months. A large, coordinated observing programme at La Silla has been active since early April and the first results have become available. However, while we now possess more accurate information about the comet's motion and the times of impact, there is still great uncertainty about the effects which may actually be observed at the time of the impacts. This is first of all due to the fact that it has not

  20. D/H ratio for Jupiter

    International Nuclear Information System (INIS)

    Smith, H.; Schempp, W.V.; Baines, K.H.

    1989-01-01

    Observations of Jupiter's spectrum near the R5(0) HD line at 6063.88 A are reported. A feature with an equivalent width of 0.065 + or - 0.021 mA is coincident with the expected line. This feature is compared with HD profiles computed for inhomogeneous scattering models for Jupiter to yield a range for the Jovian D/H ratio of 1.0-2.9 x 10 to the -5th. This D/H ratio is in the lower range of previously reported D/H values for Jupiter and corresponds to an essentially solar D/H ratio for Jupiter. The detection of HD features in the presence of probable blends with spectral features of minor atmospheric hydrocarbon molecules is discussed. Such blends may make unambiguous identification of HD features difficult. 26 references

  1. Terrestrial magnetosphere and comparison with Jupiter's

    International Nuclear Information System (INIS)

    Michel, F.C.

    1974-01-01

    A review of the characteristics of Jupiter's magnetosphere, with comparisons to the earth's is given. Radio observations of Jupiter indicate that energetic electrons are trapped in its magnetic field. The interaction of the trapped radiation with the satellite Io and the centrifugal instability of Jupiter's magnetosphere are discussed. Jupiter's outer magnetosphere is constantly accreting plasma at an uncertain rate. Various mechanisms for supplying ions to the outer magnetosphere are discussed, including: gravitational and centrifugal forces acting on corotating particles; field-line diffusion; photoelectron injection; excitation by Io or other satellites; and viscous interaction with the solar wind. The over-all morphology of the Jovian magnetosphere seems to be highly distorted by centrifugal forces and is easily compressed or deflected by the solar wind

  2. Analysis of JUPITER experiment in ZPPR-9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-09-15

    Information and data from the ZPPR-9 reactor JUPITER experiment are presented concerning a general description of data and methods; criticality; reaction rate ratio and reaction rate distribution; Doppler and sample reactivity worth; sodium void worth; and control rod worth.

  3. Prevalent lightning sferics at 600 megahertz near Jupiter's poles

    Science.gov (United States)

    Brown, Shannon; Janssen, Michael; Adumitroaie, Virgil; Atreya, Sushil; Bolton, Scott; Gulkis, Samuel; Ingersoll, Andrew; Levin, Steven; Li, Cheng; Li, Liming; Lunine, Jonathan; Misra, Sidharth; Orton, Glenn; Steffes, Paul; Tabataba-Vakili, Fachreddin; Kolmašová, Ivana; Imai, Masafumi; Santolík, Ondřej; Kurth, William; Hospodarsky, George; Gurnett, Donald; Connerney, John

    2018-06-01

    Lightning has been detected on Jupiter by all visiting spacecraft through night-side optical imaging and whistler (lightning-generated radio waves) signatures1-6. Jovian lightning is thought to be generated in the mixed-phase (liquid-ice) region of convective water clouds through a charge-separation process between condensed liquid water and water-ice particles, similar to that of terrestrial (cloud-to-cloud) lightning7-9. Unlike terrestrial lightning, which emits broadly over the radio spectrum up to gigahertz frequencies10,11, lightning on Jupiter has been detected only at kilohertz frequencies, despite a search for signals in the megahertz range12. Strong ionospheric attenuation or a lightning discharge much slower than that on Earth have been suggested as possible explanations for this discrepancy13,14. Here we report observations of Jovian lightning sferics (broadband electromagnetic impulses) at 600 megahertz from the Microwave Radiometer15 onboard the Juno spacecraft. These detections imply that Jovian lightning discharges are not distinct from terrestrial lightning, as previously thought. In the first eight orbits of Juno, we detected 377 lightning sferics from pole to pole. We found lightning to be prevalent in the polar regions, absent near the equator, and most frequent in the northern hemisphere, at latitudes higher than 40 degrees north. Because the distribution of lightning is a proxy for moist convective activity, which is thought to be an important source of outward energy transport from the interior of the planet16,17, increased convection towards the poles could indicate an outward internal heat flux that is preferentially weighted towards the poles9,16,18. The distribution of moist convection is important for understanding the composition, general circulation and energy transport on Jupiter.

  4. Band dependence of charge density wave in quasi-one-dimensional Ta2NiSe7 probed by orbital magnetoresistance

    Science.gov (United States)

    He, Jiaming; Zhang, Yiran; Wen, Libin; Yang, Yusen; Liu, Jinyu; Wu, Yueshen; Lian, Hailong; Xing, Hui; Wang, Shun; Mao, Zhiqiang; Liu, Ying

    2017-07-01

    Ta2NiSe7 is a quasi-one-dimensional (quasi-1D) transition-metal chalcogenide with Ta and Ni chain structures. An incommensurate charge-density wave (CDW) in this quasi-1D structure was well studied previously using tunnelling spectrum, X-ray, and electron diffraction, whereas its transport property and the relation to the underlying electronic states remain to be explored. Here, we report our results of the magnetoresistance (MR) on Ta2NiSe7. A breakdown of Kohler's rule is found upon entering the CDW state. Concomitantly, a clear change in curvature in the field dependence of MR is observed. We show that the curvature change is well described by the two-band orbital MR, with the hole density being strongly suppressed in the CDW state, indicating that the p orbitals from Se atoms dominate the change in transport through CDW transition.

  5. On-Orbit Verification of Luminance Based Target Tracking and Faint Body Extractions by a Small Telescope on the World's First Micro-Interplanetary Space Probe

    OpenAIRE

    Ariu, Kaito; Ikari, Satoshi; Kawabata, Yosuke; Nagata, Kazutaka; Matsuguma, Toshihiro; Inamori, Takaya; Miyamura, Norihide; Funase, Ryu; Nakasuka, Shinichi

    2016-01-01

    In recent years, low cost and quick development of very small satellites ranging from CubeSats of 1 kg to micro-satellites of approximately 50 kg have allowed advances in space development and application. Although most of these satellites are in Earth orbits, a small spacecraft for deep-space missions has been developed and launched for the first time in the world. The Proximate Object Close Flyby with Optical Navigation (PROCYON) micro-interplanetary spacecraft, developed by the University ...

  6. (1) Majorana fermions in pinned vortices; (2) Manipulating and probing Majorana fermions using superconducting circuits; and (3) Controlling a nanowire spin-orbit qubit via electric-dipole spin resonance

    Science.gov (United States)

    Nori, Franco

    2014-03-01

    We study a heterostructure which consists of a topological insulator and a superconductor with a hole. This system supports a robust Majorana fermion state bound to the vortex core. We study the possibility of using scanning tunneling spectroscopy (i) to detect the Majorana fermion in this setup and (ii) to study excited states bound to the vortex core. The Majorana fermion manifests itself as an H-dependent zero-bias anomaly of the tunneling conductance. The excited states spectrum differs from the spectrum of a typical Abrikosov vortex, providing additional indirect confirmation of the Majorana state observation. We also study how to manipulate and probe Majorana fermions using super-conducting circuits. In we consider a semiconductor nanowire quantum dot with strong spin-orbit coupling (SOC), which can be used to achieve a spin-orbit qubit. In contrast to a spin qubit, the spin-orbit qubit can respond to an external ac electric field, i.e., electric-dipole spin resonance. We develop a theory that can apply in the strong SOC regime. We find that there is an optimal SOC strength ηopt = √ 2/2, where the Rabi frequency induced by the ac electric field becomes maximal. Also, we show that both the level spacing and the Rabi frequency of the spin-orbit qubit have periodic responses to the direction of the external static magnetic field. These responses can be used to determine the SOC in the nanowire. FN is partly supported by the RIKEN CEMS, iTHES Project, MURI Center for Dynamic Magneto-Optics, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program.

  7. Jupiter Trojan's Shallow Subsurface: Direct Observation By Radar Sounding

    Science.gov (United States)

    Herique, A.; Plettemeier, D.; Beck, P.; Michel, P.; Kumamoto, A.; Kofman, W. W.

    2017-12-01

    Most of the Jupiter's Trojan are classified as spectral type P or D from visible and near-IR observations. Still, major question remain regarding theire origin and geological evolution: What ices are present in their interior, and in what amount? What is the abundance and the nature of the organic fraction? Did they experience some level of differentiation powered by 26Al? Answering theses question is the goal of the Solar-Power Sail JAXA mission [1, 2]. This mission plans to study the surface by remote sensing in the optical in IR domain. This probe will carry a large-sized lander with a drill to sample the constitutive material at meter depth in order to complement physical and chemical properties measured by on-board instruments. The sample return is an option under study.Radar sounding of the shallow subsurface would be envisaged in complement to this payload. Sounding radar could provide the structure of the first tens of meters of the Trojan surface. It will allow identifying layering, ice lens, and embedded block. It also will enable to reconnect the surface with the deep interior in order to identify exogenous / pristine material. For the surface package, the drilling and the sample return, radar sounding is a unique opportunity to support the selection of the landing site and to provide the greater geological context of the samples that will be returned to Earth.In this paper, we will detail the objective of this instrument and then we will outline the proposed instrument, which is inheriting from the radar developed for the AIDA/AIM mission.[1] Mori, O. et al., Science experiments on a Jupiter Trojan Asteroid in the solar powerd sail mission. LPSC 2016 - 1822.[2] Okada, T. et al., Science and Exploration of a Jupiter Trojan Asteroid in the solar-power sail mission. LPSC 2017 - 1828.

  8. Too Little, Too Late: How the Tidal Evolution of Hot Jupiters Affects Transit Surveys of Clusters

    Science.gov (United States)

    Debes, John H.; Jackson, Brian

    2010-01-01

    The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense HST search for transits. We find that in older clusters one expects to detect fewer transiting planets by a factor of two for surveys sensitive to Jupiter-like planets in orbits out to 0.5 AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08 AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of semi-major axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8 Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars.

  9. Magnetotail Reconnection and Flux Circulation: Jupiter and Saturn Compared

    Science.gov (United States)

    Jackman, C. M.; Vogt, M. F.; Slavin, J. A.; Cowley, S. W. H.; Boardsen, S. A.

    2011-01-01

    The Jovian magnetosphere has been visited by eight spacecraft, and the magnetometer data have been used to identify dozens of plasmoids and 250 field dipolarizations associated with magnetic reconnection in the tail [e.g. Vogt et al., 2010]. Since the arrival of the Cassini spacecraft at Saturn in 2004, the magnetometer instrument has also been used to identify reconnection signatures. The deepest magnetotail orbits were in 2006, and during this time 34 signatures of plasmoids were identified. In this study we compare the statistical properties of plasmoids at Jupiter and Saturn such as duration, size, location, and recurrence period. Such parameters can be influenced by many factors, including the different Dungey cycle timescales and cross-magnetospheric potential drops at the two planets. We present superposed epoch analyses of plasmoids at the two planets to determine their average properties and to infer their role in the reconfiguration of the nightside of the magnetosphere. We examine the contributions of plasmoids to the magnetic flux transfer cycle at both planets. At Jupiter, there is evidence of an extended interval after reconnection where the field remains northward (analogous to the terrestrial post-plasmoid plasma sheet). At Saturn we see a similar feature, and calculate the amount of flux closed on average in reconnection events, leading us to an estimation of the recurrence rate of plasmoid release.

  10. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    International Nuclear Information System (INIS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array

  11. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550 (Japan); Spiegel, David S. [Analytics and Algorithms, Stitch Fix, San Francisco, CA 94103 (United States); Mroczkowski, Tony [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Nordhaus, Jason [Department of Science and Mathematics, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Zimmerman, Neil T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Parsons, Aaron R. [Astronomy Department, University of California, Berkeley, CA (United States); Mirbabayi, Mehrdad [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Madhusudhan, Nikku, E-mail: yuka.fujii@elsi.jp [Astronomy Department, University of Cambridge (United Kingdom)

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  12. Family Portrait of the Small Inner Satellites of Jupiter

    Science.gov (United States)

    1997-01-01

    These images, taken by Galileo's solid state imaging system between November 1996 and June 1997, provide the first ever 'family portrait' of the four small, irregularly shaped moons that orbit Jupiter in the zone between the planet's ring and the larger Galilean satellites. The moons are shown in their correct relative sizes, with north approximately up in all cases. From left to right, arranged in order of increasing distance from Jupiter, are Metis (longest dimension is approximately 60 kilometers or 37 miles across), Adrastea (20 kilometers or 12 miles across), Amalthea (247 kilometers or 154 miles across), and Thebe (116 kilometers or 72 miles across). While Amalthea, the largest of these four tiny moons, was imaged by NASA's two Voyager spacecraft in 1979 with a resolution comparable to what is shown here, the new Galileo observations represent the first time that Metis, Adrastea, and Thebe have been seen as more than points of light.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  13. Mass-loss evolution of close-in exoplanets: Evaporation of hot Jupiters and the effect on population

    International Nuclear Information System (INIS)

    Kurokawa, H.; Nakamoto, T.

    2014-01-01

    During their evolution, short-period exoplanets may lose envelope mass through atmospheric escape owing to intense X-ray and extreme ultraviolet (XUV) radiation from their host stars. Roche-lobe overflow induced by orbital evolution or intense atmospheric escape can also contribute to mass loss. To study the effects of mass loss on inner planet populations, we calculate the evolution of hot Jupiters considering mass loss of their envelopes and thermal contraction. Mass loss is assumed to occur through XUV-driven atmospheric escape and the following Roche-lobe overflow. The runaway effect of mass loss results in a dichotomy of populations: hot Jupiters that retain their envelopes and super Earths whose envelopes are completely lost. Evolution primarily depends on the core masses of planets and only slightly on migration history. In hot Jupiters with small cores (≅ 10 Earth masses), runaway atmospheric escape followed by Roche-lobe overflow may create sub-Jupiter deserts, as observed in both mass and radius distributions of planetary populations. Comparing our results with formation scenarios and observed exoplanets populations, we propose that populations of closely orbiting exoplanets are formed by capturing planets at/inside the inner edges of protoplanetary disks and subsequent evaporation of sub-Jupiters.

  14. Mass-loss evolution of close-in exoplanets: Evaporation of hot Jupiters and the effect on population

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, H. [Department of Physics, Nagoya Univsersity, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Nakamoto, T., E-mail: kurokawa@nagoya-u.jp [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2014-03-01

    During their evolution, short-period exoplanets may lose envelope mass through atmospheric escape owing to intense X-ray and extreme ultraviolet (XUV) radiation from their host stars. Roche-lobe overflow induced by orbital evolution or intense atmospheric escape can also contribute to mass loss. To study the effects of mass loss on inner planet populations, we calculate the evolution of hot Jupiters considering mass loss of their envelopes and thermal contraction. Mass loss is assumed to occur through XUV-driven atmospheric escape and the following Roche-lobe overflow. The runaway effect of mass loss results in a dichotomy of populations: hot Jupiters that retain their envelopes and super Earths whose envelopes are completely lost. Evolution primarily depends on the core masses of planets and only slightly on migration history. In hot Jupiters with small cores (≅ 10 Earth masses), runaway atmospheric escape followed by Roche-lobe overflow may create sub-Jupiter deserts, as observed in both mass and radius distributions of planetary populations. Comparing our results with formation scenarios and observed exoplanets populations, we propose that populations of closely orbiting exoplanets are formed by capturing planets at/inside the inner edges of protoplanetary disks and subsequent evaporation of sub-Jupiters.

  15. THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. I. MEASURING PHOTOMETRIC ECCENTRICITIES OF INDIVIDUAL TRANSITING PLANETS

    International Nuclear Information System (INIS)

    Dawson, Rebekah I.; Johnson, John Asher

    2012-01-01

    Exoplanet orbital eccentricities offer valuable clues about the history of planetary systems. Eccentric, Jupiter-sized planets are particularly interesting: they may link the 'cold' Jupiters beyond the ice line to close-in hot Jupiters, which are unlikely to have formed in situ. To date, eccentricities of individual transiting planets primarily come from radial-velocity measurements. Kepler has discovered hundreds of transiting Jupiters spanning a range of periods, but the faintness of the host stars precludes radial-velocity follow-up of most. Here, we demonstrate a Bayesian method of measuring an individual planet's eccentricity solely from its transit light curve using prior knowledge of its host star's density. We show that eccentric Jupiters are readily identified by their short ingress/egress/total transit durations—part of the 'photoeccentric' light curve signature of a planet's eccentricity—even with long-cadence Kepler photometry and loosely constrained stellar parameters. A Markov Chain Monte Carlo exploration of parameter posteriors naturally marginalizes over the periapse angle and automatically accounts for the transit probability. To demonstrate, we use three published transit light curves of HD 17156 b to measure an eccentricity of e = 0.71 +0.16 –0.09 , in good agreement with the discovery value e = 0.67 ± 0.08 based on 33 radial-velocity measurements. We present two additional tests using Kepler data. In each case, the technique proves to be a viable method of measuring exoplanet eccentricities and their confidence intervals. Finally, we argue that this method is the most efficient, effective means of identifying the extremely eccentric, proto-hot Jupiters predicted by Socrates et al.

  16. Modeling of Jupiter's electron an ion radiation belts

    International Nuclear Information System (INIS)

    Sicard, Angelica

    2004-01-01

    In the Fifties, James Van Allen showed the existence of regions of the terrestrial magnetosphere consisted of energetic particles, trapped by the magnetic field: the radiation belts. The radiation belts of the Earth were the subject of many modeling works and are studied since several years at the Departement Environnement Spatial (DESP) of ONERA. In 1998, the DESP decided to adapt the radiation belts model of the Earth, Salammbo, to radiation environment of Jupiter. A first thesis was thus carried out on the subject and a first radiation belts model of electrons of Jupiter was developed [Santos-Costa, 2001]. The aim of this second thesis is to develop a radiation belts model for protons and heavy ions. In order to validate the developed model, the comparisons between Salammbo results and observations are essential. However, the validation is difficult in the case of protons and heavy ions because in-situ measurements of the probes are very few and most of the time contaminated by very energetic electrons. To solve this problem, a very good model of electrons radiation belts is essential to confirm or cancel the contamination of protons and heavy ions measurements. Thus, in parallel to the development of the protons and heavy ions radiation belts model, the electrons models, already existing, has been improved. Then Salammbo results have been compared to the different observations available (in-situ measurements, radio-astronomical observations). The different comparisons show a very good agreement between Salammbo results and observations. (author) [fr

  17. The size of Jupiter's electrically conducting fluid core

    International Nuclear Information System (INIS)

    Hide, R.; Malin, S.R.C.

    1979-01-01

    When the magnetic field of a planet is due to hydromagnetic dynamo action in an electrically conducting fluid core surrounded by a poorly conducting mantle it is possible in principle to determine the radius rsub(c) of the core from determinations of secular changes in the magnetic field B in the accessible region above the surface of the planet, mean radius rsub(s) (> = rsub(c)). A preliminary study is described in which the magnetic field measurements made in December 1973 and December 1974 when the Pioneer 10 and 11 fly-by space probes encountered Jupiter have been analysed. It was expected that over such a short time interval any true secular changes would be masked by errors and the corresponding estimates of rsub(c)/rsub(s) highly implausible or even physically impossible, but this turns out not to be the case. Taken at their face value the apparent secular changes in the dipole and quadrupole components of Jupiter's magnetic field imply that rsub(c)/rsub(s) is close to 0.7. Somewhat higher values of rsub(c)/rsub(s) are found when contributions from the octupole component are also included. (UK)

  18. Solar-wind predictions for the Parker Solar Probe orbit. Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations

    Science.gov (United States)

    Venzmer, M. S.; Bothmer, V.

    2018-03-01

    Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R⊙) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner heliosphere which is derived from OMNI and Helios data. The German-US space probes Helios 1 and Helios 2 flew in the 1970s and observed solar wind in the ecliptic within heliocentric distances of 0.29 au to 0.98 au. The OMNI database consists of multi-spacecraft intercalibrated in situ data obtained near 1 au over more than five solar cycles. The international sunspot number (SSN) and its predictions are used to derive dependencies of the major solar-wind parameters on solar activity and to forecast their properties for the PSP mission. Methods: The frequency distributions for the solar-wind key parameters, magnetic field strength, proton velocity, density, and temperature, are represented by lognormal functions. In addition, we consider the velocity distributions bi-componental shape, consisting of a slower and a faster part. Functional relations to solar activity are compiled with use of the OMNI data by correlating and fitting the frequency distributions with the SSN. Further, based on the combined data set from both Helios probes, the parameters frequency distributions are fitted with respect to solar distance to obtain power law dependencies. Thus an empirical solar-wind model for the inner

  19. Photochemistry, mixing and transport in Jupiter's stratosphere constrained by Cassini

    Science.gov (United States)

    Hue, V.; Hersant, F.; Cavalié, T.; Dobrijevic, M.; Sinclair, J. A.

    2018-06-01

    In this work, we aim at constraining the diffusive and advective transport processes in Jupiter's stratosphere, using Cassini/CIRS observations published by Nixon et al. (2007,2010). The Cassini-Huygens flyby of Jupiter on December 2000 provided the highest spatially resolved IR observations of Jupiter so far, with the CIRS instrument. The IR spectrum contains the fingerprints of several atmospheric constituents and allows probing the tropospheric and stratospheric composition. In particular, the abundances of C2H2 and C2H6, the main compounds produced by methane photochemistry, can be retrieved as a function of latitude in the pressure range at which CIRS is sensitive to. CIRS observations suggest a very different meridional distribution for these two species. This is difficult to reconcile with their photochemical histories, which are thought to be tightly coupled to the methane photolysis. While the overall abundance of C2H2 decreases with latitude, C2H6 becomes more abundant at high latitudes. In this work, a new 2D (latitude-altitude) seasonal photochemical model of Jupiter is developed. The model is used to investigate whether the addition of stratospheric transport processes, such as meridional diffusion and advection, are able to explain the latitudinal behavior of C2H2 and C2H6. We find that the C2H2 observations are fairly well reproduced without meridional diffusion. Adding meridional diffusion to the model provides an improved agreement with the C2H6 observations by flattening its meridional distribution, at the cost of a degradation of the fit to the C2H2 distribution. However, meridional diffusion alone cannot produce the observed increase with latitude of the C2H6 abundance. When adding 2D advective transport between roughly 30 mbar and 0.01 mbar, with upwelling winds at the equator and downwelling winds at high latitudes, we can, for the first time, reproduce the C2H6 abundance increase with latitude. In parallel, the fit to the C2H2 distribution is

  20. Split Fermi Surfaces of the Spin-Orbit-Coupled Metal Cd2Re2O7 Probed by de Haas-van Alphen Effect

    Science.gov (United States)

    Matsubayashi, Yasuhito; Sugii, Kaori; Hirose, Hishiro T.; Hirai, Daigorou; Sugiura, Shiori; Terashima, Taichi; Uji, Shinya; Hiroi, Zenji

    2018-05-01

    The superconducting pyrochlore oxide Cd2Re2O7 shows a structural transition with inversion symmetry breaking (ISB) at Ts1 = 200 K. A recent theory [https://doi.org/10.1103/PhysRevLett.115.026401" xlink:type="simple">L. Fu, Phys. Rev. Lett. 115, 026401 (2015)] suggests that the origin is an electronic instability that leads to a multipolar order in the spin-orbit-coupled metal. To observe the Fermi surface of the low-temperature phase of Cd2Re2O7, we perform de Haas-van Alphen effect measurements by means of magnetic torque. In reference to a calculated band structure, the spin-split Fermi surfaces with large cyclotron masses of 5-9m0 are revealed. The splitting is suggested to be due to an antisymmetric spin-orbit coupling induced by ISB, the strength of which is estimated to be approximately 67 K, which is rather smaller than those of typical non-centrosymmetric metals.

  1. A possible flyby anomaly for Juno at Jupiter

    Science.gov (United States)

    Acedo, L.; Piqueras, P.; Moraño, J. A.

    2018-05-01

    In the last decades there have been an increasing interest in improving the accuracy of spacecraft navigation and trajectory data. In the course of this plan some anomalies have been found that cannot, in principle, be explained in the context of the most accurate orbital models including all known effects from classical dynamics and general relativity. Of particular interest for its puzzling nature, and the lack of any accepted explanation for the moment, is the flyby anomaly discovered in some spacecraft flybys of the Earth over the course of twenty years. This anomaly manifest itself as the impossibility of matching the pre and post-encounter Doppler tracking and ranging data within a single orbit but, on the contrary, a difference of a few mm/s in the asymptotic velocities is required to perform the fitting. Nevertheless, no dedicated missions have been carried out to elucidate the origin of this phenomenon with the objective either of revising our understanding of gravity or to improve the accuracy of spacecraft Doppler tracking by revealing a conventional origin. With the occasion of the Juno mission arrival at Jupiter and the close flybys of this planet, that are currently been performed, we have developed an orbital model suited to the time window close to the perijove. This model shows that an anomalous acceleration of a few mm/s2 is also present in this case. The chance for overlooked conventional or possible unconventional explanations is discussed.

  2. Constraining planetary migration and tidal dissipation with coeval hot Jupiters

    Science.gov (United States)

    O'Connor, Christopher E.; Hansen, Bradley M. S.

    2018-06-01

    We investigate the constraints on the formation of, and tidal dissipation processes in, hot Jupiters (HJs) that can be inferred based on reliable knowledge of the age of a system or population. Particular attention is paid to the role of young systems (such as those in open clusters or star-forming regions) in such studies. For an ensemble of coeval HJ (or proto-HJ) systems, we quantify the effect of age on the distribution of orbital eccentricities with respect to orbital periods as well as the location of the observed `pile-up' feature. We expect the effects of pre-main-sequence stellar evolution to be important only if a substantial fraction of HJs approach their current orbits early in protostellar contraction (ages ≲ 10 Myr). Application to the HJs presently known in the cluster M 67 yields constraints on the dissipation roughly consistent with those gleaned from planets in the field; for those in the Hyades and Praesepe, our results suggest a higher degree of dissipation at early times than that inferred from other populations.

  3. Stability of orbits around planetary satellites considering a disturbing body in an elliptical orbit: Applications to Europa and Ganymede

    Science.gov (United States)

    Cardoso dos Santos, Josué; Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho

    Europa and Ganymede are two of the four Jupiter’s moons which compose the Galilean satellite. These ones are planetary satellites of greater interest at the present moment among the scientific community. There are some missions being planned to visit them and and the Jovian system. One of them is the cooperation between NASA and ESA for the Europa Jupiter System Mission (EJSM). In this mission are planned the insertion of the spacecrafts JEO (Jupiter Europa Orbiter) and JGO (Jupiter Ganymede Orbiter) into Europa and Ganymede’s orbit. Thus, there is a great necessity for having a better comprehension of the dynamics of the orbits around this planetary satellite. This comprehension is essential for the success of this type of mission. In this context, this work aims to perform a search for low-altitude orbits around these planetary satellites. An emphasis is given in polar orbits. These orbits can be useful in the planning of aerospace activities to be conducted around this planetary satellite, with respect to the stability of orbits of artificial satellites. The study considers orbits of an artificial satellite around Europa and Ganymede under the influence of the third-body perturbation (the gravitational attraction of Jupiter) and the polygenic perturbations. These last ones occur due to forces such as the non-uniform distribution of mass (J2 and J3) of the main (central) body. A simplified dynamic model for polygenic perturbations is used. A new model for the third-body disturbance is presented considering it in an elliptical orbit. The Lagrange planetary equations, which compose a system of nonlinear differential equations, are used to describe the orbital motion of the artificial satellite around Ganymede. The equations showed here are developed in closed form to avoid expansions in inclination and eccentricity.

  4. Discovery of Diffuse Hard X-ray Emission associated with Jupiter

    Science.gov (United States)

    Ezoe, Y.; Miyoshi, Y.; Ishikawa, K.; Ohashi, T.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2009-12-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to ~6 x 3 arcmin with the 1-5 keV X-ray luminosity of ~3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. Although such an emission can be originated from multiple background point sources, its possibility is quite low. We hence examined three mechanisms, assuming that the emission is truly diffuse: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon around Jupiter.

  5. One-Year Observations of Jupiter by the Jovian Infrared Auroral Mapper on Juno

    Science.gov (United States)

    Adriani, A.; Mura, A.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.; Becker, H. N.; Bagenal, F.; Hansen, C. J.; Orton, G.; Gladstone, R.; Kurth, W. S.; Mauk, B.; Valek, P. W.

    2017-12-01

    The Jovian InfraRed Auroral Mapper (JIRAM) [1] on board the Juno [2,3] spacecraft, is equipped with an infrared camera and a spectrometer working in the spectral range 2-5 μm. JIRAM was built to study the infrared aurora of Jupiter as well as to map the planet's atmosphere in the 5 µm spectral region. The spectroscopic observations are used for studying clouds and measuring the abundance of some chemical species that have importance in the atmosphere's chemistry, microphysics and dynamics like water, ammonia and phosphine. During 2017 the instrument will operate during all 7 of Juno's Jupiter flybys. JIRAM has performed several observations of the polar regions of the planet addressing the aurora and the atmosphere. Unprecedented views of the aurora and the polar atmospheric structures have been obtained. We present a survey of the most significant observations that the instrument has performed during the current year. [1] Adriani A. et al., JIRAM, the Jovian Infrared Auroral Mapper. Space Sci. Rew., DOI 10.1007/s11214-014-0094-y, 2014. [2] Bolton S.J. et al., Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science DOI: 10.1126/science.aal2108, 2017. [3] Connerney J. E.P. et al., Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, DOI: 10.1126/science.aam5928, 2017.

  6. DYNAMICAL CONSTRAINTS ON THE ORIGIN OF HOT AND WARM JUPITERS WITH CLOSE FRIENDS

    Energy Technology Data Exchange (ETDEWEB)

    Antonini, Fabio; Lithwick, Yoram [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astrophysics, Northwestern University, Evanston, IL 60208 (United States); Hamers, Adrian S. [Leiden Observatory, Niels Bohrweg 2, Leiden, 2333CA (Netherlands)

    2016-12-01

    Gas giants orbiting their host star within the ice line are thought to have migrated to their current locations from farther out. Here we consider the origin and dynamical evolution of observed Jupiters, focusing on hot and warm Jupiters with outer friends. We show that the majority of the observed Jupiter pairs (20 out of 24) are dynamically unstable if the inner planet is placed at ≳1 au distance from the stellar host. This finding is at odds with formation theories that invoke the migration of such planets from semimajor axes ≳1 au due to secular dynamical processes (e.g., secular chaos, Lidov–Kozai [LK] oscillations) coupled with tidal dissipation. In fact, the results of N -body integrations show that the evolution of dynamically unstable systems does not lead to tidal migration but rather to planet ejections and collisions with the host star. This and other arguments lead us to suggest that most of the observed planets with a companion could not have been transported from farther out through secular migration processes. More generally, by using a combination of numerical and analytic techniques, we show that the high- e LK migration scenario can only account for less than 10% of all gas giants observed between 0.1 and 1 au. Simulations of multiplanet systems support this result. Our study indicates that rather than starting on highly eccentric orbits with orbital periods above 1 yr, these “warm” Jupiters are more likely to have reached the region where they are observed today without having experienced significant tidal dissipation.

  7. DYNAMICAL CONSTRAINTS ON THE ORIGIN OF HOT AND WARM JUPITERS WITH CLOSE FRIENDS

    International Nuclear Information System (INIS)

    Antonini, Fabio; Lithwick, Yoram; Hamers, Adrian S.

    2016-01-01

    Gas giants orbiting their host star within the ice line are thought to have migrated to their current locations from farther out. Here we consider the origin and dynamical evolution of observed Jupiters, focusing on hot and warm Jupiters with outer friends. We show that the majority of the observed Jupiter pairs (20 out of 24) are dynamically unstable if the inner planet is placed at ≳1 au distance from the stellar host. This finding is at odds with formation theories that invoke the migration of such planets from semimajor axes ≳1 au due to secular dynamical processes (e.g., secular chaos, Lidov–Kozai [LK] oscillations) coupled with tidal dissipation. In fact, the results of N -body integrations show that the evolution of dynamically unstable systems does not lead to tidal migration but rather to planet ejections and collisions with the host star. This and other arguments lead us to suggest that most of the observed planets with a companion could not have been transported from farther out through secular migration processes. More generally, by using a combination of numerical and analytic techniques, we show that the high- e LK migration scenario can only account for less than 10% of all gas giants observed between 0.1 and 1 au. Simulations of multiplanet systems support this result. Our study indicates that rather than starting on highly eccentric orbits with orbital periods above 1 yr, these “warm” Jupiters are more likely to have reached the region where they are observed today without having experienced significant tidal dissipation.

  8. JUNO Photovoltaic Power at Jupiter

    Science.gov (United States)

    Dawson, Stephen F.; Stella, Paul; McAlpine, William; Smith, Brian

    2012-01-01

    This paper summarizes the Juno modeling team work on predicting the Juno solar array performance at critical mission points including Juno Orbit Insertion (JOI) and End of Mission (EOM). This report consists of background on Juno solar array design, a summary of power estimates, an explanation of the modeling approach used by Aerospace, a detailed discussion of loss factors and performance predictions, a thermal analysis, and a review of risks to solar array performance

  9. THE FREQUENCY OF HOT JUPITERS IN THE GALAXY: RESULTS FROM THE SuperLupus SURVEY

    International Nuclear Information System (INIS)

    Bayliss, Daniel D. R.; Sackett, Penny D.

    2011-01-01

    We present the results of the SuperLupus Survey for transiting hot Jupiter planets, which monitored a single Galactic disk field spanning 0.66 deg 2 for 108 nights over three years. Ten candidates were detected: one is a transiting planet, two remain candidates, and seven have been subsequently identified as false positives. We construct a new image quality metric, S j , based on the behavior of 26,859 light curves, which allows us to discard poor images in an objective and quantitative manner. Furthermore, in some cases we are able to identify statistical false positives by analyzing temporal correlations between S j and transit signatures. We use Monte Carlo simulations to measure our detection efficiency by injecting artificial transits onto real light curves and applying identical selection criteria as used in our survey. We find at 90% confidence level that 0.10 +0.27 –0.08 % of dwarf stars host a hot Jupiter with a period of 1-10 days. Our results are consistent with other transit surveys, but appear consistently lower than the hot Jupiter frequencies reported from radial velocity surveys, a difference we attribute, at least in part, to the difference in stellar populations probed. In light of our determination of the frequency of hot Jupiters in Galactic field stars, previous null results for transiting planets in open cluster and globular cluster surveys no longer appear anomalously low.

  10. Observations and models of the decimetric radio emission from Jupiter

    International Nuclear Information System (INIS)

    Pater, I. de.

    1980-01-01

    The high energy electron distribution as a function of energy, pitch angle and spatial coordinates in Jupiter's inner magnetosphere was derived from a comparison of radio data and model calculations of Jupiter's synchrotron radiation. (Auth.)

  11. On possible life on Jupiter's satellite Io

    Science.gov (United States)

    Vidmachenko, A. P.

    2018-05-01

    Some of the satellites of Jupiter may well be suitable both for mastering, and for finding possible traces of life there. Among them such satellite like Io - nearest Galilean satellite of Jupiter, and one of the most volcanically active bodies in the solar system. Warming of the mantle is caused by a powerful tidal force from the side of Jupiter. This leads to the heating of some parts of the mantle to a temperature above 1800 K, with an average surface temperature of about 140 K. But under its surface can be safe and even comfortable shelters, where life could once have come from the outside (even in a very primitive form), and could survive to this day. Moreover, according to some model's assumptions, Io could sometime be formed in another part of the Solar system, where the water could exist. Note that on neighboring Galilean satellites now exist significant amounts of water .

  12. Thermal tides on a hot Jupiter

    Directory of Open Access Journals (Sweden)

    Hsieh H.-F.

    2011-07-01

    Full Text Available Following the linear analysis laid out by Gu & Ogilvie 2009 (hereafter GO09, we investigate the dynamical response of a non-synchronized hot Jupiter to stellar irradiation. Besides the internal and Rossby waves considered by GO09, we study the Kelvin waves excited by the diurnal Fourier harmonic of the prograde stellar irradiation. We also present a 2-dimensional plot of internal waves excited by the semi-diurnal component of the stellar irradiation and postulate that thermal bulges may arise in a hot Jupiter. Whether our postulation is valid and is consistent with the recent results from Arras & Socrates (2009b requires further investigation.

  13. Self-Consistent Atmosphere Models of the Most Extreme Hot Jupiters

    Science.gov (United States)

    Lothringer, Joshua; Barman, Travis

    2018-01-01

    We present a detailed look at self-consistent PHOENIX atmosphere models of the most highly irradiated hot Jupiters known to exist. These hot Jupiters typically have equilibrium temperatures approaching and sometimes exceeding 3000 K, orbiting A, F, and early-G type stars on orbits less than 0.03 AU (10x closer than Mercury is to the Sun). The most extreme example, KELT-9b, is the hottest known hot Jupiter with a measured dayside temperature of 4600 K. Many of the planets we model have recently attracted attention with high profile discoveries, including temperature inversions in WASP-33b and WASP-121, changing phase curve offsets possibly caused by magnetohydrodymanic effects in HAT-P-7b, and TiO in WASP-19b. Our modeling provides a look at the a priori expectations for these planets and helps us understand these recent discoveries. We show that, in the hottest cases, all molecules are dissociated down to relatively high pressures. These planets may have detectable temperature inversions, more akin to thermospheres than stratospheres in that an optical absorber like TiO or VO is not needed. Instead, the inversions are created by a lack of cooling in the IR combined with heating from atoms and ions at UV and blue optical wavelengths. We also reevaluate some of the assumptions that have been made in retrieval analyses of these planets.

  14. FROM HOT JUPITERS TO SUPER-EARTHS VIA ROCHE LOBE OVERFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Valsecchi, Francesca; Rasio, Frederic A.; Steffen, Jason H. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2014-09-20

    Through tidal dissipation in a slowly spinning host star, the orbits of many hot Jupiters may decay down to the Roche limit. We expect that the ensuing mass transfer will be stable in most cases. Using detailed numerical calculations, we find that this evolution is quite rapid, potentially leading to the complete removal of the gaseous envelope in a few gigayears, and leaving behind an exposed rocky core (a {sup h}ot super-Earth{sup )}. Final orbital periods are quite sensitive to the details of the planet's mass-radius relation and to the effects of irradiation and photo-evaporation, but could be as short as a few hours or as long as several days. Our scenario predicts the existence of planets with intermediate masses ({sup h}ot Neptunes{sup )} that should be found precisely at their Roche limit and in the process of losing mass through Roche lobe overflow. The observed excess of small single-planet candidate systems observed by Kepler may also be the result of this process. If so, the properties of their host stars should track those of the hot Jupiters. Moreover, the number of systems that produced hot Jupiters could be two to three times larger than one would infer from contemporary observations.

  15. SOPHIE velocimetry of Kepler transit candidates. IV. KOI-196b: a non-inflated hot Jupiter with a high albedo

    Science.gov (United States)

    Santerne, A.; Bonomo, A. S.; Hébrard, G.; Deleuil, M.; Moutou, C.; Almenara, J.-M.; Bouchy, F.; Díaz, R. F.

    2011-12-01

    We report the discovery of a new hot-Jupiter, KOI-196b, transiting a solar-type star with an orbital period of 1.855558 days ± 0.6 s thanks to public photometric data from the Kepler space mission and new radial velocity observations obtained by the SOPHIE spectrograph mounted on the 1.93-m telescope at the Observatoire de Haute-Provence, France. The planet KOI-196b, with a radius of 0.89 ± 0.05 RJup and a mass of 0.55 ± 0.09 MJup, orbits a G6V star with R⋆ = 1.02 ± 0.03 R⊙, M⋆ = 1.12 ± 0.07 M⊙, [Fe/H] = 0.29 ± 0.16 dex, Teff = 5620 ± 140 K, and an age of 650 +2500-300} Myr. KOI-196b is one of the rare close-in hot Jupiters with a radius smaller than Jupiter suggesting that it is a non-inflated planet. The high precision of the Kepler photometry permits us to detect the secondary transit with a depth of 64 +10-12} ppm as well as the optical phase variation. We find a geometric albedo of Ag = 0.30 ± 0.08, which is higher than most of the transiting hot Jupiters with a measured Ag. Assuming no heat recirculation, we find a day-side temperature of Tday = 1730 ± 400 K. The planet KOI-196b seems to be one of the rare hot Jupiters located in the short-period hot-Jupiter desert. Based on observations made with SOPHIE on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France.

  16. TRANSITING PLANETS WITH LSST. II. PERIOD DETECTION OF PLANETS ORBITING 1 M{sub ⊙} HOSTS

    Energy Technology Data Exchange (ETDEWEB)

    Jacklin, Savannah [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States); Lund, Michael B.; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Pepper, Joshua [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States)

    2015-07-15

    The Large Synoptic Survey Telescope (LSST) will photometrically monitor ∼10{sup 9} stars for 10 years. The resulting light curves can be used to detect transiting exoplanets. In particular, as demonstrated by Lund et al., LSST will probe stellar populations currently undersampled in most exoplanet transit surveys, including out to extragalactic distances. In this paper we test the efficiency of the box-fitting least-squares (BLS) algorithm for accurately recovering the periods of transiting exoplanets using simulated LSST data. We model planets with a range of radii orbiting a solar-mass star at a distance of 7 kpc, with orbital periods ranging from 0.5 to 20 days. We find that standard-cadence LSST observations will be able to reliably recover the periods of Hot Jupiters with periods shorter than ∼3 days; however, it will remain a challenge to confidently distinguish these transiting planets from false positives. At the same time, we find that the LSST deep-drilling cadence is extremely powerful: the BLS algorithm successfully recovers at least 30% of sub-Saturn-size exoplanets with orbital periods as long as 20 days, and a simple BLS power criterion robustly distinguishes ∼98% of these from photometric (i.e., statistical) false positives.

  17. Extreme orbital evolution from hierarchical secular coupling of two giant planets

    International Nuclear Information System (INIS)

    Teyssandier, Jean; Naoz, Smadar; Lizarraga, Ian; Rasio, Frederic A.

    2013-01-01

    Observations of exoplanets over the last two decades have revealed a new class of Jupiter-size planets with orbital periods of a few days, the so-called 'hot Jupiters'. Recent measurements using the Rossiter-McLaughlin effect have shown that many (∼50%) of these planets are misaligned; furthermore, some (∼15%) are even retrograde with respect to the stellar spin axis. Motivated by these observations, we explore the possibility of forming retrograde orbits in hierarchical triple configurations consisting of a star-planet inner pair with another giant planet, or brown dwarf, in a much wider orbit. Recently, it was shown that in such a system, the inner planet's orbit can flip back and forth from prograde to retrograde and can also reach extremely high eccentricities. Here we map a significant part of the parameter space of dynamical outcomes for these systems. We derive strong constraints on the orbital configurations for the outer perturber (the tertiary) that could lead to the formation of hot Jupiters with misaligned or retrograde orbits. We focus only on the secular evolution, neglecting other dynamical effects such as mean-motion resonances, as well as all dissipative forces. For example, with an inner Jupiter-like planet initially on a nearly circular orbit at 5 AU, we show that a misaligned hot Jupiter is likely to be formed in the presence of a more massive planetary companion (>2 M J ) within ∼140 AU of the inner system, with mutual inclination >50° and eccentricity above ∼0.25. This is in striking contrast to the test particle approximation, where an almost perpendicular configuration can still cause large-eccentricity excitations, but flips of an inner Jupiter-like planet are much less likely to occur. The constraints we derive can be used to guide future observations and, in particular, searches for more distant companions in systems containing a hot Jupiter.

  18. REFLECTED LIGHT CURVES, SPHERICAL AND BOND ALBEDOS OF JUPITER- AND SATURN-LIKE EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Dyudina, Ulyana; Kopparla, Pushkar; Ingersoll, Andrew P.; Yung, Yuk L. [Division of Geological and Planetary Sciences, 150-21 California Institute of Technology, Pasadena, CA 91125 (United States); Zhang, Xi [University of California Santa Cruz 1156 High Street, Santa Cruz, CA 95064 (United States); Li, Liming [Department of Physics, University of Houston, Houston, TX 77204 (United States); Dones, Luke [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder CO 80302 (United States); Verbiscer, Anne, E-mail: ulyana@gps.caltech.edu [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States)

    2016-05-10

    Reflected light curves observed for exoplanets indicate that a few of them host bright clouds. We estimate how the light curve and total stellar heating of a planet depends on forward and backward scattering in the clouds based on Pioneer and Cassini spacecraft images of Jupiter and Saturn. We fit analytical functions to the local reflected brightnesses of Jupiter and Saturn depending on the planet’s phase. These observations cover broadbands at 0.59–0.72 and 0.39–0.5 μ m, and narrowbands at 0.938 (atmospheric window), 0.889 (CH4 absorption band), and 0.24–0.28 μ m. We simulate the images of the planets with a ray-tracing model, and disk-integrate them to produce the full-orbit light curves. For Jupiter, we also fit the modeled light curves to the observed full-disk brightness. We derive spherical albedos for Jupiter and Saturn, and for planets with Lambertian and Rayleigh-scattering atmospheres. Jupiter-like atmospheres can produce light curves that are a factor of two fainter at half-phase than the Lambertian planet, given the same geometric albedo at transit. The spherical albedo is typically lower than for a Lambertian planet by up to a factor of ∼1.5. The Lambertian assumption will underestimate the absorption of the stellar light and the equilibrium temperature of the planetary atmosphere. We also compare our light curves with the light curves of solid bodies: the moons Enceladus and Callisto. Their strong backscattering peak within a few degrees of opposition (secondary eclipse) can lead to an even stronger underestimate of the stellar heating.

  19. Stellar by Day, Planetary by Night: Atmospheres of Ultra-Hot Jupiters

    Science.gov (United States)

    Hensley, Kerry

    2018-06-01

    Move over, hot Jupiters theres an even stranger kind of giant planet in the universe! Ultra-hot Jupiters are so strongly irradiated that the molecules in their atmospheres split apart. What does this mean for heat transport on these planets?Atmospheres of Exotic PlanetsA diagram showing the orbit of an ultra-hot Jupiter and the longitudes at which dissociation and recombination occur. [Bell Cowan 2018]Similar to hot Jupiters, ultra-hot Jupiters are gas giants with atmospheres dominated by molecular hydrogen. What makes them interesting is that their dayside atmospheres are so hot that the molecules dissociate into individual hydrogen atoms more like the atmospheres of stars than planets.Because of the intense stellar irradiation, there is also an extreme temperature difference between the day and night sides of these planets potentially more than 1,000 K! As the stellar irradiation increases, the dayside atmosphere becomes hotter and hotter and the temperature difference between the day and night sides increases.When hot atomic hydrogen is transported into cooler regions (by winds, for instance), it recombines to form H2 molecules and heats the gas, effectively transporting heat from one location to another. This is similar to how the condensation of water redistributes heat in Earths atmosphere but what effect does this phenomenon have on the atmospheres of ultra-hot Jupiters?Maps of atmospheric temperature of molecular hydrogen dissociation fraction for three wind speeds. Click to enlarge. [Bell Cowan 2018]Modeling Heat RedistributionTaylor Bell and Nicolas Cowan (McGill University) used an energy-balance model to estimate the effects of H2 dissociation and recombination on heat transport in ultra-hot Jupiter atmospheres. In particular, they explored the redistribution of heat and how it affects the resultant phase curve the curve that describes the combination of reflected and thermally emitted light from the planet, observed as a function of its phase angle

  20. Dramatic Change in Jupiter's Great Red Spot

    Science.gov (United States)

    Simon, A. A.; Wong, M. H.; Rogers, J. H.; Orton, G. S.; de Pater, I.; Asay-Davis, X.; Carlson, R. W.; Marcus, P. S.

    2015-01-01

    Jupiter's Great Red Spot (GRS) is one of its most distinct and enduring features, having been continuously observed since the 1800's. It currently spans the smallest latitude and longitude size ever recorded. Here we show analyses of 2014 Hubble spectral imaging data to study the color, structure and internal dynamics of this long-live storm.

  1. From Basking Ridge to the Jupiter Trojans

    Science.gov (United States)

    Englander, Jacob

    2017-01-01

    This presentation describes the activities of the Global Trajectory Optimization Lab, a subdivision of the Navigation and Mission Design Branch at NASA GSFC. The students will learn the basics of interplanetary trajectory optimization and then, as an example, the Lucy mission to the Jupiter Trojans will be described from both a science and engineering perspective.

  2. Jupiter Environmental Research & Field Studies Academy.

    Science.gov (United States)

    Huttemeyer, Bob

    1996-01-01

    Describes the development and workings of the Jupiter Environmental Research and Field Studies Academy that focuses on enabling both teachers and students to participate in real-life learning experiences. Discusses qualifications for admittance, curriculum, location, ongoing projects, students, academics, preparation for life, problem solving, and…

  3. JUPITER PROJECT - MERGING INVERSE PROBLEM FORMULATION TECHNOLOGIES

    Science.gov (United States)

    The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project seeks to enhance and build on the technology and momentum behind two of the most popular sensitivity analysis, data assessment, calibration, and uncertainty analysis programs used in envi...

  4. Jupiter Quest: A Path to Scientific Discovery.

    Science.gov (United States)

    Bollman, Kelly A.; Rodgers, Mark H.; Mauller, Robert L.

    2001-01-01

    To experience the world of professional science, students must have access to the scientific community and be allowed to become real scientists. A partnership involving the National Aeronautics and Space Administration, the Jet Propulsion Laboratory, and the Lewis Center for Educational Research has produced Jupiter Quest, an engaging curriculum…

  5. Meteorite Dichotomy Implies that Jupiter Formed Early

    Science.gov (United States)

    Kruijer, T. S.; Burkhardt, C.; Budde, G.; Kleine, T.

    2018-05-01

    Meteorites derive from two distinct nebular reservoirs that co-existed and remained spatially separated between 1 and 3–4 Ma after CAIs. This can most easily be explained if Jupiter acted as a barrier and formed early, within less than 1 Ma.

  6. Baby Jupiters Must Gain Weight Fast

    Science.gov (United States)

    2009-01-01

    This photograph from NASA's Spitzer Space Telescope shows the young star cluster NGC 2362. By studying it, astronomers found that gas giant planet formation happens very rapidly and efficiently, within less than 5 million years, meaning that Jupiter-like worlds experience a growth spurt in their infancy.

  7. Comet Shoemaker-Levy 9 meets Jupiter.

    Science.gov (United States)

    Levy, D. H.; Shoemaker, E. M.; Shoemaker, C. S.

    1995-08-01

    The impact of comet D/1993 F2 (Shoemaker-Levy 9) with Jupiter was unforgettable, an event probably not to be repeated for millennia to come. One year later the astronomers who first spotted the comet reflect on their discovery, on the anxious months of anticipation before the collision and on what has been learned since.

  8. Origin and evolution of Jupiter and Saturn

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S S [Virginia Univ., Charlottesville (USA)

    1977-07-01

    Arguments are presented which make it very unlikely that Jupiter and Saturn were formed by contraction from initially extended gaseous states. Formation of these and other planets (in the solar system) by the mechanism of accretion does not appear to present any difficulties.

  9. Reigniting the Debate: First Spectroscopic Evidence for Stratospheres In Hot Jupiters

    Science.gov (United States)

    Mandell, Avi M.; Haynes, Korey; Madhusudhan, Nikku; Deming, Drake; Knutson, Heather

    2015-12-01

    Hot Jupiters represent an extreme end of the exoplanet distribution: they orbit very close to their host stars, which subjects them to an intense heating from stellar radiation. An inverted temperature structure (i.e. a stratosphere) was an early observable prediction from atmospheric models of these planets, which demonstrated that high-temperature absorbers such as TiO and VO could reprocess incident UV/visible irradiation to heat the upper layers of the atmosphere.Evidence for such thermal inversions began with the first secondary eclipse measurements of transiting hot Jupiters taken with the IRAC camera on Spitzer, offering the chance to physical processe at work in the atmospheres of hot exoplanets. However, these efforts have been stymied by recent revelations of significant systematic biases and uncertainties buried within older Spitzer results, calling into question whether or not temperature inversions are actually present in hot Jupiters.We have recently published spectroscopy of secondary eclipses of the extrasolar planet WASP-33b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope, which allow us to constrain the temperature structure and composition of its dayside atmosphere. WASP-33b is one of the most highly irradiated hot Jupiters discovered to date and orbits a relatively inactive A star, making it an excellent candidate for eclipse spectroscopy at NIR wavelengths (1.1 - 1.7 µm). We find that a fit to combined data from HST, Spitzer and ground-based photometry can rule out models without a temperature inversion; additionally, we find that our measured spectrum displays excess in the measured flux toward short wavelengths that is best explained as emission from TiO.This discovery re-opens the debate on the presence and origin of stratospheres in hot Jupiters, but it also confirms that the combination of HST spectroscopy and a robust analysis of Spitzer and ground-based photometry can conclusively detect thermally inverted atmospheres

  10. TIDALLY DRIVEN ROCHE-LOBE OVERFLOW OF HOT JUPITERS WITH MESA

    Energy Technology Data Exchange (ETDEWEB)

    Valsecchi, Francesca; Rasio, Frederic A. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), and Northwestern University, Department of Physics and Astronomy, Evanston, IL 60208 (United States); Rappaport, Saul [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Marchant, Pablo [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hgel 71, D-53121 Bonn (Germany); Rogers, Leslie A., E-mail: francesca@u.northwestern.edu, E-mail: rasio@northwestern.edu, E-mail: sar@mit.edu, E-mail: pablo@astro.uni-bonn.de, E-mail: larogers@caltech.edu [Department of Astronomy and Department of Geophysics and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-11-10

    Many exoplanets have now been detected in orbits with ultra-short periods very close to the Roche limit. Building upon our previous work, we study the possibility that mass loss through Roche lobe overflow (RLO) may affect the evolution of these planets, and could possibly transform a hot Jupiter into a lower-mass planet (hot Neptune or super-Earth). We focus here on systems in which the mass loss occurs slowly (“stable mass transfer” in the language of binary star evolution) and we compute their evolution in detail with the binary evolution code Modules for Experiments in Stellar Astrophysics. We include the effects of tides, RLO, irradiation, and photo-evaporation (PE) of the planet, as well as the stellar wind and magnetic braking. Our calculations all start with a hot Jupiter close to its Roche limit, in orbit around a Sun-like star. The initial orbital decay and onset of RLO are driven by tidal dissipation in the star. We confirm that such a system can indeed evolve to produce lower-mass planets in orbits of a few days. The RLO phase eventually ends and, depending on the details of the mass transfer and on the planetary core mass, the orbital period can remain around a few days for several Gyr. The remnant planets have rocky cores and some amount of envelope material, which is slowly removed via PE at a nearly constant orbital period; these have properties resembling many of the observed super-Earths and sub-Neptunes. For these remnant planets, we also predict an anti-correlation between mass and orbital period; very low-mass planets (M{sub pl} ≲ 5 M{sub ⊕}) in ultra-short periods (P{sub orb} < 1 day) cannot be produced through this type of evolution.

  11. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff Mathiasen, Anne-Gitte

    2013-01-01

    Mobile probing is a method, developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time and space......). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings point...... to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  12. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff, Anne-Gitte

    2012-01-01

    Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... and space). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  13. Orbit Functions

    Directory of Open Access Journals (Sweden)

    Anatoliy Klimyk

    2006-01-01

    Full Text Available In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space E_n are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter-Dynkin diagram. Properties of such functions will be described. An orbit function is the contribution to an irreducible character of a compact semisimple Lie group G of rank n from one of its Weyl group orbits. It is shown that values of orbit functions are repeated on copies of the fundamental domain F of the affine Weyl group (determined by the initial Weyl group in the entire Euclidean space E_n. Orbit functions are solutions of the corresponding Laplace equation in E_n, satisfying the Neumann condition on the boundary of F. Orbit functions determine a symmetrized Fourier transform and a transform on a finite set of points.

  14. Decameter radio emission of Jupiter

    International Nuclear Information System (INIS)

    Ryabov, B.P.; Arkhipov, A.V.; Shevchenko, V.A.

    1985-01-01

    Recent observations (1980 to 1982) at frequency band from 10 to 23 MHz have allowed large-scale dynamic spectra of S storms to be obtained for the overall duration of each storm. The observations were carried out with the East-West arm of the broad band decametric telescope UTB-2. The minimum-detectable flux density of the emission was 10 Jy. The occurrence probability of S-bursts has shown a periodic dependence on the observation frequency, with a period about 3.5 MHz. S-bursts appear at almost all values of the Jovian central meridian longitude and Io's phase angle PHIsub(Isub(0)), except the area PHIsub(i)O)=160 deg +- 40 deg. The appearance of powerful S-burst storms is controled by Io's orbital position. They concentrate near two values of PHIsub(Isub(0)), namely PHIsub9(Isub(01))=86 deg and PHIsub(Isub(02))=234 deg. All the S-bursts show a group frequency drift, with the rate varying from storm to storm between 60 and 600 kHz/min. The drift rate is positive in the strip near PHIsub(Isub(01)) and negative near PHIsub(Isub(02)). This implies that the conical radiation pattern of the decametric S-component is characterized by a frequency dependent angular structure

  15. A New Approach to Modeling Jupiter's Magnetosphere

    Science.gov (United States)

    Fukazawa, K.; Katoh, Y.; Walker, R. J.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Kita, H.; Tao, C.; Murata, K. T.

    2017-12-01

    The scales in planetary magnetospheres range from 10s of planetary radii to kilometers. For a number of years we have studied the magnetospheres of Jupiter and Saturn by using 3-dimensional magnetohydrodynamic (MHD) simulations. However, we have not been able to reach even the limits of the MHD approximation because of the large amount of computer resources required. Recently thanks to the progress in supercomputer systems, we have obtained the capability to simulate Jupiter's magnetosphere with 1000 times the number of grid points used in our previous simulations. This has allowed us to combine the high resolution global simulation with a micro-scale simulation of the Jovian magnetosphere. In particular we can combine a hybrid (kinetic ions and fluid electrons) simulation with the MHD simulation. In addition, the new capability enables us to run multi-parameter survey simulations of the Jupiter-solar wind system. In this study we performed a high-resolution simulation of Jovian magnetosphere to connect with the hybrid simulation, and lower resolution simulations under the various solar wind conditions to compare with Hisaki and Juno observations. In the high-resolution simulation we used a regular Cartesian gird with 0.15 RJ grid spacing and placed the inner boundary at 7 RJ. From these simulation settings, we provide the magnetic field out to around 20 RJ from Jupiter as a background field for the hybrid simulation. For the first time we have been able to resolve Kelvin Helmholtz waves on the magnetopause. We have investigated solar wind dynamic pressures between 0.01 and 0.09 nPa for a number of IMF values. These simulation data are open for the registered users to download the raw data. We have compared the results of these simulations with Hisaki auroral observations.

  16. Modeling Magnetospheric Fields in the Jupiter System

    OpenAIRE

    Saur, Joachim; Chané, Emmanuel; Hartkorn, Oliver

    2018-01-01

    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter’s large internal dynamo magnetic field generates a gigantic magnetosphere, which in contrast to Earth’s magnetosphere is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the ...

  17. Results of an investigation to determine local flow characteristics at the air data probe locations using an 0.030-scale model (45-0) of the space shuttle vehicle orbiter configuration 140A/B (modified) in the NASA Ames Research Center unitary plan wind tunnel (OA161, A, B, C), volume 1

    Science.gov (United States)

    Nichols, M. E.

    1976-01-01

    Results are presented of wind tunnel test 0A161 of a 0.030-scale model 45-0 of the configuration 140A/B (modified) space shuttle vehicle orbiter in the NASA Ames Research Center Unitary Plan Wind Tunnel facilities. The purpose of this test was to determine local total and static pressure environments for the air data probe locations and relative effectiveness of alternate flight-test probe configurations. Testing was done in the Mach number range from 0.30 to 3.5. Angle of attack was varied from -8 to 25 degrees while sideslip varied between -8 and 8 degrees.

  18. Constraints on the atmospheric circulation and variability of the eccentric hot Jupiter XO-3b

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Ian; Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Astrophysics (CIERA), Department of Earth and Planetary Sciences, Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Agol, Eric [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Fortney, Jonathan J.; Laughlin, Gregory [Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95604 (United States); Fulton, Benjamin J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P., E-mail: iwong@caltech.edu [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2014-10-20

    We report secondary eclipse photometry of the hot Jupiter XO-3b in the 4.5 μm band taken with the Infrared Array Camera on the Spitzer Space Telescope. We measure individual eclipse depths and center of eclipse times for a total of 12 secondary eclipses. We fit these data simultaneously with two transits observed in the same band in order to obtain a global best-fit secondary eclipse depth of 0.1580% ± 0.0036% and a center of eclipse phase of 0.67004 ± 0.00013. We assess the relative magnitude of variations in the dayside brightness of the planet by measuring the size of the residuals during ingress and egress from fitting the combined eclipse light curve with a uniform disk model and place an upper limit of 0.05%. The new secondary eclipse observations extend the total baseline from one and a half years to nearly three years, allowing us to place an upper limit on the periastron precession rate of 2.9 × 10{sup –3} deg day{sup –1}— the tightest constraint to date on the periastron precession rate of a hot Jupiter. We use the new transit observations to calculate improved estimates for the system properties, including an updated orbital ephemeris. We also use the large number of secondary eclipses to obtain the most stringent limits to date on the orbit-to-orbit variability of an eccentric hot Jupiter and demonstrate the consistency of multiple-epoch Spitzer observations.

  19. ORBITAL INJURIES

    Directory of Open Access Journals (Sweden)

    Andrej Kansky

    2002-12-01

    Full Text Available Background. Orbit is involved in 40% of all facial fractures. There is considerable variety in severity, ranging from simple nondisplaced to complex comminuted fractures. Complex comminuted fractures (up to 20% are responsible for the majority of complications and unfavorable results. Orbital fractures are classified as internal orbital fractures, zygomatico-orbital fractures, naso-orbito-ethmoidal fractures and combined fractures. The ophtalmic sequelae of midfacial fractures are usually edema and ecchymosis of the soft tissues, subconjuctival hemorrhage, diplopia, iritis, retinal edema, ptosis, enophthalmos, ocular muscle paresis, mechanical restriction of ocular movement and nasolacrimal disturbances. More severe injuries such as optic nerve trauma and retinal detachments have also been reported. Within the wide range of orbital fractures small group of complex fractures causes most of the sequelae. Therefore identification of severe injuries and adequate treatment is of major importance. The introduction of craniofacial techniques made possible a wide exposure even of large orbital wall defects and their reconstruction by bone grafts. In spite of significant progress, repair of complex orbital wall defects remains a problem even for the experienced surgeons.Results. In 1999 121 facial injuries were treated at our department (Clinical Centre Ljubljana Dept. Of Maxillofacial and Oral Surgery. Orbit was involved in 65% of cases. Isolated inner orbital fractures presented 4% of all fractures. 17 (14% complex cases were treated, 5 of them being NOE, 5 orbital (frame and inner walls, 3 zygomatico-orbital, 2 FNO and 2 maxillo-orbital fractures.Conclusions. Final result of the surgical treatment depends on severity of maxillofacial trauma. Complex comminuted fractures are responsable for most of the unfavorable results and ocular function is often permanently damaged (up to 75% in these fractures.

  20. [Orbital inflammation].

    Science.gov (United States)

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. A Low Mass for Mars from Jupiter's Early Gas-Driven Migration

    Science.gov (United States)

    Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; O'Brien, David P.; Mandell, Avi M.

    2011-01-01

    Jupiter and Saturn formed in a few million years from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only approximately 100,000 years. Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.

  2. K2-140b - an eccentric 6.57 d transiting hot Jupiter in Virgo

    Science.gov (United States)

    Giles, H. A. C.; Bayliss, D.; Espinoza, N.; Brahm, R.; Blanco-Cuaresma, S.; Shporer, A.; Armstrong, D.; Lovis, C.; Udry, S.; Bouchy, F.; Marmier, M.; Jordán, A.; Bento, J.; Cameron, A. Collier; Sefako, R.; Cochran, W. D.; Rojas, F.; Rabus, M.; Jenkins, J. S.; Jones, M.; Pantoja, B.; Soto, M.; Jensen-Clem, R.; Duev, D. A.; Salama, M.; Riddle, R.; Baranec, C.; Law, N. M.

    2018-04-01

    We present the discovery of K2-140b, a P = 6.57 d Jupiter-mass (MP = 1.019 ± 0.070MJup) planet transiting a V = 12.5 (G5-spectral type) star in an eccentric orbit (e = 0.120^{+0.056}_{-0.046}) detected using a combination of K2 photometry and ground-based observations. With a radius of 1.095 ± 0.018 RJup, the planet has a bulk density of 0.726 ± 0.062 ρJup. The host star has a [Fe/H] of 0.12 ± 0.045, and from the K2 light curve, we find a rotation period for the star of 16.3 ± 0.1 d. This discovery is the 9th hot Jupiter from K2 and highlights K2's ability to detect transiting giant planets at periods slightly longer than traditional, ground-based surveys. This planet is slightly inflated, but much less than others with similar incident fluxes. These are of interest for investigating the inflation mechanism of hot Jupiters.

  3. 3D modeling of lightning-induced electromagnetic pulses on Venus, Jupiter and Saturn

    Science.gov (United States)

    Pérez-Invernón, Francisco J.; Luque, Alejandro; Gordillo-Vázquez, Francisco J.

    2017-04-01

    Atmospheric electricity is a common phenomenon in some planets of The Solar System. We know that atmospheric discharges exist on Earth and gaseous planets; however, some characteristics of lightning on Saturn and Jupiter as well as their relevance on the effects of lightning in the atmospheres of these planets are still unknown. In the case of Venus, there exist some radio evidences of lightning, but the lack of optical observations suggests exploring indirect methods of detection, such as searching for lightning-induced transient optical emissions from the upper atmosphere. The Akatsuki probe, currently orbiting Venus, is equipped with a camera whose temporal resolution is high enough to detect optical emissions from lightning discharges and to measure nightglow enhancements. In this work, we extend previous models [1,2] to investigate the chemical impact and transient optical emissions produced by possible lightning-emitted electromagnetic pulses (EMP) in Venus, Saturn and Jupiter. Using a 3D FDTD ("Finite Differences Time Domain") model we solve the Maxwell equations coupled with the Langevin equation for electrons [3] and with a kinetic scheme, different for each planetary atmosphere. This method is useful to investigate the temporal and spatial impact of lightning-induced electromagnetic fields in the atmosphere of each planet for different lightning characteristics (e.g. energy released, orientation). This 3D FDTD model allows us to include the saturnian and jovian background magnetic field inclination and magnitude at different latitudes, and to determine the effects of different lightning channel inclinations. Results provide useful information to interpret lightning observations on giant gaseous planets and in the search for indirect optical signals from atmospheric discharge on Venus such as fast nightglow transient enhancements related to lightning as seen on Earth. Furthermore, we underline the observation of electrical discharges characteristics as a

  4. Interplanetary electrons: what is the strength of the Jupiter source

    International Nuclear Information System (INIS)

    Fillius, W.; Ip, Wing-Huen; Knickerbocker, P.

    1977-01-01

    Because there is not enough information to support a rigorous answer, we use a phenomenological approach and conservative assumptions to address the source strength of Jupiter for interplanetary electrons. We estimate that Jupiter emits approximately 10 24 - 10 26 electrons s -1 of energy > 6 MeV, which source may be compared with the population of approximately 3 x 10 28 electrons of the same energy in Jupiter's outer magnetosphere. We conclude that Jupiter accelerates particles at a rate exceeding that of ordinary trapped particle dynamical processes. (author)

  5. Study of Power Options for Jupiter and Outer Planet Missions

    Science.gov (United States)

    Landis, Geoffrey A.; Fincannon, James

    2015-01-01

    Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.

  6. A catalog of observed nuclear magnitudes of Jupiter family comets

    Science.gov (United States)

    Tancredi, G.; Fernández, J. A.; Rickman, H.; Licandro, J.

    2000-10-01

    A catalog of a sample of 105 Jupiter family (JF) comets (defined as those with Tisserand constants T > 2 and orbital periods P International Comet Quarterly Archive of Cometary Photometric Data, the Minor Planet Center (MPC) data base, IAU Circulars, International Comet Quarterly, and a few papers devoted to some particular comets, together with our own observations. Photometric data previous to 1990 have mainly been taken from the Comet Light Curve Catalogue (CLICC) compiled by Kamél (\\cite{kamel}). We discuss the reliability of the reported nuclear magnitudes in relation to the inherent sources of errors and uncertainties, in particular the coma contamination often present even at large heliocentric distances. A large fraction of the JF comets of our sample indeed shows various degrees of activity at large heliocentric distances, which is correlated with recent downward jumps in their perihelion distances. The reliability of coma subtraction methods to compute the nuclear magnitude is also discussed. Most absolute nuclear magnitudes are found in the range 15 - 18, with no magnitudes fainter than H_N ~ 19.5. The catalog can be found at: http://www.fisica.edu.uy/ ~ gonzalo/catalog/. Table 2 and Appendix B are only available in electronic form at http://www.edpsciences.org Table 5 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  7. Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    Science.gov (United States)

    Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.

    2015-01-01

    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.

  8. Phase Offsets and the Energy Budgets of Hot Jupiters

    Science.gov (United States)

    Schwartz, Joel C.; Kashner, Zane; Jovmir, Diana; Cowan, Nicolas B.

    2017-12-01

    Thermal phase curves of short-period planets on circular orbits provide joint constraints on the fraction of incoming energy that is reflected (Bond albedo) and the fraction of absorbed energy radiated by the night hemisphere (heat recirculation efficiency). Many empirical studies of hot Jupiters have implicitly assumed that the dayside is the hottest hemisphere and the nightside is the coldest hemisphere. For a given eclipse depth and phase amplitude, an orbital lag between a planet’s peak brightness and its eclipse—a phase offset—implies that planet’s nightside emits greater flux. To quantify how phase offsets impact the energy budgets of short-period planets, we compile all infrared observations of the nine planets with multi-band eclipse depths and phase curves. Accounting for phase offsets shifts planets to lower Bond albedo and greater day-night heat transport, usually by ≲1σ. For WASP-12b, the published phase variations have been analyzed in two different ways, and the inferred energy budget depends sensitively on which analysis one adopts. Our fiducial scenario supports a Bond albedo of {0.27}-0.13+0.12, significantly higher than the published optical geometric albedo, and a recirculation efficiency of {0.03}-0.02+0.07, following the trend of larger day-night temperature contrast with greater stellar irradiation. If instead we adopt the alternative analysis, then WASP-12b has a Bond albedo consistent with zero and a much higher recirculation efficiency. To definitively determine the energy budget of WASP-12b, new observational analyses will be necessary.

  9. Temporal and spatial distribution of high energy electrons at Jupiter

    Science.gov (United States)

    Jun, I.; Garrett, H. B.; Ratliff, J. M.

    2003-04-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) were used to study the high energy electron environment in the Jovian magnetosphere, especially in the region between 8 to 18 Rj (1 Rj = 1 Jovian radius = 71,400 km). 10-minute averages of the EPD data collected between Jupiter orbit insertion (JOI) in 1995 and the orbit number 33 (I33) in 2002 form an extensive dataset, which has been extremely useful to observe temporal and spatial variability of the Jovian high energy electron environment. The count rates of the EPD electron channels (0.174, 0.304, 0.527, 1.5, 2.0, and 11 MeV) were grouped into 0.5 Rj or 0.5 L bins and analyzed statistically. The results indicate that: (1) a log-normal Gaussian distribution well describes the statistics of the high energy electron environment (for example, electron differential fluxes) in the Jovian magnetosphere, in the region studied here; (2) the high energy electron environments inferred by the Galileo EPD measurements are in a close agreement with the data obtained using the Divine model, which was developed more than 30 years ago from Pioneer 10, 11 and Voyager 1, 2 data; (3) the data are better organized when plotted against magnetic radial parameter L than Rj; (4) the standard deviations of the 0.174, 0.304, 0.527 MeV channel count rates are larger than those of the 1.5, 2.0, 11 MeV count rates in 12 Rj. These observations are very helpful to understand short- and long-term, and local variability of the Jovian high energy electron environment, and are discussed in detail.

  10. JUPITER and satellites: Clinical implications of the JUPITER study and its secondary analyses.

    Science.gov (United States)

    Kostapanos, Michael S; Elisaf, Moses S

    2011-07-26

    THE JUSTIFICATION FOR THE USE OF STATINS IN PREVENTION: an intervention trial evaluating rosuvastatin (JUPITER) study was a real breakthrough in primary cardiovascular disease prevention with statins, since it was conducted in apparently healthy individuals with normal levels of low-density lipoprotein cholesterol (LDL-C JUPITER, rosuvastatin was associated with significant reductions in cardiovascular outcomes as well as in overall mortality compared with placebo. In this paper the most important secondary analyses of the JUPITER trial are discussed, by focusing on their novel findings regarding the role of statins in primary prevention. Also, the characteristics of otherwise healthy normocholesterolemic subjects who are anticipated to benefit more from statin treatment in the clinical setting are discussed. Subjects at "intermediate" or "high" 10-year risk according to the Framingham score, those who exhibit low post-treatment levels of both LDL-C (JUPITER added to our knowledge that statins may be effective drugs in the primary prevention of cardiovascular disease in normocholesterolemic individuals at moderate-to-high risk. Also, statin treatment may reduce the risk of venous thromboembolism and preserve renal function. An increase in physician-reported diabetes represents a major safety concern associated with the use of the most potent statins.

  11. HET/JUPITER project assessment report

    International Nuclear Information System (INIS)

    Baxter, B.J.; Harrington, F.E.; Kaiser, G.G.; Wolf, J.

    1979-05-01

    This report is an assessment of the United States' Hot Engineering Test (HET) and the Federal Republic of Germany's Juelich Pilot Plant Thorium Element Reprocessing (JUPITER) Projects. The assessment was conducted with a view to developing mutually supportive roles in the achievement of hot engineering test objectives. Conclusions of the assessment are positive and identify several technical areas with potential for US/FRG cooperation. Recommendations presented in this report support a cost-effective US/FRG program to jointly develop high temperature gas-cooled reactor fuel recycle technology. (orig.) [de

  12. THE EVOLUTION OF ASTEROIDS IN THE JUMPING-JUPITER MIGRATION MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Roig, Fernando [Observatòrio Nacional, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ 20921-400 (Brazil); Nesvorný, David, E-mail: froig@on.br, E-mail: davidn@boulder.swri.edu [Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302 (United States)

    2015-12-15

    In this work, we investigate the evolution of a primordial belt of asteroids, represented by a large number of massless test particles, under the gravitational effect of migrating Jovian planets in the framework of the jumping-Jupiter model. We perform several simulations considering test particles distributed in the Main Belt, as well as in the Hilda and Trojan groups. The simulations start with Jupiter and Saturn locked in the mutual 3:2 mean motion resonance plus three Neptune-mass planets in a compact orbital configuration. Mutual planetary interactions during migration led one of the Neptunes to be ejected in less than 10 Myr of evolution, causing Jupiter to jump by about 0.3 AU in semimajor axis. This introduces a large-scale instability in the studied populations of small bodies. After the migration phase, the simulations are extended over 4 Gyr, and we compare the final orbital structure of the simulated test particles to the current Main Belt of asteroids with absolute magnitude H < 9.7. The results indicate that, in order to reproduce the present Main Belt, the primordial belt should have had a distribution peaked at ∼10° in inclination and at ∼0.1 in eccentricity. We discuss the implications of this for the Grand Tack model. The results also indicate that neither primordial Hildas, nor Trojans, survive the instability, confirming the idea that such populations must have been implanted from other sources. In particular, we address the possibility of implantation of Hildas and Trojans from the Main Belt population, but find that this contribution should be minor.

  13. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009

    Science.gov (United States)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John

    2010-01-01

    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  14. LOOKING FOR A PULSE: A SEARCH FOR ROTATIONALLY MODULATED RADIO EMISSION FROM THE HOT JUPITER, {tau} BOOeTIS b

    Energy Technology Data Exchange (ETDEWEB)

    Hallinan, G.; Bourke, S. [Cahill Center for Astrophysics, California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125 (United States); Sirothia, S. K.; Ishwara-Chandra, C. H. [National Centre for Radio Astrophysics, TIFR, Post Bag 3, Pune University Campus, Pune 411007 (India); Antonova, A. [Department of Astronomy, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd., 1164 Sofia (Bulgaria); Doyle, J. G. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Hartman, J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Golden, A. [Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 (United States)

    2013-01-01

    Hot Jupiters have been proposed as a likely population of low-frequency radio sources due to electron cyclotron maser emission of similar nature to that detected from the auroral regions of magnetized solar system planets. Such emission will likely be confined to specific ranges of orbital/rotational phase due to a narrowly beamed radiation pattern. We report on GMRT 150 MHz radio observations of the hot Jupiter {tau} Booetis b, consisting of 40 hr carefully scheduled to maximize coverage of the planet's 79.5 hr orbital/rotational period in an effort to detect such rotationally modulated emission. The resulting image is the deepest yet published at these frequencies and leads to a 3{sigma} upper limit on the flux density from the planet of 1.2 mJy, two orders of magnitude lower than predictions derived from scaling laws based on solar system planetary radio emission. This represents the most stringent upper limits for both quiescent and rotationally modulated radio emission from a hot Jupiter yet achieved and suggests that either (1) the magnetic dipole moment of {tau} Booetis b is insufficient to generate the surface field strengths of >50 G required for detection at 150 MHz or (2) Earth lies outside the beaming pattern of the radio emission from the planet.

  15. Searching Less Perturbed Circular Orbits for a Spacecraft Travelling around Europa

    Directory of Open Access Journals (Sweden)

    J. P. S. Carvalho

    2014-01-01

    Full Text Available Space missions to visit the natural satellite of Jupiter, Europa, constitute an important topic in space activities today, because missions to this moon are under study now. Several considerations have to be made for these missions. The present paper searches for less perturbed circular orbits around Europa. This search is made based on the total effects of the perturbing forces over the time, evaluated by the integral of those forces over the time. This value depends on the dynamical model and on the orbit of the spacecraft. The perturbing forces considered are the third-body perturbation that comes from Jupiter and the J2, J3, and C22 terms of the gravitational potential of Europa. Several numerical studies are performed and the results show the locations of the less perturbed orbits. Using those results, it is possible to find near-circular frozen orbits with smaller amplitudes of variations of the orbital elements.

  16. Orbital transport

    International Nuclear Information System (INIS)

    Oertel, H. Jr.; Koerner, H.

    1993-01-01

    The Third Aerospace Symposium in Braunschweig presented, for the first time, the possibility of bringing together the classical disciplines of aerospace engineering and the natural science disciplines of meteorology and air chemistry in a european setting. In this way, aspects of environmental impact on the atmosphere could be examined quantitatively. An essential finding of the european conference, is the unrestricted agreement of the experts that the given launch frequencies of the present orbital transport result in a negligible amount of pollutants being released in the atmosphere. The symposium does, however, call attention to the increasing need to consider the effect of orbital and atmospheric environmental impact of a future increase in launch frequencies of orbital transport in connection with future space stations. The Third Aerospace Symposium, 'Orbital Transport, Technical, Meteorological and Chemical Aspects', constituted a first forum of discussion for engineers and scientists. Questions of new orbital transport technologies and their environmental impact were to be discussed towards a first consensus. Through the 34 reports and articles, the general problems of space transportation and environmental protection were addressed, as well as particular aspects of high temperatures during reentry in the atmosphere of the earth, precision navigation of flight vehicles or flow behavior and air chemistry in the stratosphere. (orig./CT). 342 figs

  17. EPIC229426032 b and EPIC246067459 b: discovery and characterization of two new transiting hot Jupiters from K2

    Science.gov (United States)

    Soto, M. G.; Díaz, M. R.; Jenkins, J. S.; Rojas, F.; Espinoza, N.; Brahm, R.; Drass, H.; Jones, M. I.; Rabus, M.; Hartman, J.; Sarkis, P.; Jordán, A.; Lachaume, R.; Pantoja, B.; Vučković, M.; Ciardi, D. R.; Crossfield, I.; Dressing, C.; Gonzales, E.; Hirsch, L.

    2018-05-01

    We report the discovery of two hot Jupiters orbiting the stars EPIC229426032 and EPIC246067459. We used photometric data from Campaign 11 and 12 of the Kepler K2 Mission and radial velocity data obtained using the HARPS, FEROS, and CORALIE spectrographs. EPIC229426032 b and EPIC246067459 b have masses of 1.60^{+0.11}_{-0.11} and 0.86^{+0.13}_{-0.12}Mjup, radii of 1.65^{+0.07}_{-0.08} and 1.30^{+0.15}_{-0.14} R_{jup}, and are orbiting their host stars in 2.18 and 3.20-day orbits, respectively. The large radius of EPIC229426032 b leads us to conclude that this candidate corresponds to a highly inflated hot Jupiter. EPIC2460674559 b has a radius consistent with theoretical models, considering the high incident flux falling on the planet. We consider EPIC229426032 b to be a excellent system for follow-up studies, since not only is it very inflated, but it also orbits a relatively bright star (V = 11.6).

  18. Secular Orbit and Spin Variations of Asteroid (16) Psyche

    Science.gov (United States)

    Bills, B. G.; Park, R. S.; Scott, B.

    2016-12-01

    The obliquity, or angular separation between spin and orbit poles, of asteroid (16) Psyche is currently 95 degrees. We are interested in knowing how much that angular separation varies, on time scales of 104 to 106 years. To answer that question, we have done several related analyses. On short time scales, the orbital element variations of Psyche are dominated by perturbations from Jupiter. Jupiter's dominance has two basic causes: first is the large mass and relatively close position of Jupiter, and second is a 19:8 mean motion resonance. Jupiter completes 8 orbits in 94.9009 years, while Psyche takes 94.9107 years to complete 19 orbits. As a result of this, all of the orbital elements of Psyche exhibit significant periodic variations, with a 94.9 year period dominating. There are also significant variations at the synodic period, which is 8.628 years, or 1/11 of the resonant period. Over a 1000 year time span, centered on the present, the eccentricity varies from 0.133 to 0.140, and the inclination varies from 2.961 to 3.229 degrees. On longer time scales, the orbital elements of Psyche vary considerably more than that, due to secular perturbations from the planets. The secular variations are modeled as the response of interacting mass rings, rather than point masses. Again, Jupiter is the main perturbing influence on Psyche. The eccentricity and inclination both oscillate, with dominant periods of 18.667 kyr. The range of values seen over a million year time span, is 0.057 to 0.147 for eccentricity, and 0.384 to 4.777 degrees for inclination. Using a recent shape model, and assumption of uniform density, to constrain relevant moments of inertia, we estimate the spin pole precession rate parameter to be 8.53 arcsec/year. The current spin pole is at ecliptic {lon, lat} = { 32, -7} deg, whereas the orbit pole is at {lon, lat} = {60.47, 86.91} deg. The current obliquity is thus 94.3 degree. Using nominal values of the input parameters, the recovered spin pole

  19. Probing Extragalactic Planets Using Quasar Microlensing

    Science.gov (United States)

    Dai, Xinyu; Guerras, Eduardo

    2018-02-01

    Previously, planets have been detected only in the Milky Way galaxy. Here, we show that quasar microlensing provides a means to probe extragalactic planets in the lens galaxy, by studying the microlensing properties of emission close to the event horizon of the supermassive black hole of the background quasar, using the current generation telescopes. We show that a population of unbound planets between stars with masses ranging from Moon to Jupiter masses is needed to explain the frequent Fe Kα line energy shifts observed in the gravitationally lensed quasar RXJ 1131–1231 at a lens redshift of z = 0.295 or 3.8 billion lt-yr away. We constrain the planet mass-fraction to be larger than 0.0001 of the halo mass, which is equivalent to 2000 objects ranging from Moon to Jupiter mass per main-sequence star.

  20. Positional Catalogues of Saturn's and Jupiter's Moons

    Science.gov (United States)

    Yizhakevych, O.; Andruk, V.; Pakuliak, L.; Lukianchuk, V.; Shatokhina, S.

    In the framework of the UkrVO national project (http://ukr-vo.org/) we have started the processing of photographic observations of Saturn's (S1-S8) and Jupiter's (J6-J8) moons. Observations were conducted during 1961-1993 with three astrographs DLFA, DWA, DAZ and Z600 reflector. Plate images were digitized as tif-files with commercial scanners. Image processing was carried out by specific software package in the LINUX-MIDAS-ROMAFOT environment with Tycho2 as reference. The software was developed at the MAO NASU. Obtained positions of objects were compared with theoretically predicted ones in IMCCE (Paris) (www.imcce.fr/sat) online. Rms error of divergence between observed and calculated positions is of 0.20' - 0.35'.

  1. Magnetosphere - Ionosphere - Thermosphere (MIT) Coupling at Jupiter

    Science.gov (United States)

    Yates, J. N.; Ray, L. C.; Achilleos, N.

    2017-12-01

    Jupiter's upper atmospheric temperature is considerably higher than that predicted by Solar Extreme Ultraviolet (EUV) heating alone. Simulations incorporating magnetosphere-ionosphere coupling effects into general circulation models have, to date, struggled to reproduce the observed atmospheric temperatures under simplifying assumptions such as azimuthal symmetry and a spin-aligned dipole magnetic field. Here we present the development of a full three-dimensional thermosphere model coupled in both hemispheres to an axisymmetric magnetosphere model. This new coupled model is based on the two-dimensional MIT model presented in Yates et al., 2014. This coupled model is a critical step towards to the development of a fully coupled 3D MIT model. We discuss and compare the resulting thermospheric flows, energy balance and MI coupling currents to those presented in previous 2D MIT models.

  2. Does Io's ionosphere influence Jupiter's radio bursts.

    Science.gov (United States)

    Webster, D. L.; Alksne, A. Y.; Whitten, R. C.

    1972-01-01

    Goldreich and Lynden-Bell's theory of Jupiter's Io-correlated decametric radiation sets a lower limit to Io's conductivity, high enough to carry the current associated with the radiated power. Dermott's analysis of conductivities of rocks and ice shows no such conductivity at Io's temperature. However, we show that if Io has even a small atmosphere, say of methane as suggested by Binder and Cruikshank, or of argon or nitrogen, it will have an ionosphere with adequate conductivity to meet the above criterion. A requirement for higher conductivity was found by Goldreich and Lynden-Bell on the basis of motion of magnetic lines past Io. This requirement appears to us unnecessary in view of experiments which prove that motion of the lines is not the source of the electromotance.

  3. The European SL-9/JUPITER Workshop

    Science.gov (United States)

    1995-02-01

    During the past six months, many astronomers - observational as well theoretical - have been busy interpreting the many data taken during the impacts and thereafter. This is a very labour-intensive task and although the first conclusions have begun to emerge, it has also become obvious that extensive consultations between the various groups are necessary before it will be possible to understand the very complex processes during the impacts and thereafter. In order to further the interaction among the involved scientists, it has been decided to hold a three-day "European SL-9/Jupiter Workshop" at the Headquarters of the European Southern Observatory. More than 100 astronomers will meet on February 13-15, 1995, and close to 100 reports will be delivered on this occasion. Although most come from European countries, the major groups on other continents are also well represented. This meeting will give the participants the opportunity to exchange information about their individual programmes and will serve to establish future collaborative efforts. SL-9/JUPITER PRESS CONFERENCE In this connection, ESO is pleased to invite the media to a Press Conference: Wednesday, February 15, 1995, 17:30 CET ESO Headquarters, Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany This conference will be held at the end of the Workshop and will provide a thorough overview of the latest results, as presented during the meeting. Media representatives who are interested in participating in this Press Conference are requested to register with the ESO Information Service (Mrs. E. Völk, Tel.: +49-89-32006276; Fax: +49-89-3202362), at the latest on Friday, February 10, 1995. ESO Press Information is made available on the World-Wide Web (URL: http://www.hq.eso.org/) and on CompuServe (space science and astronomy area, GO SPACE).

  4. The Jupiter system through the eyes of Voyager 1

    Science.gov (United States)

    Smith, B.A.; Soderblom, L.A.; Johnson, T.V.; Ingersoll, A.P.; Collins, S.A.; Shoemaker, E.M.; Hunt, G.E.; Masursky, H.; Carr, M.H.; Davies, M.E.; Cook, A.F.; Boyce, J.; Danielson, G.E.; Owen, Timothy W.; Sagan, C.; Beebe, R.F.; Veverka, J.; Strom, R.G.; McCauley, J.F.; Morrison, D.; Briggs, G.A.; Suomi, V.E.

    1979-01-01

    The cameras aboard Voyager I have provided a closeup view of the Jupiter system, revealing heretofore unknown characteristics and phenomena associated with the planet's atmosphere and the surfaces of its five major satellites. On Jupiter itself, atmospheric motions-the interaction of cloud systems-display complex vorticity. On its dark side, lightning and auroras are observed. A ring was discovered surrounding Jupiter. The satellite surfaces display dramatic differences including extensive active volcanismn on Io, complex tectonism on Ganymnede and possibly Europa, and flattened remnants of enormous impact features on Callisto. Copyright ?? 1979 AAAS.

  5. The high albedo of the hot Jupiter Kepler-7b

    DEFF Research Database (Denmark)

    Demory, B.-O.; Seager, S.; Madhusudhan, N.

    2011-01-01

    Hot Jupiters are expected to be dark from both observations (albedo upper limits) and theory (alkali metals and/or TiO and VO absorption). However, only a handful of hot Jupiters have been observed with high enough photometric precision at visible wavelengths to investigate these expectations....... The NASA Kepler mission provides a means to widen the sample and to assess the extent to which hot Jupiter albedos are low. We present a global analysis of Kepler-7 b based on Q0-Q4 data, published radial velocities, and asteroseismology constraints. We measure an occultation depth in the Kepler bandpass...

  6. Phosphorus Chemistry in the Atmosphere of Jupiter: A Reassessment

    Science.gov (United States)

    Borunov, Sergei; Dorofeeva, Vera; Khodakovsky, Igor; Drossart, Pierre; Lellouch, Emmanuel; Encrenaz, Thérèse

    1995-02-01

    A new distribution of phosphorus compounds in the atmosphere of Jupiter is given, using revised values for the chemical constants. In contrast with previous works, it is shown that phosphine PH 3 remains the most abundant equilibrium gaseous compound even at the upper levels of Jupiter's troposphere. The observed PH 3 abundance is equal to the equilibrium value, at all temperatures above 535 K for solar P and O elemental abundances, and above 600 K for a reasonable range of P and O abundances. P 4O 6 does not take part in the phosphorus cycle on Jupiter.

  7. Cassini ISS Observations of Jupiter: An Exoplanet Perspective

    Science.gov (United States)

    West, Robert A.; Knowles, Benjamin

    2017-10-01

    Understanding the optical and physical properties of planets in our solar system can guide our approach to the interpretation of observations of exoplanets. Although some work has already been done along these lines, there remain low-hanging fruit. During the Cassini Jupiter encounter, the Imaging Science Subsystem (ISS) obtained an extensive set of images over a large range of phase angles (near-zero to 140 degrees) and in filters from near-UV to near-IR, including three methane bands and nearby continuum. The ISS also obtained images using polarizers. Much later in the mission we also obtained distant images while in orbit around Saturn. Some of these data have already been studied to reveal phase behavior (Dyudina et al., Astrophys. J.822, DOI: 10.3847/0004-637X/822/2/76; Mayorga et al., 2016, Astron. J. 152, DOI: 10.3847/0004-6256/152/6/209). Here we examine rotational modulation to determine wavelength and phase angle dependence, and how these may depend on cloud and haze vertical structure and optical properties. The existence of an optically thin forward-scattering and longitudinally-homogeneous haze overlying photometrically-variable cloud fields tends to suppress rotational modulation as phase angle increases, although in the strong 890-nm methane band cloud vertical structure is important. Cloud particles (non-spherical ammonia ice, mostly) have very small polarization signatures at intermediate phase angles and rotational modulation is not apparent above the noise level of our instrument. Part of this work was performed by the Jet Propulsion Lab, Cal. Inst. Of Technology.

  8. TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES

    International Nuclear Information System (INIS)

    Fortney, J. J.; Shabram, M.; Showman, A. P.; Lian, Y.; Lewis, N. K.; Freedman, R. S.; Marley, M. S.

    2010-01-01

    We compute models of the transmission spectra of planets HD 209458b, HD 189733b, and generic hot Jupiters. We examine the effects of temperature, surface gravity, and metallicity for the generic planets as a guide to understanding transmission spectra in general. We find that carbon dioxide absorption at 4.4 and 15 μm is prominent at high metallicity, and is a clear metallicity indicator. For HD 209458b and HD 189733b, we compute spectra for both one-dimensional and three-dimensional model atmospheres and examine the differences between them. The differences are usually small, but can be large if atmospheric temperatures are near important chemical abundance boundaries. The calculations for the three-dimensional atmospheres, and their comparison with data, serve as constraints on these dynamical models that complement the secondary eclipse and light curve data sets. For HD 209458b, even if TiO and VO gases are abundant on the dayside, their abundances can be considerably reduced on the cooler planetary limb. However, given the predicted limb temperatures and TiO abundances, the model's optical opacity is too high. For HD 189733b we find a good match with some infrared data sets and constrain the altitude of a postulated haze layer. For this planet, substantial differences can exist between the transmission spectra of the leading and trailing hemispheres, which are an excellent probe of carbon chemistry. In thermochemical equilibrium, the cooler leading hemisphere is methane-dominated, and the hotter trailing hemisphere is CO-dominated, but these differences may be eliminated by non-equilibrium chemistry due to vertical mixing. It may be possible to constrain the carbon chemistry of this planet, and its spatial variation, with James Webb Space Telescope.

  9. Variability of Jupiter's Five-Micron Hot Spot Inventory

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.; Orton, G. S.; Wakefield, L.; Rogers, J. H.; Simon-Miller, A. A.; Boydstun, K.

    2012-01-01

    Global upheavals on Jupiter involve changes in the albedo of entire axisymmetric regions, lasting several years, with the last two occurring in 1989 and 2006. Against this backdrop of planetary-scale changes, discrete features such as the Great Red Spot (GRS), and other vortices exhibit changes on shorter spatial- and time-scales. We track the variability of the discrete equatorial 5-micron hot spots, semi-evenly spaced in longitude and confined to a narrow latitude band centered at 6.5degN (southern edge of the North Equatorial Belt, NEB), abundant in Voyager images. Tantalizingly similar patterns were observed in the visible (bright plumes and blue-gray regions), where reflectivity in the red is anti-correlated with 5-microns thermal radiance. Ortiz et al. (1998, GRL, 103) characterized the latitude and drift rates of the hot spots, including the descent of the Galileo probe at the southern edge of a 5-micron hot spot, as the superposition of equatorial Rossby waves, with phase speeds between 99 - 103m/s, relative to System III. We note that the high 5-micron radiances correlate well but not perfectly with high 8.57-micron radiances. Because the latter are modulated primarily by changes in the upper ammonia (NH3) ice cloud opacity, this correlation implies that changes in the ammonia ice cloud field may be responsible for the variability seen in the 5-m maps. During the NEB fade (2011 - early 2012), however, these otherwise ubiquitous features were absent, an atmospheric state not seen in decades. The ongoing NEB revival indicates nascent 5-m hot spots as early as April 2012, with corresponding visible dark spots. Their continuing growth through July 2012 indicates the possit.le re-establishment of Rossby waves. The South Equatorial Belt (SEB) and NEB revivals began similarly with an instability that developed into a major outbreak, and many similarities in the observed propagation of clear regions.

  10. Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini

    Science.gov (United States)

    Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.

    2013-01-01

    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.

  11. THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. II. KOI-1474.01, A CANDIDATE ECCENTRIC PLANET PERTURBED BY AN UNSEEN COMPANION

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Rebekah I.; Murray-Clay, Ruth A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, MS-10, Cambridge, MA 02138 (United States); Johnson, John Asher; Morton, Timothy D. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Fabrycky, Daniel C. [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, California 95064 (United States); Howard, Andrew W., E-mail: rdawson@cfa.harvard.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822-1839 (United States)

    2012-12-20

    The exoplanets known as hot Jupiters-Jupiter-sized planets with periods of less than 10 days-likely are relics of dynamical processes that shape all planetary system architectures. Socrates et al. argued that high eccentricity migration (HEM) mechanisms proposed for situating these close-in planets should produce an observable population of highly eccentric proto-hot Jupiters that have not yet tidally circularized. HEM should also create failed-hot Jupiters, with periapses just beyond the influence of fast circularization. Using the technique we previously presented for measuring eccentricities from photometry (the ''photoeccentric effect''), we are distilling a collection of eccentric proto- and failed-hot Jupiters from the Kepler Objects of Interest (KOI). Here, we present the first, KOI-1474.01, which has a long orbital period (69.7340 days) and a large eccentricity e 0.81{sup +0.10}{sub -0.07}, skirting the proto-hot Jupiter boundary. Combining Kepler photometry, ground-based spectroscopy, and stellar evolution models, we characterize host KOI-1474 as a rapidly rotating F star. Statistical arguments reveal that the transiting candidate has a low false-positive probability of 3.1%. KOI-1474.01 also exhibits transit-timing variations of the order of an hour. We explore characteristics of the third-body perturber, which is possibly the ''smoking-gun'' cause of KOI-1474.01's large eccentricity. We use the host star's period, radius, and projected rotational velocity to measure the inclination of the stellar spin. Comparing KOI 1474.01's inclination, we find that its orbit is marginally consistent with being aligned with the stellar spin axis, although a reanalysis is warranted with future additional data. Finally, we discuss how the number and existence of proto-hot Jupiters will not only demonstrate that hot Jupiters migrate via HEM, but also shed light on the typical timescale for the mechanism.

  12. JUPITER PROJECT - JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY

    Science.gov (United States)

    The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project builds on the technology of two widely used codes for sensitivity analysis, data assessment, calibration, and uncertainty analysis of environmental models: PEST and UCODE.

  13. VOYAGER 1 JUPITER POSITION RESAMPLED DATA 48.0 SECONDS

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 1 Jupiter encounter position data that have been generated at a 48.0 second sample rate using the NAIF SPICE kernals. The data set is...

  14. VOYAGER 2 JUPITER POSITION RESAMPLED DATA 48.0 SECONDS

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 2 Jupiter encounter position data that have been generated at a 48.0 second sample rate using the NAIF SPICE kernals. The data set is...

  15. Jupiter energetic particle experiment ESAD proton sensor design

    International Nuclear Information System (INIS)

    Gruhn, C.R.; Higbie, P.R.

    1977-12-01

    A proton sensor design for the Jupiter Energetic Particle Experiment is described. The sensor design uses avalanche multiplication in order to lower the effective energy threshold. A complete signal-to-noise analysis is given for this design

  16. VOYAGER 2 JUPITER MAGNETOMETER RESAMPLED DATA 48.0 SEC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes Voyager 2 Jupiter encounter magnetometer data that have been resampled at a 48.0 second sample rate. The data set is composed of 6 columns: 1)...

  17. The Impact of a Large Object with Jupiter in July 2009

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Wesley, A.; Orton, G.; Chodas, P.; Hueso, R.; Perez-Hoyos, S.; Fletcher, L.; Yanamandra-Fisher, P.; Legarreta, J.; Gomez-Forrellad, J. M.

    2010-05-01

    The only major impact ever observed directly in the Solar System was that of a large fragmented comet with Jupiter in July (1994) (Comet Shoemaker-Levy 9; SL9). We report here the observation of a second, single, large impact on Jupiter that occurred on 19 July 2009 at a latitude of -55° with an orthogonal entry trajectory and a lower incidence angle compared to those of SL9. The size of the initial aerosol cloud debris was 4,800 km East-West and 2,500 km North-South. Comparison its properties with those produced by the SL9 fragments, coupled with dynamical calculations of possible pre-impact orbits, indicates that the impactor was most probably an icy body with a size of 0.5-1 km. We calculate that the rate of collisions of this magnitude may be five to ten times more frequent than previously thought. The search for unpredicted impacts, such as the current one, could be best performed in the near-infrared methane absorption bands at 890 nm and in the 2.12 to 2.3 μm K methane-hydrogen absorption band, where the high-altitude aerosols detach by their brightness relative to Jupiter's primary clouds. We present measurements of the debris dispersion by Jovian winds from a long-term imaging campaign with ground-based telescopes. Ackowledgements: Work was supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07, by NASA funds to JPL, Caltech, by the NASA Postdoctoral Program at JPL, and by the Glasstone Fellowship program at Oxford.

  18. Electron acceleration at Jupiter: input from cyclotron-resonant interaction with whistler-mode chorus waves

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    2013-10-01

    Full Text Available Jupiter has the most intense radiation belts of all the outer planets. It is not yet known how electrons can be accelerated to energies of 10 MeV or more. It has been suggested that cyclotron-resonant wave-particle interactions by chorus waves could accelerate electrons to a few MeV near the orbit of Io. Here we use the chorus wave intensities observed by the Galileo spacecraft to calculate the changes in electron flux as a result of pitch angle and energy diffusion. We show that, when the bandwidth of the waves and its variation with L are taken into account, pitch angle and energy diffusion due to chorus waves is a factor of 8 larger at L-shells greater than 10 than previously shown. We have used the latitudinal wave intensity profile from Galileo data to model the time evolution of the electron flux using the British Antarctic Survey Radiation Belt (BAS model. This profile confines intense chorus waves near the magnetic equator with a peak intensity at ∼5° latitude. Electron fluxes in the BAS model increase by an order of magnitude for energies around 3 MeV. Extending our results to L = 14 shows that cyclotron-resonant interactions with chorus waves are equally important for electron acceleration beyond L = 10. These results suggest that there is significant electron acceleration by cyclotron-resonant interactions at Jupiter contributing to the creation of Jupiter's radiation belts and also increasing the range of L-shells over which this mechanism should be considered.

  19. The Frequency of Hot Jupiters in the Galaxy

    Directory of Open Access Journals (Sweden)

    Sackett P. D.

    2011-02-01

    Full Text Available The frequency of Hot Jupiters around Galactic dwarf stars is determined from the results of the SuperLupus transit survey and realistic Monte Carlo simulations of the survey efficiency. We find that for Hot Jupiters with mean radii of 1.1RJ and periods between 1 and 10 days, the frequency around dwarf stars is just 0.16±0.60.2%.

  20. A Learning Organization approach for Knowledge Management at Jupiter Design.

    OpenAIRE

    Jones, Timothy John

    2006-01-01

    This report has been carried out by a student studying for the degree of a Masters in Business Administration at Nottingham University Business School. The focus of the report is to suggest a knowledge management framework for the client Jupiter Design Limited. Jupiter has experienced considerable success and growth over recent years, evolving from a relatively small but well respected design agency into one of the largest agencies operating outside of London. Due to an expanding clie...

  1. An analysis of Jupiter data from the RAE-1 satellite

    Science.gov (United States)

    Carr, T. D.

    1974-01-01

    The analysis of Radio Astronomy Explorer Satellite data are presented. Radio bursts from Jupiter are reported in the frequency range 4700 KHz to 45 KHz. Strong correlations with lo were found at 4700, 3930, and 2200 KHz, while an equally strong Europa effect was observed at 1300, 900, and 700 KHz. Histograms indicating the relative probability and the successful identification of Jupiter activity were plotted, using automatic computer and visual search techniques.

  2. First Earth-Based Detection of a Superbolide on Jupiter

    Science.gov (United States)

    Hueso, R.; Wesley, A.; Go, C.; Perez-Hoyos, S.; Wong, M. H.; Fletcher, L. N.; Sanchez-Lavega, A.; Boslough, M. B.; DePater, I.; Orton, G. S.; hide

    2010-01-01

    Cosmic collisions can planets cause detectable optical flashes that range from terrestrial shooting stars to bright fireballs. On 2010 June 3 a bolide in Jupiter's atmosphere was simultaneously observed from the Earth by two amateur astronomers observing Jupiter in red and blue wavelengths, The bolide appeared as a flash of 2 s duration in video recording data of the planet. The analysis of the light carve of the observations results in an estimated energy of the impact of (0.9-4,0) x 10(exp 15) J which corresponds to a colliding body of 8-13 m diameter assuming a mean density of 2 g/cu cm. Images acquired a few days later by the Hubble Space Telescope and other large ground-based facilities did not show any signature of aerosol debris, temperature, or chemical composition anomaly, confirming that the body was small and destroyed in Jupiter's upper atmosphere. Several collisions of this size may happen on Jupiter on a yearly basis. A systematic study of the impact rate and size of these bolides can enable an empirical determination. of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. The serendipitous recording of this optical flash opens a new window in the observation of Jupiter with small telescopes.

  3. FIRST EARTH-BASED DETECTION OF A SUPERBOLIDE ON JUPITER

    International Nuclear Information System (INIS)

    Hueso, R.; Perez-Hoyos, S.; Sanchez-Lavega, A.; Wesley, A.; Go, C.; Wong, M. H.; De Pater, I.; Fletcher, L. N.; Boslough, M. B. E.; Orton, G. S.; Yanamandra-Fisher, P. A.; Simon-Miller, A. A.; Djorgovski, S. G.; Edwards, M. L.; Hammel, H. B.; Clarke, J. T.; Noll, K. S.

    2010-01-01

    Cosmic collisions on planets cause detectable optical flashes that range from terrestrial shooting stars to bright fireballs. On 2010 June 3 a bolide in Jupiter's atmosphere was simultaneously observed from the Earth by two amateur astronomers observing Jupiter in red and blue wavelengths. The bolide appeared as a flash of 2 s duration in video recording data of the planet. The analysis of the light curve of the observations results in an estimated energy of the impact of (0.9-4.0) x 10 15 J which corresponds to a colliding body of 8-13 m diameter assuming a mean density of 2 g cm -3 . Images acquired a few days later by the Hubble Space Telescope and other large ground-based facilities did not show any signature of aerosol debris, temperature, or chemical composition anomaly, confirming that the body was small and destroyed in Jupiter's upper atmosphere. Several collisions of this size may happen on Jupiter on a yearly basis. A systematic study of the impact rate and size of these bolides can enable an empirical determination of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. The serendipitous recording of this optical flash opens a new window in the observation of Jupiter with small telescopes.

  4. Magnetohydrodynamic simulations of hot jupiter upper atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Trammell, George B.; Li, Zhi-Yun; Arras, Phil, E-mail: gbt8f@virginia.edu, E-mail: zl4h@virginia.edu, E-mail: arras@virginia.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2014-06-20

    Two-dimensional simulations of hot Jupiter upper atmospheres including the planet's magnetic field are presented. The goal is to explore magnetic effects on the layer of the atmosphere that is ionized and heated by stellar EUV radiation, and the imprint of these effects on the Lyα transmission spectrum. The simulations are axisymmetric, isothermal, and include both rotation and azimuth-averaged stellar tides. Mass density is converted to atomic hydrogen density through the assumption of ionization equilibrium. The three-zone structure—polar dead zone (DZ), mid-latitude wind zone (WZ), and equatorial DZ—found in previous analytic calculations is confirmed. For a magnetic field comparable to that of Jupiter, the equatorial DZ, which is confined by the magnetic field and corotates with the planet, contributes at least half of the transit signal. For even stronger fields, the gas escaping in the mid-latitude WZ is found to have a smaller contribution to the transit depth than the equatorial DZ. Transmission spectra computed from the simulations are compared to Hubble Space Telescope Space Telescope Imaging Spectrograph and Advanced Camera for Surveys data for HD 209458b and HD 189733b, and the range of model parameters consistent with the data is found. The central result of this paper is that the transit depth increases strongly with magnetic field strength when the hydrogen ionization layer is magnetically dominated, for dipole magnetic field B {sub 0} ≳ 10 G. Hence transit depth is sensitive to magnetic field strength, in addition to standard quantities such as the ratio of thermal to gravitational binding energies. Another effect of the magnetic field is that the planet loses angular momentum orders of magnitude faster than in the non-magnetic case, because the magnetic field greatly increases the lever arm for wind braking of the planet's rotation. Spin-down timescales for magnetized models of HD 209458b that agree with the observed transit depth

  5. ATMOSPHERIC HEAT REDISTRIBUTION ON HOT JUPITERS

    International Nuclear Information System (INIS)

    Perez-Becker, Daniel; Showman, Adam P.

    2013-01-01

    Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides—and thus have a larger day-night temperature contrast—than colder planets. To this day, no predictive atmospheric model has been published that identifies which dynamical mechanisms determine the atmospheric heat redistribution efficiency on tidally locked exoplanets. Here we present a shallow-water model of the atmospheric dynamics on synchronously rotating planets that explains why heat redistribution efficiency drops as stellar insolation rises. Our model shows that planets with weak friction and weak irradiation exhibit a banded zonal flow with minimal day-night temperature differences, while models with strong irradiation and/or strong friction exhibit a day-night flow pattern with order-unity fractional day-night temperature differences. To interpret the model, we develop a scaling theory which shows that the timescale for gravity waves to propagate horizontally over planetary scales, τ wave , plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth's tropics. When atmospheric drag can be neglected, the transition from small to large day-night temperature contrasts occurs when τ wave ∼√(τ rad /Ω), where τ rad is the radiative relaxation time and Ω is the planetary rotation frequency. Alternatively, this transition criterion can be expressed as τ rad ∼ τ vert , where τ vert is the timescale for a fluid parcel to move vertically over the difference in day-night thickness. These results subsume the more widely used timescale comparison for estimating heat redistribution efficiency between τ rad and the horizontal day-night advection timescale, τ adv . Only

  6. Observations of Magnetosphere-Ionosphere Coupling Processes in Jupiter's Downward Auroral Current Region

    Science.gov (United States)

    Clark, G. B.; Mauk, B.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Bunce, E. J.; Connerney, J. E. P.; Ebert, R. W.; Gershman, D. J.; Gladstone, R.; Haggerty, D. K.; Hospodarsky, G. B.; Kotsiaros, S.; Kollmann, P.; Kurth, W. S.; Levin, S.; McComas, D. J.; Paranicas, C.; Rymer, A. M.; Saur, J.; Szalay, J. R.; Tetrick, S.; Valek, P. W.

    2017-12-01

    Our view and understanding of Jupiter's auroral regions are ever-changing as Juno continues to map out this region with every auroral pass. For example, since last year's Fall AGU and the release of publications regarding the first perijove orbit, the Juno particles and fields teams have found direct evidence of parallel potential drops in addition to the stochastic broad energy distributions associated with the downward current auroral acceleration region. In this region, which appears to exist in an altitude range of 1.5-3 Jovian radii, the potential drops can reach as high as several megavolts. Associated with these potentials are anti-planetward electron angle beams, energetic ion conics and precipitating protons, oxygen and sulfur. Sometimes the potentials within the downward current region are structured such that they look like the inverted-V type distributions typically found in Earth's upward current region. This is true for both the ion and electron energy distributions. Other times, the parallel potentials appear to be intermittent or spatially structured in a way such that they do not look like the canonical diverging electrostatic potential structure. Furthermore, the parallel potentials vary grossly in spatial/temporal scale, peak voltage and associated parallel current density. Here, we present a comprehensive study of these structures in Jupiter's downward current region focusing on energetic particle measurements from Juno-JEDI.

  7. JIRAM, the image spectrometer in the near infrared on board the Juno mission to Jupiter.

    Science.gov (United States)

    Adriani, Alberto; Coradini, Angioletta; Filacchione, Gianrico; Lunine, Jonathan I; Bini, Alessandro; Pasqui, Claudio; Calamai, Luciano; Colosimo, Fedele; Dinelli, Bianca M; Grassi, Davide; Magni, Gianfranco; Moriconi, Maria L; Orosei, Roberto

    2008-06-01

    The Jovian InfraRed Auroral Mapper (JIRAM) has been accepted by NASA for inclusion in the New Frontiers mission "Juno," which will launch in August 2011. JIRAM will explore the dynamics and the chemistry of Jupiter's auroral regions by high-contrast imaging and spectroscopy. It will also analyze jovian hot spots to determine their vertical structure and infer possible mechanisms for their formation. JIRAM will sound the jovian meteorological layer to map moist convection and determine water abundance and other constituents at depths that correspond to several bars pressure. JIRAM is equipped with a single telescope that accommodates both an infrared camera and a spectrometer to facilitate a large observational flexibility in obtaining simultaneous images in the L and M bands with the spectral radiance over the central zone of the images. Moreover, JIRAM will be able to perform spectral imaging of the planet in the 2.0-5.0 microm interval of wavelengths with a spectral resolution better than 10 nm. Instrument design, modes, and observation strategy will be optimized for operations onboard a spinning satellite in polar orbit around Jupiter. The JIRAM heritage comes from Italian-made, visual-infrared imaging spectrometers dedicated to planetary exploration, such as VIMS-V on Cassini, VIRTIS on Rosetta and Venus Express, and VIR-MS on the Dawn mission.

  8. Jupiter's Auroral Energy Input Observed by Hisaki/EXCEED and its Modulations by Io's Volcanic Activity

    Science.gov (United States)

    Tao, C.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Yoshioka, K.; Kita, H.; Yamazaki, A.; Kasaba, Y.; Yoshikawa, I.; Fujimoto, M.

    2016-12-01

    Aurora is an important indicator representing the momentum transfer from the fast-rotating outer planet to the magnetosphere and the energy input into the atmosphere through the magnetosphere-ionosphere coupling. Long-term monitoring of Jupiter's northern aurora was achieved by the Extreme Ultraviolet (EUV) spectrometer called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) onboard JAXA's Earth-orbiting planetary space telescope Hisaki until today after its launch in September 2013. We have proceeded the statistical survey of the Jupiter's auroral energy input into the upper atmosphere. The auroral electron energy is estimated using a hydrocarbon color ratio (CR) adopted for the wavelength range of EXCEED, and the emission power in the long wavelength range 138.5-144.8 nm is used as an indicator of total emitted power before hydrocarbon absorption and auroral electron energy flux. Temporal dynamic variation of the auroral intensity was detected when Io's volcanic activity and thus EUV emission from the Io plasma torus are enhanced in the early 2015. Average of the total input power over 80 days increases by 10% with sometimes sporadically more than a factor of 3 upto 7, while the CR indicates the auroral electron energy decrease by 20% during the volcanic event compared to the other period. This indicates much more increase in the current system and Joule heating which contributes heating of the upper atmosphere. We will discuss the impact of this event on the upper atmosphere and ionosphere.

  9. SPECTROSCOPIC EVIDENCE FOR A TEMPERATURE INVERSION IN THE DAYSIDE ATMOSPHERE OF HOT JUPITER WASP-33b

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Korey; Mandell, Avi M. [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Madhusudhan, Nikku [Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA (United Kingdom); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Knutson, Heather, E-mail: khaynes0112@gmail.com [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-06-20

    We present observations of two occultations of the extrasolar planet WASP-33b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope, which allow us to constrain the temperature structure and composition of its dayside atmosphere. WASP-33b is the most highly irradiated hot Jupiter discovered to date, and the only exoplanet known to orbit a δ-Scuti star. We observed in spatial scan mode to decrease instrument systematic effects in the data, and removed fluctuations in the data due to stellar pulsations. The rms for our final, binned spectrum is 1.05 times the photon noise. We compare our final spectrum, along with previously published photometric data, to atmospheric models of WASP-33b spanning a wide range in temperature profiles and chemical compositions. We find that the data require models with an oxygen-rich chemical composition and a temperature profile that increases at high altitude. We find that our measured spectrum displays an excess in the measured flux toward short wavelengths that is best explained as emission from TiO. If confirmed by additional measurements at shorter wavelengths, this planet would become the first hot Jupiter with a thermal inversion that can be definitively attributed to the presence of TiO in its dayside atmosphere.

  10. The Optical Transmission Spectrum of the Inflated Hot Jupiter WASP-94Ab

    Science.gov (United States)

    Berta-Thompson, Zachory; Diamond-Lowe, Hannah; Osip, David; McDonald, Michael; Triaud, Amaury; Hellier, Coel; Gillon, Michael; Delrez, Laetitia; Queloz, Didier; Neveu-VanMalle, Marion; Demory, Brice-Olivier

    2018-01-01

    Exoplaneteers study the color of sunset on other planets, by measuring the wavelength-dependence of the fraction of starlight transmitted through the planets' atmospheres during transit. These transmission spectroscopy observations can reveal the molecular composition and aerosol distribution along the planet's day-night terminator. Here, we present new observations of the transmission spectrum of WASP-94Ab, an inflated hot Jupiter in a 3.95 day orbit around a bright 6200K, V=10.1 dwarf star. The star is in a visual binary with a nearly identical star (6100K, V=10.5) located 15" away. We observed three transits of WASP-94Ab with the Magellan/LDSS3C multiobject spectrograph, taking advantage of the nearby companion to correct for temporal variations in Earth's telluric spectrum. Thanks to the Magellan Clay telescope's large 6.5m aperture and WASP-94Ab's low surface gravity, we achieve a spectrophotometric precision (in units of atmospheric scale heights) that rivals Hubble/STIS spectroscopy of the famous and much brighter hot Jupiter system HD209458b. We highlight the valuable role ground-based telescopes can play for exoplanetary characterization in the TESS era.

  11. Probe Storage

    NARCIS (Netherlands)

    Gemelli, Marcellino; Abelmann, Leon; Engelen, Johannes Bernardus Charles; Khatib, M.G.; Koelmans, W.W.; Zaboronski, Olog; Campardo, Giovanni; Tiziani, Federico; Laculo, Massimo

    2011-01-01

    This chapter gives an overview of probe-based data storage research over the last three decades, encompassing all aspects of a probe recording system. Following the division found in all mechanically addressed storage systems, the different subsystems (media, read/write heads, positioning, data

  12. Cultural probes

    DEFF Research Database (Denmark)

    Madsen, Jacob Østergaard

    The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation.......The aim of this study was thus to explore cultural probes (Gaver, Boucher et al. 2004), as a possible methodical approach, supporting knowledge production on situated and contextual aspects of occupation....

  13. THEORY OF SECULAR CHAOS AND MERCURY'S ORBIT

    International Nuclear Information System (INIS)

    Lithwick, Yoram; Wu Yanqin

    2011-01-01

    We study the chaotic orbital evolution of planetary systems, focusing on secular (i.e., orbit-averaged) interactions, which dominate on long timescales. We first focus on the evolution of a test particle that is forced by multiple planets. To linear order in eccentricity and inclination, its orbit precesses with constant frequencies. But nonlinearities modify the frequencies, and can shift them into and out of resonance with either the planets' eigenfrequencies (forming eccentricity or inclination secular resonances), or with linear combinations of those frequencies (forming mixed high-order secular resonances). The overlap of these nonlinear secular resonances drives secular chaos. We calculate the locations and widths of nonlinear secular resonances, display them together on a newly developed map (the 'map of the mean momenta'), and find good agreement between analytical and numerical results. This map also graphically demonstrates how chaos emerges from overlapping secular resonances. We then apply this newfound understanding to Mercury to elucidate the origin of its orbital chaos. We find that since Mercury's two free precession frequencies (in eccentricity and inclination) lie within ∼25% of two other eigenfrequencies in the solar system (those of the Jupiter-dominated eccentricity mode and the Venus-dominated inclination mode), secular resonances involving these four modes overlap and cause Mercury's chaos. We confirm this with N-body integrations by showing that a slew of these resonant angles alternately librate and circulate. Our new analytical understanding allows us to calculate the criterion for Mercury to become chaotic: Jupiter and Venus must have eccentricity and inclination of a few percent. The timescale for Mercury's chaotic diffusion depends sensitively on the forcing. As it is, Mercury appears to be perched on the threshold for chaos, with an instability timescale comparable to the lifetime of the solar system.

  14. A Kinematical Detection of Two Embedded Jupiter-mass Planets in HD 163296

    Science.gov (United States)

    Teague, Richard; Bae, Jaehan; Bergin, Edwin A.; Birnstiel, Tilman; Foreman-Mackey, Daniel

    2018-06-01

    We present the first kinematical detection of embedded protoplanets within a protoplanetary disk. Using archival Atacama Large Millimetre Array (ALMA) observations of HD 163296, we demonstrate a new technique to measure the rotation curves of CO isotopologue emission to sub-percent precision relative to the Keplerian rotation. These rotation curves betray substantial deviations caused by local perturbations in the radial pressure gradient, likely driven by gaps carved in the gas surface density by Jupiter-mass planets. Comparison with hydrodynamic simulations shows excellent agreement with the gas rotation profile when the disk surface density is perturbed by two Jupiter-mass planets at 83 and 137 au. As the rotation of the gas is dependent upon the pressure of the total gas component, this method provides a unique probe of the gas surface density profile without incurring significant uncertainties due to gas-to-dust ratios or local chemical abundances that plague other methods. Future analyses combining both methods promise to provide the most accurate and robust measures of embedded planetary mass. Furthermore, this method provides a unique opportunity to explore wide-separation planets beyond the mm continuum edge and to trace the gas pressure profile essential in modeling grain evolution in disks.

  15. Comparison of the Cloud Morphology Spatial Structure Between Jupiter and Saturn Using JunoCam and Cassini ISS

    Science.gov (United States)

    Garland, Justin; Sayanagi, Kunio M.; Blalock, John J.; Gunnarson, Jacob; McCabe, Ryan M.; Gallego, Angelina; Hansen, Candice; Orton, Glenn S.

    2017-10-01

    We present an analysis of the spatial-scales contained in the cloud morphology of Jupiter’s southern high latitudes using images captured by JunoCam in 2016 and 2017, and compare them to those on Saturn using images captured using the Imaging Science Subsystem (ISS) on board the Cassini orbiter. For Jupiter, the characteristic spatial scale of cloud morphology as a function of latitude is calculated from images taken in three visual (600-800, 500-600, 420-520 nm) bands and a near-infrared (880- 900 nm) band. In particular, we analyze the transition from the banded structure characteristic of Jupiter’s mid-latitudes to the chaotic structure of the polar region. We apply similar analysis to Saturn using images captured using Cassini ISS. In contrast to Jupiter, Saturn maintains its zonally organized cloud morphology from low latitudes up to the poles, culminating in the cyclonic polar vortices centered at each of the poles. By quantifying the differences in the spatial scales contained in the cloud morphology, our analysis will shed light on the processes that control the banded structures on Jupiter and Saturn. Our work has been supported by the following grants: NASA PATM NNX14AK07G, NASA MUREP NNX15AQ03A, and NSF AAG 1212216.

  16. The formation of giant planets and its effects on protoplanetary disks: the case of Jupiter and the Jovian Early Bombardment

    Science.gov (United States)

    Turrini, D.; ISSI Team "Vesta, the key to the origins of the Solar System"; EChO "Planetary Formation" Working Group

    The formation of giant planets is accompanied by a short but intense primordial bombardment \\citep{safronov69,weidenschilling75,weidenschilling01,turrini11}: the prototype for this class of events is the Jovian Early Bombardment (JEB) caused by the formation of Jupiter in the Solar System \\citep{turrini11,turrini12}. The JEB affected the collisional evolution of the minor bodies in the inner Solar System by inflicting mass loss to planetesimals \\citep{turrini12,turrini14a,turrini14b} due to cratering erosion and, at the same time, delivering water and volatile materials to the asteroid belt \\citep{turrini14b}. The JEB also resulted in a significant number of collisions between Jupiter and planetesimals formed over a wide orbital range, delivering volatile and refractory materials to the giant planet and its circumplanetary disk \\citep{turrini14c}. In this talk I'll discuss how the study of the effects of the JEB on Vesta can be used to constrain the early evolution of the Solar System \\citep{turrini14a,turrini14b} and how these constraints can, in turn, provide insight on the composition of Jupiter and of its satellites. Finally, I'll discuss the implications of the JEB model for extrasolar planets \\citep{turrini14c}.

  17. How expanded ionospheres of Hot Jupiters can prevent escape of radio emission generated by the cyclotron maser instability

    Science.gov (United States)

    Weber, C.; Lammer, H.; Shaikhislamov, I. F.; Chadney, J. M.; Khodachenko, M. L.; Grießmeier, J.-M.; Rucker, H. O.; Vocks, C.; Macher, W.; Odert, P.; Kislyakova, K. G.

    2017-08-01

    We present a study of plasma conditions in the atmospheres of the Hot Jupiters HD 209458b and HD 189733b and for an HD 209458b like planet at orbit locations between 0.2 and 1 au around a Sun-like star. We discuss how these conditions influence the radio emission we expect from their magnetospheres. We find that the environmental conditions are such that the cyclotron maser instability (CMI), the process responsible for the generation of radio waves at magnetic planets in the Solar system, most likely will not operate at Hot Jupiters. Hydrodynamically expanding atmospheres possess extended ionospheres whose plasma densities within the magnetosphere are so large that the plasma frequency is much higher than the cyclotron frequency, which contradicts the condition for the production of radio emission and prevents the escape of radio waves from close-in exoplanets at distances produce radio emission. However, even if the CMI could operate, the extended ionospheres of Hot Jupiters are too dense to allow the radio emission to escape from the planets.

  18. Magnetic fields of Jupiter and Saturn

    International Nuclear Information System (INIS)

    Ness, N.F.

    1981-01-01

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected

  19. Wave propagation in the magnetosphere of Jupiter

    Science.gov (United States)

    Liemohn, H. B.

    1972-01-01

    A systematic procedure is developed for identifying the spatial regimes of various modes of wave propagation in the Jupiter magnetosphere that may be encountered by flyby missions. The Clemmow-Mullaly-Allis (CMA) diagram of plasma physics is utilized to identify the frequency regimes in which different modes of propagation occur in the magnetoplasma. The Gledhill model and the Ioannidis and Brice model of the magnetoplasma are summarized, and configuration-space CMA diagrams are constructed for each model for frequencies from 10 Hz to 1 MHz. The distinctive propagation features, the radio noise regimes, and the wave-particle interactions are discussed. It is concluded that the concentration of plasma in the equatorial plane makes this region of vital importance for radio observations with flyby missions. Local radio noise around the electron cyclotron frequency will probably differ appreciably from its terrestrial counterpart due to the lack of field-line guidance. Hydromagnetic wave properties at frequencies near the ion cyclotron frequency and below will probably be similar to the terrestrial case.

  20. Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter

    Science.gov (United States)

    Irwin, Patrick G. J.; Bowles, Neil; Braude, Ashwin S.; Garland, Ryan; Calcutt, Simon

    2018-03-01

    temperatures and H2/He-broadening conditions found in Jupiter's atmosphere. This work is of significance not only for solar system planetary physics, but also for future proposed observations of Jupiter-like planets orbiting other stars, such as with NASA's planned Wide-Field Infrared Survey Telescope (WFIRST).

  1. Orbit analysis

    International Nuclear Information System (INIS)

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators

  2. Brane orbits

    CERN Document Server

    Bergshoeff, Eric A; Riccioni, Fabio

    2012-01-01

    We complete the classification of half-supersymmetric branes in toroidally compactified IIA/IIB string theory in terms of representations of the T-duality group. As a by-product we derive a last wrapping rule for the space-filling branes. We find examples of T-duality representations of branes in lower dimensions, suggested by supergravity, of which none of the component branes follow from the reduction of any brane in ten-dimensional IIA/IIB string theory. We discuss the constraints on the charges of half-supersymmetric branes, determining the corresponding T-duality and U-duality orbits.

  3. Orbit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  4. The vertical structure of Jupiter and Saturn zonal winds from nonlinear simulations of major vortices and planetary-scale disturbances

    Science.gov (United States)

    Garcia-Melendo, E.; Legarreta, J.; Sanchez-Lavega, A.

    2012-12-01

    Direct measurements of the structure of the zonal winds of Jupiter and Saturn below the upper cloud layer are very difficult to retrieve. Except from the vertical profile at a Jupiter hot spot obtained from the Galileo probe in 1995 and measurements from cloud tracking by Cassini instruments just below the upper cloud, no other data are available. We present here our inferences of the vertical structure of Jupiter and Saturn zonal wind across the upper troposphere (deep down to about 10 bar level) obtained from nonlinear simulations using the EPIC code of the stability and interactions of large-scale vortices and planetary-scale disturbances in both planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] García-Melendo E., Sánchez-Lavega A., Dowling T.., Icarus, 176, 272-282 (2005). [2] García-Melendo E., Sánchez-Lavega A., Hueso R., Icarus, 191, 665-677 (2007). [3] Sánchez-Lavega A., et al., Nature, 451, 437- 440 (2008). [4] Sánchez-Lavega A., et al., Nature, 475, 71-74 (2011).

  5. The solar probe mission

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, J.; Bohlin, J.D.; Burlaga, L.F.; Farquhar, R.; Gloeckler, G.; Goldstein, B.E.; Harvey, J.W.; Holzer, T.E.; Jones, W.V.; Kellogg, P.J.; Krimigis, S.M.; Kundu, M.R.; Lazarus, A.J.; Mellott, M.M.; Parker, E.N.; Rosner, R.; Rottman, G.J.; Slavin, J.A.; Suess, S.T.; Tsurutani, B.T.; Woo, R.T.; Zwickl, R.D.

    1990-01-01

    The Solar Probe will deliver a 133.5 kg science payload into a 4 R s perihelion solar polar orbit (with the first perihelion passage in 2004) to explore in situ one of the last frontiers in the solar system---the solar corona. This mission is both affordable and technologically feasible. Using a payload of 12 (predominantly particles and fields) scientific experiments, it will be possible to answer many long-standing, fundamental problems concerning the structure and dynamics of the outer solar atmosphere, including the acceleration, storage, and transport of energetic particles near the Sun and in the inner ( s ) heliosphere

  6. ON THE MIGRATION OF JUPITER AND SATURN: CONSTRAINTS FROM LINEAR MODELS OF SECULAR RESONANT COUPLING WITH THE TERRESTRIAL PLANETS

    International Nuclear Information System (INIS)

    Agnor, Craig B.; Lin, D. N. C.

    2012-01-01

    We examine how the late divergent migration of Jupiter and Saturn may have perturbed the terrestrial planets. Using a modified secular model we have identified six secular resonances between the ν 5 frequency of Jupiter and Saturn and the four apsidal eigenfrequencies of the terrestrial planets (g 1-4 ). We derive analytic upper limits on the eccentricity and orbital migration timescale of Jupiter and Saturn when these resonances were encountered to avoid perturbing the eccentricities of the terrestrial planets to values larger than the observed ones. Because of the small amplitudes of the j = 2, 3 terrestrial eigenmodes the g 2 – ν 5 and g 3 – ν 5 resonances provide the strongest constraints on giant planet migration. If Jupiter and Saturn migrated with eccentricities comparable to their present-day values, smooth migration with exponential timescales characteristic of planetesimal-driven migration (τ ∼ 5-10 Myr) would have perturbed the eccentricities of the terrestrial planets to values greatly exceeding the observed ones. This excitation may be mitigated if the eccentricity of Jupiter was small during the migration epoch, migration was very rapid (e.g., τ ∼< 0.5 Myr perhaps via planet-planet scattering or instability-driven migration) or the observed small eccentricity amplitudes of the j = 2, 3 terrestrial modes result from low probability cancellation of several large amplitude contributions. Results of orbital integrations show that very short migration timescales (τ < 0.5 Myr), characteristic of instability-driven migration, may also perturb the terrestrial planets' eccentricities by amounts comparable to their observed values. We discuss the implications of these constraints for the relative timing of terrestrial planet formation, giant planet migration, and the origin of the so-called Late Heavy Bombardment of the Moon 3.9 ± 0.1 Ga ago. We suggest that the simplest way to satisfy these dynamical constraints may be for the bulk of any giant

  7. Stable orbits for lunar landing assistance

    Science.gov (United States)

    Condoleo, Ennio; Cinelli, Marco; Ortore, Emiliano; Circi, Christian

    2017-10-01

    To improve lunar landing performances in terms of mission costs, trajectory determination and visibility the use of a single probe located over an assistance orbit around the Moon has been taken into consideration. To this end, the properties of two quasi-circular orbits characterised by a stable behaviour of semi-major axis, eccentricity and inclination have been investigated. The analysis has demonstrated the possibility of using an assistance probe, located over one of these orbits, as a relay satellite between lander and Earth, even in the case of landings on the far side of the Moon. A comparison about the accuracy in retrieving the lander's state with respect to the use of a probe located in the Lagrangian point L2 of the Earth-Moon system has also been carried out.

  8. A LOW STELLAR OBLIQUITY FOR WASP-47, A COMPACT MULTIPLANET SYSTEM WITH A HOT JUPITER AND AN ULTRA-SHORT PERIOD PLANET

    Energy Technology Data Exchange (ETDEWEB)

    Sanchis-Ojeda, Roberto; Isaacson, Howard; Marcy, Geoffrey W.; Weiss, Lauren [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Winn, Joshua N.; Dai, Fei [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Howard, Andrew W.; Sinukoff, Evan [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Petigura, Erik; Rogers, Leslie [Department of Astronomy and Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Albrecht, Simon [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Hirano, Teruyuki, E-mail: sanchisojeda@berkeley.edu [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2015-10-10

    We have detected the Rossiter–Mclaughlin effect during a transit of WASP-47b, the only known hot Jupiter with close planetary companions. By combining our spectroscopic observations with Kepler photometry, we show that the projected stellar obliquity is λ = 0° ± 24°. We can firmly exclude a retrograde orbit for WASP-47b, and rule out strongly misaligned prograde orbits. Low obliquities have also been found for most of the other compact multiplanet systems that have been investigated. The Kepler-56 system, with two close-in gas giants transiting their subgiant host star with an obliquity of at least 45{sup ◦}, remains the only clear counterexample.

  9. Transit Recovery of Kepler-167e: Providing JWST with an Unprecedented Jupiter-analog Exoplanet Target

    Science.gov (United States)

    Dalba, Paul; Muirhead, Philip; Tamburo, Patrick

    2018-05-01

    The Kepler Mission has uncovered a handful of long-period transiting exoplanets that orbit in the cold outer reaches of their systems, despite their low transit probabilities. Recent work suggests that cold gas giant exoplanet atmospheres are amenable to transmission spectroscopy (the analysis of the transit depth versus wavelength) enabling novel tests of planetary formation and evolution theories. Of particular scientific interest is Kepler-167e, a low-eccentricity Jupiter-analog exoplanet with a 1,071-day orbital period residing well beyond the snow-line. Transmission spectroscopy of Kepler-167e from JWST can reveal the composition of this planet's atmosphere, constrain its heavy-element abundance, and identify atmospheric photochemical processes. JWST characterization also enables unprecedented direct comparison with Jupiter and Saturn, which show a striking diversity in physical properties that is best investigated through comparative exoplanetology. Since Kepler only observed two transits of Kepler-167e, it is not known if this exoplanet exhibits transit timing variations (TTVs). About half of Kepler's long-period exoplanets have TTVs of up to 40 hours. Such a large uncertainty jeopardizes attempts to characterize the atmosphere of this unique Jovian exoplanet with JWST. To mitigate this risk, the upcoming third transit of Kepler-167e must be observed to test for TTVs. We propose a simple 10-hour, single-channel observation to capture ingress or egress of the next transit of Kepler-167e in December 2018. In the absence of TTVs, our observation will reduce the ephemeris uncertainty from an unknown value to approximately 3 minutes, thereby removing the risk in future transit observations with JWST. The excellent photometric precision of Spitzer is sufficient to identify the transit of Kepler-167e. Given the timing and nature of this program, Spitzer is the only observatory--on the ground or in space--that can make this pivotal observation.

  10. Significance of Dungey-cycle flows in Jupiter's and Saturn's magnetospheres, and their identification on closed equatorial field lines

    Directory of Open Access Journals (Sweden)

    S. V. Badman

    2007-05-01

    Full Text Available We consider the contribution of the solar wind-driven Dungey-cycle to flux transport in Jupiter's and Saturn's magnetospheres, the associated voltages being based on estimates of the magnetopause reconnection rates recently derived from observations of the interplanetary medium in the vicinity of the corresponding planetary orbits. At Jupiter, the reconnection voltages are estimated to be ~150 kV during several-day weak-field rarefaction regions, increasing to ~1 MV during few-day strong-field compression regions. The corresponding values at Saturn are ~25 kV for rarefaction regions, increasing to ~150 kV for compressions. These values are compared with the voltages associated with the flows driven by planetary rotation. Estimates of the rotational flux transport in the "middle" and "outer" magnetosphere regions are shown to yield voltages of several MV and several hundred kV at Jupiter and Saturn respectively, thus being of the same order as the estimated peak Dungey-cycle voltages. We conclude that under such circumstances the Dungey-cycle "return" flow will make a significant contribution to the flux transport in the outer magnetospheric regions. The "return" Dungey-cycle flows are then expected to form layers which are a few planetary radii wide inside the dawn and morning magnetopause. In the absence of significant cross-field plasma diffusion, these layers will be characterized by the presence of hot light ions originating from either the planetary ionosphere or the solar wind, while the inner layers associated with the Vasyliunas-cycle and middle magnetosphere transport will be dominated by hot heavy ions originating from internal moon/ring plasma sources. The temperature of these ions is estimated to be of the order of a few keV at Saturn and a few tens of keV at Jupiter, in both layers.

  11. Ulysses Radio Occultation Observations of the lo Plasma Torus During the Jupiter Encounter.

    Science.gov (United States)

    Bird, M K; Asmar, S W; Brenkle, J P; Edenhofer, P; Funke, O; Pätzold, M; Volland, H

    1992-09-11

    Radio signals from Ulysses were used to probe the lo plasma torus (IPT) shortly after the spacecraft's closest approach to Jupiter. The frequencies of the two downlinks at S-band (2.3 gigahertz) and X-band (8.4 gigahertz) were recorded, differenced, and integrated in order to derive the columnar electron density of the IPT. The measurements agree qualitatively with contemporary models of the IPT based on Voyager data, but significant differences are apparent as well. The overall level of the IPT electron density is approximately the same as the prediction, implying that the amount of gas (or plasma) injected from lo is similar to that observed during the Voyager era. On the other hand, the IPT seems to be less extended out of the centrifugal equator, implying a smaller plasma temperature than predicted.

  12. FRIENDS OF HOT JUPITERS. III. AN INFRARED SPECTROSCOPIC SEARCH FOR LOW-MASS STELLAR COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Piskorz, Danielle; Knutson, Heather A.; Ngo, Henry; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Muirhead, Philip S. [Institute for Astrophysical Research, Boston University, Boston, MA (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, South Bend, IN (United States); Hinkley, Sasha [Department of Physics and Astronomy, University of Exeter, Exeter (United Kingdom); Morton, Timothy D., E-mail: dpiskorz@gps.caltech.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States)

    2015-12-01

    Surveys of nearby field stars indicate that stellar binaries are common, yet little is known about the effects that these companions may have on planet formation and evolution. The Friends of Hot Jupiters project uses three complementary techniques to search for stellar companions to known planet-hosting stars: radial velocity monitoring, adaptive optics imaging, and near-infrared spectroscopy. In this paper, we examine high-resolution K band infrared spectra of fifty stars hosting gas giant planets on short-period orbits. We use spectral fitting to search for blended lines due to the presence of cool stellar companions in the spectra of our target stars, where we are sensitive to companions with temperatures between 3500 and 5000 K and projected separations less than 100 AU in most systems. We identify eight systems with candidate low-mass companions, including one companion that was independently detected in our AO imaging survey. For systems with radial velocity accelerations, a spectroscopic non-detection rules out scenarios involving a stellar companion in a high inclination orbit. We use these data to place an upper limit on the stellar binary fraction at small projected separations, and show that the observed population of candidate companions is consistent with that of field stars and also with the population of wide-separation companions detected in our previous AO survey. We find no evidence that spectroscopic stellar companions are preferentially located in systems with short-period gas giant planets on eccentric and/or misaligned orbits.

  13. FRIENDS OF HOT JUPITERS. III. AN INFRARED SPECTROSCOPIC SEARCH FOR LOW-MASS STELLAR COMPANIONS

    International Nuclear Information System (INIS)

    Piskorz, Danielle; Knutson, Heather A.; Ngo, Henry; Batygin, Konstantin; Muirhead, Philip S.; Crepp, Justin R.; Hinkley, Sasha; Morton, Timothy D.

    2015-01-01

    Surveys of nearby field stars indicate that stellar binaries are common, yet little is known about the effects that these companions may have on planet formation and evolution. The Friends of Hot Jupiters project uses three complementary techniques to search for stellar companions to known planet-hosting stars: radial velocity monitoring, adaptive optics imaging, and near-infrared spectroscopy. In this paper, we examine high-resolution K band infrared spectra of fifty stars hosting gas giant planets on short-period orbits. We use spectral fitting to search for blended lines due to the presence of cool stellar companions in the spectra of our target stars, where we are sensitive to companions with temperatures between 3500 and 5000 K and projected separations less than 100 AU in most systems. We identify eight systems with candidate low-mass companions, including one companion that was independently detected in our AO imaging survey. For systems with radial velocity accelerations, a spectroscopic non-detection rules out scenarios involving a stellar companion in a high inclination orbit. We use these data to place an upper limit on the stellar binary fraction at small projected separations, and show that the observed population of candidate companions is consistent with that of field stars and also with the population of wide-separation companions detected in our previous AO survey. We find no evidence that spectroscopic stellar companions are preferentially located in systems with short-period gas giant planets on eccentric and/or misaligned orbits

  14. Mobile probes

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Jørgensen, Anna Neustrup; Noesgaard, Signe Schack

    2016-01-01

    A project investigating the effectiveness of a collection of online resources for teachers' professional development used mobile probes as a data collection method. Teachers received questions and tasks on their mobile in a dialogic manner while in their everyday context as opposed...... to in an interview. This method provided valuable insight into the contextual use, i.e. how did the online resource transfer to the work practice. However, the research team also found that mobile probes may provide the scaffolding necessary for individual and peer learning at a very local (intra-school) community...... level. This paper is an initial investigation of how the mobile probes process proved to engage teachers in their efforts to improve teaching. It also highlights some of the barriers emerging when applying mobile probes as a scaffold for learning....

  15. Optical probe

    International Nuclear Information System (INIS)

    Denis, J.; Decaudin, J.M.

    1984-01-01

    The probe includes optical means of refractive index n, refracting an incident light beam from a medium with a refractive index n1>n and reflecting an incident light beam from a medium with a refractive index n2 [fr

  16. Interplanetary dust profile observed on Juno's cruise from Earth to Jupiter

    Science.gov (United States)

    Joergensen, J. L.; Benn, M.; Jørgensen, P. S.; Denver, T.; Jørgensen, F. E.; Connerney, J. E. P.; Andersen, A. C.; Bolton, S. J.; Levin, S.

    2017-12-01

    Juno was launched August 5th, 2011, and entered the highly-elliptical polar orbit about Jupiter on July 4th, 2016, some 5 years later. Juno's science objectives include the mapping of Jupiter's gravity and magnetic fields and observation of the planet's deep atmosphere, aurora and polar regions. The Juno spacecraft is a large spin-stabilized platform powered by three long solar panel structures, 11 m in length, extending radially outward from the body of the spacecraft with panel normal parallel to the spacecraft spin axis. During almost 5 years in cruise, Juno traversed the inner part of the solar system, from Earth, to a deep space maneuver at 2.2AU, back to 0.8AU for a subsequent rendezvous with Earth for gravity assist, and then out to Jupiter (at 5.4AU at the time of arrival). The solar panels were nearly sun-pointing during the entire cruise phase, with the 60 m2 of solar panel area facing the ram direction (panel normal parallel to the spacecraft velocity vector). Interplanetary Dust Particles (IPDs) impacting Juno's solar panels with typical relative velocities of 20 km/s excavate target mass, some of which will leave the spacecraft at moderate speeds (few m/s) in the form of a few large spallation products. Many of these impact ejecta have been recorded and tracked by one of the autonomous star trackers flown as part of the Juno magnetometer investigation (MAG). Juno MAG instrumentation is accommodated on a boom at the end of one of the solar arrays, and consists of two magnetometer sensor suites each instrumented with two star trackers for accurate attitude determination at the MAG sensors. One of the four star trackers was configured to report such fast moving objects, effectively turning Juno's large solar array area into the largest-aperture IPD detector ever flown - by far. This "detector", by virtue of its prodigious collecting area, is sensitive to the relatively infrequent impacts of particles much larger (at 10's of microns) than those collected

  17. The mass disruption of Jupiter Family comets

    Science.gov (United States)

    Belton, Michael J. S.

    2015-01-01

    I show that the size-distribution of small scattered-disk trans-neptunian objects when derived from the observed size-distribution of Jupiter Family comets (JFCs) and other observational constraints implies that a large percentage (94-97%) of newly arrived active comets within a range of 0.2-15.4 km effective radius must physically disrupt, i.e., macroscopically disintegrate, within their median dynamical lifetime. Additional observational constraints include the numbers of dormant and active nuclei in the near-Earth object (NEO) population and the slope of their size distributions. I show that the cumulative power-law slope (-2.86 to -3.15) of the scattered-disk TNO hot population between 0.2 and 15.4 km effective radius is only weakly dependent on the size-dependence of the otherwise unknown disruption mechanism. Evidently, as JFC nuclei from the scattered disk evolve into the inner Solar System only a fraction achieve dormancy while the vast majority of small nuclei (e.g., primarily those with effective radius <2 km) break-up. The percentage disruption rate appears to be comparable with that of the dynamically distinct Oort cloud and Halley type comets (Levison, H.F., Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke Jr., W.F. [2002]. Science 296, 2212-2215) suggesting that all types of comet nuclei may have similar structural characteristics even though they may have different source regions and thermal histories. The typical disruption rate for a 1 km radius active nucleus is ∼5 × 10-5 disruptions/year and the dormancy rate is typically 3 times less. We also estimate that average fragmentation rates range from 0.01 to 0.04 events/year/comet, somewhat above the lower limit of 0.01 events/year/comet observed by Chen and Jewitt (Chen, J., Jewitt, D.C. [1994]. Icarus 108, 265-271).

  18. Counting probe

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yuasa, Kazuhiro; Hayashi, Tomoaki

    1976-01-01

    Electron counting method has been devised and experimented for the purpose of measuring electron temperature and density, the most fundamental quantities to represent plasma conditions. Electron counting is a method to count the electrons in plasma directly by equipping a probe with the secondary electron multiplier. It has three advantages of adjustable sensitivity, high sensitivity of the secondary electron multiplier, and directional property. Sensitivity adjustment is performed by changing the size of collecting hole (pin hole) on the incident front of the multiplier. The probe is usable as a direct reading thermometer of electron temperature because it requires to collect very small amount of electrons, thus it doesn't disturb the surrounding plasma, and the narrow sweep width of the probe voltage is enough. Therefore it can measure anisotropy more sensitively than a Langmuir probe, and it can be used for very low density plasma. Though many problems remain on anisotropy, computer simulation has been carried out. Also it is planned to provide a Helmholtz coil in the vacuum chamber to eliminate the effect of earth magnetic field. In practical experiments, the measurement with a Langmuir probe and an emission probe mounted to the movable structure, the comparison with the results obtained in reverse magnetic field by using a Helmholtz coil, and the measurement of ionic sound wave are scheduled. (Wakatsuki, Y.)

  19. Galileo's first images of Jupiter and the Galilean satellites

    Science.gov (United States)

    Belton, M.J.S.; Head, J. W.; Ingersoll, A.P.; Greeley, R.; McEwen, A.S.; Klaasen, K.P.; Senske, D.; Pappalardo, R.; Collins, G.; Vasavada, A.R.; Sullivan, R.; Simonelli, D.; Geissler, P.; Carr, M.H.; Davies, M.E.; Veverka, J.; Gierasch, P.J.; Banfield, D.; Bell, M.; Chapman, C.R.; Anger, C.; Greenberg, R.; Neukum, G.; Pilcher, C.B.; Beebe, R.F.; Burns, J.A.; Fanale, F.; Ip, W.; Johnson, T.V.; Morrison, D.; Moore, J.; Orton, G.S.; Thomas, P.; West, R.A.

    1996-01-01

    The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiter's Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on lo. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.

  20. Launch Opportunities for Jupiter Missions Using the Gravity Assist

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-06-01

    Full Text Available Interplanetary trajectories using the gravity assists are studied for future Korean interplanetary missions. Verifications of the developed softwares and results were performed by comparing data from ESA's Mars Express mission and previous results. Among the Jupiter exploration mission scenarios, multi-planet gravity assist mission to Jupiter (Earth-Mars-Earth-Jupiter Gravity Assist, EMEJGA trajectory requires minimum launch energy (C3 of 29.231 km2/s2 with 4.6 years flight times. Others, such as direct mission and single-planet(Mars gravity assist mission, requires launch energy (C3 of 75.656 km^2/s^2 with 2.98 years flight times and 63.590 km2/s2 with 2.33 years flight times, respectively. These results show that the planetary gravity assists can reduce launch energy, while EMEJGA trajectory requires the longer flight time than the other missions.

  1. DNA probes

    International Nuclear Information System (INIS)

    Castelino, J.

    1992-01-01

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32 P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  2. DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Castelino, J

    1993-12-31

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with {sup 32}P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism`s genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens 10 figs, 2 tabs

  3. Ultraviolet Studies of Jupiter's Hydrocarbons and Aerosols from Galileo

    Science.gov (United States)

    Gladstone, G. Randall

    2001-01-01

    This is the final report for this project. The purpose of this project was to support PI Wayne Pryor's effort to reduce and analyze Galileo UVS (Ultraviolet Spectrometer) data under the JSDAP program. The spectral observations made by the Galileo UVS were to be analyzed to determine mixing ratios for important hydrocarbon species (and aerosols) in Jupiter's stratosphere as a function of location on Jupiter. Much of this work is still ongoing. To date, we have concentrated on analyzing the variability of the auroral emissions rather than the absorption signatures of hydrocarbons, although we have done some work in this area with related HST-STIS data.

  4. Unmasking Europa the search for life on Jupiter's ocean moon

    CERN Document Server

    Greenberg, Richard

    2008-01-01

    Jupiter's ice moon Europa is widely regarded as the most likely place to find extraterrestrial life. This book tells the engaging story of Europa, the oceanic moon. It features a large number of stunning images of the ocean moon's surface, clearly displaying the spectacular crack patterns, extensive rifts and ridges, and refrozen pools of exposed water filled with rafts of displaced ice. Coverage also features firsthand accounts of Galileo's mission to Jupiter and its moons. The book tells the rough and tumble inside story of a very human enterprise in science that lead to the discovery of a f

  5. Analysis of JUPITER critical experiments by JENDL-3.2

    International Nuclear Information System (INIS)

    Ishikawa, Makoto

    1996-01-01

    Applicability of the JENDL-3.2 library to large FBR cores was evaluated using JUPITER experimental data. The nuclear characteristics treated in the present report include criticality, reaction rate ratio, space dependency of C/E values, sodium void reactivity and Doppler reactivity. As a conclusion, JENDL-3.2 is judged to be a well-balanced library for prediction of large FBR core parameters. The unification of integral experimental information from JUPITER and differential nuclear data of JENDL-3.2 will enhance the accuracy and reliability of large FBR core design. (author)

  6. The Hottest Hot Jupiters May Host Atmospheric Dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M. [Department of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)

    2017-06-01

    Hot Jupiters have proven themselves to be a rich class of exoplanets that test our theories of planetary evolution and atmospheric dynamics under extreme conditions. Here, we present three-dimensional magnetohydrodynamic simulations and analytic results that demonstrate that a dynamo can be maintained in the thin, stably stratified atmosphere of a hot Jupiter, independent of the presumed deep-seated dynamo. This dynamo is maintained by conductivity variations arising from strong asymmetric heating from the planets’ host star. The presence of a dynamo significantly increases the surface magnetic field strength and alters the overall planetary magnetic field geometry, possibly affecting star–planet magnetic interactions.

  7. 76 FR 24513 - Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse Withdrawal; Florida

    Science.gov (United States)

    2011-05-02

    ...] Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse Withdrawal; Florida AGENCY... as part of the Jupiter Inlet Lighthouse Outstanding Natural Area. DATES: Effective Date: May 2, 2011... U.S.C. 1787), which created the Jupiter Inlet Lighthouse Outstanding Natural Area, and which...

  8. 77 FR 63722 - Special Local Regulations; Palm Beach World Championship, Atlantic Ocean; Jupiter, FL

    Science.gov (United States)

    2012-10-17

    ...-AA08 Special Local Regulations; Palm Beach World Championship, Atlantic Ocean; Jupiter, FL AGENCY... offshore of Jupiter, Florida during the Palm Beach World Championship, a high speed power boat race. The... Atlantic Ocean, just offshore of Jupiter, Florida. The high speed power boat race event will include...

  9. Conductivity Probe

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air. The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air. The needles on the probe are 15 millimeters (0.6 inch) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Beam structure of Jupiter's decametric radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, K; Carr, T D

    1984-03-08

    The well-defined zones of central meridian longitude within which the probability of jovian radio emission at frequencies near 22 MHz is relatively high are known as sources A, B and C. Each consists of a component for which the emission probability is strongly correlated with Io's orbital position, and another that is Io-unrelated. The paper presents convincing evidence based on concurrent observations from two Voyager spacecraft and a terrestrial observatory that the component of source A radiation that is not correlated with Io's position is generally emitted in co-rotating searchlight beams of distinctive cross-sectional shape.

  11. Probe specificity

    International Nuclear Information System (INIS)

    Laget, J.M.

    1986-11-01

    Specificity and complementarity of hadron and electron probes must be systematically developed to answer three questions currently asked in intermediate energy nuclear physics: what is nucleus structure at short distances, what is nature of short range correlations, what is three body force nature [fr

  12. Ulysses at jupiter: an overview of the encounter.

    Science.gov (United States)

    Smith, E J; Wenzel, K P; Page, D E

    1992-09-11

    In February 1992, the Ulysses spacecraft flew through the giant magnetosphere of Jupiter. The primary objective of the encounter was to use the gravity field of Jupiter to redirect the spacecraft to the sun's polar regions, which will now be traversed in 1994 and 1995. However, the Ulysses scientific investigations were well suited to observations of the Jovian magnetosphere, and the encounter has resulted in a major contribution to our understanding of this complex and dynamic plasma environment. Among the more exciting results are (i) possible entry into the polar cap, (ii) the identification of magnetospheric ions originating from Jupiter's ionosphere, lo, and the solar wind, (iii) observation of longitudinal asymmetries in density and discrete wave-emitting regions of the lo plasma torus, (iv) the presence of counter-streaming ions and electrons, field-aligned currents, and energetic electron and radio bursts in the dusk sector on high-latitude magnetic field lines, and (v) the identification of the direction of the magnetic field in the dusk sector, which is indicative of tailward convection. This overview serves as an introduction to the accompanying reports that present the preliminary scientific findings. Aspects of the encounter that are common to all of the investigations, such as spacecraft capabilities, the flight path past Jupiter, and unique aspects of the encounter, are presented herein.

  13. A nebula of gases from Io surrounding Jupiter.

    Science.gov (United States)

    Krimigis, Stamatios M; Mitchell, Donald G; Hamilton, Douglas C; Dandouras, Jannis; Armstrong, Thomas P; Bolton, Scott J; Cheng, Andrew F; Gloeckler, George; Hsieh, K C; Keath, Edwin P; Krupp, Norbert; Lagg, Andreas; Lanzerotti, Louis J; Livi, Stefano; Mauk, Barry H; McEntire, Richard W; Roelof, Edmond C; Wilken, Berend; Williams, Donald J

    2002-02-28

    Several planetary missions have reported the presence of substantial numbers of energetic ions and electrons surrounding Jupiter; relativistic electrons are observable up to several astronomical units (au) from the planet. A population of energetic (>30[?]keV) neutral particles also has been reported, but the instrumentation was not able to determine the mass or charge state of the particles, which were subsequently labelled energetic neutral atoms. Although images showing the presence of the trace element sodium were obtained, the source and identity of the neutral atoms---and their overall significance relative to the loss of charged particles from Jupiter's magnetosphere---were unknown. Here we report the discovery by the Cassini spacecraft of a fast (>103[?]km[?]s-1) and hot magnetospheric neutral wind extending more than 0.5[?]au from Jupiter, and the presence of energetic neutral atoms (both hot and cold) that have been accelerated by the electric field in the solar wind. We suggest that these atoms originate in volcanic gases from Io, undergo significant evolution through various electromagnetic interactions, escape Jupiter's magnetosphere and then populate the environment around the planet. Thus a 'nebula' is created that extends outwards over hundreds of jovian radii.

  14. First Earth-based Detection of a Superbolide on Jupiter

    Science.gov (United States)

    Hueso, Ricardo; Wesley, A.; Go, C.; Perez-Hoyos, S.; Wong, M. H.; Fletcher, L. N.; Sanchez-Lavega, A.; Boslough, M. B. E.; de Pater, I.; Orton, G. S.; Simon-Miller, A. A.; Djorgovski, S. G.; Edwards, M. L.; Hammel, H. B.; Clarke, J. T.; Noll, K. S.; Yanamandra-Fisher, P. A.

    2010-10-01

    On June 3, 2010 a bolide in Jupiter's atmosphere was observed from the Earth for the first time. The flash was detected by amateur astronomers A. Wesley and C. Go observing in two wavelength ranges. We present an analysis of the light curve of those observations that allow estimating the size of the object to be significantly smaller than the SL9 and the July 2009 Jupiter impact. Observations obtained a few days later by large telescopes including HST, VLT, Keck and Gemini showed no signature of the impact in Jupiter atmosphere confirming the small size of the impact body. A nearly continuous observation campaign based on several small telescopes by amateurs astronomers might allow an empirical determination of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. Acknowledgements: RH, ASL and SPH are supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07. LNF is supported by a Glasstone Science Fellowship at the University of Oxford.

  15. First Results of ISO-SWS Grating Observations of Jupiter

    NARCIS (Netherlands)

    Encrenaz, Th.; de Graauw, Th.; Schaeidt, S.; Lellouch, E.; Feuchtgruber, H.; Beintema, D. A.; Bezard, B.; Drossart, P.; Griffin, M.; Heras, A.; Kessler, M.; Leech, K.; Morris, A.; Roelfsema, P. R.; Roos-Serote, M.; Salama, A.; Vandenbussche, B.; Valentijn, E. A.; Davies, G. R.; Naylor, D. A.

    1996-01-01

    The spectrum of Jupiter has been recorded on April 12, 1996, between 2.75 and 14.5 mu m, with the grating mode of the Short-Wavelength Spectrometer of ISO (Infrared Space Observatory). The resolving power is 1500 and the sensitivity limit is better than 1 Jy. The corresponding S/N ratio is better

  16. First results of ISO-SWS observations of Jupiter

    NARCIS (Netherlands)

    Encrenaz, T.; de Graauw, T.; Schaeidt, S.; Lellouch, E.; Feuchtgruber, H.; Beintema, D. A.; Bezard, B.; Drossart, P.; Griffin, M.; Heras, A.; Kessler, M.; Leech, K.; Morris, P.; Roelfsema, P. R.; Roos-Serote, M.; Salama, A.; Vandenbussche, B.; Valentijn, E. A.; Davis, G. R.; Naylor, D. A.

    The spectrum of Jupiter has been recorded between 2.75 and 14.5 mu m with the grating mode of the Short-Wavelength Spectrometer (SWS) of ISO. The resolving power is 1500. The main preliminary results of this observation are (1) at 3 mu m, the first spectroscopic signature, probably associated with

  17. James A. Van Allen: The Trip to Jupiter

    Science.gov (United States)

    Jacobsen, Sally

    1973-01-01

    Discusses the research purposes and activities of the Pioneer mission, including the instruments used, data on Jupiter's radiation belt, and information about cosmic ray intensity. Included is a description of the scientist's view about the value of the space program. (CC)

  18. Influence of tides on the gravitational field of Jupiter

    International Nuclear Information System (INIS)

    Gavrilov, S.V.; Zharkov, V.N.; Leont'ev, V.V.

    1975-01-01

    The influence of tides on the gravitational field of giant planets is considered quantitatively. The ''gravitational noise'' due to tides can affect the determination of J 8 and J 10 for Jupiter. Tidal sounding of the giant planets is suggested. (author)

  19. The Moons of Jupiter / Journey to the Stars

    Science.gov (United States)

    Litwak, J.; Chatzichristou, E.

    2017-09-01

    The Moons of Jupiter/ Journey to the Stars uses the arts, most particularly theatre arts to inspire curiosity about science education. Using characters which include famous scientists as well as mythological figures, the project provokes thought and offers opportunity for discovery. The play and the subsequent creative teaching tools are accessible to scientists, artists and lay people in an out of the classroom.

  20. Cold blobs of protons in Jupiter's outer magnetosphere as observed by Juno's JADE

    Science.gov (United States)

    Wilson, R. J.; Bagenal, F.; Valek, P. W.; Allegrini, F.; Angold, N. G.; Chae, K.; Ebert, R. W.; Kim, T. K. H.; Loeffler, C.; Louarn, P.; McComas, D. J.; Pollock, C. J.; Ranquist, D. A.; Reno, C.; Szalay, J. R.; Thomsen, M. F.; Weidner, S.; Bolton, S. J.; Levin, S.

    2017-12-01

    Juno's 53-day polar orbits cut through the equatorial plane when inbound to perijove. The JADE instrument has been observing thermal ions (0.01-50 keV/q) and electrons (0.1-100 keV/q) in these regions since Orbit 05. Even at distances greater than 70 RJ, magnetodisk crossings are clear with high count rates measured before returning to rarified plasma conditions outside the disk. However JADE's detectors observes regions of slightly greater ion counts that last for about an hour. The ion counts are too low to analyze at the typical 30s or 60s low rate instrument cadence, but by summing to 10-minute resolution the features become analyzable. We find these regions are populated with protons with higher density than those typically observed outside the magnetodisk, and that they are colder than the ambient plasma. Reanalysis of Voyager data (DOI: 10.1002/2017JA024053) also showed cold dense blobs of plasma in the inner to middle magnetosphere, however these were of heavier ion species, short lived (several minutes) and within 40 RJ of Jupiter. This presentation will investigate the JADE identified cold blobs observed to date and compare with those observed with Voyager.

  1. TrES-5: A MASSIVE JUPITER-SIZED PLANET TRANSITING A COOL G DWARF

    International Nuclear Information System (INIS)

    Mandushev, Georgi; Dunham, Edward W.; Quinn, Samuel N.; Latham, David W.; Charbonneau, David; Buchhave, Lars A.; Rabus, Markus; Oetiker, Brian; Brown, Timothy M.; Belmonte, Juan A.; O'Donovan, Francis T.

    2011-01-01

    We report the discovery of TrES-5, a massive hot Jupiter that transits the star GSC 03949-00967 every 1.48 days. From spectroscopy of the star we estimate a stellar effective temperature of T eff = 5171 ± 36 K, and from high-precision B, R, and I photometry of the transit we constrain the ratio of the semimajor axis a and the stellar radius R * to be a/R * = 6.07 ± 0.14. We compare these values to model stellar isochrones to obtain a stellar mass of M * = 0.893 ± 0.024 M ☉ . Based on this estimate and the photometric time series, we constrain the stellar radius to be R * = 0.866 ± 0.013 R ☉ and the planet radius to be R p = 1.209 ± 0.021 R J . We model our radial-velocity data assuming a circular orbit and find a planetary mass of 1.778 ± 0.063 M J . Our radial-velocity observations rule out line-bisector variations that would indicate a specious detection resulting from a blend of an eclipsing binary system. TrES-5 orbits one of the faintest stars with transiting planets found to date from the ground and demonstrates that precise photometry and followup spectroscopy are possible, albeit challenging, even for such faint stars.

  2. ERS orbit control

    Science.gov (United States)

    Rosengren, Mats

    1991-12-01

    The European remote sensing mission orbit control is addressed. For the commissioning phase, the orbit is defined by the following requirements: Sun synchronous, local time of descending node 10:30; three days repeat cycle with 43 orbital revolutions; overhead Venice tower (12.508206 deg east, 45.314222 deg north). The launch, maneuvers for the initial acquisition of the operational orbit, orbit maintenance maneuvers, evaluation of the orbit control, and the drift of the inclination are summarized.

  3. Gravity Probe B Inspection

    Science.gov (United States)

    2000-01-01

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  4. The hot plasma environment at jupiter: ulysses results.

    Science.gov (United States)

    Lanzerotti, L J; Armstrong, T P; Gold, R E; Anderson, K A; Krimigis, S M; Lin, R P; Pick, M; Roelof, E C; Sarris, E T; Simnett, G M; Maclennan, C G; Choo, H T; Tappin, S J

    1992-09-11

    Measurements of the hot plasma environment during the Ulysses flyby of Jupiter have revealed several new discoveries related to this large rotating astrophysical system. The Jovian magnetosphere was found by Ulysses to be very extended, with the day-side magnetopause located at approximately 105 Jupiter radii. The heavy ion (sulfur, oxygen, and sodium) population in the day-side magnetosphere increased sharply at approximately 86 Jupiter radii. This is somewhat more extended than the "inner" magnetosphere boundary region identified by the Voyager hot plasma measurements. In the day-side magnetosphere, the ion fluxes have the anisotropy direction expected for corotation with the planet, with the magnitude of the anisotropy increasing when the spacecraft becomes more immersed in the hot plasma sheet. The relative abundances of sulfur, oxygen, and sodium to helium decreased somewhat with decreasing radial distance from the planet on the day-side, which suggests that the abundances of the Jupiter-derived species are dependent on latitude. In the dusk-side, high-latitude region, intense fluxes of counter-streaming ions and electrons were discovered from the edge of the plasma sheet to the dusk-side magnetopause. These beams of electrons and ions were found to be very tightly aligned with the magnetic field and to be superimposed on a time- and space-variable isotropic hot plasma background. The currents carried by the measured hot plasma particles are typically approximately 1.6 x 10(-4) microamperes per square meter or approximately 8 x 10(5) amperes per squared Jupiter radius throughout the high-latitude magnetosphere volume. It is likely that the intense particle beams discovered at high Jovian latitudes produce auroras in the polar caps of the planet.

  5. Exploring the diversity of Jupiter-class planets.

    Science.gov (United States)

    Fletcher, Leigh N; Irwin, Patrick G J; Barstow, Joanna K; de Kok, Remco J; Lee, Jae-Min; Aigrain, Suzanne

    2014-04-28

    Of the 900+ confirmed exoplanets discovered since 1995 for which we have constraints on their mass (i.e. not including Kepler candidates), 75% have masses larger than Saturn (0.3 MJ), 53% are more massive than Jupiter and 67% are within 1 AU of their host stars. When Kepler candidates are included, Neptune-sized giant planets could form the majority of the planetary population. And yet the term 'hot Jupiter' fails to account for the incredible diversity of this class of astrophysical object, which exists on a continuum of giant planets from the cool jovians of our own Solar System to the highly irradiated, tidally locked hot roasters. We review theoretical expectations for the temperatures, molecular composition and cloud properties of hydrogen-dominated Jupiter-class objects under a variety of different conditions. We discuss the classification schemes for these Jupiter-class planets proposed to date, including the implications for our own Solar System giant planets and the pitfalls associated with compositional classification at this early stage of exoplanetary spectroscopy. We discuss the range of planetary types described by previous authors, accounting for (i) thermochemical equilibrium expectations for cloud condensation and favoured chemical stability fields; (ii) the metallicity and formation mechanism for these giant planets; (iii) the importance of optical absorbers for energy partitioning and the generation of a temperature inversion; (iv) the favoured photochemical pathways and expectations for minor species (e.g. saturated hydrocarbons and nitriles); (v) the unexpected presence of molecules owing to vertical mixing of species above their quench levels; and (vi) methods for energy and material redistribution throughout the atmosphere (e.g. away from the highly irradiated daysides of close-in giants). Finally, we discuss the benefits and potential flaws of retrieval techniques for establishing a family of atmospheric solutions that reproduce the

  6. Jupiter's Mid-Infrared Aurora: Solar Connection and Minor Constituents

    Science.gov (United States)

    Kostiuk, Theodore; Livengood, T.A.; Fast, K.E.; Hewagama, T.; Schmilling, F.; Sonnabend, G.; Delgado, J.

    2009-01-01

    High spectral resolution in the 12 pin region of the polar regions of Jupiter reveal unique information on auroral phenomena and upper stratospheric composition. Polar aurorae in Jupiter's atmosphere radiate; throughout the electromagnetic spectrum from X-ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based. spectroscopic measurements of Jupiter's northern mid-IR aurora acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane, emission brightness and solar 10.7-cm radar flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high scalar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. The spectra measured contain features that cannot be attributed to ethane and are most likely spectra of minor constituents whose molecular bands overlap the v9 band of ethane. Possible candidates are allene, propane, and other higher order hydrocarbons. These features appear to be enhanced in the active polar regions. Laboratory measurements at comparable spectral resolution of spectra of candidate molecules will be used to identify the constituents. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the NASA/ESA Europa Jupiter System Mission.

  7. JunoCam Images of Jupiter: Science from an Outreach Experiment

    Science.gov (United States)

    Hansen, C. J.; Orton, G. S.; Caplinger, M. A.; Ravine, M. A.; Rogers, J.; Eichstädt, G.; Jensen, E.; Bolton, S. J.; Momary, T.; Ingersoll, A. P.

    2017-12-01

    The Juno mission to Jupiter carries a visible imager on its payload primarily for outreach, and also very useful for jovian atmospheric science. Lacking a formal imaging science team, members of the public have volunteered to process JunoCam images. Lightly processed and raw JunoCam data are posted on the JunoCam webpage at https://missionjuno.swri.edu/junocam/processing. Citizen scientists download these images and upload their processed contributions. JunoCam images through broadband red, green and blue filters and a narrowband methane filter centered at 889 nm mounted directly on the detector. JunoCam is a push-frame imager with a 58 deg wide field of view covering a 1600 pixel width, and builds the second dimension of the image as the spacecraft rotates. This design enables capture of the entire pole of Jupiter in a single image at low emission angle when Juno is 1 hour from perijove (closest approach). At perijove the wide field of view images are high-resolution while still capturing entire storms, e.g. the Great Red Spot. Juno's unique polar orbit yields polar perspectives unavailable to earth-based observers or most previous spacecraft. The first discovery was that the familiar belt-zone structure gives way to more chaotic storms, with cyclones grouped around both the north and south poles [1, 2]. Recent time-lapse sequences have enabled measurement of the rotation rates and wind speeds of these circumpolar cyclones [3]. Other topics are being investigated with substantial, in many cases essential, contributions from citizen scientists. These include correlating the high resolution JunoCam images to storms and disruptions of the belts and zones tracked throughout the historical record. A phase function for Jupiter is being developed empirically to allow image brightness to be flattened from the subsolar point to the terminator. We are studying high hazes and the stratigraphy of the upper atmosphere, utilizing the methane filter, structures illuminated

  8. Using the tools of the trade to understand plasma interactions at Jupiter and Saturn

    Science.gov (United States)

    Kivelson, Margaret G.

    2017-10-01

    For more than half a century, we have been learning how magnetospheres work. Fluid motions and electromagnetic interactions combine to produce the plasma and field environment of a planet. Kinetic responses often control the dynamics. Initial descriptions of the terrestrial magnetosphere were often theoretical (e.g., Chapman and Ferraro, Dungey) before an explosion of spacecraft data provided an atlas of the system and its temporal variations. The basic structure and dynamics of the terrestrial magnetosphere are now largely understood. A different situation exists for the magnetospheres of Jupiter, Saturn, and their moons. Data acquired from spacecraft flybys or from orbit have characterized many aspects of these systems, but measurements are far more limited than at Earth both in space and in time. Even after Cassini’s mission to Saturn and Juno’s prime mission at Jupiter have ended, large regions in the plasma environments of these planets will remain unexplored. No monitors are available to characterize the upstream solar wind. Theory is challenged by the complexity introduced by dynamical effects of the planets’ rapid rotation and the unfamiliar parameter regimes governing interactions with their large moons. Simulation has come to the rescue, providing computational models designed to incorporate the effects of rotation or to describe moon-magnetosphere interactions. Yet simulations must be viewed with appropriate skepticism as they invariably require some compromise with reality. This talk will describe a symbiotic approach to understanding the dynamics of giant planet magnetospheres and the plasma interactions between magnetospheric plasma and large moons. Data acquired along a spacecraft trajectory are compared with values extracted from a virtual spacecraft moving through the same path in the simulation. If results are similar, we use the simulation to identify the processes responsible for puzzling aspects of the signatures. If results differ

  9. Habitability potential of satellites around Jupiter and Saturn

    Science.gov (United States)

    Coustenis, Athena; Raulin, Francois; Encrenaz, Therese; Grasset, Olivier; Solomonidou, Anezina

    2016-07-01

    In looking for habitable conditions in the outer solar system recent research focuses on the natural satellites rather than the planets themselves. Indeed, the habitable zone as traditionally defined may be larger than originally conceived. The outer solar system satellites provide a conceptual basis within which new theories for understanding habitability can be constructed. Measurements from the ground but also by the Voyager, Galileo and the Cassini spacecrafts revealed the potential of these satellites in this context, and our understanding of habitability in the solar system and beyond can be greatly enhanced by investigating several of these bodies together [1]. Their environments seem to satisfy many of the "classical" criteria for habitability (liquid water, energy sources to sustain metabolism and chemical compounds that can be used as nutrients over a period of time long enough to allow the development of life). Indeed, several of the moons show promising conditions for habitability and the development and/or maintenance of life. The strong gravitational pull caused by the giant planets may produce enough energy to sufficiently heat the cores of orbiting icy moons. Europa and Ganymede may be hiding, under their icy crust, putative undersurface liquid water oceans [2] which, in the case of Europa [3], may be in direct contact with a silicate mantle floor and kept warm by tidally generated heat [4]. Titan and Enceladus, Saturn's satellites, were found by the Cassini-Huygens mission to possess active organic chemistries with seasonal variations, unique geological features and possibly internal liquid water oceans. Titan's rigid crust and the probable existence of a subsurface ocean create an analogy with terrestrial-type plate tectonics, at least surficial [5], while Enceladus' plumes find an analogue in geysers. As revealed by Cassini the liquid hydrocarbon lakes [6] distributed mainly at polar latitudes on Titan are ideal isolated environments to look for

  10. Probing the parameters of the HAT-P-2 system

    Science.gov (United States)

    Bailey, Elizabeth; Naoz, Smadar; Batygin, Konstantin

    2018-04-01

    The HAT-P-2 system contributes an exceptional set of parameters to the exoplanetary inventory. HAT-P-2b weighs in at approximately 9 Jupiter masses, residing on one of the most eccentric, close-in orbits of any hot Jupiter (e~0.5, a~0.07). The identification of an RV trend points to the existence of an additional, long-period companion, which may have facilitated Kozai-Lidov cycles in the system over its multi-Gyr history. The well-constrained parameters of HAT-P-2b present an opportunity to predict the parameters of the perturber, and furthermore, to assess the tidal dissipation involved in the system's evolution. In this work, we employ an octupole-level secular model to account for the interaction of the two massive planets, thus classifying the system's deviations away from purely quadrupolar dynamics.

  11. Solar Probe Plus

    Science.gov (United States)

    Szabo, Adam

    2011-01-01

    The NASA Solar Probe Plus mission is planned to be launched in 2018 to study the upper solar corona with both.in-situ and remote sensing instrumentation. The mission will utilize 6 Venus gravity assist maneuver to gradually lower its perihelion to 9.5 Rs below the expected Alfven pOint to study the sub-alfvenic solar wind that is still at least partially co-rotates with the Sun. The detailed science objectives of this mission will be discussed. SPP will have a strong synergy with The ESA/NASA Solar orbiter mission to be launched a year ahead. Both missions will focus on the inner heliosphere and will have complimentary instrumentations. Strategies to exploit this synergy will be also presented.

  12. CONGENITAL ORBITAL TERATOMA

    African Journals Online (AJOL)

    was done without contrast and 3mm/5mm/10mm slices were obtained to cover the orbit, skull base and brain. The findings included a soft tissue mass arising from the orbit. The left eye ball was extra orbital. There was no defect .... love's Short Practice of Surgery. 7 Edition,. Levis London, 1997; 45-64. 2. Orbital tumor Part 1, ...

  13. Advanced Russian Mission Laplace-P to Study the Planetary System of Jupiter: Scientific Goals, Objectives, Special Features and Mission Profile

    Science.gov (United States)

    Martynov, M. B.; Merkulov, P. V.; Lomakin, I. V.; Vyatlev, P. A.; Simonov, A. V.; Leun, E. V.; Barabanov, A. A.; Nasyrov, A. F.

    2017-12-01

    The advanced Russian project Laplace-P is aimed at developing and launching two scientific spacecraft (SC)— Laplace-P1 ( LP1 SC) and Laplace-P2 ( LP2 SC)—designed for remote and in-situ studies of the system of Jupiter and its moon Ganymede. The LP1 and LP2 spacecraft carry an orbiter and a lander onboard, respectively. One of the orbiter's objectives is to map the surface of Ganymede from the artificial satellite's orbit and to acquire the data for the landing site selection. The main objective of the lander is to carry out in-situ investigations of Ganymede's surface. The paper describes the scientific goals and objectives of the mission, its special features, and the LP1 and LP2 mission profiles during all of the phases—from the launch to the landing on the surface of Ganymede.

  14. Radiovolumetry of the orbit

    International Nuclear Information System (INIS)

    Abujamra, S.

    1983-01-01

    The authors present a method called ''Radiovolumetry of the orbit'' that permits the evaluation of the orbital volume from anteroposterior skull X-Rays (CALDWELL 30 0 position). The research was based in the determination of the orbital volume with lead spheres, in 1010 orbits of 505 dry skulls of Anatomy Museums. After the dry skulls was X-rayed six frontal orbital diameters were made, with care to correct the radiographic amplification. PEARSON correlation coeficient test was applied between the mean orbital diameter and the orbital volume. The result was r = 0,8 with P [pt

  15. THE ATMOSPHERIC CIRCULATION OF THE HOT JUPITER WASP-43b: COMPARING THREE-DIMENSIONAL MODELS TO SPECTROPHOTOMETRIC DATA

    Energy Technology Data Exchange (ETDEWEB)

    Kataria, Tiffany; Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Fortney, Jonathan J.; Line, Michael R. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Stevenson, Kevin B.; Kreidberg, Laura; Bean, Jacob L. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Désert, Jean-Michel, E-mail: tkataria@astro.ex.ac.uk [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2015-03-10

    The hot Jupiter WASP-43b (2 M{sub J}, 1 R{sub J}, T {sub orb} = 19.5 hr) has now joined the ranks of transiting hot Jupiters HD 189733b and HD 209458b as an exoplanet with a large array of observational constraints. Because WASP-43b receives a similar stellar flux as HD 209458b but has a rotation rate four times faster and a higher gravity, studying WASP-43b probes the effect of rotation rate and gravity on the circulation when stellar irradiation is held approximately constant. Here we present three-dimensional (3D) atmospheric circulation models of WASP-43b, exploring the effects of composition, metallicity, and frictional drag. We find that the circulation regime of WASP-43b is not unlike other hot Jupiters, with equatorial superrotation that yields an eastward-shifted hotspot and large day-night temperature variations (∼600 K at photospheric pressures). We then compare our model results to Hubble Space Telescope (HST)/WFC3 spectrophotometric phase curve measurements of WASP-43b from 1.12 to 1.65 μm. Our results show the 5× solar model light curve provides a good match to the data, with a peak flux phase offset and planet/star flux ratio that is similar to observations; however, the model nightside appears to be brighter. Nevertheless, our 5× solar model provides an excellent match to the WFC3 dayside emission spectrum. This is a major success, as the result is a natural outcome of the 3D dynamics with no model tuning. These results demonstrate that 3D circulation models can help interpret exoplanet atmospheric observations, even at high resolution, and highlight the potential for future observations with HST, James Webb Space Telescope, and other next-generation telescopes.

  16. Electromagnetically Interacting Dust Streams During Ulysses' Second Jupiter Encounter

    International Nuclear Information System (INIS)

    Krueger, H.; Forsyth, R.J.; Graps, A.L.; Gruen, E.

    2005-01-01

    The Jupiter system is a source of collimated burst-like streams of electrically charged 10-nm dust particles. In 2004 the Ulysses spacecraft had its second flyby at Jupiter and from late 2002 to early 2005 it measured a total of 24 dust streams between 0.8 and 3.4 AU from the planet. The grains show strong coupling to the interplanetary magnetic field: their impact directions correlate with the orientation and strength of the interplanetary magnetic field vector (namely its tangential and radial components) and they occur at 26 day intervals, closely matching the solar rotation period. Ulysses measured the dust streams over a large range in jovian latitude (+75 deg. to -35 deg.). Enhanced dust emission was measured along the jovian equator

  17. Ongoing Analysis of Jupiter's Equatorial Hotspots and Plumes from Cassini

    Science.gov (United States)

    Choi, D. S.; Showmwn, A. P.; Vasavada, A. R.; Simon-Miller, A. A.

    2012-01-01

    We present updated results from our ongoing analysis of Cassini observations of Jupiter's equatorial meteorology. For two months preceding the spacecraft's closest approach of the planet, the ISS instrument onboard Cassini regularly imaged the atmosphere of Jupiter. We created time-lapse movies from this period that show the complex activity and interactions of the equatorial atmosphere. During this period, hot spots exhibited significant variations in size and shape over timescales of days and weeks. Some of these changes appear to be a result of interactions with passing vortex systems in adjacent latitudes. Strong anticyclonic gyres to the southeast of the dark areas converge with flow from the west and appear to circulate into a hot spot at its southwestern corner.

  18. Telecommunications Antennas for the Juno Mission to Jupiter

    Science.gov (United States)

    Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.

    2012-01-01

    The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.

  19. Neutron irradiation experiments for fusion reactor materials through JUPITER program

    International Nuclear Information System (INIS)

    Abe, K.; Namba, C.; Wiffen, F.W.; Jones, R.H.

    1998-01-01

    A Japan-USA program of irradiation experiments for fusion research, ''JUPITER'', has been established as a 6 year program from 1995 to 2000. The goal is to study ''the dynamic behavior of fusion reactor materials and their response to variable and complex irradiation environment''. This is phase-three of the collaborative program, which follows RTNS-II program (phase-1: 1982-1986) and FFTF/MOTA program (phase-2: 1987-1994). This program is to provide a scientific basis for application of materials performance data, generated by fission reactor experiments, to anticipated fusion environments. Following the systematic study on cumulative irradiation effects, done through FFTF/MOTA program. JUPITER is emphasizing the importance of dynamic irradiation effects on materials performance in fusion systems. The irradiation experiments in this program include low activation structural materials, functional ceramics and other innovative materials. The experimental data are analyzed by theoretical modeling and computer simulation to integrate the above effects. (orig.)

  20. Three Temperate Neptunes Orbiting Nearby Stars

    Science.gov (United States)

    Fulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M.; Sinukoff, Evan; Petigura, Erik A.; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W.; Henry, Gregory W.; Grunblatt, Samuel K.; Huber, Daniel; von Braun, Kaspar; Boyajian, Tabetha S.; Kane, Stephen R.; Wittrock, Justin; Horch, Elliott P.; Ciardi, David R.; Howell, Steve B.; Wright, Jason T.; Ford, Eric B.

    2016-10-01

    We present the discovery of three modestly irradiated, roughly Neptune-mass planets orbiting three nearby Solar-type stars. HD 42618 b has a minimum mass of 15.4 ± 2.4 {M}\\oplus , a semimajor axis of 0.55 au, an equilibrium temperature of 337 K, and is the first planet discovered to orbit the solar analogue host star, HD 42618. We also discover new planets orbiting the known exoplanet host stars HD 164922 and HD 143761 (ρ CrB). The new planet orbiting HD 164922 has a minimum mass of 12.9 ± 1.6 {M}\\oplus and orbits interior to the previously known Jovian mass planet orbiting at 2.1 au. HD 164922 c has a semimajor axis of 0.34 au and an equilibrium temperature of 418 K. HD 143761 c orbits with a semimajor axis of 0.44 au, has a minimum mass of 25 ± 2 {M}\\oplus , and is the warmest of the three new planets with an equilibrium temperature of 445 K. It orbits exterior to the previously known warm Jupiter in the system. A transit search using space-based CoRoT data and ground-based photometry from the Automated Photometric Telescopes (APTs) at Fairborn Observatory failed to detect any transits, but the precise, high-cadence APT photometry helped to disentangle planetary-reflex motion from stellar activity. These planets were discovered as part of an ongoing radial velocity survey of bright, nearby, chromospherically inactive stars using the Automated Planet Finder (APF) telescope at Lick Observatory. The high-cadence APF data combined with nearly two decades of radial velocity data from Keck Observatory and gives unprecedented sensitivity to both short-period low-mass, and long-period intermediate-mass planets. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘I, the University of California, and NASA.

  1. Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt

    Science.gov (United States)

    Lou, Y.-Q.

    2017-09-01

    Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt Yu-Qing Lou* Physics Department, Tsinghua Centre for Astrophysics (THCA), Tsinghua-National Astronomical Observatories of China (NAOC) joint Research Centre for Astrophysics, Tsinghua University, Beijing 100084, China We describe the basic phenommenology of quasi-periodic 40 minute (QP-40) polar burst activities of Jupiter and their close correlation with the solar wind speed variations at the Jovian magnetosphere. Physically, relativistic electrons of QP-40 bursts most likely come from the circumpolar regions of the inner radiation belt (IRB) which gives off intense synchroton radio emissions in a wide wavelength range. Such relativistic electron bursts also give rise to beamed low-frequency radio bursts along polar magnetic field lines with distinct polarizations from Jupiter's two polar regions. Jovian aurora activities are expected to be also affected by such QP-40 burst activities. We present evidence of short-term (typical timescales shorter than an hour) variabilities of the IRB at 6cm wavelength and describe recent joint radio telescope observation campaign to monitor Jupiter in coordination with JUNO spacecraft. Except for low-frequency polarization features, we anticipate JUNO to detect QP-40 activities from both polar regions during the arrival of high-speed solar wind with intermittency. References 1. Y.-Q. Lou, The Astrophysical Journal, 548, 460 (2001). 2. Y.-Q. Lou, and C. Zheng, Mon. Not. Roy. Astron. Soc. Letters, 344, L1 (2003). 3. Y.-Q. Lou, H. G. Song, Y.Y. Liu, and M. Yang, Mon. Not. Roy. Astron. Soc. Letters, 421, L62 (2012). 4. Y.-Q. Lou, Geophysical Research Letters, 23, 609 (1996). 5. Y.-Q. Lou, Journal of Geophysical Research, 99, 14747 (1994). 6. G. R. Gladstone, et al., Nature, 415, 1000 (2002).

  2. Carbon monoxide in jupiter's upper atmosphere: An extraplanetary source

    International Nuclear Information System (INIS)

    Prather, M.J.; Logan, J.A.; McElroy, M.B.

    1978-01-01

    Ablation of meteoroidal material in Jupiter's atmosphere may provide substantial quantities of H 2 O. Subsequent photochemistry can convert H 2 O and CH 4 to CO and H 2 . The associated source of CO could account for the observations by Beer, Larson, Fink, and Treffers, and Beer and Taylor, and would explain the relatively low rotational temperatures inferred by Beer and Taylor. Meteoritic debris might also provide spectroscopically detectable concentrations of SiO

  3. PRODUCTION OF NEAR-EARTH ASTEROIDS ON RETROGRADE ORBITS

    International Nuclear Information System (INIS)

    Greenstreet, S.; Gladman, B.; Ngo, H.; Granvik, M.; Larson, S.

    2012-01-01

    While computing an improved near-Earth object (NEO) steady-state orbital distribution model, we discovered in the numerical integrations the unexpected production of retrograde orbits for asteroids that had originally exited from the accepted main-belt source regions. Our model indicates that ∼0.1% (a factor of two uncertainty) of the steady-state NEO population (perihelion q < 1.3 AU) is on retrograde orbits. These rare outcomes typically happen when asteroid orbits flip to a retrograde configuration while in the 3:1 mean-motion resonance with Jupiter and then live for ∼0.001 to 100 Myr. The model predicts, given the estimated near-Earth asteroid (NEA) population, that a few retrograde 0.1-1 km NEAs should exist. Currently, there are two known MPC NEOs with asteroidal designations on retrograde orbits which we therefore claim could be escaped asteroids instead of devolatilized comets. This retrograde NEA population may also answer a long-standing question in the meteoritical literature regarding the origin of high-strength, high-velocity meteoroids on retrograde orbits.

  4. Coloring Jupiter's clouds: Radiolysis of ammonium hydrosulfide (NH4SH)

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2018-03-01

    Here we present our recent studies on the color and spectral reflectance changes induced by ∼0.9 MeV proton irradiation of ammonium hydrosulfide, NH4SH, a compound predicted to be an important tropospheric cloud component of Jupiter and other giant planets. Ultraviolet-visible spectroscopy was used to observe and identify reaction products in the ice sample and digital photography was used to document the corresponding color changes at 10-160 K. Our experiments clearly show that the resulting color of the sample depends not only on the irradiation dose but also the irradiation temperature. Furthermore, unlike in our most recent studies of irradiation of NH4SH at 120 K, which showed that higher irradiation doses caused the sample to appear green, the lower temperature studies now show that the sample becomes red after irradiation. However, comparison of these lower temperature spectra over the entire spectral range observed by HST shows that even though the color and spectrum resemble the color and spectrum of the GRS, there is still enough difference to suggest that another component may be needed to adequately fit spectra of the GRS and other red regions of Jupiter's clouds. Regardless, the presence of NH4SH in the atmosphere of Jupiter and other gas giants, combined with this compound's clear alteration via radiolysis, suggests that its contribution to the ultraviolet-visible spectra of any of these object's clouds is significant.

  5. Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter

    Science.gov (United States)

    Sagan, Carl; Khare, B. N.; Thompson, W. R.; Mcdonald, G. D.; Wing, Michael R.; Bada, Jeffrey L.; Vo-Dinh, Tuan; Arakawa, E. T.

    1993-01-01

    PAHs are important components of the interstellar medium and carbonaceous chondrites, but have never been identified in the reducing atmospheres of the outer solar system. Incompletely characterized complex organic solids (tholins) produced by irradiating simulated Titan atmospheres reproduce well the observed UV/visible/IR optical constants of the Titan stratospheric haze. Titan tholin and a tholin generated in a crude simulation of the atmosphere of Jupiter are examined by two-step laser desorption/multiphoton ionization mass spectrometry. A range of two- to four-ring PAHs, some with one to four alkylation sites, are identified, with a net abundance of about 0.0001 g/g (grams per gram) of tholins produced. Synchronous fluorescence techniques confirm this detection. Titan tholins have proportionately more one- and two-ring PAHs than do Jupiter tholins, which in turn have more four-ring and larger PAHs. The four-ringed PAH chrysene, prominent in some discussions of interstellar grains, is found in Jupiter tholins.

  6. ATMOSPHERIC CIRCULATION OF HOT JUPITERS: INSENSITIVITY TO INITIAL CONDITIONS

    International Nuclear Information System (INIS)

    Liu Beibei; Showman, Adam P.

    2013-01-01

    The ongoing characterization of hot Jupiters has motivated a variety of circulation models of their atmospheres. Such models must be integrated starting from an assumed initial state, which is typically taken to be a wind-free, rest state. Here, we investigate the sensitivity of hot-Jupiter atmospheric circulation to initial conditions with shallow-water models and full three-dimensional models. Those models are initialized with zonal jets, and we explore a variety of different initial jet profiles. We demonstrate that, in both classes of models, the final, equilibrated state is independent of initial condition—as long as frictional drag near the bottom of the domain and/or interaction with a specified planetary interior are included so that the atmosphere can adjust angular momentum over time relative to the interior. When such mechanisms are included, otherwise identical models initialized with vastly different initial conditions all converge to the same statistical steady state. In some cases, the models exhibit modest time variability; this variability results in random fluctuations about the statistical steady state, but we emphasize that, even in these cases, the statistical steady state itself does not depend on initial conditions. Although the outcome of hot-Jupiter circulation models depend on details of the radiative forcing and frictional drag, aspects of which remain uncertain, we conclude that the specification of initial conditions is not a source of uncertainty, at least over the parameter range explored in most current models.

  7. The Innisfree meteorite: Dynamical history of the orbit - Possible family of meteor bodies

    Science.gov (United States)

    Galibina, I. V.; Terent'eva, A. K.

    1987-09-01

    Evolution of the Innisfree meteorite orbit caused by secular perturbations is studied over the time interval of 500000 yrs (from the current epoch backwards). Calculations are made by the Gauss-Halphen-Gorjatschew method taking into account perturbations from the four outer planets - Jupiter, Saturn, Uranus and Neptune. In the above mentioned time interval the meteorite orbit has undergone no essential transformations. The Innisfree orbit intersected in 91 cases the Earth orbit and in 94 - the Mars orbit. A system of small and large meteor bodies (producing ordinary meteors and fireballs) which may be genetically related to the Innisfree meteorite has been found, i.e. there probably exists an Innisfree family of meteor bodies.

  8. Physical conditions for Jupiter-like dynamo models

    Science.gov (United States)

    Duarte, Lúcia D. V.; Wicht, Johannes; Gastine, Thomas

    2018-01-01

    The Juno mission will measure Jupiter's magnetic field with unprecedented precision and provide a wealth of additional data that will allow us to constrain the planet's interior structure and dynamics. Here we analyse 66 different numerical simulations in order to explore the sensitivity of the dynamo-generated magnetic field to the planets interior properties. Jupiter field models based on pre-Juno data and up-to-date interior models based on ab initio simulations serve as benchmarks. Our results suggest that Jupiter-like magnetic fields can be found for a number of different models. These complement the steep density gradients in the outer part of the simulated shell with an electrical conductivity profile that mimics the low conductivity in the molecular hydrogen layer and thus renders the dynamo action in this region largely unimportant. We find that whether we assume an ideal gas or use the more realistic interior model based on ab initio simulations makes no difference. However, two other factors are important. A low Rayleigh number leads to a too strong axial dipole contribution while the axial dipole dominance is lost altogether when the convective driving is too strong. The required intermediate range that yields Jupiter-like magnetic fields depends on the other system properties. The second important factor is the convective magnetic Reynolds number radial profile Rmc(r), basically a product of the non-axisymmetric flow velocity and electrical conductivity. We find that the depth where Rmc exceeds about 50 is a good proxy for the top of the dynamo region. When the dynamo region sits too deep, the axial dipole is once more too dominant due to geometric reasons. Extrapolating our results to Jupiter and the result suggests that the Jovian dynamo extends to 95% of the planetary radius. The zonal flow system in our simulations is dominated by an equatorial jet which remains largely confined to the molecular layer. Where the jet reaches down to higher

  9. A Common Probe Design for Multiple Planetary Destinations

    Science.gov (United States)

    Hwang, H. H.; Allen, G. A., Jr.; Alunni, A. I.; Amato, M. J.; Atkinson, D. H.; Bienstock, B. J.; Cruz, J. R.; Dillman, R. A.; Cianciolo, A. D.; Elliott, J. O.; hide

    2018-01-01

    Atmospheric probes have been successfully flown to planets and moons in the solar system to conduct in situ measurements. They include the Pioneer Venus multi-probes, the Galileo Jupiter probe, and Huygens probe. Probe mission concepts to five destinations, including Venus, Jupiter, Saturn, Uranus, and Neptune, have all utilized similar-shaped aeroshells and concept of operations, namely a 45-degree sphere cone shape with high density heatshield material and parachute system for extracting the descent vehicle from the aeroshell. Each concept designed its probe to meet specific mission requirements and to optimize mass, volume, and cost. At the 2017 International Planetary Probe Workshop (IPPW), NASA Headquarters postulated that a common aeroshell design could be used successfully for multiple destinations and missions. This "common probe"� design could even be assembled with multiple copies, properly stored, and made available for future NASA missions, potentially realizing savings in cost and schedule and reducing the risk of losing technologies and skills difficult to sustain over decades. Thus the NASA Planetary Science Division funded a study to investigate whether a common probe design could meet most, if not all, mission needs to the five planetary destinations with extreme entry environments. The Common Probe study involved four NASA Centers and addressed these issues, including constraints and inefficiencies that occur in specifying a common design. Study methodology: First, a notional payload of instruments for each destination was defined based on priority measurements from the Planetary Science Decadal Survey. Steep and shallow entry flight path angles (EFPA) were defined for each planet based on qualification and operational g-load limits for current, state-of-the-art instruments. Interplanetary trajectories were then identified for a bounding range of EFPA. Next, 3-degrees-of-freedom simulations for entry trajectories were run using the entry state

  10. Results of Joint Observations of Jupiter's Atmosphere by Juno and a Network of Earth-Based Observing Stations

    Science.gov (United States)

    Orton, G. S.; Momary, T.; Tabataba-Vakili, F.; Bolton, S.; Levin, S.; Adriani, A.; Gladstone, G. R.; Hansen, C. J.; Janssen, M.

    2017-09-01

    Well over sixty investigator/instrument investigations are actively engaged in the support of the Juno mission. These observations range from X-ray to the radio wavelengths and involve both space- and ground-based astronomical facilities. These observations enhance and expand Juno measurements by (1) providing a context that expands the area covered by often narrow spatial coverage of Juno's instruments, (2) providing a temporal context that shows how phenomena evolve over Juno's 53-day orbit period, (3) providing observations in spectral ranges not covered by Juno's instruments, and (4) monitoring the behavior of external influences to Jupiter's magnetosphere. Intercommunication between the Juno scientists and the support program is maintained by reference to a Google table that describes the observation and its current status, as well as by occasional group emails. A non-interactive version of this invitation-only site is mirrored in a public site. Several sets of these supporting observations are described at this meeting.

  11. Orbital symmetry fingerprints for magnetic adatoms in graphene

    Science.gov (United States)

    Uchoa, Bruno; Yang, Ling; Tsai, S.-W.; Peres, N. M. R.; Castro Neto, A. H.

    2014-01-01

    In this paper, we describe the formation of local resonances in graphene in the presence of magnetic adatoms containing localized orbitals of arbitrary symmetry, corresponding to any given angular momentum state. We show that quantum interference effects which are naturally inbuilt in the honeycomb lattice in combination with the specific orbital symmetry of the localized state lead to the formation of fingerprints in differential conductance curves. In the presence of Jahn-Teller distortion effects, which lift the orbital degeneracy of the adatoms, the orbital symmetries can lead to distinctive signatures in the local density of states. We show that those effects allow scanning tunneling probes to characterize adatoms and defects in graphene.

  12. Traumatic orbital CSF leak

    Science.gov (United States)

    Borumandi, Farzad

    2013-01-01

    Compared to the cerebrospinalfluid (CSF) leak through the nose and ear, the orbital CSF leak is a rare and underreported condition following head trauma. We present the case of a 49-year-old woman with oedematous eyelid swelling and ecchymosis after a seemingly trivial fall onto the right orbit. Apart from the above, she was clinically unremarkable. The CT scan revealed a minimally displaced fracture of the orbital roof with no emphysema or intracranial bleeding. The fractured orbital roof in combination with the oedematous eyelid swelling raised the suspicion for orbital CSF leak. The MRI of the neurocranium demonstrated a small-sized CSF fistula extending from the anterior cranial fossa to the right orbit. The patient was treated conservatively and the lid swelling resolved completely after 5 days. Although rare, orbital CSF leak needs to be included in the differential diagnosis of periorbital swelling following orbital trauma. PMID:24323381

  13. Eye and orbital cavity

    International Nuclear Information System (INIS)

    Panfilova, G.V.; Koval', G.Yu.

    1984-01-01

    Radioanatomy of eyes and orbit is described. Diseases of the orbit (developmental anomalies, inflammatory diseases, lacrimal apparatus deseases, toxoplasmosis, tumors and cysts et al.), methods of foreign body localization in the eye are considered. Roentgenograms of the orbit and calculation table for foreign body localization in spherical eyes of dissimilar diameter are presented

  14. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  15. Titan Orbiter with Aerorover Mission (TOAM)

    Science.gov (United States)

    Sittler, Edward C.; Cooper, J. F.; Mahaffey, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; TOAM Team

    2006-12-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG 500 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan’s atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  16. Observations by Juno's Radiation Monitoring Investigation During the First Year at Jupiter

    Science.gov (United States)

    Becker, H. N.; Adumitroaie, V.; Alexander, J. W.; Daubar, I.; Joergensen, J. L.; Denver, T.; Benn, M.; Adriani, A.; Mura, A.; Cicchetti, A.; Noschese, R.; Connerney, J. E. P.; Gladstone, R.; Hue, V.; Versteeg, M.; Santos-Costa, D.; Bolton, S. J.; Levin, S.; Thorne, R. M.

    2017-12-01

    Juno's Radiation Monitoring (RM) Investigation measures MeV electron fluxes at Jupiter by utilizing the noise signatures of penetrating high-energy particles which are visible in images collected by Juno's heavily shielded star cameras and science instruments. Image processing is used to identify and extract the characteristic signatures of penetrating high-energy electrons and ions and derive count rates which are used to infer external integral electron flux levels [Becker, H.N., et al. (2017), Space Sci Rev, doi: 10.1007/s11214-017-0345-9; Becker H.N. et al. (2017), Geophys. Res. Lett., 44, doi:10.1002/2017GL073091]. The count rate data from each RM instrument represents detection of electrons from within a broad energy channel (e.g. > 5 MeV or > 10 MeV electron sensitivity, determined using Geant4 shielding analysis). Simultaneous observations by the instruments therefore allow study of the external spectra where coordinated measurements are achieved. The spacecraft Stellar Reference Unit (SRU), the Magnetic Field Investigation's Advanced Stellar Compass (ASC) camera head D, and the Jovian Infrared Auroral Mapper (JIRAM) infrared imager are the primary instruments used in RM's collaborative observation campaigns. Penetrating particle signatures and trends across a broader range of Juno instruments and spacecraft housekeeping data also contribute to the analysis. This paper presents an overview of RM measurements of the Jovian high energy particle environment observed during the first eight science orbits of Juno's prime mission.

  17. N-body simulations of terrestrial planet formation under the influence of a hot Jupiter

    International Nuclear Information System (INIS)

    Ogihara, Masahiro; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro

    2014-01-01

    We investigate the formation of multiple-planet systems in the presence of a hot Jupiter (HJ) using extended N-body simulations that are performed simultaneously with semianalytic calculations. Our primary aims are to describe the planet formation process starting from planetesimals using high-resolution simulations, and to examine the dependences of the architecture of planetary systems on input parameters (e.g., disk mass, disk viscosity). We observe that protoplanets that arise from oligarchic growth and undergo type I migration stop migrating when they join a chain of resonant planets outside the orbit of an HJ. The formation of a resonant chain is almost independent of our model parameters, and is thus a robust process. At the end of our simulations, several terrestrial planets remain at around 0.1 AU. The formed planets are not equal mass; the largest planet constitutes more than 50% of the total mass in the close-in region, which is also less dependent on parameters. In the previous work of this paper, we have found a new physical mechanism of induced migration of the HJ, which is called a crowding-out. If the HJ opens up a wide gap in the disk (e.g., owing to low disk viscosity), crowding-out becomes less efficient and the HJ remains. We also discuss angular momentum transfer between the planets and disk.

  18. A Spitzer five-band analysis of the Jupiter-sized planet TrES-1

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, Patricio; Harrington, Joseph; Foster, Andrew S. D.; Lust, Nate B.; Hardy, Ryan A.; Bowman, M. Oliver [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Madhusudhan, Nikku, E-mail: pcubillos@fulbrightmail.org [Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06511 (United States)

    2014-12-10

    With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot Jupiters observed by Spitzer. It was also the first planet discovered by any transit survey and one of the first exoplanets from which thermal emission was directly observed. We analyzed all Spitzer eclipse and transit data for TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6 μm (0.083% ± 0.024%, 1270 ± 110 K), 4.5 μm (0.094% ± 0.024%, 1126 ± 90 K), 5.8 μm (0.162% ± 0.042%, 1205 ± 130 K), 8.0 μm (0.213% ± 0.042%, 1190 ± 130 K), and 16 μm (0.33% ± 0.12%, 1270 ± 310 K) bands. The eclipse depths can be explained, within 1σ errors, by a standard atmospheric model with solar abundance composition in chemical equilibrium, with or without a thermal inversion. The combined analysis of the transit, eclipse, and radial-velocity ephemerides gives an eccentricity of e=0.033{sub −0.031}{sup +0.015}, consistent with a circular orbit. Since TrES-1's eclipses have low signal-to-noise ratios, we implemented optimal photometry and differential-evolution Markov Chain Monte Carlo (MCMC) algorithms in our Photometry for Orbits, Eclipses, and Transits pipeline. Benefits include higher photometric precision and ∼10 times faster MCMC convergence, with better exploration of the phase space and no manual parameter tuning.

  19. Implications of the Small Spin Changes Measured for Large Jupiter-Family Comet Nuclei

    Science.gov (United States)

    Kokotanekova, R.; Snodgrass, C.; Lacerda, P.; Green, S. F.; Nikolov, P.; Bonev, T.

    2018-06-01

    Rotational spin-up due to outgassing of comet nuclei has been identified as a possible mechanism for considerable mass-loss and splitting. We report a search for spin changes for three large Jupiter-family comets (JFCs): 14P/Wolf, 143P/Kowal-Mrkos, and 162P/Siding Spring. None of the three comets has detectable period changes, and we set conservative upper limits of 4.2 (14P), 6.6 (143P) and 25 (162P) minutes per orbit. Comparing these results with all eight other JFCs with measured rotational changes, we deduce that none of the observed large JFCs experiences significant spin changes. This suggests that large comet nuclei are less likely to undergo rotationally-driven splitting, and therefore more likely to survive more perihelion passages than smaller nuclei. We find supporting evidence for this hypothesis in the cumulative size distributions of JFCs and dormant comets, as well as in recent numerical studies of cometary orbital dynamics. We added 143P to the sample of 13 other JFCs with known albedos and phase-function slopes. This sample shows a possible correlation of increasing phase-function slopes for larger geometric albedos. Partly based on findings from recent space missions to JFCs, we hypothesise that this correlation corresponds to an evolutionary trend for JFCs. We propose that newly activated JFCs have larger albedos and steeper phase functions, which gradually decrease due to sublimation-driven erosion. If confirmed, this could be used to analyse surface erosion from ground and to distinguish between dormant comets and asteroids.

  20. Chandra observations of Jupiter's X-ray Aurora during Juno upstream and apojove intervals

    Science.gov (United States)

    Dunn, W.; Jackman, C. M.; Kraft, R.; Gladstone, R.; Branduardi-Raymont, G.; Knigge, C.; Altamirano, D.; Elsner, R.; Kammer, J.

    2017-12-01

    The Chandra space telescope has recently conducted a number of campaigns to observe Jupiter's X-ray aurora. The first set of campaigns took place in summer 2016 while the Juno spacecraft was upstream of the planet sampling the solar wind. The second set of campaigns took place in February, June and August 2017 at times when the Juno spacecraft was at apojove. These campaigns were planned following the Juno orbit correction to capitalise on the opportunity to image the X-ray emission while Juno was orbiting close to the expected position of the magnetopause. Previous work has suggested that the auroral X-ray emissions map close to the magnetopause boundary [e.g. Vogt et al., 2015; Kimura et al., 2016; Dunn et al., 2016] and thus in situ spacecraft coverage in this region combined with remote observation of the X-rays afford the chance to constrain the drivers of these energetic emissions and determine if they originate on open or closed field lines. We aim to examine possible drivers of X-ray emission including reconnection and the Kelvin-Helmholtz instability and to explore the role of the solar wind in controlling the emissions. We report on these upstream and apojove campaigns including intensities and periodicities of auroral X-ray emissions. This new era of jovian X-ray astronomy means we have more data than ever before, long observing windows (up to 72 ks for this Chandra set), and successive observations relatively closely spaced in time. These features combine to allow us to pursue novel methods for examining periodicities in the X-ray emission. Our work will explore significance testing of emerging periodicities, and the search for coherence in X-ray pulsing over weeks and months, seeking to understand the robustness and regularity of previously reported hot spot X-ray emissions. The periods that emerge from our analysis will be compared against those which emerge from radio and UV wavelengths.

  1. Orbital parameters of extrasolar planets derived from polarimetry

    Science.gov (United States)

    Fluri, D. M.; Berdyugina, S. V.

    2010-03-01

    Context. Polarimetry of extrasolar planets becomes a new tool for their investigation, which requires the development of diagnostic techniques and parameter case studies. Aims: Our goal is to develop a theoretical model which can be applied to interpret polarimetric observations of extrasolar planets. Here we present a theoretical parameter study that shows the influence of the various involved parameters on the polarization curves. Furthermore, we investigate the robustness of the fitting procedure. We focus on the diagnostics of orbital parameters and the estimation of the scattering radius of the planet. Methods: We employ the physics of Rayleigh scattering to obtain polarization curves of an unresolved extrasolar planet. Calculations are made for two cases: (i) assuming an angular distribution for the intensity of the scattered light as from a Lambert sphere and for polarization as from a Rayleigh-type scatterer; and (ii) assuming that both the intensity and polarization of the scattered light are distributed according to the Rayleigh law. We show that the difference between these two cases is negligible for the shapes of the polarization curves. In addition, we take the size of the host star into account, which is relevant for hot Jupiters orbiting giant stars. Results: We discuss the influence of the inclination of the planetary orbit, the position angle of the ascending node, and the eccentricity on the linearly polarized light curves both in Stokes Q/I and U/I. We also analyze errors that arise from the assumption of a point-like star in numerical modeling of polarization as compared to consistent calculations accounting for the finite size of the host star. We find that errors due to the point-like star approximation are reduced with the size of the orbit, but still amount to about 5% for known hot Jupiters. Recovering orbital parameters from simulated data is shown to be very robust even for very noisy data because the polarization curves react

  2. Solar Probe Cup: Laboratory Performance

    Science.gov (United States)

    Case, A. W.; Kasper, J. C.; Korreck, K. E.; Stevens, M. L.; Larson, D. E.; Wright, K. H., Jr.; Gallagher, D. L.; Whittlesey, P. L.

    2017-12-01

    The Solar Probe Cup (SPC) is a Faraday Cup instrument that will fly on the Paker Solar Probe (PSP) spacecraft, orbiting the Sun at as close as 9.86 solar radii. The SPC instrument is designed to measure the thermal solar wind plasma (protons, alphas, and electrons) that will be encountered throughout its close encounter with the Sun. Due to the solar wind flow being primarily radial, the SPC instrument is pointed directly at the Sun, resulting in an extreme thermal environment that must be tolerated throughout the primary data collection phase. Laboratory testing has been performed over the past 6 months to demonstrate the instrument's performance relative to its requirements, and to characterize the measurements over the expected thermal range. This presentation will demonstrate the performance of the instrument as measured in the lab, describe the operational configurations planned for flight, and discuss the data products that will be created.

  3. Space station orbit maintenance

    Science.gov (United States)

    Kaplan, D. I.; Jones, R. M.

    1983-01-01

    The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.

  4. Nontraumatic orbital roof encephalocele.

    Science.gov (United States)

    Hoang, Amber; Maugans, Todd; Ngo, Thang; Ikeda, Jamie

    2017-02-01

    Intraorbital meningoencephaloceles occur most commonly as a complication of traumatic orbital roof fractures. Nontraumatic congenital orbital meningoncephaloceles are very rare, with most secondary to destructive processes affecting the orbit and primary skull defects. Treatment for intraorbital meningoencephaloceles is surgical repair, involving the excision of herniated brain parenchyma and meninges and reconstruction of the osseous defect. Most congenital lesions present in infancy with obvious globe and orbital deformities; we report an orbital meningoencephalocele in a 3-year-old girl who presented with ptosis. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  5. Deadly Sunflower Orbits

    Science.gov (United States)

    Hamilton, Douglas P.

    2018-04-01

    Solar radiation pressure is usually very effective at removing hazardous millimeter-sized debris from distant orbits around asteroidsand other small solar system bodies (Hamilton and Burns 1992). Theprimary loss mechanism, driven by the azimuthal component of radiationpressure, is eccentricity growth followed by a forced collision withthe central body. One large class of orbits, however, neatly sidestepsthis fate. Orbits oriented nearly perpendicular to the solar directioncan maintain their face-on geometry, oscillating slowly around a stableequilibrium orbit. These orbits, designated sunflower orbits, arerelated to terminator orbits studied by spacecraft mission designers(Broschart etal. 2014).Destabilization of sunflower orbits occurs only for particles smallenough that radiation pressure is some tens of percent the strength ofthe central body's direct gravity. This greatly enhanced stability,which follows from the inability of radiation incident normal to theorbit to efficiently drive eccentricities, presents a threat tospacecraft missions, as numerous dangerous projectiles are potentiallyretained in orbit. We have investigated sunflower orbits insupport of the New Horizons, Aida, and Lucy missions and find thatthese orbits are stable for hazardous particle sizes at asteroids,comets, and Kuiper belt objects of differing dimensions. Weinvestigate the sources and sinks for debris that might populate suchorbits, estimate timescales and equilibrium populations, and willreport on our findings.

  6. New Measurements Of Jupiter's Equatorial Region In Visible Wavelengths

    Science.gov (United States)

    Rojas, Jose; Arregi, J.; García-Melendo, E.; Barrado-Izagirre, N.; Hueso, R.; Gómez-Forrellad, J. M.; Pérez-Hoyos, S.; Sanz-Requena, J. F.; Sánchez-Lavega, A.

    2010-10-01

    We have studied the equatorial region of Jupiter, between 15ºS and 15ºN, on Cassini ISS images obtained during the Jupiter flyby at the end of 2000 and on HST images acquired in May and July 2008. We have found significant longitudinal variations in the intensity of the 6ºN eastward jet, up to 60 m s-1 in Cassini and HST observations. In the HST case we found that these longitudinal variations are associated to different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images shows that there is only a small height difference, no larger than 0.5 - 1 scale heights at most, between the slow ( 100 m s-1) and fast ( 150 m s-1) moving features. This suggests that speed variability at 6ºN is not dominated by vertical wind shears and we propose that Rossby wave activity is the responsible for the zonal variability. After removing this variability we found that Jupiter's equatorial jet is actually symmetric relative to the equator with two peaks of 140 - 150 m s-1 located at latitudes 6ºN and 6ºS and at a similar pressure level. We also studied a large, long-lived feature called the White Spot (WS) located at 6ºS that turns to form and desapear. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow. Acknowledgements: This work was supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.

  7. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    International Nuclear Information System (INIS)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.; Shabram, Megan

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation—and Doppler signature—of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the ∼2 km s –1 blueshift inferred on HD 209458b may require drag time constants as short as 10 4 -10 6 s, possibly the result of Lorentz-force braking on this planet's hot dayside.

  8. Observation of L-bursts of Jupiter decameter waves

    International Nuclear Information System (INIS)

    Imai, Kazumasa; Tomisawa, Ichiro

    1978-01-01

    The Jupiter decameter waves are the only information source which can be obtained on the earth for the investigation of dynamics concerning the generation of plasma waves in the magnetosphere of Jupiter. The emission of Jupiter decameter waves is modulated by the satellite Io considerably. It is observed that the emission of decameter waves fluctuated much in course of time. The duration time of bursts is 1 to 10 sec and 1 to 50 msec for L-bursts and S-bursts, respectively. The simultaneous observations were conducted at two locations from August, 1977, and at three locations from December, 1977, for searching the source of L-bursts. The relation between the appearance frequency of L-bursts and S-bursts and Io phase and system 3 longitude is explained. The observation points were Sugadaira, Chofu and Toyokawa, The minimum detectable flux density by the wave receiving network is 10 -21 W/m 2 .Hz. Concerning the observed results, the locations of observed events on the Io phase and the system 3 longitude are shown. The analytical results on the L-bursts of the main source and the early source are explained, taking ten events. The analysed dynamic cross-correlation and the spectrum analysis of the decameter intensity are shown. The relation between the origin and the emission mechanism was investigated, considering the observed data and the evaluation mentioned above for the main source and early source, and the clue was obtained to solve the riddle of emission mechanism. (Nakai, Y.)

  9. Solar wind control of stratospheric temperatures in Jupiter's auroral regions?

    Science.gov (United States)

    Sinclair, James Andrew; Orton, Glenn; Kasaba, Yasumasa; Sato, Takao M.; Tao, Chihiro; Waite, J. Hunter; Cravens, Thomas; Houston, Stephen; Fletcher, Leigh; Irwin, Patrick; Greathouse, Thomas K.

    2017-10-01

    Auroral emissions are the process through which the interaction of a planet’s atmosphere and its external magnetosphere can be studied. Jupiter exhibits auroral emission at a multitude of wavelengths including the X-ray, ultraviolet and near-infrared. Enhanced emission of CH4 and other stratospheric hydrocarbons is also observed coincident with Jupiter’s shorter-wavelength auroral emission (e.g. Caldwell et al., 1980, Icarus 44, 667-675, Kostiuk et al., 1993, JGR 98, 18823). This indicates that auroral processes modify the thermal structure and composition of the auroral stratosphere. The exact mechanism responsible for this auroral-related heating of the stratosphere has however remained elusive (Sinclair et al., 2017a, Icarus 292, 182-207, Sinclair et al., 2017b, GRL, 44, 5345-5354). We will present an analysis of 7.8-μm images of Jupiter measured by COMICS (Cooled Mid-Infrared Camera and Spectrograph, Kataza et al., 2000, Proc. SPIE(4008), 1144-1152) on the Subaru telescope. These images were acquired on January 11th, 12th, 13th, 14th, February 4, 5th and May 17th, 18th, 19th and 20th in 2017, allowing the daily variability of Jupiter’s auroral-related stratospheric heating to be tracked. Preliminary results suggest lower stratospheric temperatures are directly forced by the solar wind dynamical pressure. The southern auroral hotspot exhibited a significant increase in brightness temperature over a 24-hour period. Over the same time period, a solar wind propagation model (Tao et al. 2005, JGR 110, A11208) predicts a strong increase in the solar wind dynamical pressure at Jupiter.

  10. Orbital fractures: a review

    Directory of Open Access Journals (Sweden)

    Jeffrey M Joseph

    2011-01-01

    Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures 

  11. Planet Formation in Disks with Inclined Binary Companions: Can Primordial Spin-Orbit Misalignment be Produced?

    Science.gov (United States)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary disks, and inclined binary companions may tilt the stellar spin axis with respect to the disk's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disk evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disk photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disk-binary systems. We take into account planet-disk interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disk via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with "cold" Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.

  12. JUPITER-3実験解析(4)

    OpenAIRE

    三田 敏男

    1990-01-01

    本報告書は、技術開発部プラント工学室で組識しているJUPITERサブワーキングGrの平成元年度の成果をまとめたものである。JUPITERサブワーキングGrは、動燃事業団が米国エネルギー省(DOE)との共同研究としてアルゴンヌ国立研究所(ANL-W)の大型臨界実験装置ZPPRで実施した大型高速炉臨界実験(JUPITER-III)の計画、実験解析を行うためのワーキンググループである。JUPITER-IIIは電気出力65万kW級の軸方向非均質炉心模擬実験(ZPPR-17シリーズ)と100万kW級の均質炉心模擬実験(ZPPR-18シリーズ)からなる。JUPITER-III実験解析は本年度で終了し、その成果を過去のJUPITER-I,II(電気出力60万sim80万kW級の均質、径方向非均質炉心模擬実験)の解析結果と比較してJUPITER実験解析を総合評価した。本年度の主な成果は下記の通りである。(1) JUPITER実験解析法をセル計算を中心に検討して現状の最新解析法をまとめると共に、これらに基づく炉心設計法を設定した。...

  13. JESTR: Jupiter Exploration Science in the Time Regime

    Science.gov (United States)

    Noll, Keith S.; Simon-Miller, A. A.; Wong, M. H.; Choi, D. S.

    2012-01-01

    Solar system objects are inherently time-varying with changes that occur on timescales ranging from seconds to years. For all planets other than the Earth, temporal coverage of atmospheric phenomena is limited and sparse. Many important atmospheric phenomena, especially those related to atmospheric dynamics, can be studied in only very limited ways with current data. JESTR is a mission concept that would remedy this gap in our exploration of the solar system by ncar-continuous imaging and spectral monitoring of Jupiter over a multi-year mission lifetime.

  14. Vorticity and energy diagnostics from the 2000 Cassini Jupiter flyby

    Science.gov (United States)

    Young, R. M. B.; Read, P. L.; Armstrong, D.; Lancaster, A.

    2011-10-01

    The Cassini spacecraft flew by Jupiter in December 2000, returning hundreds of images near closest approach [1]. We have been analysing the images spanning four Jupiter rotation periods at closest approach using automated cloud tracking software to obtain horizontal velocity fields. Our method has some advantages over other methods used for this purpose in that it accounts for both cloud deformation and rotation in addition to the standard translation. We shall present detailed horizontal velocity vectors and related vorticity and energy fields over four Jupiter rotation periods. We also intend to produce derived energy and turbulence diagnostics that will help us to understand the interplay between processes acting on different length scales. It may also be possible to relate these diagnostics to 'zonostrophic' jets and small-scale turbulence studied in the laboratory using the Coriolis rotating tank, work itself motivated by jets in giant planet atmospheres [2]. In the future we intend to combine velocity fields with temperature data to produce fully-3D velocity and potential vorticity fields for Jupiter's troposphere and stratosphere. The cloud tracking method is based on correlation image velocimetry (CIV) and was originally developed by the Coriolis facility team at LEGI, Université de Grenoble [3], where it is used to extract velocity fields from data obtained in their 13m diameter rotating tank experiment. The method has two stages. First, velocity vectors are calculated using translation only, where the velocity is defined by the highest correlation between two images taken 63 minutes apart of a small pixel patch moving within a larger search box. In the second stage the correlation analysis is repeated, but instead of just translation of the pixel patch, rotation and deformation (shearing, stretching) are taken into account. We use the first stage velocity field as an estimate of the velocity vector and search within a small window around this, including

  15. THE GRAVITATIONAL INTERACTION BETWEEN PLANETS ON INCLINED ORBITS AND PROTOPLANETARY DISKS AS THE ORIGIN OF PRIMORDIAL SPIN–ORBIT MISALIGNMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Matsakos, Titos; Königl, Arieh [Department of Astronomy and Astrophysics and The Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States)

    2017-02-01

    Many of the observed spin–orbit alignment properties of exoplanets can be explained in the context of the primordial disk misalignment model, in which an initially aligned protoplanetary disk is torqued by a distant stellar companion on a misaligned orbit, resulting in a precessional motion that can lead to large-amplitude oscillations of the spin–orbit angle. We consider a variant of this model in which the companion is a giant planet with an orbital radius of a few astronomical units. Guided by the results of published numerical simulations, we model the dynamical evolution of this system by dividing the disk into inner and outer parts—separated at the location of the planet—that behave as distinct, rigid disks. We show that the planet misaligns the inner disk even as the orientation of the outer disk remains unchanged. In addition to the oscillations induced by the precessional motion, whose amplitude is larger the smaller the initial inner-disk-to-planet mass ratio, the spin–orbit angle also exhibits a secular growth in this case—driven by ongoing mass depletion from the disk—that becomes significant when the inner disk’s angular momentum drops below that of the planet. Altogether, these two effects can produce significant misalignment angles for the inner disk, including retrograde configurations. We discuss these results within the framework of the Stranded Hot Jupiter scenario and consider their implications, including the interpretation of the alignment properties of debris disks.

  16. Proximal Probes Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the...

  17. Probe Techniques. Introductory Remarks

    Energy Technology Data Exchange (ETDEWEB)

    Emeleus, K. G. [School of Physics and Applied Mathematics, Queen' s University, Belfast (United Kingdom)

    1968-04-15

    In this brief introduction to the session on probes, the history of theii development is first touched on briefly. Reference is then made to the significance of the work to be described by Medicus, for conductivity and recombination calculations, and by Lam and Su, for a wide range of medium and higher pressure plasmas. Finally, a number of other probe topics are mentioned, including multiple probes; probes in electronegative plasmas; resonance probes; probes in noisy discharges; probes as oscillation detectors; use of probes where space-charge is not negligible. (author)

  18. Clinical implications of JUPITER in a contemporary European population: the EPIC-Norfolk prospective population study

    NARCIS (Netherlands)

    Sondermeijer, Brigitte M.; Boekholdt, S. Matthijs; Rana, Jamal S.; Kastelein, John J. P.; Wareham, Nicholas J.; Khaw, Kay-Tee

    2013-01-01

    Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) has raised several points of debate. We quantified the proportion of individuals meeting the JUPITER criteria, determined their risk profile, and their risk of coronary heart disease (CHD)

  19. Periodic Comet Shoemaker-Levy 9 Collides with Jupiter. Background Material for Science Teachers.

    Science.gov (United States)

    Jet Propulsion Lab., Pasadena, CA.

    In July of 1994, fragments of Comet Shoemaker-Levy collided with Jupiter. This document has been provided to better inform students of the work that will be done by scientists and others involved in the study of this event. This document offers some background material on Jupiter, comets, what has and possibly will happen, and how scientists…

  20. 78 FR 32696 - Jupiter Enterprises, Inc., Order of Suspension of Trading

    Science.gov (United States)

    2013-05-31

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Jupiter Enterprises, Inc., Order of Suspension of Trading May 29, 2013. It appears to the Securities and Exchange Commission that there is a lack of current and accurate information concerning the securities of Jupiter Enterprises, Inc. because it has not...

  1. Inferring the Composition of Super-Jupiter Mass Companions of Pulsars with Radio Line Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Alak; Loeb, Abraham, E-mail: akr@tifr.res.in, E-mail: aloeb@cfa.harvard.edu [Institute of Theory and Computation, Center for Astrophysics, Harvard University 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-02-10

    We propose using radio line spectroscopy to detect molecular absorption lines (such as OH at 1.6–1.7 GHz) before and after the total eclipse of black widow and other short orbital period binary pulsars with low-mass companions. The companion in such a binary may be ablated away by energetic particles and high-energy radiation produced by the pulsar wind. The observations will probe the eclipsing wind being ablated by the pulsar and constrain the nature of the companion and its surroundings. Maser emission from the interstellar medium stimulated by a pulsar beam might also be detected from the intrabinary medium. The short temporal resolution allowed by the millisecond pulsars can probe this medium with the high angular resolution of the pulsar beam.

  2. Ammonia in Jupiter's troposphere: a comparison of ground-based 5-μm high-resolution spectroscopy and Juno MWR observations

    Science.gov (United States)

    Giles, R.; Orton, G.; Fletcher, L. N.; Irwin, P. G.; Sinclair, J. A.

    2017-12-01

    Latitudinally-resolved 5-micron observations of Jupiter from the CRIRES instrument at the Very Large Telescope are used to measure the spatial variability in Jupiter's tropospheric ammonia (NH3) abundance and these results are compared to the results from Juno's Microwave Radiometer (MWR). The 5-micron spectral region is an atmospheric window, allowing us to probe down to Jupiter's middle troposphere. The high-resolution 2012 CRIRES observations include several spectrally-resolved NH3 absorption features; these features probe slightly different pressure levels, allowing the NH3 vertical profile at 1-4 bar to be constrained. We find that in regions of low cloud opacity, the NH3 abundance must decrease with altitude within this pressure range. The CRIRES observations do not provide evidence for any significant belt-zone variability in NH3, as any difference in the spectral shape can be accounted for by the large differences in cloud opacity between the cloudy zones and the cloud-free belts. However, we do find evidence for a strong localised enhancement in NH3 on the southern edge of the North Equatorial Belt (4-6°N). These results can be directly compared with observations from the Juno mission's MWR experiment. Li et al. (2017, doi 10.1002/2017GL073159) have used MWR data to retrieve NH3 abundances at pressure levels of 1-100 bar. In bright, cloud-free regions of the planet, the two datasets are broadly consistent, including the asymmetrical enhancement on the southern edge of the NEB. However, in the cool, cloudy Equatorial Zone, the MWR retrieved abundances are significantly higher than those from CRIRES and forward modeling shows that the MWR vertical distributions are unable to fit the CRIRES data. We will investigate possible explanations for this discrepancy, including the role of tropospheric clouds and temperature variations.

  3. Ulysses radio and plasma wave observations in the jupiter environment.

    Science.gov (United States)

    Stone, R G; Pedersen, B M; Harvey, C C; Canu, P; Cornilleau-Wehrlin, N; Desch, M D; de Villedary, C; Fainberg, J; Farrell, W M; Goetz, K; Hess, R A; Hoang, S; Kaiser, M L; Kellogg, P J; Lecacheux, A; Lin, N; Macdowall, R J; Manning, R; Meetre, C A; Meyer-Vernet, N; Moncuquet, M; Osherovich, V; Reiner, M J; Tekle, A; Thiessen, J; Zarka, P

    1992-09-11

    The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of aurorallike hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the lo plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the lo torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.

  4. NUMERICAL MODELING OF THE 2009 IMPACT EVENT ON JUPITER

    Energy Technology Data Exchange (ETDEWEB)

    Pond, Jarrad W. T.; Palotai, Csaba; Gabriel, Travis; Harrington, Joseph; Rebeli, Noemi [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Korycansky, Donald G., E-mail: jarradpond@gmail.com [Department of Earth and Planetary Science, University of California, Santa Cruz, CA 95064 (United States)

    2012-02-01

    We have investigated the 2009 July impact event on Jupiter using the ZEUS-MP 2 three-dimensional hydrodynamics code. We studied the impact itself and the following plume development. Eight impactors were considered: 0.5 km and 1 km porous ({rho} = 1.760 g cm{sup -3}) and non-porous ({rho} = 2.700 g cm{sup -3}) basalt impactors, and 0.5 km and 1 km porous ({rho} = 0.600 g cm{sup -3}) and non-porous ({rho} = 0.917 g cm{sup -3}) ice impactors. The simulations consisted of these bolides colliding with Jupiter at an incident angle of {theta} = 69 Degree-Sign from the vertical and with an impact velocity of v = 61.4 km s{sup -1}. Our simulations show the development of relatively larger, faster plumes created after impacts involving 1 km diameter bodies. Comparing simulations of the 2009 event with simulations of the Shoemaker-Levy 9 (SL9) events reveals a difference in plume development, with the higher incident angle of the 2009 impact leading to a shallower terminal depth and a smaller and slower plume. We also studied the amount of dynamical chaos present in the simulations conducted at the 2009 incident angle. Compared to the chaos of the SL9 simulations, where {theta} Almost-Equal-To 45 Degree-Sign , we find no significant difference in chaos at the higher 2009 incident angle.

  5. Some features of Jupiter decametric radiation and its temporary variations

    International Nuclear Information System (INIS)

    Levitskij, L.S.

    1977-01-01

    The following parameters of Jupiter decametric radiation are considered: duration of the storms, the distribution of the storms over Jupiter's longitudes and Io's position, the distribution along frequency range, burstness. It is shown that probability W of revealing decametric emission does not depend on solar activity level. The relative probability (W 3 /W) of appearing noise storms of large intensity changes according to variations of solar activity indexes for all frequencies (10-35 MHz). The duration of noise storms, its frequency range, intensity and L-burst number increase systematically with the storm's power. There is a tendency to the expansion of the sources of the emission along the longitude if the observer (the Earth) changes his position from the boundary to center of emission cone. Io effects in decametric emission are appreciable for the largest storms only. For small storms these effects may be revealed only in years of minimum solar activity. A part of storms with large number of L-bursts is correlated with the Asub(p)-index

  6. Plasma probe characteristics in low density hydrogen pulsed plasmas

    International Nuclear Information System (INIS)

    Astakhov, D I; Lee, C J; Bijkerk, F; Goedheer, W J; Ivanov, V V; Krivtsun, V M; Zotovich, A I; Zyryanov, S M; Lopaev, D V

    2015-01-01

    Probe theories are only applicable in the regime where the probe’s perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas on a similarly short time scale as investigated here. Indeed, in the case studied here, probe measurements would lead to, either a large overestimate, or underestimate of the plasma density, depending on the chosen probe theory. In contrast, the simulations of the plasma evolution and the probe characteristics do not suffer from such strict applicability limits. These studies show that probe theory cannot be justified through probe measurements. However, limiting cases of probe theories can be used to estimate upper and lower bounds on plasma densities. These theories include and neglect orbital motion, respectively, with different collisional terms leading to intermediate estimates. (paper)

  7. Transit detections of extrasolar planets around main-sequence stars. I. Sky maps for hot Jupiters

    Science.gov (United States)

    Heller, R.; Mislis, D.; Antoniadis, J.

    2009-12-01

    expectation values. The comparison between the considered transit surveys yields significantly differing maps of the expected transit detections. While BEST provides an unpromising map, those for XO, SuperWASP, and HATNet show FsOV with up to 10 and more expected detections. The sky-integrated magnitude distribution predicts 20 Hot Jupiter transits with orbital periods between 1.5 d and 50 d and mV stars within the given magnitude range. The most promising observing site on Earth is at latitude =-1. Sky maps (Figs. 1 and 3) can be downloaded in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/508/1509

  8. Gravity Probe B Encapsulated

    Science.gov (United States)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  9. Congenital orbital teratoma

    OpenAIRE

    Aiyub, Shereen; Chan, Weng Onn; Szetu, John; Sullivan, Laurence J; Pater, John; Cooper, Peter; Selva, Dinesh

    2013-01-01

    We present a case of mature congenital orbital teratoma managed with lid-sparing exenteration and dermis fat graft. This is a case report on the management of congenital orbital teratoma. A full-term baby was born in Fiji with prolapsed right globe which was surrounded by a nonpulsatile, cystic mass. Clinical and imaging features were consistent with congenital orbital teratoma. Due to limited surgical expertise, the patient was transferred to Adelaide, Australia for further management. The p...

  10. Pictorial essay: Orbital tuberculosis

    International Nuclear Information System (INIS)

    Narula, Mahender K; Chaudhary, Vikas; Baruah, Dhiraj; Kathuria, Manoj; Anand, Rama

    2010-01-01

    Tuberculosis of the orbit is rare, even in places where tuberculosis is endemic. The disease may involve soft tissue, the lacrimal gland, or the periosteum or bones of the orbital wall. Intracranial extension, in the form of extradural abscess, and infratemporal fossa extension has been described. This pictorial essay illustrates the imaging findings of nine histopathologically confirmed cases of orbital tuberculosis. All these patients responded to antituberculous treatment

  11. Radiology of orbital trauma

    International Nuclear Information System (INIS)

    Kelly, J.K.; Lazo, A.; Metes, J.J.

    1988-01-01

    Computed tomography has become the gold standard against which to measure orbital imaging modalities. The simultaneous display of bone, soft tissues, paranasal sinuses, and intracranial structures is a unique advantage. Radiation dose and cost have been cited as disadvantages. These would suggest that CT be reserved for the patient with significant orbital injury or difficult diagnostic problems. Magnetic resonance is limited in the investigation of orbital trauma

  12. Neonatal orbital abscess

    Directory of Open Access Journals (Sweden)

    Khalil M Al-Salem

    2014-01-01

    Full Text Available Orbital complications due to ethmoiditis are rare in neonates. A case of orbital abscess due to acute ethmoiditis in a 28-day-old girl is presented. A Successful outcome was achieved following antimicrobial therapy alone; spontaneous drainage of the abscess occurred from the lower lid without the need for surgery. From this case report, we intend to emphasize on eyelid retraction as a sign of neonatal orbital abscess, and to review all the available literature of similar cases.

  13. Twin probes for space geodesy

    International Nuclear Information System (INIS)

    Bertotti, B.

    1978-01-01

    The twin probe method, proposed by Bertotti and Colombo (1972) to get rid of nongravitational forces in interplanetary space, can be applied to a near-Earth orbit to eliminate the atmospheric drag. Two equal pairs of probes, each pair consisting of two passive, small and dense spheres of equal surface and different masses, are flown on a circular orbit at an altitude of about 300 km. Each pair determines the motion of an ideal point which feels only the gravitational forces. They are separated by a distance d of (100/200) km and are tracked from a spacecraft or the Space Shuttle, flying at the same altitude. The relative motion of the two ideal points is reconstructed and yields a measurement of the fine structure of the Earth gravitational field, corresponding to a harmonic order l approximately a/d (a is the radius of the Earth). The tracking can be done by laser ranging to the four spheres, covered by corner reflectors; Doppler ranging is more convenient for higher values of l and can also be used. The accuracy in the compensation of the non-gravitational forces and in the measurements one needs for a given l are discussed in detail. (author)

  14. Orbital glass in HTSC

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-10-01

    The physical reasons why the orbital glass may exist in granular high-temperature superconductors and the existing experimental data appeared recently are discussed. The orbital glass is characterized by the coexistence of the orbital paramagnetic state with the superconducting state and occurs at small magnetic fields H c0 c1 . The transition in orbital glass arises at the critical field H c0 which is inversely proportional to the surface cross-area S of an average grain. In connection with theoretical predictions the possible experiments are proposed. (author). 10 refs

  15. Biogeochemical fingerprints of life: earlier analogies with polar ecosystems suggest feasible instrumentation for probing the Galilean moons

    Science.gov (United States)

    Chela-Flores, J.; Cicuttin, A.; Crespo, M. L.; Tuniz, C.

    2015-07-01

    We base our search for the right instrumentation for detecting biosignatures on Europa on the analogy suggested by the recent work on polar ecosystems in the Canadian Arctic at Ellesmere Island. In that location sulphur patches (analogous to the Europan patches) are accumulating on glacial ice lying over saline springs rich in sulphate and sulphide. Their work reinforces earlier analogies in Antarctic ecosystems that are appropriate models for possible habitats that will be explored by the European Space Agency JUpiter ICy Moons Explorer (JUICE) mission to the Jovian System. Its Jupiter Ganymede Orbiter (JGO) will include orbits around Europa and Ganymede. The Galileo orbital mission discovered surficial patches of non-ice elements on Europa that were widespread and, in some cases possibly endogenous. This suggests the possibility that the observed chemical elements in the exoatmosphere may be from the subsurface ocean. Spatial resolution calculations of Cassidy and co-workers are available, suggesting that the atmospheric S content can be mapped by a neutral mass spectrometer, now included among the selected JUICE instruments. In some cases, large S-fractionations are due to microbial reduction and disproportionation (although sometimes providing a test for ecosystem fingerprints, even though with Sim - Bosak - Ono we maintain that microbial sulphate reduction large sulphur isotope fractionation does not require disproportionation. We address the question of the possible role of oxygen in the Europan ocean. Instrument issues are discussed for measuring stable S-isotope fractionations up to the known limits in natural populations of δ34 ~ -70‰. We state the hypothesis of a Europa anaerobic oceanic population of sulphate reducers and disproportionators that would have the effect of fractionating the sulphate that reaches the low-albedo surficial regions. This hypothesis is compatible with the time-honoured expectation of Kaplan and co-workers (going back to the

  16. Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits

    Science.gov (United States)

    Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David

    2011-01-01

    measurements that would be needed to meet the required orbit determination accuracies. Analysts used the Orbit Determination Error Analysis System (ODEAS) to perform covariance analyses using various tracking data schedules. From this analysis, it was determined that 3.5 hours of DSN TRK-2-34 range and Doppler tracking data every other day would suffice to meet the predictive orbit knowledge accuracies in the Lissajous region. The results of this analysis are presented. Both GTDS and ODTK have high-fidelity environmental orbit force models that allow for very accurate orbit estimation in the lunar Lissajous regime. These models include solar radiation pressure, Earth and Moon gravity models, third body gravitational effects from the Sun, and to a lesser extent third body gravitational effects from Jupiter, Venus, Saturn, and Mars. Increased position and velocity uncertainties following each maneuver, due to small execution performance errors, requires that several days of post-maneuver tracking data be processed to converge on an accurate post-maneuver orbit solution. The effects of maneuvers on orbit determination accuracy will be presented, including a comparison of the batch least squares technique to the extended Kalman filter/smoother technique. We will present the maneuver calibration results derived from processing post-maneuver tracking data. A dominant error in the orbit estimation process is the uncertainty in solar radiation pressure and the resultant force on the spacecraft. An estimation of this value can include many related factors, such as the uncertainty in spacecraft reflectivity and surface area which is a function of spacecraft orientation (spin-axis attitude), uncertainty in spacecraft wet mass, and potential seasonal variability due to the changing direction of the Sun line relative to the Earth-Moon Lissajous reference frame. In addition, each spacecraft occasionally enters into Earth or Moon penumbra or umbra and these shadow crossings reduche solar

  17. Outward Migration of Giant Planets in Orbital Resonance

    Science.gov (United States)

    D'Angelo, G.; Marzari, F.

    2013-05-01

    A pair of giant planets interacting with a gaseous disk may be subject to convergent orbital migration and become locked into a mean motion resonance. If the orbits are close enough, the tidal gaps produced by the planets in the disk may overlap. This represents a necessary condition to activate the outward migration of the pair. However, a number of other conditions must also be realized in order for this mechanism to operate. We have studied how disk properties, such as turbulence viscosity, temperature, surface density gradient, mass, and age, may affect the outcome of the outward migration process. We have also investigated the implications on this mechanism of the planets' gas accretion. If the pair resembles Jupiter and Saturn, the 3:2 orbital resonance may drive them outward until they reach stalling radii for migration, which are within ~10 AU of the star for disks representative of the early proto-solar nebula. However, planet post-formation conditions in the disk indicate that such planets become typically locked in the 1:2 orbital resonance, which does not lead to outward migration. Planet growth via gas accretion tends to alter the planets' mass-ratio and/or the disk accretion rate toward the star, reducing or inhibiting outward migration. Support from NASA Outer Planets Research Program and NASA Origins of Solar Systems Program is gratefully acknowledged.

  18. Congenital orbital encephalocele, orbital dystopia, and exophthalmos.

    Science.gov (United States)

    Hwang, Kun; Kim, Han Joon

    2012-07-01

    We present here an exceedingly rare variant of a nonmidline basal encephalocele of the spheno-orbital type, and this was accompanied with orbital dystopia in a 56-year-old man. On examination, his left eye was located more inferolaterally than his right eye, and the patient said this had been this way since his birth. The protrusion of his left eye was aggravated when he is tired. His naked visual acuity was 0.7/0.3, and the ocular pressure was 14/12 mm Hg. The exophthalmometry was 10/14 to 16 mm. His eyeball motion was not restricted, yet diplopia was present in all directions. The distance from the midline to the medial canthus was 20/15 mm. The distance from the midline to the midpupillary line was 35/22 mm. The vertical dimension of the palpebral fissure was 12/9 mm. The height difference of the upper eyelid margin was 11 mm, and the height difference of the lower eyelid margin was 8 mm. Facial computed tomography and magnetic resonance imaging showed left sphenoid wing hypoplasia and herniation of the left anterior temporal pole and dura mater into the orbit, and this resulted into left exophthalmos and encephalomalacia in the left anterior temporal pole. To the best of our knowledge, our case is the second case of basal encephalocele and orbital dystopia.

  19. Pan-Planets: Searching for hot Jupiters around cool dwarfs

    Science.gov (United States)

    Obermeier, C.; Koppenhoefer, J.; Saglia, R. P.; Henning, Th.; Bender, R.; Kodric, M.; Deacon, N.; Riffeser, A.; Burgett, W.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Metcalfe, N.; Price, P. A.; Sweeney, W.; Wainscoat, R. J.; Waters, C.

    2016-03-01

    The Pan-Planets survey observed an area of 42 sq deg. in the galactic disk for about 165 h. The main scientific goal of the project is the detection of transiting planets around M dwarfs. We establish an efficient procedure for determining the stellar parameters Teff and log g of all sources using a method based on SED fitting, utilizing a three-dimensional dust map and proper motion information. In this way we identify more than 60 000 M dwarfs, which is by far the largest sample of low-mass stars observed in a transit survey to date. We present several planet candidates around M dwarfs and hotter stars that are currently being followed up. Using Monte Carlo simulations we calculate the detection efficiency of the Pan-Planets survey for different stellar and planetary populations. We expect to find 3.0+3.3-1.6 hot Jupiters around F, G, and K dwarfs with periods lower than 10 days based on the planet occurrence rates derived in previous surveys. For M dwarfs, the percentage of stars with a hot Jupiter is under debate. Theoretical models expect a lower occurrence rate than for larger main sequence stars. However, radial velocity surveys find upper limits of about 1% due to their small sample, while the Kepler survey finds a occurrence rate that we estimate to be at least 0.17b(+0.67-0.04) %, making it even higher than the determined fraction from OGLE-III for F, G and K stellar types, 0.14 (+0.15-0.076) %. With the large sample size of Pan-Planets, we are able to determine an occurrence rate of 0.11 (+0.37-0.02) % in case one of our candidates turns out to be a real detection. If, however, none of our candidates turn out to be true planets, we are able to put an upper limit of 0.34% with a 95% confidence on the hot Jupiter occurrence rate of M dwarfs. This limit is a significant improvement over previous estimates where the lowest limit published so far is 1.1% found in the WFCAM Transit Survey. Therefore we cannot yet confirm the theoretical prediction of a lower

  20. MAKE SUPER-EARTHS, NOT JUPITERS: ACCRETING NEBULAR GAS ONTO SOLID CORES AT 0.1 AU AND BEYOND

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene; Ormel, Chris W., E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu, E-mail: ormel@berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2014-12-20

    Close-in super-Earths having radii 1-4 R {sub ⊕} may possess hydrogen atmospheres comprising a few percent by mass of their rocky cores. We determine the conditions under which such atmospheres can be accreted by cores from their parent circumstellar disks. Accretion from the nebula is problematic because it is too efficient: we find that 10 M {sub ⊕} cores embedded in solar metallicity disks tend to undergo runaway gas accretion and explode into Jupiters, irrespective of orbital location. The threat of runaway is especially dire at ∼0.1 AU, where solids may coagulate on timescales orders of magnitude shorter than gas clearing times; thus nascent atmospheres on close-in orbits are unlikely to be supported against collapse by planetesimal accretion. The time to runaway accretion is well approximated by the cooling time of the atmosphere's innermost convective zone, whose extent is controlled by where H{sub 2} dissociates. Insofar as the temperatures characterizing H{sub 2} dissociation are universal, timescales for core instability tend not to vary with orbital distance—and to be alarmingly short for 10 M {sub ⊕} cores. Nevertheless, in the thicket of parameter space, we identify two scenarios, not mutually exclusive, that can reproduce the preponderance of percent-by-mass atmospheres for super-Earths at ∼0.1 AU, while still ensuring the formation of Jupiters at ≳ 1 AU. Scenario (a): planets form in disks with dust-to-gas ratios that range from ∼20× solar at 0.1 AU to ∼2× solar at 5 AU. Scenario (b): the final assembly of super-Earth cores from mergers of proto-cores—a process that completes quickly at ∼0.1 AU once begun—is delayed by gas dynamical friction until just before disk gas dissipates completely. Both scenarios predict that the occurrence rate for super-Earths versus orbital distance, and the corresponding rate for Jupiters, should trend in opposite directions, as the former population is transformed into the latter: as

  1. Titan Orbiter Aerorover Mission

    Science.gov (United States)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  2. Orbital and adnexal sarcoidosis

    NARCIS (Netherlands)

    Prabhakaran, Venkatesh C.; Saeed, Perooz; Esmaeli, Bita; Sullivan, Timothy J.; Mcnab, Alan; Davis, Garry; Valenzuela, Alejandra; Leibovitch, Igal; Kesler, Anat; Sivak-Callcott, Jennifer; Hoyama, Erika; Selva, Dinesh

    2007-01-01

    To present the clinical features and management in a series of patients with orbital and adnexal sarcoidosis. This multicenter retrospective study included patients with biopsy-proven noncaseating granuloma involving the orbit or adnexa and evidence of systemic sarcoidosis. Clinical records were

  3. Update on orbital reconstruction.

    Science.gov (United States)

    Chen, Chien-Tzung; Chen, Yu-Ray

    2010-08-01

    Orbital trauma is common and frequently complicated by ocular injuries. The recent literature on orbital fracture is analyzed with emphasis on epidemiological data assessment, surgical timing, method of approach and reconstruction materials. Computed tomographic (CT) scan has become a routine evaluation tool for orbital trauma, and mobile CT can be applied intraoperatively if necessary. Concomitant serious ocular injury should be carefully evaluated preoperatively. Patients presenting with nonresolving oculocardiac reflex, 'white-eyed' blowout fracture, or diplopia with a positive forced duction test and CT evidence of orbital tissue entrapment require early surgical repair. Otherwise, enophthalmos can be corrected by late surgery with a similar outcome to early surgery. The use of an endoscope-assisted approach for orbital reconstruction continues to grow, offering an alternative method. Advances in alloplastic materials have improved surgical outcome and shortened operating time. In this review of modern orbital reconstruction, several controversial issues such as surgical indication, surgical timing, method of approach and choice of reconstruction material are discussed. Preoperative fine-cut CT image and thorough ophthalmologic examination are key elements to determine surgical indications. The choice of surgical approach and reconstruction materials much depends on the surgeon's experience and the reconstruction area. Prefabricated alloplastic implants together with image software and stereolithographic models are significant advances that help to more accurately reconstruct the traumatized orbit. The recent evolution of orbit reconstruction improves functional and aesthetic results and minimizes surgical complications.

  4. Orbital wall fractures

    International Nuclear Information System (INIS)

    Iinuma, Toshitaka; Ishio, Ken-ichirou; Yoshinami, Hiroyoshi; Kuriyama, Jun-ichi; Hirota, Yoshiharu.

    1993-01-01

    A total of 59 cases of mild facial fractures (simple orbital wall fractures, 34 cases, other facial fractures, 25 cases) with the clinical suspects of orbital wall fractures were evaluated both by conventional views (Waters' and Caldwell views) and coronal CT scans. Conventional views were obtained, as an average, after 4 days and CT after 7 days of injuries. Both the medial wall and the floor were evaluated at two sites, i.e., anterior and posterior. The ethmoid-maxillary plate was also included in the study. The degree of fractures was classified as, no fractures, fractures of discontinuity, dislocation and fragmentation. The coronal CT images in bone window condition was used as reference and the findings were compared between conventional views and CT. The correct diagnosis was obtained as follows: orbital floor (anterior, 78%, posterior, 73%), medial orbital wall (anterior, 72%, posterior, 72%) and ethmoid-maxillary plate (64%). The false positive diagnosis was as follows: orbital floor (anterior only, 13%), medial orbital wall (anterior only, 7%) and ethmoid-maxillary plate (11%). The false negative diagnosis was as follows: orbital floor (anterior, 9%, posterior, 10%), medial orbital wall (anterior, 21%, posterior, 28%) and ethmoid-maxillary plate (21%). The results were compared with those of others in the past. (author)

  5. Clinical implications of JUPITER in a contemporary European population: the EPIC-Norfolk prospective population study.

    Science.gov (United States)

    Sondermeijer, Brigitte M; Boekholdt, S Matthijs; Rana, Jamal S; Kastelein, John J P; Wareham, Nicholas J; Khaw, Kay-Tee

    2013-05-01

    Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) has raised several points of debate. We quantified the proportion of individuals meeting the JUPITER criteria, determined their risk profile, and their risk of coronary heart disease (CHD) events during a long-term follow-up in a contemporary European cohort. A total of 25 639 participants aged between 45 and 79 years were followed for 11.4 ± 2.8 years in EPIC-Norfolk population cohort. A total of 8397 individuals with complete data available were considered potentially eligible for primary prevention. A total of 846 (10.1%) individuals fulfilled the JUPITER criteria [low-density lipoprotein cholesterol-C (LDL-C) JUPITER criteria had significantly higher CHD risk compared with those with LDL-C ≥ 3.4 mmol/L and C-reactive protein JUPITER criteria. In this European cohort, JUPITER-eligible individuals had significantly higher event rates compared with those with LDL-C JUPITER criteria qualified almost one-fifth of the population for statin therapy that otherwise would not have qualified based on SCORE or ATP III criteria.

  6. Near equality of ion phase space densities at earth, Jupiter, and Saturn

    Science.gov (United States)

    Cheng, A. F.; Krimigis, S. M.; Armstrong, T. P.

    1985-01-01

    Energetic-ion phase-space density profiles are strikingly similar in the inner magnetospheres of earth, Jupiter, and Saturn for ions of first adiabatic invariant near 100 MeV/G and small mirror latitudes. Losses occur inside L approximately equal to 7 for Jupiter and Saturn and inside L approximately equal to 5 at earth. At these L values there exist steep plasma-density gradients at all three planets, associated with the Io plasma torus at Jupiter, the Rhea-Dione-Tethys torus at Saturn, and the plasmasphere at earth. Measurements of ion flux-tube contents at Jupiter and Saturn by the low-energy charged-particle experiment show that these are similar (for O ions at L = 5-9) to those at earth (for protons at L = 2-6). Furthermore, the thermal-ion flux-tube contents from Voyager plasma-science data at Jupiter and Saturn are also very nearly equal, and again similar to those at earth, differing by less than a factor of 3 at the respective L values. The near equality of energetic and thermal ion flux-tube contents at earth, Jupiter, and Saturn suggests the possibility of strong physical analogies in the interaction between plasma and energetic particles at the plasma tori/plasma sheets of Jupiter and Saturn and the plasmasphere of earth.

  7. The Van Allen Probes mission

    CERN Document Server

    Burch, James

    2014-01-01

    This collection of articles provides broad and detailed information about NASA’s Van Allen Probes (formerly known as the Radiation Belt Storm Probes) twin-spacecraft Earth-orbiting mission. The mission has the objective of achieving predictive understanding of the dynamic, intense, energetic, dangerous, and presently unpredictable belts of energetic particles that are magnetically trapped in Earth’s space environment above the atmosphere. It documents the science of the radiation belts and the societal benefits of achieving predictive understanding. Detailed information is provided about the Van Allen Probes mission design, the spacecraft, the science investigations, and the onboard instrumentation that must all work together to make unprecedented measurements within a most unforgiving environment, the core of Earth’s most intense radiation regions.
 This volume is aimed at graduate students and researchers active in space science, solar-terrestrial interactions and studies of the up...

  8. Peripheral orbit model

    CERN Document Server

    Hara, Yasuo

    1975-01-01

    Peripheral orbit model, in which an incoming hadron is assumed to revolve in a peripheral orbit around a target hadron, is discussed. The non-diffractive parts of two-body reaction amplitudes of hadrons are expressed in terms of the radius, width an absorptivity of the orbit. The radius of the orbit is about 1 fm and the width of the orbit is determined by the range of the interaction between the hadrons. The model reproduces all available experimental data on differential cross-sections and polarizations of $K^{-}p\\to K^{-}p$ and $\\bar K^{\\circ}n$ reactions for all angles successfully. This contribution is not included in the proceedings since it will appear in Progress of Theoretical Physics Vol. 51 (1974) No 2. Any person interested in the subject may apply for reprints to the author.

  9. Rotating and orbiting strings in Dp-brane background

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Sagar; Panigrahi, Kamal L. [Department of Physics, Indian Institute of Technology Kharagpur,721302, Kharagpur (India)

    2015-03-04

    We probe the open fundamental strings in Dp-brane (p=1, 3, 5) backgrounds and find new classes of rotating and orbiting string solutions. We show that for various worldsheet embedding ansatz we get solutions of the string equations of motion that correspond to the well known giant magnon and single spikes, in addition to few new solutions corresponding to the orbiting strings. We make a systematic study of both rigidly rotating and orbiting strings in D1, D3 and D5-brane backgrounds.

  10. The interplanetary magnetic field observed by Juno enroute to Jupiter

    Science.gov (United States)

    Gruesbeck, Jacob R.; Gershman, Daniel J.; Espley, Jared R.; Connerney, John E. P.

    2017-06-01

    The Juno spacecraft was launched on 5 August 2011 and spent nearly 5 years traveling through the inner heliosphere on its way to Jupiter. The Magnetic Field Investigation was powered on shortly after launch and obtained vector measurements of the interplanetary magnetic field (IMF) at sample rates from 1 to 64 samples/second. The evolution of the magnetic field with radial distance from the Sun is compared to similar observations obtained by Voyager 1 and 2 and the Ulysses spacecraft, allowing a comparison of the radial evolution between prior solar cycles and the current depressed one. During the current solar cycle, the strength of the IMF has decreased throughout the inner heliosphere. A comparison of the variance of the normal component of the magnetic field shows that near Earth the variability of the IMF is similar during all three solar cycles but may be less at greater radial distances.

  11. High resolution LBT imaging of Io and Jupiter

    Science.gov (United States)

    Conrad, A.; de Kleer, K.; Leisenring, J.; La Camera, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Defrère, D.; de Pater, I.; Hinz, P.; Hoffman, K.-H.; Kürster, M.; Rathbun, J.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J.; Veillet, C.; Weigelt, G.; Woodward, C.

    2015-10-01

    We report here results from observing Io at high angular resolution, ˜32 mas at 4.8 μm, with LBT at two favorable oppositions as described in our report given at the 2011 EPSC [1]. Analysis of datasets acquired during the last two oppositions has yielded spatially resolved M-band emission at Loki Patera [2], L-band fringes at an eruption site, an occultation of Loki and Pele by Europa, and sufficient sub-earth longitude (SEL) and parallactic angle coverage to produce a full disk map.We summarize completed results for the first of these, and give brief progress reports for the latter three. Finally, we provide plans for imaging the full disk of Jupiter using the MCAO system which is in its commissioning phase at LBT.

  12. KARL GOOSS AND A TEMPLE OF JUPITER IN APULUM

    Directory of Open Access Journals (Sweden)

    Csaba Szabó

    2015-12-01

    Full Text Available Karl Gooss (1844-1881 was one of the few intellectuals of his time who witnessed personally the building of the railway and the ditch of Alba Iulia between 1865 and 1868. The construction was the biggest project of the city since the building of the Vauban fort and destroyed the most significant part of the Colonia Aurelia Apulensis, one of the biggest urban centers of the province. During these works, Gooss witnessed the discovery and destruction of the first Jupiter temple attested in Dacia, the biggest silver deposit ever found in Transylvania and the first coin hoard of Apulum. His German publication was ignored by the later historiography, although it is the first and only detailed account of the archaeological finds discovered in the Partoș in the end of August, 1867. His detailed account helps us to identify the context of some well known artifacts and to reconsider the topography of the Colonia Aurelia Apulensis.

  13. The Interplanetary Magnetic Field Observed by Juno Enroute to Jupiter

    Science.gov (United States)

    Gruesbeck, Jacob R.; Gershman, Daniel J.; Espley, Jared R.; Connerney, John E. P.

    2017-01-01

    The Juno spacecraft was launched on 5 August 2011 and spent nearly 5 years traveling through the inner heliosphere on its way to Jupiter. The Magnetic Field Investigation was powered on shortly after launch and obtained vector measurements of the interplanetary magnetic field (IMF) at sample rates from 1 to 64 samples/second. The evolution of the magnetic field with radial distance from the Sun is compared to similar observations obtained by Voyager 1 and 2 and the Ulysses spacecraft, allowing a comparison of the radial evolution between prior solar cycles and the current depressed one. During the current solar cycle, the strength of the IMF has decreased throughout the inner heliosphere. A comparison of the variance of the normal component of the magnetic field shows that near Earth the variability of the IMF is similar during all three solar cycles but may be less at greater radial distances.

  14. The Sheath-less Planar Langmuir Probe

    Science.gov (United States)

    Cooke, D. L.

    2017-12-01

    The Langmuir probe is one of the oldest plasma diagnostics, provided the plasma density and species temperature from analysis of a current-voltage curve as the voltage is swept over a practically chosen range. The analysis depends on a knowledge or theory of the many factors that influence the current-voltage curve including, probe shape, size, nearby perturbations, and the voltage reference. For applications in Low Earth Orbit, the Planar Langmuir Probe, PLP, is an attractive geometry because the ram ion current is very constant over many Volts of a sweep, allowing the ion density and electron temperature to be determined independently with the same instrument, at different points on the sweep. However, when the physical voltage reference is itself small and electrically floating as with a small spacecraft, the spacecraft and probe system become a double probe where the current collection theory depends on the interaction of the spacecraft with the plasma which is generally not as simple as the probe itself. The Sheath-less PLP, SPLP, interlaces on a single ram facing surface, two variably biased probe elements, broken into many small and intertwined segments on a scale smaller than the plasma Debye length. The SPLP is electrically isolated from the rest of the spacecraft. For relative bias potentials of a few volts, the ion current to all segments of each element will be constant, while the electron currents will vary as a function of the element potential and the electron temperature. Because the segments are small, intertwined, and floating, the assembly will always present the same floating potential to the plasma, with minimal growth as a function of voltage, thus sheath-less and still planar. This concept has been modelled with Nascap, and tested with a physical model inserted into a Low Earth Orbit-like chamber plasma. Results will be presented.

  15. Formation of Silicate and Titanium Clouds on Hot Jupiters

    Science.gov (United States)

    Powell, Diana; Zhang, Xi; Gao, Peter; Parmentier, Vivien

    2018-06-01

    We present the first application of a bin-scheme microphysical and vertical transport model to determine the size distribution of titanium and silicate cloud particles in the atmospheres of hot Jupiters. We predict particle size distributions from first principles for a grid of planets at four representative equatorial longitudes, and investigate how observed cloud properties depend on the atmospheric thermal structure and vertical mixing. The predicted size distributions are frequently bimodal and irregular in shape. There is a negative correlation between the total cloud mass and equilibrium temperature as well as a positive correlation between the total cloud mass and atmospheric mixing. The cloud properties on the east and west limbs show distinct differences that increase with increasing equilibrium temperature. Cloud opacities are roughly constant across a broad wavelength range, with the exception of features in the mid-infrared. Forward-scattering is found to be important across the same wavelength range. Using the fully resolved size distribution of cloud particles as opposed to a mean particle size has a distinct impact on the resultant cloud opacities. The particle size that contributes the most to the cloud opacity depends strongly on the cloud particle size distribution. We predict that it is unlikely that silicate or titanium clouds are responsible for the optical Rayleigh scattering slope seen in many hot Jupiters. We suggest that cloud opacities in emission may serve as sensitive tracers of the thermal state of a planet’s deep interior through the existence or lack of a cold trap in the deep atmosphere.

  16. PROBABILITY OF CME IMPACT ON EXOPLANETS ORBITING M DWARFS AND SOLAR-LIKE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Kay, C. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Opher, M.; Kornbleuth, M., E-mail: ckay@bu.edu [Astronomy Department, Boston University, Boston, MA 02215 (United States)

    2016-08-01

    Solar coronal mass ejections (CMEs) produce adverse space weather effects at Earth. Planets in the close habitable zone of magnetically active M dwarfs may experience more extreme space weather than at Earth, including frequent CME impacts leading to atmospheric erosion and leaving the surface exposed to extreme flare activity. Similar erosion may occur for hot Jupiters with close orbits around solar-like stars. We have developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), which predicts a CME's deflection. We adapt ForeCAT to simulate CME deflections for the mid-type M dwarf V374 Peg and hot Jupiters with solar-type hosts. V374 Peg's strong magnetic fields can trap CMEs at the M dwarfs's Astrospheric Current Sheet, that is, the location of the minimum in the background magnetic field. Solar-type CMEs behave similarly, but have much smaller deflections and do not become trapped at the Astrospheric Current Sheet. The probability of planetary impact decreases with increasing inclination of the planetary orbit with respect to the Astrospheric Current Sheet: 0.5–5 CME impacts per day for M dwarf exoplanets, 0.05–0.5 CME impacts per day for solar-type hot Jupiters. We determine the minimum planetary magnetic field necessary to shield a planet's atmosphere from CME impacts. M dwarf exoplanets require values between tens and hundreds of Gauss. Hot Jupiters around a solar-type star, however, require a more reasonable <30 G. These values exceed the magnitude required to shield a planet from the stellar wind, suggesting that CMEs may be the key driver of atmospheric losses.

  17. PROBABILITY OF CME IMPACT ON EXOPLANETS ORBITING M DWARFS AND SOLAR-LIKE STARS

    International Nuclear Information System (INIS)

    Kay, C.; Opher, M.; Kornbleuth, M.

    2016-01-01

    Solar coronal mass ejections (CMEs) produce adverse space weather effects at Earth. Planets in the close habitable zone of magnetically active M dwarfs may experience more extreme space weather than at Earth, including frequent CME impacts leading to atmospheric erosion and leaving the surface exposed to extreme flare activity. Similar erosion may occur for hot Jupiters with close orbits around solar-like stars. We have developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), which predicts a CME's deflection. We adapt ForeCAT to simulate CME deflections for the mid-type M dwarf V374 Peg and hot Jupiters with solar-type hosts. V374 Peg's strong magnetic fields can trap CMEs at the M dwarfs's Astrospheric Current Sheet, that is, the location of the minimum in the background magnetic field. Solar-type CMEs behave similarly, but have much smaller deflections and do not become trapped at the Astrospheric Current Sheet. The probability of planetary impact decreases with increasing inclination of the planetary orbit with respect to the Astrospheric Current Sheet: 0.5–5 CME impacts per day for M dwarf exoplanets, 0.05–0.5 CME impacts per day for solar-type hot Jupiters. We determine the minimum planetary magnetic field necessary to shield a planet's atmosphere from CME impacts. M dwarf exoplanets require values between tens and hundreds of Gauss. Hot Jupiters around a solar-type star, however, require a more reasonable <30 G. These values exceed the magnitude required to shield a planet from the stellar wind, suggesting that CMEs may be the key driver of atmospheric losses.

  18. Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft

    DEFF Research Database (Denmark)

    Bolton, S. J.; Adriani, Alberto; Adumitroaie, V.

    2017-01-01

    On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter's poles show a chaotic scene, unlike Saturn's poles. Microwave sounding reveals weather features at pressures deeper than 100 bars,...... of magnitude more precise. This has implications for the distribution of heavy elements in the interior, including the existence and mass of Jupiter's core. The observed magnetic field exhibits smaller spatial variations than expected, indicative of a rich harmonic content....

  19. Atmospheric Characterization of Five Hot Jupiters with the Wide Field Camera 3 on the Hubble Space Telescope

    Science.gov (United States)

    Ranjan, Sukrit; Charbonneau, David; Desert, Jean-Michel; Madhusudhan, Nikku; Deming, Drake; Wilkins, Ashlee; Mandell, Avi M.

    2014-01-01

    We probe the structure and composition of the atmospheres of five hot Jupiter exoplanets using the Hubble Space Telescope Wide Field Camera 3 (WFC3) instrument. We use the G141 grism (1.1-1.7 micrometers) to study TrES-2b, TrES-4b, and CoRoT-1b in transit; TrES-3b in secondary eclipse; and WASP-4b in both. This wavelength region includes a predicted absorption feature from water at 1.4 micrometers, which we expect to be nondegenerate with the other molecules that are likely to be abundant for hydrocarbon-poor (e.g., solar composition) hot Jupiter atmospheres. We divide our wavelength regions into 10 bins. For each bin we produce a spectrophotometric light curve spanning the time of transit or eclipse. We correct these light curves for instrumental systematics without reference to an instrument model. For our transmission spectra, our mean 1s precision per bin corresponds to variations of 2.1, 2.8, and 3.0 atmospheric scale heights for TrES-2b, TrES-4b, and CoRoT-1b, respectively. We find featureless spectra for these three planets. We are unable to extract a robust transmission spectrum for WASP-4b. For our dayside emission spectra, our mean 1 sigma precision per bin corresponds to a planet-to-star flux ratio of 1.5 x 10(exp -4) and 2.1 x 10(exp -4) for WASP-4b and TrES-3b, respectively. We combine these estimates with previous broadband measurements and conclude that for both planets isothermal atmospheres are disfavored. We find no signs of features due to water. We confirm that WFC3 is suitable for studies of transiting exoplanets, but in staring mode multivisit campaigns are necessary to place strong constraints on water abundance.

  20. Atmospheric characterization of five hot Jupiters with the wide field Camera 3 on the Hubble space telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, Sukrit; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Désert, Jean-Michel [Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Madhusudhan, Nikku [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Deming, Drake; Wilkins, Ashlee [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Mandell, Avi M., E-mail: sranjan@cfa.harvard.edu [NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-04-20

    We probe the structure and composition of the atmospheres of five hot Jupiter exoplanets using the Hubble Space Telescope Wide Field Camera 3 (WFC3) instrument. We use the G141 grism (1.1-1.7 μm) to study TrES-2b, TrES-4b, and CoRoT-1b in transit; TrES-3b in secondary eclipse; and WASP-4b in both. This wavelength region includes a predicted absorption feature from water at 1.4 μm, which we expect to be nondegenerate with the other molecules that are likely to be abundant for hydrocarbon-poor (e.g., solar composition) hot Jupiter atmospheres. We divide our wavelength regions into 10 bins. For each bin we produce a spectrophotometric light curve spanning the time of transit or eclipse. We correct these light curves for instrumental systematics without reference to an instrument model. For our transmission spectra, our mean 1σ precision per bin corresponds to variations of 2.1, 2.8, and 3.0 atmospheric scale heights for TrES-2b, TrES-4b, and CoRoT-1b, respectively. We find featureless spectra for these three planets. We are unable to extract a robust transmission spectrum for WASP-4b. For our dayside emission spectra, our mean 1σ precision per bin corresponds to a planet-to-star flux ratio of 1.5 × 10{sup –4} and 2.1 × 10{sup –4} for WASP-4b and TrES-3b, respectively. We combine these estimates with previous broadband measurements and conclude that for both planets isothermal atmospheres are disfavored. We find no signs of features due to water. We confirm that WFC3 is suitable for studies of transiting exoplanets, but in staring mode multivisit campaigns are necessary to place strong constraints on water abundance.

  1. HAT-P-68b: A Transiting Hot Jupiter Around a K5 Dwarf Star

    Science.gov (United States)

    Lindor, Bethlee; Hartman, Joel D.

    2018-01-01

    One of the main goals of the astrophysical society has been to detect sources of life outside of Earth. To aid this search, astronomers have spent the last 2 decades focused on the discovery and characterization of exoplanets. The most effective method for doing so has been transit photometry, wherein we measure the brightness of stars over periods of time. These measurements, or light curves, are later analyzed for dips in brightness caused by objects passing in front of the star. However, variations in these time series can also occur due to non-planetary systems and a meticulous process is needed to distinguish the planets from the various false positives that are detected. HATNet is one of many surveys involved in this endeavor, and in this work I analyze HAT-P-68. First, I model the system as a single star with a transiting planet and derive estimates of the stellar and planetary physical parameters. I also model HAT-P-68 as a number of a false positives such as a pair of stars in an eclipsing binary blended with a background star, and a planet-sized star orbiting a Sun-like star. In order to rule out the possibility that HAT-P-68 is a blend, I carried out a statistical blend analysis of the photometric data and find that all blend models tested can be ruled out. Thus, I conclude that HAT-P-68 is a system with a transiting hot jupiter and consider what future observations would be most promising to further characterize the system.

  2. The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter

    Science.gov (United States)

    McComas, D. J.; Alexander, N.; Allegrini, F.; Bagenal, F.; Beebe, C.; Clark, G.; Crary, F.; Desai, M. I.; De Los Santos, A.; Demkee, D.; Dickinson, J.; Everett, D.; Finley, T.; Gribanova, A.; Hill, R.; Johnson, J.; Kofoed, C.; Loeffler, C.; Louarn, P.; Maple, M.; Mills, W.; Pollock, C.; Reno, M.; Rodriguez, B.; Rouzaud, J.; Santos-Costa, D.; Valek, P.; Weidner, S.; Wilson, P.; Wilson, R. J.; White, D.

    2017-11-01

    The Jovian Auroral Distributions Experiment (JADE) on Juno provides the critical in situ measurements of electrons and ions needed to understand the plasma energy particles and processes that fill the Jovian magnetosphere and ultimately produce its strong aurora. JADE is an instrument suite that includes three essentially identical electron sensors (JADE-Es), a single ion sensor (JADE-I), and a highly capable Electronics Box (EBox) that resides in the Juno Radiation Vault and provides all necessary control, low and high voltages, and computing support for the four sensors. The three JADE-Es are arrayed 120∘ apart around the Juno spacecraft to measure complete electron distributions from ˜0.1 to 100 keV and provide detailed electron pitch-angle distributions at a 1 s cadence, independent of spacecraft spin phase. JADE-I measures ions from ˜5 eV to ˜50 keV over an instantaneous field of view of 270∘×90∘ in 4 s and makes observations over all directions in space each 30 s rotation of the Juno spacecraft. JADE-I also provides ion composition measurements from 1 to 50 amu with m/Δ m˜2.5, which is sufficient to separate the heavy and light ions, as well as O+ vs S+, in the Jovian magnetosphere. All four sensors were extensively tested and calibrated in specialized facilities, ensuring excellent on-orbit observations at Jupiter. This paper documents the JADE design, construction, calibration, and planned science operations, data processing, and data products. Finally, the Appendix describes the Southwest Research Institute [SwRI] electron calibration facility, which was developed and used for all JADE-E calibrations. Collectively, JADE provides remarkably broad and detailed measurements of the Jovian auroral region and magnetospheric plasmas, which will surely revolutionize our understanding of these important and complex regions.

  3. Mobile Game Probes

    DEFF Research Database (Denmark)

    Borup Lynggaard, Aviaja

    2006-01-01

    This paper will examine how probes can be useful for game designers in the preliminary phases of a design process. The work is based upon a case study concerning pervasive mobile phone games where Mobile Game Probes have emerged from the project. The new probes are aimed towards a specific target...... group and the goal is to specify the probes so they will cover the most relevant areas for our project. The Mobile Game Probes generated many interesting results and new issues occurred, since the probes came to be dynamic and favorable for the process in new ways....

  4. Topology of tokamak orbits

    International Nuclear Information System (INIS)

    Rome, J.A.; Peng, Y.K.M.

    1978-09-01

    Guiding center orbits in noncircular axisymmetric tokamak plasmas are studied in the constants of motion (COM) space of (v, zeta, psi/sub m/). Here, v is the particle speed, zeta is the pitch angle with respect to the parallel equilibrium current, J/sub parallels/, and psi/sub m/ is the maximum value of the poloidal flux function (increasing from the magnetic axis) along the guiding center orbit. Two D-shaped equilibria in a flux-conserving tokamak having β's of 1.3% and 7.7% are used as examples. In this space, each confined orbit corresponds to one and only one point and different types of orbits (e.g., circulating, trapped, stagnation and pinch orbits) are represented by separate regions or surfaces in the space. It is also shown that the existence of an absolute minimum B in the higher β (7.7%) equilibrium results in a dramatically different orbit topology from that of the lower β case. The differences indicate the confinement of additional high energy (v → c, within the guiding center approximation) trapped, co- and countercirculating particles whose orbit psi/sub m/ falls within the absolute B well

  5. Harmonically excited orbital variations

    International Nuclear Information System (INIS)

    Morgan, T.

    1985-01-01

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs

  6. Size Dependence of Dust Distribution around the Earth Orbit

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Takahiro; Takeuchi, Taku [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551 (Japan); Kobayashi, Hiroshi; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro, E-mail: t.ueda@geo.titech.ac.jp [Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602 (Japan)

    2017-05-01

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s {sub max} = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.

  7. Size Dependence of Dust Distribution around the Earth Orbit

    International Nuclear Information System (INIS)

    Ueda, Takahiro; Takeuchi, Taku; Kobayashi, Hiroshi; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro

    2017-01-01

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s max  = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.

  8. Super-Earths, Warm-Neptunes, and Hot-Jupiters: Transmission Spectroscopy for Comparative Planetology

    Science.gov (United States)

    Fraine, Jonathan D.; Deming, Drake; Knutson, Heather; Jordán, Andrés

    2014-11-01

    We used the Kepler, Hubble, and Spitzer Space Telescopes to probe the diversity of exoplanetary atmospheres with transmission spectroscopy, constraining atomic and molecular absorption in Jupiter- and Neptune-sized exoplanets. The detections and non-detections of molecular species such as water, methane, and carbon monoxide lead to greater understanding of planet formation and evolution. Recent significant advances in both theoretical and observational discoveries from planets like HD189733b, HD209458b, GJ436, as well as our own work with HAT-P-11b and GJ1214b, have shown that the range of measurable atmospheric properties spans from clear, molecular absorption dominated worlds to opaque worlds, with cloudy, hazy, or high mean molecular weight atmospheres. Characterization of these significant non-detections allows us to infer the existence of cloud compositions at high altitudes, or mean molecular weights upwards of ~1000x solar. Neither scenario was expected from extrapolations of solar system analogs. We present here our published results from GJ1214b and HAT-P-11b, as well as our recent work on HAT-P-7b and HAT-P-13b. We search for evidence of atmospheric hazes and clouds, and place constraints on the relative abundance of water vapor, methane, and carbon monoxide-- in the case of cloud-free atmospheres. We conclude by discussing how our results compare to transmission spectra obtained for other similar planets, and use these combined data to develop a better understanding for the nature of these distant and alien worlds.

  9. NIMS EXPERIMENT DATA RECORDS: SL-9 COMET IMPACT WITH JUPITER

    Data.gov (United States)

    National Aeronautics and Space Administration — NIMS Experiment Data Record (EDR) files contain raw data from the Galileo Orbiter Near-Infrared Mapping Spectrometer (CARLSONETAL1992). This raw data requires...

  10. BEER ANALYSIS OF KEPLER AND CoRoT LIGHT CURVES. I. DISCOVERY OF KEPLER-76b: A HOT JUPITER WITH EVIDENCE FOR SUPERROTATION

    International Nuclear Information System (INIS)

    Faigler, S.; Tal-Or, L.; Mazeh, T.; Latham, D. W.; Buchhave, L. A.

    2013-01-01

    We present the first case in which the BEER algorithm identified a hot Jupiter in the Kepler light curve, and its reality was confirmed by orbital solutions based on follow-up spectroscopy. The companion Kepler-76b was identified by the BEER algorithm, which detected the BEaming (sometimes called Doppler boosting) effect together with the Ellipsoidal and Reflection/emission modulations (BEER), at an orbital period of 1.54 days, suggesting a planetary companion orbiting the 13.3 mag F star. Further investigation revealed that this star appeared in the Kepler eclipsing binary catalog with estimated primary and secondary eclipse depths of 5 × 10 –3 and 1 × 10 –4 , respectively. Spectroscopic radial velocity follow-up observations with Tillinghast Reflector Echelle Spectrograph and SOPHIE confirmed Kepler-76b as a transiting 2.0 ± 0.26 M Jup hot Jupiter. The mass of a transiting planet can be estimated from either the beaming or the ellipsoidal amplitude. The ellipsoidal-based mass estimate of Kepler-76b is consistent with the spectroscopically measured mass while the beaming-based estimate is significantly inflated. We explain this apparent discrepancy as evidence for the superrotation phenomenon, which involves eastward displacement of the hottest atmospheric spot of a tidally locked planet by an equatorial superrotating jet stream. This phenomenon was previously observed only for HD 189733b in the infrared. We show that a phase shift of 10.°3 ± 2.°0 of the planet reflection/emission modulation, due to superrotation, explains the apparently inflated beaming modulation, resolving the ellipsoidal/beaming amplitude discrepancy. Kepler-76b is one of very few confirmed planets in the Kepler light curves that show BEER modulations and the first to show superrotation evidence in the Kepler band. Its discovery illustrates for the first time the ability of the BEER algorithm to detect short-period planets and brown dwarfs.

  11. Numerical determination of families of three-dimensional double-symmetric periodic orbits in the restricted three-body problem. Pt. 1

    International Nuclear Information System (INIS)

    Kazantzis, P.G.

    1979-01-01

    New families of three-dimensional double-symmetric periodic orbits are determined numerically in the Sun-Jupiter case of the restricted three-body problem. These families bifurcate from the 'vertical-critical' orbits (αsub(ν) = -1, csub(ν) = 0) of the 'basic' plane families i. g 1 g 2 h, a, m and I. Further the numerical procedure employed in the determination of these families has been described and interesting results have been pointed out. Also, computer plots of the orbits of these families have been shown in conical projections. (orig.)

  12. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  13. Thrombosis of orbital varices

    International Nuclear Information System (INIS)

    Boschi Oyhenart, J.; Tenyi, A.; Boschi Pau, J.

    2002-01-01

    Orbital varices are venous malformations produced by an abnormal dilatation of one or more orbital veins, probably associated with congenital weakness of the vascular wall. They are rare lesions, usually occurring in young patients, that produce intermittent proptosis related to the increase in the systemic venous pressure. The presence of hemorrhage or thrombosis is associated with rapid development of proptosis, pain and decreased ocular motility. We report the cases of two adult patients with orbital varices complicated by thrombosis in whom the diagnosis was based on computed tomography. The ultrasound and magnetic resonance findings are also discussed. (Author) 16 refs

  14. Gravity Probe B Assembled

    Science.gov (United States)

    2000-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being assembled at the Sunnyvale, California location of the Lockheed Martin Corporation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  15. Venus Express en route to probe the planet's hidden mysteries

    Science.gov (United States)

    2005-11-01

    Venus Express will eventually manoeuvre itself into orbit around Venus in order to perform a detailed study of the structure, chemistry and dynamics of the planet's atmosphere, which is characterised by extremely high temperatures, very high atmospheric pressure, a huge greenhouse effect and as-yet inexplicable "super-rotation" which means that it speeds around the planet in just four days. The European spacecraft will also be the first orbiter to probe the planet's surface while exploiting the "visibility windows" recently discovered in the infrared waveband. The 1240 kg mass spacecraft was developed for ESA by a European industrial team led by EADS Astrium with 25 main contractors spread across 14 countries. It lifted off onboard a Soyuz-Fregat rocket, the launch service being provided by Starsem. The lift-off from the Baikonur Cosmodrome in Kazakstan this morning took place at 09:33 hours local time (04:33 Central European Time). Initial Fregat upper-stage ignition took place 9 minutes into the flight, manoeuvring the spacecraft into a low-earth parking orbit. A second firing, 1 hour 22 minutes later, boosted the spacecraft to pursue its interplanetary trajectory. Contact with Venus Express was established by ESA's European Space Operations Centre (ESOC) at Darmstadt, Germany approximately two hours after lift-off. The spacecraft has correctly oriented itself in relation to the sun and has deployed its solar arrays. All onboard systems are operating perfectly and the orbiter is communicating with the Earth via its low-gain antenna. In three days' time, it will establish communications using its high-gain antenna. Full speed ahead for Venus Venus Express is currently distancing itself from the Earth full speed, heading on its five-month 350 million kilometre journey inside our solar system. After check-outs to ensure that its onboard equipment and instrument payload are in proper working order, the spacecraft will be mothballed, with contact with the Earth being

  16. Empirical evidence for stability of the 405-kiloyear Jupiter-Venus eccentricity cycle over hundreds of millions of years.

    Science.gov (United States)

    Kent, Dennis V; Olsen, Paul E; Rasmussen, Cornelia; Lepre, Christopher; Mundil, Roland; Irmis, Randall B; Gehrels, George E; Giesler, Dominique; Geissman, John W; Parker, William G

    2018-06-12

    The Newark-Hartford astrochronostratigraphic polarity timescale (APTS) was developed using a theoretically constant 405-kiloyear eccentricity cycle linked to gravitational interactions with Jupiter-Venus as a tuning target and provides a major timing calibration for about 30 million years of Late Triassic and earliest Jurassic time. While the 405-ky cycle is both unimodal and the most metronomic of the major orbital cycles thought to pace Earth's climate in numerical solutions, there has been little empirical confirmation of that behavior, especially back before the limits of orbital solutions at about 50 million years before present. Moreover, the APTS is anchored only at its younger end by U-Pb zircon dates at 201.6 million years before present and could even be missing a number of 405-ky cycles. To test the validity of the dangling APTS and orbital periodicities, we recovered a diagnostic magnetic polarity sequence in the volcaniclastic-bearing Chinle Formation in a scientific drill core from Petrified Forest National Park (Arizona) that provides an unambiguous correlation to the APTS. New high precision U-Pb detrital zircon dates from the core are indistinguishable from ages predicted by the APTS back to 215 million years before present. The agreement shows that the APTS is continuous and supports a stable 405-kiloyear cycle well beyond theoretical solutions. The validated Newark-Hartford APTS can be used as a robust framework to help differentiate provinciality from global temporal patterns in the ecological rise of early dinosaurs in the Late Triassic, amongst other problems.

  17. Gravity Probe B data system description

    International Nuclear Information System (INIS)

    Bennett, Norman R

    2015-01-01

    The Gravity Probe B data system, developed, integrated, and tested by Lockheed Missiles and Space Company, and later Lockheed Martin Corporation, included flight and ground command, control, and communications software. The development was greatly facilitated, conceptually and by the transfer of key personnel, through Lockheed’s earlier flight and ground test software development for the Hubble Space Telescope (HST). Key design challenges included the tight mission timeline (17 months, 9 days of on-orbit operation), the need to tune the system once on-orbit, and limited 2 Kbps real-time data rates and ground asset availability. The result was a completely integrated space vehicle and Stanford mission operations center, which successfully collected and archived 97% of the ‘guide star valid’ data to support the science analysis. Lessons learned and incorporated from the HST flight software development and on-orbit support experience, and Lockheed’s independent research and development effort, will be discussed. (paper)

  18. BUILDING MODEL ANALYSIS APPLICATIONS WITH THE JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY (JUPITER) API

    Science.gov (United States)

    The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input ...

  19. GO JUP POS MOONS TRAJ JUPITER CENTERED COORDINATES V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the System III (1965.0) trajectory and Sun and Earth phase angles of Galileo and selected Jovian moons when Galileo was inside 30 Jupiter...

  20. VOYAGER 1&2 JUPITER BRIGHTNESS NORTH/SOUTH MAP SET V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Voyager 1 and 2 measurements of the brightness of Jupiter at H Lyman alpha and in the H2 Lyman and Werner bands shortward of H Lyman alpha....

  1. MSSSO CASPIR STAR CALS BEFORE SL9 IMPACTS WITH JUPITER V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive contains star images used as calibrations in preparation for the collision of Comet Shoemaker-Levy 9 with Jupiter obtained with CASPIR on the Australian...

  2. Congenital orbital teratoma.

    Science.gov (United States)

    Aiyub, Shereen; Chan, Wengonn; Szetu, John; Sullivan, Laurence J; Pater, John; Cooper, Peter; Selva, Dinesh

    2013-12-01

    We present a case of mature congenital orbital teratoma managed with lid-sparing exenteration and dermis fat graft. This is a case report on the management of congenital orbital teratoma. A full-term baby was born in Fiji with prolapsed right globe which was surrounded by a nonpulsatile, cystic mass. Clinical and imaging features were consistent with congenital orbital teratoma. Due to limited surgical expertise, the patient was transferred to Adelaide, Australia for further management. The patient underwent a lid-sparing exenteration with frozen section control of the apical margin. A dermis fat graft from the groin was placed beneath the lid skin to provide volume. Histopathology revealed mature tissues from each of the three germ cell layers which confirmed the diagnosis of mature teratoma. We describe the successful use of demis fat graft in socket reconstruction following lid-sparing exenteration for congenital orbital teratoma.

  3. Congenital orbital teratoma

    Directory of Open Access Journals (Sweden)

    Shereen Aiyub

    2013-01-01

    Full Text Available We present a case of mature congenital orbital teratoma managed with lid-sparing exenteration and dermis fat graft. This is a case report on the management of congenital orbital teratoma. A full-term baby was born in Fiji with prolapsed right globe which was surrounded by a nonpulsatile, cystic mass. Clinical and imaging features were consistent with congenital orbital teratoma. Due to limited surgical expertise, the patient was transferred to Adelaide, Australia for further management. The patient underwent a lid-sparing exenteration with frozen section control of the apical margin. A dermis fat graft from the groin was placed beneath the lid skin to provide volume. Histopathology revealed mature tissues from each of the three germ cell layers which confirmed the diagnosis of mature teratoma. We describe the successful use of demis fat graft in socket reconstruction following lid-sparing exenteration for congenital orbital teratoma.

  4. PS Booster Orbit Correction

    CERN Document Server

    Chanel, M; Rumolo, G; Tomás, R; CERN. Geneva. AB Department

    2008-01-01

    At the end of the 2007 run, orbit measurements were carried out in the 4 rings of the PS Booster (PSB) for different working points and beam energies. The aim of these measurements was to provide the necessary input data for a PSB realignment campaign during the 2007/2008 shutdown. Currently, only very few corrector magnets can be operated reliably in the PSB; therefore the orbit correction has to be achieved by displacing (horizontally and vertically) and/or tilting some of the defocusing quadrupoles (QDs). In this report we first describe the orbit measurements, followed by a detailed explanation of the orbit correction strategy. Results and conclusions are presented in the last section.

  5. JUPOS : Amateur analysis of Jupiter images with specialized measurement software

    Science.gov (United States)

    Jacquesson, M.; Mettig, H.-J.

    2008-09-01

    Introduction - Beginning of JUPOS in 1989, H.J. Mettig and Grischa Hahn in Dresden - 350.000 positional measures on electronic images of almost 180 observers have been gathered since 1998 - What do we mean by "electronic images": o digitized hi-res chemical photographs o traditional CCD technique o webcam images - 2002 started the implementation of WinJUPOS by Grischa, now finished - Cooperation with the Jupiter Section of the BAA for many years - At present, JUPOS has four active measurers: o Gianluigi Adamoli and Marco Vedovato (Italy) o H.J. Mettig (Germany) o Michel Jacquesson (France) How we work together - Each member of the team measures images of several observers (useful to detect and avoid systematic errors) - When necessary, exchange of problems and ideas by e-mail - During the period of visibility of Jupiter, team leader H.J. Mettig: o collects all recent measurements about once a month o produces drift charts - Once a year or two, the JUPOS team helds an informal meeting Criteria for image selection 1) Validity of time and date: Origins of time errors: 1. local zonal times are wrongly (or, not at all) converted to UT. This is still easy to find out: Either "only" the full hour is erroneous, or/and the date (problem of observers with UTC+10) 2. the computer clock has not been synchronised over a longer period 3. exposure of the final image exceeds the recommended two minutes or observers communicate begin or end of the total period of image recording instead of its middle How to test the validity of the time? - Position of a galilean satellite visible on or near Jupiter - Position of a satellite shadow - Measuring the longitude of permanent or long lived objects whose positions are known from former measurements 2) Avoid measuring the same object on different images taken at about the same time. One image every 1 ½ hours is sufficient 3) Duration of exposure: not more than 2-3 minutes because of the rapid rotation of Jupiter 4) Spectral range: Visual

  6. Eligibility for statin therapy by the JUPITER trial criteria and subsequent mortality.

    Science.gov (United States)

    Cushman, Mary; McClure, Leslie A; Lakoski, Susan G; Jenny, Nancy S

    2010-01-01

    Justification for the Use of Statins in Primary Prevention: An Intervention Trial Using Rosuvastatin (JUPITER) reported reduced cardiovascular and all-cause mortality with statin treatment in patients with elevated C-reactive protein (CRP) and average cholesterol levels who were not eligible for lipid-lowering treatment on the basis of existing guidelines. The aim of this study was to determine the prevalence of eligibility and mortality in a general population sample on the basis of eligibility for statin treatment using the JUPITER criteria. The study group consisted of 30,229 participants in the REasons for Geographic and Racial Differences in Stroke (REGARDS) cohort, an observational study of US African American and white participants aged > or =45 years, enrolled in their homes from 2003 to 2007 and followed biannually by telephone. Among 11,339 participants age eligible for JUPITER and without vascular diagnoses or using lipid-lowering treatment, 21% (n = 2,342) met JUPITER entry criteria. Compared with JUPITER participants, they had similar low-density lipoprotein cholesterol and CRP levels, were more often women, were more often black, had metabolic syndrome, and used aspirin for cardioprotection. Over 3.5 years of follow-up, the mortality rate in REGARDS participants eligible for JUPITER was 1.17 per 100 patient-years (95% confidence interval 0.94 to 1.42). Compared with those otherwise JUPITER eligible who had CRP levels or =2 mg/L had a multivariate-adjusted relative risk of 1.5 (95% confidence interval 1.1 to 2.2) for total mortality. In conclusion, 21% not otherwise eligible would be newly eligible for lipid lowering treatment on the basis of JUPITER trial eligibility.

  7. Dekametric and hectometric observations of Jupiter from the RAE-1 satellite

    Science.gov (United States)

    Desch, M. D.; Carr, T. D.

    1974-01-01

    Analysis of RAE-1 satellite data has revealed the presence of radio bursts from Jupiter in the frequency range from 4700 kHz to 450 kHz. Variations in the activity with respect to the planet's system III longitude are presented at seven frequencies. A merge of ground-based and satellite-acquired data indicates that the long-sought-for peak in Jupiter's low-frequency flux spectrum occurs at about 8 MHz.

  8. Antisymmetric Orbit Functions

    Directory of Open Access Journals (Sweden)

    Anatoliy Klimyk

    2007-02-01

    Full Text Available In the paper, properties of antisymmetric orbit functions are reviewed and further developed. Antisymmetric orbit functions on the Euclidean space $E_n$ are antisymmetrized exponential functions. Antisymmetrization is fulfilled by a Weyl group, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. These functions are closely related to irreducible characters of a compact semisimple Lie group $G$ of rank $n$. Up to a sign, values of antisymmetric orbit functions are repeated on copies of the fundamental domain $F$ of the affine Weyl group (determined by the initial Weyl group in the entire Euclidean space $E_n$. Antisymmetric orbit functions are solutions of the corresponding Laplace equation in $E_n$, vanishing on the boundary of the fundamental domain $F$. Antisymmetric orbit functions determine a so-called antisymmetrized Fourier transform which is closely related to expansions of central functions in characters of irreducible representations of the group $G$. They also determine a transform on a finite set of points of $F$ (the discrete antisymmetric orbit function transform. Symmetric and antisymmetric multivariate exponential, sine and cosine discrete transforms are given.

  9. Local orbit feedback

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Critically aligned experiments are sensitive to small changes in the electron beam orbit. At the NSLS storage rings, the electron beam and photon beam motions have been monitored over the past several years. In the survey conducted in 1986 by the NSLS Users Executive Committee, experimenters requested the vertical beam position variation and the vertical angle variation, within a given fill, remain within 10 μm and 10 μr, respectively. This requires improvement in the beam stability by about one order of magnitude. At the NSLS and SSRL storage rings, the beam that is originally centered on the position monitor by a dc orbit correction is observed to have two kinds of motion: a dc drift over a storage period of several hours and a beam bounce about its nominal position. These motions are a result of the equilibrium orbit not being held perfectly stable due to time-varying errors introduced into the magnetic guide field by power supplies, mechanical vibration of the magnets, cooling water temperature variations, etc. The approach to orbit stabilization includes (1) identifying and suppressing as many noise sources on the machine as possible, (2) correcting the beam position globally (see Section 6) by controlling a number of correctors around the circumference of the machine, and (3) correcting the beam position and angle at a given source location by position feedback using local detectors and local orbit bumps. The third approach, called Local Orbit Feedback will be discussed in this section

  10. Warm Spitzer and Palomar near-IR secondary eclipse photometry of two hot Jupiters: WASP-48b and HAT-P-23b

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, Joseph G.; Knutson, Heather A.; Désert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Zhao, Ming [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 05844 (United States); Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Todorov, Kamen O. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)

    2014-02-01

    We report secondary eclipse photometry of two hot Jupiters, WASP-48b and HAT-P-23b, at 3.6 and 4.5 μm taken with the InfraRed Array Camera aboard the Spitzer Space Telescope during the warm Spitzer mission and in the H and K{sub S} bands with the Wide Field IR Camera at the Palomar 200 inch Hale Telescope. WASP-48b and HAT-P-23b are Jupiter-mass and twice Jupiter-mass objects orbiting an old, slightly evolved F star and an early G dwarf star, respectively. In the H, K{sub S} , 3.6 μm, and 4.5 μm bands, respectively, we measure secondary eclipse depths of 0.047% ± 0.016%, 0.109% ± 0.027%, 0.176% ± 0.013%, and 0.214% ± 0.020% for WASP-48b. In the K{sub S} , 3.6 μm, and 4.5 μm bands, respectively, we measure secondary eclipse depths of 0.234% ± 0.046%, 0.248% ± 0.019%, and 0.309% ± 0.026% for HAT-P-23b. For WASP-48b and HAT-P-23b, respectively, we measure delays of 2.6 ± 3.9 minutes and 4.0 ± 2.4 minutes relative to the predicted times of secondary eclipse for circular orbits, placing 2σ upper limits on |ecos ω| of 0.0053 and 0.0080, both of which are consistent with circular orbits. The dayside emission spectra of these planets are well-described by blackbodies with effective temperatures of 2158 ± 100 K (WASP-48b) and 2154 ± 90 K (HAT-P-23b), corresponding to moderate recirculation in the zero albedo case. Our measured eclipse depths are also consistent with one-dimensional radiative transfer models featuring varying degrees of recirculation and weak thermal inversions or no inversions at all. We discuss how the absence of strong temperature inversions on these planets may be related to the activity levels and metallicities of their host stars.

  11. NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE

    International Nuclear Information System (INIS)

    Mousis, Olivier; Lunine, Jonathan I.; Madhusudhan, Nikku; Johnson, Torrence V.

    2012-01-01

    Motivated by recent spectroscopic observations suggesting that atmospheres of some extrasolar giant planets are carbon-rich, i.e., carbon/oxygen ratio (C/O) ≥ 1, we find that the whole set of compositional data for Jupiter is consistent with the hypothesis that it should be a carbon-rich giant planet. We show that the formation of Jupiter in the cold outer part of an oxygen-depleted disk (C/O ∼ 1) reproduces the measured Jovian elemental abundances at least as well as the hitherto canonical model of Jupiter formed in a disk of solar composition (C/O 0.54). The resulting O abundance in Jupiter's envelope is then moderately enriched by a factor of ∼2 × solar (instead of ∼7 × solar) and is found to be consistent with values predicted by thermochemical models of the atmosphere. That Jupiter formed in a disk with C/O ∼ 1 implies that water ice was heterogeneously distributed over several AU beyond the snow line in the primordial nebula and that the fraction of water contained in icy planetesimals was a strong function of their formation location and time. The Jovian oxygen abundance to be measured by NASA's Juno mission en route to Jupiter will provide a direct and strict test of our predictions.

  12. NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE

    Energy Technology Data Exchange (ETDEWEB)

    Mousis, Olivier [Universite de Franche-Comte, Institut UTINAM, CNRS/INSU, UMR 6213, Observatoire des Sciences de l' Univers de Besancon (France); Lunine, Jonathan I. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Madhusudhan, Nikku [Yale Center for Astronomy and Astrophysics, Department of Physics, Yale University, New Haven, CT 06511 (United States); Johnson, Torrence V., E-mail: olivier.mousis@obs-besancon.fr [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2012-05-20

    Motivated by recent spectroscopic observations suggesting that atmospheres of some extrasolar giant planets are carbon-rich, i.e., carbon/oxygen ratio (C/O) {>=} 1, we find that the whole set of compositional data for Jupiter is consistent with the hypothesis that it should be a carbon-rich giant planet. We show that the formation of Jupiter in the cold outer part of an oxygen-depleted disk (C/O {approx} 1) reproduces the measured Jovian elemental abundances at least as well as the hitherto canonical model of Jupiter formed in a disk of solar composition (C/O 0.54). The resulting O abundance in Jupiter's envelope is then moderately enriched by a factor of {approx}2 Multiplication-Sign solar (instead of {approx}7 Multiplication-Sign solar) and is found to be consistent with values predicted by thermochemical models of the atmosphere. That Jupiter formed in a disk with C/O {approx} 1 implies that water ice was heterogeneously distributed over several AU beyond the snow line in the primordial nebula and that the fraction of water contained in icy planetesimals was a strong function of their formation location and time. The Jovian oxygen abundance to be measured by NASA's Juno mission en route to Jupiter will provide a direct and strict test of our predictions.

  13. Gravity Probe B spacecraft description

    International Nuclear Information System (INIS)

    Bennett, Norman R; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-01-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles and Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data. (paper)

  14. Probe-diverse ptychography

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, I., E-mail: isaac.russellpeterson@rmit.edu.au [ARC Centre of Excellence for Coherent X-ray Science, the University of Melbourne, School of Physics, Victoria 3010 (Australia); Harder, R. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Robinson, I.K. [Research Complex at Harwell, Didcot, Oxfordshire OX11 0DE (United Kingdom); London Centre for Nanotechnology, University College London, London WC1H 0AH (United Kingdom)

    2016-12-15

    We propose an extension of ptychography where the target sample is scanned separately through several probes with distinct amplitude and phase profiles and a diffraction image is recorded for each probe and each sample translation. The resulting probe-diverse dataset is used to iteratively retrieve high-resolution images of the sample and all probes simultaneously. The method is shown to yield significant improvement in the reconstructed sample image compared to the image obtained using the standard single-probe ptychographic phase-retrieval scheme.

  15. Coupled rotational dynamics of Jupiter's thermosphere and magnetosphere

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2009-01-01

    Full Text Available We describe an axisymmetric model of the coupled rotational dynamics of the thermosphere and magnetosphere of Jupiter that incorporates self-consistent physical descriptions of angular momentum transfer in both systems. The thermospheric component of the model is a numerical general circulation model. The middle magnetosphere is described by a simple physical model of angular momentum transfer that incorporates self-consistently the effects of variations in the ionospheric conductivity. The outer magnetosphere is described by a model that assumes the existence of a Dungey cycle type interaction with the solar wind, producing at the planet a largely stagnant plasma flow poleward of the main auroral oval. We neglect any decoupling between the plasma flows in the magnetosphere and ionosphere due to the formation of parallel electric fields in the magnetosphere. The model shows that the principle mechanism by which angular momentum is supplied to the polar thermosphere is meridional advection and that mean-field Joule heating and ion drag at high latitudes are not responsible for the high thermospheric temperatures at low latitudes on Jupiter. The rotational dynamics of the magnetosphere at radial distances beyond ~30 RJ in the equatorial plane are qualitatively unaffected by including the detailed dynamics of the thermosphere, but within this radial distance the rotation of the magnetosphere is very sensitive to the rotation velocity of the thermosphere and the value of the Pedersen conductivity. In particular, the thermosphere connected to the inner magnetosphere is found to super-corotate, such that true Pedersen conductivities smaller than previously predicted are required to enforce the observed rotation of the magnetosphere within ~30 RJ. We find that increasing the Joule heating at high latitudes by adding a component due to rapidly fluctuating electric fields is unable to explain the high equatorial temperatures. Adding a component of Joule

  16. DETECTION OF KOI-13.01 USING THE PHOTOMETRIC ORBIT

    International Nuclear Information System (INIS)

    Shporer, Avi; Jenkins, Jon M.; Seader, Shawn E.; Smith, Jeffrey C.; Thompson, Susan E.; Twicken, Joseph D.; Rowe, Jason F.; Sanderfer, Dwight T.; Still, Martin D.; Welsh, William F.

    2011-01-01

    We use the KOI-13 transiting star-planet system as a test case for the recently developed BEER algorithm, aimed at identifying non-transiting low-mass companions by detecting the photometric variability induced by the companion along its orbit. Such photometric variability is generated by three mechanisms: the beaming effect, tidal ellipsoidal distortion, and reflection/heating. We use data from three Kepler quarters, from the first year of the mission, while ignoring measurements within the transit and occultation, and show that the planet's ephemeris is clearly detected. We fit for the amplitude of each of the three effects and use the beaming effect amplitude to estimate the planet's minimum mass, which results in M p sin i = 9.2 ± 1.1 M J (assuming the host star parameters derived by Szabo et al.). Our results show that non-transiting star-planet systems similar to KOI-13.01 can be detected in Kepler data, including a measurement of the orbital ephemeris and the planet's minimum mass. Moreover, we derive a realistic estimate of the amplitudes uncertainties, and use it to show that data obtained during the entire lifetime of the Kepler mission of 3.5 years will allow detecting non-transiting close-in low-mass companions orbiting bright stars, down to the few Jupiter mass level. Data from the Kepler Extended Mission, if funded by NASA, will further improve the detection capabilities.

  17. Traversing probe system

    International Nuclear Information System (INIS)

    Mashburn, D.N.; Stevens, R.H.; Woodall, H.C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride. 10 claims, 6 figures

  18. Traversing probe system

    Science.gov (United States)

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  19. Electrical resistivity probes

    Science.gov (United States)

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  20. JUPITER AS AN EXOPLANET: UV TO NIR TRANSMISSION SPECTRUM REVEALS HAZES, A Na LAYER, AND POSSIBLY STRATOSPHERIC H{sub 2}O-ICE CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Montañés-Rodríguez, Pilar; González-Merino, B.; Pallé, E. [Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, E-38200 La Laguna (Spain); López-Puertas, Manuel [Departamento de Astrofísica, Universidad de La Laguna, Av., Astrofísico Francisco Sánchez, s/n, E-38206 La Laguna (Spain); García-Melendo, E., E-mail: pmr@iac.es [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, E-18080 Granada (Spain)

    2015-03-01

    Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. However, the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here, we show the UV–VIS–IR transmission spectrum of Jupiter as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter’s shadow, i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere and strong absorption features from CH{sub 4}. More interestingly, the comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H{sub 2}O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore the atmospheric composition of the upper layers of Jupiter’s atmosphere.